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Abstract

JMIR AI is a new journal with a focus on publishing applied artificial intelligence and machine learning research. This editorial
provides an overview of the primary objectives, the focus areas of the journal, and the types of articles that are within scope.

(JMIR AI 2022;1(1):e42046)   doi:10.2196/42046
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The past decade has witnessed rapid growth in the development
of artificial intelligence and machine learning (AI/ML) methods
for biomedical research and clinical applications. At the same
time, it has become clear that the translation of such methods
into practice has met numerous challenges. This is perhaps best
exemplified by the status of AI/ML work during the COVID-19
pandemic. The pandemic was one moment in time where
powerful AI/ML-driven diagnostic and prognostic tools could
have accelerated our understanding and development of effective
treatments. With some notable exceptions [1], and despite many
publications, the impact of AI/ML in practice has been limited
[2,3]. The reasons are varied [4-6], such as a lack of
representation in the populations to whom the data corresponds
and poor quality in the data available, leading to a lack of
generalizable methodologies and models and a lingering lack
of trust in automated decision-making. In this respect, our main
motivation for JMIR AI is to publish articles that focus on the
practical issues involved in developing useful AI/ML solutions
and implementing them in biomedical research and clinical
settings.

At the same time, we are seeing the introduction of policies and
statutes in disparate jurisdictions to regulate AI/ML systems
[7,8]. These policies and statutes are being developed in
anticipation of an AI-laden future. Yet, as with all
policy-making, such activities are likely to impact data access,
the definition of fit-for-use data, algorithmic explainability and
transparency, patient access to data and decision justifications,

and the need for continuous evaluation of models in clinical
settings, to name a few.

JMIR AI aims to become a venue for identifying, discussing,
and addressing such practical challenges, with a particular
emphasis on applications. The journal will strive to publish
technical articles, as well as those tackling societal aspects,
including ethical, legal, policy, and regulatory issues. This will
be accomplished through a mix of research, perspectives,
tutorials, and articles describing benchmark data sets. By
leveraging JMIR Publications’ publishing processes and tools,
we also expect to have a rigorous and rapid open access review
and publication process.

To realize this vision, we are assembling a multidisciplinary
editorial board covering a wide array of topics from academia
and industry, as well as ensuring broad domain and regional
representation. The founding members of the editorial board
cover many years working in academic medical centers and
with spin-off health technology companies, as well as working
with and within the pharmaceutical and medical device
industries. Given the continued rapid advancement of this
multidisciplinary field, we intend to continue expanding the
editorial board to cover relevant areas as they arise.

We also intend to use the journal as a platform to enable and
facilitate code and data sharing. This will be achieved by
providing authors with additional tools that address the many
technical and regulatory obstacles to broader community
sharing.
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Abstract

Background: Adolescence is a critical developmental period to prevent and treat the emergence of mental health problems.
Smartphone-based conversational agents can deliver psychologically driven intervention and support, thus increasing psychological
well-being over time.

Objective: The objective of the study was to test the potential of an automated conversational agent named Kai.ai to deliver a
self-help program based on Acceptance Commitment Therapy tools for adolescents, aimed to increase their well-being.

Methods: Participants were 10,387 adolescents, aged 14-18 years, who used Kai.ai on one of the top messaging apps (eg,
iMessage and WhatsApp). Users’well-being levels were assessed between 2 and 5 times using the 5-item World Health Organization
Well-being Index questionnaire over their engagement with the service.

Results: Users engaged with the conversational agent an average of 45.39 (SD 46.77) days. The average well-being score at
time point 1 was 39.28 (SD 18.17), indicating that, on average, users experienced reduced well-being. Latent growth curve
modeling indicated that participants’ well-being significantly increased over time (β=2.49; P<.001) and reached a clinically
acceptable well-being average score (above 50).

Conclusions: Mobile-based conversational agents have the potential to deliver engaging and effective Acceptance Commitment
Therapy interventions.

(JMIR AI 2022;1(1):e38171)   doi:10.2196/38171

KEYWORDS

well-being; adolescents; chatbots; conversational agents; mental health; mobile mental health; automated; support; self-management;
self-help; smartphone; psychology; intervention; psychological; therapy; acceptance; commitment; engagement

Introduction

Adolescence is a developmental period that is filled with
changes: changes to one’s body, in one’s social environment,
and even to one’s mind [1]. It is also a crucial period for mental,
social, and emotional well-being, which is characterized with
an increased risk to develop mental health problems, such as
anxiety, depression, substance abuse, and eating disorders [1].
According to the Centers for Disease Control and Prevention,
more than 10% of adolescents aged 12-17 years experience

anxiety, almost 8% experience behavior disorders, and 6%
experience depression. These problems tend to continue during
adulthood, especially when left untreated, and impact not only
those who experience it but also those around them, as well as
society as a whole. For example, lost productivity due to anxiety
and depression is estimated to cost the global economy US $1
trillion each year [2]. The increased risk in developing mental
illnesses during adolescence marks it as a crucial period for
prevention, as well as treatment, and emphasizes the need for
accessible and customized mental health tools aimed at
decreasing adolescents’ ill-being and increasing their well-being.
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In this study, we focused on adolescents’ well-being and
followed their well-being during a time in which they used a
digital, artificial intelligence (AI)–powered, personal companion
designed to promote well-being and mental health.

Well-being usually refers to (1) a desirable state of satisfaction;
(2) the presence of positive affect (eg, happiness); and (3) the
absence of negative affect [3,4]. Well-being does not refer to a
specific moment but rather a continuous state [5]. Previous
research that mainly focused on adult populations have shown
that psychological well-being is associated with health and
long-term adjustment [6]. Specifically, higher levels of
well-being were found to be associated with fewer illnesses,
increased life expectancy, and healthier behavior [6]. In
comparison, lower levels of well-being were found to be
associated with higher levels of depression, hopelessness, and
suicidal intent [7], as well as actual suicide attempts [8,9].

The few longitudinal studies that did focus on adolescents’
well-being tend to find that adolescents’ well-being decreased
over time. Specifically, it was found that well-being, which was
often measured by satisfaction with school, family, friends,
schoolwork, appearance, and life as a whole, showed weak
stability over time [10] and that girls are at greater risk of a
decrease in their well-being over time than boys [10-12].
Another study did not find a significant change over time in
psychological well-being but did find that girls reported lower
levels of well-being than boys [13]. Taken together, these studies
suggest that adolescent girls are at a greater risk to experience
reduced well-being than boys.

Studies on adult populations suggest that different interventions
can improve well-being, compared to control groups who did
not receive interventions or were in delayed intervention groups.
For example, an intervention based on Acceptance and
Commitment Therapy (ACT), which focuses on cognitive
diffusion, psychological flexibility, mindfulness, and values
clarification, was found to be associated with greater well-being
posttreatment, as well as at the 3-month follow-up, compared
to the control group who did not receive the intervention [14].
Another study tested the effectiveness of the “My Coping Plan”
app in improving mental health and coping [15]. The “My
Coping Plan” approach focuses on normalizing unpleasant
emotions and coping as universal human experiences, both for
those with and without mental illness, and encourages
professional help–seeking as a healthy coping strategy when
personal coping strategies are ineffective. It was found that
participants in the intervention group reported improved
well-being, compared to control group, over the 1-month period
of using the app [15]. Finally, a study that tested the effect of
mindfulness-based therapy versus a waitlist group among
patients with breast cancer showed a significant increase in
well-being in the experimental group at both 8- and 12-week
assessments compared to the control group [16].

One promising avenue for delivering interventions, especially
for adolescents, is through their smartphones. The use of
smartphones and their different apps have been highly integrated
in almost everyone’s everyday lives. Almost 50% of
11-year-olds in the United States have a mobile phone, with
this number reaching 85% among 14-year-olds [17]. On average,

US adolescents aged 13-18 years engage with their mobile
phone for more than 3 hours every day [18], making it a highly
accessible and easy-to-use tool for presenting a mental health
intervention. Indeed, recent years have seen an increase in the
development of various mental mobile health (mHealth)
interventions apps [19]. These mental mHealth interventions
are either aimed at complementing traditional mental health
treatments or providing mental health support to those who are
unable to receive quality mental health services—for example,
due to long waiting lists [19]—and were found to be beneficial
to adult populations [19-21].

There are many possibilities for delivering mental mHealth
interventions, such as web-based therapists, conversational
interfaces (such as Amazon’s Alexa), and delivering
information. Another prospective approach, especially for
adolescents, is by implementing a text-based approach. Using
a text-based approach could be an easy and sustainable way to
keep adolescents engaged with the process of the intervention.
Thus, in this study, we tested whether adolescents’ well-being
improved while using a commercially developed text-based
conversational agent named Kai.ai.

Kai.ai is an AI-powered, personal companion designed to
promote well-being and mental health by initiating daily
conversations and presenting short and simple exercises to users
and is used within an instant messenger app (eg, iMessage and
WhatsApp). The intervention delivered by Kai.ai is mainly
based on ACT protocols and tools adapted from positive
psychology theories. As previously described, ACT aims to
improve cognitive flexibility, as well as coping with challenging
experiences, by focusing on cognitive diffusion, practicing
mindfulness, and reflection on one’s values [22,23]. Kai.ai
delivers the ACT intervention using an AI conversational bot
that facilitates users in creating and enhancing habits for healthy
living and resilience [24]. Kai.ai interacts with users throughout
the day and leverages their responses to deliver a tailored ACT
skilled coaching. The main advantages of Kai.ai are that (1) it
integrates seamlessly with all the top messaging apps (iMessage,
WhatsApp, Discord, Telegram, etc), making it accessible and
easy to use; (2) it can reach adolescents who would otherwise
not seek support; (3) it contacts the adolescents but also responds
to adolescents when they initiate the conversation; (4) it is
available 24/7; (5) it is free; and (6) it is anonymous.

In this study, we followed adolescents who voluntarily chose
to join and interact with Kai.ai. At several time points during
the period in which they interacted with Kai.ai, they were asked
about their well-being. We hypothesized that their well-being
would improve while using Kai.ai.

Methods

Participants
The initial sample included 43,237 adolescents from the United
States, aged 14-18 years, who had a smartphone with either an
iOS or Android operating system and freely chose to interact
with Kai.ai through common messaging apps. We advertised
Kai.ai in platforms that are frequently used by adolescents such
as Instagram and Snapchat. Within these platforms, the
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advertisements were specifically shown to adolescents aged
14-18 years, and especially girls, according to the information
they entered during the registration to each platform. Users are
presented with an ad inviting them to test how happy they are.
When clicking the ad, users are taken to Kai.ai’s landing page.
The final sample included 10,387 participants who answered
the questionnaires more than once. The onboarding process for
the use of Kai.ai does not ask the user to report their actual age
or gender; thus, it did not enable us to report this information.

Procedure
As part of the joining process to Kai.ai (in the onboarding
process), all users were asked, but were not obligated, to
complete different questions and questionnaires to assess their
needs. Subsequently, users were prompted once every 6 weeks
to answer these questionaries once again, to monitor their mental
progress; however, they could have answered whenever it was
convenient for them. These prompts were also optional, and
users were not required to answer the questionnaires to continue
using Kai.ai. Participants in this study completed the 5-item
World Health Organization Well-being Index (WHO-5)
questionnaire between 2 and 5 times, between February 2020
and January 2022. The study was based on anonymized data
gathered during the engagement with the service.

Ethics Approval
This study was approved by the WCG Institutional Review
board (approval #1-1504102-1) and determined as not human
subject research.

Intervention

Kai.ai
During the onboarding process, the users are made clear that
Kai—the name of AI in the program—is not a real person and
has been built by clinical psychologists, coaches, and engineers.
Users are being informed that Kai will reach out to them and
will send them daily practices, techniques, and insights, but
they are also encouraged to reach out to Kai whenever they
need. Kai.ai initiates between 1 and 3 daily interactions with
the users, usually in the morning, at noon, and in the evening.

Each daily interaction that is initiated by Kai.ai begins with a
greeting (ie, “good morning” or “good evening”) and an
inspiration quote (eg, “Many people will walk in and out of
your life, but only true friends will leave footprints in your
heart,” Eleanor Roosevelt), which are then followed by a short
exercise (described below) related to ACT. Users can also
initiate an interaction with Kai whenever they please, or when
Kai initiates the interaction, they can direct it to whatever topic
they wish. When Kai recognizes that participants are in some
sort of distress, the bot switches off and a trained companion,
who is practiced in giving support, goes on and encourages
users to turn to a someone close to them for support or use
available hotlines near them (ie, presents them with a list of
available possibilities).

Process-Oriented Features
In addition to interacting with Kai, Kai.ai also presents users
with different exercises to promote better mental health. These
exercises are described below.

Gratitude

The aim of this exercise is to help users to develop flexible
thinking patterns, balance negative biases, and develop a positive
view over their lives. Each day, users are prompted to think
about the things they are grateful for and share them with Kai.
The system saves their responses, and they can view them
whenever they want.

Learning

The aim of this exercise is to help users to adopt a routine of
reflection and journaling to help them achieve a more centered,
grounded, joyous, and purposeful state of mind. Users are
prompted to focus on the lessons they can learn from their
experiences. In addition, to reduce stress and anxiety, users are
guided to focus on a single task they have instead of a long
to-do list.

Breathing

The breathing exercises are meant to reduce stress and anxiety
by ensuring a better flow of oxygen to the body through the
operation of the parasympathetic nervous system [25]. Initially,
users are taught in a relaxed state of mind with the aim that with
continuous practice, the exercises will become a tool that can
be enacted while the users feel distressed. The exercises teach
users how to breathe through their noses, using their diaphragm,
and note their posture.

Mindfulness

The mindfulness exercises help the users become aware of the
present moment without being judgmental toward themselves.
The mindfulness exercises are audio-based and help users
practice the art of observing and visualizing thoughts, emotions,
and body sensations as they arise. By practicing these exercises,
users can benefit by letting go of any repeated unwanted
thoughts, increase self-awareness and self-compassion, as well
as reduce tension and stress.

ACT Training

The ACT training aims to develop psychological flexibility and
diffusion of thoughts, emotions, and behaviors and accept the
challenging moments in our lives that contain negative emotions,
as well as unfold the users’ values and help them commit to the
values. It teaches users to treat pain and discomfort as facts of
life that can be used for personal growth through a process of
acceptance and validation [26]. ACT exercises are also presented
as audio, in which their aim is to guide the users in observing
and accepting their current and past thoughts and emotions,
despite the discomfort they might elicit. These ACT exercises
help build resilience, gain control over thoughts and emotions,
and assist in building coping strategies when facing difficult
moments.

Positive Psychology

These exercises aim to decrease negativity bias and increase
positivity in users’ lives and are also audio-based. They help
connect positive intentions to the users themselves and assist
in enhancing self-compassion.
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Measures: Well-being
Users’ well-being was assessed using the WHO-5 Well-being
Index, which is a brief 5-item self-reported measure [27].
Participants were asked to report their experiences in the past
2 weeks (eg, “I have felt cheerful and in good spirits”) on a
6-point Likert scale, ranging from 0 (at no time) to 5 (all of the
time). The raw well-being score theoretically ranges from 0
(absence of well-being) to 25 (maximal well-being). However,
as scales measuring health-related quality of life are typically
translated to a percentage-based scale, ranging from 0 to 100,
it is recommended to multiply the raw score by 4. A score below
50% reflects poor well-being, and a 10-point change in the
translated score is seen as clinically significant [28]. The
WHO-5 has shown both clinical and psychometric validity (for
a systematic review, see Topp et al [28]) and has been previously
integrated in mental health– and physical health–related mobile
apps [29-31]. The WHO-5 was also found to be reliable for
assessing children and adolescents’ well-being [32-34].

Statistical Approach
We first conducted a 1-way ANOVA to test for differences in
the WHO-5 baseline scores between participants according to

the number of times they have answered the questionnaire. In
this analysis, we also considered those who answered only once,
to test whether there were differences in well-being between
those who chose to answer only once and those who continued
to answer the questionnaire. Next, we described the descriptive
statistics of the sample. Finally, to account for the structure of
data, in which we had several time points of assessment for
each user (between 2 and 5), we conducted latent growth curve
modeling, in which we examined the change in the WHO-5
assessment over time. We first conducted an intercept-only
model, in which the intercept variance was constrained to 0, so
we only assessed the mean. In the second model, we conducted
a random-intercept model and allowed users to differ in their
starting point. In the third model, we added a random slope (ie,
users are changing in different ways) but set the average slope
to 0. Finally, in the fourth model, we estimated the real slope.
After each step, we estimated the fit of the model to test whether
adding each component improved the model. Figure 1 is an
illustration for the final model. The analysis was conducted
using the lavaan package in R statistical software (version 3.5.1;
R Foundation for Statistical Computing) [35].

Figure 1. An illustration of the latent growth curve model. T: time point; WHO-5: 5-item World Health Organization Well-being Index.

Results

First, we tested for differences in WHO-5 baseline scores
between all participants according to the number of times they
have answered the questionnaire, using the aov function in R
statistical software [36]. No significant difference was found
between the groups (F4,43,232=0.35; P=.84).

On average, users interacted with Kai.ai for 45.39 (SD 46.77;
range 2-634) days. Table 1 describes the averages of the WHO-5
assessment at each time point (T). The average well-being score
at T1 was below 50 (mean 39.28, SD 18.15), indicating that,
on average, users experienced reduced well-being [28].
However, the average score increased over time, reaching an
average of 53.63 (SD 21.32) in T5, 85 days after the first
assessment (approximately 2.5 months). The average number

of days that have passed between each assessment increased
over time, with the average number of days being 25.80 days
between T1 and T2 and 36.62 days between T4 and T5.

The results of the latent growth curve modeling, in which we
assessed the difference in the WHO-5 assessments over time,
are presented in Table 2. As can be seen in Table 2, the model
fit improved from the first model to the last model, with the
fourth model showing the best goodness of fit. As can be seen
in the fourth model, participants’ well-being significantly
increased over time (β=2.49; P<.001). Figure 2 depicts the
change in the WHO-5 over time. However, the negative
covariance between the intercept and slope indicates that users
who were lower in well-being show a bigger increase in
well-being than users who were higher in well-being, as could
be expected.
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Table 1. Number of participants, mean, and SD of the WHO-5a assessments at each time point and average time elapsed between each time point.

Average time between Tn – Tn + 1WHO-5 score, mean (SD)Participant, nTb

39.28 (18.17)10,3871

25.8047.18 (19.68)10,3872

25.7049.85 (20.15)48013

30.8152.09 (20.45)23244

36.6253.64 (21.32)10725

aWHO-5: 5-item World Health Organization Well-being Index.
bT: time point.

Table 2. Latent growth curve modeling of the associations between time and users’ engagement and the 5-item World Health Organization Well-being
Index.

Goodness of fitIntercept-slope
covariance

Slope (σ2)SEIntercept (σ2)Model

CFIcSRMRbRMSEAaχ2 (df)

00.430.392884.86 (18)N/AN/Ad393.250.25 (0)Intercept only

0.70.140.21794.52 (17)N/AN/A181.7050.25 (212.03)Random intercept

0.820.150.17493.12 (16)00 (14.22)142.4247.77 (188.68)Random slope

0.920.060.12227.55 (14)–8.332.49 (11.04)138.1345.28 (209.13)Real slope

aRMSEA: root mean square error of approximation.
bSRMR: standardized root mean square residual.
cCFI: comparative fit index.
dN/A: not applicable.

Figure 2. Plot of the change in the WHO-5 scores across time. WHO-5: 5-item World Health Organization Well-being Index.
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Discussion

Principal Findings
Adolescence is a crucial period for treating and, ideally,
preventing mental health problems and increasing well-being:
first, to improve the lives of adolescents and second, to decrease
the risk for developing mental health problems in adulthood
[1]. In this study, we followed the well-being of more than 1000
adolescents from the United States through their interaction
with an AI-powered, personal companion named Kai.ai, over
a period of 4 months. The results indicated that, on average,
adolescents’ well-being increased over time and went from, on
average, a poor well-being score to an acceptable well-being
score (above 50).

The importance of developing cost-effective, accessible, and
engaging mental health interventions lies not only in the obvious
benefits they have for adolescents and their families’well-being
but also in the economic impact they may have. For example,
the overall annual economic burden of depression among adults
in the United States is estimated to be greater than US $326
billion [37], which were mainly accounted for by workplace
costs (eg, missed days of work and reduced productivity while
at work). Such studies among adolescents are scarce, but it was
estimated that the annual societal cost of clinically referred
adolescents ranged between US $42-66 million [38]. These
costs were mainly attributed to their parents’ loss of productivity
and adolescents’ school absence. When adding the economic
impacts of other disorders, such as anxiety, these estimates are
much higher. Thus, findings ways to efficiently treat, and more
importantly prevent, mental health problems and increase
well-being should be considered a priority for policy makers,
health care providers, and entrepreneurs.

Limitations
The assessments were made through the Kai.ai platform, but
we cannot infer that the improvement of users’ well-being
stemmed directly from the use of the service for several reasons.
First, since the participants were all users who freely chose to
use the service, there was no control group that was followed
and studied for the same duration of the study. Therefore, users’
improvement may represent a regression to the mean. Moreover,
individuals who freely chose to use Kai.ai, a self-help tool, may
have used other self-help tools or apps at the same time. Future
studies should conduct a randomized control trial to better
understand the effectiveness of the service compared to no
intervention. Second, the use of common messaging apps for
communicating with the users made it impossible to monitor
whether they used the different process-oriented features such
as breathing and ACT training. Therefore, we could not test
their associations with users’ well-being. Third, as the use of
Kai.ai is anonymous, we did not have estimates regarding age,
gender, and other demographic variables such as socioeconomic
status, which limits the generalizability of the findings.

Conclusions
These initial results demonstrate the potential of a text-based
conversational companion as a cost-effective and accessible
tool to improve adolescents’ well-being. Due to the great
economic cost for poor well-being and mental health and the
decrease in the accessibility of various support systems, partly
due to the COVID-19 pandemic, developing efficient
interventions should be considered a societal priority. Future
studies should test if any of the process-oriented features of
Kai.ai are beneficial for improving users’ well-being or if the
recognized increase in well-being represents a regression to the
mean.
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Abstract

Background: Anterior cruciate ligament (ACL) injuries are common in sports and are critical knee injuries that require prompt
diagnosis. Magnetic resonance imaging (MRI) is a strong, noninvasive tool for detecting ACL tears, which requires training to
read accurately. Clinicians with different experiences in reading MR images require different information for the diagnosis of
ACL tears. Artificial intelligence (AI) image processing could be a promising approach in the diagnosis of ACL tears.

Objective: This study sought to use AI to (1) diagnose ACL tears from complete MR images, (2) identify torn-ACL images
from complete MR images with a diagnosis of ACL tears, and (3) differentiate intact-ACL and torn-ACL MR images from the
selected MR images.

Methods: The sagittal MR images of torn ACL (n=1205) and intact ACL (n=1018) from 800 cases and the complete knee MR
images of 200 cases (100 torn ACL and 100 intact ACL) from patients aged 20-40 years were retrospectively collected. An AI
approach using a convolutional neural network was applied to build models for the objective. The MR images of 200 independent
cases (100 torn ACL and 100 intact ACL) were used as the test set for the models. The MR images of 40 randomly selected cases
from the test set were used to compare the reading accuracy of ACL tears between the trained model and clinicians with different
levels of experience.

Results: The first model differentiated between torn-ACL, intact-ACL, and other images from complete MR images with an
accuracy of 0.9946, and the sensitivity, specificity, precision, and F1-score were 0.9344, 0.9743, 0.8659, and 0.8980, respectively.
The final accuracy for ACL-tear diagnosis was 0.96. The model showed a significantly higher reading accuracy than less
experienced clinicians. The second model identified torn-ACL images from complete MR images with a diagnosis of ACL tear
with an accuracy of 0.9943, and the sensitivity, specificity, precision, and F1-score were 0.9154, 0.9660, 0.8167, and 0.8632,
respectively. The third model differentiated torn- and intact-ACL images with an accuracy of 0.9691, and the sensitivity, specificity,
precision, and F1-score were 0.9827, 0.9519, 0.9632, and 0.9728, respectively.

Conclusions: This study demonstrates the feasibility of using an AI approach to provide information to clinicians who need
different information from MRI to diagnose ACL tears.

(J AI 2022;1(1):e37508)   doi:10.2196/37508
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Introduction

The anterior cruciate ligament (ACL), an important ligament
of the knee joint, is a common and devastating sports injury
that affects more than 200,000 people in the United States
annually [1,2]. The early and proper diagnosis of ACL tears is
crucial and can lead to early intervention to prevent subsequent
chondral or meniscal damage and early osteoarthritis [3]. A
neglected diagnosis can cause longer chronicity of ACL tears
at the time of surgery and is positively correlated with the
development of osteoarthritis [4]. Arthroscopy can directly
visualize the intra-articular lesions of the knee and is the most
accurate diagnostic tool for ACL tears [5]. However, this is an
invasive procedure with potential surgical risks.

Magnetic resonance imaging (MRI) is a strong, noninvasive
tool for detecting ACL tears with high sensitivity and specificity
if interpreted by an experienced musculoskeletal radiologist
[6,7]. However, reading MR images and making an accurate
diagnosis of ACL tears are challenging for less experienced
medical personnel.

Graphic identification using deep learning is an important and
integral part of artificial intelligence (AI). Using a convolutional
neural network (CNN) with repeated input and output data,
established algorithms can learn layers of features and repeatedly
adjust their neural network and thereby model the complex
relationships between medical images and their interpretations
[8]. CNNs may be useful in medical imaging tasks; thus, the
development of a computer-assisted tool to detect ACL tears
from MR images may be helpful in reducing doctor workload,
increasing education, reducing misdiagnosis, and enhancing the
quality of health care in resource-limited areas [9].

In this study, we aimed to use AI to (1) diagnose ACL tears
from complete MR images (for those who were not trained to
read knee MRI but nevertheless wanted to diagnose it); (2)
identify torn-ACL images from complete MR images that have
a diagnosis of an ACL tear (for those who need advanced
information after they obtain the result of an ACL tear from the
first model); and (3) differentiate torn-ACL and intact-ACL
images from the selected MR images (for those who were able
to identify the images containing ACL but do not have sufficient
confidence in making the diagnosis).

Methods

Ethics Approval
This retrospective study was approved by the institutional review
board of Taipei Veterans General Hospital (2018-11-005CC).

Patient Selection and Database
The sagittal MR images of torn ACL (n=1205) and intact ACL
(n=1018) from 800 cases and the complete knee MR images of
200 cases (100 torn ACL and 100 intact ACL; torn- and
intact-ACL images were extracted, n=335,742) of patients who
underwent knee MRI examinations between January 2013 and
December 2017 were retrospectively collected for training
purposes (training set). The complete MR images of 200
independent cases (100 torn ACL and 100 intact ACL;
n=34,914) were used for testing purpose (testing set). The mean
age of these patients was 28.1 years and 66.4% (664/1000) were
male. The patient population was similar to previous reports on
the group with the higher prevalence of ACL tears [10]. We
believe these models have routine applications in a majority of
patient groups.

Knee MR images excluded patients with the following knee
conditions: tumor around the knee, previous knee surgery,
multiple ligament injuries, osteoarthritis (Kellgren-Lawrence
classification grades 2 to 4), and previous fractures around the
knee. MRI examinations were performed on the knee, either in
our hospital or in other hospitals, and were then uploaded to
our system for a second opinion. There were 6 different MRI
scanners used to perform knee examination in our hospital, and
we did not restrict the scanner from which we obtained the
images. Moreover, we did not identify the scanners in the
uploaded images. In this database, for the torn-ACL MRIs,
76.8% (384/500) were performed in our hospital and 23.2%
(116/500) were from other hospital; and for the intact-ACL
MRIs, 84.6% (423/500) were performed in our hospital and
15.4% (77/500) were from other hospital. Hence, the images
used in this study were not restricted to one hospital or a specific
MRI scanner.

The determination of a torn-ACL or intact-ACL case was
formulated independently by 2 orthopedic doctors and 1
musculoskeletal radiologist who reviewed the MR images and
issued the report officially. In addition, torn-ACL cases were
also confirmed through arthroscopic examination as all patients
with ACL tears underwent arthroscopic ACL reconstruction
surgery. All 3 doctors had consistent opinions on the sagittal
torn-ACL (Figure 1) and intact-ACL (Figure 2) images.
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Figure 1. MR images of different torn-ACL patterns. Sagittal proton density images from 6 different patients show variations in the patterns of torn
ACL on their respective images: (A) proximal third tear; (B) mid-substance tear; (C) distal third tear; (D) chronic tear with complete ligament resorption,
such as ligament disappearance; (E) tear with folded ligament, which may cause extension difficulty; and (F) tear with cyst formation. White arrow:
lesion site. ACL: anterior cruciate ligament; MR: magnetic resonance.

Figure 2. MR images of intact ACL. Sagittal proton density images of 3 different patients are shown. All images show the taut and straight bands
parallel to the intercondylar roof with low signal intensity patterns of the intact ACL (white arrow). ACL: anterior cruciate ligament; MR: magnetic
resonance.
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The first model was for clinicians who were not trained to read
knee MR images but wanted to know if the ACL was torn. For
this purpose, we first trained a CNN model to differentiate
between torn-ACL, intact-ACL, and other images from complete
MR images of the knee. The sagittal MR images of torn and
intact ACL from 800 cases and the images from 200 complete
knee MR images (the torn- and intact-ACL images were
extracted), regarded as other images, were used to train and
validate the model (Table 1). Cases containing intact-ACL
images or both intact- and torn-ACL images were regarded as
intact-ACL cases, and cases containing torn-ACL images only
were regarded as tear cases. This is similar to the strategy often
used by some readers; if an intact-ACL image could be
identified among complete MR images, then it might indicate
that there is less probability of a torn ACL. Instead, if an intact
ACL could not be found when examining the knee MRI of a
patient, it would be indicative of a torn ACL.

As the first model did not provide information for identifying
torn-ACL images, a second model was developed to identify
them from complete MR images that had been diagnosed as
ACL-tear case from the first model. Thus, the second model
was intended for personnel who needed advanced information
on torn-ACL images after obtaining the ACL-tear results. For
this purpose, torn-ACL images and other images from 100
ACL-tear cases in the training set were used for training and
validation (Table 2).

The third model was used to differentiate between torn-ACL
and intact-ACL images from the selected MR images. This
model was used by more experienced readers who were able to
identify the sagittal images that contained ACLs but needed
assistance in making the correct diagnosis. For this purpose,
the sagittal MR images of torn and intact ACLs were included
for training purposes (Table 3).

Table 1. Number of images used for training, validating, and testing the model to differentiate intact-ACL, torn-ACL, and other images from the
complete magnetic resonance images.

Test, nTraining and validation, nClassification

2701018Intact-ACLa images

3461205Torn-ACL images

34,298c335,742bOther images

aACL: anterior cruciate ligament.
bIncluding sagittal, coronal, and axial images (torn- and intact-ACL images were extracted) from the training set (200 cases).
cIncluding sagittal, coronal, and axial images (torn- and intact-ACL images were extracted) from the test set (200 cases).

Table 2. Number of images used for training, validating, and testing the model to identify torn-ACL images from ACL-tear cases.

Test, nTraining and validation, nClassification

3461205Torn-ACLa images

16,800c15,969bOther images

aACL: anterior cruciate ligament.
bIncluding sagittal, coronal, and axial images (torn-ACL images were extracted) from 100 ACL-tear cases in the training set
cIncluding sagittal, coronal, and axial images (torn-ACL images were extracted) from 100 ACL-tear cases in the testing set.

Table 3. Number of images used for training, validating, and testing to differentiate between torn- and intact-ACL images.

Test, nTraining and validation, nClassification

2701018Intact-ACLa images

3461205Torn-ACL images

aACL: anterior cruciate ligament.

Image Preprocessing and CNN Model Training by an
Automatic Deep-Learning Software
All images were downloaded from the imaging system as a 256
× 256-pixel image in a portable network graphics format and
subsequently grouped, as previously mentioned, for training
the 3 different CNN models. The AI approach used MAIA
automatic deep learning software for medical imaging analyses
(version 1.2.0; Muen Biomedical and Optoelectronic
Technologies Inc), which was used in a previous study [11].
The CNN model of MAIA was based on EfficientNet-B0,

pretrained with ImageNet [12,13]. After inputting the MR
images of the training group, 80% of the images were distributed
to train and 20% were distributed to validate and find the most
ideal CNN model (Figure 3). The MR images were then
augmented with horizontal flipping and Gaussian noise [14].
The dropout function and different data augmentation methods
were added to prevent the model from overfitting in the data
set [15,16]. For hyperparameters in training, the number of
epochs was set as 100, the batch size was selected automatically
based on memory consumption, and the learning rate was
dynamically scheduled through cosine annealing and a 1-cycle
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policy [17,18]. The network was trained end-to-end using the
Adam optimization algorithm, which optimized the
cross-entropy as a loss function [19]. For classification, the
softmax or sigmoid layer was applied as the output layer in
multiclass or binary classification, respectively. The MAIA

analysis was performed with Python (version 3.x; Python
Software Foundation) and PyTorch (version 1.1.x; Meta AI) on
a Windows 10 laptop with GeForce RTX2070 graphic cards (8
GB GDDR6 RAM, GT63 Titan 8SF; MSI).

Figure 3. Data organization for model training.

CNN Models Performance Evaluation
To evaluate how the model differentiated between torn-ACL,
intact-ACL, and other images, the 200 independent cases were
used to test the model. To evaluate the accuracy of an ACL-tear
diagnosis, cases that were identified as containing intact-ACL
images were regarded as intact-ACL cases, and the rest were
diagnosed as ACL tears (Figure 4). To evaluate the secondary
model of identifying torn images from cases diagnosed with
ACL tears, 100 ACL-tear cases from the independent test set
were used for testing purposes (Figure 5). To evaluate the third
model of differentiating intact-ACL and torn-ACL images from
the selected MR images, sagittal MR images labeled as torn
and intact ACL from the independent test set were used (Figure
6). Finally, we compared the performance of the first model to

diagnose ACL tears with those of orthopedic residents and
medical students. For this purpose, 40 randomly selected cases
(20 torn and 20 intact) from the test set were used to test
differently experienced readers (ie, orthopedic residents and
medical students). Complete images were provided to the readers
after the removal of personal, clinical, surgical, and institutional
information to focus on the reading of the MRI. The residents
were split into 3 groups: Group 1 (chief residents and sports
fellows), Group 2 (third- and fourth-year residents), and Group
3 (first- and second-year residents). There were 5 participants
in each group. We excluded the highest and lowest accuracy
results for each group, and the accuracy of each group is the
mean accuracy of the 3 readers. The resultant accuracies of the
machine and differently experienced readers were compared.

Figure 4. Flowchart of diagnosing ACL tears using the AI approach. ACL: anterior cruciate ligament; AI: artificial intelligence; MRI: magnetic
resonance imaging.
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Figure 5. Flowchart of identifying torn-ACL images using the AI approach. ACL: anterior cruciate ligament; AI: artificial intelligence.

Figure 6. Flowchart of differentiating intact-ACL and torn-ACL images using the AI approach. ACL: anterior cruciate ligament; AI: artificial intelligence.

Statistical Analysis
The effectiveness of the 3 models was evaluated using several
metrics, including the accuracy, sensitivity, specificity, F1-score,
receiver operating characteristic curve, and the area under the
curve, which were calculated using Python. The comparison of
the models and doctors with different degrees was performed
using SPSS software package (version 22; IBM Corp). Statistical
significance was set at P<.05, with a 95% CI.

Results

The accuracy of the model that differentiated between torn-ACL,
intact-ACL, and other images was 0.9946. The sensitivity,
specificity, precision, and F1-scores were 0.9344, 0.9743,
0.8659, and 0.9980, respectively (Table 4 and Figure 7). The

accuracy of ACL diagnosis was 0.96 (Figure 8). The accuracy
of the model identifying torn-ACL images from the complete
images of ACL-tear cases was 0.9943. The sensitivity,
specificity, precision, and F1-scores were 0.9154, 0.9660,
0.8167, and 0.8632, respectively. (Table 4 and Figure 9). The
accuracy of the model that differentiated torn- and intact-ACL
images was 0.9691. The sensitivity, specificity, precision, and
F1-scores were 0.9827, 0.9519, 0.9632, and 0.9782, respectively
(Table 4 and Figure 10).

The accuracy of the first model and the differently experienced
orthopedic residents and medical students for the diagnosis of
ACL tears is shown in Table 5. When using the 40 randomly
selected cases from the test set for reading comparison, the
results showed a significantly higher reading accuracy for the
model than those of the less experienced residents and medical
students.

Table 4. Validation and test results for the 3 models.

ACL-tear or intact images differentiationACL-tear image identificationTorn-ACLa, intact-ACL, and other images
differentiation

Model

TestValidationTestValidationTestValidation

0.96911.00000.99430.99590.99460.9947Accuracy

0.98271.00000.91540.98340.93440.9702Sensitivity

0.95191.00000.96600.99690.97430.9884Specificity

0.96321.00000.81670.95950.86590.9647Precision

0.97281.00000.86320.97130.89800.9674F1-score

aACL: anterior cruciate ligament.
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Figure 7. Performance of the model in differentiating torn-ACL, intact-ACL, and other images. (A) Confusion matrix; (B) ROC curve of the model;
(C) Precision recall curve for identifying torn-ACL images; (D) Precision recall curve for identifying intact-ACL images; and (E) Precision recall curve
for identifying other images (images without torn or intact ACL). ACL: anterior cruciate ligament; ROC: receiver operating characteristic.

Figure 8. Classification matrix for diagnosing ACL-tear cases. ACL: anterior cruciate ligament.
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Figure 9. Performance of the model in identifying torn-ACL images from complete MRI images with an ACL-tear diagnosis. (A) Confusion matrix;
(B) ROC curve of the model; and (C) Precision recall curve. ACL: anterior cruciate ligament; ROC: receiver operating characteristic.

Figure 10. Performance of the model in differentiating between intact-ACL and torn-ACL images. (A) Confusion matrix; (B) ROC curve of the model;
(C) Precision recall curve; and (D) torn-ACL image identified (left) and its representative heat map (right). ACL: anterior cruciate ligament; ROC:
receiver operating characteristic.
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Table 5. Accuracy of the model and the differently experienced orthopedic residents and medical students in the diagnosis of anterior cruciate ligament
tears in 40 randomly selected magnetic resonance imaging cases.

P valueaAccuracy, meanReader

Referenceb0.975Machine

.130.888Group 1: chief residents and sports fellows (n=3)

.020.817Group 2: third- and fourth-year residents (n=3)

.0030.742Group 3: first- and second-year residents (n=3)

.0010.708Medical students (n=3)

aP values were based on statistical analyses using the chi-squared test. Statistical significance was set at P<.05.
bThe accuracy of machine reading was used as a reference.

Discussion

Principal Findings
This study demonstrates the feasibility of using an AI approach
to diagnose ACL tears from complete MR images with 96%
accuracy, identify torn-ACL images from ACL tear cases with
99.4% accuracy, and differentiate intact-ACL and torn-ACL
images from the selected MR images with 96.9% accuracy. The
model also demonstrated a significantly higher diagnostic
accuracy than orthopedic residents in training and medical
students.

MRI is a highly accurate tool for evaluating ACL tears, with
an accuracy, sensitivity, and specificity of more than 90%
[20,21]. In a complete MR scan, the knee should ideally be
imaged in 3 orthogonal planes: sagittal, coronal, and axial slices.
During the examination, the patient was positioned supine in
the scanner, with the knee relaxed in mild flexion and slight
external rotation (5°-10°). This position enables the ACL to be
orthogonal to the sagittal plane of imaging [22]. Therefore, of
all 3 planes, sagittal plane images show the ACL most clearly,
especially with T2-weighted sequences [23]. When reading
knee MR images in clinical practice, sagittal images are more
commonly used to evaluate the condition of the ACL than the
other planes. For this reason, we chose to use the sagittal images
of the intact or torn ACL as the target for the AI approach to
develop the 3 models.

In a normal knee, the ACL is between the lateral femoral
condyle and the anterior midportion of the tibia and attaches
the anterior to the tibial spine. Sagittal MR images appear as a
taut and straight band parallel to the intercondylar roof
(Blumensaat line) and have low signal intensity on T1- and
T2-weighted images (Figure 2). However, compared to
intact-ACL images, there are many variations in the torn-ACL
sign on the MR images. These variations include discontinuity
in the different parts of the ligament (proximal, midsubstance,
or distal) [24], abnormally increased signal intensity, and
abnormal morphology, such as a wave, fold, or angulation. In
chronic tears, the ACL can even be nonvisualized owing to the
resorption of the torn ligament (Figure 1). Thus, the variable
appearance of torn-ACL images makes them more complicated
to read than intact-ACL images. In the first model, the results
showed that the model had less accuracy in identifying torn-ACL
images than intact-ACL images (0.87 vs 0.94). There was more
misprediction of other images as torn-ACL images, and many

of these mispredictions occurred in the intact-ACL cases,
identifying both intact-ACL and torn-ACL images as intact-ACL
cases (19 cases). However, there was less misprediction of other
images as intact-ACL images in ACL-tear cases (4 cases). All
the results reflected the variations in torn-ACL images.
Accordingly, for the purpose of diagnosing ACL-tears, cases
containing intact-ACL images were regarded as intact cases
because the model identified them with a higher accuracy. The
other cases without intact-ACL images were regarded as tear
cases. By using this principle to exclude ACL-tear cases, the
accuracy of the diagnosis of ACL tears could reach 96%, which
is comparable to many studies using different AI approaches
[25-27]. This method can be helpful for personnel who are not
trained to read the knee MRI but want to know if the ACL is
torn. In addition to diagnosing ACL tears, this study also
demonstrates the feasibility of identifying ACL images from
complete MR images of ACL-tear cases and differentiating
intact- and torn-ACL images with a good accuracy and F1-score.
These models can be useful for various user needs.

A total of 40 cases were randomly selected from the test set for
the reading of the model and from differently experienced
residents and medical students. The images provided for each
case were complete MRI examinations, which included all
planes and sequences. The results showed that the accuracy of
the model in diagnosing ACL-tear cases was significantly higher
than that of medical students and orthopedic residents in
training. Reading MR images to identify ACL tears is relatively
routine for attending orthopedic surgeons or radiologists.
However, for less experienced readers, the model may provide
a useful reference when they are uncertain of the diagnosis.

In this study, we did not extract images from only 1 specific
MR scanner. This is because, in daily practice, a hospital may
have multiple scanners, and sometimes a physician may need
to read MR images from an unknown scanner from another
hospital. The MR images for this study were obtained using 6
different MR knee scanners in our institute, which were obtained
from 2 different companies and purchased in different years. In
addition to MR images that were obtained in our hospital,
images were also taken from other hospitals and uploaded to
our image system when the patients came for a second opinion
or asked for surgery. Therefore, our data set comprised images
from different scanners, and it was less likely that the model
would learn some artifacts from the scanners that are not related
to the ACL condition. We demonstrated that the models can
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perform well for an independent test set that contains MR
images from different scanners.

Comparison With Prior Work
Using a deep-learning approach to detect ACL tears has been
reported with an accuracy exceeding 95% in many studies using
different AI approaches [25-28]. Nonetheless, there were some
novelties in this study that we consider to be comparable for
their use in daily practice. First, we extracted images from
heterogeneous MR scanners. In previous studies, only 1 or 2
scanners were used; however, it is uncommon that there are
only 1 or 2 MRI scanners in an institution. Thus, developing a
deep-learning algorithm that is trained with images from
different MR scanners may better represent real-world situations
in many hospitals. For the independent test set, we used the
complete images of the MRI examination, and there was no
restriction on the protocol used by the scanner, which is different
from previous studies. Second, we used a different approach to
diagnose the ACL injuries. We excluded the cases containing
the intact-ACL images, which were identified by the AI
approach, to diagnose ACL-tear cases with an accuracy of 96%.
Third, we developed 3 different models for users with different
purposes: (1) to diagnose ACL tears from complete MR images;
(2) to identify torn-ACL images from complete MR images
with a diagnosis of ACL tears; and (3) to differentiate
intact-ACL and torn-ACL MR images from the selected images.
Users with different experiences require different types of help.
These 3 models are tailored to assist users with different needs
by providing them with relevant information using an AI
approach, which has not been previously reported.

Limitations
Our study has several limitations. First, we did not label the
partially torn–ACL images. Partial tears of the ACL are more
difficult to diagnose than complete tears, and the accuracy of
these diagnoses is poor on MR images [29]. Thus, we did not
use the images of partial tears for training or testing in this study.
However, should a partial tear case be input into the model, the
model could diagnose the case as an ACL tear because this
model cannot identify an intact-ACL image. This finding may
alert the user that the case is a torn-ACL case, and the case may
need to be double-checked by an orthopedic specialist. Second,
we used only sagittal torn-ACL and intact-ACL images for the
diagnosis of ACL tears. Considering that the images of other
planes can also assist in the diagnosis, adding the other planes
of images into the training might increase the reading accuracy.
Third, we did not record the details of the MR scanners, because
the information of the scanners of the images taken from other
hospitals could not be identified.

Conclusions
This study demonstrates the feasibility of using an AI approach
to diagnose ACL tears from a complete MR image (with 96.0%
accuracy), identify torn-ACL images from ACL-tear cases, and
differentiate intact-ACL and torn-ACL images from the selected
MR images. These models may serve as clinical decision support
systems for diagnosing ACL injuries for clinicians with different
experiences and purposes in reading knee MRIs.
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Abstract

Background: The promise of artificial intelligence (AI) to transform health care is threatened by a tangle of challenges that
emerge as new AI tools are introduced into clinical practice. AI tools with high accuracy, especially those that detect asymptomatic
cases, may be hindered by barriers to adoption. Understanding provider needs and concerns is critical to inform implementation
strategies that improve provider buy-in and adoption of AI tools in medicine.

Objective: This study aimed to describe provider perspectives on the adoption of an AI-enabled screening tool in primary care
to inform effective integration and sustained use.

Methods: A qualitative study was conducted between December 2019 and February 2020 as part of a pragmatic randomized
controlled trial at a large academic medical center in the United States. In all, 29 primary care providers were purposively sampled
using a positive deviance approach for participation in semistructured focus groups after their use of the AI tool in the randomized
controlled trial was complete. Focus group data were analyzed using a grounded theory approach; iterative analysis was conducted
to identify codes and themes, which were synthesized into findings.

Results: Our findings revealed that providers understood the purpose and functionality of the AI tool and saw potential value
for more accurate and faster diagnoses. However, successful adoption into routine patient care requires the smooth integration
of the tool with clinical decision-making and existing workflow to address provider needs and preferences during implementation.
To fulfill the AI tool’s promise of clinical value, providers identified areas for improvement including integration with clinical
decision-making, cost-effectiveness and resource allocation, provider training, workflow integration, care pathway coordination,
and provider-patient communication.

Conclusions: The implementation of AI-enabled tools in medicine can benefit from sensitivity to the nuanced context of care
and provider needs to enable the useful adoption of AI tools at the point of care.
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Trial Registration: ClinicalTrials.gov NCT04000087; https://clinicaltrials.gov/ct2/show/NCT04000087

(JMIR AI 2022;1(1):e41940)   doi:10.2196/41940

KEYWORDS
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Introduction

Advances in artificial intelligence (AI) that are poised to
transform health care are hindered by implementation challenges
[1,2] that call for attention to provider needs and
user-centeredness [3,4]. As AI models are increasingly pushed
to the point of care, front-line care teams are often left to solve
the challenges of AI integration on their own [5]. Research is
needed to ensure the clinical value of AI tools is preserved
through successful adoption at the point of care. To inform this
knowledge gap, we present a case study of a pragmatic trial in
which an AI-enabled screening tool was introduced in primary
care to help identify patients with a high likelihood of
unrecognized left ventricular low ejection fraction (EF) [6].
Low EF is often underdiagnosed but treatable; early diagnosis
and treatment could prevent the progression of heart failure and
reduce future hospitalization and mortality. We offer a
qualitative analysis of provider reflections on the use of the AI
screening tool and suggestions for the effective clinical adoption
of AI-enabled tools.

Methods

Overall Study Design
A pragmatic cluster randomized controlled trial (NCT04000087)
was conducted to evaluate whether an electrocardiogram (ECG)
AI-guided screening tool (ECG AI-Guided Screening for Low
Ejection Fraction; EAGLE) improves the diagnosis of left
ventricular EF in clinical practice [7,8]. Details on the trial
design are reported elsewhere [6]. The intervention is a
provider-facing action-recommendation report (Figure 1) that
contains a screening result generated by the application of a
deep learning algorithm to a patient’s ECG [9].

Positive screening results were delivered to providers via an
email alert that suggests a transthoracic echocardiogram (TTE)
should be considered and remind them that the report was
available in the electronic health record (EHR). The report
included a brief description of the AI algorithm and a phone
number to call for additional information. Follow-up emails
were sent if no TTE was ordered or no rationale was provided
for rejecting the TTE recommendation.
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Figure 1. Example AI result report. AI reports are generated by the AI tool and embedded into the electronic health record. Note that only positive
results would generate an email to a provider, and both positive and negative results could be accessed in the patient’s health record. AI: artificial
intelligence; ECG: electrocardiogram; LV: left ventricular.

Focus Group Study Design and Procedures
Semistructured focus groups were conducted with 10 primary
care teams. We used a positive deviance approach to select the
care teams [10,11]. Specifically, we selected the 5 care teams
with the lowest TTE recommendation adherence and the 5 teams
with highest adherence, with adherence defined as acting on
the AI recommendation by ordering a TTE. Each focus group
was conducted with providers from the same care team.
Individual interviews were conducted to accommodate provider
schedules when necessary. Discussion topics included provider

experiences with the AI tool and their attitudes toward AI in
medicine. Between December 2019 and February 2020, a total
of 7 focus groups and 5 individual interviews were conducted,
involving 29 providers consisting of physicians, physician
assistants, and nurse practitioners. Participant characteristics
are summarized in Table 1. The 2 interviewers and all
interviewees were blinded to the adherence status of the care
team to enable candid, nondefensive conversation as well as to
avoid biasing the interviewers [12]. All focus groups were audio
recorded, transcribed verbatim, deidentified, and reviewed for
accuracy.
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Table 1. Characteristics of focus group participants in high- and low-adherence care teams. Note that characteristic information from 2 participants is
missing.

Low adherence (N=10)High adherence (N=17)Characteristic

Age (years)

1015n

41.4 (3.92)44.8 (9.07)Mean (SD)

41.046.0Median

36.0-50.032.0-61.0Range

Gender (self-reported), n (%)

6 (60)8 (47)Male

4 (40)9 (53)Female

Race, n (%)

8 (80)16 (94)White

1 (10)0 (0)Othera

1 (10)1 (6)Prefer not to say

Position, n (%)

8 (80)12 (71)Physician

2 (20)0 (0)Physician assistant

0 (0)5 (29)Nurse practitioner

Specialty, n (%)

5 (50)11 (65)Family medicine

5 (50)6 (35)Internal medicine

Years in practice

1015n

8.3 (5.19)13.5 (9.04)Mean (SD)

5.511.0Median

3.0-20.01.0-31.0Range

Years in current care team

1015n

7.2 (6.00)11.5 (9.08)Mean (SD)

5.011.0Median

1.0-20.00.5-31.0Range

aRacial categories measured included American Indian or Alaskan Native, Asian, Black or African American, and Native Hawaiian or Other Pacific
Islander. None of our participants identified as being in these categories.

Data Analysis
Thematic analysis was used to identify predominant themes
regarding clinicians’ experiences and perspectives regarding
using the AI screening tool [13-15]. Two researchers (BB and
XZ) open-coded transcripts and then categorized open codes
into themes. The relationships between the themes were then
articulated in a hierarchical structure of main themes and
subthemes. The thematic structure was revised when new
categories and themes were identified. Analytic memos were
used to summarize the findings. NVivo software (version 12;
QSR International) was used to facilitate analysis. Researchers
were unaware of the adherence status of the care teams during

coding. Adherence status was revealed to the researchers after
all transcripts were coded to assess differences between groups.

Ethics Approval
The methods were performed in accordance with the relevant
guidelines and regulations and approved by the Mayo Clinic
Institutional Review Board (IRB #19-003137). The trial was
registered on ClinicalTrials.gov (NCT04000087) on June 27,
2019.
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Results

Perspectives and Themes
All providers received at least one positive AI screening result
and were able to correctly describe the AI tool’s functionality
and purpose. Providers had polarized perspectives on the value
of the AI tool: some expressed that the tool could improve
patient care, whereas others thought it was unnecessary or costly.
Dissatisfied providers agreed that honing the tool and its delivery
would increase value, whereas a small number of providers
disagreed with the need for the tool.

We did not observe prominent differences in themes between
care teams with high and low adherence. We identified 7
dominant themes of provider reflections on AI tool use: (1)
promising clinical value, (2) integration with clinical reasoning,
(3) cost-effectiveness and resource allocation, (4) provider
training, (5) workflow integration, (6) care pathway
coordination, and (7) provider-patient communication.

Promising Clinical Value
Providers believed in the AI tool’s capability to identify
asymptomatic patients at risk for heart failure. Providers saw
an opportunity to accelerate care for patients who might
otherwise fail to report symptoms of low EF and saw value in
implementing early management to save patients from acute
cardiac events. Providers also noted the ability of the AI tool
to make care more efficient by assessing the ECG more quickly
than a provider could.

[The result] was definitely abnormal, and I was able
to talk with this patient about lifestyle changes and
actually have something coming behind me within
that. [Focus group #12]

I’m still pushing the button on the order cuz I agree
with it but, you know, doing all the nuts and bolts
behind it, if that’s done for me, then I can focus my
time on doing what only I can do. [Focus group #9]

Integration With Clinical Reasoning
Providers expressed apprehension about the utility and long-term
patient benefit of the tool based on how it fit into clinical
practice during the trial. They were concerned about the
increased burden, especially when a screening was not clinically
useful in patient contexts such as preexisting cardiovascular
conditions, and noted that for certain patients, other medical
priorities (eg, cancer treatment) might take precedence over
initiating a TTE and treatment for low EF. Providers expressed
concern regarding the lack of clear guidelines about when to
order a new TTE if there were prior TTEs in a patient’s medical
record. A few providers were unsure to what extent the AI tool
could improve patients’ long-term health outcomes and noted
barriers treating a patient who may be at risk for heart failure
but has not yet shown any symptoms, revealing a potential lack
of knowledge about evidence-based recommendations for
asymptomatic low EF treatment.

They had known heart disease. I was like, “Well, that
doesn't make any sense.” After the first couple of

doing that, I started almost disregarding. [Focus
group #10]

I only had three, and I know them. I knew them very
well, so the minute I got the one with the end-stage
liver failure, cirrhosis, paracentesis, I knew that
immediately that that wasn’t gonna be valid, or not
necessarily not valid, but is it correct? [Focus group
#12]

Providers gauged the AI’s capability relative to their own. Some
providers believed that the AI tool was superior in recognizing
patterns to identify asymptomatic cases. A few others preferred
face-to-face visits for physical examination and continuity of
care. Some providers were also concerned a bias might occur
if the AI algorithm was trained on data misaligned with their
patient panels.

Good I got a notification. I woulda missed it [the
diagnosis]. [Focus group #10]

Uh, we can do a lot by remote monitoring, but I need
to touch you, and I need to listen to you, and I need
to listen to your heart. And so if something just got
triggered, I don’t care. [Focus group #7]

The struggle with AI so far has been that the
breakdowns have come because of the data that’s
been input and a lot of that has been because of our
geographic or our social or our... [Interviewee #5]

There’s bias. [Interviewee #3; focus group #1]

Cost-effectiveness and Resource Allocation
Some providers questioned the cost-effectiveness of the
recommended TTE follow-up given the current lack of outcome
data and noted that the cost is especially concerning when the
screening result is a false positive. A few clinicians were
concerned about insurance coverage. Some clinicians noted
potential cumulative cost savings from optimized treatment
plans and the prevention of heart failure hospitalizations.
However, providers noted that increased TTE order volume due
to positive AI screenings could delay care for patients with more
urgent TTE needs.

You can tell them, thankfully, it’s normal. Obviously,
the EKG picked up something that showed potential
for concern. We have good news that everything is
normal. We’re gonna continue to optimize your
treatment. That being said, it’s several thousand
dollars. [Focus group #8]

Provider Training
Providers remembered being introduced to the AI tool and trial
protocol by department leadership in meetings and via email
yet did not recall the information when they received the AI
result. Providers reported agreeing, sometimes enthusiastically,
with the objectives of the trial but found it difficult to translate
the instructions (eg, ordering TTE based on AI result) into their
context of care. Championship by leadership set unintended
high expectations for the AI tool and caused disappointment
when the number of positive screenings was lower than
expected. Providers also remarked that they could not remember
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how to find the AI report in the EHR and did not have time to
read the training packet.

Right. I mean, the first email inviting us, I read two
paragraphs. “Boy, that sounds like a good idea.”
Then all of a sudden, we get this book, and then all
of a sudden, they [AI results] start coming. You just
get lost. [Focus group #10]

No. We didn’t see the video. [Interviewee #3]

Right there, if it requires a video and a half hour
lecture to figure out where [to find the report], then
it’s probably not well-placed. [Interviewee #1; focus
group #1]

Workflow Integration
Providers were unaware that the delivery of the AI result via
email notification outside of the EHR was due to system security
issues, Food and Drug Administration regulations, and IT
barriers, which fragmented the digital workflow. The AI report
in the EHR was rarely accessed by providers after the receipt
of the AI result email notification. Repeated reminder emails
urging providers to act on unresolved AI results were irritating
and created confusion about which alerts had been completed
and which needed attention. The AI result delivery was not
timed to be part of a scheduled visit, which caused extra clerical
and cognitive burden, and took time away from providers’
already busy schedules.

There was an ECG that suggests you might do an
echo and if I’m with the patient right there, done, but
to [Interviewee’s] point, it was when it was
noncontiguous, non-need. It was an extra half an hour
phone call in the day that I just simply don’t have
time for. [Focus group #1]

I got emails, which made it very difficult because it’s
not linked to the chart. [Focus group #3]

Care Pathway Coordination
The AI report was always routed to the patient’s primary care
provider regardless of why and by whom the ECG was ordered,
causing confusion among primary care providers about care
coordination and the chain of custody. In cases where the AI
result email alerts were from ECGs ordered outside of primary
care (eg, in the emergency department), the primary care
providers questioned whether these AI results were within the
scope of their responsibility. Some providers felt they were
caught between the care pathway already underway (eg, for
surgery) and a potentially new or redundant care pathway
suggested by the AI result. They felt that they were stuck in an
awkward position, either ignoring the alert or communicating
a result to a colleague who would have already been aware. In
these cases, the AI tool was seen as not being logically
coordinated within the care pathway.

Right now he’s in the hospital, and Cardiology’s
definitely onboard, and so I just gave them that
heads-up. [Focus group #2]

The EAGLE thing triggers to us. We don’t know
whether we are supposed to follow up and do

everything. I don’t know whether I ordered [the
ECG]. [Focus group #6]

I'm a minutiae guy, so if someone’s got an abnormal
EKG, I look at their EKG. I look at their echo. It puts
a fair amount of burden back to the PCP because no
matter where it’s ordered, it comes back to me as
PCP. [Focus group #8]

Provider-Patient Communication
Some providers stated that the unexpected nature of a result
generated outside the context of a visit, the lack of explainability
of deep learning, and the lack of reporting guidelines regarding
false positives make communicating the results to patients
challenging and time-consuming. In a worst-case scenario for
patient-provider alliance and provider morale, a patient
perceived that AI corrected an error made by the provider.
Providers disagreed on whether patients can understand and
cope with the AI results if the results are automatically delivered
to patients without provider oversight and communication of
the results. Some providers considered the AI tool new and
complex, whereas others considered it similar to screenings that
patients already view as routine (eg, a blood test).

You have to explain to the patient what you’re gonna
do when you get the low EF; “how come you didn’t
figure it out already, Dr. [Name]; if you’re such a
great clinician, how could you miss this?” [Focus
group #1]

But in terms of just calling somebody up out of the...on
just like a cold call and saying, “I think you might
have heart failure” because a computer said so, um,
that’s where my caveats come from. [Focus group #7]

Provider Suggestions to Improve Future AI Tool
Adoption
Providers articulated the following suggestions to improve future
AI tool uptake and use: (1) setting appropriate expectations for
how, when, and how often the AI tool would deliver a
recommendation; (2) attuning the application of the AI tool to
patient populations; (3) having reliable data that show positive
clinical outcomes due to the tool; (4) having a demonstration
of cost-effectiveness, (5) streamlining integration into clinical
workflow, (6) clarifying provider responsibility, and (7) having
support for the communication of results to patients.

Discussion

Principal Findings
We found that most providers saw the potential value of the AI
tool for more accurate and faster diagnoses. They were willing
to adopt such tools and collaborate with researchers to validate
tools in clinical practice. However, during use in the clinical
trial, providers identified challenges that should be taken into
consideration as AI tools are introduced widely in primary care.
Provider recommendations encompassed increased sensitivity
to clinical decision-making, addressing digital implementation
issues, and the awareness of system-wide impact.

AI tools that predict asymptomatic health conditions convoke
a set of issues in medical decision-making that providers are
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asked to resolve on a case-by-case basis and, in doing so, are
confronted with a change in the scope of their clinical
decision-making [16]. Although AI tools provide guidance, they
rarely apply to all patients and often add a new dimension to
already complex decision-making [17,18]. In practical use,
providers have different ways of weighing evidence to inform
the best next step in patient care. For example, although the
confirmation or rejection of an AI screening result through a
follow-up testing may seem low-risk and easy, the clinical action
in an individual patient’s case could shift focus from a more
immediate threat to health and increase cost. In primary care,
providers are positioned to see the entire context of care and
together with patients navigate multiple risk-benefit decisions
within complex situations that do not lend themselves to rapid,
binary decisions for next steps [19]. Consequently, the
incorporation of AI tools that support new diagnoses can further
complicate the issues of distinguishing between the art and
science of medicine in complex primary care decision-making
[20]. Our research reaffirms that providers may find AI-enabled
tools capable of delivering helpful information but that
communication and actions taken by the care team in response
to AI tools are complex and demand a balance between
structured guidance and freedom to adapt information to a
clinical case [21,22].

Providers offered suggestions for improving the applicability
of the AI model, digital workflow, and patient communication.
These suggestions can enhance AI tool use but may be difficult
to achieve during the initial translation in a pragmatic clinical
trial. Provider feedback to hone the AI model and digital
workflow are necessary to ensure the best diagnostic
performance over time, safety, and adherence to regulatory
requirements. Additional burden on providers during the initial
translation may exacerbate clerical burden, which can dampen
interest in AI tool adoption. It is important to set expectations
with providers that clumsy workarounds and added burden
during initial translation in the clinical trial are temporary and
that fine-tuning AI implementation to meet various clinical
contexts and provider needs is a long-term, collaborative process

[23]. Additionally, the silent testing of the AI tool before broader
launch in a randomized controlled trial and more spontaneous,
passive modes of collecting provider feedback (versus repeatedly
requesting active input from providers) may be of value.
Moreover, AI tools may illuminate existing issues in care
delivery or cause new problems in new contexts, which prompts
the need for real-time observations and auditing of AI models
and tools to improve the design of the full implementation and
enable effective use [24,25].

Study Limitations
Focus groups were conducted after trial completion, and thus,
provider experience was communicated retrospectively. Future
research could make use of more spontaneous data collection
methods (eg, ecological momentary assessment) to capture
provider experiences and perspectives at the point of care in
real time. Our findings were based on the perspectives of 29
providers from 10 care teams that may not be representative of
the primary care provider population and thus cannot capture
the full scope of diverse perspectives among primary care
providers. Additionally, it is unclear how our results will
generalize beyond AI tools that use a deep learning algorithm
and leverage knowledge from cardiology within a primary care
setting. Future research with a broader range of AI tools in
different clinical settings and specialties with more diverse
provider samples is needed to triangulate our findings and
uncover additional important themes.

Conclusion
Our work identified specific issues that providers faced when
AI-enabled tools are introduced into primary care during a
clinical trial as well as relevant techniques across algorithm
development, point-of-care use, and broader systems that can
drive the provider-centered adoption of AI tools. These findings
corroborate the challenges of implementing AI-enabled tools
in medicine: successful implementation must be sensitive to the
nuanced context of care and provider sensibilities to enable the
useful adoption of AI tools at the point of care.
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Abstract

Background: Machine learning techniques have been shown to be efficient in identifying health misinformation, but the results
may not be trusted unless they can be justified in a way that is understandable.

Objective: This study aimed to provide a new criteria-based system to assess and justify health news quality. Using a subset
of an existing set of criteria, this study compared the feasibility of 2 alternative methods for adding interpretability. Both methods
used classification and highlighting to visualize sentence-level evidence.

Methods: A total of 3 out of 10 well-established criteria were chosen for experimentation, namely whether the health news
discussed the costs of the intervention (the cost criterion), explained or quantified the harms of the intervention (the harm criterion),
and identified the conflicts of interest (the conflict criterion). The first step of the experiment was to automate the evaluation of
the 3 criteria by developing a sentence-level classifier. We tested Logistic Regression, Naive Bayes, Support Vector Machine,
and Random Forest algorithms. Next, we compared the 2 visualization approaches. For the first approach, we calculated word
feature weights, which explained how classification models distill keywords that contribute to the prediction; then, using the local
interpretable model-agnostic explanation framework, we selected keywords associated with the classified criterion at the document
level; and finally, the system selected and highlighted sentences with keywords. For the second approach, we extracted sentences
that provided evidence to support the evaluation result from 100 health news articles; based on these results, we trained a typology
classification model at the sentence level; and then, the system highlighted a positive sentence instance for the result justification.
The number of sentences to highlight was determined by a preset threshold empirically determined using the average accuracy.

Results: The automatic evaluation of health news on the cost, harm, and conflict criteria achieved average area under the curve
scores of 0.88, 0.76, and 0.73, respectively, after 50 repetitions of 10-fold cross-validation. We found that both approaches could
successfully visualize the interpretation of the system but that the performance of the 2 approaches varied by criterion and
highlighting the accuracy decreased as the number of highlighted sentences increased. When the threshold accuracy was ≥75%,
this resulted in a visualization with a variable length ranging from 1 to 6 sentences.

Conclusions: We provided 2 approaches to interpret criteria-based health news evaluation models tested on 3 criteria. This
method incorporated rule-based and statistical machine learning approaches. The results suggested that one might visually interpret
an automatic criterion-based health news quality evaluation successfully using either approach; however, larger differences may
arise when multiple quality-related criteria are considered. This study can increase public trust in computerized health information
evaluation.

(JMIR AI 2022;1(1):e37751)   doi:10.2196/37751
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Introduction

Background
The internet has grown in popularity as a source for the public
to learn about their health and investigate potential treatments
for their health conditions. It is estimated that 80% of internet
users consult web-based health information before making
decisions [1]. Web-based media outlets such as social media
feeds, forum threads, blogs, and newspapers have made
information access and sharing easier. However, this has also
accelerated the propagation of misleading information.
Misinformation about health has been detected on different
social media sites, such as Twitter [2-5], Facebook [6-9],
YouTube [10-13], Pinterest [14,15], and Weibo [16,17]. Waszak
et al [18] found that 40% of the most frequently shared links
on social media contained medical information related to the
most common diseases and causes of death were classified as
fake news. In addition, the spread of health-related
misinformation is not confined by geography. A series of studies
have reported and studied health misinformation in different
geographic settings, such as in the United States [19-21], China
[16,17,22,23], India [24], and Italy [25,26]. With the rise of
seeking health information on the internet, the concerns and
health-related harm cases regarding misinformation have
increased [27-29].

Unlike other types of misinformation, health-related misleading
information, especially claims of efficacy about health
interventions, such as medical treatments, tests, products, or
procedures, can cause immediate actual harm to real people.
The public and patients may be misled into making bad
decisions that could result in severe consequences regarding
people’s quality of life and even the risk of mortality. This
negative influence has been observed in many countries
worldwide, despite cultural, regulatory, and geographic
variances [30]. When the COVID-19 pandemic started in 2019,
health misinformation was further exacerbated globally as more
people increasingly turned to social media to confirm possible
symptoms and share treatment plans [31]. Misleading and
erroneous information, information of low quality such as
conspiracy theories, poorly sourced medical advice, and
information trivializing the virus has not only contributed to
widespread misconceptions about the novel coronavirus but
also caused public panic, catastrophic consequences of public
health, and even people’s distrust in public health institutions
at the global level [32,33].

To address this public health crisis, continuing efforts to
counteract health misinformation are being made across a wide
range of disciplines and organizations. Detection and
fact-checking work that relies on human effort is limited in
scope, considering the high volume of fake news generated on
the internet. Many attempts have been made to leverage artificial
intelligence (AI) to analyze enormous amounts of information
generated daily on a scale that would be impossible for humans

to handle [34]. AI-powered automated detection methods, in
comparison with people, are faster, more efficient, and may be
deployed on targeted platforms at a low cost and on larger scale,
by replicating human intelligence using data-driven analysis by
computers [35]. When combating misinformation, AI technology
may distinguish between accurate and misleading information
using terms or word patterns associated with misinformation
as cues from a relatively small set of articles that have been
previously annotated by experts. Therefore, AI techniques can
automate the process of detection of misleading information,
which is conventionally performed manually.

Related Work
In recent years, there has been an increasing trend in AI-based
studies attempting to address health misinformation. The choice
of health topic is a critical factor to consider, as it requires
domain understanding and knowledge to assess the quality of
health information and confirm the presence of misinformation.
Health topics incorporated in past misinformation detection
studies either focused on a specific topic, such as vaccination
[36-38], Zika [39], autism [40], COVID-19 [41-44], or a
collection of miscellaneous health conditions and lifestyle
choices [45-50]. Health misinformation resides in various
information outlets. Existing studies have proposed the detection
of false, misleading health news on platforms such as Twitter
[37,39,51,52], websites [36,45,46], and web-based forums
[48,49].

Setting an appropriate benchmark for evaluating and annotating
health information is unavoidable when developing detection
systems. On the basis of the benchmark and objectives of this
study, previous work on misinformation classification can be
briefly categorized into a veracity-based approach or a
criteria-based approach. Studies that follow a veracity-based
approach involved training classifiers to assess the truth of each
health-related claim using data that have been annotated to
indicate whether the claim can be validated or refuted by finding
a similar statement using a trusted source. These supporting
sources might be experts from a third-party fact-checking
organization (eg, Snopes [53]), medical and health-related
professional organizations (eg, World Health Organization [54]),
academic or research institutions (eg, John Hopkins Medicine
[55]), and the federal government (eg, CDC [56]) which are
typically considered as the officially sanctioned sources of bona
fide accurate information and play an active role in myth
debunking. For example, Ghenai and Mejova [39] proposed a
novel pipeline that combines health experts, crowdsourcing,
and machine learning (ML) to capture rumors on Twitter. The
model was created using 13 million tweets concerning Zika
infection between February 2016 and the Summer Olympics
and rumors outlined by the World Health Organization and
Snopes. The study found that rumor-related topics have a
particularly burst behavior. The results demonstrated the
feasibility of using automated techniques to remove
rumor-bearing tweets when a questionable topic was detected.
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In contrast, studies that followed the criteria-based approach
looked at misinformation based on various quality-indicating
criteria predefined by research. An example of such criteria
might be the reliability or unreliability of the source; the
rationale is that intuitively, a news article published on an
unreliable website and forwarded by unreliable users is more
likely to be fake news than news posted by authoritative and
credible users [57]. For example, Liu et al [50] predefined a list
of reliable and unreliable websites from which health-related
articles from various sources on the Chinese Internet society
were extracted for data set construction. Experiments were
performed based on various ML classifiers using manually
extracted features and text-classification modeling. The best
performance among all models reached a precision of 0.8374.
Other approaches were based on the idea that news that does
not satisfy certain items on an assessment checklist for health
information quality can be considered untrustworthy. For
instance, Shah et al [37] used a 7-point checklist adapted from
2 validated tools, the DISCERN and Quality Index for
health-related Media Reports checklists, to manually appraise
the credibility of 474 web pages after sampling from 143,003
unique vaccine-related web pages shared on Twitter between
January 2017 and March 2018. According to previous studies,
the best-performing classifiers could distinguish between low,
medium, and high credibility with an accuracy of 78% and
labeled low-credibility web pages with a precision of >96%.
Al-Jefri et al [58] and Afsana et al [59] both developed 10
classifiers to automatically evaluate the quality of health news
based on the criteria developed by HealthNewsReview.org.
However, the latter’s models demonstrated better classification
performance owing to the inclusion of more features. In
summary, veracity-based studies examined the authenticity of
the news. The criteria-based approach focused on the
characteristics of the news content, but the results did not make
claims about the veracity of information.

In addition to the wide range of themes and strategies in
detecting misinformation identified in the literature,
methodologically, current studies also show the effectiveness
of AI-based algorithms in classifying misinformation and quality
information. Traditional ML algorithms, including Logistic
Regression [40,47,52,60], support vector machine [37,40,47,50],
decision tree [52,61], and random forest (RF) [37,39,41,48,60]
have been widely applied in these studies, yielding effective
and accurate performance. More recent studies have shown
improved performance on large data sets by incorporating deep
learning techniques, including convolutional neural networks
[49,61], bidirectional encoder representations from transformers
[43], and long short term memory [42,44,61]. As part of the
modeling process, feature engineering has also been a critical
step in improving the performance of classifiers. Zhao et al [57]
reviewed and summarized 12 features used in health
misinformation detection models. These features were grouped
into 4 subsets: linguistic, topic, sentiment, and behavioral
features.

Compared with traditional human fact-checking, an AI-based
model consists of an algorithm that can automatically learn
latent patterns and relationships from the data. However, one
of the major challenges is the lack of a human-understandable

rationale to support the results of classification tasks.
Approaches that attempt to address this concern are often called
“interpretable ML,” “explainable ML,” or “explainable AI”
[62]. Open-source software with implementations of various
interpretable ML methods are also available, such as local
interpretable model-agnostic explanation (LIME) [63], Shapley
Additive Explanations [64], Eli5 [65], and InterpretML [66],
etc. These tools have been applied to various tasks, including
image classification and text classification. With interpretations
or visualized cues, users can verify the model and determine
whether it meets their expectations. In addition, users can
discover knowledge, justify predictions, and improve the
performance of models using interpretable ML methods.
Therefore, interpretable AI improves the trust and usability of
the classifiers.

However, to date, only a small body of research has incorporated
explainable AI models to combat health misinformation [43,67].
All of these studies on health information classification were
veracity-based. A knowledge gap remains regarding the
effectiveness of constructing an interpretable, criteria-driven
classification system to help users evaluate the quality of health
information.

Objective of This Study
We aimed to address the aforementioned concerns and needs
by creating an interpretable, criteria-driven system to assist the
public in evaluating the quality of health news to mitigate the
adverse consequences of health misinformation. Previous work
using the HealthNewsReview.org data set and ML classifiers
at the document level found that 3 criteria (cost, harm, and
conflict) are more accurately classifiable among the 10 criteria,
using linguistic features [58,68]; therefore, we selected these 3
criteria for this exploratory study. Our study, because it
addressed interpretability, also focused on the use of features
that are directly visualizable (linguistic features), excluding less
visualizable features (such as average sentence length), which
sometimes improved classification accuracy.

As an exploratory study, we opted to test 2 possible
interpretation approaches, using 3 criteria. The evaluation results
for the criteria will be visually explained with highlighted
sentences as cues to enhance interpretability and reliability. As
the number of highlighted sentences may affect the overall
visual representation and effectiveness of the interpretation, we
also attempted to determine the ideal range for the number of
highlighted sentences.

Methods

Overview
The experiment consisted of 3 components, as illustrated in
Figure 1. In the first component, we collected reviewed health
news from HealthNewsReview.org [69] to build the data set
for modeling. Each criterion review result provided by
HealthReview.org was treated as a classification target. The
second component was a supervised document classification
task that automated the criteria evaluation process. Each health
news article was categorized automatically at the document
level using established criteria and the output was binary
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(satisfactory or unsatisfactory). “Satisfactory” meant the entire
health news met the given criterion and “unsatisfactory” meant
the opposite.

The last component visualized and interpreted the evaluation
results provided by the health news quality-evaluation system.
For example, for the criterion “Does the news adequately explain
or quantify the harms of the intervention?” the method
highlighted sentences that described the harms of intervention
to help users quickly understand how well the criterion was
met.

We examined 2 approaches to achieve this goal. The first was
a hybrid approach (the hybrid approach). It was inspired by
principles from rule-based systems, where patterns are
cospecified by LIME and experts. The second approach (the
typology approach) was a supervised sentence typology
classification method, where hand-labeled training data are
analyzed algorithmically to build models that can detect similar
patterns when applied to unseen data.

Figure 1. Overview of the exploratory experiment.

Data Description and Collection
The data set that we used was adapted from an existing resource
created by HealthNewsReview.org [69]. HealthNewsReview.org
is a web-based project that reviewed articles from 2005 to 2018.
Their team of experts rated the claims about health care
interventions to improve the quality of health care information.
Their rating instrument included 10 criteria used by the
Australian and Canadian Media Doctor sites, and its
interreviewer reliability was tested using a random sample of
30 stories [70]. HealthNewsReview.org included reviews of
news stories from leading US media and news releases from
institutes. The contents included efficacy claims about specific
treatments, tests, products, or procedures. The news pieces were
assessed using a standard rating system. At least 2 reviewers
reviewed each news story. The reviewers were selected based
on their years of experience in the health domain, spanning the
fields of journalism, medicine, health services research, public
health, or as patients, and each of them signed an
industry-independent disclosure agreement. For each news story
or news release reviewed, the criteria were scored as
“satisfactory,” “unsatisfactory,” or “not applicable.” Total scores
were posted for articles with ≤2 “not applicable” ratings and
were expressed as proportions. It was acknowledged that
increasing the diversity and independence of the reviewers could
have reduced the potential for bias in the assessments. By the
time the project ended, the website had accumulated 2616 health
story reviews and 606 news release reviews.

For this study, we crawled health story news reviews and news
release reviews, as archived by HealthNewsReviews.org,
complying with the robots.txt. We scraped news contents that
corresponded to the acquired reviews. Then, we visualized the
results for the three selected criteria: (1) “Does the news
adequately discuss the costs of the intervention?” (the cost

criterion), (2) “Does the news adequately explain or quantify
the harms of the intervention?” (the harm criterion), and (3)
“Does the news identify conflicts of interest?” (the conflict
criterion).

Automating the Criterion Evaluation
All 3 criteria applied to both news types, so we merged the 2
types of news content and treated them uniformly. We also
combined health news that was scored as “unsatisfactory” or
“not applicable” and named them as “unsatisfactory.” We
preprocessed all news content via multiple text processing
techniques, including removal of nonword elements (numbers,
assented characters, and punctuation) and stop words,
tokenization, stemming, and lemmatization. Then, we converted
the textual representation into a vector space model using term
frequency–inverse document frequency (TF-IDF).

We chose 4 representative algorithms: logistic regression, naive
Bayes, support vector machine, and RF, from which we selected
the best base algorithm that was suitable for automating the
criterion evaluation. The 4 algorithms are commonly used in
health misinformation classification tasks, as evident in previous
studies [36,38,39,46,51,59], and were found to be effective. We
applied RandomSearch to determine the optimal model
hyperparameters for building the classifier. For our study, we
defined the best classifier output from RandomSearch as the
feature count, hyperparameter, and algorithm combination that
produced the highest mean 5–cross-validated area under the
curve (AUC) score. The performance of the classifier was further
evaluated through 50-repeated 10–fold-validation.

Visualizing the Interpretation of Evaluation Result
We experimented with 2 approaches to visualize the
interpretation of the evaluation results. The desired outcome
was that all highlighted sentences were relevant to the examined
criterion and provided evidence to assist end users in
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comprehending and validating the evaluation results. To
determine what qualified a sentence as evidence, we strictly
adhered to the criteria definitions and review guidelines provided
by HealthNewsReview.org [71-73]. For example, as per the
explanation of the harm criterion provided by
HealthNewsReview.org, satisfactory health news on the harm
criterion should “include a discussion of harms and side effects,
as well any measured ‘adverse events’ in a study” [71]. The
measured “adverse events” can be addressed by a discussion of
“both frequency of side effects and severity of side effects” and
a discussion of “both major and minor side effects” [71].

The Hybrid Approach
The hybrid approach combined the interpretable AI technique,
LIME, rule-based systems, and supervised document
classification. LIME, proposed in 2016 by Ribeiro et al [74],
belonged to a family of local model-agnostic methods, a type
of interpretable AI method. It is used to explain the individual
predictions of black-box ML based on a surrogate model, which
is trained to approximate the predictions of the underlying
black-box model [74,75]. The intuition of LIME is based on
the idea that the behavior of a black-box model can be learned
by perturbing the input. Specifically, a modified data set is
generated by LIME through permutation by removing word
features, corresponding to which predictions are obtained from
the black-box model. Words with feature weights >0 indicate
that the removal of such words affects the prediction result. For
a negative case, no nonzero weight was estimated because
regardless of which word was removed, the predicted evaluation
result remained the same. Thus, an explanation can be generated
by approximating the underlying model with a more
interpretable model (such as a linear model or decision tree),
learned locally on perturbations of the original instance [75].
Owing to the local fidelity nature of LIME, it does not guarantee

a good global approximation [76]. A critique LIME often
receives is that it lacks “stability” [77]. There are cases in which
the surrogate model built by LIME can predict the instance
correctly but provide incorrect reasons [75]. To address the
instability of LIME, adding manually selected keywords can
reduce the risk of obtaining incorrect keywords for highlighting.
In this approach, we adopted the LIME method to facilitate the
interpretable result of the predicted criterion evaluation. The
Python packages used for implementing LIME algorithms were
ELI5 [65] and LIME [63] application programming interface
packages.

The explanation of the classification model for each criterion
using the hybrid approach consisted of 3 steps. First, an ML
classifier classifies health news as satisfactory or unsatisfactory
based on the chosen criterion. Then, the classification model
learned the difference of word distribution in satisfactory or
unsatisfactory instances from the collection of health news
document sets. LIME highlighted keywords in texts that
contributed to the prediction. The keywords were also ranked
using a weighted score, indicating their contribution to the
prediction. Finally, we combined the keywords that contributed
to a satisfactory prediction with a list of manually selected
keywords, as shown in Table 1. The manual selection of the
keywords was based on a consensus among the annotators who
had taken part in the processes of evidence extraction for the
typology approach.

We then extended the highlighting from the keyword to the
sentence level to enhance the final visual representation.
Sentences containing keywords with more weight were
prioritized for highlighting. By default, manually selected
keywords outweighed any keywords automatically picked by
LIME.

Table 1. Lists of manually selected keywords for the cost, harm, and conflict criteria.

Manually selected keywordsCriterion

Price, cost, charge, insurance, and payThe cost criterion

Side effect, adverse reaction, adverse event, complication, and riskThe harm criterion

Fund, sponsor, grant, spokesman, professor, and directorThe conflict criterion

The Typology Approach
The typology approach was a sentence-level text-classification
task. This approach was inspired by the study of persuasive
communication and rhetoric. Reynolds and Reynolds [78]
distinguished between statistical, testimonial, anecdotal, and
analogical evidence. Hoeken and Hustinx [79] put forward 4
types of evidence in argumentation: individual examples,
statistics, causal explanations, and expert opinions. Subsequent
studies showed that machines can detect various types of
evidence. For example, Fiok et al [80] built a classification
model to automatically identify the evidence of respect in
Twitter communication. There were 2 types of sentences in each
health news item in our study. In the harm criterion, the first
type of sentences was the evidence that supported the predicted
evaluation result. Sentences of this type contained a description
of side effects, including the symptoms, severity, and frequency

of the symptoms. The second type of sentence referred to those
that could not justify why a piece of certain health news satisfied
a given criterion. Therefore, they were not characterized as
evidence.

To implement the typology approach, for each criterion task,
we designed and experimented with the typology approach in
2 stages. The first stage was to build an annotated data set of
the sentence evidence. We extracted sentence evidence from
health news that was evaluated as satisfactory by
HealthNewsReview.org. A total of 3 people performed the
sentence extraction tasks. The project investigator provided
training and clarification to the other 2 extractors. The sentence
extraction guideline fully adopted the criteria explained by
HealthNewsReivew.org [71-73]. Two people performed most
of the extraction work. Another individual worked as an
independent reviewer to resolve disagreement. When combining
the extracted sentences, sentences picked by the 2 extractors
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were characterized as evidence. If a sentence was extracted by
an extractor but not picked by the other, an independent third
person was invited to resolve the disagreement. All approved
sentences were considered positive. To build the negative class,
we randomly selected the same number of sentences irrelevant
to the evaluation of the pertinent criterion. An interannotator
agreement was assessed using both simple counts and the
percentage of the final quantity of the evidence in the total
extracted items to address the relatively small sample size. The
interrater agreement was also in line with the expectations of
other studies [81]. The second stage involved building a
supervised ML classifier. We followed the same steps as for
automating the criterion evaluation.

For the final visual representation, the sentence classifier was
applied to health news content to identify sentence evidence.
Sentences with a higher probability of being categorized as
evidence by the classifier were prioritized for highlighting
purposes.

Evaluating and Optimizing the 2 Approaches
For each criterion’s interpretation, we evaluated 2 visualization
approaches to determine how accurately each scheme
highlighted the sentences that supported the prediction result.
The evaluation was conducted using 20 test cases. The selection
of 20 test cases was based on the observation that the true
positive health news counts in the test set (30% of the data set)
ranged from 20 to 70, depending on the task criterion type. We
measured the accuracy of 2 highlighting schemes by calculating
the percentage of correctly highlighted evidence for all
highlighted sentences. A total of 3 people evaluated the

correctness of the highlighted sentence in accordance with each
criterion’s guideline. An independent reviewer was invited to
handle any disputes.

As the number of highlighted sentences may affect the
highlighting accuracy and thus the final visual representation,
we calculated a spectrum of accuracies of both the highlighting
approaches when the number of highlighted sentences increased
from 1. A threshold was then selected with the lowest accuracy
to determine the optimal range of sentence counts for
highlighting.

Results

Classification Model Performance
After removing dead links (to inaccessible news content), the
acquired data set yielded 1453 stories and 579 news releases.
Among the 2032 health news instances, the satisfactory or
unsatisfactory instance ratios for the cost, harm, and conflict
criteria were 25.03% (405/1618), 44.71% (625/1398), and
98.14% (1002/1021), respectively. Of the 4 experimental
algorithms, RF was found to be the most effective in automating
the evaluation of all the 3 criteria, as shown in Multimedia
Appendix 1, despite the fact that the feature count varied
according to the criterion. Table 2 shows the set of optimal
hypermeters that RandomSearch selected for each criterion
classifier.

For the cost, harm, and conflict criteria, Figure 2 shows that the
average AUCs were 0.8845, 0.7565, and 0.7259, respectively,
after 50 repeated 10-fold validations.

Table 2. Hyperparameters selected by RandomSearch for each criterion evaluation classifier.

HyperparametersWord feature count, nBase classifierCriteria

(“n_estimators”: 600, “min_samples_split”: 2, “min_samples_leaf”: 4,
“max_features”: “sqrt,” “max_depth”: 10, and “bootstrap”: false)

1000Random forestThe cost criterion

(“n_estimators”: 1400, “min_samples_split”: 10, “min_samples_leaf”: 4,
“max_features”: “auto,” “max_depth”: 90, “bootstrap”: false)

2000Random forestThe harm criterion

(“n_estimators”: 1200, “min_samples_split”: 10, “min_samples_leaf”: 1,
“max_features”: “auto,” “max_depth”: 20, and “bootstrap”: true)

1000Random forestThe conflict criterion

Figure 2. The performance of the cost, harm, and conflict criterion classifiers was measured with 10-fold cross-validated area under the curve (AUC)
scores with a total of 50 repetitions.
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Interpretable Model Performance

The Visual Interpretation by the Hybrid Approach
The LIME Text Explainer visualized how different word
features contributed to the evaluation results for each classifier.
Figure 3 illustrates the top 30 bigram or unigram word features
that contributed to the classification learned from the entire data
set related to a given criterion. For example, the binary word
feature with the highest weight in the harm criterion
classification was “side effect.” Words that directly indicate the
harm of intervention, such as “risk,” “concern,” “bleeding,” and
“harm,” also ranked among the top features. Similarly, words
that are commonly used to describe the intervention costs and
insurance coverage such as “cost,” “insurance,” “expensive,”
and “pay” were also observed high in contribution to the
evaluation for the cost criterion. For the conflicts criterion, the
words were descriptive of one’s affiliations such as “university,”

“dr,” and “professor” stand out. The keyword “funded,” which
directly discloses funding information, also ranked high.

Figure 4 shows how LIME performed first-level visualization
on a sample health news that was rated as satisfactory on the
harm criterion. The classifier predicted the sample health news
with a positive result of 65% probability. The words marked in
orange were picked by LIME and explained as they contributed
to the positive classification results of the model. Certain words
were also highlighted in blue despite being scarce in number,
indicating the likelihood of an unsatisfactory prediction. On the
basis of the prediction result, the words “adverse,” “reaction,”
“risk,” “adverse,” “serious,” and “administration,” were ranked
among the most predictive words in the satisfactory
classification result. A snapshot of the final visualized
representation is shown in Figure 5, after highlighting sentences
containing the keywords selected by LIME and the human
expert. The 2-level visual interpretation cases for the cost and
conflict criteria can be found in the Multimedia Appendix 2.

Figure 3. Top 30 word features with their feature weights in 3 criteria (the cost, harm, and conflict criteria) classifiers. The word feature weights signify
how much discriminatory information each word contributes to the classification task by random forest algorithm.

Figure 4. Lime text explainer visualizes word’s contribution to a satisfactory prediction on the harm criterion using random forest algorithm.
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Figure 5. Example of a highlighting scheme for the harm criterion by the hybrid approach.

The Visual Interpretation by the Topology Approach
The interannotator agreement rates on evidence extraction for
the cost, harm, and conflicts criteria were 72.04%, 72.24%, and
77.91%, respectively. The extraction task for each criterion
yielded 201 (cost criterion), 318 (harm criterion), and 694
(conflict criterion) sentences in the positive class. We randomly
selected the same number of sentences as the negative class to
build the classification data sets. Following the same approach

applied to the automation of criterion evaluation, which included
base classifiers, word feature count selection, and
hyperparameters tuning using RandomSearch, the classifiers of
the 3 criteria attained an average AUC of 0.8791 (cost criterion),
0.7232 (harm criterion), and 0.8951 (conflict criterion) with 50
repetitions of 10–cross-fold validations. Figure 6 shows the
result of applying the classifier to each sentence in the document
and highlighting positive sentence instances that supported a
cost criterion evaluation.

Figure 6. Example of a highlighting scheme for the cost criterion by the typology approach.

The Overall Performance and Optimization of the 2
Approaches
As the total number of highlighted sentences increased from 1,
we calculated the varying rates of accurately highlighted
sentences, as shown in Table 3. The numbers with footnotes
suggest that the relevant approach could obtain a better result
(accuracy >75%) within a certain number of sentences for
highlighting.

According to Table 3, the accuracy of both approaches declined
as the number of highlighted sentences increased. When both

approaches highlighted the same number of sentences, the hybrid
approach outperformed the typology approach in most scenarios.
Typology, however, performed more accurately when the target
was to pick <3 sentences to justify the harm criterion evaluation.
When the threshold for highlighting accuracy was set at 75%,
the optimal window size for the typology approach to achieve
relatively better interpretation results was 2, 4, and 1 for the
cost, harm, and conflict criteria, respectively. Comparatively,
the hybrid approach still produced comparable outcomes when
the window size for each criterion was extended by 2.

JMIR AI 2022 | vol. 1 | iss. 1 |e37751 | p.40https://ai.jmir.org/2022/1/e37751
(page number not for citation purposes)

Liu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. The accuracy of both approaches for interpreting each criterion evaluation; maximum highlighting sentence count.

Criterion and approachNumber

ConflictHarmCost

Hybrid (%)Typology (%)Hybrida (%)Typology (%)Hybrid (%)Typology (%)

90.00a75.00a90.00100.00a100.00a80.00a1

87.50a72.5090.0097.50a92.50a75.00a2

81.67a66.6790.0086.67a86.67a60.783

68.7561.1185.0076.39a76.25a66.674

59.0055.2981.0072.9467.0060.005

50.9356.4175.8366.6759.6554.556

aThe relevant approach could obtain a better result (accuracy >75%) within a certain number of sentences for highlighting.

Discussion

Principal Findings
This study experimented with 2 AI-based approaches to
visualize the interpretation of a criteria-based system designed
to assist users in systematically evaluating the quality of health
news.

The findings of our experiments were 3-fold. First, we found
that both the hybrid and typology approaches could achieve the
desired visualization result to justify the predicted evaluation
result, despite the nature of the 2 approaches being
differentiated. With 20 tests for each criterion, the performance
of the hybrid approach was slightly better than that of the
typology approach. Second, we were able to locate a window
size to predetermine the sentences to be highlighted for a better
visualization result for each criterion. The hybrid approach
showed a higher capacity to reliably choose more sentences
when the accuracy criterion was set at 75%. Third, the feasibility
of the rule-based strategy to enhance LIME’s interpretation
work was supported by our observation during evidence
extraction for the typology approach that specific words or
phrases such as “adverse effect,” “danger,” “death,” and “side
effect” appeared repeatedly in the evaluation of the harm
criterion; keywords such as “cost,” “price,” and “insurance”
frequently appeared for the cost criterion evaluation; and
“spokesman,” “funding,” and “sponsor” were typically used to
disclose the conflicts of interests.

A Comparison of the 2 Approaches
The hybrid approach demonstrated both good accuracy and
efficiency in visualizing the automatic model’s interpretation
for evaluating the 3 criteria. Compared with the typology
approach, it was advantageous in saving manual effort because
it did not require sentence extraction. We also observed that the
hybrid approach tended to pick fewer sentences but with higher
accuracy when not limiting the maximum number of sentences
to be highlighted. By contrast, the typology approach selected
more sentences, but only a few were relevant to the criterion.

However, the hybrid approach also had inherent weaknesses.
The highlight scheme in the hybrid approach was to locate the
sentence in which keywords were present. The drawback of this

scheme was that it sometimes failed to discern the semantic
differences between a sentence about the risk of the intervention
and a sentence that described the benefits of the intervention
by relieving or preventing adverse conditions. For example, in
one of the test cases, the sentence, “Moreover, the study verified
that long-term use of bisphosphonate drugs reduces the risk of
typical osteoporosis fractures by 24 percent.” was incorrectly
highlighted. The sentence contained keywords, including “risk”
and “fractures,” which are relevant to adverse symptoms.
However, it introduced how bisphosphonates are expected to
benefit patients by decreasing the risk of negative outcomes.
The other weakness associated with the hybrid approach was
that it failed to distinguish between the intervention and stock
prices. Both types of sentences typically shared many keywords
that described the values associated with the intervention.

By contrast, the typology approach performed somewhat better
at handling expressions with more lexical variations. For
example, sentences, “Last fall the Food and Drug Administration
issued a ‘safety update’ urging doctors and patients to be on the
lookout for the problem.” and “These medications are now
linked to a growing number of complications, ranging in
seriousness from nutrient deficiencies, joint pain and infections
to bone fractures, heart attacks and dementia.” were successfully
picked by the typology approach; whereas they were missed by
the hybrid approach, as keywords in those sentences were less
commonly used to describe side effects. The typology approach
distilled relevant information from text documents through
sentence extraction by human experts. This information was
key to building a knowledge base for the identification of
sentences about side effects. We anticipated that the typology
approach will be more robust and stable than the hybrid
approach when visualizing the interpretation of criteria that are
less keyword-reliant. For example, 1 of the 10 criteria, “Does
the news compare the new approach with existing alternatives?”
examined whether health news included a discussion on
alternatives. Sentences that supported a satisfactory evaluation
result may have been less likely to be observed with repetitive
keywords than with the experimental criteria.

Limitations
This exploratory study had some limitations. The first limitation
was that we only considered the TF-IDF values of words as
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features for building both the document- and sentence-level
classifiers. We acknowledged that the performance of our
document-level classification model was lower compared with
similar studies that adopted the same data set from
HealthNewsReview.org. The performance of our doc-level
classification models for the harm, cost, and conflict criteria
were 0.71, 0.82, and 0.67, respectively, when measured by F1

and 0.76, 0.88, and 0.72 when measured by AUC. The
performance was better compared with a study by Al-Jefri et al
[58] that focused on building health news quality classification
models. The precision performance for classifying the harm,
cost, and conflict criteria was reported to be 74.61, 77.61, and
70.89, respectively. The study incorporated more features, such
as TF-IDF, comparative forms, and named-entity recognition
tags and strategically changed the feature selections for different
criterion classification tasks. In another study by Afsana et al
[59], which also aimed to achieve the same research goal, the
performance of their models for the harm, cost, and conflict
measures by weighted F1-score was reported 0.84, 0.899, and
0.835, respectively. However, superior performance was
achieved through extensive work on feature engineering with
53,012 features applied. Considering that the key focus of this
study was to experiment with 2 interpretation approaches, which
both mentioned studies lack, we believed that the current
performance of models was effective in serving the purpose of
the study. In the future, we will incorporate some work on
feature engineering for both document-level classification and
especially the typology approach, which is embodied as a
sentence-level classifier.

The second limitation is the simple rules of the hybrid approach.
The hybrid approach takes advantage of both human knowledge
and an autogenerated keyword list generated by the LIME.
However, existing rules provided by human experts were
keyword-based and did not contain complex rules for handling
various expression variants. As part of the future plan, we will
implement more complex rules for the hybrid to address the
weak spots of the hybrid to enable it to distinguish different
types of sentences when they share similar lexicons but different
semantics.

A further limitation of the study was the absence of a user study
to investigate how the final visual interpretation generated by
the 2 interpretation approaches would increase user trust in a
black-box model, particularly in the context of evaluating the
quality of health news to mitigate misinformation. However,
we have an ongoing user study to investigate whether a
criteria-based system with visualized interpretation for
evaluating health news quality will increase the trust of users
compared with the system without interpretation. As of the
completion of this study, the user study is still in the recruitment
phase.

Comparison With Prior Work
Our study addressed the public’s need to help evaluate the
quality of health news and the typical opaqueness of an AI
approach. The significance of this study is illustrated in 2 ways.

First, compared with previous interpretability work in suggested
health-related misinformation detection systems, our work on

adding the interpretability of a health misinformation system is
innovative. To our knowledge, the current state of the art in
explainable misinformation detection systems mostly looks to
provide explanations for veracity predictions concerning inputs
to the system. Our study fills a gap in the literature by explaining
a criteria-based system for health misinformation. Moreover,
developing an interpretable module on a criteria-based model
is advantageous. The criteria-based approach inherently looks
for the linguistic characteristics of health news, such as the
presence or absence of crucial information, whereas a
veracity-based system may face a challenge to be interpreted
based on the linguistic features of text alone. In addition, we
believe that our study exhibited a greater level of readability of
the interpretation than the existing interpretation work on health
misinformation, such as Alharbi et al [80] for fake news. The
interpretation level achieved in the study by Alharbi et al
remained at the word level, with both positive and negative
words highlighted and dispersed throughout the articles; whereas
our study presented 2 approaches to achieve sentence-level
visualized interpretation, which demonstrated higher levels of
readability to end users.

Second, this exploratory study demonstrated great potential for
the development of a criteria-based system for evaluating the
quality of health news as a way to counteract health
misinformation. Compared with a veracity-based health
misinformation detection system, a criteria-based system
demonstrated high generalizability in handling health
information on various topics. Most existing veracity-based
fake news detectors are built on linguistic cues, leading to a
lack of generalizability across topics, languages, and domains
[82]. This weakness was also proven in a study by Gerts et al
[41], as the team found a huge variation in the classifier
performance (F1-scores between 0.347 and 0.857) on 4
conspiracy topics and more narrowly defined topics could
increase performance. In comparison, the idea of a
criteria-driven system was to evaluate the quality of health news
based on evidence for specified criteria. The evaluation
procedure did not require a significant amount of domain
knowledge. Thus, this type of system can be adapted to handle
a variety of health news stories on various themes, as it did not
rely on a data set with a strictly defined topic. In addition, an
interpretable, criteria-based system may address the complexity
and multidimensional attributes of the health information
disorder [83-85]. Automatic tools for evaluating health
misinformation have proven promising owing to their high
accuracy and fast processing speed. However, existing studies
are still predominantly binary classification tasks. This places
a great challenge in identifying health misinformation, as the
binary label is insufficient to represent the complicated
evaluation process of health news in actual practice. This is
especially the case with the veracity-based classification.
Human-based fact-checking involves extensive knowledge
understanding, inference, and source tracking, which remains
a challenge, even in deep learning methods. This is because
fabricated news is intended to mirror the truth to deceive readers;
as a result, without cross-referencing and high-level inference,
it might be impossible to determine the authenticity of news
stories by text analysis alone [82]. Although it does not provide
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veracity-level health news validation for users, it has the
potential to provide another way of combating health
misinformation by improving users’ critical thinking about
health news, as the slogan on HealthNewsReview.org indicates.

Conclusions
In this study, we described an interpretable, criteria-based
strategy for evaluating the quality of health news. We explored
2 methods for visualizing the interpretation of the system. To

aid in the exploration, an experiment was developed by
comparing rule-based and statistical ML approaches. Our results
suggested that either approach can successfully automate
criterion-based health news quality ratings, with visual evidence
supporting model explanation. This study has the potential to
increase public trust in computer-assisted reviews of health
information. We intend to expand on this study by applying 2
visualization approaches to more criteria and focusing on
improving the performance of the classification model.
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Abstract

Background: Chronic disease management is a major health issue worldwide. With the paradigm shift to preventive medicine,
disease prediction modeling using machine learning is gaining importance for precise and accurate medical judgement.

Objective: This study aimed to develop high-performance prediction models for 4 chronic diseases using the common data
model (CDM) and machine learning and to confirm the possibility for the extension of the proposed models.

Methods: In this study, 4 major chronic diseases—namely, diabetes, hypertension, hyperlipidemia, and cardiovascular
disease—were selected, and a model for predicting their occurrence within 10 years was developed. For model development, the
Atlas analysis tool was used to define the chronic disease to be predicted, and data were extracted from the CDM according to
the defined conditions. A model for predicting each disease was built with 4 algorithms verified in previous studies, and the
performance was compared after applying a grid search.

Results: For the prediction of each disease, we applied 4 algorithms (logistic regression, gradient boosting, random forest, and
extreme gradient boosting), and all models show greater than 80% accuracy. As compared to the optimized model’s performance,
extreme gradient boosting presented the highest predictive performance for the 4 diseases (diabetes, hypertension, hyperlipidemia,
and cardiovascular disease) with 80% or greater and from 0.84 to 0.93 in area under the curve standards.

Conclusions: This study demonstrates the possibility for the preemptive management of chronic diseases by predicting the
occurrence of chronic diseases using the CDM and machine learning. With these models, the risk of developing major chronic
diseases within 10 years can be demonstrated by identifying health risk factors using our chronic disease prediction machine
learning model developed with the real-world data–based CDM and National Health Insurance Corporation examination data
that individuals can easily obtain.

(JMIR AI 2022;1(1):e41030)   doi:10.2196/41030

KEYWORDS

common data model; chronic disease; prediction model; machine learning; disease management; data model; disease prediction;
prediction; risk prediction; risk factors; health risk

Introduction

World Health Organization’s Global Action Plan (2013-2020)
for noninfectious diseases aims to reduce the premature death
rate stemming from chronic diseases by 25% by 2025 [1]. The

plan also urges the establishment of national policies and
management of performance indicators.

Accordingly, the Ministry of Health and Welfare of South Korea
has designated cardiovascular disease, diabetes, chronic
respiratory disease, and cancer as chronic diseases to be
managed by the government [2] and established a chronic
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disease management system centered on local hospitals. In
March 2014, a community primary care pilot project for high
blood pressure and patients with diabetes was initiated. In
September 2016, the chronic disease management pilot project
was carried out. From January 2019 to the present, a primary
medical chronic disease management pilot project was
conducted. Nevertheless, chronic diseases remain the primary
cause of mortality and increasing medical expenses. According
to the Korea Centers for Disease Control and Prevention, in
2020, chronic diseases were responsible for 7 out of 10 deaths
in the country, accounting for 83.7% of total medical expenses
[3].

Chronic diseases develop from metabolic syndrome that are
caused by lifestyle or individual genetic and environmental
factors [4]. The development of chronic disease leads to various
complications or requires long-term treatment [5]. Therefore,
it is important to take preemptive measures along with the
prevention of metabolic syndrome. In this respect, it is necessary
to develop various disease prediction models to reduce the risk
of complications and medical costs.

Fortunately, early-stage disease prediction is gaining momentum
with the use of real-world data combined with machine learning
technology. Lee et al [6] predicted the risk of metabolic
syndrome (area under the curve [AUC]=0.879) using machine
learning techniques, and Choi et al [7] predicted disease
occurrence using recurrent neural networks (diagnosis up to
79%). Lipton et al [8] predicted the probability of chronic
disease by applying long short-term memory (AUC=0.81-0.99).
However, the disease occurrence prediction models developed

in South Korea used traditional statistical techniques, and most
international predictive models were developed for Western
White populations and therefore have reduced applicability to
other countries and racial groups.

Although there are already many studies using electronic
medical record (EMR) and machine learning, they have
limitations in requiring a definition of medical terms or
preprocessing for standardization in multicentered studies,
entailing that these studies cannot be synchronized with other
prediction models. There are relatively few papers on predictive
model development using the common data model (CDM;
although version 6.0 was release recently, version 5.4 of the
Observational Medical Outcomes Partnership CDM is supported
by the Observational Health Data Sciences and Informatics suite
of tools and methods), which can overcome these limitations.
In this paper, we aimed to develop a scalable chronic disease
prediction model using the CDM.

Methods

Subjects
We used the data of 790,822 subjects with at least one year of
hospital records among subjects aged ≥20 years who had also
visited a tertiary hospital in South Korea (Ajou University
Hospital in Suwon) from 1999 to 2020. To predict the risk of
developing chronic diseases for the subjects as they age, patients
with chronic diseases (type 2 diabetes, high blood pressure,
hyperlipidemia, and cardiovascular disease) as the underlying
disease were excluded (Figure 1).

Figure 1. The process of selecting subjects for the type 2 diabetes study. ALT: alanine aminotransferase; AST: aspartate aminotransferase; CDM:
common data model; Cr: creatinine; DBP: diastolic blood pressure; FBS: fasting blood glucose; HDL: high-density lipoprotein; Hgb: hemoglobin; LDL:
low-density lipoprotein; SBP: systolic blood pressure; TG: triglyceride.
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Select Model Variables
The public health checkup is a test for adults aged >18 years in
South Korea, and anyone can use it for free. Variables were
selected based on the general examination of items from the
National Health Insurance Service. A total of 19 variables were
included, such as basic information, measurement information,
lifestyle information, and history of diseases.

Data Extraction
The data used in the predictive model were extracted using the
Atlas analysis tool (Observational Health Data Sciences and
Informatics—a nonprofit consortium that allows researchers to
perform design, characterization, and analysis). A cohort for
chronic diseases was created through Atlas design for the
variables used in the cohort. Concept IDs following the
Systematized Nomenclature Of Medicine–Clinical Terms
terminology were used, which are mapped to the International
Classification of Diseases, 10th Revision code and currently

used as a diagnostic name in clinical practice. Systematized
Nomenclature Of Medicine–Clinical Terms were developed to
meet the various needs and expectations of clinicians around
the world, and it is an international standard terminology system
used in more than 80 countries, helping to consistently express
clinical contents in medical information records. Additionally,
concept IDs following the Local Laboratory Result Code
terminology, mapped with the managed local code, was used.
Local Laboratory Result Code refers to international standard
test terms, and medical terms are defined and standardized for
the standardization of test codes. Table 1 shows the concept
IDs used in the defined cohort group.

The defined cohort group was divided into a disease-occurring
group and a nonoccurring group according to the presence or
absence of a diagnosed chronic disease within 10 years from
the index date (when the criteria for participation in the study
were met). Cohort generation and data extraction were
performed according to the design criteria shown in Textbox 1.
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Table 1. Concept ID information.

VocabularyTypeConcept nameConcept IDVariables

SNOMED-CTaFactorType 2 diabetes mellitusType 2 diabetes • 201826

SNOMED-CTFactorHypertensive disorderHypertension • 316866

SNOMED-CTFactorHyperlipidemiaHyperlipidemia • 432867

SNOMED-CTFactorDisorder of cardiovascular systemCardiovascular disease • 134057

LOINCbNumericBody mass index (ratio)BMI • 3038553

LOINCNumericSystolic blood pressureSBPc • 3004249

LOINCNumericDiastolic blood pressureDBPd • 3012888

LOINCNumericCholesterol (mass/volume) in serum or plasmaTotal cholesterol • 3027114

LOINCNumericCholesterol in high-density lipoprotein (mass/volume) in serum or
plasma

HDLe • 3007070

LOINCNumericCholesterol in low-density lipoprotein (mass/volume) in serum or
plasma

LDLf • 3028437

LOINCNumericTriglyceride (mass/volume) in serum or plasmaTGg • 3022038
• 3022192

LOINCNumericFasting glucose (mass/volume) in serum or plasmaFBSh • 3040820
• 36303387
• 3037110

LOINCNumericHemoglobin (mass/volume) in bloodHgbi • 3000963
• 3027484

LOINCNumericCreatinine (mass/volume) in serum or plasmaCrj • 3016723
• 3051825

LOINCNumericAspartate aminotransferase (enzymatic activity/volume) in serum or
plasma

ASTk • 3013721

LOINCNumericAlanine aminotransferase (enzymatic activity/volume) in serum or
plasma

ALTl • 3006923
• 46236949

aSNOMED-CT: Systematized Nomenclature Of Medicine–Clinical Terms.
bLONIC: Local Laboratory Result Code.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
eHDL: high-density lipoprotein.
fLDL: low-density lipoprotein.
gTG: triglyceride.
hFBS: fasting blood glucose.
iHgb: hemoglobin.
jCr: creatinine.
kAST: aspartate aminotransferase.
lALT: alanine aminotransferase.
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Textbox 1. Design criteria.

Target group

• Patients who visited the hospital from January 1, 1999, to May 31, 2020

• Patients with data for 180 days before and after the index date

• Patients diagnosed with chronic diseases (type 2 diabetes, hypertension, hyperlipidemia, or cardiovascular disease) within 10 years from the
index date

Comparator group

• Patients who visited the hospital from January 1, 1999, to May 31, 2020

• Patients with data for 180 days before and after the index date

• Patients who have not been diagnosed with chronic diseases (type 2 diabetes, hypertension, hyperlipidemia, or cardiovascular disease) within 10
years from the index date.

Exclusion criteria

• A history of chronic diseases (diabetes, high blood pressure, hyperlipidemia, or cardiovascular disease) for any period before the selection duration

• Missing basic information, examination, and questionnaire items that were selected as essential items in the study for the development of the
chronic disease prediction model

Data Preparation
We used the patient information, medical treatment, and
examination data from a tertiary hospital in South Korea for the
CDM. If the missing value was a numeric variable, it was
replaced with the median of the matching gender for each age
group (stratified into 5-year units), and in the case of a
categorical variable, it was replaced with the mode of the
matching gender for each age group. Since the number of
samples between the 2 groups was unbalanced, random

undersampling was performed in the nondiabetic group within
10 years to match the size of the diabetic group. Although data
balancing can be hidden from the actual prevalence in practice,
it ensures model performance for new data by preventing biased
learning from highly imbalanced class problems.

Statistical Analysis
The descriptive statistics of each group (target group and
comparator group) are shown in Table 2.
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Table 2. Descriptive statistics.

ComparatorTargetProcessed dataFeature

Sex, n

5715861157Female

8538381691Male

40.17 (13.60)54.94 (12.50)47.56 (15.03)Age (years), mean (SD)

23.50 (3.55)25.69 (7.05)24.59 (5.68)BMI, mean (SD)

123.6 (14.86)132.5 (17.49)128.1 (16.95)SBPa, mean (SD)

77.03 (11.16)81.56 (12.04)79.29 (11.89)DBPb, mean (SD) , mean (SD)

185.8 (36.76)192.9 (42.40)189.4 (39.84)Total cholesterol, mean (SD)

55.36 (13.01)47.55 (10.82)51.45 (12.52)HDLc, mean (SD)

109.7 (30.13)114 (28.95)111.9 (29.57)LDLd, mean (SD)

115.2 (43.63)145.0 (59.06)143.1 (55.0)TGe, mean (SD)

96.04 (20.31)136.7 (54.40)116.4 (45.64)FBSf, mean (SD)

14.36 (1.56)14.18 (1.83)14.27 (1.70)Hgbg, mean (SD)

0.93 (0.26)1.045 (0.92)0.99 (0.68)Crh, mean (SD)

24.15 (11.20)31.71 (8.91)27.93 (9.64)ASTi, mean (SD)

24.87 (14.87)37.46 (8.19)31.16 (11.89)ALTj, mean (SD)

aSBP: systolic blood pressure.
bDBP: diastolic blood pressure.
cHDL: high-density lipoprotein.
dLDL: low-density lipoprotein.
eTG: triglyceride.
fFBS: fasting blood glucose.
gHgb: hemoglobin.
hCr: creatinine.
iAST: aspartate aminotransferase.
jALT: alanine aminotransferase.

Models

Overview
In this study, to select the most suitable model for disease
prediction, we used the following 4 algorithms: logistic
regression (LR), random forest (RF), gradient boosting model
(GBM), and extreme gradient boosting (XGBoost). LR using

binary classification in the statistics field and the other 3
machine learning algorithms had shown better performance
than similar prior research [9]. Afterward, the prediction
performance was compared. Model validation was conducted
with the same 80% training data and 20% validation data derived
from the entire data set. Accuracy, sensitivity, specificity, and
AUC were used as model performance indicators. The prediction
model flow is shown in Figure 2.
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Figure 2. Prediction model flow. CDM: common data model; ML: machine learning; OMOP: Observational Medical Outcomes Partnership; XGBoost:
extreme gradient boosting.

LR Algorithm
LR was devised by Cox [10] as a regression model that predicts
the probability of the occurrence of an event with respect to a
binary dependent variable. Unlike general linear regression
analysis, the range of LR is limited to 0-1 because the dependent
variable is dichotomous, and the conditional probability of the
occurrence of an event also follows a binomial distribution.
That is, if the estimated value following the logistic function
satisfying the above assumption is less than 0.5, the predicted
value is classified as “nonoccurring,” and if it is greater than
0.5, then the predicted value is classified as “occurring.”
Although LR was developed in 1970, it is still being used for
statistical analysis and predictive research in various fields.

RF Algorithm
RF is a tree-based ensemble model capable of both classification
and regression and selects the most appropriate forest model
by collecting the results of randomly generated independent
decision trees [11]. Bagging-based training data inputted to the
tree provides model diversity, and the randomness of variable
combinations constituting the tree can prevent model noise and
the risk of overfitting. The fact that RF is less sensitive to
missing values than other algorithms is also an advantage.

GBM Algorithm
GBM is a tree-based ensemble model similar to RF, but unlike
RF, it creates a tree using a boosting method. The boosting
method increases the performance of classification or prediction
by sequentially combining several small models [12]. GBM
reduces the errors generated by the previous model. Although
GBM shows high performance in prediction, it may take a lot
of time to fit the model because training requires extensive
computation. In recent years, GBM-based algorithms such as

LightGBM [13], CatBoost, and XGBoost have been developed
to overcome the shortcomings of GBM.

XGBoost Algorithm
XGBoost is a representative tree-based ensemble model devised
by Chen and Guestrin [14]. It is a machine learning algorithm
actively used in prediction and classification research because
of its powerful performance and has many advantages such as
fast learning due to parallel processing, overfitting regulation,
and linkage with other algorithms. Since XGBoost is based on
GBM, it optimizes the model by assigning weights using a
boosting method, reducing the residual error of the model
created with classification and regression tree algorithm–based
trees.

Grid Search
Unlike LR analysis, machine learning algorithms support various
parameters (hyperparameters) so that users can optimize the
model. Grid search is a technique to find the parameter value
when the model has the highest performance by sequentially
applying the parameter values set by the user. We optimized
the model by applying grid search to the above 3 algorithms
(RF, GBM, and XGBoost). Table S1 in Multimedia Appendix
1 presents the parameters and ranges used in the grid search for
each algorithm.

Results

Model Results
Comparing model performance by chronic disease, the
predictive model using XGBoost based on accuracy showed
superior performance in all diseases compared to the other 3
models (Table 3).
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Table 3. Performance comparison of disease prediction models.

XGBoostdGBMcRFbLRaParameter, chronic disease

Accuracy

0.88240.87430.87430.877Type 2 Diabetes

0.82130.78960.7930.7783Hypertension

0.83250.83250.820.8125Hyperlipidemia

0.84290.82350.81620.7941Cardiovascular disease

Sensitivity

0.87050.86840.88040.8852Type 2 Diabetes

0.79340.77830.77580.7758Hypertension

0.81820.80770.85560.8141Hyperlipidemia

0.82430.80300.86440.8143Cardiovascular disease

Specificity

0.89500.88040.86840.8691Type 2 Diabetes

0.85500.80190.78080.7808Hypertension

0.84820.83330.81220.8109Hyperlipidemia

0.86360.78570.77920.8333Cardiovascular disease

aLR: logistic regression.
bRF: random forest.
cGBM: gradient boosting model.
dXGBoost: extreme gradient boosting.

Model Validation Results
Table 4 shows the parameter values of each disease model
outputted by the XGBoost grid search.

The model evaluation indicators used were accuracy, sensitivity,
specificity, and AUC. Over 80% prediction accuracy was
achieved for all diseases, with AUC from 0.84 to 0.93. The
XGBoost model performance by disease is shown in Table 5
and Figure 3.

Table 4. Extreme gradient boosting grid search result.

EtadMin childcMax depthbSubsampleaTarget disease

0.1270.7Type 2 diabetes

0.01230.9Hypertension

0.01231Hyperlipidemia

0.01130.9Cardiovascular disease

aSubsample: sample’s rate of each tree.
bMax depth: maximum depth of Tree.
cMin child: minimum sum of weights for all observations needed in the child.
dEta: learning rate.

Table 5. Predictive performance by model.

AUCaSpecificitySensitivityAccuracyTarget disease

0.93030.89500.87050.8824Type 2 diabetes

0.87040.85500.79340.8213Hypertension

0.84420.84320.81820.8325Hyperlipidemia

0.87260.86360.82430.8429Cardiovascular disease

aAUC: area under the curve.
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Figure 3. Receiver operating characteristic curves for XGBoost (A) type 2 diabetes model, (B) hypertension model, (C) hyperlipidemia model, and
(D) cardiovascular disease model. AUC: area under the curve; XGBoost: extreme gradient boost.

Shapley Additive Explanations Model Variable
Importance
In open-source program languages (eg, Python and R), the
XGBoost package shows model feature importance using its
own library. However, small models are more combined and
complicated, and the feature importance of small models
becomes inconsistent. Therefore, we used the Shapley additive
explanations (SHAP) method to represent the model’s feature
importance, which had high consistency and accuracy [15].
SHAP’s feature importance used the weighted average of
marginal contribution for each feature (Shapley value). It gave
the importance of the features and the positive or negative effect
of each feature. The formula of Shapley value is a follows:

Contribution of featurei = βixi – E(βixi) = βixi – βiE(xi)

where Øi is the Shaley value of datai, F is the full set, S is the

subsets in total set excluding datai, is the contribution of the

full set including datai, and fS (xS) is the contribution of subsets
excluding datai.

The SHAP value graph of the fitted model for each disease is
presented in Figure 4.

In the case of type 2 diabetes, fasting blood glucose (Shapley
value=1.895), age (1.271), and BMI (0.245) influenced the
occurrence of diabetes within 10 years [16]. For hypertension,
hyperlipidemia (1.272), cardiovascular disease (1.379), and age
(1.117) had the greatest influence on disease occurrence.
Furthermore, in the case of hyperlipidemia, it was found that
among the variables excluding age, total cholesterol (0.616)
and low-density lipoprotein (0.249) influenced disease
occurrence, in the order presented [17]. In case of cardiovascular
disease, systolic blood pressure (0.164) and high-density
lipoprotein (0.113) had the second highest influence on disease
occurrence. These results are consistent with the results of
previous studies that studied the risk factors of the 4 chronic
diseases [16,17].
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Figure 4. Shapley additive explanations (SHAP) value graph of the fitted model for the importance of (A) type 2 diabetes variables, (B) hypertension
variables, (C) hyperlipidemia variables, and (D) cardiovascular disease variables. ALT: alanine aminotransferase; AST: aspartate aminotransferase;
DBP: diastolic blood pressure; HDL: high-density lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure.

Discussion

Principal Findings
This study develops a disease prediction model with more than
80% accuracy by using the 16 National Health Insurance system
test variables from the real-world data of a tertiary hospital in
South Korea. Our study:

1. Presents the possibility of predicting diseases with universal
and useful information on public health examinations,

2. Explains the ability of model prediction results, and
3. Presents the external verification and scalability using other

organizations’ CDM.

By observing recent research trends relating to disease prediction
models using a CDM, the number of cases focusing on
multicenter studies rather than single-center studies is increasing.
Lee et al [18] established an artificial intelligence (AI) learning
platform for multicenter clinical research focusing on CDM
linkage. Using data from Gachon University Gil Hospital to
develop a machine learning model that predicts 5-year risk in
patients with inflammatory bowel disease who started biologics,
Choi et al [19] externally validated the model with CDM data
(Ministry of Food and Drug Safety). Johnston et al [20]
developed a model to predict whether patients will stop taking
antihyperglycemic drugs within 1 to 2 years after laparoscopic
metabolic surgery. Using psychiatric patient notes at Ajou
University Hospital, Lee et al [21] developed an NLP model
that predicts the onset of psychosis in patients by learning, which

is a representative case. As such, if the same cohort criterion is
applied to multiple institutions in an expanded form along with
disease prediction model construction and cross-validation, a
more universal and robust model can be developed.

Research is being conducted globally to reduce medical costs
by predicting disease occurrence using AI. As the AI industry
has gone bigger, AI can reduce costs in providing care and
increase the efficiency of medical jobs [22]. In 2019, researchers
from the Boston Institute of Technology and Boston Health
Center conducted joint research using electronic health records
and lifelog big data with AI in an attempt to prevent disease
outbreaks and medical fraud. The findings may help reduce
hospitalization costs, which account for a substantial portion of
US medical expenses [23]. The model developed through this
study is expected to evolve into a similar system for South
Koreans, by predicting the risk of future disease development
and aiding self-health management.

Comparison With Prior Work
With the recent development of AI and data processing
technology, research on disease prediction model development
using National Health Insurance Service data [9] or
single-institution EMR data [24] is steadily progressing. In this
study, we developed chronic disease prediction models with
relatively high performance compared to previous papers. A
difference between this study and existing work is that the
models have been developed using the CDM, so that we can
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expect improved precision through variable expansion and by
simultaneously using multiorganizational data.

Limitations
A limitation of this study is that it uses a single-institution CDM
from a tertiary hospital. Therefore, it cannot ensure
generalizability. Additionally, the demographic variables
(educational level, residential area, marital status, etc.) are
insufficient compared to the health insurance service
examination items. They are limited due to the focus on South
Korean public checkups; by using more features related with
the disease (hemoglobin A1C and biopsy data), the model
becomes more accurate. Lastly, the model was trained using
the cross-sectional data of patients. If the model is trained using
time-series data (eg, the cohort of patients’ information that
includes changes of laboratory results as time goes by), it could
be much more comprehensive.

Conclusions
In this study, 4 metabolic chronic diseases were selected, and
disease prediction models were developed using the Ajou
University Hospital CDM. To obtain a model suitable for disease
prediction, the predictive performance of each model for disease
occurrence was compared using the LR, GBM, RF, and
XGBoost algorithms. The XGBoost model shows the best
performance for all diseases. The performance of the XGBoost
model was calculated as 0.9303, 0.8704, 0.8442, and 0.8726
AUC standards for type 2 diabetes, hypertension,
hyperlipidemia, and cardiovascular disease, respectively. In
addition, the importance of the variables was calculated through
modeling, and the results are in line with previous clinical
studies. We have confirmed that chronic diseases can be
predicted, not just using single-institution EMR or public clinical
data, but using the CDM in each local hospital.
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