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Abstract

Background: Anterior cruciate ligament (ACL) injuries are common in sports and are critical knee injuries that require prompt
diagnosis. Magnetic resonance imaging (MRI) is a strong, noninvasive tool for detecting ACL tears, which requires training to
read accurately. Clinicians with different experiences in reading MR images require different information for the diagnosis of
ACL tears. Artificial intelligence (AI) image processing could be a promising approach in the diagnosis of ACL tears.

Objective: This study sought to use AI to (1) diagnose ACL tears from complete MR images, (2) identify torn-ACL images
from complete MR images with a diagnosis of ACL tears, and (3) differentiate intact-ACL and torn-ACL MR images from the
selected MR images.

Methods: The sagittal MR images of torn ACL (n=1205) and intact ACL (n=1018) from 800 cases and the complete knee MR
images of 200 cases (100 torn ACL and 100 intact ACL) from patients aged 20-40 years were retrospectively collected. An AI
approach using a convolutional neural network was applied to build models for the objective. The MR images of 200 independent
cases (100 torn ACL and 100 intact ACL) were used as the test set for the models. The MR images of 40 randomly selected cases
from the test set were used to compare the reading accuracy of ACL tears between the trained model and clinicians with different
levels of experience.

Results: The first model differentiated between torn-ACL, intact-ACL, and other images from complete MR images with an
accuracy of 0.9946, and the sensitivity, specificity, precision, and F1-score were 0.9344, 0.9743, 0.8659, and 0.8980, respectively.
The final accuracy for ACL-tear diagnosis was 0.96. The model showed a significantly higher reading accuracy than less
experienced clinicians. The second model identified torn-ACL images from complete MR images with a diagnosis of ACL tear
with an accuracy of 0.9943, and the sensitivity, specificity, precision, and F1-score were 0.9154, 0.9660, 0.8167, and 0.8632,
respectively. The third model differentiated torn- and intact-ACL images with an accuracy of 0.9691, and the sensitivity, specificity,
precision, and F1-score were 0.9827, 0.9519, 0.9632, and 0.9728, respectively.

Conclusions: This study demonstrates the feasibility of using an AI approach to provide information to clinicians who need
different information from MRI to diagnose ACL tears.
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Introduction

The anterior cruciate ligament (ACL), an important ligament
of the knee joint, is a common and devastating sports injury
that affects more than 200,000 people in the United States
annually [1,2]. The early and proper diagnosis of ACL tears is
crucial and can lead to early intervention to prevent subsequent
chondral or meniscal damage and early osteoarthritis [3]. A
neglected diagnosis can cause longer chronicity of ACL tears
at the time of surgery and is positively correlated with the
development of osteoarthritis [4]. Arthroscopy can directly
visualize the intra-articular lesions of the knee and is the most
accurate diagnostic tool for ACL tears [5]. However, this is an
invasive procedure with potential surgical risks.

Magnetic resonance imaging (MRI) is a strong, noninvasive
tool for detecting ACL tears with high sensitivity and specificity
if interpreted by an experienced musculoskeletal radiologist
[6,7]. However, reading MR images and making an accurate
diagnosis of ACL tears are challenging for less experienced
medical personnel.

Graphic identification using deep learning is an important and
integral part of artificial intelligence (AI). Using a convolutional
neural network (CNN) with repeated input and output data,
established algorithms can learn layers of features and repeatedly
adjust their neural network and thereby model the complex
relationships between medical images and their interpretations
[8]. CNNs may be useful in medical imaging tasks; thus, the
development of a computer-assisted tool to detect ACL tears
from MR images may be helpful in reducing doctor workload,
increasing education, reducing misdiagnosis, and enhancing the
quality of health care in resource-limited areas [9].

In this study, we aimed to use AI to (1) diagnose ACL tears
from complete MR images (for those who were not trained to
read knee MRI but nevertheless wanted to diagnose it); (2)
identify torn-ACL images from complete MR images that have
a diagnosis of an ACL tear (for those who need advanced
information after they obtain the result of an ACL tear from the
first model); and (3) differentiate torn-ACL and intact-ACL
images from the selected MR images (for those who were able
to identify the images containing ACL but do not have sufficient
confidence in making the diagnosis).

Methods

Ethics Approval
This retrospective study was approved by the institutional review
board of Taipei Veterans General Hospital (2018-11-005CC).

Patient Selection and Database
The sagittal MR images of torn ACL (n=1205) and intact ACL
(n=1018) from 800 cases and the complete knee MR images of
200 cases (100 torn ACL and 100 intact ACL; torn- and
intact-ACL images were extracted, n=335,742) of patients who
underwent knee MRI examinations between January 2013 and
December 2017 were retrospectively collected for training
purposes (training set). The complete MR images of 200
independent cases (100 torn ACL and 100 intact ACL;
n=34,914) were used for testing purpose (testing set). The mean
age of these patients was 28.1 years and 66.4% (664/1000) were
male. The patient population was similar to previous reports on
the group with the higher prevalence of ACL tears [10]. We
believe these models have routine applications in a majority of
patient groups.

Knee MR images excluded patients with the following knee
conditions: tumor around the knee, previous knee surgery,
multiple ligament injuries, osteoarthritis (Kellgren-Lawrence
classification grades 2 to 4), and previous fractures around the
knee. MRI examinations were performed on the knee, either in
our hospital or in other hospitals, and were then uploaded to
our system for a second opinion. There were 6 different MRI
scanners used to perform knee examination in our hospital, and
we did not restrict the scanner from which we obtained the
images. Moreover, we did not identify the scanners in the
uploaded images. In this database, for the torn-ACL MRIs,
76.8% (384/500) were performed in our hospital and 23.2%
(116/500) were from other hospital; and for the intact-ACL
MRIs, 84.6% (423/500) were performed in our hospital and
15.4% (77/500) were from other hospital. Hence, the images
used in this study were not restricted to one hospital or a specific
MRI scanner.

The determination of a torn-ACL or intact-ACL case was
formulated independently by 2 orthopedic doctors and 1
musculoskeletal radiologist who reviewed the MR images and
issued the report officially. In addition, torn-ACL cases were
also confirmed through arthroscopic examination as all patients
with ACL tears underwent arthroscopic ACL reconstruction
surgery. All 3 doctors had consistent opinions on the sagittal
torn-ACL (Figure 1) and intact-ACL (Figure 2) images.
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Figure 1. MR images of different torn-ACL patterns. Sagittal proton density images from 6 different patients show variations in the patterns of torn
ACL on their respective images: (A) proximal third tear; (B) mid-substance tear; (C) distal third tear; (D) chronic tear with complete ligament resorption,
such as ligament disappearance; (E) tear with folded ligament, which may cause extension difficulty; and (F) tear with cyst formation. White arrow:
lesion site. ACL: anterior cruciate ligament; MR: magnetic resonance.

Figure 2. MR images of intact ACL. Sagittal proton density images of 3 different patients are shown. All images show the taut and straight bands
parallel to the intercondylar roof with low signal intensity patterns of the intact ACL (white arrow). ACL: anterior cruciate ligament; MR: magnetic
resonance.
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The first model was for clinicians who were not trained to read
knee MR images but wanted to know if the ACL was torn. For
this purpose, we first trained a CNN model to differentiate
between torn-ACL, intact-ACL, and other images from complete
MR images of the knee. The sagittal MR images of torn and
intact ACL from 800 cases and the images from 200 complete
knee MR images (the torn- and intact-ACL images were
extracted), regarded as other images, were used to train and
validate the model (Table 1). Cases containing intact-ACL
images or both intact- and torn-ACL images were regarded as
intact-ACL cases, and cases containing torn-ACL images only
were regarded as tear cases. This is similar to the strategy often
used by some readers; if an intact-ACL image could be
identified among complete MR images, then it might indicate
that there is less probability of a torn ACL. Instead, if an intact
ACL could not be found when examining the knee MRI of a
patient, it would be indicative of a torn ACL.

As the first model did not provide information for identifying
torn-ACL images, a second model was developed to identify
them from complete MR images that had been diagnosed as
ACL-tear case from the first model. Thus, the second model
was intended for personnel who needed advanced information
on torn-ACL images after obtaining the ACL-tear results. For
this purpose, torn-ACL images and other images from 100
ACL-tear cases in the training set were used for training and
validation (Table 2).

The third model was used to differentiate between torn-ACL
and intact-ACL images from the selected MR images. This
model was used by more experienced readers who were able to
identify the sagittal images that contained ACLs but needed
assistance in making the correct diagnosis. For this purpose,
the sagittal MR images of torn and intact ACLs were included
for training purposes (Table 3).

Table 1. Number of images used for training, validating, and testing the model to differentiate intact-ACL, torn-ACL, and other images from the
complete magnetic resonance images.

Test, nTraining and validation, nClassification

2701018Intact-ACLa images

3461205Torn-ACL images

34,298c335,742bOther images

aACL: anterior cruciate ligament.
bIncluding sagittal, coronal, and axial images (torn- and intact-ACL images were extracted) from the training set (200 cases).
cIncluding sagittal, coronal, and axial images (torn- and intact-ACL images were extracted) from the test set (200 cases).

Table 2. Number of images used for training, validating, and testing the model to identify torn-ACL images from ACL-tear cases.

Test, nTraining and validation, nClassification

3461205Torn-ACLa images

16,800c15,969bOther images

aACL: anterior cruciate ligament.
bIncluding sagittal, coronal, and axial images (torn-ACL images were extracted) from 100 ACL-tear cases in the training set
cIncluding sagittal, coronal, and axial images (torn-ACL images were extracted) from 100 ACL-tear cases in the testing set.

Table 3. Number of images used for training, validating, and testing to differentiate between torn- and intact-ACL images.

Test, nTraining and validation, nClassification

2701018Intact-ACLa images

3461205Torn-ACL images

aACL: anterior cruciate ligament.

Image Preprocessing and CNN Model Training by an
Automatic Deep-Learning Software
All images were downloaded from the imaging system as a 256
× 256-pixel image in a portable network graphics format and
subsequently grouped, as previously mentioned, for training
the 3 different CNN models. The AI approach used MAIA
automatic deep learning software for medical imaging analyses
(version 1.2.0; Muen Biomedical and Optoelectronic

Technologies Inc), which was used in a previous study [11].
The CNN model of MAIA was based on EfficientNet-B0,
pretrained with ImageNet [12,13]. After inputting the MR
images of the training group, 80% of the images were distributed
to train and 20% were distributed to validate and find the most
ideal CNN model (Figure 3). The MR images were then
augmented with horizontal flipping and Gaussian noise [14].
The dropout function and different data augmentation methods
were added to prevent the model from overfitting in the data
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set [15,16]. For hyperparameters in training, the number of
epochs was set as 100, the batch size was selected automatically
based on memory consumption, and the learning rate was
dynamically scheduled through cosine annealing and a 1-cycle
policy [17,18]. The network was trained end-to-end using the
Adam optimization algorithm, which optimized the
cross-entropy as a loss function [19]. For classification, the

softmax or sigmoid layer was applied as the output layer in
multiclass or binary classification, respectively. The MAIA
analysis was performed with Python (version 3.x; Python
Software Foundation) and PyTorch (version 1.1.x; Meta AI) on
a Windows 10 laptop with GeForce RTX2070 graphic cards (8
GB GDDR6 RAM, GT63 Titan 8SF; MSI).

Figure 3. Data organization for model training.

CNN Models Performance Evaluation
To evaluate how the model differentiated between torn-ACL,
intact-ACL, and other images, the 200 independent cases were
used to test the model. To evaluate the accuracy of an ACL-tear
diagnosis, cases that were identified as containing intact-ACL
images were regarded as intact-ACL cases, and the rest were
diagnosed as ACL tears (Figure 4). To evaluate the secondary
model of identifying torn images from cases diagnosed with
ACL tears, 100 ACL-tear cases from the independent test set
were used for testing purposes (Figure 5). To evaluate the third
model of differentiating intact-ACL and torn-ACL images from
the selected MR images, sagittal MR images labeled as torn
and intact ACL from the independent test set were used (Figure
6). Finally, we compared the performance of the first model to

diagnose ACL tears with those of orthopedic residents and
medical students. For this purpose, 40 randomly selected cases
(20 torn and 20 intact) from the test set were used to test
differently experienced readers (ie, orthopedic residents and
medical students). Complete images were provided to the readers
after the removal of personal, clinical, surgical, and institutional
information to focus on the reading of the MRI. The residents
were split into 3 groups: Group 1 (chief residents and sports
fellows), Group 2 (third- and fourth-year residents), and Group
3 (first- and second-year residents). There were 5 participants
in each group. We excluded the highest and lowest accuracy
results for each group, and the accuracy of each group is the
mean accuracy of the 3 readers. The resultant accuracies of the
machine and differently experienced readers were compared.

Figure 4. Flowchart of diagnosing ACL tears using the AI approach. ACL: anterior cruciate ligament; AI: artificial intelligence; MRI: magnetic
resonance imaging.

J AI 2022 | vol. 1 | iss. 1 | e37508 | p. 5https://ai.jmir.org/2022/1/e37508
(page number not for citation purposes)

Chen et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Flowchart of identifying torn-ACL images using the AI approach. ACL: anterior cruciate ligament; AI: artificial intelligence.

Figure 6. Flowchart of differentiating intact-ACL and torn-ACL images using the AI approach. ACL: anterior cruciate ligament; AI: artificial intelligence.

Statistical Analysis
The effectiveness of the 3 models was evaluated using several
metrics, including the accuracy, sensitivity, specificity, F1-score,
receiver operating characteristic curve, and the area under the
curve, which were calculated using Python. The comparison of
the models and doctors with different degrees was performed
using SPSS software package (version 22; IBM Corp). Statistical
significance was set at P<.05, with a 95% CI.

Results

The accuracy of the model that differentiated between torn-ACL,
intact-ACL, and other images was 0.9946. The sensitivity,
specificity, precision, and F1-scores were 0.9344, 0.9743,
0.8659, and 0.9980, respectively (Table 4 and Figure 7). The

accuracy of ACL diagnosis was 0.96 (Figure 8). The accuracy
of the model identifying torn-ACL images from the complete
images of ACL-tear cases was 0.9943. The sensitivity,
specificity, precision, and F1-scores were 0.9154, 0.9660,
0.8167, and 0.8632, respectively. (Table 4 and Figure 9). The
accuracy of the model that differentiated torn- and intact-ACL
images was 0.9691. The sensitivity, specificity, precision, and
F1-scores were 0.9827, 0.9519, 0.9632, and 0.9782, respectively
(Table 4 and Figure 10).

The accuracy of the first model and the differently experienced
orthopedic residents and medical students for the diagnosis of
ACL tears is shown in Table 5. When using the 40 randomly
selected cases from the test set for reading comparison, the
results showed a significantly higher reading accuracy for the
model than those of the less experienced residents and medical
students.

Table 4. Validation and test results for the 3 models.

ACL-tear or intact images differentiationACL-tear image identificationTorn-ACLa, intact-ACL, and other images
differentiation

Model

TestValidationTestValidationTestValidation

0.96911.00000.99430.99590.99460.9947Accuracy

0.98271.00000.91540.98340.93440.9702Sensitivity

0.95191.00000.96600.99690.97430.9884Specificity

0.96321.00000.81670.95950.86590.9647Precision

0.97281.00000.86320.97130.89800.9674F1-score

aACL: anterior cruciate ligament.
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Figure 7. Performance of the model in differentiating torn-ACL, intact-ACL, and other images. (A) Confusion matrix; (B) ROC curve of the model;
(C) Precision recall curve for identifying torn-ACL images; (D) Precision recall curve for identifying intact-ACL images; and (E) Precision recall curve
for identifying other images (images without torn or intact ACL). ACL: anterior cruciate ligament; ROC: receiver operating characteristic.

Figure 8. Classification matrix for diagnosing ACL-tear cases. ACL: anterior cruciate ligament.
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Figure 9. Performance of the model in identifying torn-ACL images from complete MRI images with an ACL-tear diagnosis. (A) Confusion matrix;
(B) ROC curve of the model; and (C) Precision recall curve. ACL: anterior cruciate ligament; ROC: receiver operating characteristic.

Figure 10. Performance of the model in differentiating between intact-ACL and torn-ACL images. (A) Confusion matrix; (B) ROC curve of the model;
(C) Precision recall curve; and (D) torn-ACL image identified (left) and its representative heat map (right). ACL: anterior cruciate ligament; ROC:
receiver operating characteristic.
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Table 5. Accuracy of the model and the differently experienced orthopedic residents and medical students in the diagnosis of anterior cruciate ligament
tears in 40 randomly selected magnetic resonance imaging cases.

P valueaAccuracy, meanReader

Referenceb0.975Machine

.130.888Group 1: chief residents and sports fellows (n=3)

.020.817Group 2: third- and fourth-year residents (n=3)

.0030.742Group 3: first- and second-year residents (n=3)

.0010.708Medical students (n=3)

aP values were based on statistical analyses using the chi-squared test. Statistical significance was set at P<.05.
bThe accuracy of machine reading was used as a reference.

Discussion

Principal Findings
This study demonstrates the feasibility of using an AI approach
to diagnose ACL tears from complete MR images with 96%
accuracy, identify torn-ACL images from ACL tear cases with
99.4% accuracy, and differentiate intact-ACL and torn-ACL
images from the selected MR images with 96.9% accuracy. The
model also demonstrated a significantly higher diagnostic
accuracy than orthopedic residents in training and medical
students.

MRI is a highly accurate tool for evaluating ACL tears, with
an accuracy, sensitivity, and specificity of more than 90%
[20,21]. In a complete MR scan, the knee should ideally be
imaged in 3 orthogonal planes: sagittal, coronal, and axial slices.
During the examination, the patient was positioned supine in
the scanner, with the knee relaxed in mild flexion and slight
external rotation (5°-10°). This position enables the ACL to be
orthogonal to the sagittal plane of imaging [22]. Therefore, of
all 3 planes, sagittal plane images show the ACL most clearly,
especially with T2-weighted sequences [23]. When reading
knee MR images in clinical practice, sagittal images are more
commonly used to evaluate the condition of the ACL than the
other planes. For this reason, we chose to use the sagittal images
of the intact or torn ACL as the target for the AI approach to
develop the 3 models.

In a normal knee, the ACL is between the lateral femoral
condyle and the anterior midportion of the tibia and attaches
the anterior to the tibial spine. Sagittal MR images appear as a
taut and straight band parallel to the intercondylar roof
(Blumensaat line) and have low signal intensity on T1- and
T2-weighted images (Figure 2). However, compared to
intact-ACL images, there are many variations in the torn-ACL
sign on the MR images. These variations include discontinuity
in the different parts of the ligament (proximal, midsubstance,
or distal) [24], abnormally increased signal intensity, and
abnormal morphology, such as a wave, fold, or angulation. In
chronic tears, the ACL can even be nonvisualized owing to the
resorption of the torn ligament (Figure 1). Thus, the variable
appearance of torn-ACL images makes them more complicated
to read than intact-ACL images. In the first model, the results
showed that the model had less accuracy in identifying torn-ACL
images than intact-ACL images (0.87 vs 0.94). There was more
misprediction of other images as torn-ACL images, and many

of these mispredictions occurred in the intact-ACL cases,
identifying both intact-ACL and torn-ACL images as intact-ACL
cases (19 cases). However, there was less misprediction of other
images as intact-ACL images in ACL-tear cases (4 cases). All
the results reflected the variations in torn-ACL images.
Accordingly, for the purpose of diagnosing ACL-tears, cases
containing intact-ACL images were regarded as intact cases
because the model identified them with a higher accuracy. The
other cases without intact-ACL images were regarded as tear
cases. By using this principle to exclude ACL-tear cases, the
accuracy of the diagnosis of ACL tears could reach 96%, which
is comparable to many studies using different AI approaches
[25-27]. This method can be helpful for personnel who are not
trained to read the knee MRI but want to know if the ACL is
torn. In addition to diagnosing ACL tears, this study also
demonstrates the feasibility of identifying ACL images from
complete MR images of ACL-tear cases and differentiating
intact- and torn-ACL images with a good accuracy and F1-score.
These models can be useful for various user needs.

A total of 40 cases were randomly selected from the test set for
the reading of the model and from differently experienced
residents and medical students. The images provided for each
case were complete MRI examinations, which included all
planes and sequences. The results showed that the accuracy of
the model in diagnosing ACL-tear cases was significantly higher
than that of medical students and orthopedic residents in
training. Reading MR images to identify ACL tears is relatively
routine for attending orthopedic surgeons or radiologists.
However, for less experienced readers, the model may provide
a useful reference when they are uncertain of the diagnosis.

In this study, we did not extract images from only 1 specific
MR scanner. This is because, in daily practice, a hospital may
have multiple scanners, and sometimes a physician may need
to read MR images from an unknown scanner from another
hospital. The MR images for this study were obtained using 6
different MR knee scanners in our institute, which were obtained
from 2 different companies and purchased in different years. In
addition to MR images that were obtained in our hospital,
images were also taken from other hospitals and uploaded to
our image system when the patients came for a second opinion
or asked for surgery. Therefore, our data set comprised images
from different scanners, and it was less likely that the model
would learn some artifacts from the scanners that are not related
to the ACL condition. We demonstrated that the models can
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perform well for an independent test set that contains MR
images from different scanners.

Comparison With Prior Work
Using a deep-learning approach to detect ACL tears has been
reported with an accuracy exceeding 95% in many studies using
different AI approaches [25-28]. Nonetheless, there were some
novelties in this study that we consider to be comparable for
their use in daily practice. First, we extracted images from
heterogeneous MR scanners. In previous studies, only 1 or 2
scanners were used; however, it is uncommon that there are
only 1 or 2 MRI scanners in an institution. Thus, developing a
deep-learning algorithm that is trained with images from
different MR scanners may better represent real-world situations
in many hospitals. For the independent test set, we used the
complete images of the MRI examination, and there was no
restriction on the protocol used by the scanner, which is different
from previous studies. Second, we used a different approach to
diagnose the ACL injuries. We excluded the cases containing
the intact-ACL images, which were identified by the AI
approach, to diagnose ACL-tear cases with an accuracy of 96%.
Third, we developed 3 different models for users with different
purposes: (1) to diagnose ACL tears from complete MR images;
(2) to identify torn-ACL images from complete MR images
with a diagnosis of ACL tears; and (3) to differentiate
intact-ACL and torn-ACL MR images from the selected images.
Users with different experiences require different types of help.
These 3 models are tailored to assist users with different needs
by providing them with relevant information using an AI
approach, which has not been previously reported.

Limitations
Our study has several limitations. First, we did not label the
partially torn–ACL images. Partial tears of the ACL are more
difficult to diagnose than complete tears, and the accuracy of
these diagnoses is poor on MR images [29]. Thus, we did not
use the images of partial tears for training or testing in this study.
However, should a partial tear case be input into the model, the
model could diagnose the case as an ACL tear because this
model cannot identify an intact-ACL image. This finding may
alert the user that the case is a torn-ACL case, and the case may
need to be double-checked by an orthopedic specialist. Second,
we used only sagittal torn-ACL and intact-ACL images for the
diagnosis of ACL tears. Considering that the images of other
planes can also assist in the diagnosis, adding the other planes
of images into the training might increase the reading accuracy.
Third, we did not record the details of the MR scanners, because
the information of the scanners of the images taken from other
hospitals could not be identified.

Conclusions
This study demonstrates the feasibility of using an AI approach
to diagnose ACL tears from a complete MR image (with 96.0%
accuracy), identify torn-ACL images from ACL-tear cases, and
differentiate intact-ACL and torn-ACL images from the selected
MR images. These models may serve as clinical decision support
systems for diagnosing ACL injuries for clinicians with different
experiences and purposes in reading knee MRIs.
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Abbreviations
AI: artificial intelligence
ACL: anterior cruciate ligament
CNN: convolutional neural network
MOST: Ministry of Science and Technology
MRI: magnetic resonance imaging
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