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Abstract

Background: Chronic disease management is a major health issue worldwide. With the paradigm shift to preventive medicine,
disease prediction modeling using machine learning is gaining importance for precise and accurate medical judgement.

Objective: This study aimed to develop high-performance prediction models for 4 chronic diseases using the common data
model (CDM) and machine learning and to confirm the possibility for the extension of the proposed models.

Methods: In this study, 4 major chronic diseases—namely, diabetes, hypertension, hyperlipidemia, and cardiovascular
disease—were selected, and a model for predicting their occurrence within 10 years was developed. For model development, the
Atlas analysis tool was used to define the chronic disease to be predicted, and data were extracted from the CDM according to
the defined conditions. A model for predicting each disease was built with 4 algorithms verified in previous studies, and the
performance was compared after applying a grid search.

Results: For the prediction of each disease, we applied 4 algorithms (logistic regression, gradient boosting, random forest, and
extreme gradient boosting), and all models show greater than 80% accuracy. As compared to the optimized model’s performance,
extreme gradient boosting presented the highest predictive performance for the 4 diseases (diabetes, hypertension, hyperlipidemia,
and cardiovascular disease) with 80% or greater and from 0.84 to 0.93 in area under the curve standards.

Conclusions: This study demonstrates the possibility for the preemptive management of chronic diseases by predicting the
occurrence of chronic diseases using the CDM and machine learning. With these models, the risk of developing major chronic
diseases within 10 years can be demonstrated by identifying health risk factors using our chronic disease prediction machine
learning model developed with the real-world data–based CDM and National Health Insurance Corporation examination data
that individuals can easily obtain.
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Introduction

World Health Organization’s Global Action Plan (2013-2020)
for noninfectious diseases aims to reduce the premature death
rate stemming from chronic diseases by 25% by 2025 [1]. The

plan also urges the establishment of national policies and
management of performance indicators.

Accordingly, the Ministry of Health and Welfare of South Korea
has designated cardiovascular disease, diabetes, chronic
respiratory disease, and cancer as chronic diseases to be
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managed by the government [2] and established a chronic
disease management system centered on local hospitals. In
March 2014, a community primary care pilot project for high
blood pressure and patients with diabetes was initiated. In
September 2016, the chronic disease management pilot project
was carried out. From January 2019 to the present, a primary
medical chronic disease management pilot project was
conducted. Nevertheless, chronic diseases remain the primary
cause of mortality and increasing medical expenses. According
to the Korea Centers for Disease Control and Prevention, in
2020, chronic diseases were responsible for 7 out of 10 deaths
in the country, accounting for 83.7% of total medical expenses
[3].

Chronic diseases develop from metabolic syndrome that are
caused by lifestyle or individual genetic and environmental
factors [4]. The development of chronic disease leads to various
complications or requires long-term treatment [5]. Therefore,
it is important to take preemptive measures along with the
prevention of metabolic syndrome. In this respect, it is necessary
to develop various disease prediction models to reduce the risk
of complications and medical costs.

Fortunately, early-stage disease prediction is gaining momentum
with the use of real-world data combined with machine learning
technology. Lee et al [6] predicted the risk of metabolic
syndrome (area under the curve [AUC]=0.879) using machine
learning techniques, and Choi et al [7] predicted disease
occurrence using recurrent neural networks (diagnosis up to
79%). Lipton et al [8] predicted the probability of chronic
disease by applying long short-term memory (AUC=0.81-0.99).

However, the disease occurrence prediction models developed
in South Korea used traditional statistical techniques, and most
international predictive models were developed for Western
White populations and therefore have reduced applicability to
other countries and racial groups.

Although there are already many studies using electronic
medical record (EMR) and machine learning, they have
limitations in requiring a definition of medical terms or
preprocessing for standardization in multicentered studies,
entailing that these studies cannot be synchronized with other
prediction models. There are relatively few papers on predictive
model development using the common data model (CDM;
although version 6.0 was release recently, version 5.4 of the
Observational Medical Outcomes Partnership CDM is supported
by the Observational Health Data Sciences and Informatics suite
of tools and methods), which can overcome these limitations.
In this paper, we aimed to develop a scalable chronic disease
prediction model using the CDM.

Methods

Subjects
We used the data of 790,822 subjects with at least one year of
hospital records among subjects aged ≥20 years who had also
visited a tertiary hospital in South Korea (Ajou University
Hospital in Suwon) from 1999 to 2020. To predict the risk of
developing chronic diseases for the subjects as they age, patients
with chronic diseases (type 2 diabetes, high blood pressure,
hyperlipidemia, and cardiovascular disease) as the underlying
disease were excluded (Figure 1).

Figure 1. The process of selecting subjects for the type 2 diabetes study. ALT: alanine aminotransferase; AST: aspartate aminotransferase; CDM:
common data model; Cr: creatinine; DBP: diastolic blood pressure; FBS: fasting blood glucose; HDL: high-density lipoprotein; Hgb: hemoglobin; LDL:
low-density lipoprotein; SBP: systolic blood pressure; TG: triglyceride.
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Select Model Variables
The public health checkup is a test for adults aged >18 years in
South Korea, and anyone can use it for free. Variables were
selected based on the general examination of items from the
National Health Insurance Service. A total of 19 variables were
included, such as basic information, measurement information,
lifestyle information, and history of diseases.

Data Extraction
The data used in the predictive model were extracted using the
Atlas analysis tool (Observational Health Data Sciences and
Informatics—a nonprofit consortium that allows researchers to
perform design, characterization, and analysis). A cohort for
chronic diseases was created through Atlas design for the
variables used in the cohort. Concept IDs following the
Systematized Nomenclature Of Medicine–Clinical Terms
terminology were used, which are mapped to the International
Classification of Diseases, 10th Revision code and currently

used as a diagnostic name in clinical practice. Systematized
Nomenclature Of Medicine–Clinical Terms were developed to
meet the various needs and expectations of clinicians around
the world, and it is an international standard terminology system
used in more than 80 countries, helping to consistently express
clinical contents in medical information records. Additionally,
concept IDs following the Local Laboratory Result Code
terminology, mapped with the managed local code, was used.
Local Laboratory Result Code refers to international standard
test terms, and medical terms are defined and standardized for
the standardization of test codes. Table 1 shows the concept
IDs used in the defined cohort group.

The defined cohort group was divided into a disease-occurring
group and a nonoccurring group according to the presence or
absence of a diagnosed chronic disease within 10 years from
the index date (when the criteria for participation in the study
were met). Cohort generation and data extraction were
performed according to the design criteria shown in Textbox 1.
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Table 1. Concept ID information.

VocabularyTypeConcept nameConcept IDVariables

SNOMED-CTaFactorType 2 diabetes mellitusType 2 diabetes • 201826

SNOMED-CTFactorHypertensive disorderHypertension • 316866

SNOMED-CTFactorHyperlipidemiaHyperlipidemia • 432867

SNOMED-CTFactorDisorder of cardiovascular systemCardiovascular disease • 134057

LOINCbNumericBody mass index (ratio)BMI • 3038553

LOINCNumericSystolic blood pressureSBPc • 3004249

LOINCNumericDiastolic blood pressureDBPd • 3012888

LOINCNumericCholesterol (mass/volume) in serum or plasmaTotal cholesterol • 3027114

LOINCNumericCholesterol in high-density lipoprotein (mass/volume) in serum or
plasma

HDLe • 3007070

LOINCNumericCholesterol in low-density lipoprotein (mass/volume) in serum or
plasma

LDLf • 3028437

LOINCNumericTriglyceride (mass/volume) in serum or plasmaTGg • 3022038
• 3022192

LOINCNumericFasting glucose (mass/volume) in serum or plasmaFBSh • 3040820
• 36303387
• 3037110

LOINCNumericHemoglobin (mass/volume) in bloodHgbi • 3000963
• 3027484

LOINCNumericCreatinine (mass/volume) in serum or plasmaCrj • 3016723
• 3051825

LOINCNumericAspartate aminotransferase (enzymatic activity/volume) in serum or
plasma

ASTk • 3013721

LOINCNumericAlanine aminotransferase (enzymatic activity/volume) in serum or
plasma

ALTl • 3006923
• 46236949

aSNOMED-CT: Systematized Nomenclature Of Medicine–Clinical Terms.
bLONIC: Local Laboratory Result Code.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
eHDL: high-density lipoprotein.
fLDL: low-density lipoprotein.
gTG: triglyceride.
hFBS: fasting blood glucose.
iHgb: hemoglobin.
jCr: creatinine.
kAST: aspartate aminotransferase.
lALT: alanine aminotransferase.
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Textbox 1. Design criteria.

Target group

• Patients who visited the hospital from January 1, 1999, to May 31, 2020

• Patients with data for 180 days before and after the index date

• Patients diagnosed with chronic diseases (type 2 diabetes, hypertension, hyperlipidemia, or cardiovascular disease) within 10 years from the
index date

Comparator group

• Patients who visited the hospital from January 1, 1999, to May 31, 2020

• Patients with data for 180 days before and after the index date

• Patients who have not been diagnosed with chronic diseases (type 2 diabetes, hypertension, hyperlipidemia, or cardiovascular disease) within 10
years from the index date.

Exclusion criteria

• A history of chronic diseases (diabetes, high blood pressure, hyperlipidemia, or cardiovascular disease) for any period before the selection duration

• Missing basic information, examination, and questionnaire items that were selected as essential items in the study for the development of the
chronic disease prediction model

Data Preparation
We used the patient information, medical treatment, and
examination data from a tertiary hospital in South Korea for the
CDM. If the missing value was a numeric variable, it was
replaced with the median of the matching gender for each age
group (stratified into 5-year units), and in the case of a
categorical variable, it was replaced with the mode of the
matching gender for each age group. Since the number of
samples between the 2 groups was unbalanced, random

undersampling was performed in the nondiabetic group within
10 years to match the size of the diabetic group. Although data
balancing can be hidden from the actual prevalence in practice,
it ensures model performance for new data by preventing biased
learning from highly imbalanced class problems.

Statistical Analysis
The descriptive statistics of each group (target group and
comparator group) are shown in Table 2.
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Table 2. Descriptive statistics.

ComparatorTargetProcessed dataFeature

Sex, n

5715861157Female

8538381691Male

40.17 (13.60)54.94 (12.50)47.56 (15.03)Age (years), mean (SD)

23.50 (3.55)25.69 (7.05)24.59 (5.68)BMI, mean (SD)

123.6 (14.86)132.5 (17.49)128.1 (16.95)SBPa, mean (SD)

77.03 (11.16)81.56 (12.04)79.29 (11.89)DBPb, mean (SD) , mean (SD)

185.8 (36.76)192.9 (42.40)189.4 (39.84)Total cholesterol, mean (SD)

55.36 (13.01)47.55 (10.82)51.45 (12.52)HDLc, mean (SD)

109.7 (30.13)114 (28.95)111.9 (29.57)LDLd, mean (SD)

115.2 (43.63)145.0 (59.06)143.1 (55.0)TGe, mean (SD)

96.04 (20.31)136.7 (54.40)116.4 (45.64)FBSf, mean (SD)

14.36 (1.56)14.18 (1.83)14.27 (1.70)Hgbg, mean (SD)

0.93 (0.26)1.045 (0.92)0.99 (0.68)Crh, mean (SD)

24.15 (11.20)31.71 (8.91)27.93 (9.64)ASTi, mean (SD)

24.87 (14.87)37.46 (8.19)31.16 (11.89)ALTj, mean (SD)

aSBP: systolic blood pressure.
bDBP: diastolic blood pressure.
cHDL: high-density lipoprotein.
dLDL: low-density lipoprotein.
eTG: triglyceride.
fFBS: fasting blood glucose.
gHgb: hemoglobin.
hCr: creatinine.
iAST: aspartate aminotransferase.
jALT: alanine aminotransferase.

Models

Overview
In this study, to select the most suitable model for disease
prediction, we used the following 4 algorithms: logistic
regression (LR), random forest (RF), gradient boosting model
(GBM), and extreme gradient boosting (XGBoost). LR using

binary classification in the statistics field and the other 3
machine learning algorithms had shown better performance
than similar prior research [9]. Afterward, the prediction
performance was compared. Model validation was conducted
with the same 80% training data and 20% validation data derived
from the entire data set. Accuracy, sensitivity, specificity, and
AUC were used as model performance indicators. The prediction
model flow is shown in Figure 2.
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Figure 2. Prediction model flow. CDM: common data model; ML: machine learning; OMOP: Observational Medical Outcomes Partnership; XGBoost:
extreme gradient boosting.

LR Algorithm
LR was devised by Cox [10] as a regression model that predicts
the probability of the occurrence of an event with respect to a
binary dependent variable. Unlike general linear regression
analysis, the range of LR is limited to 0-1 because the dependent
variable is dichotomous, and the conditional probability of the
occurrence of an event also follows a binomial distribution.
That is, if the estimated value following the logistic function
satisfying the above assumption is less than 0.5, the predicted
value is classified as “nonoccurring,” and if it is greater than
0.5, then the predicted value is classified as “occurring.”
Although LR was developed in 1970, it is still being used for
statistical analysis and predictive research in various fields.

RF Algorithm
RF is a tree-based ensemble model capable of both classification
and regression and selects the most appropriate forest model
by collecting the results of randomly generated independent
decision trees [11]. Bagging-based training data inputted to the
tree provides model diversity, and the randomness of variable
combinations constituting the tree can prevent model noise and
the risk of overfitting. The fact that RF is less sensitive to
missing values than other algorithms is also an advantage.

GBM Algorithm
GBM is a tree-based ensemble model similar to RF, but unlike
RF, it creates a tree using a boosting method. The boosting
method increases the performance of classification or prediction
by sequentially combining several small models [12]. GBM
reduces the errors generated by the previous model. Although
GBM shows high performance in prediction, it may take a lot
of time to fit the model because training requires extensive
computation. In recent years, GBM-based algorithms such as

LightGBM [13], CatBoost, and XGBoost have been developed
to overcome the shortcomings of GBM.

XGBoost Algorithm
XGBoost is a representative tree-based ensemble model devised
by Chen and Guestrin [14]. It is a machine learning algorithm
actively used in prediction and classification research because
of its powerful performance and has many advantages such as
fast learning due to parallel processing, overfitting regulation,
and linkage with other algorithms. Since XGBoost is based on
GBM, it optimizes the model by assigning weights using a
boosting method, reducing the residual error of the model
created with classification and regression tree algorithm–based
trees.

Grid Search
Unlike LR analysis, machine learning algorithms support various
parameters (hyperparameters) so that users can optimize the
model. Grid search is a technique to find the parameter value
when the model has the highest performance by sequentially
applying the parameter values set by the user. We optimized
the model by applying grid search to the above 3 algorithms
(RF, GBM, and XGBoost). Table S1 in Multimedia Appendix
1 presents the parameters and ranges used in the grid search for
each algorithm.

Results

Model Results
Comparing model performance by chronic disease, the
predictive model using XGBoost based on accuracy showed
superior performance in all diseases compared to the other 3
models (Table 3).
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Table 3. Performance comparison of disease prediction models.

XGBoostdGBMcRFbLRaParameter, chronic disease

Accuracy

0.88240.87430.87430.877Type 2 Diabetes

0.82130.78960.7930.7783Hypertension

0.83250.83250.820.8125Hyperlipidemia

0.84290.82350.81620.7941Cardiovascular disease

Sensitivity

0.87050.86840.88040.8852Type 2 Diabetes

0.79340.77830.77580.7758Hypertension

0.81820.80770.85560.8141Hyperlipidemia

0.82430.80300.86440.8143Cardiovascular disease

Specificity

0.89500.88040.86840.8691Type 2 Diabetes

0.85500.80190.78080.7808Hypertension

0.84820.83330.81220.8109Hyperlipidemia

0.86360.78570.77920.8333Cardiovascular disease

aLR: logistic regression.
bRF: random forest.
cGBM: gradient boosting model.
dXGBoost: extreme gradient boosting.

Model Validation Results
Table 4 shows the parameter values of each disease model
outputted by the XGBoost grid search.

The model evaluation indicators used were accuracy, sensitivity,
specificity, and AUC. Over 80% prediction accuracy was
achieved for all diseases, with AUC from 0.84 to 0.93. The
XGBoost model performance by disease is shown in Table 5
and Figure 3.

Table 4. Extreme gradient boosting grid search result.

EtadMin childcMax depthbSubsampleaTarget disease

0.1270.7Type 2 diabetes

0.01230.9Hypertension

0.01231Hyperlipidemia

0.01130.9Cardiovascular disease

aSubsample: sample’s rate of each tree.
bMax depth: maximum depth of Tree.
cMin child: minimum sum of weights for all observations needed in the child.
dEta: learning rate.

Table 5. Predictive performance by model.

AUCaSpecificitySensitivityAccuracyTarget disease

0.93030.89500.87050.8824Type 2 diabetes

0.87040.85500.79340.8213Hypertension

0.84420.84320.81820.8325Hyperlipidemia

0.87260.86360.82430.8429Cardiovascular disease

aAUC: area under the curve.
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Figure 3. Receiver operating characteristic curves for XGBoost (A) type 2 diabetes model, (B) hypertension model, (C) hyperlipidemia model, and
(D) cardiovascular disease model. AUC: area under the curve; XGBoost: extreme gradient boost.

Shapley Additive Explanations Model Variable
Importance
In open-source program languages (eg, Python and R), the
XGBoost package shows model feature importance using its
own library. However, small models are more combined and
complicated, and the feature importance of small models
becomes inconsistent. Therefore, we used the Shapley additive
explanations (SHAP) method to represent the model’s feature
importance, which had high consistency and accuracy [15].
SHAP’s feature importance used the weighted average of
marginal contribution for each feature (Shapley value). It gave
the importance of the features and the positive or negative effect
of each feature. The formula of Shapley value is a follows:

Contribution of featurei = βixi – E(βixi) = βixi – βiE(xi)

where Øi is the Shaley value of datai, F is the full set, S is the

subsets in total set excluding datai, is the contribution of the

full set including datai, and fS (xS) is the contribution of subsets
excluding datai.

The SHAP value graph of the fitted model for each disease is
presented in Figure 4.

In the case of type 2 diabetes, fasting blood glucose (Shapley
value=1.895), age (1.271), and BMI (0.245) influenced the
occurrence of diabetes within 10 years [16]. For hypertension,
hyperlipidemia (1.272), cardiovascular disease (1.379), and age
(1.117) had the greatest influence on disease occurrence.
Furthermore, in the case of hyperlipidemia, it was found that
among the variables excluding age, total cholesterol (0.616)
and low-density lipoprotein (0.249) influenced disease
occurrence, in the order presented [17]. In case of cardiovascular
disease, systolic blood pressure (0.164) and high-density
lipoprotein (0.113) had the second highest influence on disease
occurrence. These results are consistent with the results of
previous studies that studied the risk factors of the 4 chronic
diseases [16,17].
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Figure 4. Shapley additive explanations (SHAP) value graph of the fitted model for the importance of (A) type 2 diabetes variables, (B) hypertension
variables, (C) hyperlipidemia variables, and (D) cardiovascular disease variables. ALT: alanine aminotransferase; AST: aspartate aminotransferase;
DBP: diastolic blood pressure; HDL: high-density lipoprotein; LDL: low-density lipoprotein; SBP: systolic blood pressure.

Discussion

Principal Findings
This study develops a disease prediction model with more than
80% accuracy by using the 16 National Health Insurance system
test variables from the real-world data of a tertiary hospital in
South Korea. Our study:

1. Presents the possibility of predicting diseases with universal
and useful information on public health examinations,

2. Explains the ability of model prediction results, and
3. Presents the external verification and scalability using other

organizations’ CDM.

By observing recent research trends relating to disease prediction
models using a CDM, the number of cases focusing on
multicenter studies rather than single-center studies is increasing.
Lee et al [18] established an artificial intelligence (AI) learning
platform for multicenter clinical research focusing on CDM
linkage. Using data from Gachon University Gil Hospital to
develop a machine learning model that predicts 5-year risk in
patients with inflammatory bowel disease who started biologics,
Choi et al [19] externally validated the model with CDM data
(Ministry of Food and Drug Safety). Johnston et al [20]
developed a model to predict whether patients will stop taking
antihyperglycemic drugs within 1 to 2 years after laparoscopic
metabolic surgery. Using psychiatric patient notes at Ajou
University Hospital, Lee et al [21] developed an NLP model
that predicts the onset of psychosis in patients by learning, which

is a representative case. As such, if the same cohort criterion is
applied to multiple institutions in an expanded form along with
disease prediction model construction and cross-validation, a
more universal and robust model can be developed.

Research is being conducted globally to reduce medical costs
by predicting disease occurrence using AI. As the AI industry
has gone bigger, AI can reduce costs in providing care and
increase the efficiency of medical jobs [22]. In 2019, researchers
from the Boston Institute of Technology and Boston Health
Center conducted joint research using electronic health records
and lifelog big data with AI in an attempt to prevent disease
outbreaks and medical fraud. The findings may help reduce
hospitalization costs, which account for a substantial portion of
US medical expenses [23]. The model developed through this
study is expected to evolve into a similar system for South
Koreans, by predicting the risk of future disease development
and aiding self-health management.

Comparison With Prior Work
With the recent development of AI and data processing
technology, research on disease prediction model development
using National Health Insurance Service data [9] or
single-institution EMR data [24] is steadily progressing. In this
study, we developed chronic disease prediction models with
relatively high performance compared to previous papers. A
difference between this study and existing work is that the
models have been developed using the CDM, so that we can
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expect improved precision through variable expansion and by
simultaneously using multiorganizational data.

Limitations
A limitation of this study is that it uses a single-institution CDM
from a tertiary hospital. Therefore, it cannot ensure
generalizability. Additionally, the demographic variables
(educational level, residential area, marital status, etc.) are
insufficient compared to the health insurance service
examination items. They are limited due to the focus on South
Korean public checkups; by using more features related with
the disease (hemoglobin A1C and biopsy data), the model
becomes more accurate. Lastly, the model was trained using
the cross-sectional data of patients. If the model is trained using
time-series data (eg, the cohort of patients’ information that
includes changes of laboratory results as time goes by), it could
be much more comprehensive.

Conclusions
In this study, 4 metabolic chronic diseases were selected, and
disease prediction models were developed using the Ajou
University Hospital CDM. To obtain a model suitable for disease
prediction, the predictive performance of each model for disease
occurrence was compared using the LR, GBM, RF, and
XGBoost algorithms. The XGBoost model shows the best
performance for all diseases. The performance of the XGBoost
model was calculated as 0.9303, 0.8704, 0.8442, and 0.8726
AUC standards for type 2 diabetes, hypertension,
hyperlipidemia, and cardiovascular disease, respectively. In
addition, the importance of the variables was calculated through
modeling, and the results are in line with previous clinical
studies. We have confirmed that chronic diseases can be
predicted, not just using single-institution EMR or public clinical
data, but using the CDM in each local hospital.
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