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Abstract

Common reporting and methodological patterns were observed from the peer reviews of prognostic and diagnostic machine
learning modeling studies submitted to JMIR AI. In this editorial, we summarized some key observations to inform future studies
and their reporting.

(JMIR AI 2023;2:e47995)   doi:10.2196/47995
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Introduction

The JMIR AI journal was launched at the beginning of 2022.
During that first year, many of the papers submitted to the
journal reported on prognostic studies that applied machine
learning (ML) models. In this editorial update, we wish to
highlight common patterns that were observed from the
comments of the peer reviewers. Our objective in publishing
this editorial is to inform authors about specific issues that
should be documented and provide information about common
methodological problems that can be avoided. Since these
observations can help improve articles submitted to the journal,
authors will benefit both in terms of acceptance rates and
turnaround times for publication decisions. Furthermore, these
observations may be of value to the broader ML community to
inform the reporting of their studies. They are not intended to
be comprehensive reporting guidelines but focus specifically
on our observations with journal submissions.

We examined reviewers’ comments for papers submitted to
JMIR AI over the entirety of 2022 (irrespective of their eventual
publication decision). This included all papers remaining under
review. We focused solely on papers that presented prognostic
and diagnostic models using ML modeling techniques. The

most common suggestions or critiques raised by reviewers were
identified by counting observations in the reviewer comments.
It was recognized that, at times, reviewers’ comments covered
multiple overlapping issues or implied an issue without stating
it completely. As a consequence, some judgment by us was
required to decide which reviewer observations should be
included in this update.

Reporting and Methodological
Observations

The Degrees of Limitations
In some instances, there was a methodological weakness in the
study. If this is raised by a reviewer, there is a tendency for
authors to mention this issue in the “Limitations” section of the
manuscript, rather than address it in the study itself. However,
some weaknesses are not just standard limitations but affect the
meaningfulness of the modeling that was performed and whether
valid conclusions can be drawn from it. Not all weaknesses will
be considered acceptable limitations, some of which we
highlight throughout this article.
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The limitations communicated in a manuscript present
shortcomings due to practical or theoretical constraints presented
to the model or algorithm, in which case it is anticipated that
the constraints are out of the control of the authors and may
inspire future research directions. As a hypothetical example,
imagine that tissue samples are collected from donor lungs prior
to lung transplantation, and a researcher subsequently develops
a prognostic molecular test to predict if an adverse event will
occur within the first 72 hours after lung transplantation surgery.
This test is fundamentally limited to the molecular makeup of
the donor because it neglects to consider the immunological
response of the transplant recipient toward the prediction. In
practice, surgical constraints prevent the collection of tissue
samples immediately after transplantation.

In contrast, limitations by choice reflect decisions made in the
scope, focus, methodology, and possibly aims of the study that
can result in weaknesses that may be deemed unnecessary. The
latter type of limitations needs to be addressed in the
(re)submitted manuscript, which may require further analysis
and rework. Of course, some judgment is necessary to
distinguish between the two types of limitations, but the default
of adding critical weaknesses to the “Limitations” section of a
study report is not recommended.

Documenting Reasons and Impacts of Data Sampling
Some studies start with a very large number of observations but
end up using only a small proportion in the study. In many cases,
the reduction in sample size is not an artifact of a random
process. In such a case, it is possible that the authors have
induced a selection bias in the data [1,2]. For example, if there
are 1000 patient records with a particular diagnosis in a health
care organization that meet the inclusion criteria, but only 500
are used in the study, how, if at all, does the subset differ from
the initial larger group?

In some cases, missingness is a reason why many patients are
excluded from an analysis. It is plausible that missing values
of certain variables, which may include the outcome itself, may
be correlated with specific groups of patients. Thus, the authors
should try to explain how missingness affects patient
characteristics. Could the patients with missing values be less
severe cases and therefore the data set used to train a prognostic
model consists of healthier patients? And, if this is the case, is
the trained model capable of generalizing to the broader
population when it is applied in practice?

Avoiding Data Leakage
It is important to be cognizant of data leakage in model
evaluation; otherwise, optimistic results may be obtained. An
example of leakage is when there are multiple observations per
patient distributed across the training and testing subsets of the
data set. Effectively, information about the same patient may
be included in both the training and testing data sets. Because
the observations in the training and testing data sets are likely
to be correlated, the error rate may be optimistic. Special care
must be exercised to ensure that such leakage does not
compromise the results of the analysis [2].

From a reporting perspective, authors should clarify if there are
repeated or correlated observations, as well as the actions taken
to avoid data leakage [3].

Reporting Missingness and How It Is Handled
It is important to indicate how many observations were missing
for each variable included in model building. If specific actions
were performed to handle missingness, then these should be
stated as well. For example, authors should report if a complete
case analysis or a specific type of imputation was performed
[3-5]. Moreover, if imputation methods are applied, then the
affected variables and the imputation methods need to be
reported and their parameterizations need to be described [4,6].

Justifying the Choice of ML Model(s)
Justification of ML modeling techniques is a somewhat common
reviewer comment regarding deficiencies in a manuscript. Some
studies compare the performance of different types of ML
models. In such situations, the selection of ML models should
be justified [7-9].

Using logistic regression as a baseline is often a reasonable
choice as it is a commonly used modeling method [10]. A recent
systematic review showed that logistic regression performance
is comparable to the use of ML models for clinical prediction
workloads [11]. Therefore, it represents a realistic baseline
workload. The choice of other methods should be justified. For
example, it may be the case that an ML model is selected
because it is commonly relied upon by the academic community
or is a standard in practice. Moreover, it may be the case that a
particular method is considered state of the art.

Reporting Hyperparameter Tuning Methodology and
Results
An ML algorithm is typically controlled by a collection of
hyperparameters that influence how learning takes place.
Authors should describe if any hyperparameter tuning was
performed or if and what default parameters were used. If
hyperparameter tuning was performed, then an explanation
should indicate which method was applied (eg, grid search or
Bayesian optimization), as well as what loss function was relied
upon. If one or more models are being reported upon, then the
final parameters should be included in the supplementary
materials. An exception would be reasonable in the context of
a simulation where thousands of models may be trained. In this
case, a method indicating how the models are generated should
be detailed to ensure reproducibility [3,7].

The method for evaluating the performance of the tuned model
should also be described. For example, nested cross-validation
would allow the performance to be computed on the tuned
models. Then, the final set of hyperparameters is determined
from a follow-up k-fold cross-validation, and these latter ones
should be reported [8,9].

Documenting the Decision Threshold
Studies that use classification or regression, where a decision
threshold maps the classification scores to a class or category,
are common. The decision threshold can have a big impact on
the performance of the model [12,13], and the relative cost of
incorrect decisions. The often-used default threshold of 0.5 is
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not always a good choice. Documentation of the threshold and
justification for the value selected are necessary to enable the
reader to properly interpret the model performance.

Conclusions

While this summary pertains to prognostic and diagnostic
models mostly for structured data, many of the points are

relevant for other types of data modalities (eg, image
processing). Moreover, it should be recognized that the
observations covered in this editorial are not exhaustive as there
are other subtle issues that are highlighted by reviewers for
specific studies. Nonetheless, adhering to the reporting
recommendations and methodological considerations indicated
above will be beneficial for JMIR AI submissions.
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Abstract

Cross-validation remains a popular means of developing and validating artificial intelligence for health care. Numerous subtypes
of cross-validation exist. Although tutorials on this validation strategy have been published and some with applied examples, we
present here a practical tutorial comparing multiple forms of cross-validation using a widely accessible, real-world electronic
health care data set: Medical Information Mart for Intensive Care-III (MIMIC-III). This tutorial explored methods such as K-fold
cross-validation and nested cross-validation, highlighting their advantages and disadvantages across 2 common predictive modeling
use cases: classification (mortality) and regression (length of stay). We aimed to provide readers with reproducible notebooks
and best practices for modeling with electronic health care data. We also described sets of useful recommendations as we
demonstrated that nested cross-validation reduces optimistic bias but comes with additional computational challenges. This tutorial
might improve the community’s understanding of these important methods while catalyzing the modeling community to apply
these guides directly in their work using the published code.

(JMIR AI 2023;2:e49023)   doi:10.2196/49023
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Background

By learning complex statistical relationships from historical
data, predictive models enable automated and scalable risk
detection and prognostication, which might inform clinical
decision-making. Although relatively few have been
implemented in clinical use compared with the number
developed, predictive models are increasingly being deployed
and tested in clinical trials. The importance of predictive
modeling is on the rise, with increasing attention from regulatory
bodies such as the US Food and Drug Administration. Efforts
to standardize the steps in model development and validation
include statements such as transparent reporting of a
multivariable prediction model for individual prognosis or
diagnosis and multiple published guidelines on deployment and
governance [1-3]. However, the mode in a critical step in model
development, the validation strategy, remains a simple “holdout”

or “test-train split,” which has been shown to introduce bias,
fail to generalize, and hinder clinical utility [4-6].

Broadly, validation consists of either internal validation, which
should be reported alongside model development, or external
validation, in which a developed model is tested in an unseen
data set in a new setting [7,8]. A newer concept of
“internal-external” validation has also been suggested for studies
with multisite data [9]. Most published models evaluate
performance metrics by splitting the available data set into an
independent “holdout” or “test set,” consisting of unforeseen
samples excluded from model training. Such held-out sets are
often selected randomly, for example, “80% training and 20%
testing,” from the data in the original model development setting.
In contrast to holdout validation, cross-validation and resampling
methods such as bootstrapping can be used to produce less
biased estimates of the true out-of-sample performance (ie, the
ability to generalize to new samples). Although cross-validation
is a widely used and extensively studied statistical method,
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many variations of cross-validation exist with respective
strengths and weaknesses, distinct use cases for model
development and performance estimation that are often
misapplied, and domain-specific considerations necessary for
effective health care implementation [10,11].

Cross-validation surveys with practical examples, such as those
involving microarray and neurologic data, have been published
[12,13]. However, gaps in comprehensive tutorials including
complete codesets with relevant tutorial data are less well
disseminated. Tutorials that move beyond simulated data or
laboratory-based samples to real-world health care data sets
might add to the understanding of these important methods
while catalyzing the modeling community to apply these guides
directly in their work using the published code.

The intent of this tutorial is to define and compare means of
cross-validation using representative, accessible data based in
the well-known and well-studied Medical Information Mart for
Intensive Care-III (MIMIC-III) data set [14]. All cross-validation
modeling experiments and preprocessing codes will be provided
through reproducible notebooks that will further guide readers
through the comparisons and concepts introduced [15]. Best
practices and common missteps, particularly in modeling with
electronic health care data, will be emphasized.

Overview and Major Types of
Cross-Validation

The goal of supervised learning is to use a data set with known

labels, D(Xi,Yi), to produce a model that accurately predicts

the true labels of unforeseen “test” samples Yi. must learn
robust relationships between the covariate features [X1... Xn]
and the outcome of interest. The model is considered a statistical
estimator of Yi because the model prediction is calculated from
the available training data, and Yi is a random variable with an
unknown probability distribution. Given finite data samples
with inherent statistical noise, the generalization or “test” error
of this estimator will be imperfect. Assuming the true label to
be a continuous outcome, we can decompose the mean-squared
error of the learned model into 2 fundamental sources of error:
bias and variance, formalized in the equation below by the first

and second terms on the right hand side, respectively. The s2

term represents irreducible, independent, and identically
distributed error terms attributed to noise in the training data
set.

(1)

Understanding the tradeoff between bias and variance is
necessary to develop useful predictive models in health care.
Bias can be thought of as the model’s inability to discern
complex statistical patterns associated with true test labels.
Variance is the additional error owing to the model mistakenly
interpreting random fluctuations in the training data set as a
robust predictive signal. Bias can often be reduced by increasing
the complexity of the model (ie, if the model is underfit) in

hopes of uncovering deeper statistical patterns within the
training data. However, the tradeoff between bias and variance
then occurs, as more complex models are liable to overfit to
random noise in the training data (thus increasing the variance).
Model validation strategies such as cross-validation also have
implications for the bias-variance tradeoff. Cross-validation
generally relates to this tradeoff, as larger numbers of folds
(smaller numbers of records per fold) tend toward higher
variance and lower bias, whereas smaller numbers of folds tend
toward higher bias and lower variance.

Before delving into the technical details and comparative
advantages of specific cross-validation methods, it is imperative
to emphasize that cross-validation was developed as a method
to estimate the expected out-of-sample prediction error of a
model learned from a set of training data. Machine learning
developers have typically lacked access to external data sets
(the gold standard that allows direct estimation of the true
out-of-sample prediction error), and cross-validation offers an
improvement over existing internal validation methods such as
holdout validation. In contrast to parametric, model-specific
methods such as Bayesian Information Criteria that rely on strict
assumptions, cross-validation is nonparametric, compatible with
any supervised learning algorithm, and directly estimates the
primary measure of model validity—whether predictive
performance generalizes to new data points. Cross-validation
has become increasingly prominent for internal validation in
health care given its flexibility with diverse and sophisticated
learning algorithms and the advantage of using all available
data for model evaluation and selection (compared with using
a single holdout validation set). The use of cross-validation over
holdout validation is particularly advantageous with health care
data sets that are often comparatively small to moderately sized,
costly to obtain, or restricted by privacy and regulatory concerns.

Cross-validation originated in the 1930s with K-fold
cross-validation, the most common form of cross-validation,
described in the 1960s [16,17]. In this form of cross-validation,
the development data set is split into some number, k—often 5
or 10—parts, or “folds,” as described below (Multimedia
Appendix 1). Several variations of this approach have since
been described, each with its own advantages and disadvantages
for clinical modeling.

Considerations for Clinical Prediction and
Implications for Cross-Validation

Most published predictive modeling studies focus on the
classification of binary outcomes; however, fewer models have
been developed to predict continuous or ordinal variables.
Clinical data, especially those in secondary use, for example,
electronic health records (EHRs), are also typified by (1)
irregular time-sampling, (2) inconsistent repeated measures,
and (3) sparsity and rarity. Missingness, noise, and anomalous
outlier values are additional complicating factors associated
with EHR data. Although not uniquely relevant to
cross-validation, appropriate ways of handling these data issues
within model development and evaluation pipelines are covered
in the applied demonstrations and available code accompanying
this tutorial.

JMIR AI 2023 | vol. 2 | e49023 | p.11https://ai.jmir.org/2023/1/e49023
(page number not for citation purposes)

Wilimitis & WalshJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


As health care delivery varies naturally and widely between
individuals, real-world health care data such as EHRs usually
contain irregularly and inconsistently sampled measures within
and across individuals. This factor has significant implications
for cross-validation and is described by the differences between
subject-wise and record-wise cross-validations. Subject-wise
cross-validation maintains identity across splits, such that an
individual’s set of events cannot exist in both training and testing
simultaneously. In the record-wise cross-validation approach,
data are split by event and not by individual. Record-wise
cross-validation thereby increases the risk that the same
individual will have events split across training and testing. A
model might then achieve a spuriously high apparent
performance simply by reidentifying the individual in testing
based on highly similar inputs used in training.

Although the technical details and practical guidelines of
subject-wise versus record-wise cross-validation are debated,
the best approach depends on the specific use case, the number
of records, the size of the data set, and the degree of correlation
within subject records [18]. Developers should also consider
the unit of modeling, that is, making a prediction for a given
person versus a given health care encounter or event such as a
prescription. In the former example, record-wise cross-validation
might be adopted for diagnosis at a given clinical encounter,
and subject-wise cross-validation would be favorable for
prognosis over time [19]. In the latter examples, the training
data might include multiple events per person, and the number
of events will also vary across individuals. Cross-validation
poses an additional potential benefit in that training and testing
strategies might split individuals in such a way that models can
be trained on some folds and then applied as inputs for
ensembling in different folds without increasing the risk of
overfitting or data leakage [20].

Many clinical outcomes subject to predictive modeling studies
are rare at the health-system scale (eg, ≤1% incidence). Although
rare outcomes create modeling challenges out of scope for this
tutorial, they also impact cross-validation. Randomly
partitioning data sets into training and test splits often produces
folds with various outcome rates and even folds with no outcome
instances. For binary classification problems, stratified
cross-validation ensures that outcome rates are equal across
folds, and it is recommended for classification problems (and
should be considered necessary for highly imbalanced classes)
[20].

Major Steps in Using Cross-Validation

Dividing steps into development steps and validation steps eases
interpretation. Development steps include data cleaning and
preprocessing—a time-consuming but critical task given noisy
and often invalid health care data from real-world
sources–feature selection, classifier selection, hyperparameter
tuning, and model refitting (Textbox 1). For brevity and scope,

classifier selection will not be covered in detail but is
emphasized as an important step in any predictive modeling
pipeline. As classifiers, broadly parametric or nonparametric,
require different assumptions and themselves pose disparate
advantages and disadvantages, it has become standard to test
multiple classifiers in the same modeling study. Moreover,
ensembles of these classifiers are increasingly developed given
the rise in complexity, depth, and breadth of real-world health
care data sets in the literature.

Model performance metrics inform validation steps and, when
properly contextualized in the clinical use case, suggest key
metrics on which to either optimize or evaluate model
performance. A detailed discussion of model performance
metrics remains outside the scope of this tutorial and has been
covered in depth elsewhere. In brief, prediction models must
be evaluated in terms of discrimination (ie, the ability to predict
higher probabilities for individuals with the outcome) and
calibration (a measure of similarity between predicted
probabilities and the observed risk) [21]. Two methods to
evaluate discrimination via the area under the receiver operator
characteristic curve (AUROC) and the area under the
precision-recall curve (AUPR) from cross-validation include
(1) pooling: averaging test-fold results at each point on the
receiver operating characteristic or precision-recall curve and
(2) averaging: reporting the average AUROC and AUPR over
each test-fold metric. Calibration can also be assessed
analogously using metrics such as the Brier score, calibration
slope, and intercept. We highlight methods that can be used for
calibrating predictions along with cross-validation in a provided
Jupyter notebook. Clinical usefulness based in decision analysis
is the third major area of evaluation [22]. Usefulness bridges
model performance to utility, for example, showing how a model
might reduce cost or increase the measurement of quality of
life.

In addition to cross-validation, bootstrapping is another
resampling-based method used to provide more accurate
estimates of the model generalization performance than holdout
validation. Bootstrapping involves randomly sampling with
replacement from the entire data set to generate a training set
that will not include all original samples. A model is then fitted
on the bootstrap training set and evaluated on a test set
comprising the remaining unselected observations. This process
is repeated several times, where the number of iterations is
typically referred to as the number of bootstraps, and a CI is
generated from the collection of out-of-sample (sometimes
called “out of bag”) performance metrics. Traditional
bootstrapping is referred to as out-of-bag bootstrapping, whereas
further improvements include the “0.632” and “0.632+” methods
that apply additional forms of bias adjustment [23,24]. More
advanced resampling methods include bootstrap-based
cross-validation, Monte Carlo holdout validation (or repeated
holdout sampling), and repeated nested cross-validation [25,26].
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Textbox 1. List of steps required for cross-validation.

1. Data cleaning (outside the loop)—Basic manipulation and feature engineering (converting data types, one-hot label encoding, etc) can and should
be completed on the entire data set before beginning cross-validation.

2. Feature scaling and imputation (within the loop)—Imputation and feature scaling based on the other values in the data set (such as standardization
via mean-centering or normalization) need to be completed only on the training set—which we call “within the loop” as a reference to use with
nested cross-validation. This is necessary to reduce data leakage that can be caused if values in the test set are used to impute or scale the values
in the training set.

3. Feature selection (within the loop)—To reduce overfitting and the detection of spurious correlations between the outcome and independent
variables, feature selection should be completed only on the training fold (“inner loop” of nested cross-validation) and then applied and evaluated
on the test fold.

4. Model selection (within the loop)—To mitigate optimistic bias, the comparison of different modeling algorithms (eg, random forest vs logistic
regression) should also be completed separately from model evaluation.

5. Model selection (within the loop)—Optimizing hyperparameters can also be done simultaneously with classifier selection and should be used
when identifying the best modeling algorithm.

6. Evaluation—Evaluation by way of “averaging” or “pooling” should be completed separately from using cross-validation for model selection to
reduce optimism resulting from overfitting parameters to the data set used for evaluation.

7. Model refitting—To produce a final model trained with all the available data, one should learn the ideal feature selection and model selection
parameters from cross-validation and then train the selected algorithm with these parameters using the entire data set. The model can then be
ported outside the development setting to use for external validation or within production-grade systems.

Case Study in Cross-Validation:
In-Hospital Mortality and Length of Stay
Prediction

MIMIC-III represents a well-known deidentified data set based
in intensive care at Beth Israel Deaconness for approximately
40,000 patients who received care from 2001 to 2012 [14]. It
has been studied extensively, given its relative accessibility
compared with most health care modeling studies using EHRs,
in which privacy or challenges in at-scale deidentification
prohibit data sharing with publication [27].

To demonstrate the key concepts in cross-validation, we selected
2 exemplary problems that typify predictive modeling studies:
classification and regression. For this case study, in-hospital
mortality prediction will represent the former, whereas length
of stay prediction will represent the latter. The models will be
developed and validated using multiple forms of
cross-validation, including K-fold, stratified, repeated, repeated
stratified, and nested cross-validation. We also applied bootstrap
methods to generate CIs for estimated model performance.

From patient visit records, we derived time-invariant features
such as age, sex, and race, along with binary features indicating
the presence of prior diagnoses using 25 higher-order categories
of International Classification of Diseases codes grouped into
Clinical Classifications Software codes. In-hospital mortality
was defined as a binary classification problem, where 1 indicated
that mortality occurred at any point during the hospital visit and
0 otherwise. Length of stay was defined in days and used as a
continuous outcome for a separate regression prediction
problem.

Preprocessing included imputation of continuous features using
the median, setting outlier age values to a maximum of 110
years, and standardization of all numerical features. We also
applied a feature selection routine to select only the top 10
features available for in-hospital mortality prediction and either

the top 30 or 50 features (where the number of features was
included as a hyperparameter) for length of stay prediction.
Finally, in-hospital mortality prediction was classified using
logistic regression and grid search over hyperparameters
including least absolute shrinkage and selection operator (L1),
Ridge (L2), and no penalization and a range of regularization
values. Length of stay prediction was performed using random
forest regression and grid search over hyperparameters including
the number of estimators and maximum tree depth.

In accordance with the best practices outlined for
cross-validation and model selection in Figure 1, we
implemented a nested cross-validation approach that performed
all hyperparameter tuning and model selection steps within the
“inner” cross-validation loop. Theoretically, this should mitigate
the source of optimistic bias introduced when cross-validation
is used to tune model parameters on the same data used for
model performance evaluation (ie, observed performance can
be spuriously high owing to randomness in the data and the
learning algorithm) [28,29]. This source of bias in the estimated
model performance can be considered as a type of overfitting
in the model selection procedure [30].

To empirically evaluate whether nested cross-validation
produces more accurate performance estimates than nonnested
cross-validation, we compared the nested cross-validation with
nonnested cross-validation used simultaneously for model
selection and model evaluation. For nonnested cross-validation
methods, we evaluated the performance of each set of model
tuning configurations (eg, models trained with varied
hyperparameters) on the test fold at each cross-validation split.
After repeating this procedure for each split within the given
cross-validation method, we computed the average performance
over all test folds for each model tuning configuration. The
model parameters with the best average performance over the
cross-validation test folds were then selected. The performance
of this optimal set of hyperparameters was then reported as an
estimate of true out-of-sample performance.
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To demonstrate the optimism that can result from improperly
applied model validation strategies (ie, simultaneously applying
nonnested cross-validation methods for both model selection
and model evaluation), we evaluated the accuracy of the
estimated true test performance when using various
cross-validation methods. We performed this by randomly
splitting the data set into an 80% (32,897/41,121) sample used
for cross-validation and a 20% (8224/41,121) withheld
validation sample. We used a holdout setup to simulate ground
truth in the absence of a naturally bounded holdout (eg, by site
or clinical setting) in the MIMIC data. We then compared the

best model performance reported from cross-validation with
the performance of that model when predicting on the held-out
validation set (Figure 2).

Performance measures will include discrimination metrics such
as the AUROC and AUPR. For length of stay regression
modeling, we adopted mean absolute error and median absolute
error as the primary performance metrics. Computational time,
a pragmatic concern affecting many modeling experiments, will
also be compared across cross-validation methods for both
prediction outcomes.

Figure 1. Pseudocode for nested cross-validation algorithm with model tuning.

Figure 2. Diagram of the methodology for cross-validation (CV) optimism error estimation experiment.
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Case Study Results

Cohort Description
After applying the exclusion criteria, our cohort included 41,121
hospital visits that comprised 71.63% (29,457/41,121) of White
patients and 55.92% (22,996/41,121) of male patients. Mortality
was observed for 4320 patient visits (4320/41,121, 10.51% of
the total cohort). The length of stay (days) did not vary across
different demographic groups, whereas the mean age of patients
with in-hospital mortality (68.7, SD 15.0 y) was greater than
those without mortality events (61.6, SD 16.7 y). Among visits

in which mortality occurred, the most common primary
admission reasons were brain hemorrhage (256/4320, 5.93%)
and sepsis (201/4320, 4.65%). Cardiac arrest and hypoxia
showed the highest length of stay, with mean values of 5.3 (SD
5.8) and 5.1 (SD 5.6) days, respectively. For prior Clinical
Classifications Software diagnostic history, patients with
pneumonia, respiratory failure, arrest, and insufficiency, and
shock had a mean length of stay of approximately 7 days (SD
8.6, 8.2, and 8.2, respectively). The proportion of in-hospital
mortality events was highest for patients diagnosed with
respiratory failure, arrest, and insufficiency, fluid and metabolic
disorders, and renal failure (Table 1).
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Table 1. Medical Information Mart for Intensive Care-III patient cohort summary by mortality and average length of stay (N=41,121).

Length of stay (days)In-hospital mortality

Values, median
(IQR)

Values,
mean (SD)

10

Sex, n (%)

1.99 (1.16-3.74)3.64 (5.26)2279 (52.75)20,717 (56.29)Male

2.05 (1.17-3.78)3.63 (5.17)2041 (47.25)16,084 (43.71)Female

Race, n (%)

2.0 (1.19-3.54)3.61 (5.36)116 (2.69)847 (2.3)Asian

1.99 (1.16-3.41)3.42 (5.01)286 (6.62)3663 (9.95)Black

1.89 (1.12-3.36)3.24 (4.21)82 (1.9)1369 (3.72)Hispanic

2.01 (1.16-3.72)3.61 (5.21)3036 (70.28)26,421 (71.79)White

2.13 (1.2-4.14)4.04 (5.61)800 (18.52)4501 (12.23)Other or unknown

Age

——a447 (10.35)1739 (4.73)Not applicable, %

——68.67 (14.99)61.63 (16.71)Values, mean (SD)

Height

——167.46 (13.22)169.01 (13.39)Values, mean (SD)

——3420 (79.17)28,383 (77.13)Not applicable, %

Weight

——77.39 (23.4)82.2 (24.14)Values, mean (SD)

——709 (16.41)6541 (17.77)Not applicable, %

Admission reason, n (%)

1.93 (1.05-4.74)4.01 (5.13)256 (5.93)517 (1.4)Brain hemorrhage

3.8 (1.7-6.81)5.27 (5.75)114 (2.64)105 (0.29)Cardiac arrest

2.49 (1.5-4.7)4.71 (7.19)201 (4.65)747 (2.03)Sepsis

2.62 (1.41-5.08)4.28 (4.45)25 (0.58)96 (0.26)Respiratory distress

2.78 (1.63-5.8)4.76 (5.38)39 (0.9)107 (0.29)Liver failure

2.87 (1.65-5.65)5.07 (5.61)21 (0.49)81 (0.22)Hypoxia

1.99 (1.06-3.34)3.26 (4.29)18 (0.42)54 (0.15)Cerebrovascular accident

CCSb diagnoses: cardiovascular, n (%)

2.25 (1.3-4.2)3.83 (4.82)559 (12.94)3708 (10.08)Acute myocardial infarction

2.03 (1.17-3.45)3.22 (4.07)1091 (25.25)12,193 (33.13)Coronary atherosclerosis and other heart disease

2.3 (1.29-4.44)4.26 (5.92)1724 (39.91)11,486 (31.21)Cardiac dysrhythmias

1.99 (1.16-3.43)3.31 (4.39)1604 (37.13)15,685 (42.62)Essential hypertension

2.11 (1.22-3.98)3.77 (5.33)649 (15.02)4738 (12.87)Hypertension with complications and secondary hyperten-
sion

2.54 (1.4-4.85)4.45 (6.01)1482 (34.31)9482 (25.77)Congestive heart failure and nonhypertensive

2.16 (1.24-4.02)3.58 (4.60)335 (7.75)2603 (7.07)Conduction disorders

CCS diagnoses: diabetes and metabolic, n (%)

2.45 (1.38-4.92)4.51 (5.91)1823 (42.2)9195 (24.99)Fluid and electrolyte disorders

1.89 (1.13-3.14)2.96 (3.77)812 (18.8)11,162 (30.33)Disorders of lipid metabolism

2.08 (1.19-3.95)3.71 (5.12)872 (20.19)7044 (19.14)Diabetes mellitus without complication

2.07 (1.21-3.44)3.46 (4.96)288 (6.67)3597 (9.77)Diabetes mellitus with complications
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Length of stay (days)In-hospital mortality

Values, median
(IQR)

Values,
mean (SD)

10

CCS diagnoses: infectious disease, n (%)

3.18 (1.78-7.54)6.48 (8.53)1497 (34.65)4332 (11.77)Septicemia (except in labor)

3.89 (1.89-8.99)7.15 (8.60)1094 (25.32)4594 (12.48)Pneumonia (except that caused by tuberculosis or sexually
transmitted disease)

CCS diagnoses: kidney and gastrointestinal and liver, n (%)

2.77 (1.56-5.75)5.26 (7.22)1855 (42.94)6911 (18.78)Acute and unspecified renal failure

2.57 (1.44-5.14)4.98 (6.88)804 (18.61)2847 (7.74)Other liver diseases

2.09 (1.25-4.04)4.06 (6.14)430 (9.95)2567 (6.98)Gastrointestinal hemorrhage

2.12 (1.22-3.91)3.63 (4.93)657 (15.21)4780 (12.99)Chronic kidney disease

CCS diagnoses: respiratory, n (%)

4.37 (2.1-9.31)7.30 (8.21)2042 (47.27)5361 (14.57)Respiratory failure, insufficiency, and arrest (adult)

2.9 (1.47-6.17)5.46 (7.31)143 (3.31)1514 (4.11)Other upper respiratory disease

2.25 (1.28-4.56)4.20 (5.73)245 (5.67)1892 (5.14)Other lower respiratory disease

2.26 (1.27-4.61)4.24 (5.86)684 (15.83)4642 (12.61)Chronic obstructive pulmonary disease and bronchiectasis

3.03 (1.7-6.3)5.78 (7.7)454 (10.51)3139 (8.53)Pleurisy, pneumothorax, and pulmonary collapse

CCS diagnoses: stroke, n (%)

2.62 (1.35-6.16)5.11 (6.51)798 (18.47)2248 (6.11)Acute cerebrovascular disease

CCS diagnoses: surgical complications or shock, n (%)

2.61 (1.36-5.24)5.18 (7.33)719 (16.64)7823 (21.26)Complications of surgical procedures or medical care

3.89 (1.99-8.4)6.85 (8.15)1173 (27.15)2017 (5.48)Shock

aStratified summary statistics were indeterminable for continuous demographic variables.
bCCS: Clinical Classifications Software.

In-Hospital Mortality Prediction
In a comparison of cross-validation approaches for in-hospital
mortality prediction (including all model selection steps and
setting the number of folds to 5 for each method), stratified
K-fold cross-validation performed approximately the same as
regular K-fold cross-validation. Repeated methods of
cross-validation performed marginally worse than the simple
methods of cross-validation, whereas wider spreads of
performance metrics were observed for repeated methods.
Nested cross-validation performed slightly worse than both
repeated and simpler methods, with a mean AUPR value of
0.369 (compared with 0.371-0.372) and an AUROC value of
0.814 (compared with 0.818-0.821). Across all cross-validation
methods, discrimination was moderate to strong for in-hospital
mortality prediction, likely owing to the case prevalence of
10.51% (4320/41,121) and the availability of relevant predictive
features (demographics, diagnostic history, and admission
criteria; Figure 3).

To assess whether nested cross-validation mitigates overfitting
and optimistic bias compared with nonnested methods, we
compared the performance estimate given by cross-validation
(the average over test folds) with the performance of a model
trained on the entire data set with the optimal hyperparameters
from cross-validation. We used this refitted model and made

predictions on an entirely withheld validation set (comprising
8224/41,121, 20% of the total data set vs 32,897/41,121, 80%
used for cross-validation with model selection). The y-axes in
Figures 4 and 5 show that the cross-validation estimate had a
slight pessimistic bias, as the ratio of validation set performance
divided by the cross-validation estimate was >1.
Cross-validation estimates slightly underestimated out-of-sample
performance. The discrepancy between the cross-validation
estimates and validation set performance was greatest for lower
numbers of folds. We only observed marginal differences in
the degree of pessimistic bias across the cross-validation
methods, although AUPR estimates had a greater bias than
AUROC. Estimates from nested cross-validation and repeated
K-fold cross-validation were the most pessimistically biased
(approximately 1%-2% for AUROC and 5%-9% for AUPR),
whereas K-fold cross-validation was the least pessimistically
biased (Figures 4 and 5).

Over 100 bootstrap iterations, the 0.632 bootstrap method had
a mean AUPR of 0.368 (95% CI 0.351-0.382) and a mean
AUROC of 0.819 (95% CI 0.813-0.825). The out-of-bag
bootstrap method had a mean AUPR of 0.367 (95% CI
0.346-0.390) and a mean AUROC of 0.818 (95% CI
0.796-0.828).

We also repeated the optimism estimation experiment using
cross-validation methods (each specified with 5 folds) applied
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to 10 randomly sampled validation sets for a more robust
estimation of the model performance bias. Nested
cross-validation showed a marginally greater pessimistic bias
than nonnested cross-validation methods for both AUROC and
AUPR. Over the 10 randomly sampled validation sets, outlier
values for the relative error of the cross-validation estimate
ranged from 8% optimistic bias (AUPR for nested
cross-validation) to 10% pessimistic bias (AUPR for all
nonnested methods; Figures 6 and 7).

In addition to modest performance differences, tendencies
toward increased computational time were observed with a more
sophisticated schema, for example, nested cross-validation.
Although the overall training time differences were
inconsequential for this data set, the computational time of the
nested cross-validation increased quadratically with the number

of folds (O(k2)). In comparison, the computational time required
for the repeated cross-validation methods increased linearly
(O(k)) and simple cross-validation methods required nearly
constant time across varying number of folds (O(c)) (Figure 8).

Figure 3. Discrimination for in-hospital mortality prediction by cross-validation (CV) method (with 5 folds used for each method). AUPR: area under
the precision-recall curve; AUROC: area under the receiver operator characteristic curve.

Figure 4. Cross-validation (CV) estimates versus validation set performance (AUROC) for in-hospital mortality by number of folds. AUROC: area
under the receiver operator characteristic curve.
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Figure 5. Cross-validation (CV) estimates versus validation set performance (AUPR) for in-hospital mortality by number of folds. AUPR: area under
the precision-recall curve.

Figure 6. Cross-validation (CV) estimates versus validation set performance (AUROC) for in-hospital mortality over repeated 5-fold trials. AUROC:
area under the receiver operator characteristic curve.
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Figure 7. Cross-validation (CV) estimates versus validation set performance (AUPR) for in-hospital mortality over repeated 5-fold trials. AUPR: area
under the precision-recall curve.

Figure 8. Computational time required by cross-validation (CV) method and number of folds for in-hospital mortality prediction. CV: cross-validation.

Length of Stay Prediction
With length of stay prediction defined as a regression problem,
we compared the test-fold performance metrics across various
cross-validation methods (with each method using 5 folds). We
were unable to include stratified cross-validation, which is only
applicable to classification problems wherein the case prevalence
can be made equivalent across different training and test folds.
Similar to in-hospital mortality prediction, we observed
equivalent or marginally worse performance for nested
cross-validation compared with nonnested methods (with
average mean absolute errors of 2.39 vs 2.38 for nested vs
nonnested methods, and average median absolute errors of 1.23
for all methods). The mean absolute error was nearly twice that
of the median absolute error, which suggests that higher outlier
values for length of stay increased the mean prediction error in
this regression problem (Figure 9).

The 0.632 bootstrap method had an average mean absolute error
of 2.01 (95% CI 1.98-2.04) and an average median absolute
error of 1.05 (95% CI 1.03-1.07). The out-of-bag bootstrap
method had an average mean absolute error of 2.84 (95% CI
2.79-2.90]) and an average median absolute error of 1.53 (95%
CI 1.49-1.55).

For median absolute error, all cross-validation methods showed
a slight pessimistic bias (because the validation set performance
was slightly greater than the estimated performance from
cross-validation). There were few disparities between the
accuracy of the performance estimates for varying numbers of
folds or different cross-validation methods. The pessimistic bias
was greatest for the K-fold cross-validation with 2 folds
(approximately 2%). Nested cross-validation produced the least
biased estimates overall, although the bias from the nonnested
methods remained <1% (Figure 10).

Repeated and single K-fold cross-validation estimates of the
mean absolute error were slightly optimistically biased, whereas
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nested cross-validation was pessimistically biased across all
folds. As the number of folds increased, the nonnested methods
were generally less biased. Nested and nonnested
cross-validation estimates of the mean absolute error were
approximately unbiased, with a range between 1% pessimistic
bias (nested cross-validation) and 1% optimistic bias (K-fold
cross-validation; Figure 11).

Consistent with the classification problem, we also observed a
quadratic relationship between the computational time required
for nested cross-validation and the number of folds. K-fold
cross-validation showed linear time complexity, with repeated
K-fold cross-validation increasing linearly with the additional
multiplicative factor from the number of repeats. Owing to the

increased training time required for ensemble models such as
random forest, the absolute time required for cross-validation
methods was much higher for length of stay prediction than for
in-hospital mortality (Figure 12).

Finally, we tested record-wise versus subject-wise
cross-validation and found negligible differences in the accuracy
of the model performance estimates. We suspect that this may
have resulted from the relatively few repeated hospital visits
(records or observations in our data set) associated with each
unique subject or the minimal correlation between the feature
values of identical records across different hospital visits (ie,
differences in reasons for hospital admission may have been
diverse within a subject’s set of visit records).

Figure 9. Regression metrics by cross-validation (CV) method for length of stay prediction (with 5 folds used for each method).

Figure 10. Cross-validation (CV) estimates versus validation set performance (Median Absolute Error) by number of folds for length of stay prediction.
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Figure 11. Cross-validation (CV) estimates versus validation set performance (Mean Absolute Error) by number of folds for length of stay prediction.

Figure 12. Computational time required by cross-validation (CV) method and number of folds for length of stay prediction. CV: cross-validation.

Recommendations, Common Missteps,
and Best Practices

This tutorial described and compared multiple forms of
cross-validation. Cross-validation generally results in reduced
bias compared with holdout testing and poses the clear
advantage of training and testing on all available data [6]. A
more sophisticated schema of model validation involves
bootstrapping methods (and even involving bootstrap-based
cross-validation or repeated nested cross-validation). However,
the modest computational time and the acceptable biased
estimates of true test error that we observed suggest that the
conventional cross-validation methods should remain the first
line for real-world health care modeling. Although K-fold
cross-validation remains the most common, other types of

cross-validation pose advantages and disadvantages worth
considering for each use case (Multimedia Appendix 1). Case
studies using readily accessible and well-studied EHR data,
MIMIC-III, showed slight performance differences in terms of
cross-validation performance and optimistic bias for more
computationally intensive forms of cross-validation such as
nested cross-validation. Although our results should not dictate
whether nested cross-validation is used across the variety of
prediction problems and clinical data sets, the reduction in
optimistic bias with nested cross-validation does not outweigh
the additional challenges of implementing nested
cross-validation and the added computational time it requires.

Common missteps detract from the potential for cross-validation
in diverse modeling scenarios. For example, model development
might be more complex across iterations, and separating
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development (feature selection, hyperparameter tuning, and
classifier selection) from model validation remains paramount.
When using cross-validation for model development within the
same process as model validation, it is often recommended to
use a nested cross-validation approach where preprocessing,
feature selection, and hyperparameter tuning are conducted
entirely independent of the “outer fold” that is used
independently for validation.

However, as our results illustrate, and prior studies have covered
both empirically and theoretically, the degree of optimistic bias
from nonnested cross-validation methods varies with the number
of features, the size of the data set, the extent of hyperparameter
tuning and feature selection, and the nature of the clinical
outcome. In this case study, we had a relatively large sample
size relative to the number of original features included (referred
to as n>p). When performing hyperparameter tuning and other
model selection steps within cross-validation, the difference in
optimistic bias observed between nested and nonnested
cross-validation methods should have been mitigated [31].
Furthermore, our range of hyperparameters and the subsequent
number of possible model tuning configurations was relatively
smaller than a developer would typically use when wanting to
optimize performance. This also contributed to a relatively lower
reduction in optimistic bias when using the theoretically
validated approach to reduce optimistic bias resulting from
model tuning in cross-validation (nested methods) [12,30,32].

Although it is impossible to recommend a single cross-validation
approach that will be appropriate for all modeling scenarios,
we encourage developers to use nested cross-validation methods
in cases with higher dimensional feature spaces relative to the
sample size, higher numbers of algorithms and parameters being
tested, and problems in which the increase in computational
time required from nested cross-validation remains within
feasible bounds (as we observed in both modeling problems in
our case study). As emphasized throughout our discussion of
nested cross-validation, this approach also offers the simplicity
of performing both model selection and tuning and model
evaluation within the same procedure, allowing developers to
disregard concerns about or additional evaluations needed to
mitigate the bias introduced when using nonnested methods for
model selection (which should be used by default to optimize
model performance) and model evaluation. Although we hope
to contribute further empirical evidence on the comparative bias
between various cross-validation methods, we emphasize that
this work is a tutorial meant to demonstrate the use of various
approaches that developers can use for their specific use cases.

In routine health care, EHRs include repeated, irregular samples
(records or health care encounters) across records (patients).
Although we observed negligible differences in performance
between subject-wise and record-wise cross-validation in this
case study, the use case for predictive modeling should
determine the choice between subject-wise and record-wise
sampling. For example, a cohort study of encounters in an
emergency department to predict admissions for pneumonia
might include data sets with multiple encounters per person,
some with a single encounter and others with multiple
encounters. Record-wise splitting might permit encounters for
the same individual to be present in both training and testing
sets, even if the outcomes of each of those encounters with
respect to the prediction target might differ. The tendency in
health care data for correlation and, specifically, autocorrelation
would also introduce undue bias in this scenario.

A fundamental misconception about cross-validation is that it
necessarily “returns” a model that can then be used for
production deployment or external validation [33]. Rather,
cross-validation is more appropriately considered a learning
procedure, which allows a developer to fine-tune the parameters
involved in model development and estimate model performance
on out-of-sample data (internal validation). Once model
selection via cross-validation has produced the best selected
features, hyperparameters, and modeling algorithm, it is
necessary to retrain a “final model” using the entire available
data set with these optimized specifications.

We hope to address the current limitations of machine learning
evaluation and development that might hinder the translation
and reproducibility of predictive models in health care. With
respect to their specific clinical implications, we provided
greater conceptual understanding of cross-validation as both a
model evaluation and model development method, outlined the
respective strengths and weaknesses of common cross-validation
methods, specified the technical steps involved when using
cross-validation with model tuning and selection, demonstrated
cross-validation in a real-world case study, and offered further
empirical evidence on the performance and computational time
of cross-validation methods. Practically, we refer readers to our
open-source code repository with reproducible Jupyter
notebooks and Python code, implementing all the statistical
analyses and experiments of this tutorial. Therefore, developers
will have access to cross-validation examples with real-world
health care data and software functionality that can aid
developers with various clinical machine learning problems.
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Major types of cross-validation with broad advantages and disadvantages.
[DOCX File , 27 KB - ai_v2i1e49023_app1.docx ]

References
1. Lindsell CJ, Stead WW, Johnson KB. Action-informed artificial intelligence-matching the algorithm to the problem. JAMA

2020 Jun 02;323(21):2141-2142. [doi: 10.1001/jama.2020.5035] [Medline: 32356878]
2. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for

validation. Eur Heart J 2014 Aug 01;35(29):1925-1931 [FREE Full text] [doi: 10.1093/eurheartj/ehu207] [Medline:
24898551]

3. Bedoya AD, Economou-Zavlanos NJ, Goldstein BA, Young A, Jelovsek JE, O'Brien C, et al. A framework for the oversight
and local deployment of safe and high-quality prediction models. J Am Med Inform Assoc 2022 Aug 16;29(9):1631-1636
[FREE Full text] [doi: 10.1093/jamia/ocac078] [Medline: 35641123]

4. Bouwmeester W, Zuithoff NP, Mallett S, Geerlings MI, Vergouwe Y, Steyerberg EW, et al. Reporting and methods in
clinical prediction research: a systematic review. PLoS Med 2012 May 22;9(5):1-12 [FREE Full text] [doi:
10.1371/journal.pmed.1001221] [Medline: 22629234]

5. Collins GS, Omar O, Shanyinde M, Yu LM. A systematic review finds prediction models for chronic kidney disease were
poorly reported and often developed using inappropriate methods. J Clin Epidemiol 2013 Mar;66(3):268-277. [doi:
10.1016/j.jclinepi.2012.06.020] [Medline: 23116690]

6. Smith GC, Seaman SR, Wood AM, Royston P, White IR. Correcting for optimistic prediction in small data sets. Am J
Epidemiol 2014 Aug 01;180(3):318-324 [FREE Full text] [doi: 10.1093/aje/kwu140] [Medline: 24966219]

7. Moons KG, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: I. Development,
internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012 May 07;98(9):683-690. [doi:
10.1136/heartjnl-2011-301246] [Medline: 22397945]

8. Moons KG, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: II. External
validation, model updating, and impact assessment. Heart 2012 May 07;98(9):691-698. [doi: 10.1136/heartjnl-2011-301247]
[Medline: 22397946]

9. Steyerberg EW, Harrell FEJ. Prediction models need appropriate internal, internal-external, and external validation. J Clin
Epidemiol 2016 Jan;69:245-247 [FREE Full text] [doi: 10.1016/j.jclinepi.2015.04.005] [Medline: 25981519]

10. Tougui I, Jilbab A, Mhamdi JE. Impact of the choice of cross-validation techniques on the results of machine learning-based
diagnostic applications. Healthc Inform Res 2021 Jul;27(3):189-199 [FREE Full text] [doi: 10.4258/hir.2021.27.3.189]
[Medline: 34384201]

11. Tohka J, van Gils M. Evaluation of machine learning algorithms for health and wellness applications: a tutorial. Comput
Biol Med 2021 May;132:104324 [FREE Full text] [doi: 10.1016/j.compbiomed.2021.104324] [Medline: 33774270]

12. Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. Assessing and tuning brain decoders:
cross-validation, caveats, and guidelines. Neuroimage 2017 Jan 15;145(Pt B):166-179. [doi:
10.1016/j.neuroimage.2016.10.038] [Medline: 27989847]

13. Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl
Acad Sci U S A 2002 May 14;99(10):6562-6566 [FREE Full text] [doi: 10.1073/pnas.102102699] [Medline: 11983868]

14. Johnson A, Bulgarelli L, Pollard T, Horng S, Celi LA, Mark R. MIMIC-IV Clinical database demo (version 1.0). PhysioNet.
2022. URL: https://doi.org/10.13026/jwtp-v091 [accessed 2023-11-03]

15. Cross-Validation Tutorial: Predictive Modeling in Healthcare. github. URL: https://github.com/drewwilimitis/
JMIR_CV_Tutorial [WebCite Cache ID https://github.com/drewwilimitis/JMIR_CV_Tutorial]

16. Larson SC. The shrinkage of the coefficient of multiple correlation. J Educ Psychol 1931 Jan;22(1):45-55. [doi:
10.1037/h0072400]

17. Mosteller F, Tukey JW. Data analysis, including statistics. In: Lindzey G, Aronson E, editors. Handbook of Social Psychology,
Volume 2. Boston, MA: Addison-Wesley; 1968:1-26.

18. Little MA, Varoquaux G, Saeb S, Lonini L, Jayaraman A, Mohr DC, et al. Using and understanding cross-validation
strategies. Perspectives on Saeb et al. Gigascience 2017 May 01;6(5):1-6 [FREE Full text] [doi: 10.1093/gigascience/gix020]
[Medline: 28327989]

19. Saeb S, Lonini L, Jayaraman A, Mohr DC, Kording KP. The need to approximate the use-case in clinical machine learning.
Gigascience 2017 May 01;6(5):1-9 [FREE Full text] [doi: 10.1093/gigascience/gix019] [Medline: 28327985]

20. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the
14th International Joint Conference on Artificial Intelligence - Volume 2. 1995 Presented at: IJCAI'95; August 20-25, 1995;
Montreal, Quebec URL: https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf

21. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction
models: a framework for traditional and novel measures. Epidemiology 2010 Jan;21(1):128-138 [FREE Full text] [doi:
10.1097/EDE.0b013e3181c30fb2] [Medline: 20010215]

22. Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York,
NY: Springer; 2009.

JMIR AI 2023 | vol. 2 | e49023 | p.24https://ai.jmir.org/2023/1/e49023
(page number not for citation purposes)

Wilimitis & WalshJMIR AI

XSL•FO
RenderX

ai_v2i1e49023_app1.docx
ai_v2i1e49023_app1.docx
http://dx.doi.org/10.1001/jama.2020.5035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32356878&dopt=Abstract
https://europepmc.org/abstract/MED/24898551
http://dx.doi.org/10.1093/eurheartj/ehu207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24898551&dopt=Abstract
https://europepmc.org/abstract/MED/35641123
http://dx.doi.org/10.1093/jamia/ocac078
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35641123&dopt=Abstract
https://dx.plos.org/10.1371/journal.pmed.1001221
http://dx.doi.org/10.1371/journal.pmed.1001221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22629234&dopt=Abstract
http://dx.doi.org/10.1016/j.jclinepi.2012.06.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23116690&dopt=Abstract
https://europepmc.org/abstract/MED/24966219
http://dx.doi.org/10.1093/aje/kwu140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24966219&dopt=Abstract
http://dx.doi.org/10.1136/heartjnl-2011-301246
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22397945&dopt=Abstract
http://dx.doi.org/10.1136/heartjnl-2011-301247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22397946&dopt=Abstract
https://europepmc.org/abstract/MED/25981519
http://dx.doi.org/10.1016/j.jclinepi.2015.04.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25981519&dopt=Abstract
https://europepmc.org/abstract/MED/34384201
http://dx.doi.org/10.4258/hir.2021.27.3.189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34384201&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0010-4825(21)00118-9
http://dx.doi.org/10.1016/j.compbiomed.2021.104324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33774270&dopt=Abstract
http://dx.doi.org/10.1016/j.neuroimage.2016.10.038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27989847&dopt=Abstract
https://europepmc.org/abstract/MED/11983868
http://dx.doi.org/10.1073/pnas.102102699
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11983868&dopt=Abstract
https://doi.org/10.13026/jwtp-v091
https://github.com/drewwilimitis/JMIR_CV_Tutorial
https://github.com/drewwilimitis/JMIR_CV_Tutorial
http://www.webcitation.org/https://github.com/drewwilimitis/JMIR_CV_Tutorial
http://dx.doi.org/10.1037/h0072400
https://europepmc.org/abstract/MED/28327989
http://dx.doi.org/10.1093/gigascience/gix020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28327989&dopt=Abstract
https://europepmc.org/abstract/MED/28327985
http://dx.doi.org/10.1093/gigascience/gix019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28327985&dopt=Abstract
https://www.ijcai.org/Proceedings/95-2/Papers/016.pdf
https://europepmc.org/abstract/MED/20010215
http://dx.doi.org/10.1097/EDE.0b013e3181c30fb2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20010215&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


23. Efron B. Estimating the error rate of a prediction rule: improvement on cross-validation. J Am Stat Assoc 1983
Jun;78(382):316-331. [doi: 10.1080/01621459.1983.10477973]

24. Efron B, Tibshirani R. Improvements on cross-validation: the 632+ bootstrap method. J Am Stat Assoc 1997
Jun;92(438):548-560. [doi: 10.1080/01621459.1997.10474007]

25. Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics
2005 Aug 01;21(15):3301-3307. [doi: 10.1093/bioinformatics/bti499] [Medline: 15905277]

26. Krstajic D, Buturovic LJ, Leahy DE, Thomas S. Cross-validation pitfalls when selecting and assessing regression and
classification models. J Cheminform 2014 Mar 29;6(1):10 [FREE Full text] [doi: 10.1186/1758-2946-6-10] [Medline:
24678909]

27. Li M, Du S. Current status and trends in researches based on public intensive care databases: a scientometric investigation.
Front Public Health 2022 Sep 15;10:912151 [FREE Full text] [doi: 10.3389/fpubh.2022.912151] [Medline: 36187634]

28. Stone M. Cross‐validatory choice and assessment of statistical predictions. J R Stat Soc Series B Stat Methodol 2018 Dec
05;36(2):111-133. [doi: 10.1111/j.2517-6161.1974.tb00994.x]

29. Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 2006
Feb 23;7(1):91 [FREE Full text] [doi: 10.1186/1471-2105-7-91] [Medline: 16504092]

30. Cawley GC, Talbot NL. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach
Learn Res 2010;11:2079-2107.

31. Bates S, Hastie T, Tibshirani R. Cross-validation: what does it estimate and how well does it do it? J Am Stat Assoc 2023
May 15:1-12 [FREE Full text] [doi: 10.1080/01621459.2023.2197686]

32. Rao RB, Fung G. On the dangers of cross-validation. An experimental evaluation. In: Proceedings of the SIAM International
Conference on Data Mining. 2008 Presented at: SIAM International Conference on Data Mining; April 24-26, 2008; Atlanta,
GA. [doi: 10.1137/1.9781611972788.54]

33. Tsamardinos I, Greasidou E, Borboudakis G. Bootstrapping the out-of-sample predictions for efficient and accurate
cross-validation. Mach Learn 2018 May 9;107(12):1895-1922 [FREE Full text] [doi: 10.1007/s10994-018-5714-4] [Medline:
30393425]

Abbreviations
AUPR: area under the precision-recall curve
AUROC: area under the receiver operator characteristic curve
EHR: electronic health record
MIMIC-III: Medical Information Mart for Intensive Care-III

Edited by B Malin, K El Emam; submitted 15.05.23; peer-reviewed by U Sinha, S Figini; comments to author 05.09.23; revised version
received 19.09.23; accepted 28.09.23; published 18.12.23.

Please cite as:
Wilimitis D, Walsh CG
Practical Considerations and Applied Examples of Cross-Validation for Model Development and Evaluation in Health Care: Tutorial
JMIR AI 2023;2:e49023
URL: https://ai.jmir.org/2023/1/e49023 
doi:10.2196/49023
PMID:

©Drew Wilimitis, Colin G Walsh. Originally published in JMIR AI (https://ai.jmir.org), 18.12.2023. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR AI,
is properly cited. The complete bibliographic information, a link to the original publication on https://www.ai.jmir.org/, as well
as this copyright and license information must be included.

JMIR AI 2023 | vol. 2 | e49023 | p.25https://ai.jmir.org/2023/1/e49023
(page number not for citation purposes)

Wilimitis & WalshJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.1080/01621459.1983.10477973
http://dx.doi.org/10.1080/01621459.1997.10474007
http://dx.doi.org/10.1093/bioinformatics/bti499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15905277&dopt=Abstract
https://dx.doi.org/10.1186/1758-2946-6-10
http://dx.doi.org/10.1186/1758-2946-6-10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24678909&dopt=Abstract
https://europepmc.org/abstract/MED/36187634
http://dx.doi.org/10.3389/fpubh.2022.912151
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36187634&dopt=Abstract
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-7-91
http://dx.doi.org/10.1186/1471-2105-7-91
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16504092&dopt=Abstract
http://arxiv.org/abs/2104.00673
http://dx.doi.org/10.1080/01621459.2023.2197686
http://dx.doi.org/10.1137/1.9781611972788.54
https://europepmc.org/abstract/MED/30393425
http://dx.doi.org/10.1007/s10994-018-5714-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30393425&dopt=Abstract
https://ai.jmir.org/2023/1/e49023
http://dx.doi.org/10.2196/49023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Review

Strategies to Improve the Impact of Artificial Intelligence on Health
Equity: Scoping Review

Carl Thomas Berdahl1,2,3, MD, MS; Lawrence Baker1, MSc; Sean Mann1, MSc; Osonde Osoba1, MSc, PhD; Federico

Girosi1, PhD
1RAND Corporation, Santa Monica, CA, United States
2Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
3Department of Emergency Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States

Corresponding Author:
Carl Thomas Berdahl, MD, MS
RAND Corporation
1776 Main Street
Santa Monica, CA, 90401
United States
Phone: 1 3104233091
Email: cberdahl@rand.org

Abstract

Background: Emerging artificial intelligence (AI) applications have the potential to improve health, but they may also perpetuate
or exacerbate inequities.

Objective: This review aims to provide a comprehensive overview of the health equity issues related to the use of AI applications
and identify strategies proposed to address them.

Methods: We searched PubMed, Web of Science, the IEEE (Institute of Electrical and Electronics Engineers) Xplore Digital
Library, ProQuest U.S. Newsstream, Academic Search Complete, the Food and Drug Administration (FDA) website, and
ClinicalTrials.gov to identify academic and gray literature related to AI and health equity that were published between 2014 and
2021 and additional literature related to AI and health equity during the COVID-19 pandemic from 2020 and 2021. Literature
was eligible for inclusion in our review if it identified at least one equity issue and a corresponding strategy to address it. To
organize and synthesize equity issues, we adopted a 4-step AI application framework: Background Context, Data Characteristics,
Model Design, and Deployment. We then created a many-to-many mapping of the links between issues and strategies.

Results: In 660 documents, we identified 18 equity issues and 15 strategies to address them. Equity issues related to Data
Characteristics and Model Design were the most common. The most common strategies recommended to improve equity were
improving the quantity and quality of data, evaluating the disparities introduced by an application, increasing model reporting
and transparency, involving the broader community in AI application development, and improving governance.

Conclusions: Stakeholders should review our many-to-many mapping of equity issues and strategies when planning, developing,
and implementing AI applications in health care so that they can make appropriate plans to ensure equity for populations affected
by their products. AI application developers should consider adopting equity-focused checklists, and regulators such as the FDA
should consider requiring them. Given that our review was limited to documents published online, developers may have unpublished
knowledge of additional issues and strategies that we were unable to identify.

(JMIR AI 2023;2:e42936)   doi:10.2196/42936

KEYWORDS

artificial intelligence; machine learning; health equity; health care disparities; algorithmic bias; social determinants of health;
decision making; algorithms; gray literature; equity; health data
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Introduction

Background and Rationale
The use of artificial intelligence (AI) in clinical care and public
health contexts has expanded rapidly in recent years [1-6],
including throughout the COVID-19 pandemic [7-15]. While
emerging AI applications have the potential to improve health
care quality and fairness [16-21], they may alternatively
perpetuate or exacerbate inequities if they are not designed,
deployed, and monitored appropriately [22-26].

Health equity is defined by the World Health Organization as
“the absence of unfair and avoidable or remediable differences
in health among population groups defined socially,
economically, demographically, or geographically.... Pursing
health equity means...giving special attention to the needs of
those at greatest risk of poor health, based on social conditions.”
[27]. According to the Robert Wood Johnson Foundation,
“achieving health equity requires identifying and addressing
not only overt discrimination but also unconscious and implicit
bias and the discriminatory effects—intended and
unintended—of structures and policies created by historical
injustices, even when conscious intent is no longer clearly
present.” [28].

Concerns about AI’s impact on health equity have been
discussed extensively in academic and gray literature. Several
frameworks identify AI health equity issues throughout
development and propose strategies to address them. For
example, Chen et al [29] created a 5-step ethical pipeline for
health care model development and recommended best practices
at each step. Others have proposed similar 6-, 5-, or 4-step
frameworks [21,30,31]. Catering more directly to practitioners,
researchers at Chicago Booth created an “algorithmic bias
playbook” [32]: step-by-step instructions for organizations to
identify, improve, and protect against biased algorithms so that
fairness is enhanced for vulnerable populations. These
frameworks focus on developers as the stakeholder with both
the responsibility and the means to improve health equity
outcomes. A recent report from Imperial College London built
upon Chen et al’s framework to further describe several health
equity issues, suggest more detailed strategies, and advocate
for action from a broader range of stakeholders, including
policymakers [33].

While the aforesaid frameworks related to AI and equity were
disseminated between 2016 and 2022, none link equity strategies
to multiple issues. An investigation identifying links between
health equity issues and strategies to address them is warranted
so that stakeholders can understand the universe of approaches
to improve health equity at all stages of AI application
development and deployment.

Objectives
The objective of this scoping review was to identify equity
issues for health AI applications and connect each issue with
corresponding strategies. In addition, we sought to produce a
framework that would be useful to independent evaluators whose
role is to make comprehensive recommendations for strategies
to address equity-relevant issues.

The objective of this review was established in consultation
with the study sponsor as part of a broader project examining
AI, COVID-19, and health equity. Stakeholder consultation,
initial document searches, and document screening were
undertaken as part of this broader project and are also described
in a separate article on the use of AI in the COVID-19 response
[34].

Methods

Overview
We adopted a scoping review approach [35] to identify and
describe equity issues arising due to implementation of AI in
health and catalog strategies to address each issue. In performing
the scoping review, we followed the 5 steps described by Arksey
and O’Malley [35], although we opted to begin the
recommended optional stakeholder consultation before
conducting the literature review so that our stakeholders could
assist with our search strategy development. We elected a
scoping review approach because it is well-suited to
“[summarize] findings from a body of knowledge that is
heterogeneous in methods or discipline” such as available
academic and gray literature [36]. We followed the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews;
Multimedia Appendix 1) reporting guidelines as we designed
and executed our review [36]. While the study protocol is not
published online, Multimedia Appendix 2 includes a detailed
description of the search strategy.

Preparatory Stakeholder Consultation
To best understand the contextual landscape of our scoping
review, we began our project by consulting a diverse group of
9 health care stakeholders: 1 patient advocate, 2 clinicians, 1
health system representative, 1 health insurance representative,
1 public policymaker, 1 public health official, 1 industry
representative, and 1 researcher. Interviews with these
stakeholders helped us define what was in scope for our review
and refine inclusion and exclusion criteria for our literature
search strategy. The stakeholders we interviewed also identified
exemplar peer-reviewed and gray literature documents, existing
frameworks, and example lists of issues and strategies. The
stakeholder interview protocol, which was provided to
stakeholders and also covered topics related to AI and health
equity as part of a broader research study, is available in
Multimedia Appendix 2.

Eligibility Criteria
Documents were considered eligible for inclusion in our
literature search if (1) they were available in the English
language, (2) they related to AI, and (3) they discussed health
equity or the clinical or public health response to COVID-19.
For documents unrelated to COVID-19, the literature search
included publications between January 1, 2014, and December
10, 2021. For documents related to COVID-19, the literature
search was limited to the period from December 31, 2019, to
December 2021.
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Information Sources and Search Strategy
We searched 3 databases to identify academic literature of
interest: PubMed, Web of Science, and the IEEE (Institute of
Electrical and Electronics Engineers) Xplore Digital Library.
As directed by the medical reference librarian who assisted us
with our search strategy, we also searched 2 databases to identify
news articles and media commentaries of interest, which she
believed would be important to identifying emerging issues and

strategies that had not yet been evaluated by academic
researchers: ProQuest U.S. Newsstream and Academic Search
Complete. Finally, we searched the Food and Drug
Administration website and ClinicalTrials.gov for documents
meeting inclusion criteria. Textbox 1 gives an overview of our
search strategy according to the BeHEMoTh (Behavior, Health
condition, Exclusions, Models, or Theories) framework [37].
Detailed parameters for the search strategy are provided in
Multimedia Appendix 2.

Textbox 1. Search strategy outline using the BeHEMoTh framework [37].

• Behavior of interest (artificial intelligence): artificial intelligence, machine learning, deep learning, supervised learning, unsupervised learning,
reinforcement learning unsupervised clustering, unsupervised classification, supervised classification, natural language processing, expert system,
rules engine, fuzzy logic, or algorithm.

• Health context (clinical or public health response to COVID-19): health, clinic, hospital, therapy, medical, care, COVID-19, public health

• Model or theory (equity): equity, fairness, bias, inequality, race, gender, sex, gender, social determinants of health, socioeconomic status, income,
minority, disadvantaged, vulnerable, marginalized, disparities, prejudiced, or minority.

• Exclusions: documents in a language other than English.

To be included in our review, a document had to relate to the behavior of interest (artificial intelligence) and at least one of the following: the health
context (clinical or public health response to COVID-19) or the model or theory (equity).

Selection of Documents and Data Charting Process
We screened all documents of potential interest to determine
which were eligible for full-text review. Articles of potential
interest were added to a Microsoft Excel spreadsheet to facilitate
the selection process and data charting of our progress. If an
article did not have an abstract, it was automatically eligible for
full-text review.

For articles with an abstract or summary, we used a multistep
process to screen for inclusion in the full-text review. First, 3
members of the study team (CTB, LB, and SM) independently
screened a random sample of 6% (120/1897) of articles and
discussed disagreements among the reviewers about whether
articles should be included. We held a series of meetings to
refine and finalize our screening criteria to improve agreement
among our team. Second, we used single-reviewer screening to
determine inclusion for the remaining 94% (1777/1897) of
documents. Third, we used random dual review of a sample
(445/1777, 25.04%) of documents that had only been reviewed
by a single reviewer so that we could measure and report
interrater agreement. Disagreements in inclusion decisions were
resolved through consensus discussion by all 3 reviewers.

We decided to group issues and strategies using a 4-step
framework that we adapted from previously published AI
development pipeline literature sources [21,29-31]. The closest
preexisting framework was described by Chen et al [29] as
including 5 categories: Problem Selection, Data Collection,
Outcome Definition, Algorithm Development, and
Postdeployment Considerations. To make our results
understandable to the broadest possible set of stakeholders, we
expanded Chen et al’s original “Problem Selection” category
to include other aspects of the Background Context of AI
development and use. We retained a category for issues related
to Data Characteristics. We collapsed Outcome Definition
together with Algorithm Development because they are related
design decisions, and we renamed Postdeployment

Considerations to Deployment so that all forms of evaluation
would be included. Thus, our 4 development categories in the
framework became:

• Background Context: systemic and structural elements (eg,
factors that influence Problem Selection). For Background
Context, we defined systemic and structural elements as
the societal and organizational characteristics influencing
developers, including the rules and regulations in place at
the local, regional, and national levels.

• Data Characteristics: quality and quantity of the data.
• Design: choice of model, variables, outcome definition,

and objective function.
• Deployment: model evaluation, use, and maintenance.

Abstraction of Data Items for Issues and Strategies
Each article undergoing full-text review was reviewed by 1 of
3 members of the study team. Relevant citations listed in these
articles were also reviewed to identify additional data sources.
Our unit of analysis was an issue-strategy pair, defined as the
linking of a particular equity issue to a potential strategy that
could be used to improve equity for the AI application in health
care. We defined an issue as a potential equity-related problem
that had been suggested by at least one document author, and
we defined a strategy as a recommended action to address an
issue. We extracted issues and strategies named in each article
using a data collection form consisting of the reference for each
document, the specific issue(s) that the document discussed,
and which strategies that the article proposed could be used to
address the issue. Each document could include multiple
issue-strategy pairs. We also abstracted the following items for
each issue: narrative description of the issue, issue group
(prespecified categories: Background Context, Data
Characteristics, Design, and Deployment), representative quotes
from the document, and representative quotes describing
strategies. We included issues and strategies that were
speculative or theoretical in addition to those that have been
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“proven” to exist, because we believed this information would
likely be valuable to developers and regulators who are
interested in learning about emerging issues and solutions.

Synthesis of Results
We created our set of issues and strategies inductively: whenever
an equity issue or strategy discussed in a document was not
adequately described by the current set, we created a new entry.
Definitions were refined in group meetings among the 3
members of the study team.

Ethics and Human Participants
The RAND Corporation Human Subjects Protection Committee
(HSPC ID 2021-N0625), which functions as RAND’s

Institutional Review Board, determined that our study qualified
for exemption from committee review.

Results From the Preliminary Stakeholder
Consultation
Our stakeholders did not suggest any changes to the study topics
proposed for our review. They suggested that we should include
gray literature documents such as news articles, clinical trial
protocols, and conference proceedings in our review in addition
to peer-reviewed articles. Stakeholders also suggested that we
investigate several topics related to AI and equity that they
believed warranted further research (Textbox 2).

Textbox 2. Stakeholder recommendations for areas of focus in the scoping review.

Data sets, variable selection, and health equity

Stakeholders emphasized that there was a gap in current understanding about how limitations in training and validation data sets influenced AI
application performance for vulnerable subpopulations and how strategies could be undertaken to protect such subpopulations. They also expressed
concern that there was a tension in ensuring inclusion of underrepresented groups while also ensuring privacy for patients from such groups, and that
strategies were needed to improve equity due to this tension.

Limitations in evaluating equity-related outcomes

Four interviewees suggested that it was important to investigate certain outcomes for vulnerable subgroups of patients, such as measures of cost,
quality, and access to care, that might be challenging for developers to obtain.

Availability of equity-related information on AI algorithm performance

Four interviewees mentioned that AI may be used internally by an organization such as a health system or government agency, and that publicly
available information about algorithm performance for vulnerable subgroups might be limited.

See Multimedia Appendix 3 for additional results from the stakeholder consultation.

Results

Search Output
Our search strategy identified a total of 2244 unique documents
of potential interest. We conducted title and abstract review for
1897 documents or trial records, with 313 meeting inclusion
criteria. For a 25% (445/1777) sample of records that were
reviewed by 2 reviewers, interreviewer agreement on inclusion

was 88% (391/445; Cohen κ=0.61) [38]. We identified an
additional 347 documents of interest that did not have abstracts
to review, so they all underwent full-text review (296 news
articles and 51 Food and Drug Administration documents).

In total, 660 documents meeting inclusion criteria underwent
full-text review and were included in our analysis. The PRISMA
flow diagram displaying the literature search and screening
results is presented in Figure 1 [36].
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram. AI: artificial intelligence; FDA: Food and
Drug Administration.

Equity Issues and Strategies in Health AI
This section will present three tables and one figure that
highlight the issues affecting equity for AI applications as well
as the strategies we identified to address them.

We identified a total of 18 issues linked to 15 strategies. We
present our main results in 2 parts. Tables 1 and 2 display the

issues and strategies, respectively, that we identified in the
literature, and we provide a brief narrative description for each
item. Then, Figure 2 and Table 3 demonstrate how issues and
strategies were linked together. The complete list of documents
that identified each issue-strategy pair is provided in Multimedia
Appendix 4.
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Table 1. Issues related to AIa and health equity that were abstracted from the literature.

DescriptionCategory and issue

Background Context

Development team composition may be biased or poorly representative of the population,
leading to mismatched priorities and blind spots.

Biased or nonrepresentative developers

Lack of developer accountability makes it difficult for individuals harmed by AI appli-
cations to obtain compensation.

Diminished accountability

Developers may use AI algorithms to purposely discriminate for malice or for economic
gain.

Enabling discrimination

Data Characteristics

Insufficiently granular data on population characteristics may lead to inappropriately
aggregating dissimilar groups, such as classifying race into only White and non-White.

Limited information on population characteristics

Inadequate representation of groups in training data can lead to worse model performance
in these groups, especially when training and deployment populations are poorly matched.

Unrepresentative data or small sample sizes

When data reflect past disparities or discrimination, algorithms may incorporate and
perpetuate these patterns.

Bias ingrained in data

Inclusion of sensitive information, such as race or income, may cause algorithms to in-
appropriately discriminate on these factors.

Inclusion of sensitive variables

Exclusion of sensitive information may reduce accuracy in some groups and lead to
systematic bias due to a lack of explanatory power.

Exclusion of sensitive variables

Lack of reporting on the composition of training data or model performance by group
makes it difficult to know where to appropriately use models and whether they have
disparate impacts.

Limited reporting of information on protected groups

Model Design

When we do not understand why models make decisions, it is difficult to evaluate
whether the decision-making approach is fair or equitable.

Algorithms are not interpretable

Optimizing models for fairness may introduce a trade-off between model accuracy and
the fairness constraint, meaning that equity may come at the expense of decreased accu-
racy.

Optimizing algorithm accuracy and fairness may conflict

There are many conceptions of fairness and equity, which may be mutually exclusive
or require sensitive data to evaluate.

Ambiguity in and conflict among conceptions of equity

Deployment Practices

When training data, model design, or the outputs of algorithms are proprietary, regulators
and other independent evaluators may not be able to effectively assess risk of bias.

Proprietary algorithms or data unavailable for evaluation

Users may blindly trust algorithmic outputs, implementing decisions despite contrary
evidence and perpetuating biases if the algorithm is discriminatory.

Overreliance on AI applications

People may be dismissive of algorithm outputs that challenge their own biases, thereby
perpetuating discrimination.

Underreliance on AI applications

Models may be repurposed for use with new populations or to perform new functions
without sufficient evaluation, bypassing safeguards on appropriate use.

Repurposing existing AI applications outside original
scope

Time constraints may exacerbate equity issues if they push developers to inappropriately
repurpose existing models, use low-quality data, or skip validation.

Application development or implementation is rushed

AI applications may be deployed more commonly in high-income areas, potentially
amplifying preexisting disparities.

Unequal access to AI

aAI: artificial intelligence.
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Table 2. Strategies to address AIa equity issues that were abstracted from the literature.

DescriptionCategory and strategy

Background Context

Create AI development teams with diverse characteristics, experiences, and roles to increase consider-
ation of equity throughout development and decrease blind spots.

Foster diversity

Train AI developers and users in equity considerations and the ethical implications of AI, as these
topics may be unfamiliar to some.

Train developers and users

Foster community involvement throughout development, from conception to postdeployment, to increase
the likelihood that developers prioritize equity concerns.

Engage the broader community

Enact robust regulation and industry standards to align AI applications with social norms, including
equity, safety, and transparency.

Improve governance

Data Characteristics

Train models with large, diverse samples that are representative of the target population for the appli-
cation and contain all relevant features.

Improve diversity, quality, or quantity
of data

Exclude sensitive variables or replace them with variables that are more directly relevant to health
outcomes to prevent models from discriminating directly on these characteristics.

Exclude sensitive variables to correct for
bias

Include sensitive variables to improve model accuracy, increase explanatory power, and enable easier
testing for inequitable impact.

Include sensitive variables to correct for
bias

Model Design

Formulate a fairness norm and enforce it in the model by editing the input data, objective function, or
model outputs.

Enforce fairness goals

Choose models that are inherently explainable (such as decision trees), build models with post hoc
explainability, or explore explainable local approximations to model decision making.

Improve interpretability or explainability
of the algorithm

Evaluate model performance on a wide range of metrics across subgroups, particularly groups that
might face inequitable impact, then report and act upon the results.

Evaluate disparities in model perfor-
mance

Incorporate equity-focused checklists into workflows for developers, reviewers of AI models, health
care providers using an application, or patients who want to understand algorithm outputs.

Use equity-focused checklists, guide-
lines, and similar tools

Deployment Practices

Provide more information on AI equity issues, including publishing standardized equity-related analyses
on models, increasing independent model reviews, and requiring equity discussions in academic journals.

Increase model reporting and transparen-
cy

Proactively provide restitution to those harmed by AI or create legal frameworks so they can seek
restitution.

Seek or provide restitution for those
negatively impacted by AI

Consider discontinuing model use if equity sequelae are severe or if improvement efforts have been
fruitless.

Avoid or reduce use of AI

Improve access to AI for disadvantaged groups and low-income countries by subsidizing infrastructure,
creating education programs, or hosting AI conferences in these locations.

Provide resources to those with less ac-
cess to AI

aAI: artificial intelligence.
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Figure 2. Issues related to AI and equity and strategies proposed to address them. The thickness and opacity of each line connecting an issue to a
strategy are proportional to how frequently they were mentioned together. AI: artificial intelligence.
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Table 3. The most common strategies mentioned in the literature for each health equity issue.

Second most frequently linked
strategy

Most frequently linked strategyIssue frequency
(N=195), n (%)

Category and issue

Background Context

Engage the broader communityFoster diversity13 (6.7)Biased or nonrepresentative developers

Train developers and usersEvaluate disparities in model perfor-
mance

2 (1.0)Diminished accountability

Improve governanceAvoid or reduce use of AIa3 (1.5)Enabling discrimination

Data Characteristics

Use equity-focused checklists,
guidelines, and similar tools

Improve diversity, quality, or quan-
tity of data

14 (7.2)Limited information on population characteristics

Increase model reporting and
transparency

Improve diversity, quality, or quan-
tity of data

46 (23.6)Unrepresentative data or small sample sizes

Evaluate disparities in model
performance

Improve diversity, quality, or quan-
tity of data

37 (19.0)Bias ingrained in data

Avoid or reduce use of AIExclude sensitive variables to cor-
rect for bias

9 (4.6)Inclusion of sensitive variables

Evaluate disparities in model
performance

Include sensitive variables to correct
for bias

10 (5.1)Exclusion of sensitive variables

Evaluate disparities in model
performance

Increase model reporting and trans-
parency

8 (4.1)Limited reporting of information on protected
groups

Model Design

Avoid or reduce use of AIImprove interpretability or explain-
ability of algorithm

9 (4.6)Algorithms are not interpretable

Enforce fairness goalsEvaluate disparities in model perfor-
mance

13 (6.7)Optimizing algorithm accuracy and fairness may
conflict

—bEngage the broader community2 (1.0)Ambiguity in and conflict among conceptions of
equity

Deployment Practices

Evaluate disparities in model
performance

Increase model reporting and trans-
parency

9 (4.6)Proprietary algorithms or data unavailable for
evaluation

Evaluate disparities in model
performance

Avoid or reduce use of AI3 (1.5)Overreliance on AI applications

Train developers and usersEngage the broader community2 (1.0)Underreliance on AI applications

Improve governanceEvaluate disparities in model perfor-
mance

6 (3.1)Repurposing existing AI applications outside
original scope

—Increase model reporting and trans-
parency

1 (0.5)Application development or implementation is
rushed

Improve diversity, quality, or
quantity of data

Provide resources to those with less
access to AI

8 (4.1)Unequal access to AI

aAI: artificial intelligence.
bOnly 1 issue has been linked to the strategy.

Linking Issues and Strategies
In this section, we report how issues and strategies have been
linked in the articles we reviewed. The strategies most frequently
linked to each issue are shown in Table 3, and the references
provided in Multimedia Appendix 2 offer more detail on how
to apply a strategy to a given issue. A small number of issues
comprise the majority of mentions in the literature: The top 5
issues constitute 63% (123/195, 63.1%) of all issue-strategy
pairs. Each of these issues has several well-developed strategies,

usually focused on improving the quality of data or evaluating
bias in model-decision making. By contrast, other issues are
mentioned infrequently and do not have well-developed
strategies. When only 1 issue has been linked to a strategy, the
second column is presented with an em dash. We included an
issue frequency column as a measure of how often issues have
been mentioned in the literature.

Figure 2 is a map of the 195 issue-strategy pairs identified in
the literature, and it shows a complex many-to-many mapping
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between issues and strategies in health equity and highlights
which strategies and issues are most common. Each
issue-strategy pair mentioned in the literature is shown as a link.
Bolder lines indicate strategies and issues that are more
frequently linked. A comprehensive list of links and the
corresponding references is provided in Multimedia Appendix
4. Out of the total 195 issue-strategy pairs, 50.3% (98/195) were
identified in peer-reviewed literature. The remaining 49.7%
(97/195) were from gray literature sources, including 14
conference proceedings, 11 news articles, 5 textbooks, 3
preprints, 2 press releases, 1 thesis, 1 clinical trial record, and
60 others (eg, reports and briefings).

Discussion

Principal Findings
By analyzing the literature on AI and health disparities we have
identified 18 issues and 15 strategies that can be used to improve
health equity in the realm of AI. Our work builds upon
frameworks from the existing literature, identifying named
strategies and issues for each stage of AI development and
implementation. In addition, we draw 3 new insights from
mapping the relationships between issues and strategies.

The framework published by Chen et al [29] offers 5
recommendations for improving equity, which can be
paraphrased as follows: (1) problems should be tackled by
diverse teams using frameworks that increase the probability
that equity will be achieved; (2) data collection should be framed
as an important front-of-mind concern, including encouragement
of disclosing imbalanced data sets; (3) outcome choice should
reflect the task at hand in an unbiased manner; (4) developers
should reflect on the goals of the model during development
and preanalysis; and (5) audits should be designed to identify
specific harms, including harms at the level of the group rather
than at the population. While these are important and sound
recommendations, our results additionally emphasize the need
to engage with communities throughout the development and
deployment phases, identify opportunities for equity-focused
governance at the local and national levels, and identify
additional opportunities for improvement after algorithms are
found to impair equity (eg, avoiding or reducing AI use,
providing resources to those with less access to AI, and
providing restitution to those negatively impacted by AI). Our
comprehensive mapping of issues and strategies can be useful
to stakeholders of all types, including developers, representatives
of vulnerable groups, and regulators.

The Literature Focuses on a Small Set of Issues
A small set of issues dominates the literature. The top 5 issues
comprise nearly two thirds of all issue-strategy pairs. The
discourse around health AI equity focuses on Data
Characteristics: almost two-thirds of all issue-strategy pairs are
related to data. These issues are widely researched, and,
therefore, we encountered many corresponding strategies to
address them. Some strategies directly address data quality,
while others accept data limitations and try to improve fairness
despite poor data quality.

Much of the discourse on model design focuses on the trade-off
between accuracy and fairness [39-43]. This multifaceted
problem requires that stakeholders select a definition of fairness
and analyze how accuracy/fairness trade-offs will balance in
specific applications. The most common approach to improving
model design involves measuring disparities in model
performance and revising the model to enforce fairness goals
[44]. As definitions of fairness may conflict, developers and
evaluators should test the impact of different constraints across
a broad range of metrics (such as accuracy, false-positive rate,
and false-negative rate) and report group-level disparities in
each of these metrics [45]. Equity-relevant model design
literature is most developed for classification or regression tasks,
and there is less guidance in other areas such as online learning
[46]. Relevant subgroups are often application specific, and the
data on these subgroups may not be available [47].

Other issues were rarely discussed and have a limited number
of associated strategies. For example, several issues reflect
concerns about how AI is deployed—especially when AI
applications are used outside their original scope or when they
are rushed through development and into production without
sufficient testing.

Even if an issue is not frequently discussed in the literature, it
may still be important. In other words, an issue may not be
discussed frequently because there is limited evidence of equity
impact or because corresponding strategies are underdeveloped.
We believe that some issues may have been insufficiently
discussed despite their promise as topics that would benefit
from future research. For example, future work is warranted to
investigate the negative impacts of the following issues:
repurposing AI applications outside their original scope,
inadequate descriptions of population characteristics, and lack
of accountability for the unintended consequences of AI on
health equity.

Strategies Are Multipurpose
While some strategies, such as improving interpretability, are
tailored to specific issues, most strategies are multipurpose. The
top 5 most frequently mentioned strategies, which account for
more than half of issue-strategy pairs in our sample, are
collectively linked to all 18 issues. Each of these strategies is
linked to critical aspects of application development. Evaluating
disparities in model performance is often necessary for
quantifying bias across subgroups. Similarly, improving data
is important across a broad range of issues because the
decision-making logic of AI models flows directly from training
data. Community engagement and improved governance can
increase the consideration of equity issues throughout all stages
of AI algorithm development. Community stakeholders should
be involved at all stages of production, including deciding
whether an application should be built, setting goals for the
model, defining fairness [48], and guarding against unintended
consequences after deployment [21,49-51]. Improving
governance is usually advocated in the form of guiding
principles for AI use [25,52] or “soft governance” such as
industry-organized protocols [53,54]. Regulation is not
frequently advocated, although it is unclear whether this is
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because researchers believe regulation would be ineffective or
because they prefer to focus on technical solutions.

Small Sets of Strategies Can Address a Broad Set of
Issues
Sometimes it is only practical to focus on a small set of
strategies. For instance, in their Algorithmic Bias Playbook,
Obermeyer et al [32] suggested that organizations identify biased
algorithms and then retrain them on less biased targets, improve
the representativeness of their data set, or consider discontinuing
their use.

Once stakeholders have identified issues that are relevant for a
specific application, they can use Table 3 and Figure 2 to select
a set of strategies to address them. The most common 5
strategies cited above are a good starting point because of their
broad coverage of issues. However, not all these strategies may
be feasible, and others may require complementation with
additional strategies to fully address a specific issue.

Consider an example use case for our mapping of equity-relevant
issues and strategies to address them: A developer has been
commissioned to build an open-source predictive model of
emergency department admission probability based on electronic
health records. The developer has identified data issues related
to bias and representativeness, but is also concerned that the
model may be less accurate for some subgroups of patients. The
developer may consider the top 5 most common strategies first,
and then may realize that modifying the data collection process
is infeasible. Although improving governance does not
necessarily require new legislative or regulatory action, it does
involve collective action between industry and the broader
community, so it may seem feasible in certain scenarios.
However, the remaining 3 of the top 5 strategies can be
implemented by a single stakeholder without coordinating
collective action across different groups. Anyone with model
access and demographic data can evaluate disparities in model
performance and increase model reporting and transparency.
Similarly, all developers can seek input from affected
communities when they begin the development process.

The developer could then use Figure 2 to select a set of
complementary strategies specific to some of the issues. If their
evaluation did find disparate performance across groups, then
they could enforce fairness constraints in the input data, model
design, or model outputs. They may also review the model using
an equity-focused checklist, such as the Prediction Model Risk
of Bias Assessment Tool (PROBAST) [55], as this is low-cost
and may identify other avenues to improve equity. They may
also decide that they can better engage with the relevant
stakeholders if they can explain the model’s decision-making
processes and develop model report cards for equity.

After completing this exercise, the developer will have identified
an initial set of strategies that is within their scope of action.
This set may evolve over time, especially as the broader
community is engaged: For example, community stakeholders
may help identify important features the developer overlooked
(such as social determinants of health), suggest different
definitions of equity, or question whether AI should be used at
all [56].

This use-case example is one approach to addressing a complex
set of equity issues. For most AI applications, we expect that
developers will be able to identify a small set of strategies to
address a broad range of equity issues. Particularly important
issues may require multiple complementary strategies. We
recommend that developers start by considering which of the
5 most common strategies are suitable for an application and
then adding additional complementary strategies as
needed—particularly low-cost strategies such as the use of the
PROBAST checklist.

Limitations
This scoping review has several limitations. First, due to space
constraints, the descriptions of each issue and strategy are brief.
This means that stakeholders may need to access additional
resources to take action and operationalize a strategy. For
instance, if enforcing fairness goals is identified as a useful
strategy, stakeholders need to decide what fairness rule to use
and how to modify data inputs, the model objective function,
or model outputs [21,57-60]. To better understand issues and
strategies, stakeholders should use Multimedia Appendix 4 to
find relevant documents. More detailed descriptions of issues
and strategies will also be available in a subsequent report that
will be published by the funder of this study, the
Patient-Centered Outcomes Research Institute.

Second, some issues and strategies may conflict. For example,
both inclusion and exclusion of sensitive variables are discussed
as having either a positive or a negative influence on the impact
of health AI on equity, depending on context and perspective.
As a result, we include these as both issues and strategies in our
study, reflecting the unsettled and context-dependent nature of
debate on this topic within the literature.

Third, our search strategy included gray literature sources, so
some of the issue-strategy pairs are likely to be speculative
rather than proven to be effective. Out of 195 issue-strategy
pairings, 98 were from peer-reviewed literature and 97 were
from gray literature sources such as reports, news articles,
conference proceedings, and preprint articles. Readers should
consult the sources of the issue-strategy pairs when determining
whether a given strategy should be used.

Fourth, we did not rate the quality of issues, strategies, or the
articles from which we identified issue-strategy pairs. Some
sources go into detail about health equity issues and strategies,
others only make general recommendations or may represent
outmoded views. The goal of this scoping review was to identify
which issues and strategies are highlighted in the literature.
Future reviews could instead focus on identifying the best or
most developed strategies.

Fifth, the issues and strategies we identified are not entirely
distinct: some are intermediaries that lead to other issues or
strategies. For instance, repurposing an application is not
inherently inequitable, but may increase the chance that the
training data are unrepresentative of the target population.
Similarly, uninterpretable algorithms do not create biased
outcomes, but make them more difficult to detect. The same
applies to strategies: using equity checklists does not directly
solve problems, but makes it more likely that developers identify
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equity issues and appropriate strategies. We included these
intermediary issues and strategies because they provide a richer
description of intervention points for promoting health equity.

Sixth, there are other prominent concerns about AI and equity
that were out of scope for our review. For example, AI
applications may displace human workers in ways that could
increase economic and health disparities, or the default use of
female voices in AI assistants that perform clerical tasks may
perpetuate bias and lead to negative effects on health equity for
women [51]. While these concerns are raised in the context of
economic or social disparities, we found no discussion of their
impact on health equity specifically, and thus did not include
them in our study.

Conclusions
Our work contributes to a growing body of AI health equity
literature. We add to this literature by creating a many-to-many
mapping between strategies and issues and by reviewing the
literature to identify how often each strategy is linked to each
issue. This scoping review is useful for a wide array of
stakeholders, including developers, users, policymakers, and
researchers who may wish to implement strategies to improve
health equity for vulnerable populations of interest. While no
set of strategies can eliminate the equity concerns posed by
health AI, small sets of strategies can often mitigate many of
the most pressing issues. We should also recognize that existing
nonalgorithmic decision making is imperfect. By thoughtfully
adopting complementary sets of strategies that cover a broad
range of equity issues, AI models may offer improvements in
equity over the status quo.
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Abstract

Background: Artificial intelligence (AI)– and machine learning (ML)–based medical devices and algorithms are rapidly
changing the medical field. To provide an insight into the trends in AI and ML in health care, we conducted an international
patent analysis.

Objective: It is pivotal to obtain a clear overview on upcoming AI and MLtrends in health care to provide regulators with a
better position to foresee what technologies they will have to create regulations for, which are not yet available on the market.
Therefore, in this study, we provide insights and forecasts into the trends in AI and ML in health care by conducting an international
patent analysis.

Methods: A systematic patent analysis, focusing on AI- and ML-based patents in health care, was performed using the Espacenet
database (from January 2012 until July 2022). This database includes patents from the China National Intellectual Property
Administration, European Patent Office, Japan Patent Office, Korean Intellectual Property Office, and the United States Patent
and Trademark Office.

Results: We identified 10,967 patents: 7332 (66.9%) from the China National Intellectual Property Administration, 191 (1.7%)
from the European Patent Office, 163 (1.5%) from the Japan Patent Office, 513 (4.7%) from the Korean Intellectual Property
Office, and 2768 (25.2%) from the United States Patent and Trademark Office. The number of published patents showed a yearly
doubling from 2015 until 2021. Five international companies that had the greatest impact on this increase were Ping An Medical
and Healthcare Management Co Ltd with 568 (5.2%) patents, Siemens Healthineers with 273 (2.5%) patents, IBM Corp with
226 (2.1%) patents, Philips Healthcare with 150 (1.4%) patents, and Shanghai United Imaging Healthcare Co Ltd with 144 (1.3%)
patents.

Conclusions: This international patent analysis showed a linear increase in patents published by the 5 largest patent offices. An
open access database with interactive search options was launched for AI- and ML-based patents in health care.

(JMIR AI 2023;2:e47283)   doi:10.2196/47283

KEYWORDS

artificial intelligence; patent; healthcare; health care; medical; forecasting; future; AI; machine learning; medical device;
open-access; AI technology

Introduction

Artificial intelligence (AI), in the form of machine learning
(ML)–based medical devices and algorithms, has been rapidly
changing a range of aspects of the medical profession from

clinical decision-making to diagnostic imaging interpretation
[1,2]. Both the commercial development and academic research
focusing on AI and ML in health care showed an exponential
growth; however, regulation for clinical use and commercial
rollout follow a slower path.
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The US Food and Drug Administration (FDA) has been leading
the way for regulators worldwide, being the first regulatory
body to adopt an AI policy and provide guidelines for approving
AI-based medical technologies in practice [3].

Certain medical specialties stand out in terms of the impact of
AI on the practice of those professions. Based on a previous
study by our research group, examples include cardiology,
radiology, and oncology—medical specialties that entail many
data-based tasks and components. A better understanding of
which medical specialties will be impacted by AI in the near
future might shed light on what guidelines, policies, or
frameworks to dedicate enough efforts to next.

Also, while the number of peer-reviewed papers on AI’s role
in health care and medicine, relevant patents, and commercially
available AI and ML devices keeps on growing at an
unprecedented rate, it will become increasingly difficult for
regulators and policy makers to keep up with the pace of
innovation [4].

There are numerous health care– and AI-related patents
worldwide. Inventors and researchers can submit their patents
to national and international offices, of which the largest ones
include the China National Intellectual Property Administration
(CNIPA), the European Patent Office (EPO), the Japan Patent
Office (JPO), the Korean Intellectual Property Office (KIPO),
or the United States Patent and Trademark Office. These 5
largest patent offices collaborate in the Five IP Offices
collaboration, making all their patents available in the Global
Dossier initiative [5].

Not every patent will lead to a product or a service on the
market, and even for those that succeed, it usually takes years
to reach the market and end up being a commercially available
product or a product used in the medical practice.

For example, a patent was submitted for “wireless transmission
of ECGs in handheld devices” in 1998 in the United States [6].
The applicants of the patent developed the idea of a smartphone
case that served as a single-lead electrocardiogram to be
approved by the FDA in 2012, a total of 14 years later. The
evolution of its design resulted in a credit card–sized device
and an even smaller version in 2021. In the meantime, the
company AliveCor received clearance by the FDA to use an
algorithm for the analysis of the readings to determine issues
related to cardiac rhythm without human intervention [7]. It
took around 2 decades for a digital health technology to
transition from a patent phase to becoming commercially
available, and years to build AI analysis into the device.

It is pivotal to obtain a clear overview on upcoming AI and ML
trends in health care to provide regulators with a better position
to foresee what technologies they will have to create regulations
for that are not available in the market yet.

Therefore, in this study, we provide insights and forecasts into
the trends in AI and ML in health care by conducting an
international patent analysis.

Methods

Selection of Patents
We selected the Espacenet search engine of the EPO to access
the data from the 5 international patent offices collaborating in
the Global Dossier initiative [8-10]. The Global Dossier
initiative enables web-based public access for the patent data
of the CNIPA [11], EPO, JPO [12], KIPO [13], the United States
Patent and Trademark Office [14], and provides computer
translations to English for the CNIPA, JPO, and KIPO.

We performed a systematic search for the period between
January 1, 2012, and July 20, 2022. A query was made using
the following keywords: deep learning, machine learning, deep
neural networks, or artificial intelligence, in combination with
medical, medicine, healthcare, or health. In addition, the
“computing arrangements based on specific computational
models” (G06N) of the Cooperative Patent Classification (CPC)
was used [15]. Patents are classified with at least 1 CPC code
and the G06N is assigned when the invention relates to AI or
ML techniques.

The following variables were extracted from the Espacenet
database: patent title and abstract, inventors, applicants,
publication number, CPC code, and publication date. As
inventors are allowed to submit their patent at multiple patent
offices, duplicate patents were removed based on matching
titles, inventor names, and applicant names. The patent
publication number was used to identify the patent office that
registered the patent.

Downloading Patent Abstracts
In total, 12,384 matches were found using the Espacenet search,
based on which we performed the analysis. Search queries might
contain overlapping results; therefore, we excluded duplications,
finally retaining 10,967 distinct matches.

Public information was downloaded for all of the patents using
a Chrome-based crawler from Espacenet, followed by the
extraction of titles and abstracts from the HTML source. The
resulting text data were saved to files for further processing.
Crawling was performed in August and September 2022.

Preprocessing of Textual Data
The first publication date and number were used wherever
multiple were available.

We retained patents that were dated after January 1, 2016,
excluding 197 (1.79%) patents of the available data set. The
last fully covered month was June 2022, the few patents (n=27,
0.25%) in July 2022 were excluded.

Some of the most frequent words of the English language were
excluded from the analysis, as they would rank high in
appearance statistics without highlighting the trends we are
looking for. The excluded words were the following: “for,”
“from,” “and,” “with,” “on,” “of,” “a,” “the,” “to,” “is,” “an,”
“by,” “are,” “in,” “can,” “or,” “that,” and “be.” Additionally,
commas and parentheses were removed, and the text was
converted to lowercase.
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Statistics Generated From Downloaded Data
Multiple statistics were generated from the patents; these were
evaluated separately for titles and abstracts as well, except for
top lists.

Occurrence Counts: Single Words
Titles of all used patents were merged into 1 string, and the
number of times each word appears was counted. The
occurrence count list was constructed the same way for abstracts
as well. Each word appearance was counted, not limited to 1
per patent.

Abstract Query
Some further cases were not covered by the abovementioned
lists: expressions consisting of 2 or more words (eg, “brain ct
image”), or words from the abstracts that are not listed above
due to a very low occurrence count. A researcher could look up
arbitrary texts using the query form.

After performing the preprocessing steps, the query string was
looked up in each patent’s title. The number of patents with
matches was counted—that is, each patent is counted once at
maximum—as opposed to the “occurrence counts” described
above.

Additionally, appearance counts were displayed on a time scale
as well to visualize trends in 3-month units.

Furthermore, to eliminate the effect of increasing patent count,
the relative frequency of the search term was also
displayed—this is useful to determine the trends of methods
because raw occurrence counts could increase even with a
declining technology when total patent counts increase over
time.

Top Lists
Inventor, applicant, and CPC top lists are simple lists with
occurrence counts, based on patent properties without any pre-
or postprocessing steps.

A list of the top 20 medical specialties and related terms was
curated (Multimedia Appendix 1): anesthesiology, cardiology,
dentistry, dermatology, emergency medicine, gastroenterology,
gerontology, family medicine or primary care, internal medicine
(ie, infectiology, endocrinology, and nephrology), neurology,
obstetrics and gynecology, oncology, ophthalmology, pathology,
pediatrics, psychiatry, pulmonology, radiology or nuclear
medicine, surgery, and urology [16].

Open Access, Interactive Database
We made our database open access, which is available on The
Medical Futurist website [17]. The page allows visitors to
analyze the patent database to validate our findings and discover
other trends. The code is available upon request.

Users can select from among the available functions in the left
sidebar, while the content for the chosen page appears on the
right side.

In this web-based open access database, term frequency–inverse
document frequency is applied for the purpose of frequency
scoring. Single-word occurrences within titles and abstracts

were introduced above, along with Query and Toplists pages.
Besides these, the most frequent word pairs (eg, image
segmentation) are also listed with the number of occurrences
separately for titles and abstracts. Finally, under “Trending,”
one can find those expressions whose occurrence rises steadily
within the last 5 examined quarters, possibly highlighting
methods that are currently becoming popular. The “Trending”
page examines 3 separate properties: change in absolute and
relative occurrence, along with the shape of the increase by
quarters correlated to a linearly increasing line in the (the
“Trend” column).

Interestingly, most of the single words with a high relative
increase are linked to modern technologies within health care
(“device,” “forecasting,” “inference,” and “classifying”).
Similarly, some of the increasingly used word pairs are
“computer aided” and “learning algorithms.”

Results

By using the patent database filter option “Applicant toplist,”
a list in descending order of the number of patent applications
per applicant was generated. The number of patents applied by
an entity ranged from 1 to 305, with applicant Ping An
Technology (Shenzhen, China) filing for the highest number of
patents (n=305) and several dozens of applicants filing for the
lowest number of patents (n=1). We identified 5848 patents
with a company as the primary applicant and 3038 patents with
a university as the primary applicant. To derive insights relevant
for the purposes of this study, the 20 applicants from this list,
which applied for the most patents, were considered and the
findings are summarized in Table 1.

Each entry in the “Applicant toplist” filter also lists the
corresponding country, in abbreviated format, where the relevant
patent office is located. Out of the top 20 patent applicants, 14
are based in China, 3 are based in the United States, and 1 is
based in Germany, Japan, and the Netherlands, each.

From these data and extending to applicants beyond the top 20
ones, a list of the top 10 countries where most patents were
applied from was curated. As Table 1 indicates, most of the
relevant patent applications were filed in China, followed by
the United States. Among this list of top 10 countries, 4 are
located in Asia, 4 are located in Europe, and 2 are located in
North America. Textbox 1 shows the top 10 countries from
where relevant patents were filed.

By selecting the “Patent office stats” option from the database,
the general trend in the number of health care patents between
2016 and 2022 in selected patent offices was observed. There
were 156, 340, 747, 1552, 253, 4097, and 1278 AI- and
ML-related health care patents in 2016, 2017, 2018, 2019, 2020,
and July 2021, respectively; this indicates a general increase in
the application of such patents during that time period in the
patent offices in China, the United States, and South Korea,
while the offices in Japan and Spain have experienced little to
no change in the volume of patents. Figure 1, generated from
the database, plots the number of patents in the selected patent
offices over this time period.
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Table 1. Top 20 patent applicants.

CountryOccurrences, nApplicant nameNumber

China305Ping An Technology (Shenzhen) Co Ltd1

Germany219Siemens Healthcare GmbH2

United States217IBM Corp3

The Netherlands110Koninklijke Philips N.V.4

China105Ping An Medical and Healthcare Management Co Ltd5

China103Ping An International Smart City Technology Co Ltd6

China90Tencent Technology Shenzhen Co Ltd7

China82University of Electronic Science and Technology of China8

China79Zhejiang University9

China59Shandong University10

China57Beijing University of Technology11

China57Tsinghua University12

China50Fudan University13

Japan47Canon Medical Systems Corporation14

China46Beijing Baidu Netcom Science Technology Co Ltd15

China45Tianjin University16

United States45GE Precision Healthcare LLC17

China45Huazhong University of Science and Technology18

China44Beihang University19

United States44General Electric20

Textbox 1. Top 10 countries from where patents were filed.

The top 10 countries from where patents were filed were as follows:

1. China

2. United States

3. South Korea

4. Germany

5. Japan

6. The Netherlands

7. Canada

8. India

9. United Kingdom

10. France
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Figure 1. Patent trends in selected patent offices between 2016 and 2022. cn: China; ep: Spain; jp: Japan; kr: South Korea; us: United States.

The rate of increase in the number of patents varied in each
office that experienced such an increase. A marked increase
was noticeable in China from mid-2017, around 2018 in the
United States, and only around 2020 in South Korea. The patent
office in China experienced a steady increase in the number of
applications with some notable dips in 2020, 2021, and 2022.
Despite those downtimes, that patent office maintained its lead
during the time period analyzed.

To analyze patent trends around medical specialties, we created
a database of words and expressions that are relevant to each
of the major 20 medical specialties (Multimedia Appendix 1).

When analyzing single words that appear in the title of patents,
the top 5 medical specialties with the highest number of patents
were radiology, oncology, cardiology, pulmonology, and surgery
with 394, 271, 128, 103, and 76 patents, respectively.

The “Abstract - query” option of the database outputs the
number of times the search term occurs in the abstracts. Using
the preselected specific terms for medical specialties, the
occurrence of specialty-related terms was identified. Based on
this list, the terms relating to radiology or nuclear medicine
occurred the most in abstracts (n=1160), followed by oncology
(n=532), ophthalmology (n=454), surgery (n=309), pulmonology
(n=261), cardiology (n=252), and obstetrics and gynecology
(n=217; Table 2).

When focusing on one of the medical specialties with a high
number of patents (for instance, radiology), trends in
imaging-based patents could be established. The 8 most
frequently used imaging-related terms were “image processing”
(n=682), “image data” (n=674), “imaging” (n=657), “image
segmentation” (n=328), “CT image” (n=288), “X-ray” (n=120),
“MRI” (n=114), and “ultrasound” (n=77). An increase in the
occurrence of these imaging-related terms was identified
between 2015 and 2021 (Figure 2). For the field of oncology,

trends showed a similar increase. The 4 most used terms were
“cancer” (n=161), “tumor” (n=151), “radiotherapy” (n=55), and
“malignant” (n=47).

When focusing on terms related to AI and ML, trends in AI-
and ML-based patents could be established. The 4 most used
AI- and ML-based terms were “artificial Intelligence” (n=2450),
“neural network” (n=2043), “machine learning” (n=1717), and
“deep learning” (n=1492). An increase in the occurrence of
these AI- and ML-based terms was identified between 2015 and
2021 (Figure 3).

To demonstrate what kind of patents were included in the
database, we chose to feature examples of recently registered
patents of the top 4 applicants: Ping An Group listed a patent
within the scope of the specialties of radiology and oncology,
titled “Lymph node metastasis prediction method and device,
equipment and storage medium” (CN113920137a) in January
2022. This patent focuses on the detection of lymph node
metastasis in pancreatic ductal cancer on computed tomographic
imaging of the abdomen. The results of the first clinical
application were published in January 2023 [18].

Siemens Healthineers AG listed a patent within the scope of
the specialties of radiology and pulmonology, titled “Assessment
of abnormality patterns associated with covid-19 from x-ray
images” (US2022022818a) in January 2022. A full package of
AI solutions for COVID-19 imaging became commercially
available the months thereafter [19].

IBM Corp listed a patent within the scope of the specialties of
pathology and oncology, titled “Interpretation of whole-slide
images in digital pathology” (US2022164946A1) in May 2022.
The code, data, and models were published in January 2022 and
a Python-based package (for modeling and learning) is freely
available on GitHub [20,21].
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Koninklijke Philips N.V. listed a patent within the scope of the
specialty of cardiology, titled “Systems and methods for
identifying low clinical value telemetry cases”
(US2022020478A1) in January 2022. This patent is part of the

Philips Cardiologs arrhythmias diagnostic software, which is
commercially available and FDA-cleared under section 510(k)
of the Food, Drug and Cosmetic Act [22].

Table 2. Occurrence of specialty-related terms.

Occurrences, nSpecialtyNumber

72Anesthesiology1

41Dentistry2

252Cardiology3

112Dermatology4

157Emergency medicine5

84Gastroenterology6

37Gerontology7

28Family medicine or primary care8

174Internal medicine9

77Neurology10

217Obstetrics and gynecology11

532Oncology (ie, radiation oncology)12

454Ophthalmology13

87Pathology14

18Pediatrics15

94Psychiatry16

261Pulmonology17

1160Radiology18

309Surgery19

28Urology20

Figure 2. Trends in imaging-based patents. CT: computed tomography; MRI: magnetic resonance imaging.
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Figure 3. Trends in AI- and ML-based patents. AI: artificial intelligence; ML: machine learning.

Discussion

Principal Findings
Based on the identified health care–related AI-based patents,
China clearly stands out as a leader in the field of AI. Also,
2020 seems to be a turning point with marked growth in health
care–related patents. Following the widespread success of
ChatGPT (OpenAI) in 2022, there are no data to indicate that
this growth would slow down [23].

Certain medical specialties stand out in terms of the number of
patents that have been submitted about AI technologies and
inventions that might be relevant to them (Figure 4). Based on
a previous study published by our group about FDA-approved
AI- and ML-based medical technologies [1], radiology,
cardiology, and oncology were already identified as specialties
with many AI-based applications. The more repetitive or
data-based tasks a specialty entails, the higher the potential for
automation to be able to contribute to that field.

Moreover, patents that include the analysis of medical images
or videos can be relevant to a range of specialties from radiology
to pulmonology and surgery. Specialties that are closely linked
to medical imaging can also be in the focus of AI patents in the
coming years. Examples include dentistry, ophthalmology, and
emergency medicine.

Besides these imaging-oriented specialties, as analyzing images
is a widely popular use case of AI and ML, dermatology and
pathology could also benefit from the AI revolution. In
dermatology, the rise of skin-checking applications that can
analyze photos of skin lesions on patients’ smartphones
underscores this observation [24]. In pathology, automated
assessment of digitized histopathology slides falls into the same
category [25].

Medical specialties such as psychiatry or neurology that are
more interaction-based (as opposed to being data-based) and

entail more creative (vs repetitive) tasks might receive fewer
AI patents; thus, those could be less prone to AI- or ML-based
innovations [26].

The discrepancy between the top-ranking medical specialties
in the title and abstract analyses could be attributed to the higher
occurrence of related terms in the abstracts than in the titles,
given the higher density of words in the former.

With this study, we attempt to prove the point that in the age
of automation, preparing with regulations in time should be of
high priority among policy makers. The #wearenotwaiting
movement that comprises thousands of patients with diabetes,
who created artificial pancreatic systems, further emphasizes
this [27]. These patients have developed applications, platforms,
and other solutions to help each other manage their diabetes.
Their OpenAPS (Open Artificial Pancreas System) software
that was created entirely by the patient community with no
contribution from medical professionals automatically provides
patients with the right doses of insulin based on their blood
glucose level [28].

Due to the influx of advanced technologies such as wearable
health sensors, portable diagnostic devices, and AI and ML
applications in health care, it has become inevitable to design
regulations and guidelines for technologies that are not available
in the market yet, but everything, including patent trends,
indicates that they will soon be. As patients now have access
to technologies, data, and algorithms, they will find a way to
use the technology that is not yet regulated but can still help
them manage their condition or health.

The recent rise of the conversational agent and large language
model ChatGPT and AI-based image generators such as
MidJourney and DALL-E all point toward this direction. As a
response to ChatGPT, Google LLC published a study about
their own chatbot that was specifically designed to answer
medical questions [29].
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We expect that by looking at medical and health care–related
AI and ML patent trends, regulators and policy makers could
better determine medical specialties, technological trends, or
areas such as imaging to dedicate more attention to. Thus, when
a range of AI- and ML-based technologies become available in
those fields, proper regulations will ensure a safe and efficient

implementation into the practice of medicine and the delivery
of health care.

A follow-up study that closely follows some of the patents and
medical specialties that stood out in this analysis would be useful
to see and determine how much time it takes for an AI- or
ML-based health care patent to reach the stage of practical
implementation.

Figure 4. The number of occurrences of specialty-related terms in healthcare AI patents assigned to each of the 20 medical specialties. AI: artificial
intelligence.

Limitations
There are obvious limitations to our approach. As there is no
globally accepted patent database, we could only focus on the
5 most active patent offices with the highest number of patents
worldwide. This implies that we might have overlooked patents
from other patent offices worldwide. As there is no database in

the literature about what keywords and expressions might be
associated with certain medical specialties, the database we
generated is a subjective list of keyword-specialty associations.
Moreover, even if a specific medical specialty or its keyword
is mentioned in a patent’s abstract, it does not necessarily mean
that the patents are indeed associated with the specialty.
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Abstract

Background: Despite immense progress in artificial intelligence (AI) models, there has been limited deployment in health care
environments. The gap between potential and actual AI applications is likely due to the lack of translatability between controlled
research environments (where these models are developed) and clinical environments for which the AI tools are ultimately
intended.

Objective: We previously developed the Translational Evaluation of Healthcare AI (TEHAI) framework to assess the translational
value of AI models and to support successful transition to health care environments. In this study, we applied the TEHAI framework
to the COVID-19 literature in order to assess how well translational topics are covered.

Methods: A systematic literature search for COVID-19 AI studies published between December 2019 and December 2020
resulted in 3830 records. A subset of 102 (2.7%) papers that passed the inclusion criteria was sampled for full review. The papers
were assessed for translational value and descriptive data collected by 9 reviewers (each study was assessed by 2 reviewers).
Evaluation scores and extracted data were compared by a third reviewer for resolution of discrepancies. The review process was
conducted on the Covidence software platform.

Results: We observed a significant trend for studies to attain high scores for technical capability but low scores for the areas
essential for clinical translatability. Specific questions regarding external model validation, safety, nonmaleficence, and service
adoption received failed scores in most studies.

Conclusions: Using TEHAI, we identified notable gaps in how well translational topics of AI models are covered in the
COVID-19 clinical sphere. These gaps in areas crucial for clinical translatability could, and should, be considered already at the
model development stage to increase translatability into real COVID-19 health care environments.

(JMIR AI 2023;2:e42313)   doi:10.2196/42313

JMIR AI 2023 | vol. 2 | e42313 | p.51https://ai.jmir.org/2023/1/e42313
(page number not for citation purposes)

Casey et alJMIR AI

XSL•FO
RenderX

mailto:aaron.casey@sahmri.com
http://dx.doi.org/10.2196/42313
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

artificial intelligence; health care; clinical translation; translational value; evaluation; capability; utility; adoption; COVID-19;
AI application; health care AI; model validation; AI model; AI tools

Introduction

The discussion about the value of artificial intelligence (AI) to
health care and how AI can address health care delivery issues
has been in place for some years now [1-3]. However, most
stakeholders are eager for this discourse to move beyond
theoretical or experimental confines to adoption and integration
in clinical and real-world health care environments [1,4,5].
Recently, we have started to see some AI applications
undergoing clinical trials or integration into medical devices or
medical information systems [6]. Yet, most AI applications in
health care have not demonstrated improvement in clinical or
health care outcomes [5,7]. What prevents these applications
from translating their potential to clinical outcomes? First, many
of these AI applications are developed to demonstrate
algorithmic performance or superiority rather than improvement
in clinical results [8,9]. Second, the applications are not
considered for use beyond the experimental or pilot settings [8].
This limitation means their performance does not often
generalize beyond test data sets. Third, even when these
applications are externally validated, they are seldom integrated
into existing clinical workflows, often because of decreased
performance on the external validation [10] or low acceptance
by clinicians [11]. The latter aspect means these applications
remain experimental novelties rather than useful tools for
clinicians. Added to these translational issues are problems with
data that may lead to inaccurate results or the introduction of
biases. Several studies have shown how such issues can have
adverse outcomes for patients and communities [12-14]. Yet,
ethical and governance safeguards are often missing in AI in
health care applications or studies [14].

These translational issues suggest there is a need for a
comprehensive framework that can support researchers, software
vendors, and relevant parties in systematically assessing their
AI applications for their translational potential. To address this
gap, we formed an international team and ran a systematic

process over 18 months to develop an evaluation and guidance
framework, termed “Translational Evaluation of Healthcare AI”
(TEHAI) [15]. This framework focuses on the aspects that can
support the practical implementation and use of AI applications.
TEHAI has 3 main domains (capability, utility, and adoption
components) and 15 subcomponents (Table 1 and Multimedia
Appendix 1). As the range of clinical challenges and potential
AI solutions is wide, it is infeasible to automate the evaluation
using current technology. Instead, we rely on TEHAI as an
expert-driven but formalized framework where the subjectivity
of an individual reviewer is mitigated by the consensus power
of multiple committee members.

The emergence of the COVID-19 pandemic has resulted in
several studies and papers outlining the utility of AI in tackling
various aspects of the disease, such as diagnosis, treatment, and
surveillance [16-19] The number of AI papers published either
as preprints or as peer-reviewed papers has been unprecedented,
even leading to the development of AI applications to keep up
with and summarize the findings for scientists [20]. Some recent
reviews have outlined how most of these studies or the AI
applications presented in these studies have shown minimal
value for clinical care [7,21]. This finding aligns with the
discussion about the translational problem of AI in health care.

The aim of this study is to assess the awareness and
consideration for important translational factors in the scientific
literature related to COVID-19 machine learning applications.
We chose the narrow scope to ensure that our method of
evaluation (ie, TEHAI) would not be confounded by the
differences that are inherent to any particular area of health care.
For this reason, we included only studies where AI was clearly
aimed at solving a practical problem rather than discovering
new biology or novel treatments. This cost-effective approach
enabled us to uncover translational gaps in the AI applications
and validate the usefulness of a variety of AI models without
the added complexity due to a high diversity of diseases or
health care challenges.
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Table 1. Overview of the TEHAIa frameworkb.

WeightInitial scoreComponent and subcomponents

Capability

100-3Objective of the study

100-3Data set source and integrity

100-3Internal validity

100-3External validity

100-3Performance metrics

50-3Use case

Utility

100-3Generalizability and contextualization

100-3Safety and quality

100-3Transparency

100-3Privacy

100-3Nonmaleficence

Adoption

100-3Use in a health care setting

100-3Technical integration

50-3Number of services

50-3Alignment with the domain

aTEHAI: Translational Evaluation of Healthcare Artificial Intelligence (AI).
bThe framework comprises 15 separate criteria (subcomponents) that are grouped into 3 higher-level components. Each criterion yields a score between
0 and 3 points, depending on the quality of the study. To compare 2 or more AI models against each other, further weighting of the scores can be applied
to emphasize translatability. However, in this study, weighting was not used, since we focused on the statistics of the subcomponents instead.

Methods

Data Extraction
Eligible studies included those where a statistical algorithm was
applied to or trained with a COVID-19 data set and where the
intended use of the algorithm was to address a COVID-19 health
care problem. Excluded studies included those where
participants were younger than 18 years and where the full text
of the study was not in English. To find papers eligible for this
study, we searched the National Institutes of Health (NIH)
iSearch COVID-19 portfolio, MEDLINE via Ovid, and Embase.
These sources were searched on December 7, 2020, using search
strategies consisting of keywords expected to appear in the title
or abstract of eligible studies and index terms specific to each
database except in the case of the NIH iSearch COVID-19
portfolio. The search strategy was developed by a health
librarian (author BK) in consultation with the rest of the research
team.

For the COVID-19 element of the search, we adapted the
Wolters Kluwer expert search for COVID-19 on MEDLINE.
Specifically, we removed the search lines for excluding
non–COVID-19 coronaviruses (eg, Middle East respiratory
syndrome) and for pharmaceutical treatment options (eg,
remdesivir); at the time our search strategy was created, these
were lines 5 and 9, respectively, in the Wolters Kluwer Ovid
COVID-19 expert search. For the AI element of the search, we

searched MEDLINE for relevant papers, recording significant
keywords from their titles and abstracts. We also searched the
Medical Subject Headings (MeSH) thesaurus for related MeSH
terms. These steps led to the creation of a draft search strategy,
which was then tested and finalized. The search was limited to
records with a publication date of December 1, 2019, onward.
This limit was to reduce the number of irrelevant results, given
that the first known case of COVID-19 occurred in December
2019 (Multimedia Appendix 2).

A foundational Ovid MEDLINE search strategy was then
translated for Embase to make use of appropriate syntax and
index terms (Multimedia Appendix 2). Similar translation was
done for the NIH iSearch COVID-19 portfolio except for index
terms as this resource did not use indexing at the time of search
development (Multimedia Appendix 2). Finally, search strategy
validation and refinement took place by testing a set of known
relevant papers against the search strategy, as developed, with
all papers subsequently recalled by the search in MEDLINE
and Embase. A full reproduction of the search strategies for
each database can be found in Multimedia Appendix 2.
Searching these databases using the search strategy resulted in
5276 records. After removal of duplicates, we screened 3830
(72.6%) records for relevance. This resulted in 968 (25.3%)
studies identified as relevant and eligible for evaluation. From
these, a sample of 123 (12.7%) was randomly selected for
evaluation and data extraction, of which 102 (82.9%) were
included in the final set. Our target number for full evaluation
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was 100; however, additional papers were randomly picked to
account for the rejection of 21 (17.1%) papers that passed the
initial screen but were deemed ineligible after closer inspection
(Multimedia Appendix 3). Early on in the evaluation, it became
apparent that a significant portion of the studies focused on
image analysis; we then enriched the pool for studies that were
not imaging focused, taking the ratio of
imaging-focused:nonimaging-focused studies to 1:1. The full
text was retrieved for all 123 (12.7%) studies in the randomized
sample; however, only 102 (82.9%) studies met our inclusion
criteria at the evaluation and extraction stage (Multimedia
Appendix 4). Of the studies that did not meet our inclusion
criteria, the majority were nonimaging studies and the final ratio
of imaging-focused:nonimaging-focused studies was 2:1.

Evaluation and data extraction were conducted using Covidence
systematic review software [22]. We used this software to
facilitate the creation of a quality assessment template based
on the TEHAI framework [15] in combination with other
questions (henceforth referred to as data extraction questions)
aimed at further understanding the components that may
influence a study’s capacity to translate into clinical practice
(Multimedia Appendix 1). As a measure to minimize the impact
of subjectivity introduced by human evaluation, each paper was
initially scored by 2 reviewers, who independently evaluated
the paper against the elements of the TEHAI framework and
extracted relevant data. A third reviewer then checked the scores,
and if discrepancies were present, they chose 1 of the 2
independent reviewers’ scores as the final result. This process
was built-in to the Covidence platform. To further minimize
the impact of subjectivity introduced by human evaluation,
reviewer roles were also randomly assigned across the
evaluation team.

For scoring of the included studies, we derived upon previously
provided guidance for scoring evidence within the TEHAI
framework [15]. The TEHAI framework is composed of 3
overarching components: capability, utility, and adoption. Each
component comprises numerous subcomponent questions, of
which there are 15 in total. The scoring of each TEHAI
subcomponent is based on a range of 0-3, depending on the
criteria met by the study. In this study, we also investigated the
sums of these scores at the component level to provide a better
overview of data. In addition, TEHAI facilitates direct
comparisons between specific studies using a weighting
mechanism that further emphasizes the importance of
translatability (see the last column in Table 1). However, for
this study, where we focused on the aggregate statistical patterns,
weighting was not used.

We also asked reviewers to report on a select number of data
extraction questions that would enable us to further tease apart
which components of a study may influence the score obtained.
These questions covered (1) the broad type of the AI algorithm,
(2) methodological or clinical focus, (3) open source or
proprietary software, (4) the data set size, (5) the country of
origin, and (6) imaging or nonimaging data.

Data Analysis
Associations between groupings of papers and the distributions
of subcomponent scores were assessed with the Fisher exact

test. Correlations between subcomponents were calculated using
the Kendall formula. Component scores were calculated by
adding the relevant subcomponent scores together; group
differences in mean component scores were assessed using the
t-test. As there are 15 subcomponents, we set a multiple testing
threshold of P<.003 to indicate 5% type 1 error probability
under the Bonferroni correction for 15 independent tests. Unless
otherwise indicated, mean (SE) scores were calculated.

Results

TEHAI Subcomponent Scores
A total of 102 manuscripts were reviewed by 9 reviewers (mean
22.67 per reviewer, SD 7.71, min.=11, max.=36), with the same
2 reviewers scoring the same manuscript an average of 2.83
times (SD 2.58, min.=0, max.=13). The Cohen κ statistic for
interreviewer reliability was 0.45, with an asymptomatic SE of
0.017 over the 2 independent reviewers. The reviewer scores
were in moderate agreement (κ=0.45) according to Cohen’s
original tiers [23]. In practice, this means that the scoring system
was successful in capturing important and consistent information
from the COVID-19 papers, but there would be too much
disagreement due to reviewer background or random noise for
demanding applications, such as clinical diagnoses [24]. Given
that the role of the TEHAI framework is to provide guidance
and decision support (not diagnoses), moderate accuracy is
sufficient for a meaningful practical benefit for AI development.
Nevertheless, the question of reviewer bias should be revisited
in future updates to the framework.

Overall, the capability component scored the highest mean
score, followed by adoption and utility (Figure 1A). At the
subcomponent level, the poorest-performing questions were
nonmaleficence (93/102, 91.2%, scoring 0 points), followed
closely by safety and quality, external validity, and the number
of services (Figure 1B).

We observed moderate positive correlation (R=0.19-0.43)
between most capability component questions (data source vs:
internal validation R=0.43, external validation R=0.20,
performance R=0.33, and use case R=0.37; internal validation
vs: performance R=0.40, use case R=0.31; performance vs use
case R=0.32), with the exception of the subcomponent objective
of study (objective of study vs: data source R=0.13, internal
validation R=0.09, external validation R=0.08); see Figure 2.
This indicated that if a study scored well in one subcomponent
of the capability component, then it was also likely to score
well in the other capability subcomponents, with the exception
of the “objective of the study” subcomponent. Furthermore,
there was also a correlation between the subcomponents
belonging to the capability component and the “generalizability
and contextualization” (R=0.19-0.31), “transparency”
(R=0.11-0.27), and “alignment with the domain” (R=0.13-0.40)
subcomponents, as well as our data extraction question 9
(method of machine learning used; R=0.11-0.24); see Figure 2.
There was also a significant, moderate correlation between most
adoption component questions (R=0.18-0.42), with the exception
of the “alignment with the domain” subcomponent
(R=0.04-0.26); see Figure 2. A significant negative correlation
was observed between a country’s gross domestic product
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(GDP) and imaging studies (R=–0.30), indicating that high-GDP
countries are less likely to conduct imaging studies than
middle-GDP countries. The negative correlation between the
audience (clinical or methodological) and the number of services
(R=–0.36) indicated that methodological studies are less likely

to be associated with numerous services than clinical studies.
Code availability was inversely correlated with transparency
(R=–0.36), as expected (open source was 1 of the assessment
conditions).

Figure 1. Overall consensus scores obtained by all studies reviewed. (A) Average consensus scores for all studies reviewed (error bars=SE). (B) Stacked
bar graph showing the distribution of scores for each subcomponent question. Ext: external; h/care: health care; int: internal.
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Figure 2. Correlation heatmap showing the strength of correlation between all subcomponents and select data extraction questions. The strength of
correlation, as determined by the Fisher exact test, is shown in color, with the size of squares representing the level of significance. Avail: availability;
ext: external; GDP: gross domestic product; h/care: health care; int: internal.

AI Study Characteristics
The associations between the AI algorithms used in the studies
and TEHAI scores are shown in Figure 3. Deep learning
(including a convolutional neural network, or CNN for short)
was the most frequent machine learning model (54/102, 52.9%,
studies), followed by classic methods (14/102, 13.7%, studies,
comprising primarily linear and logistic regression models) and
standard machine learning (9/102, 8.8%, studies, comprising
primarily random forest [RF] and support vector machine [SVM]
algorithms); see Figure 3A. In 20.4% (n=20) of the studies,
multiple types of algorithms were used. At the component level,
deep learning and machine learning scored better in capability:
mean score 1.69 (SE 0.04) and 1.54 (SE 0.12), respectively. In
addition, deep learning was superior in adoption: mean score
0.95 (SE 0.06); see Figure 3B. This pattern was also evident at
the subcomponent level, where classic methods scored the
poorest for most questions (mean scores 0.07-1.78, SE 0.07-0.1),
with deep learning scoring significantly higher in numerous
subcomponents (mean scores 0.05-1.96, SE 0.03-0.12); see
Figure 3C. These findings revealed that those using deep
learning are more likely to include facets into their design that

are more likely to ensure their work will be integrated into
practice.

Figure 4 contains the results of comparisons between clinical
and methodologically focused papers. Methodological studies
tended to score higher in the capability component
(methodological mean score 1.63, SE 0.04; clinical mean score
1.52, SE 0.06), and clinically focused studies tended to score
higher in utility (clinical mean score 0.81, SE 0.07;
methodological mean score 0.75, SE 0.05) and adoption (clinical
mean score 1.03, SE 0.07; methodological mean score 0.87, SE
0.05; see Figure 4A), particularly in the “use in a health care
setting” (clinically focused mean score 0.90, SE 0.11;
methodologically focused mean score 0.58, SE 0.08; P=.037)
and “number of services” (clinically focused mean score 0.58,
SE 0.09; methodologically focused mean score 0.23, SE 0.06;

P=2.39 × 10–05) subcomponents. It is important to note that all
papers scored poorly in the “safety and quality” (clinically
focused mean score 0.13, SE 0.14; methodologically focused
mean score 0.58, SE 0.05) and “nonmaleficence” (clinically
focused mean score 0.12, SE 0.06; methodologically focused
mean score 0.07, SE 0.03) subcomponents, and despite being
more integrated into the health system, clinical papers did not
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score significantly higher scores in these subcomponents (Figures 4A and 4B).

Figure 3. Methods used by the various studies to achieve end points. (A) Percentage of studies using specific methods. As the field of potential algorithms
is diverse, we created broad categories to make the pie chart readable and to provide an overview of the most prevalent types of algorithms. Classic
methods included linear and logistic regression models, and the machine learning category comprised a heterogeneous mix of established nonlinear
algorithms, such as a random forest (RF) and a support vector machine (SVM). The deep learning category included mostly CNNs and represented
more recent neural network techniques developed for big data. (B) Component scores for the 4 main methods used in the studies. (C) Subcomponent
scores for the 4 main methods used in the studies. Bars show average scores, with error bars equal to SE. Bold P values indicate P<.05. Bonferroni-corrected
significance P=.003. CNN: convolutional neural network; ext: external; h/care: healt care; int: internal.
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Figure 4. Component and subcomponent scores split into subcategories based on data extraction questions, including (A and B) “intended audience,”
(C and D) “type of software,” and (E and F) “size of data set.” Bars show average scores, with error bars equal to SE. Bold P values indicate P<.05.
Bonferroni-corrected significance P=.003. Ext: external; h/care: health care; int: internal.

Close to half of the studies used open source software (n=45,
44.1%), with a small portion (n=8, 7.8%) using proprietary
software (with the remaining studies being unclear as to the
software availability). There was a tendency for proprietary
software to perform better at adoption, particularly in the “use
in a health care setting” subcomponent (open source software
studies mean score 0.69, SE 0.09; proprietary software studies

mean score 1.25, SE 0.16; P=.02), while papers with open source
software tended to score better in utility, including the “safety
and quality” (open source software studies mean score 0.27, SE
0.09; proprietary software studies mean score 0.13, SE 0.13;
P=.99), “privacy” (open source software studies mean score
0.91, SE 0.14; proprietary software studies mean score 0.75,
SE 0.31; P=.43), and “nonmaleficence” (open source software
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studies mean score 0.15, SE 0.05; proprietary software studies
mean score 0.13, SE 0.16; P=.99) subcomponents; see Figures
4C and 4D. We also observed a tendency for open source
software to score better in the “transparency” subcomponent
(open source software studies mean score 1.67, SE 0.15;
proprietary software studies mean score 0.5, SE 0.19; P=.02),
which is compatible with the findings from the correlation
analysis (Figure 2).

Across the studies, the median number of cases was 225
subjects; therefore, we allotted studies with >225 cases to the
large-data-set category and those with ≤225 cases to the
small-data-set category (Figures 4E and 4F). There was an
overall suggestive pattern for the large data set to score higher
than the small data set, again with the exception of safety and
quality, and privacy, and both scored poorly in nonmaleficence.

Countries may have differing capacities to integrate new
technologies into their health systems, and we hypothesized
that it would be detectable via the GDP. We split the studies
into low-, middle- and high-income countries based on the
classification defined by the World Bank [25]. There were no
studies published in the low-income category, with half of the
studies originating in middle-income countries and the other
half in high-income countries. Interestingly there was no
significant difference between components at the multiple testing
threshold; however, there was a trend suggesting a difference
in the adoption component (high-income study mean score 1.0,
SE 0.06; medium-income study mean score 0.83, SE 0.06;
P=.04; Multimedia Appendix 4A,B) and a slight tendency
toward middle-income countries to score better in the
“capability” subcomponent questions, particularly the “objective
of the study” (high-income study mean score 2.1, SE 0.09;
medium-income study mean score 1.76, SE 0.1; P=.03) and
“internal validity” (high-income study mean score 1.58, SE
0.08; medium-income study mean score 1.88, SE 0.08; P=.04)
subcomponents (Multimedia Appendix 4B).

We found that there were many studies where the authors used
AI to analyze images of the lungs (eg, X-rays) of patients with
COVID-19 and controls to classify them into categories,
ultimately producing algorithms that could accurately identify
patients with COVID-19 from images of their lungs. Thus, we
classified the studies as being imaging (direct image analysis
of X-rays or CT scans) or nonimaging (eg, studies that analyzed
blood metabolites), and there was a strong trend for nonimaging
studies to score higher than imaging studies, which included
the “objective of the study” (imaging study mean score 1.79,
SE 0.08; nonimaging study mean score 2.18, SE 0.13; P=.02),
“safety and quality” (imaging study mean score 0.16, SE 0.05;
nonimaging study mean score 0.36, SE 0.14; P=.015),
“nonmaleficence” (imaging study mean score 0.04, SE 0.02;
nonimaging study mean score 0.18, SE 0.07; P=.05), and
“number of services” (imaging study mean score 0.25, SE 0.06;
nonimaging study mean score 0.55, SE 0.11; P=.02)
subcomponents (Multimedia Appendix 4C,D).

Discussion

Principal Findings
Considering the emergence of the COVID-19 pandemic and
the flurry of AI models that were developed to address various
aspects of the pandemic, we conducted a systematic review of
these AI models regarding their likely success at translation.
We observed a significant trend for studies to attain high scores
for technical capability but low scores for the areas essential
for clinical translatability. Specific questions regarding external
model validation, safety, nonmaleficence, and service adoption
received failed scores in most studies. Therefore, we identified
notable quality gaps in most AI studies of COVID-19 that are
likely to have a negative impact on clinical translation.

There have been many claims made of such AI models,
including similar or higher accuracy, sensitivity, or specificity
compared to human experts [26-28] and real-time results that
have been suggested to lead to improved referral adherence
[29], but few independent studies have tested these claims. In
fact, it is suggested that although the AI models have potential,
they are generally unsuitable for clinical use and, if deployed
prematurely, could lead to undesirable outcomes, including
stress for both patients and the health system, unnecessary
intrusive procedures, and even death due to misdiagnosis [5,7].
Of those studies that examined the utility of COVID-19 AI
applications, there has not been a comprehensive evaluation of
AI in health care models encompassing assessment of their
intrinsic capabilities, external performance, and adoption in
health care delivery thus far. It is important for the scientific
community and relevant stakeholders to understand how many
of these AI models are translational in their value and to what
degree. To address this gap, we undertook a comprehensive
evaluation of COVID-19 AI models that were developed
between December 2019 and December 2020. The framework
we chose, TEHAI, is a comprehensive evaluation framework
developed by a multidisciplinary international team through a
vigorous process of review and consultation and systematically
assesses AI models for their translational value [15]. To select
COVID-19 studies, we conducted a systematic search, and after
screening 3830 studies, we selected 102 studies for evaluation.
Based on TEHAI, the studies were assessed for their capability,
utility, and adoption aspects and scored using a weighted
process.

The scale of the studies we screened (over 3000) and the studies
eligible for evaluation (over 900) indicated the level of activity
in this area despite the limited time frame selected for the
evaluation (2019-2020). The evaluation of the 102 studies,
although yielding some interesting findings, also had a few
expected results. Notable was that most studies, although doing
well in the capability component, did not evaluate highly in the
utility and adoption components. The latter components assess
the “ethical,” “safety and quality,” and “integration with health
care service” aspects of the AI model. However, it is not
surprising the AI models scored low in these components, given
the expediency required to develop and release these models in
a pandemic context. This meant the ethical components were
not a priority as one would expect in normal times. It was also
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not surprising to find that the CNN was the most popular
machine learning model, as most of the selected studies related
to medical imaging analysis (69/102 studies were imaging
studies compared to 33/102 studies that were not), where the
technique is widely understood and beginning to be applied in
some clinical settings [6,30].

Although there was a consistent trend for studies with large data
sets to score higher than those with small data sets, there was
no significant difference in any subcomponent between studies
with small versus large data sets. This was a surprising finding
and indicates that even when studies have collected more data,
they advance no further in the utility or adoption fields, and
should the total number of studies analyzed be increased, we
would expect the difference between the two data sets to become
significant. Regarding imaging versus nonimaging, we observed
that nonimaging studies scored higher in some adoption and
utility subcomponents. We suspect this was due to the more
clinical nature of the nonimaging research teams; thus, the
papers focused more on issues important to clinical practice.
Although there was a tendency for those studies using
proprietary software that we expected to be more mature, the
authors had not advanced the findings into practice any more
than that of open source, algorithm-based studies. Again, we
would expect this difference to become significant if the number
of studies scored were to be increased. We also assessed the
interpretability of the models as part of the “transparency”
subcomponent and found that imaging studies in particular
included additional visualization to pinpoint the regions that
were driving the classification. Further, the scoring studies in
each of the TEHAI components evidenced the need for planning
in advance for external validation, safety, and integration in
health services to ensure the full translatability of AI models in
health care.

Most of the reviewed studies lacked sufficient considerations
for adoption into health care practices (the third TEHAI
component), which has implications for the business case for
AI applications in health care. The cost of deployment and costs
from misclassification from both monetary and patient
safety/discomfort perspectives can only be assessed if there are
pilot data available from actual tests that put new tools into
service. Furthermore, critical administrative outcomes, such as
workload requirements, should be considered as early as
possible. Although we understand that such tests are hard to
organize from an academic basis, the TEHAI framework can
be used as an incentive to move in this direction.

We note that availability of dedicated data sets and computing
resources for training could be a bottleneck for some
applications. In this study, we observed multiple instances of
transfer learning, which is 1 solution; however, we will revise
the capability section of TEHAI to make a more specific
consideration for these issues.

Fair access to AI technology should also be part of good design.
The TEHAI framework includes this in the “internal validity”
subcomponent, where small studies in particular struggled with

representing a sufficient diversity of individuals. From a
translational point of view, we also observed shortcomings in
the contextualization of AI models. Again, since there was
limited evidence on service deployment, most studies scored
low on fairness simply due to a lack of data. We also note that
deployment in this case may be hindered by the clinical
acceptance of the models [11], and we will include this topic
in future amendments to the TEHAI framework.

Limitations
Although we undertook a comprehensive evaluation of AI
studies unlike previous assessments, our study still has some
limitations. First, the period we used to review and select studies
was narrow, being just a year. Another limitation is that for
practical reasons, we randomly chose a subset of 102 studies
for evaluation out of the 968 eligible studies. Despite these
limitations, we are confident that the evaluation process we
undertook was rigorous, as evidenced by the systematic review
of the literature, the detailed assessment of each of the selected
studies, and the parallel review and consensus steps.

We recommend caution when generalizing the results from this
COVID-19 study to other areas of AI in health care. First,
evaluation frameworks that rely on human experts can be
sensitive to the selection of the experts (subjectivity). Second,
scoring variation may arise from the nature of the clinical
problem rather than the AI solution per se; thus, TEHAI results
from different fields may not be directly comparable. Third, we
intentionally excluded discovery studies aimed at new biology
or novel treatments, as those would have been too early in the
translation pipeline to have a meaningful evaluation. Fourth,
significant heterogeneity of clinical domains may also confound
the evaluation results and may prevent comparisons of studies
(here, we made an effort to preselect studies that were
comparable). Lastly, the TEHAI framework is designed to be
widely applicable, which means that stakeholders with specific
subjective requirements may need to adapt their interpretations
accordingly.

We acknowledge the rapid progress in AI algorithms that may
make some of the evaluation aspects obsolete over time;
however, we also emphasize that 2 of the 3 TEHAI components
are not related to AI itself but to the ways AI interacts with the
requirements of clinical practice and health care processes.
Therefore, we expect that the translatability observations from
this study will have longevity.

Conclusion
AI in health care has a translatability challenge, as evidenced
by our evaluation study. By assessing 102 AI studies for their
capability, utility, and adoption aspects, we uncovered
translational gaps in many of these studies. Our study highlights
the need to plan for translational aspects early in the AI
development cycle. The evaluation framework we used and the
findings from its application will inform developers, researchers,
clinicians, authorities, and other stakeholders to develop and
deploy more translatable AI models in health care.
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Abstract

Background: There is a dearth of knowledge on reliable adherence prediction measures in behavior change support systems
(BCSSs). Existing reviews have predominately focused on self-reporting measures of adherence. These measures are susceptible
to overestimation or underestimation of adherence behavior.

Objective: This systematic review seeks to identify and summarize trends in the use of machine learning approaches to predict
adherence to BCSSs.

Methods: Systematic literature searches were conducted in the Scopus and PubMed electronic databases between January 2011
and August 2022. The initial search retrieved 2182 journal papers, but only 11 of these papers were eligible for this review.

Results: A total of 4 categories of adherence problems in BCSSs were identified: adherence to digital cognitive and behavioral
interventions, medication adherence, physical activity adherence, and diet adherence. The use of machine learning techniques
for real-time adherence prediction in BCSSs is gaining research attention. A total of 13 unique supervised learning techniques
were identified and the majority of them were traditional machine learning techniques (eg, support vector machine). Long
short-term memory, multilayer perception, and ensemble learning are currently the only advanced learning techniques. Despite
the heterogeneity in the feature selection approaches, most prediction models achieved good classification accuracies. This
indicates that the features or predictors used were a good representation of the adherence problem.

Conclusions: Using machine learning algorithms to predict the adherence behavior of a BCSS user can facilitate the reinforcement
of adherence behavior. This can be achieved by developing intelligent BCSSs that can provide users with more personalized,
tailored, and timely suggestions.

(JMIR AI 2023;2:e46779)   doi:10.2196/46779

KEYWORDS

adherence; compliance; behavior change support systems; persuasive systems; persuasive technology; machine learning

Introduction

Behavior change support systems (BCSSs) have been effective
in improving health and healthier lifestyles. These are persuasive
systems that have been designed to change behavior without
force or deception [1]. However, the effectiveness of these
systems is generally hindered by nonadherence [2-4].
Nonadherence to recommended regimes in BCSSs has the

potential to diminish their long-term benefits [5]. It is associated
with the increased prevalence of diseases such as hypertension,
diabetes, obesity, dementia, bipolar disorder, and heart failure
[2,4,6-8], as well as the increased cost of health care. Yet, there
are no standardized factors that can reliably predict adherence
[9,10]. Direct adherence monitoring approaches are expensive,
burdensome to care providers, and susceptible to distortion by
patients, while indirect monitoring approaches such as pill count,
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patient questionnaires, electronic medication monitors, or
electronic reporting of daily physical activity are susceptible to
misinterpretations and overestimation of adherence [11,12]. To
implement effective BCSSs and ensure positive behavior change
outcomes that can be attributed to the recommended
interventions, an accurate assessment of adherence behaviors
and their predictors has become imperative. This will guide
researchers and health care providers in identifying nonadherent
individuals as well as provide measures that will re-engage and
help them to adhere [13]. Additionally, an early prediction of
user dropout or relapse during interventions may suggest
measures that can be used to improve adherence [14].

Existing systematic reviews [2,7,15-19] have sought to examine
predictors or determinants of adherence to several BCSSs. They
predominately report that there is a lack of consistency regarding
reports of adherence, key variables mediating adherence, and
reliable measures of adherence. However, findings from these
reviews were based on studies that relied solely on self-reported
measures of adherence using pharmacological claims and
validated questionnaires from behavior change and health
psychology theories. Hence, abounding issues of over- and
underreporting may limit the validity of the findings.

This review enhances existing knowledge by focusing on
predictors of adherence to BCSSs using machine learning
techniques. Machine learning techniques have enabled a
proficient means of classifying, detecting, and predicting
complex phenomena including human behavior. It has also
attracted considerable research interest in the development of
BCSSs [20-22]. Nonetheless, literature on the use of machine
learning techniques as adherence prediction methods in BCSSs
is limited [13,23]. Although Bohlmann et al [23] provided
literature summaries on machine learning techniques for
predicting adherence, they focused on medication adherence
only and considered both digital and nondigital interventions.
In contrast to previous reviews, this systematic review focuses
on the use of machine learning approaches to predict all kinds
of adherence problems in BCSSs. In addition, it focuses only
on primary studies that used objectively collected data or data
generated by the BCSS. Accordingly, this review seeks to
answer the following question: What are the existing trends in
the use of machine learning techniques to predict adherence to
BCSSs? Specifically, this study answers 4 main review
questions, as shown in Table 1.

Table 1. Review questions (RQs) and their motivations.

MotivationQuestionRQ

Research on adherence has predominately focused on adherence to medication and
pharmacological treatments. However, adherence covers a wider range of health behaviors
than medication adherence [9]. This RQ sought to identify other target adherence problems

in BCSSsa.

What are the targeted adherence problems and
their related definitions?

RQ1

Considering the variabilities in adherence problems and BCSSs, this RQ aimed to provide
summaries on the characteristics of the BCSS and the persuasive system features that
have been used to improve adherence.

What are the characteristics of the BCSS includ-
ing persuasive system features?

RQ2

This RQ sought to identify the nature of the raw data and predominately used machine
learning techniques, feature selection techniques, and performance metrics.

What are the adopted machine learning approach-
es in predicting adherence to BCSSs?

RQ3

Though various barriers to adherence have been identified in the literature, this RQ sought
to identify only those barriers that limit individuals from adhering to the request of the
BCSS.

What are the limitations or barriers to adherence?RQ4

aBCSS: behavior change support system.

Methods

Literature Search
Following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) approach, a search on Scopus
and PubMed electronic databases was conducted. This search
aimed to identify peer-reviewed English conference and journal
papers published between January 2011 and August 2022.
Scopus indexes a larger number of peer-reviewed scientific
journals than the Web of Science and offers results of more
consistent accuracy than Google Scholar, while PubMed remains
a leading database in biomedical research [24]. Including papers
published within the past decade will reveal recent
evidence-based research trends [25]. Using the logical OR/AND
operators, the search phrases were a combination of keywords
related to prediction, adherence, health behavior change
interventions, and machine learning (See Multimedia Appendix
1 for the search phrases). Considering the plethora of approaches

to investigate adherence, the search for eligible studies was not
limited to a specific study design.

Only empirical studies that described the development and
testing of machine learning models for BCSS adherence
prediction were considered. Studies that used only self-reported
data, were not reported in English, or did not focus on human
participants were ignored.

Study Selection
During the initial search of the databases, 2182 papers were
retrieved. The results were refined by year, document type,
publication stage, source type, and language, resulting in 1866
papers. The exported papers were screened for uniqueness and
for titles containing keywords such as adherence, prediction,
and any machine learning technique. Of these, 1812 papers were
excluded. The remaining 54 papers were screened by abstracts
and full texts. Papers were excluded by abstract if the machine
learning technique(s) were not mentioned. Furthermore, papers
were excluded by full text if the intervention was not
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characterized by a BCSS (any form of information system that
has been developed to change human behavior voluntarily).
Finally, 11 journal papers were considered eligible for this
systematic review and thus downloaded for methodological
quality assessment.

Figure 1 shows the PRISMA flow diagram of study
identification and selection. Since the study selection was not
limited to a specific study design, the Mixed Methods Appraisal

Tool by [26] was used to assess the methodological quality of
the downloaded papers (see Multimedia Appendix 2
[13,14,26-35]). Accordingly, 11 studies were identified to be
of high methodological quality. Pertinent information on the
study characteristics and machine learning approaches was
extracted using a data extraction form in Microsoft Excel created
by the authors. Multimedia Appendix 3 [13,14,27-35] presents
a list of included studies.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection. BCSS: behavior change
support systems.

Results

All included studies (N=11) were primarily aimed at the
development and use of machine learning techniques for the
prediction of adherence [27-32], nonadherence, dropout, or
relapse [13,14,33-35]. The ensuing sections will elaborate on
findings related to the review questions (RQs).

Targeted Adherence Problems and Their Related
Definitions (RQ1)

Overview
This review identified 7 health behaviors that BCSSs target:
medication adherence [29,31,34], use of health care systems
[13,28], physical activity [14,27], diet [33], illicit drug use [30],
depression and anxiety [32], and insomnia [35]. Based on the
characteristics of these health behaviors, they were grouped into
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4 categories of adherence problems, described in the following
sections.

Adherence to Digital Cognitive or Behavioral
Interventions (n=5)
This category includes health behaviors such as health care
system use, illicit drug use, depression, anxiety, and insomnia.
This adherence problem focused on predicting adherence or
nonadherence to internet-based cognitive behavioral therapy
[32,35], and remote health monitoring systems [13,28,30] using
machine learning models. Adherence to digital cognitive or
behavioral interventions refers to the successful completion of
all recommended tasks and achievement of initial set goals.
While nonadherence refers to ignoring or not completing the
recommended task consecutively after signing up to use the
BCSS.

Medication Adherence (n=3)
This adherence problem is linked to medication adherence
behavior. Although extant literature posit that medication
nonadherence is the most common form of adherence problem,
this review identified 3 studies that addressed this problem
within BCSSs. It compromises the effectiveness of treatment
outcomes in about 85% of patients with chronic and acute
medical conditions globally [11,36]. Studies in this category
applied machine learning models to remote real-time
measurements of medication dosing [29,31,34]. Though these
studies had different thresholds for defining medication
adherence, it generally referred to a patient’s behavior or
commitment to taking the medications as prescribed by a
physician with an average adherence rate of 80% and above.

Physical Activity Adherence (n=2)
Adhering to physical activity routines has the potential to reduce
the risk of chronic diseases irrespective of age or other
sociodemographic factors. Whereas some individuals find it
difficult to regularly engage in or continue a physical activity
routine [14], others discontinue when they have achieved a
health or body goal [27]. These studies were observed to have

varying definitions of adherence. For instance, Zhou et al [14]
considered an increase in the number of steps over time, while
Bastidas et al [27] considered the users’ app use patterns. Thus,
physical activity adherence may be defined as either a consistent
increase in physical activity levels compared to an individual’s
baseline activity levels or an individual’s responsiveness to
prompts from the app. These 2 definitions describe behavior
compliance and program compliance, respectively [37].

Diet Adherence (n=1)
This was observed in only 1 study [33]. Dietary relapse in a
weight loss intervention was predicted. Dietary relapse refers
to any instance in which a person exceeded a specified meal or
snack point threshold (per meal).

Characteristics of the BCSSs and Persuasive System
Features (RQ2)
The BCSSs included mobile apps [13,14,27,28,33,34],
web-based apps [30,32,33,35], and sensor-based systems plus
mobile apps [29,31]. They were targeted at different groups of
people, namely physically inactive women, illicit drug users,
obese or overweight people, and patients with a wide range of
chronic diseases, such as heart failure, myocardial
infarction-anxiety, depression (MI-ANXDEP), insomnia, and
Parkinson disease. Multimedia Appendix 4 [14,15,29-44]
describes other study-specific characteristics.

The BCSSs leveraged some behavior change techniques and
persuasive systems features to improve user adherence. These
features were extracted and evaluated using the persuasive
systems design (PSD) model [45]. The PSD model has been
validated in several studies [37] and is predominately used in
the design and evaluation of BCSSs [46]. The model consists
of 28 system features that make up 4 categories of persuasive
principles (namely primary task support, dialogue support,
credibility support, and social support). Table 2 displays the
frequency of the PSD features represented in the BCSS. All the
studies had primary task support features, 8 studies had dialogue
support features, 5 studies had credibility support features, and
only 1 study had social support features.
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Table 2. Persuasive features identified in the behavior change support systems (BCSSs). Check marks indicate that the feature was identified.

TotalStudies predicting nonadherenceStudies predicting adherencePersuasive features

[14][34][33][35][13][27][31][29][32][28][30]

Primary task support

8/11✓✓✓✓✓✓✓✓✓Personalization

4/11✓✓✓✓Self-monitoring

4/11✓✓✓✓Reduction

1/11✓Rehearsal

1/11✓Tailoring

Dialogue support

5/11✓✓✓✓✓Reminders

2/11✓✓Suggestions

2/11✓✓Praise

1/11✓Rewards

1/11✓Similarity

1/11✓Liking

Credibility support

5/11✓✓✓✓✓Real world feel

3/11✓✓✓Expertise

3/11✓✓✓Verifiability

1/11✓Third party endorsement

Social support

2/11✓✓Social facilitation

Primary task support simplifies and motivates users to perform
recommended tasks (eg, exercise). A total of 5 features of the
primary task support principle were used: personalization,
self-monitoring, reduction, rehearsals, and tailoring.
Personalization was the most used feature in this category. It
delivers personalized content to the users. For example, artificial
intelligence generated workouts according to an individual’s
characteristics and preferences. Self-monitoring enables app
users to view and track their activity levels and health status in
real-time (eg, the app enables users to monitor, visualize, and
track activity levels and calories burned in real time). Reduction
breaks down tasks such as daily point goals into specific meal
or snack targets. The least used features in this category were
rehearsal (practicing the target behavior, eg, gait movements)
and tailoring (eg, the app provided content that was distinct to
users of specific age groups and health goals, such as alcohol
or smoking cessation, weight loss, or mental health).

Dialogue support provides a means to help users to achieve
their goals via human-computer interactions. The dialogue
support features included reminders (eg, medication prompts),
suggestions (eg, the app advises users based on their input to
the app), and praise (automated feedback on the completion of
a task). The least used features included rewards (eg, point-based
incentives), similarity (eg, therapy resembling traditional
cognitive behavioral therapy), and liking (eg, user-friendly and
appealing design).

System credibility support provides a means for users to trust
the system. Features identified in this category included
expertise (app provided theory-based information and were
designed to improve engagement, effectiveness, and security),
verifiability (app provided links to related sites), third-party
endorsement (from the National Institute of Health), and
real-world feel. The real-world feel feature was implemented
as “Contact Us” (a means to communicate with the developers
of the app) and “About Us” (providing information about the
developers of the app).

Social support provides a means of supporting users via social
influence. However, it was the least used principle. Social
facilitation was the only identified social support feature and it
was implemented by allowing user participation in online app
forums. Perhaps, the minimal use of social support features may
be attributed to the negative sentiments associated with some
of its features [38].

It is important to note that the effectiveness of these persuasive
system features in improving adherence was not explicitly
evaluated in the included studies. However, these features may
have directly or indirectly improved adherence rates. Some of
the studies used behavior change techniques such as goal-setting,
web-based human coaching, face-to-face counseling sessions,
and feedback from psychologists and expert program providers
to improve adherence behavior. However, this review could not
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identify behavioral theories or models upon which these
techniques were based.

Machine Learning Approaches (RQ3)
Developing machine learning models for predicting user
adherence or nonadherence was the general aim of all the
included studies. This process conventionally consists of 4 main
stages: data collection, feature selection, model training, and
model validation.

Data Collection
Apart from the gait-related data, which were collected in a
controlled environment (laboratory), the data used to train or
test the machine learning models in the majority of the studies
were objectively collected by the health app while the study
participants were performing the behavior of interest in an
uncontrolled environment. For example, data such as log data,
training behavior, walking steps, and 3D movement scans were
automatically extracted in a contactless manner without any
form of self-report from the users.

Studies on medication adherence were observed to use images
and videos to capture participants’ medication adherence
behavior. The apps used technologies such as computer vision
[34], internet-connected smart sharp bin [29], and flight sensors
[31] for the real-time monitoring of self-administered injections
and medication ingestion. Time-stamped data of injection
needles discarded into the smart sharp bin, time-stamped skeletal
joint data, and images of the participants taking the medication
were retrieved, validated, and then used to generate the data set
for training or testing the model. Similarly, studies on physical
activity adherence [14,27] used continuously collected
time-dependent physical activity data from app users to develop
machine learning models.

Studies on adherence to digital cognitive or behavioral
interventions [13,28,30,32,35] and dietary adherence [33] used
a combination of objectively collected data and participants’
responses to questions on self-assessment delivered by the health

app. Goldstein et al [33] used a BCSS that asked predefined
questions related to triggers of dietary relapse for the analysis.
Considering that objectively collecting trigger-related data or
self-assessment data on health symptoms from a mobile app
may currently be challenging as triggers (such as food cravings
and hunger) are physiologically motivated, future studies on
BCSSs that seek to extract trigger-related data may consider
using physiological sensor data. This is a noninvasive approach
to detecting hunger and cravings using wearable body sensors
[39]. Such sensor data may also be integrated into the health
app to enable self-monitoring.

Feature Selection or Engineering
Among the 11 studies, 5 performed feature selection, 5
performed feature engineering, and 1 adopted features based
on existing literature (see Multimedia Appendix 5
[14,15,29-37]). Feature selection and feature engineering were
both aimed at enhancing model performance by eliminating
irrelevant features and generating new features from raw data
respectively. Due to the complexities of combining 2 or more
machine learning techniques (ie, ensemble learning), some
studies [28] applied more than 1 feature selection method.
However, there were no differences in the selected features.

The flat features algorithm (including filter, wrapper, and
embedded methods) were the predominately used feature
selection method. This algorithm assumes all features to be
independent [40]. Interestingly, each study had its own set of
unique predictors irrespective of the category of adherence
problem. Multimedia Appendix 5 [14,15,29-37] highlights the
various feature selection approaches.

Model Training
The learning problem was a binary classification. Thus, there
were 2 class labels (outcomes), namely adherence/nonadherence,
adherers/nonadherers, relapse/nonrelapse, and
dropout/nondropout. An overview of the adopted techniques
and the outcomes of the best-performing techniques is provided
in Table 3.
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Table 3. Identified machine learning and model validation techniques.

Predicted outcomeEvaluation metricsMachine learning techniquesRef

Successful or early dropoutAUROCa,b, specificity, sensitivity,

PPVc, NPVd, and confusion matrix

Logistic regression and random foresta[30]

Dropout or nondropoutAccuracy, precisiona, and AUROCLogistic regression, random foresta, and decision trees[13]

Adherers or nonadherersPrecision, sensitivity, F1-score, TPRg,

FPRh, and AUROCa

Decision tree, MLPe, and KNNa,f[28]

Adherence or nonadher-
ence

AccuracyRandom foresta[32]

Dropout or nondropoutAUROCa, TPR, FPR, and PRAUCjLogistic regression, SVMi, and decision trees (boosted)a[35]

Relapse or notAccuracy, sensitivitya, specificity, and

AUROCa
Ensemble methodsa[33]

Adherence or nonadher-
ence

Accuracy, specificitya, sensitivity, preci-
sion, F1-score, and AUROC

XGBk, extra trees, random forest, MLP, gradient tree boosting, recurrent

neural network, and LSTMa,l

[29]

Adherence or nonadher-
ence

Accuracy, precisiona, sensitivity, AU-
ROC, TPR, and FPR

XGBa[34]

Adherence or nonadher-
ence

Confusion matrixDecision treesa, KNN, naive Bayes, SVM, and random forest[31]

Adherent or nonadherentAccuracy, sensitivity, F1-score, and
confusion matrix

LSTMa and SVM[27]

Relapse or notAccuracy, sensitivity, specificity, and
AUROC

Logistic regressiona and SVM[14]

aBest performing machine learning technique or most relevant metric for the outcome prediction.
bAUROC: area under the receiver operating characteristic curve.
cPPV: positive predictive value.
dNPV: negative predictive value.
eMLP: multilayer perceptron.
fKNN: k-nearest neighbor.
gTPR: true positive rate.
hFPR: false positive rate.
iSVM: support vector machine.
jPRAUC: precision-recall curve.
kXGB: extreme gradient boost.
lLSTM: long short-term memory.

A total of 13 supervised machine-learning techniques were used
across the included studies. Logistic regression, support vector
machines, and random forest were the most used techniques
cutting across all 4 categories of the adherence problems. The
machine learning techniques mapped to specific adherence
problems included support vector machines for physical activity
adherence; extreme gradient boosting, extra trees, recurrent
neural network, naive Bayes, and gradient tree boosting for
medication adherence; and ensemble methods for dietary
adherence. Random forest was observed to be the predominant
best-performing model in studies on adherence to digital
cognitive or behavioral interventions, while long short-term
memory (LSTM) was a common best-performing model
between medication adherence and physical activity adherence.
Overall, the predominant best-performing models across all
included studies were random forest, decision trees, logistic
regression, k-nearest neighbor, LSTM, and ensemble learning.

Model Validation
Owing to the relatively small and imbalanced data sets used in
some of the included studies, cross-validation methods were
adopted to eliminate bias that may occur during data split. The
following cross-validation methods were identified: K(5)-fold
cross-validation [29,34]; leave-one-out cross-validation
[28,31,33]; and stratified K(10)-fold cross-validation [13,30,35].

Besides cross-validation methods, several performance metrics
were used to compare and evaluate the performance of the
various machine learning models. It was observed that the choice
of performance metrics was dependent on the context of the
study and more than 1 metric was used to evaluate the
performance of a model (see Table 3). The predominately used
metrics in order of frequency included area under the receiver
operating characteristic curve (7/11), accuracy (6/11), sensitivity
(6/11), specificity (4/11), precision (3/11), F1-score (3/11), true
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positive rate (3/11), false positive rate (3/11), confusion matrix
(3/11), positive predictive value (1/11), negative predictive
value (1/11), and precision-recall curve (1/11).

Generally, it was observed that the prediction models had good
classification accuracies. This was an indication that the features
or predictors used in each of these studies were a good
representation of the intervention domain. Nonetheless, due to
the plethora of digital platforms, the interaction between
technology and behavior may affect the generalizability of the
results [33,34]. Thus, Koesmahargyo et al [34] posit replication
and integration of data from various digital platforms.

Barriers to Adherence (RQ4)
Studies suggest that the rate of adherence may be affected by
the following:

1. Achievement of set health or body goals
2. Issues associated with trust and the tolerability of the

technology
3. The complexity of the system, and the mismatch between

the system design and the needs and preferences of its users
4. Inappropriate timing for delivering or sending notifications

or suggestions to the users; since these timings are usually
not well chosen, they may either inconvenience the users
when delivered or may not be effective in getting their
attention

5. The insufficient open collaborative relationship between
health app providers and the users. Prior studies [37] refer
to this as a lack of accountability in adherence prediction
models

These barriers may be classified into two nonadherent groups:
intentional nonadherence (1 and 2), or unintentional
nonadherence (3, 4, and 5).

Discussion

This systematic review provides an overview of existing trends
in the use of machine learning techniques to predict adherence
to different BCSSs. This was achieved by finding answers to a
set of review questions using data extracted from the 11 included
studies. The rest of this section will summarize and discuss
findings based on the review results.

This review identified 4 categories of adherence problems:
adherence to digital cognitive or behavioral interventions,
medication adherence, physical activity adherence, and diet
adherence. These problems collectively represent what
Middleton et al [4] describe as an “adherence challenge.”
However, when considering the taxonomy of key health
behaviors [41], it was observed that the behaviors identified in
this systematic review were not exhaustive. Consequently, the
prediction of adherence to other health behaviors is an open
research area for further investigation.

On the use of persuasive system design features, it was observed
that primary task support features were the most used, while
social support features were the least used. This finding is
consistent with that of related systematic reviews [37]. Though
the included studies claimed that either the implementation of
the BCSS or the selected features (predictors) for the machine

learning algorithm was theory-based, this systematic review
could not identify the behavior change theories adopted by the
studies. Hence, it was not clear if the operating mechanisms of
behavioral theories were considered in most of the included
studies. Nonetheless, prior studies have provided evidence of
the effectiveness of theory-based interventions and persuasive
system features in promoting adherence behavior in BCSSs.
Future studies should therefore be intentional about the use of
these mechanisms as measures of improving adherence behavior.

The relevant predictors identified align with findings from
existing literature. Similar to existing reviews [4,42], exercise
history, intensity, and frequency emerged as relevant predictors
of physical activity adherence. Exercise, fatigue, cognitive load,
and confidence were the most relevant predictors of diet
adherence, affirming previous findings (eg, [42]). While
communication with or feedback/advice from the physician or
health provider, fear, and patients’ cognitive capacity were the
most relevant predictors of medication adherence as also found
in past reviews (eg, [3,42]). Furthermore, some of the identified
predictors of physical activity adherence and medication
adherence affirm 2 viewpoints from social learning theory [43]:
that individuals develop beliefs that they can perform the
necessary tasks to obtain the desired outcome based on prior
accomplishment of similar behaviors and verbal persuasion by
credible sources. This systematic review identified the
completion of homework assignments as a predictor of cognitive
or behavioral intervention adherence, while Heesch et al [44]
identified the same predictor for physical activity adherence.
Furthermore, this review suggests that not all initially selected
predictors or features of adherence are subsequently considered
most relevant by the feature selection algorithms (see
Multimedia Appendix 5 [14,15,29-37]). Using multiple feature
selection methods yields the same feature set. Future studies
should consider incorporating the feature selection or
engineering techniques identified in this review to enable a
comparison of their results with the existing literature.

Most of the included studies used traditional machine learning
techniques, with limited use of advanced learning techniques
such as ensemble learning, reinforcement learning, and deep
learning. Among the 13 supervised machine learning algorithms,
only 2 were deep learning techniques (multilayer perceptron
and recurrent neural network–LSTM), 1 ensemble, and zero
reinforcement learning. Perhaps the sparing use of deep learning
techniques may be attributed to the small sample sizes of these
studies, considering that deep learning is more efficient in the
analysis of huge amounts of data. For instance, LSTM may have
been a more appropriate algorithm for the study by Evangelista
et al [28], because the data collected captured changes in
conditions that evolved slowly over time. However, it was not
used probably due to a sample of only 14 participants.
Interestingly, in a study with a large data set (342,174 injection
historic drop data) [29], LSTM outperformed traditional machine
learning models like random forest. Future studies should
therefore consider using advanced learning methods instead of
traditional learning techniques. Deep learning techniques can
automate feature engineering or selection and extract complex
and nonlinear patterns from data. Reinforcement learning is
well suited for systems with inherent time delays where
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decisions are evaluated by a long-term future reward and not
an immediate knowledge of the effectiveness of a system [47].
In addition, since they learn by observing the results of their
actions, they are applicable in study settings with scarce or
varying data as found in BCSSs [22,47].

This systematic review observed that quite a small amount of
data were used in most of the included studies. With each study
participant treated as a single data point, data were extracted
from as little as 12 study participants to as many as 7697 study
participants. Although training a machine learning model
requires a reasonable amount of data to train the model, the
required sample size for training and producing a model with
good generalizability is not well established [33,48]. Regardless,
the included studies adopted suitable machine learning
techniques, dimensionality reduction techniques, and evaluation
methods that are designed to improve model performance
irrespective of the sample size. For instance, Zhou et al [14]
performed data augmentation on the training data.

Multiple metrics can be used to evaluate model performance
(see Table 3). However, the choice of which metrics best
measure the model performance depends on the nature of the
problem, the researcher’s understanding of the domain or
problem, and the expected outcome of the study. For instance,
Gu et al [29] prioritized predicting nonadherers (those who will
not perform the recommended task on time), hence specificity
(true negative rate) was a preferred metric. Considering that a
wrong prediction may lead the health app provider to develop
unnecessary persuasive strategies for the user, Pedersen et al
[13] and Bastidas et al [27] aimed to reduce false negatives (ie,

participants at high risk of dropout are not identified as such),
hence a high precision was a preferred metric. However, if the
study’s goal is to validate the hypothesis that machine learning
methods can be used in predicting adherence [14,31] rather than
to compare machine learning methods, then choosing the most
appropriate metric becomes irrelevant.

A major research challenge reported in 9 of 11 of the included
studies was the scarce and small-sized data sets and their effect
on the generalizability and reliability of the research results. A
specific study limitation pertained to collecting data in a
controlled environment [31]. This method of data collection
does not represent the entire range of user behavior in a
free-living environment.

Conclusions
Findings from this systematic review indicate that though the
use of machine learning techniques in the prediction of
adherence to BCSSs is scarce and is only beginning to gain
research interest, it has the potential to accurately predict
adherence behavior in real time using objectively collected data.
This systematic review is unique as it has not yet been reported
in the literature, and it provides an overview of machine learning
approaches in determining predictors of specific adherence
problems in BCSSs. A grasp of these trends across different
BCSSs will guide researchers in choosing appropriate features
and machine learning techniques that favor the prediction of
specific adherence problems. In summarizing findings from 11
journal papers, this systematic review highlights research gaps
and areas for future research. It also acknowledges limitations
that may exist due to the selection strategy for eligible studies.
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Abstract

Background: An early warning tool to predict attacks could enhance asthma management and reduce the likelihood of serious
consequences. Electronic health records (EHRs) providing access to historical data about patients with asthma coupled with
machine learning (ML) provide an opportunity to develop such a tool. Several studies have developed ML-based tools to predict
asthma attacks.

Objective: This study aims to critically evaluate ML-based models derived using EHRs for the prediction of asthma attacks.

Methods: We systematically searched PubMed and Scopus (the search period was between January 1, 2012, and January 31,
2023) for papers meeting the following inclusion criteria: (1) used EHR data as the main data source, (2) used asthma attack as
the outcome, and (3) compared ML-based prediction models’ performance. We excluded non-English papers and nonresearch
papers, such as commentary and systematic review papers. In addition, we also excluded papers that did not provide any details
about the respective ML approach and its result, including protocol papers. The selected studies were then summarized across
multiple dimensions including data preprocessing methods, ML algorithms, model validation, model explainability, and model
implementation.

Results: Overall, 17 papers were included at the end of the selection process. There was considerable heterogeneity in how
asthma attacks were defined. Of the 17 studies, 8 (47%) studies used routinely collected data both from primary care and secondary
care practices together. Extreme imbalanced data was a notable issue in most studies (13/17, 76%), but only 38% (5/13) of them
explicitly dealt with it in their data preprocessing pipeline. The gradient boosting–based method was the best ML method in 59%
(10/17) of the studies. Of the 17 studies, 14 (82%) studies used a model explanation method to identify the most important
predictors. None of the studies followed the standard reporting guidelines, and none were prospectively validated.

Conclusions: Our review indicates that this research field is still underdeveloped, given the limited body of evidence, heterogeneity
of methods, lack of external validation, and suboptimally reported models. We highlighted several technical challenges (class
imbalance, external validation, model explanation, and adherence to reporting guidelines to aid reproducibility) that need to be
addressed to make progress toward clinical adoption.
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Introduction

Background
Asthma is a chronic lung illness characterized by reversible
airway blockage caused by inflammation and narrowing of the
small airways in the lungs that can lead to cough, wheezing,
chest tightness, and breathing difficulties [1]. It is a common
noncommunicable disease that affects children and adults alike.
In 2019, asthma affected an estimated 262 million individuals,
resulting in 461,000 fatalities [1,2]. Asthma attacks occur
particularly in those with poorly controlled diseases [3]. An
asthma attack is a sudden or gradual deterioration of asthma
symptoms that can have a major influence on a patient’s quality
of life [4]. Such attacks can be life-threatening and necessitate
rapid medical attention, such as an accident and emergency
department visit or hospitalization, and can even lead to
mortality [5]. Asthma attacks are prevalent, with >90,000 annual
hospital admissions in the United Kingdom alone [6]. Early
warning tools to predict asthma attacks offer the opportunity to
provide timely treatments and, thereby, minimize the risk of
serious outcomes [4].

Machine learning (ML) offers the potential to develop an early
warning tool that takes different risk factors as input and then
outputs the probability of an adverse outcome. So far, logistic
regression (LR) has been the most common approach in building
an asthma attack risk prediction tool [7-9]. However, the
predictive performance of this method may be inferior to more
advanced ML methods, especially for relatively
high-dimensional data with complex and nonlinear relationships
between the variables [10,11]. The use of ML has been
investigated in a wide range of medical domains by using
various data such as electronic health records (EHRs), medical
images, genomics data, and wearables data [12-14]. However,
to the best of our knowledge, there is still no widely used
ML-based asthma attack risk prediction tool in clinical practice.

Objective
Previous recent systematic reviews have discussed the choice
of models used for asthma prognosis [15,16]. An ML pipeline,
however, has several components besides modeling choice (eg,
feature engineering [17]), which can profoundly influence the
performance of the algorithms. Owing to the lack of consensus
about what constitutes best practices for the application of ML
for predicting asthma attacks, there is considerable heterogeneity
in previous studies [15,16], thereby making direct comparisons
challenging. In this scoping review, we aimed to critically
examine existing studies that used ML algorithms for the
prediction of asthma attacks with routinely collected EHR data.
Besides data type and choice of models, we have reviewed
additional ML pipeline challenges. These include customizing
off-the-shelf algorithms to account for domain-specific subtleties
and the need for the model to be explainable, extensively
validated (externally and prospectively), and transparently
reported.

Methods

Overview
The scoping review was conducted based on the 5-stage
framework by Arksey and O’Malley [18]. This framework
includes identifying the research question; searching and
collecting relevant studies; study filtering; data charting; and
finally, collating, summarizing, and reporting the results. The
research questions in this scoping review were the following:

1. What methods are commonly used in developing an asthma
attack prediction model?

2. How did the authors process the features and outcome
variables?

3. Are there any of these prediction models that have been
implemented in a real-world clinical setting?

We then translated these 3 questions into the patient or
population, intervention, comparison, and outcomes model
[19,20], as shown in Table 1.

Table 1. The patient or population, intervention, comparison, and outcomes structure.

KeywordsExpansionItem

People with asthmaPatient, populationP

Machine learningIntervention, prognostic factor, or exposureI

N/AaComparison of interventionC

Asthma attackOutcomeO

aN/A: not applicable.

Search Strategy
We used the patient or population, intervention, comparison,
and outcomes model in Table 1 as our framework for defining
relevant keywords. This approach led us to include clinical
terms associated with asthma attacks, encompassing concepts
such as asthma exacerbation, asthma control, asthma

management, and hospitalization. In addition, we integrated
technical terminology related to ML, incorporating terms such
as artificial intelligence, supervised methods, and deep learning
(DL). All the keywords that we used in the search strategy can
be found in Multimedia Appendix 1 [4,11,21-35]. Overall, 2
databases, PubMed and Scopus, were chosen as the sources of
papers. The search period was between January 1, 2012, and
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January 31, 2023, and the search was limited to the title, abstract,
and keywords of each paper but without any language

restriction. The complete query syntax for both databases is
listed in Textbox 1.

Textbox 1. Query syntax.

Scopus

• ((TITLE-ABS-KEY(“asthma”) AND (TITLE-ABS-KEY(“management”) OR TITLE-ABS-KEY(“control”) OR TITLE-ABS-KEY(“attack”)
OR TITLE-ABS-KEY(“exacerbation”) OR TITLE-ABS-KEY(“risk stratification”) OR TITLE-ABS-KEY(“risk prediction”) OR
TITLE-ABS-KEY(“risk classification”) OR TITLE-ABS-KEY (hospitalization”) OR TITLE-ABS-KEY (“hospitalisation”) OR TITLE-ABS-KEY
(“prognosis”))) AND (TITLE-ABS-KEY(“machine learning”) OR TITLE-ABS-KEY(“artificial intelligence”) OR TITLE-ABS-KEY(“supervised
method”) OR TITLE-ABS-KEY(“unsupervised method”) OR TITLE-ABS-KEY (“deep learning”) OR TITLE-ABS-KEY (“supervised learning”)
OR TITLE-ABS-KEY (“unsupervised learning”))) AND PUBYEAR > 2011

PubMed

• ((asthma[Text Word]) AND ((Management[Text Word]) OR (Control[Text Word]) OR (Attack[Text Word]) OR (Exacerbation[Text Word])
OR (Risk Stratification[Text Word]) OR (Risk Prediction[Text Word]) OR (Risk Classification[Text Word]) OR (hospitalization[Text Word])
OR (hospitalisation[Text Word]) OR (prognosis[Text Word])) AND ((machine learning[Text Word]) OR (Artificial Intelligence[Text Word])
OR (supervised method[Text Word]) OR (unsupervised method[Text Word]) OR (deep learning[Text Word]) OR (supervised learning[Text
Word]) OR (unsupervised learning[Text Word]))) AND (“2012/01/01”[Date - Publication] : “2023/01/31”[Date - Publication])

Eligibility Criteria and Study Selection
Overall, 2 authors (AB and KCHT) performed the 2-step study
selection process. During the first selection step, we focused
on the abstract. In the second step, we conducted a thorough
reading of the full text of the manuscript. We only included
papers that met our inclusion criteria: (1) used asthma attack as
the outcome, (2) included an ML-based prediction model, and
(3) used EHR data as the main data source. We defined the
concept of EHR-derived data as structured, text-based,
individual-level, and routinely collected data gathered within
the health care system. In cases of unclear information extracted
from the abstract, the reviewers decided to retain the studies for
the next iteration (full-text review). We excluded nonresearch
papers, such as commentary and systematic review papers
because of the insufficient technical information. We also
filtered out papers that did not provide sufficient details about
the ML approach and the result, including protocol papers.

Data Extraction
From each of the eligible papers, we extracted data from the
full text and web-based supplements. We then summarized these
data under different categories such as data set (whether publicly
available or not), population characteristics (source, size, age
range, and region), year of data, outcome definition and how it
was represented in the model, number of features, feature
selection method, imbalance handling strategy, ML prediction
methods, performance evaluation metric, evaluation result,
external validation, explainability method, and real-world
clinical setting implementation. The data extraction and

summarization for each paper were conducted independently
by 2 authors (AB and KCHT). In case of any discrepancies, the
2 authors discussed them in detail during face-to-face meetings
to reach an agreement. If the 2 reviewers could not resolve the
disagreement, we had a further discussion with the whole team.
For each study, we have reported both the performance
evaluation result of the prediction models and the most important
predictors where available.

Results

Overview
In total, 458 nonduplicated, potentially eligible papers were
identified. At the end of the selection process, 3.7% (17/458)
of the papers were included based on the inclusion criteria (refer
to the PRISMA [Preferred Reporting Items for Systematic
Reviews and Meta-Analyses] diagram in Figure 1). The earliest
study that was included in the full review was published in 2018.
In the abstract filtering stage, most of the studies (353/458,
77.1%) were excluded because the prediction outcome was not
an asthma attack. We included 10.5% (48/458) of the studies
in the full-text filtering stage. Eventually, 3.1% (14/458) of the
studies were excluded because they did not meet our inclusion
criteria. Then, 2.6% (12/458) nonresearch papers were also
excluded. In addition, we excluded 0.9% (4/458) of the studies,
which were a follow-up for 2 main papers that we included in
the extraction stage. All the summary points in these follow-up
studies were identical to the ones in the main studies. We also
excluded 0.2% (1/458) of the studies owing to insufficient
information.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram. EHR: electronic health record; ML: machine
learning.

Asthma Data Sets
Table 2 summarizes the basic information about each included
study. Only 6% (1/17) of the studies used routinely collected
data from primary care alone [21]. Of the 17 studies, only 8
(47%) used data from secondary care, and the remaining 8 (47%)
used routinely collected data from both primary and secondary
care. All studies used data sets hosted either at the author’s
institution or their collaborators’ institution, except a study [22]
that used publicly available data (the Medical Information Mart
for Intensive Care III data set [36]) as one of their data sets.
Overall, 76% (13/17) of the studies used only EHR data to build
the prediction model. Of the 17 studies, 4 (24%) studies

integrated EHR data with additional modalities, including
radiology images (chest computed tomography scans) [23] and
environmental data [11,24,25], aiming to enhance predictive
accuracy. The study populations varied across the studies, with
most of them involving adults (8/17, 47%), followed by the
general population, both children and adults (5/17, 29%), and
children (4/17, 24%). Of the 17 studies, 14 (82%) had study
populations from the United States. The other countries studied
included Japan, Sweden, and the United Kingdom. All studies
incorporated >1000 samples, except a study [23] that trained
the prediction model on <200 samples. Among the studies, the
biggest data set had data from 397,858 patients [26].
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Table 2. Summary of studies’ basic information.

Sample sizeData yearRegionData sourcePublicly available
data set

Health care settingStudy, year

30572003-2020United StatesSingle modalityNoSecondary careInselman et al [27], 2022

59822014-2019United StatesMultimodalityNoBothHurst et al [25], 2022

18,4892013United StatesSingle modalityNoSecondary careHogan et al [28], 2022

60,3022010-2018United StatesSingle modalityNoBothZein et al [29], 2021

90692009-2013United StatesSingle modalityNoSecondary careSills et al [30], 2021

42,6852016-2017JapanSingle modalityNoSecondary careHozawa et al [31], 2021

29,3962000-2013SwedenSingle modalityNoBothLisspers et al [32], 2021

2002018-2020United KingdomMultimodalityNoSecondary careAnanth et al [23], 2021

82,8882011-2018United StatesSingle modalityNoBothTong et al [33], 2021

10,0002013-2017United StatesMultimodalityNoSecondary careMehrish et al [24], 2021

31,4331992-2015United StatesSingle modalityNoBothXiang et al [4], 2020

28,1012007-2011United StatesSingle modalityNoBothCobian et al [34], 2020

315,3082005-2018United StatesSingle modalityNoBothLuo et al [35], 2020

38,5972001-2012United StatesSingle modalityYesSecondary careRoe et al [22], 2020

397,8582012-2018United StatesSingle modalityNoBothLuo et al [26], 2020

40131997-2002United StatesSingle modalityNoPrimary careWu et al [21], 2018

29,3922012-2015United StatesMultimodalityNoSecondary carePatel et al [11], 2018

Data Preprocessing
There was considerable heterogeneity in the definition of the
prediction outcome used in the models, including asthma
exacerbation [4,25,27,29,31,32,34], asthma-related
hospitalization [11,24,26,30,33,35], asthma readmission [28],
asthma prevalence [24], asthma-related mortality [22], and
asthma relapse [21].

The time horizon used to define the prediction outcome also
varied across studies. Of the 17 studies, 6 (35%) studies defined
the model task as a 1-year prediction [4,23,26,31,33,35]. Other
variations in the time horizon for the outcome were 180 days
[28], 90 days [34], 28 days [29], and 15 days [32]. A study
compared the prediction model performances across 3 time
horizons: 30, 90, and 180 days [25]. Of the 17 studies, 2 (12%)
studies undertook a different approach, where the aim was to
predict asthma attack–related hospitalization within 2 hours
after an accident and emergency department visit [11,30]. Of
the 17 studies, 3 (18%) studies did not report the prediction time
horizon [21,22,24].

There was an obvious class imbalance in 76% (13/17) of the
studies (Table 3). Class imbalance is a problem where the
distribution of samples across the classes is skewed [37].
Ignoring this problem during model development will produce
a biased model. Among the selected studies, the smallest
minority class ratio accounted for as little as 0.04% [32]. Among
these 17 studies, only 5 (29%) [4,21,30,32,33] explicitly
mentioned their strategies to appropriately handle imbalanced
data. Synthetic minority oversampling technique [38],
oversampling [39,40], and undersampling [39,40] were the

methods reported in these studies. The objective of these 3
methods is to balance the proportion of samples in each class
by either generating synthetic data from the minority class or
omitting a certain number of samples in the majority class. Of
the 17 studies, only 2 (12%) studies used a balanced data set
[22,23], whereas 2 (12%) other studies did not report the class
ratio of their data set [24,34]. Various feature selection methods
were explicitly mentioned as part of the data preprocessing step,
including backward stepwise variable selection [28], light
gradient boosting method feature importance [32], and Pearson
correlation [32]. Of the 17 studies, 5 (29%) studies
[4,26,30,33,35] implemented the feature selection process as
the built-in method in the model development phase, whereas
the remaining studies did not mention the feature selection
method in their report. The smallest feature set used in the study
was 7 variables [24], and the biggest set was >500 variables
[32]. The handling of missing values varied across the studies.
In most cases (9/17, 53%), missing values were treated either
as a distinct category or assigned a specific value
[21,23,25-27,29,32,33,35]. However, some studies opted to
exclude data containing missing values [4,11,28,30], whereas
others did not specify their approach for addressing this issue
[22,24,31,34]. Notably, more than half of the studies (11/17,
65%) did not describe their methods for data normalization.
This step is particularly critical for certain ML algorithms such
as LR and support vector machine to prevent uneven weighting
of features in the model. In contrast, 35% (6/17) of the studies
[11,22,23,26,33,35] used a standard mean normalization
technique to standardize the continuous features, ensuring
uniform scaling across the data set.
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Table 3. Summary of the data preprocessing step.

Number of
features

Feature selec-
tion methods

Data imbalance han-
dling methods

Class imbalance ratio (%)Prediction time
horizon

OutcomesStudy, year

21UnknownUnknown180 dAsthma exacerbationInselman et al
[27], 2022

• 22.60

41UnknownUnknown30, 90, and 180 dAsthma exacerbationHurst et al [25],
2022

• 37

21Backward step-
wise variable
selection

Unknown180 dAsthma readmissionHogan et al
[28], 2022

• 5.70

82UnknownUnknown28 dAsthma exacerbationZein et al [29],
2021

• Nonsevere=32.80
• Severe=2.90

13Automated fea-
ture selection

OversamplingAdmission after

A&Ea depart-
ment visit

Asthma-related hospi-
talization

Sills et al [30],
2021

• 22.50

25UnknownUnknown365 dAsthma exacerbationHozawa et al
[31], 2021

• 13.70

>500Correlation and

LGBMb model

Undersampling and
weighting method

15 dAsthma exacerbationLisspers et al
[32], 2021

• 0.04

17UnknownUnknown365 dAsthma exacerbationAnanth et al
[23], 2021

• 50

234Automated fea-
ture selection

WEKAc365 dAsthma-related hospi-
talization or A&E de-
partment visit

Tong et al [33],
2021

• 1.66

7UnknownUnknownUnknownAsthma prevalence,
asthma-related hospi-
talization, or hospital
readmission

Mehrish et al
[24], 2021

• Unknown

UnknownAutomated fea-
ture selection

SMOTEd365 dAsthma exacerbationXiang et al [4],
2020

• 7.20

>25UnknownUnknown90 dAsthma exacerbationCobian et al
[34], 2020

• Unknown

235Automated fea-
ture selection

Unknown365 dAsthma-related hospi-
talization

Luo et al [35],
2020

• 3.59

42UnknownUnknownUnknownAsthma-related mortal-
ity

Roe et al [22],
2020

• 49

337Automated fea-
ture selection

Unknown365 dAsthma-related hospi-
talization

Luo et al [26],
2020

• 2.30

60UnknownRandom undersam-
pling

UnknownAsthma relapseWu et al [21],
2018

• 32.89

100UnknownUnknownAdmission after

EDe visit

Asthma-related hospi-
talization

Patel et al [11],
2018

• 17

aA&E: accident and emergency.
bLGBM: light gradient boosting method.
cWEKA: Waikato Environment for Knowledge Analysis.
dSMOTE: synthetic minority oversampling technique.
eED: emergency department.

ML Methods and Performance Evaluation
Table 4 describes the ML and performance evaluation methods
used in the selected studies. We found a wide range of ML
methods in the selected studies. Most (14/17, 82%) used
conventional ML methods such as support vector machine [41],
random forest [42], naïve Bayes [43], decision tree (DT) [44],

K-nearest neighbor [45], and artificial neural network [46]. LR
and its variations (ie, Ridge, Lasso, and Elastic Net) [47] were
found to be the most common baseline model among the studies
(10/15, 67%) [4,11,22-25,27-30,32,34]. Some studies developed
the prediction model with more advanced ML algorithms such
as gradient boosting DT (GBDT)–based methods
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[11,22,25-27,29,31-33,35] and DL-based methods [4,21,34]. A
few studies [26,30,35] also used automated model selection
tools, such as Waikato Environment for Knowledge Analysis
[48] and autoML [49]. GBDT-based methods including extreme
gradient boosting (XGBoost) [50] were the common
best-performing models (area under the curve scores ranging
from 0.6 to 0.9). The model performances in all studies were
evaluated using the area under the receiver operating
characteristic curve score, except in a study [21] that used
F1-score as the only performance metric. Half of them (9/17,
53%) included additional evaluation metrics such as accuracy,

precision, recall, sensitivity, specificity, positive predictive
value, negative predictive value, F1-score, area under the
precision-recall curve, and microaveraged accuracy
[21,23,25-27,30,32,33,35]. Owing to different data sets and the
heterogeneity in the definitions of the outcome, prediction time
horizon, and preprocessing across the studies, we considered a
direct comparison across studies based on the reported
evaluation metric to be inappropriate. Only 18% (3/17) of the
studies included external validation using retrospective studies
in their analysis pipeline [21,26,33].
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Table 4. Summary of machine learning (ML) methods.

External validationBest performance metricsBest modelsML methodsStudy, year

NoGBMGLMNeta, RFb, and GBMcInselman et al [27],
2022

• AUCd=0.74

NoXGBoostLasso, RF, and XGBoosteHurst et al [25], 2022 • 30-d AUC=0.761
• 90-d AUC=0.752
• 180-d AUC=0.739

NoANNCox proportional hazard, LRf, and

ANNg

Hogan et al [28], 2022 • AUC=0.636

NoGBDTLR, RF, and GBDThZein et al [29], 2021 • Nonsevere AUC=0.71
• Hospitalization AUC=0.85
• EDi AUC=0.88

NoAutoMLAutoML, RF, and LRSills et al [30], 2021 • AUC=0.914

NoXGBoostXGBoostHozawa et al [31],
2021

• AUC=0.656

NoXGBoostXGBoost, LGBMj, RNNk, and LR
(Lasso, Ridge, and Elastic Net)

Lisspers et al [32],
2021

• AUC=0.90

NoLRLR, DTl, and ANNAnanth et al [23],
2021

• AUC=0.802

YesXGBoostWEKAm and XGBoostTong et al [33], 2021 • AUC=0.902

NoLRGLMn, correlation models, and LRMehrish et al [24],
2021

• AUC=0.78

NoLSTM with an attention
mechanism

LR, MLPo, and LSTMp with an at-
tention mechanism

Xiang et al [4], 2020 • AUC=0.7003

NoLR with L1 (Ridge)LR, RF, and LSTMCobian et al [34],
2020

• AUC=0.7697

NoXGBoostWEKA and XGBoostLuo et al [35], 2020 • AUC=0.859

NoXGBoostXGBoost, NNq, LR, and KNNrRoe et al [22], 2020 • AUC=0.75

YesXGBoostWEKA and XGBoostLuo et al [26], 2020 • AUC=0.820

YesLSTMLSTMWu et al [21], 2018 • Binary classification F1-
score=0.8508

• Multiclass classification F1-
score=0.4976

NoGBDTDT, Lasso, RF, and GBDTPatel et al [11], 2018 • AUC=0.84

aGLMNet: Lasso and Elastic-Net Regularized Generalized Linear Models.
bRF: Random Forest.
cGBM: gradient boosting method.
dAUC: area under the curve.
eXGBoost: extreme gradient boosting.
fLR: logistic regression.
gANN: artificial neural network.
hGBDT: gradient boosting decision tree.
iED: emergency department.
jLGBM: light gradient boosting method.
kRNN: recurrent neural network.
lDT: decision tree.
mWEKA: Waikato Environment for Knowledge Analysis.
nGLM: Generalized Linear Model.

JMIR AI 2023 | vol. 2 | e46717 | p.83https://ai.jmir.org/2023/1/e46717
(page number not for citation purposes)

Budiarto et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


oMLP: multilayers perceptron.
pLSTM: long short-term memory.
qNN: neural network.
rKNN: K-nearest neighbor.

Model Explainability and Implementation
We then compared how model explainability was handled across
studies. Model explainability refers to the degree of transparency
and the level of detail a model can provide to offer additional
information about its output, facilitating a better understanding
of how the model operates [51]. We grouped the studies into 2
categories based on their best model’s transparency. In the first
group, we included 18% (3/17) of the studies in which the
best-performing model can be considered as a transparent model
[51], including LR [23,24,34]. However, only 67% (2/3) of
them provided a report on this model explanation in the form
of LR coefficient values for each variable [23,34]. We grouped
the remaining studies into an opaque model category where a
post hoc analysis was needed to explain the model prediction
mechanism [51]. In this group, all studies [4,11,22,26,28-33,35]
used a model-specific method for explaining the prediction
mechanism, except for 14% (2/14) of the studies [27,29] that
used a model-agnostic method called the shapely additive
explanation (SHAP) method [29]. Overall, 14% (2/14) of the
studies in this group did not include any model explanation
approach [21,25]. Although model-specific explanation methods,
such as those used in DT-based models, gauge the impact of
each feature on a model’s decision through specific metrics
developed during training, the SHAP method takes a more
comprehensive approach. SHAP conducts a deductive
assessment by exploring all the potential combinations of

features to determine how each one influences the final
prediction.

None of the studies followed any specific reporting guidelines.
Furthermore, despite promising performances in some studies,
none were implemented in a real-world clinical setting for
prospective evaluation. In each of the studies reviewed, various
limitations were identified, encompassing both clinical and
nonclinical factors. One of the common limitations in these
studies was the issue of generalizing their findings to different
health care settings and patient groups [22,25,26,29,33,35]. This
difficulty often arose because they lacked important information
such as medication histories [35], environmental factors [25,30],
and social determinants of health [28], which are known to play
significant roles in health outcomes. Data-related limitations
were also prevalent, with some studies dealing with the
drawbacks of structured EHR data [4,26,33,35], potential of
data misreporting [32], and missing data that could affect the
reliability of their models [29,35]. In addition, from a clinical
perspective, certain studies faced limitations owing to the lack
of standardized definitions for specific outcomes
[11,22,23,27,28], emphasizing the importance of consistent
criteria in health care research such as in asthma management.
The model explanation and implementation information are
summarized in Table 5. All data extraction results can be found
in Multimedia Appendix 1. We have also depicted some of the
important principal findings in Multimedia Appendix 2.

JMIR AI 2023 | vol. 2 | e46717 | p.84https://ai.jmir.org/2023/1/e46717
(page number not for citation purposes)

Budiarto et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Summary of model explainability and implementation.

Study limitationsClinical imple-
mentation

Follow reporting
guidelines

Model explanation
methods

Best model transparencyStudy, year

NoNoSHAPaOpaque modelInselman, et al [27],
2022

• Missing relevant variables
• Limited data about different bio-

logics
• Diverse primary uses of biologics
• Heterogeneity in patient character-

istics

NoNoNo model explana-
tion

Opaque modelHurst et al [25],
2022

• Missing relevant variables
• Single-center study
• Location-dependent model perfor-

mance
• Limited environmental data

NoNoEstimated weightsOpaque modelHogan et al [28],
2022

• Missing relevant variables
• Lack of longitudinal outcomes
• Use of ICD-9b (older clinical

coding)
• Hospital differentiation
• Absence of demographic data and

social determinants

NoNoSHAPOpaque modelZein et al [29], 2021 • Limited generalizability
• Reliance on diagnostic codes
• Limited clinical information
• Exclusion of anti-IL5c therapy
• Cross-sectional nature
• Quality of clinical information
• Limited PFTd and FeNOe data
• Handling missing data

NoNoautoML methodOpaque modelSills et al [30], 2021 • Retrospective nature
• Patient selection criteria
• Limited clinical information
• Exclusion of home and environ-

mental factors
• Timing of posttriage variables

NoNoExtracted risk fac-
tors

Opaque modelHozawa et al [31],
2021

• Age distribution discrepancy

• Limitations of claim data
• Prevalent user design
• Causality estimation

NoNoLGBMf gain scoreOpaque modelLisspers et al [32],
2021

• Data misreporting
• Applicability to other settings
• High false-positive rate
• Performance of shortlist model

NoNoLRg coefficientsTransparent modelAnanth et al [23],
2021

• Lack of formal asthma control as-
sessment

• Limited longitudinal outcomes
• Lack of comorbidity information

NoNoXGBoosth feature
importance

Opaque modelTong et al [33],
2021

• Lack of relevant variables
• Nonuse of deep learning and un-

structured data
• Expansion of data sources
• Generalizability across health care

systems and diseases

NoNoNo model explana-
tion

Transparent modelMehrish et al [24],
2021

• Lack of relevant variables
• Limited method explanation
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Study limitationsClinical imple-
mentation

Follow reporting
guidelines

Model explanation
methods

Best model transparencyStudy, year

• Absence of complex interactions
among clinical variables

• Limitations of structured EHRi

data
• Challenges in distinguishing

symptoms and risk factors
• Opportunities for model enhance-

ment

NoNoAttention mecha-
nism

Opaque modelXiang et al [4], 2020

• Limited samplesNoNoLR coefficientsTransparent modelCobian et al [34],
2020

• Lack of medication claim data
• Limitations of structured EHR

data
• Opportunities for additional fea-

tures
• Data completeness and generaliz-

ability

NoNoXGBoost feature
importance

Opaque modelLuo et al [35], 2020

• Intensive care setting exclusivity
• Exclusion of routine intensive

care features
• Generalizability to outpatient set-

tings

NoNoXGBoost feature
importance

Opaque modelRoe et al [22], 2020

• Potential unexplored features
• Nonuse of deep learning and un-

structured data
• Limited generalizability assess-

ment

NoNoXGBoost feature
importance

Opaque modelLuo et al [26], 2020

• Suboptimal neural network config-
uration

• Limited scope
• Clinical relevance and feature

weighting

NoNoNo model explana-
tion

Opaque modelWu et al [21], 2018

• Single institution data
• Pragmatic definition of the asthma

population
• Lack of model validation
• Data limitations
• Lack of weather and CDCk in-

fluenza data

NoNoGBDTj feature im-
portance

Opaque modelPatel et al [11], 2018

aSHAP: shapely additive explanation.
bICD-9: International Classification of Diseases, Ninth Revision.
cIL-5: interleukin 5.
dPFT: Pulmonary Function Tests.
eFeNO: Fractional Exhaled Nitric Oxide.
fLGBM: light gradient boosting method.
gLR: logistic regression.
hXGBoost: extreme gradient boosting.
iEHR: electronic health record.
jGBDT: gradient boosting decision tree.
kCDC: Centers for Disease Control and Prevention.
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Discussion

Principal Findings
Our review indicates that this research field is still
underdeveloped, given the limited body of evidence,
heterogeneity of methods, lack of external validation, and
suboptimally reported models. There was considerable
heterogeneity in the specific definition of asthma outcome and
the associated time horizon used by studies that sought to
develop asthma attack risk prediction models. Class imbalance
was also common across studies, and there was also considerable
heterogeneity in how it was handled. Consequently, it was
challenging to directly compare the studies.

The GBDT-based methods were the most reported
best-performing method. DL methods such as long short-term
memory (LSTM), a relatively more complex and advanced
method, were also found in a few studies [4,21,34]. However,
none of the studies compared the performance of the DL-based
models with that of GBDT-based models. Moreover, none of
the studies was prospectively evaluated or followed any
reporting guidelines, and most studies (3/17, 18%) were not
externally validated.

Strengths and Limitations
The key strengths of our study include undertaking a systematic
and transparent approach to ensure reproducibility. Overall, 2
independent reviewers followed a clear framework during the
study selection and data extraction stage. Furthermore, the
interpretation of the result was supported by a multidisciplinary
team consisting of both technical and clinical experts.

A further strength is that most systematic reviews about the use
of ML methods in asthma research have focused on either
diagnosis or classifying asthma subtypes [52-56]. Although
there have been 2 previous reviews about the use of ML in
predicting asthma attacks [15,16], our review is the first to focus
on several key considerations in an ML pipeline, from data
preprocessing to model implementation for asthma attack
predictions.

However, this review also has 3 key limitations. First, this
scoping review provided broad coverage of various technical
challenges, but it cannot ascertain how feasible and effective
an ML-based intervention can be in supporting asthma
management. Second, we were not able to directly compare
studies owing to the heterogeneity across studies, and that
prohibited us from identifying the best algorithm or approach
for solving the technical challenges highlighted in this review.
Finally, this review only focused on the technical challenges
without taking into account additional, crucial, sociocultural
and organizational barriers to the adoption of ML-based tools
in health care [57-59].

Interpretation in the Light of the Published Literature
The heterogeneity of outcome definitions found in this paper
was also uncovered in previous non-ML asthma attack prognosis
studies [16,60]. This heterogeneity includes both the indicators
they used to define asthma attacks and the prediction time
resolution. Recent systematic reviews also highlighted the wide

range of outcome variations in ML-based prognostic models
for ischemic stroke [61] and brain injury [62].

GBDT methods, especially XGBoost, have become a
state-of-the-art method, especially for large and structured data
in several domains [63-65]. Among the DL methods, LSTM
has also shown potential in several previous studies [66,67].
LSTM is one of the most popular methods for analyzing
complex time series data. Its capability to learn the sequence
pattern makes it very powerful to build a prediction model by
representing the data as a sequence of events. EHR data consist
of a sequence of historical clinical events, which represent the
trajectory of each patient’s condition over time. Incorporating
the temporal features into the model, rather than just
summarizing the events, can potentially boost the model’s
performance.

Most of the studies (14/17, 82%) in this review incorporated
some form of model explainability that aimed to provide an
accessible explanation of how the prediction is derived by the
model to instill trust in the users [68]. Previous studies in various
domains showed that an ML model can output a biased
prediction caused by latent characteristics within the data [69].
Model explainability is therefore crucial to provide model
transparency and enhance fairness [70], especially in high-stake
tasks such as those in health care [71].

Model validation and standard reporting are some of the
important challenges that can influence adoption into routine
practices [72]. An ML model should be internally, externally,
and prospectively validated to assess its robustness in predicting
new data [73]. In addition, a standard guideline needs to be
followed in reporting an ML model development [74] such as
the Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis [75] or the Developmental
and Exploratory Clinical Investigations of Decision Support
Systems Driven by Artificial Intelligence [76]. It will facilitate
an improved and objective understanding and interpretation of
model performance. However, our review found a lack of
external validation and adherence to reporting guidelines among
the selected studies. These points resonated with the findings
in other reviews of different cases [77,78].

Implications for Research, Policy, and Practice
This review highlighted several technical challenges that need
to be addressed when developing asthma attack risk prediction
algorithms. Further studies are required to develop a robust
strategy for dealing with the class imbalance in asthma research.
Class imbalance has been a common problem when working
with EHR data [79,80]. However, there remains a notable gap
in the literature regarding a systematic comparison of the
effectiveness of existing methods, particularly in the context of
asthma attack prediction. Several simple ML algorithms, such
as linear regression, LR, and simple DTs, are easily interpretable
[81]. In general, however, there is a trade-off between model
interpretability and complexity, and most advanced methods
are difficult to interpret, which then influences the users’
perception and understanding of the model [82]. We believe
that the black box nature of the more complex methods, such
as XGBoost and LSTM, is likely a technical barrier to
implementing such models in a real-world clinical setting.
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Consequently, there is a need to continue exploring model
explainability methods such as the attention mechanism
approach recently developed for LSTM [83-85] that can
augment complex “black box” algorithms.

There is a need for developing a global or at least a nationwide
benchmark data set to facilitate external validation and to test
the model’s generalizability [86]. Such validation is needed to
ensure that the model will not only perform well under the data
used in the model development but also can be reproduced to
predict new data from different settings [87]. In addition, to
maintain the transparency and reproducibility of the ML-based
prediction model, adherence to a standard reporting guideline
such as the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis [75] should be
encouraged. Both good reproducibility and clear reporting are
key points to facilitate critical assessment of the model before
its implementation into routine practices. This effort is pivotal
in addressing ethical concerns associated with data-driven
prediction tools and in guaranteeing the safety and impartiality
of the prediction [88]. Ensuring the ethical aspects of integrating
a data-driven model into routine clinical practice is becoming
a great challenge. This task demands substantial resources and

relies on a collaborative effort involving experts from various
disciplines [89].

Finally, to ensure that the ML-based model meets the
requirements of the practices, a clear use case must be
articulated. We found that almost all studies follow a clear
clinical guideline to define asthma attacks, but there is a wide
range of prediction time horizons across the studies. These
variations are the result of distinct needs and goals from different
practices. It is impossible to make a one-size-fits-all model.
Therefore, a clear and specific clinical use case should be
defined as the basis for developing an ML-based model.

Conclusions
ML model development for asthma attack prediction has been
studied in recent years and includes the use of both traditional
and DL methods. There is considerable heterogeneity in ML
pipelines across existing studies that prohibits meaningful
comparison. Our review indicates several key technical
challenges that need to be tackled to make progress toward
clinical implementation such as class imbalance problem,
external validation, model explanation, and adherence to
reporting guidelines for model reproducibility.
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Abstract

Background: Artificial intelligence (AI) applications based on advanced deep learning methods in image recognition tasks can
increase efficiency in the monitoring of medication adherence through automation. AI has sparsely been evaluated for the
monitoring of medication adherence in clinical settings. However, AI has the potential to transform the way health care is delivered
even in limited-resource settings such as Africa.

Objective: We aimed to pilot the development of a deep learning model for simple binary classification and confirmation of
proper medication adherence to enhance efficiency in the use of video monitoring of patients in tuberculosis treatment.

Methods: We used a secondary data set of 861 video images of medication intake that were collected from consenting adult
patients with tuberculosis in an institutional review board–approved study evaluating video-observed therapy in Uganda. The
video images were processed through a series of steps to prepare them for use in a training model. First, we annotated videos
using a specific protocol to eliminate those with poor quality. After the initial annotation step, 497 videos had sufficient quality
for training the models. Among them, 405 were positive samples, whereas 92 were negative samples. With some preprocessing
techniques, we obtained 160 frames with a size of 224 × 224 in each video. We used a deep learning framework that leveraged
4 convolutional neural networks models to extract visual features from the video frames and automatically perform binary
classification of adherence or nonadherence. We evaluated the diagnostic properties of the different models using sensitivity,
specificity, F1-score, and precision. The area under the curve (AUC) was used to assess the discriminative performance and the
speed per video review as a metric for model efficiency. We conducted a 5-fold internal cross-validation to determine the diagnostic
and discriminative performance of the models. We did not conduct external validation due to a lack of publicly available data
sets with specific medication intake video frames.

Results: Diagnostic properties and discriminative performance from internal cross-validation were moderate to high in the
binary classification tasks with 4 selected automated deep learning models. The sensitivity ranged from 92.8 to 95.8%, specificity
from 43.5 to 55.4%, F1-score from 0.91 to 0.92, precision from 88% to 90.1%, and AUC from 0.78 to 0.85. The 3D ResNet model
had the highest precision, AUC, and speed.
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Conclusions: All 4 deep learning models showed comparable diagnostic properties and discriminative performance. The findings
serve as a reasonable proof of concept to support the potential application of AI in the binary classification of video frames to
predict medication adherence.

(JMIR AI 2023;2:e40167)   doi:10.2196/40167

KEYWORDS

artificial intelligence; deep learning; machine learning; medication adherence; digital technology; digital health; tuberculosis;
video directly observed therapy; video therapy

Introduction

Tuberculosis (TB) is a leading cause of death worldwide, with
an estimated 10.6 million new cases of the disease and 1.7
million patients dying in 2021 [1]. The global End TB strategy
set goals to eliminate disease, deaths, and burden by 2030 [2],
but these could be out of reach if critical gaps in diagnosis,
treatment, and care are not addressed. Medication adherence,
defined as the extent to which a person’s behavior regarding
medication corresponds with agreed recommendations from a
health care provider, is one of the barriers to TB control [3]. It
is estimated that 33% to 50% of patients who start treatment
become nonadherent to their prescribed medication regimens
[4,5]. Nonadherence is associated with the emergence of drug
resistance, prolonged infectiousness, treatment failure, and
death, especially in the context of TB and HIV coinfection [6,7].
The existing interventions to mitigate poor medication adherence
have limited effectiveness for a variety of reasons [5]. In Africa,
a high patient load coupled with a severe shortage of health
workers hampers proper monitoring and support of patients on
TB treatment [8]. Digital adherence technologies have rapidly
emerged as tools for improving the delivery of care in a variety
of health care settings [2,9]. In 2017, the World Health
Organization endorsed the use of video-based directly observed
therapy (VDOT) as a suitable alternative to directly observed
therapy for monitoring TB treatment and published guidance
on its implementation [10]. VDOT overcomes geographic
barriers because it enables the health providers to view patients’
medication intake activity remotely, especially in the
hard-to-reach populations [11-13]. It also enhances autonomy
since patients can choose when and where they take their TB
medications [14-16]. The limitation with asynchronous VDOT
is the repetitive manual task of reviewing videos and confirming
daily adherence [17]. Moreover, such classification tasks are
accomplished by following a prespecified protocol [18]. In the
face of high patient workloads, repetitive manual tasks could
lead to inaccurate assessment and human fatigue. High workload
is a recognized occupational stressor that has implications for
the quality of care and patient outcomes [19]. The automation
of routine processes is a well-known solution to increase
efficiency in daily workflows. Therefore, more advanced tools
such as artificial intelligence (AI) can be integrated with digital
adherence technologies to accelerate widespread adoption and
impact [20,21].

AI applications have the potential to transform health care in
several clinical practice areas, primarily medical imaging [22].
First, AI tools can increase productivity and the efficiency of
care delivery by streamlining workflows in the health care

systems [23]. Second, AI can help improve the experience of
health care workers, enabling them to spend more time in direct
patient care and reducing stress-related burnout [19]. Third, AI
can support the faster delivery of care, by enhancing clinical
decision-making, helping health care systems manage population
health more proactively, and allocating resources to where they
can have the largest impact [24]. Modern computer vision
techniques powered by deep learning convolutional neural
networks (DCNNs) can be applied to medical imaging, medical
videos, and clinical deployment [25]. Deep learning techniques
that process raw data to perform classification or detection tasks
can make digital adherence monitoring in TB control more
effective and efficient. DCNNs are state-of-the-art machine
learning algorithms that have the ability to learn from input data
to recognize intricate activities and patterns [26]. These
characteristics make DCNNs powerful tools for recognition,
classification, and prediction. Moreover, the features discovered
by the models are not predetermined by human experts but
rather by the patterns they learn from input data [27,28]. This
concept can be applied to patterns in the videos of medication
intake. However, the development and implementation of deep
learning methods in health care remain largely limited because
of a lack of access to large, well-curated, and labeled data sets.
Additionally, specific technical knowledge, skills, and expertise
required to develop deep learning models are often uncommon
among health care professionals [27]. The goal of our pilot was
to conduct a proof of concept for the development of an AI
system that can perform routine classification tasks applicable
to medication adherence. We expect that this initial step will
be the basis for further development and validation of AI tools
that will be used across treatments in chronic diseases in a
variety of clinical settings.

Methods

Study Design, Population, and Data Sources
In this pilot study, a multidisciplinary team consisting of a
physician scientist with expertise in TB medication adherence;
2 computer scientists with expertise in machine learning,
computer vision, and deep learning models; and 3 graduate
students in computer science evaluated the technical feasibility
of applying AI to analyze a raw data set of videos from patients
with TB taking medications. We used a secondary data set of
861 self-recorded medication intake videos collected as part of
a pilot VDOT study of 51 patients with TB. The pilot study was
conducted in Uganda.
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Ethical Approval
The study was approved by the Institutional Review Board
Office of Research, University of Georgia (number
PROJECT00002406) and the Makerere University Higher
Degrees, Research and Ethics Committee in Uganda (number
756).

Patient Recruitment and Enrollment
A cohort of adult male and female patients aged 18-65 years
with a confirmed diagnosis of TB attending public clinics in
Kampala, Uganda, were enrolled in VDOT pilot studies from
July 2018 to December 2020. The study evaluated the
effectiveness of VDOT in monitoring adherence where daily
medication intake videos were collected with the patients’
written consent. Further details on the eligibility criteria and
sociodemographic characteristics of the patients contributing
to the video data sets are published elsewhere [16].

Process of Annotation and Labeling of Medication
Videos
First, a team of 3 trained video annotators with a computer
science background evaluated the videos in the primary
medication intake data set to create a new medication intake
video data set. Using a systematic iterative process of review
and discussions, the research team developed a protocol for
video annotation de novo, since no specific protocols existed
for medication videos. The team included the 3 trained student
annotators, a senior computer scientist, and a physician with
expertise in medication adherence. The protocol was
summarized into 3 basic rules that guided labeling videos as

positive—actual medication ingestion activity, negative—no
medication intake activities, or ambiguous—if no pills were
seen but there was a blurry image of a face, as described in
Table 1. We used the de novo standardized protocol for labeling
videos. To control the quality of the annotation, we only
considered videos where there was complete agreement of the
classification across the 3 annotators to create the final video
data set for model training and evaluation. After the annotation
process, out of 861 videos, we kept 497 videos, which consisted
of 405 (47%) positive videos and 92 (10%) negative videos.
The sex and class distribution of videos that were kept in the
final data set was as follows: of the 405 positive videos from
51 patients, 248 (61.2%) were from 28 male patients and 157
(38.7%) videos were from 23 female patients. Only 36 patients
produced 92 negative videos; 48 (52%) were from 19 male
patients, and 44 (48%) were from 17 female patients. The
average distribution was 8 positive videos and 2 negative videos
per patient. The outcome of this process resulted in the
medication intake video data set that was used as a training data
set for the deep learning model. Second, we divided the data
set into training and validation subsets to assess the performance
of our deep learning framework and baselines on medication
adherence recognition. Furthermore, we analyzed the influence
of different deep learning architectures in our framework on
medication adherence recognition, classification, and prediction.
It is important to note that the video annotation process is only
required to construct the data set for model training and
evaluation of this study. Once the deep learning model is trained,
we do not need manual annotations anymore for the new videos,
when using the proposed methods in practice.

Table 1. The rules for video annotation, labeling, and outcome of the video data set.

Videos (N=861), n (%)DescriptionLabels

405 (47)Positive: actual medication ingestion activi-
ties=adherence

• Videos show clear visibility of the face, pill, and water bottle
• Patient exhibits clear action of taking pills and drinking water
• Good illumination

92 (10)Negative: no actual medication ingestion activ-
ities=nonadherence

• Face of patient seen
• No pills are detected
• Patient does not put the pills into his or her mouth or there is no action

of drinking water
• Good illumination

364 (42.3)—aExcluded videos

157 (18.2)Ambiguous or uncertain videos • Pills not seen
• Blurry faces and hands

152 (17.7)Poor quality videos • Poor illumination
• Face of patient not seen

55 (6)Not reviewedDamaged videos

aNot applicable.

Preprocessing of the Annotated Medication Intake
Videos
Before we used AI tools to analyze the medication adherence
of the patients, some techniques were implemented to preprocess
the videos. The video-preprocessing stage was divided into 3
parts. In the first part, each video was converted to the mp4

format since the mp4 format is more convenient to process than
the original format of the raw videos. Next, we adopted FFmpeg,
a leading multimedia framework, to extract the video frames
from each video with the mp4 format. Nevertheless, not all the
video frames were relevant to the medication adherence, and
the number of the video frames for each video was quite
different, which also posed a problem in our study. In the end,
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we manually extracted the same number of key video frames
that were the most relevant to medication adherence. These
video frames constituted the final data set for our AI
experiments.

Model Development: Deep Learning Framework
Our deep learning framework for recognizing medication intake
activities consisted of 2 parts: first, convolutional neural
networks (CNNs) were used to extract visual features from
medication intake videos; and second, support vector machine
(SVM) [29] was adopted as a classifier to generate prediction
scores for videos as shown in Figure 1. In particular, inspired
by the huge success of deep learning models in image and video
analysis, we used 2D CNN and 3D CNN models to extract the
high-dimensional, spatiotemporal features from input videos.
These models were pretrained on large-scale, labeled image or
video data sets. Then, the SVM, an effective classifier, was
trained to classify the extracted high-dimensional features. Our
framework consisted of DCNNs pretrained with external data
sets: Inception-v4 [30]; 3D ResNet, designed for lower
complexity structure with so-called skip residual connections
[31]; 3D ResNext [32]; and Inflated 3D [33]. These DCNNs
are extensively used by the computer science community for
extracting features from images and videos [34]. Specifically,
Inception-v4 is pretrained on the ImageNet data set [35]. 3D
ResNet, 3D ResNext, and Inflated 3D are pretrained on the
Kinetics data set [36,37]. Besides, the sizes of the feature vectors
from each model are different. For instance, the length of the
feature vector generated from Inception-v4 is 1536, whereas

the length of the feature vector is 2048 from 3D ResNet and 3D
ResNext. The details of the feature length are illustrated in Table
2. In the training stage, we trained the SVM with features
extracted by the pretrained DCNNs from the training data set.
In the testing stage, our trained model, which consists of a
DCNN and SVM, generated prediction scores for videos from
the testing data set to recognize the medication adherence. The
generated prediction score is a decimal number between 0 and
1, which can be interpreted as the probability that the video
represents a patient correctly ingesting their medication.

These DCNN models are designed primarily to extract the
feature from images, but they cannot deal with videos directly,
due to the 3D structure of video data. To tackle this problem,
various 3D CNN models have been developed, in which the 2D
convolution operation is extended to 3D convolution operation.
The 3D ResNet and 3D ResNext used in our study are built on
the 2D CNN model ResNet [31] that introduces the idea of
residual connections. Figure 2 illustrates the building blocks of
the ResNet, 3D ResNet, and 3D ResNext. All 3 blocks consist
of 3 convolution layers followed by batch normalization [32],
rectified linear unit [33], and identity mapping [31]. The major
difference is that the 2D convolution kernels (1 × 1 and 3 × 3)
in ResNet are modified to 3D convolution kernels (1 × 1 × 1
and 3 × 3 × 3) in 3D ResNet and 3D ResNext. Compared to 3D
ResNet, 3D ResNext introduces the group convolutions in the
second layer of the block, which divides the feature maps into
small groups. In practice, 3D ResNet and 3D ResNext are
typically composed of multiple layers [30,31].

Figure 1. Illustration of deep learning framework with feature extractor CNNs and classifier SVM. Different grey colors represent labeled videos, and
black color denotes unlabeled videos. CNN: convolution neural network; SVM: support vector machine.

Table 2. The number of the features with its corresponding model.

Features, nModel

16,740HOGa

1536Inception-v4

20483D ResNet

20483D ResNext

1024Inflated 3D

aHOG: histogram of oriented gradient.
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Figure 2. Illustration of the building block of (a) ResNet, (b) 3D ResNet, and (c) 3D ResNext. BN: batch normalization; conv: convolution; F: number
of feature channels; ReLu: rectified linear unit .

Apart from 3D ResNet and 3D ResNext, we also used
Inception-v4 and Inflated 3D as our feature extractors. As a 2D
CNN model, Inception-v4 is the fourth version of the Inception
architecture network family. Compared to previous versions of
the Inception family, Inception-v4 not only has a more uniformly
simplified architecture and more inception modules but also
absorbs the idea of residual connections from ResNet to form
the new Inception block called residual inception blocks. Inflated
3D is another 3D CNN, which is built upon a 2D CNN from
the Inception family. In our study, we compared the performance
of one 2D CNN (Inception-v4) and three 3D CNNs (ie, 3D
ResNet, 3D ResNext, and Inflated 3D). The 2D CNN treated
each video as a set of video frames and generated a feature
vector for each video frame, whereas 3D CNNs took video as
a whole and generated a unified feature vector.

To better illustrate the effectiveness of deep learning models
for medication adherence recognition, we used a traditional
visual feature descriptor, histogram of oriented gradient (HOG)
[38], as the replacement of the features extracted by DCNNs.
HOG is a traditional descriptor that can generate handcrafted
features directly from the images. The handcrafted feature was
fed into the SVM for classification. In our pilot study, the SVM
with HOG features was used as a baseline. Besides, we also
investigated the average time of each method to extract features
from the video frames, since efficiency is also an important
indicator to evaluate the methods in practice.

Statistical Analysis
We adopted a 5-fold cross-validation strategy to evaluate the
performance of our deep learning framework with different
DCNNs as it is the recommended best practice for model
validation [39]. We chose 5-fold cross-validation since it offers
a good trade-off between efficiency and reliability, compared
with alternative strategies such as leave-one-out cross-validation

or random splits. In the experiments, we evaluated the
performance of our framework from different aspects by using
5 metrics: the area under the receiver operating characteristic
(ROC) curve (AUC) and F1-score, which are primary evaluation
metrics, and sensitivity (recall), specificity, and precision
(positive predictive value), which are supplementary. The
F1-score can be interpreted as the harmonic mean of precision
and recall. We empirically set the threshold to 0.6 to neutralize
the adverse effect of the imbalanced distribution of the data.
For each given DCNN in our framework, we randomly split the
data set into 5 subsets: 4 out of 5 subsets were used as the
training data set, and the rest were adopted as the testing data
set. We ran the 5-fold cross-validation 5 times. Each time, we
randomly shuffled the order of the data before feeding the data
into the model and reporting the mean values and SDs for each
metric. Furthermore, another comparison experiment was
implemented to show that our framework does not suffer from
an overfitting problem with the high-dimensional features.
Besides, we also drew the ROC curves to demonstrate the
performance of different CNNs. We also evaluated the efficiency
using speed in seconds as a metric defining the time required
to extract features from the videos relevant to medications
adherence. In addition, we noticed that metrics such as precision
still have some limitations in the presence of class imbalance.
This problem can be mitigated by adjusting the classification
threshold.

Results

Performance in the Monitoring of Medication
Adherence
3D ResNet achieved the best performance in the task of
monitoring patient medication adherence activities as shown in
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Table 3. The performance of 3D ResNext was very close to that
of 3D ResNet since they both have similar structure. Besides,
the results also reveal that 3D CNN models had better
performance than the 2D CNN model and traditional feature
descriptor method. Specifically, the HOG method obtained the
lowest values on all metrics. It is noted that 3D ResNet, 3D
ResNext, and Inflated 3D are specifically designed for video

feature extraction, whereas Inception-v4 is designed for image
feature extraction. Overall, the performances of the 3D ResNet
and 3D ResNext were very comparable in all the metrics. The
3D ResNet obtained the best results on the AUC, highlighting
its advantage in the prediction of the medication adherence
activity.

Table 3. Performance of the proposed deep learning framework under different convolution neural networks and histogram of oriented gradient (HOG).

AUCa, mean (SD)F1-score, mean (SD)Precision, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)Feature extractor

0.65 (0.06)87.77 (1.41)85.03 (1.86)27.35 (8.98)90.77 (2.62)HOG

0.80 (0.05)90.12 (1.90)87.91 (1.95)43.70 (8.64)92.54 (3.53)Inception-v4

0.87 (0.04)92.30 (1.44)90.20 (1.81)54.57 (6.46)94.57b (2.61)3D ResNet

0.85 (0.05)91.81 (1.82)89.62 (2.21)51.74 (7.33)94.17 (2.67)3D ResNext

0.82 (0.06)90.94 (2.24)89.08 (1.85)49.78 (8.00)92.94 (3.47)Inflated 3D

aAUC: area under the curve.
bItalicized numbers represent the best result under each metric.

Assessing Overfitting of the Model
AI models usually suffer from the overfitting problem with
high-dimensional features and limited number of training data.
To further investigate whether high-dimensional features would
cause the overfitting problem or not, we conducted additional
experiments to give a better illustration. In this experiment, we
used the pretrained 3D ResNet as the feature extractor and
reduced the original feature dimension from 2048 to 256 with
the principal component analysis method. The results are shown
in Table 4. We observed that both of dimensions achieved
similar performance, which confirmed that our framework was
not affected much by the overfitting problem.

The ROC curves in Figure 3 were generated by plotting the true
positive rate (sensitivity) against the false positive rate
(specificity) at different threshold settings. The diagonal straight
dashed line from (0,0) to (1,1) represents the performance of
the random classifier. Ideally, all the ROC curves should lie
above the straight dashed line. The further the curve deviates
from the diagonal line, the better the classifier is. The curves
in Figure 3 can be divided into 3 groups. The first group
representing 3D ResNet and 3D ResNext show that the 2 curves
were the closest to the y-axis with the highest AUC. The second
group consists of Inception-v4 and Inflated 3D, with AUCs of
0.78 and 0.80. The worst performing classifier was the
traditional model HOG, which is very close to the diagonal line,
and its AUC is only 0.60.

We also investigated the time efficiency of each method in our
study and the results are illustrated in Table 5. The machine

that ran the code consisted of 2 Intel E4208 CPUs and 1 P100
Tesla GPU. We evaluated the average time spent per video by
each method to generate the relevant features. 3D ResNet was
the fastest and took only 0.54 seconds to generate the features
for each video, whereas HOG was the slowest, spending on
average 4.53 seconds—8 times longer to generate the
handcrafted features from a single video, signifying its
inferiority in efficiency. The speeds of 3D ResNext and Inflated
3D were relatively comparable, whereas Inception-v4 was
slower than the other DCNNs. Overall, considering both the
model’s accuracy and efficiency, 3D ResNet might be the better
model because it has both high accuracy and efficiency of
processing videos.

The class imbalance between positive and negative videos was
pronounced in our data at a ratio of 405:92, respectively. To
remedy the potential detrimental effect of the class imbalance
in our data, we used a simple but effective method of adjusting
the classification threshold [40]. We conducted experiments to
illustrate how different threshold values affected the
performance of our model. In the experiment, we used 3D
ResNet as the feature extractor and chose 3 threshold values:
0.5, 0.6, and 0.7. Five-fold cross-validation with fixed splits
was adopted as shown in Table 6. We see that higher threshold
values would lead to higher specificity and precision values but
slightly lower sensitivity and F1-score values. Adjusting the
classification threshold helped to balance the sensitivity and
specificity.

Table 4. Performance of the proposed deep learning framework with different dimensions of features. 3D ResNet was adopted as the feature extractor.

AUCaF1-scorePrecisionSpecificitySensitivityNumber of dimensions

0.8391.1289.3951.0993.09256

0.8692.2690.1754.3594.572048

aAUC: area under the curve.
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Figure 3. Receiver operator curves for monitoring the medication adherence from models in our framework. AUC: area under the curve; HOG: histogram
of oriented gradient.

Table 5. The average time spent per video by each model.

Time (seconds)Method

4.53HOGa

2.38Inception-v4

0.98Inflated 3D

0.63D ResNext

0.543D ResNet

aHOG: histogram of oriented gradient.

Table 6. Performance of the proposed deep learning framework with different classification thresholds. 3D ResNet was adopted as the feature extractor.

F1-scorePrecisionSpecificitySensitivityThreshold

92.3488.3443.4896.790.5

92.2690.1754.3594.570.6

90.3792.3167.3988.640.7

Discussion

Principal Finding
In this pilot project, we demonstrated a reasonable proof of
concept that deep learning and AI techniques could be applied
to advance support medication adherence monitoring. We tested
4 deep learning models and found that 3D ResNet performed
best at an AUC of 0.84 and a speed of 0.54 seconds per video
review. The level of discriminatory accuracy obtained is
comparable to other machine learning algorithms that have been
shown to achieve a diagnostic accuracy ranging from 72.5% to
77.3% in clinical settings. This level is similar to or higher than
the expert clinical accuracy of doctors [41]. Spatiotemporal

models for action classification used in nonmedical fields have
shown even better performance with an average accuracy of
90% [42]. A systematic review and meta-analysis of 69 studies
comparing deep learning models against health care
professionals concluded that both approaches were equivalent
in diagnostic accuracy [43]. To our knowledge, this is the first
pilot study to evaluate deep learning models for specific
application to digital technologies and medication adherence
in Africa.

Our model results could be limited by the relatively pronounced
class imbalance between positive and negative samples in the
data. To address the class imbalance problem, we adjusted the
classification thresholds for the 3D ResNet model to better
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balance the sensitivity and specificity. Specifically, we varied
the thresholds at 0.5, 0.6, and 0.7 and found that across the
range, sensitivity decreased slightly by 8% whereas specificity
increased by 55%, thus improving the performance of the model.
This means that by adjusting the classification threshold to 0.7,
the model’s ability to correctly identify persons who are not
taking medications could be achieved. The relatively high
performance of the deep learning models signifies the power
of AI tools that can be harnessed for medication monitoring in
routine clinical care or drug efficacy trials. We also acknowledge
that our current experimental settings may lead to issues such
as overfitting and data leakage, which are possible limitations
to our findings. This could be due to the high dimensionality
of features extracted by deep learning models and the small set
of patients used in our study. In addition, the stratification is
performed at the video level, and thus, it is possible that the
videos from the same patient may appear in both training and
test phases during cross-validation. Ideally, there is need to
perform evaluations with stratification at the patient level; this
step will be a priority in our future work. This pilot study is a
valuable initial step for building more robust models that have
relevant applications suitable for the local African context where
the medication intake videos were collected. In the era of
COVID-19 pandemic, the use of synchronous telehealth visits
proved to be an extremely valuable care delivery approach when
in-person provider-patient interactions were not possible [44,45].
Our proof-of-concept study explores the use of AI to bolster
the utility of asynchronous remote provider-provider
interactions. The evolving capacity of digital technologies to
store and analyze various types of data will continue to
revolutionize health care delivery in both resource-limited and
resource-rich countries.

There are some strengths of this pilot study. For example, this
is the first study that attempted to build and evaluate deep
learning models using video images of TB medication intake
from Uganda and the rest of Africa. We also developed a
preliminary protocol for the annotation of medication video that
can be refined further for use in low-income countries. This
protocol was generated through a systematic iterative process
of reviewing, discussing, and refining among a team of 3 trained
video annotators who were computer science graduate students
supervised by an expert in the field. Our pilot work builds on
the existing literature and aspiration to expand the use of AI in
routine health care [43] and, specifically, medication adherence
monitoring [3]. By examining the utility of AI-based models,
we are taking steps toward accelerating the future scale-up of
digital adherence technologies in remote medication monitoring
in TB, HIV/AIDS, and other chronic health conditions. The
study was limited to the evaluation of the technical feasibility
of developing a deep learning model. We did not incorporate
all the recommended methodological features for the clinical
validation of AI performance in real-world practice [46]. Indeed,
we acknowledge that comprehensive validation is a critical next
step for this work.

We also plan to develop new methods and evaluation protocols
for the class-imbalanced settings in our future work.

It is worth noting that the same patient had multiple videos,
which may introduce dependencies between images of the same
patient and make the cross-validation less trustworthy. However,
we clearly observed that the videos from the same patient had
substantial differences in visual appearance. For example, some
videos were recorded indoors whereas others were recorded
outdoors, the same patient wore different clothes in different
videos, and the viewpoints of video recording were also
different. Furthermore, our method aimed to detect and
understand the human medication adherence activities under a
series of video frames. For instance, our model had to focus on
specific key actions, for example, putting the pills into the mouth
and drinking water, while trying to ignore the influence of the
environment in the video frames. Although we used the video
level to conduct the 5-fold cross-validation, the variance of the
environment for videos from the same patient could present a
challenge for our model to identify whether the patient has taken
the pill or not.

Future Implications and Recommendations
Future work should be focused on improving the classification
accuracy of deep learning models in medication adherence.
First, there is a need for open-sourcing of large, labeled data
sets with which to train the algorithms, especially in the African
context. Second, additional techniques are needed to address
class imbalance to improve the classification performance of
deep learning models. Lastly, we propose to apply
self-supervised learning methods, which provide a new way to
pretrain DCNNs by exploiting pseudo-training labels that
eliminates the time-consuming tasks of manual annotation. In
our current deep learning framework, models are pretrained
with external data sets, which may not be suitable for the
extraction of visual features to classify medication adherence
and nonadherence activities. All the neural network models
showed comparable discriminative performance and diagnostic
properties to state-of-the-art–performing deep learning
algorithms. The findings serve as a reasonable proof of concept
to support the potential utility of deep learning models in the
binary classification of medication video frames to predict
adherence. The success and widespread use of AI technologies
will depend on data storage capacity, processing power, and
other infrastructure capacities within health care systems [3].
Research is needed to evaluate the effectiveness of AI solutions
in different patient groups and establish the barriers to
widespread adoption of digital health technologies.

Conclusions
Our findings in this pilot study show the potential application
of pretrained deep learning models and AI for the classification
of medication adherence based on a unique video data set drawn
in the African setting. The 3D ResNet model showed the best
performance in relation to speed and discriminatory
performance. Further development of AI tools to improve the
monitoring of medication adherence could advance this field
in public health, especially in low-resource settings.
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Abstract

Background: Artificial intelligence (AI)–based cancer detectors (CAD) for mammography are starting to be used for breast
cancer screening in radiology departments. It is important to understand how AI CAD systems react to benign lesions, especially
those that have been subjected to biopsy.

Objective: Our goal was to corroborate the hypothesis that women with previous benign biopsy and cytology assessments
would subsequently present increased AI CAD abnormality scores even though they remained healthy.

Methods: This is a retrospective study applying a commercial AI CAD system (Insight MMG, version 1.1.4.3; Lunit Inc) to a
cancer-enriched mammography screening data set of 10,889 women (median age 56, range 40-74 years). The AI CAD generated
a continuous prediction score for tumor suspicion between 0.00 and 1.00, where 1.00 represented the highest level of suspicion.
A binary read (flagged or not flagged) was defined on the basis of a predetermined cutoff threshold (0.40). The flagged median
and proportion of AI scores were calculated for women who were healthy, those who had a benign biopsy finding, and those who
were diagnosed with breast cancer. For women with a benign biopsy finding, the interval between mammography and the biopsy
was used for stratification of AI scores. The effect of increasing age was examined using subgroup analysis and regression
modeling.

Results: Of a total of 10,889 women, 234 had a benign biopsy finding before or after screening. The proportions of flagged
healthy women were 3.5%, 11%, and 84% for healthy women without a benign biopsy finding, those with a benign biopsy finding,
and women with breast cancer, respectively (P<.001). For the 8307 women with complete information, radiologist 1, radiologist
2, and the AI CAD system flagged 8.5%, 6.8%, and 8.5% of examinations of women who had a prior benign biopsy finding. The
AI score correlated only with increasing age of the women in the cancer group (P=.01).

Conclusions: Compared to healthy women without a biopsy, the examined AI CAD system flagged a much larger proportion
of women who had or would have a benign biopsy finding based on a radiologist’s decision. However, the flagging rate was not
higher than that for radiologists. Further research should be focused on training the AI CAD system taking prior biopsy information
into account.

(JMIR AI 2023;2:e48123)   doi:10.2196/48123
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artificial intelligence; AI; mammography; breast cancer; benign biopsy; screening; cancer screening; diagnostic; radiology;
detection system
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Introduction

Breast cancer is the most common cancer among women
worldwide. It ranks fifth as a cause of cancer deaths because of
its relatively favorable prognosis, but in the last 20 years, the
average annual increase in breast cancer incidence rate has been
1.4% [1-3]. Screening programs have been clearly proven to
reduce the mortality rate for breast cancer [4-6]. Retrospective
studies have shown that outcomes might improve when
radiologists combine mammography readings with an artificial
intelligence (AI) system for computer-aided detection (CAD)
[7-9]. Furthermore, reducing reading time with the assistance
of an AI CAD system is possible [10,11]. An AI CAD system
can be highly accurate for reading mammograms, and some
systems are now on a comparable level with average breast
radiologists at detecting breast cancer on screening
mammography [12].

In addition to the well-known risk factors of age, family history,
and hormonal history, there are also studies showing that benign
breast disease increases the risk of breast cancer [13,14]. A
study that analyzed risk factors for breast cancer found that
having undergone any prior breast procedure was associated
with an increased risk of breast cancer [15]. Another study
showed that women found to have false-positive mammography
findings were more likely to develop interval cancer or cancer
at the second screening compared to those not recalled [16].

Radiologists performing screen reading normally have access
to information about prior biopsies, while AI CAD systems do
not take this information into account. In this retrospective
study, we analyzed primarily to what extent the malignancy
assessments of an AI CAD system are affected by the presence
or absence of biopsy-proven benign findings. In a secondary
analysis, we determined whether this effect differs between an
AI CAD system and radiologists.

Methods

Study Population 
This retrospective study was based on a case-control subset
from the Cohort of Screen-Aged Women (CSAW). The CSAW
is a complete population-based cohort of women aged 40 to 74
years invited to screening in the Stockholm region, Sweden,
between 2008 and 2015 [17]. The exclusion criteria in the
CSAW were having a prior history of breast cancer, having a
diagnosis outside the screening range, and having had
incomplete mammographic examinations. From the CSAW, a
case-control subset was separately defined to contain all women
from Karolinska University Hospital, Stockholm, who were
diagnosed with breast cancer (n=1303), those at screening or
clinical evaluation during the interval before the next planned
screening, and 10,000 randomly selected healthy controls [17].
The purpose of the case-control subset is to make evaluation
more efficient by not having to process an unnecessary amount
of healthy controls while preserving the representability of the
CSAW screening cohort in which it is nested. Additional
exclusion criteria for the current study were having implants
and receiving a cancer diagnosis later than 12 months after

mammography. The study population was divided into 3 groups
based on their status: cancer, benign biopsy, and normal.

The cancer group was defined as having biopsy-verified breast
cancer at screening or within 12 months of screening. The most
recent mammographic screening prior to diagnosis was selected
for analysis. The benign biopsy group was defined as having
had a benign biopsy finding without ever having had breast
cancer. The group was further stratified by the interval between
biopsy and mammography. The normal group had neither breast
cancer nor a prior benign biopsy finding. Women in the
screening program who were previously recalled and deemed
as having benign disease were also included in this group.

Mammography Assessments
The screening system consisted of double-reading followed by
consensus discussion for any flagged examination. The
following screening decision data were collected: flagging of
abnormal screening by one or both radiologists and the final
recall decision after consensus discussion. Screening decisions
and clinical outcome data were collected by linking to regional
cancer center registers.

AI CAD system
The AI CAD system was an Insight MMG (version 1.1.4.3;
Lunit Inc). The reason for choosing Insight MMG for this study
was that it demonstrated superior results in a retrospective
analysis published in 2020 [9], which compared 3 AI CAD
systems with a sensitivity and specificity comparable to Breast
Cancer Surveillance Consortium benchmarks [18]. Briefly, the
AI CAD system was originally trained on 170,230 mammograms
from 36,468 women diagnosed with breast cancer and 133,762
healthy controls. The AI CAD system had been validated by
previous studies using a deep learning model to triage screening
mammograms [11,19]. The mammograms in the original training
set were sourced from 5 institutions: 3 from South Korea, 1
from the United States, and 1 from the United Kingdom. The
mammograms were acquired on mammography equipment from
GE Healthcare, Hologic, and Siemens, and there were both
screening and diagnostic mammograms. The generated
prediction score for tumor presence was a decimal number
between 0.00 and 1.00, where 1.00 represented the highest level
of suspicion. The program assessed 2 images of each breast,
and the highest score among the 4 images was selected to
represent the examination. To obtain a binary assessment,
determining whether the examination should be considered
flagged for further workup by the AI CAD system, a cutoff
point is required, above which the examination is considered
flagged and below which the examination is considered not
flagged. The cutoff point (0.40; AI abnormality threshold)
defined whether an examination was considered flagged or not
flagged by an AI CAD system, and was predefined in a prior
study [9]. The cutoff was selected to enforce that the specificity
of the AI CAD system should be the same as that for the average
radiologist in that study. The examinations in the prior study
originated from the same institution and are partly overlapping,
which should ensure that the cutoff value is transferrable to the
current setting.

JMIR AI 2023 | vol. 2 | e48123 | p.106https://ai.jmir.org/2023/1/e48123
(page number not for citation purposes)

Zouzos et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Data Collection
The Stockholm-Gotland Regional Cancer Center provided
personal identification numbers for all women who fulfilled the
inclusion criteria for the CSAW. The identification numbers
were linked to the local breast cancer quality register, “Regional
Cancercentrum Stockholm-Gotlands Kvalitetsregister för
Bröstcancer,” to collect data about breast cancer diagnosis. All
diagnoses of breast cancer were biopsy verified. Benign
diagnoses were collected from hospital electronic health records.
All images were 2D full-field digital mammograms acquired
on Hologic mammography equipment. The personal
identification numbers were also linked to the radiological image
repository to extract all digital mammograms from the Picture
Archiving and Communication System.

Statistical Analysis
Statistical analysis was performed per patient and not per lesion.
Stata (version 14 or later; StataCorp) was used for statistical
analyses. The Wilcoxon rank-sum test and quantile regression
analysis were used to examine differences between groups. To
perform statistical tests, differences in medians were chosen
due to the skewed distribution of AI scores. The required level
for statistical significance was not adjusted for multiple
comparisons. A value of P<.05 was considered statistically
significant.

Ethics Approval
The collection and use of the data set by AI was approved by
the Swedish Ethical Review Board (2017-02-08), and the need
for informed consent was waived (diary number 2016/2600-31).

Results

We evaluated 11,303 women for inclusion in this retrospective
case-control study (Figure 1). Of them, 414 women were
excluded. The exclusion criteria were no mammographic
examination in conjunction with a cancer diagnosis, having
implants, and having cancer more than 12 months after
mammography. The cancer group consisted of a total of 917
women, the benign biopsy group comprised 234 women, and
the group with no cancer or biopsy (control group) comprised
9738 women.

Of the remaining 10,889 women, 8269 had complete information
regarding radiologist assessments (when performing data
collection, we received radiologist assessments only until
December 31, 2015), which included selections rendered as
potentially pathological by 1 or both radiologists and a final
recall decision after consensus discussion. From those 8269
women, there were 724 women in the cancer group, 212 in the
benign biopsy group, and 7371 in the normal mammography
group.

There was a significant difference (P<.001) in AI scores among
the cancer, benign biopsy, and normal mammography groups
(Table 1).

Figure 1. Study population with exclusion criteria and subgroups.
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Table 1. Characteristics of the study population.

P value (comparison
with the normal
biopsy group)

P value (comparison
with the cancer
group)

AIa score, median
(IQR)

Proportion of assess-
ments above the cut-
off point, % (n/n)

Age (years), median
(IQR)

Participants,
n

Characteristics

<.001<.0010.051 (0.016-0.174)11 (26/234)51.2 (45.6-53.0)234Normal with benign
biopsy

<.001N/Ab0.933 (0.666-0.983)83 (768/917)60.6 (50.7-66.6)917Cancer

N/A<.0010.018 (0.005-0.065)3.5 (345/9738)55.5 (48.8-65.2)9738Normal without
biopsy

aAI: artificial intelligence.
bN/A: not applicable.

The proportion of AI assessments above the cutoff point was
3.5% in the group with normal mammography findings and
83% in the cancer group. In the benign biopsy group, 11% of
the AI assessments were above the cutoff point. The distribution
of AI scores for women diagnosed with breast cancer is shown
in Multimedia Appendix 1, that for healthy women with a benign
biopsy in Multimedia Appendix 2, and that for healthy women
without a benign biopsy who remained healthy in Multimedia
Appendix 3.

In Table 2, we show how the AI score is associated with the
age of the women. There was a significant increase of the AI
score in relation to age category in the cancer group (P<.05).
There was no significant increase in the AI score in relation to
age in the group with normal mammographic findings or in the
group with benign biopsy findings. The median age for the study
population was 56 years, and the median AI score was 0.023.
The median age for the cancer group was 61 years, and the
median AI score was 0.933 (P=.01). The median age of the
group with previous benign biopsies was 49 years, and the
median AI score was 0.051 (P=.71). The median AI score for
healthy women was 0.018 (P=.40), and the median age of that
group was 59 years.

The benign biopsy group was stratified by the interval between
biopsy and mammography into 3 categories: 0-6 months, 6-24

months, and more than 24 months. There was no significant
difference among the time-stratified categories (Table 3). In
Table 3, we describe the AI score related to the time between
biopsy and mammography. Within 6 months after
mammography, 104 of 234 participants had had a benign biopsy
finding. The proportion of women with AI scores above the
threshold was 16% for those with a benign biopsy finding within
6 months from mammography and 33% for those with a benign
biopsy finding 6 months before mammography.

In the group with a benign biopsy finding after mammography,
the proportion of abnormal assessments by AI, above cutoff
point, was 15%, while the radiologists had a recall rate up to
57% for this group (Table 4). The radiologists had a recall rate
of 2%, and the rate for abnormal assessments by AI was 3.8%
in the group with normal mammograms and that with benign
biopsy findings (Table 4). For the group with only normal
mammograms, the recall rates were 1% and 3.6%, respectively.
Radiologists and the AI program had similar rates of recall for
the total study population.

The 2 screening mammograms shown in Figures 2 and 3 have
been assessed by radiologists and the AI cancer detection
program. These examples illustrate concordant and discordant
assessments.
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Table 2. Artificial intelligence (AI) score for each age group of the normal, benign biopsy, and cancer groups.

Cancer groupBenign biopsy groupNormal mammog-
raphy

Age
group
(years)

No benign biopsy
findings (P=.01)

Prior benign
biopsy findings
(P=.54)

All groups (P=.01)Benign biopsy
findings after
mammography
(P=.81)

Benign biopsy
findings before
mammography
(P=.71)

All groups
(P=.71)

All groups
(P=.40)

AI score,
median
(IQR)

Partici-
pants,
n

AI
score,
median
(IQR)

Partici-
pants,
n

AI score,
median
(IQR)

Partici-
pants,
n

AI
score,
median
(IQR)

Partici-
pants,
n

AI score,
median
(IQR)

Partici-
pants,
n

AI
score,
median
(IQR)

Partici-
pants,
n

AI
score,
median
(IQR)

Partici-
pants,
n

0.934
(0.666-
0.983)

8970.924
(0.747-
0.986)

200.933
(0.667-
0.983)

9170.047
(0.016-
0.205)

1700.069
(0.018-
0.179)

640.051
(0.016-
0.174)

2340.018
(0.005-
0.065)

9738All

0.864
(0.264-
0.975)

2040.861
(0.286-
0.974)

90.861
(0.272-
0.974)

2130.042
(0.012-
0.176)

1010.074
(0.019-
0.142)

430.048
(0.016-
0.155)

1440.021
(0.006-
0.068)

315240-49

0.949
(0.709-
0.985)

2250.911
(0.891-
0.950)

30.948
(0.715-
0.985)

2280.051
(0.017-
0.305)

520.039
(0.014-
0.113)

160.051
(0.017-
0.260)

680.015
(0.005-
0.058)

283450-59

0.935
(0.720-
0.984)

3710.945
(0.887-
0.991)

80.935
(0.723-
0.984)

3790.047
(0.011-
0.144)

170.173
(0.090-
0.449)

50.078
(0.012-
0.174)

220.018
(0.005-
0.064)

257760-69

0.958

(0.820-
0.985)

97N/A00.958

(0.820-
0.985)

97N/A0N/A0N/Aa00.020
(0.006-
0.077)

1175≥70

aN/A: not applicable.

Table 3. Mammographic examinations of women a benign biopsy finding having an artificial intelligence (AI) score above the predefined threshold
for cancer suspicion, grouped by the timing of the biopsy.

P valueAI scoreProportion of assess-
ments above the cut-
off point, % (n/n)

Age (years), median
(IQR)

Participants, nTiming of biopsy

64Benign biopsy finding before mam-
mography (months)

Reference0.150 (0.099-0.449)33 (3/9)49.1 (44.5-54.9)90-6

.120.062 (0.016-0.150)5.1 (2/39)48.1 (46.7-52.7)396-24

.060.025 (0.015-0.099)0 (0)41.0 (40.3-48.4)16>24

170Benign biopsy after mammography
(months)

Reference0.065 (0.017-0.274)16 (17/104)48.3 (44.4-52.5)1040-6

.360.037 (0.008-0.109)4.5 (2/44)49.0 (45.6-55.3)446-24

.380.031 (0.017-0.165)9 (2/22)51.2 (45.6-53.0)22>24
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Table 4. Recall rate and abnormal assessments by artificial intelligence.

Recall rate, % (n/n)Assessments

Abnormal AI assessments
above the cutoff point

ConsensusRadiologist 2Radiologist 1

11 (880/8307)9.2 (767/8307)10 (827/8307)10 (831/8307)Total

3.8 (290/7583)2 (154/7583)3.1 (234/7583)3.6 (274/7583)Normal and benign biopsy findings

3.6 (265/7371)1 (73/7371)2.2 (162/7371)2.8 (203/7371)Normal

12 (25/212)38 (81/212)34 (72/212)33 (71/212)Benign biopsy findings

8.5 (5/59)6.8 (4/59)6.8 (4/59)8.5 (5/59)Biopsy before mammography

15 (20/135)57 (77/135)50 (68/135)49 (66/135)Biopsy after mammography

81 (590/724)85 (613/724)82 (593/724)77 (557/724)Cancer

81 (13/16)88 (14/16)88 (14/16)75 (12/16)With benign biopsy findings

82 (577/708)85 (599/708)82 (579/708)77 (545/708)Without benign biopsy findings

Figure 2. A 50-year-old woman selected by radiologists for potential pathology in the left breast. A high artificial intelligence (AI) score was assigned.
The biopsy results showed hyperplastic breast epithelial cells that could represent a degenerated fibroadenoma.

Figure 3. A 56-year-old woman selected by radiologists for potential pathology in the right breast. A low artificial intelligence (AI) score was assigned.
The biopsy shows the lymph node.

Discussion

The AI CAD system in this study showed increased flagging
of screening examinations for women with benign biopsy
findings compared to those for healthy women without biopsies.

However, the flagging rate was similar between AI and
radiologists for women with a prior biopsy finding, and
considerably lower for women with a biopsy finding after
screening.
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For women with a previous benign biopsy finding, compared
to healthy women, the AI CAD system’s flagging rate (false
positives) increased from 3.6% to 8.5%. In other words, there
was a significant difference in AI scores between the normal
group and the benign biopsy group despite both groups
consisting of women without breast cancer. This finding might
raise questions about the probability that AI is affected by
alternations on mammography because of the biopsy. This did
not seem to be the case, since we found a similar increase in
recall rate for the radiologists from 2.8% to 8.5%. This is
unexpected since radiologists had access to the outcomes of
prior biopsies while AI did not.

For women who had a benign biopsy finding after screening,
we found that 57% of them resulted from recall by the screening
radiologists. Applying the AI CAD system in screening would
have resulted in a much lower false positive flagging rate of
only 15% for the AI program. Based on this observation, one
may suggest further research on the role of AI in reducing the
number of unnecessary biopsies.

The strength of this study is the large number of women with
cancer and that all women were sampled from a screening
cohort. Another strength of this study is the use of the specific
AI algorithm, which has already been validated in large cohorts
with very positive results [9]. Our data of the total recall rates
and specifically those of the cancer group amplify the indications

from previous studies that AI-based cancer detectors can be
reliable enough to be incorporated in a screening setting.

The main limitation is the relatively small number of benign
biopsies, which makes it difficult to consider the effect of
different types of benign lesions. Another limitation is the
study’s retrospective setting. Since the AI program did not have
the opportunity to make recalls and choose women for further
diagnostic biopsy, it could not influence who received a biopsy
after screening, and all decisions about benign biopsies were
based on radiologists’ assessments. In contrast to radiologists,
the AI program calculates a score for the likelihood of breast
cancer based on the image alone and does not consider any
information about symptoms given by the woman at screening.

Furthermore, in this study, we did not consider the exact location
of the presumed abnormality where the AI program revealed a
high AI score. Further analysis of the data can be valuable to
evaluate whether the lesions that AI showed responded to the
actual finding that the patient was recalled for.

In conclusion, the tested AI CAD system had an increased
flagging rate of 8.5% for women with a prior benign biopsy
finding; this rate was not higher than that for radiologists who
often have information about prior benign biopsy findings.
Further research and development might be focused on how to
further improve AI CAD systems by taking into account
information about prior benign biopsy findings.
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Artificial intelligence (AI) score distribution for the benign biopsy group (n=234).
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Abstract

Given the growing use of machine learning (ML) technologies in health care, regulatory bodies face unique challenges in governing
their clinical use. Under the regulatory framework of the Food and Drug Administration, approved ML algorithms are practically
locked, preventing their adaptation in the ever-changing clinical environment, defeating the unique adaptive trait of ML technology
in learning from real-world feedback. At the same time, regulations must enforce a strict level of patient safety to mitigate risk
at a systemic level. Given that ML algorithms often support, or at times replace, the role of medical professionals, we have
proposed a novel regulatory pathway analogous to the regulation of medical professionals, encompassing the life cycle of an
algorithm from inception, development to clinical implementation, and continual clinical adaptation. We then discuss in-depth
technical and nontechnical challenges to its implementation and offer potential solutions to unleash the full potential of ML
technology in health care while ensuring quality, equity, and safety. References for this article were identified through searches
of PubMed with the search terms “Artificial intelligence,” “Machine learning,” and “regulation” from June 25, 2017, until June
25, 2022. Articles were also identified through searches of the reference list of the articles. Only papers published in English
were reviewed. The final reference list was generated based on originality and relevance to the broad scope of this paper.

(JMIR AI 2023;2:e42940)   doi:10.2196/42940
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Introduction

Machine learning (ML) technology aims to improve the quality
and efficiency of health care within the current health systems.
Its applications encompass roles traditionally undertaken by
health care professionals, such as clinical triage at emergency
departments, mammography screening, and diagnosis
undertaken by radiologists [1,2]. In many studies, ML algorithms

have outperformed clinicians, for instance, in chest radiograph
interpretation, skin cancer diagnosis, and directing optimal
treatment strategies for sepsis in intensive care [3,4].

ML-based adaptive algorithms have the ability to learn and
optimize their performance within the ever-changing clinical
environment. The adaptability helps to optimize its clinical
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utility but has the potential to impact patient safety by
introducing an element of unpredictability.

While there has been a significant increase in the volume of
literature describing ML since 2010 [5], the regulation of
adaptive ML technology has lagged behind its rapid
technological advancement. In the United States, the current
framework under the Food and Drug Administration (FDA)
only regulates an algorithm at the point of clinical deployment
but fails to account for the initial model inception, development,
and evolution once deployed into clinical use. In the United
Kingdom, the National Health Service (NHS) has accelerated
its effort in digitalization within health care through the creation
of NHSx and NHS AI Lab, with an emphasis on the
development of a suitable governance framework for artificial
intelligence (AI) in health care [6]. Elsewhere in the world, ML
regulation is at varying stages. India does not draw a distinction
between ML algorithms and other medical devices, while
China’s New Generation Artificial Intelligence Development
Plan does not address regulation of medical devices [7,8]. While
the World Health Organization has published guiding principles
for ML use, it does not outline a specific framework for
regulation [9].

This paper aims to use the current FDA regulatory model as an
example, build on the existing framework, and propose a novel
regulatory pathway for ML algorithms from inception through
clinical deployment to model evolution. Since ML algorithms
aim to support or, in certain cases, replace the role of medical
professionals, we likened the regulatory pathway to those of
medical professionals. We then discuss the associated challenges
to its implementation and potential solutions to overcome the
challenges.

Current Regulatory Pathways and
Potential Issues

Currently, most ML algorithms are approved by the FDA
through one of three pathways: 510k, premarket approval, or
the DeNovo pathway (see Figure 1) [10-12]. At a single
timepoint prior to its approval, the ML production company
will need to demonstrate the safety and effectiveness of the
algorithm within its intended use. The current benchmark for
approval requires companies to demonstrate good model
performance on a varied data set and in a real-world setting.
With no explicit definition of what constitutes reproducible
standards, it is no surprise that the current FDA-approved ML
algorithms vary considerably by the size of data sets and number
of sites [5].

Under the current regulation, once an algorithm is approved,
its behavior will remain fixed, defeating the distinguishing
advantage of many adaptive algorithms in their ability to learn
throughout their life cycle. Its current inflexible state not only
reduces its clinical utility but can alarmingly infringe patient
safety. For instance, an algorithm trained in 2018 to recognize
pneumonia on a chest radiograph will not be able to differentiate
it from COVID-19. Furthermore, variations exist in disease
prevalence and population demographics across sites, such that
the internal training and testing data sets used during algorithm
development may not be representative of the population they
are deployed to, thus performing poorly during external
validation [13-15]. Moreover, depending on the training data
set, the model may not be able to respond to geographically,
ethnically, and socioeconomically diverse patient cohorts.

Additionally, the current FDA framework does not regulate the
inception of an ML algorithm. As a result, a number of
algorithms have been approved, many of similar use cases with
varying development sites and data sizes. This can potentially
constitute an inefficient use of resources [16].
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Figure 1. The current Food and Drug Administration (FDA) regulatory pathway. *A predicate: if the algorithm is found to be substantially equivalent
to a legally marketed device. **A preamendment device: devices legally marketed in the United States before May 28, 1976, which have not been
significantly changed/modified and for which no regulation requiring premarket approval has been published by the FDA.

Current Attempts to Support Model
Evolution

In April 2018, to account for the iterative improvement in ML
model performance as new training data and improved data
science techniques become available, the FDA released a white
paper outlining a proposed framework for the regulation of
ML-based software in medicine [17].

The proposed Total Product Lifecycle (TPLC) regulatory
approach allows for iterative product improvement while
maintaining essential safeguards. The framework adopts the
principle of a Predetermined Change Control Plan produced
by the manufacturer, which aims to anticipate potential
modifications during clinical deployment. The Software as a
Medical Device Pre-Specifications (SPS) will underline the
modification expected by the manufacturer relating to
performance, inputs, and intended use. Modifications within
the SPS can be implemented without the need to resubmit for
marketing application.

The implementation of the TPLC approach thus places the onus
on the manufacturers to monitor and evaluate algorithm
performance during its clinical use and regularly report to the
FDA with updates and performance metrics. The culture of
quality and organizational excellence of the company would be
assessed according to the outlined standards in Good
Machine-Learning Practice (GMLP). To date, only a single
manufacturer of a cardiac ultrasound software has used the
Predetermined Change Control Plan to facilitate future model
alterations [18].

Elsewhere, similar trends have been observed in ML regulatory
policies. The European Union has recently introduced the EU
Medical Device Regulation, imposing stringent regulatory
requirements from early-stage considerations through algorithm

development to postmarket surveillance that need to be met
prior to the clinical use of medical devices, including ML
algorithms [19]. Likewise, in the United Kingdom, a code of
conduct for AI and data-driven technology has been introduced
to facilitate collaboration between technological companies and
the NHS in developing high-quality safe medical devices [20].

While the TPLC approach has set out a useful theoretical
framework in addressing the adaptive nature of ML algorithms,
it places heavy emphasis on the manufacturer in governing the
algorithm post deployment and overlooks the need to involve
local end users immersed in the clinical environment. Moreover,
despite being proposed for some time, the TPLC framework is
yet to be implemented, which likely stems from the complexities
involved. The framework also does not accommodate the
evolution of algorithms beyond the predetermined specifications
and change protocols. Finally, the framework has not addressed
wider issues of the clinical utility, data suitability, and health
equity of ML algorithms, which may call for a greater degree
of regulation at a much earlier stage in the model life cycle.

In January 2021, the FDA released a document outlining an
action plan in response to feedback from stakeholders on the
TPLC approach, as well as SPS and the Predetermined Change
Control Plan [21]. The five-point plan expressed the FDA’s
intention to facilitate various enhancements to their TPLC
approach, such as furthering GMLP by participating in
communities (eg, the Xavier AI World Consortium) that
collaborate to promote best practices in ML. In addition, the
document expressed an appreciation for the need for a
patient-centered approach as well as the evaluation of
real-world model performance. The current action taken includes
working with volunteers and engaging in further research to
consider methods for real-world performance monitoring.
Therefore, while the FDA has acknowledged many of the
stakeholder queries (including some mentioned in this paper),
there still is not much in the way of tangible solutions.
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The Proposed Regulatory Pathway

Currently, the regulation of ML algorithms is akin to those for
drug development [22]. However, the lack of ongoing
prospective evaluation of AI algorithms truly limits their use

in practice. As such, ML algorithms share a greater analogy to
medical professionals, as they often undertake or support tasks
traditionally performed by them and are subject to ongoing
regulation. We therefore propose an analogous regulatory
framework for ML algorithms, as summarized in Figure 2.

Figure 2. The proposed algorithm regulatory pathway analogous to the current medical professional training pathway. ML: machine learning.

At the start, aspiring medical professionals are required to go
through a selective process that ensures their baseline
capabilities and suitability to begin their medical education.
Similarly, the inception of an ML algorithm begins with a
clinical problem that it aims to solve in health care. Algorithms
across health care fields should be contested on their clinical
value, usability, cost-effectiveness, and sustainability prior to
its development, which will help to direct resources
appropriately.

The model development phase can be likened to the
undergraduate training of medical professionals. In the United
Kingdom, the General Medical Council sets out standards and
expected outcomes for medical education across the 44
recognized medical schools [23]. Similarly, in the face of the
current heterogeneity present in the approved ML algorithms,
structured standard-setting by an independent regulatory body
should be in place during the development of algorithms on
indicators such as data size and quality, technical assurance,
and clinical safety. Guidelines such as TRIPOD-AI (Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis–Artificial Intelligence) and
PROBAST-AI (Prediction Model Risk of Bias Assessment
Tool–Artificial Intelligence) are being developed to help
appraise AI-based prediction and diagnostic models [24]. These
can be incorporated into the regulatory framework.

Prior to clinical deployment, the final clinical efficacy of ML
algorithms is determined by a test data set, akin to the exit
examination undertaken by medical professionals prior to
qualification and employment. We propose further stages after
the current regulation that ends after clinical deployment of ML
algorithms.

Medical professionals often enter a period of supervision prior
to independent practice, for instance, the internship period
(foundation program) in the United Kingdom, which allows
them to adapt to clinical practice [25]. Similarly, we propose
that ML algorithms should enter a period of phased introduction
that will involve an initial trial period for the algorithm to
observe, operate alongside clinicians, and adjust to local working
practices and systems. Ongoing evaluation and adaptation will
take place in preparation for its full deployment.

After the initial period of shadowing, medical professionals are
continuously re-evaluated to demonstrate ongoing competencies
at a local and national level through national body board
examinations [26], continuing professional development, and
clinical portfolios [27,28]. We propose analogous local and
national regulations for ML algorithms to ensure that they are
consistently pertinent and useful in the ever-changing landscape
of clinical practice. Locally, we propose for institutions to curate
their own test sets containing representative cases that better
reflect the variability in equipment, protocol, epidemiology,
and patient populations encountered at the deployment site.
Should the local testing demonstrate deficiencies, models can
then be retrained on the curated local training data sets.

During the local training process, it is imperative that the
algorithm does not deviate substantially from its initial
objectives and continues to provide its proposed clinical benefit.
While the FDA has delegated the task of ongoing data collection
and monitoring of the algorithms to the manufacturer, a
dedicated national regulatory body may be more suitable for
this role. We thus propose the formation of national governance
structures consisting of a panel of appointed experts who would
be responsible for the selection of a series of cases that would

JMIR AI 2023 | vol. 2 | e42940 | p.117https://ai.jmir.org/2023/1/e42940
(page number not for citation purposes)

Mashar et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


typify the minimum standard the algorithm is expected to
achieve within its specified case use—known as the golden test
set. Unlike the local regulatory bodies, the core aim is to
maintain safety and basic competence of the algorithm rather
than its optimization. Additionally, the national golden test set
will be updated in response to large changes in clinical practice
by selecting cases from local representative data sets, for
instance, when more effective treatment emerges, such as the
use of mechanical thrombectomy for patients with stroke [29];
changes in policies, such as radiology imaging guidelines; and
changes in pathology, such as the COVID-19 emergency.

The Complexity Behind ML Regulation:
Now and the Future

Both technical and nontechnical barriers pose a challenge to the
implementation of any effective regulatory model. This may
also explain why the TPLC approach has not been implemented
more than 3 years following its inception. Ongoing regulation
of an ML algorithm requires mechanisms to monitor model
performance and methods of updating the model, the latter
necessitating data sharing.

Facilitating Model Evolution
Model drift, a process where the model’s prediction power
deteriorates due to changes in the clinical environment, is the
main cause of deviation in model performance once deployed
clinically. The proposed regulatory pathway aims to engineer
a performance monitoring and adaptation system on a local and
national level that aims to detect, monitor, and mitigate the
effect of model drift. Logistically, this process can be more
nuanced.

In some circumstances, model drift can be anticipated, enabling
retraining in advance of its occurrence. This is typically limited
to foreseeable changes that alter the data distribution, such as
a newly acquired computed tomography (CT) scanner that
enables thinner reconstruction of images (eg, 1-mm thickness
slices rather than 5-mm thickness). When the data in the domain
is expected to change frequently, the identification of model
drift can be automated so that the model can be retrained
accordingly on a regular basis, both of which will require
overhead infrastructure to be in place [30].

In other cases, once model drift is detected, its cause must be
understood to take appropriate action. These range from
biological factors such as a change in the characteristics of the
patient population or management guidelines, technological
factors such as novel treatment and imaging technology, and
operational factors such as a change in the format of incoming
data (eg, when the oxygen saturation probe outputs saturation
as an integer [“97”] rather than a string [“97%”]).

To retrain ML algorithms, a wide range of methods are available
from simple calibration to full retraining with the possible
addition of new features. The choice of using old or new data
for retraining depends on the application of the algorithm. For
instance, if a specific cause has resulted in model drift, such as
the above example of a novel CT scanner, then the model will
need to be retrained on the new data as they are generated. If

the drift is infrequent, both data sets can be combined to update
the existing algorithm or generate a new algorithm. If the data
is highly dynamic, retraining can be performed on new data
while replacing the old.

During the retraining process, one must strive for a fine balance
between maintaining the algorithm’s original function while
adapting to its new local environment and minimizing new bias.
For instance, in approaches that disregard the old data or
algorithm, a risk of overfitting is present such that the algorithm
may lose its original function. At the same time, care must be
taken not to bias the model toward the outliers in the data set.
For instance, the addition of a new data set with more cases of
malignant chest nodules may bias an algorithm to predict lung
cancer rather than benign modules from chest radiographs.

Ground-Truthing
During the local and national testing and retraining,
ground-truthing, or annotation of data to compare with algorithm
predictions, is an essential process during model evolution.
While fully automated methods exist, typically achievable in
binary classification tasks with well-structured data, more
complex tasks such as segmentation tasks (eg, identification of
a lesion on a scan) will require manual labeling by a specialist.
The question remains as to who, when, and how this process
will take place alongside the clinical workflow. Independent
companies that specialize in data annotation and ground-truthing
exist, which may help to circumvent this added layer of
complexity.

Data Sharing
Insufficient sample size or restricted data sets can make it
difficult for data to be interpreted through ML techniques
subsequently introducing bias and underestimation of minority
groups [31]. For example, the International Skin Imaging
Collaboration: Melanoma Project, one of the largest dermatology
data sets of pigmented lesions, largely focuses on Caucasian
populations, which will limit its performance in other
populations. Moreover, health outcomes are known to be worse
in minority populations. Thus, it continues to be imperative to
be able to acquire a range of data from a variety of sources to
train ML models [32].

However, data sharing poses a challenge due to the sensitive
nature of patient data and the sheer volume of data to be
transferred [33]. During the current workflow for the
development of ML algorithms, clinical sites typically share
medical data for a specified period of time through two
pathways: direct sharing and data enclaves. The former involves
sending data out of the clinical network to the developers, while
the latter takes the opposite approach by allowing external model
developers into the clinical sites. Both routes can open up the
potential for data misuse outside the agreed terms and
compromise patient trust and safety. Data curated across
multiple sites help to improve algorithm performance and
minimize bias but will require greater stringency in its
governance and standardization.

One potential solution is federated learning, a process that allows
a model to be trained on multiple data sets across different sites
by solely allowing access to specific features of each data set
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without physically exchanging data [34]. This circumvents the
risks of data sharing while increasing the size and diversity of
case pathology and demographics the algorithm is exposed to.
Moreover, federated learning opens up the possibility of
continuous learning by ongoing access to live data, rather than
the outdated static data sets procured through the current two
pathways. Collectively through a federated platform, the
performance of the algorithm can be constantly tracked, trained,
and tested.

Nevertheless, to unlock the full potential of this technique, we
will need to overcome several logistical challenges. First, the
initial algorithm development will still require intimate access
to data. Second, data across sites can be stored in variable
formats, making it more difficult to standardize and access the
specified features required for federated learning. Finally,
federated learning will need to be supported by adequate local
hardware and networks, and can be bottlenecked by
resource-constrained sites [34].

A number of ML- and non-ML–based prediction tools have
been developed using national and international collaborative
data sets [35-37]. In Taiwan, the National Health Insurance
Research Database exemplifies a population-level data source
for research in health care, with strict requirement for privacy
and data confidentiality [38]. The Chronic Kidney Disease
Prognosis Consortium, international collaborative data sets
sponsored by the US National Kidney Foundation, harnesses
data from over 80 population cohorts in an effort to improve
the global outcome of kidney disease [39]. The use of data often
requires stringent application through research institutions and
public bodies. This, however, helps to optimize data quality,
size, and diversity in a collaborative effort to direct ML
technology toward priority areas while ensuring an optimal
level of data governance.

Integration Into Clinical Practice
Ultimately, the approved algorithms will need to yield sufficient
clinical value to be accepted and integrated into the existing
clinical workflow. Medical professionals will need to adapt
their clinical practice and maximize the utility of the new
technology. At the same time, ML algorithms make mistakes,
as exemplified by the erroneous treatment recommendations
made by IBM Watson for Oncology and the more recent Epic
Sepsis Model that was found to miss two-thirds of sepsis cases
that it was designed to predict [40,41]. Astringent safeguarding
processes should be put in place, as the risk of faulty algorithms
can affect a population at a system level, rather than of a single
doctor-patient interaction [3].

Adaptation of Medical Professionals
The introduction of ML algorithms into the clinical workflow
of medical professionals will not be an easy task. As mentioned
above, we propose for a period of shadow deployment of the
ML algorithm to allow clinicians to acclimatize to the new
practice and troubleshoot for any issues while ensuring the
algorithm is safe and reliable. During its clinical practice, once
an algorithm is retrained, its functions and iterations may differ,
while clinicians may continue to practice based on the
algorithm’s prior behavior, introducing an element of automation

bias. Therefore, clinicians will be required to continually adapt
their clinical practice alongside the ML algorithm to maintain
a good standard of care. Nevertheless, ongoing learning is
already an integral part of medical professionals’ career paths.
Clinicians have in the past adapted well to system changes such
as the introduction of electronic health systems, the emergence
of new diseases (COVID-19 being a stark example), alongside
the flexibility in working with different members of the
multidisciplinary team.

Looking beyond the future, the traditional health care training
curriculum will need to adapt to the evolving medical technology
through the introduction of ML into the medical curriculum. In
fact, universities worldwide have recognized the demand for
interdisciplinary medical professionals by introducing combined
medical and engineering programs [42-44]. As proposed by
Panch et al [45], ML may emerge as a new medical specialty
to oversee the development and clinical implementation of ML
algorithms into health care.

Adaptation of the Current Workflow
Ongoing local monitoring is a necessity. This will require design
of a protocol and the use of specific resources. For instance, a
threshold will need to be predetermined to trigger the
re-evaluation of algorithm performance at a fixed interval or
when a deterioration in performance is detected. When an
algorithm is suspended for retraining and evaluation, a
sustainable substitute will need to be in place to maintain the
standards of care prior to its reintroduction.

The development of local test sets will become an additional
process alongside the usual clinical practice. As to who will
undergo the process of ground-truthing, the practice of internal
clinicians that regularly work with the model may be influenced
by the model itself, thus introducing bias to subsequent inputs.
For instance, radiologists who rely on ML algorithms to detect
nodules may be less adept at their detection during the
ground-truthing process. On the other hand, external clinicians
may be less accustomed to the local equipment and practices.
The optimal solution may involve the recruitment of a
representative number of internal and external clinicians to
expose the algorithm to a variation in clinical practice and
minimize bias. Nevertheless, the entire process of model
evolution will require a learning curve for all health care workers
involved.

Adaptation of the Governing Structure
At present, the FDA places the onus on the third-party
manufacturers to develop, monitor, and evaluate their ML
algorithms. This is no longer sufficient or efficient. As described
above, independent local and national governing structures
involving multiple stakeholders will need to be in place, taking
on a strong oversight in regulating the development of
algorithms, clinical implementation, detection of deviation in
algorithm performance, curation of local and national data sets,
and circumventing automation bias, all within the constraints
of limited clinical resources. The governing responsibility should
be shared among clinicians, managers, software engineers,
parent company representatives, and patients.
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Adaptation of the Health System
All local sites are not created equal. Smaller resource-limited
hospitals with limited infrastructure or expertise may in fact
benefit the most if the full potential of ML technology is used
appropriately, supporting limited workforce resources,
inefficient workflow, and inadequate time between patients and
clinicians. These hospitals, however, will require extensive
support. In addition, the potential increase in workload to
facilitate the local evolution and monitoring of algorithms may
be particularly taxing for smaller peripheral hospitals, potentially
nullifying the local uptake of ML technology. Potential solutions
may be in the form of a network of external ML experts as well
as specialist hardware and software to support local
implementation of ML algorithms, their monitoring, and
evaluation. In addition, regulatory frameworks worldwide should
emphasize the importance of equity and accessibility in the
development of ML algorithms, taking into consideration
resource-limited hospitals and countries, optimizing the use of
available resources while optimizing the performance of the
ML algorithms.

Conclusion

The growing use and development of ML algorithms worldwide
mandate the need for robust regulatory mechanisms. Current
pathways proposed by the FDA demonstrate limited scope for
the algorithm to adapt to the ever-changing clinical landscape.
While propositions have been made on how to improve the
existing pathways, they do not involve major stakeholders and
face many challenges to implementation. Given the supporting
role of ML algorithms alongside medical professionals, this
paper has proposed a parallel regulatory pathway from inception
to implementation that allows continuous model evolution
throughout its clinical course. Complexities and barriers do
exist in its implementation. Successful implementation will
necessitate novel, robust, and ML-specific infrastructure and
governing bodies. Concomitantly, adaptability of medical
professionals and interdisciplinary collaboration will be vital
to unleash the full potential of ML technology in health care
while ensuring quality, equity, and safety.
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Abstract

Background: Public health surveillance relies on the collection of data, often in near-real time. Recent advances in natural
language processing make it possible to envisage an automated system for extracting information from electronic health records.

Objective: To study the feasibility of setting up a national trauma observatory in France, we compared the performance of
several automatic language processing methods in a multiclass classification task of unstructured clinical notes.

Methods: A total of 69,110 free-text clinical notes related to visits to the emergency departments of the University Hospital of
Bordeaux, France, between 2012 and 2019 were manually annotated. Among these clinical notes, 32.5% (22,481/69,110) were
traumas. We trained 4 transformer models (deep learning models that encompass attention mechanism) and compared them with
the term frequency–inverse document frequency associated with the support vector machine method.

Results: The transformer models consistently performed better than the term frequency–inverse document frequency and a
support vector machine. Among the transformers, the GPTanam model pretrained with a French corpus with an additional
autosupervised learning step on 306,368 unlabeled clinical notes showed the best performance with a micro F1-score of 0.969.

Conclusions: The transformers proved efficient at the multiclass classification of narrative and medical data. Further steps for
improvement should focus on the expansion of abbreviations and multioutput multiclass classification.

(JMIR AI 2023;2:e40843)   doi:10.2196/40843
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Introduction

Background
The objective of public health surveillance is to describe a health
event in the population to estimate its burden based on its
characteristics (incidence, prevalence, survival, and mortality)
and evolution. This surveillance contributes to the definition,
implementation, monitoring, and evaluation of public health
policies. It must also be able to alert to the emergence of new
threats to public health (infectious or environmental in origin
and natural or terrorist) and monitor and evaluate the impact of
known and expected events (seasonal epidemics) or unexpected
events (industrial disasters and extreme weather events) on the
health of the population. Public health surveillance relies on the
collection of data, often in near real time.

The SurSaUD (Surveillance Sanitaire des Urgences et des
Décès) syndromic surveillance system was created for the
purpose of public health surveillance in France in 2004 by Santé
Publique France, the French National Public Health Agency.
The SurSaUD system collects daily data from 4 sources:
emergency departments (EDs; OSCOUR ED network) [1],
emergency general practitioners (SOS Médecins network), crude
mortality (civil status data), and electronic death certification
including causes of death [2]. Since its inception, the OSCOUR
network has recorded >130 million ED visits. Data are collected
by the direct extraction of information from patients’ electronic
health records (EHRs) in a common format for the entire
territory and transmitted to Santé Publique France via the
OSCOUR network. Owing to the coding of the main diagnosis
(International Classification of Diseases [ICD] 10th Revision
codes) and progressive improvement of data quality [3], the
network can establish real-time monitoring of public health
events such as epidemics of influenza, gastroenteritis, or
bronchiolitis [4-7]. This is one of the tools currently used to
monitor responses to the COVID-19 epidemic in France.

Approximately one-third of ED visits in France are the result
of trauma [8]. Trauma is a major cause of mortality and
morbidity worldwide [7]. In 2017, trauma and injury accounted
for 7.01% (range 6.75%-7.33%) of the deaths in France [9].
Unfortunately, little information is available regarding trauma;
although we can know the nature of the main injury, nothing is
known about the mechanism (road accident, assault, suicide,
etc). However, this information is available in the EHR but in
a free-text form. In fact, each time a patient visits the ED, the
nurse in charge of reception and orientation and the physician
in charge of the first consultation enter a text called clinical
note, which describes the reasons for the patient’s visit and the
circumstances in which the symptoms occurred. To add the
trauma mechanism to the data collected by the OSCOUR
network, a manual classification by health professionals would
be time consuming and require multiple resources. Given the
nature of the data (free text, unstructured, and containing
abbreviations) to be processed and the objective (classification),
artificial intelligence with deep learning, particularly automatic
language processing, seems to be indicated.

Natural language analysis has seen a recent breakthrough with
the introduction of deep learning, in particular, the transformer

architecture. Introduced in 2017 by Google and proposed in the
article “Attention is All You Need” by Vaswani et al [10],
transformers have an architecture that allows the implementation
of a mechanism for processing the sequence of tokens (a token
is an instance of a sequence of characters in a particular
document that are grouped together as a semantic unit useful
for language processing) that form a sentence in a self-attentive
manner, that is, relating each of these tokens to each of the
others in the sentence. They have the particularity of being able
to be pretrained on a corpus of text, which can be very large
because it does not require a coding stage. This phase leads to
a generative model that is capable, for example, of constructing
artificial text by iteration. The Bidirectional Encoder
Representations from Transformers (BERT) are one of these
transformer-type models pretrained on large corpora of text
[11]. The BERT model is a bidirectional transformer composed
of only encoder blocks. The particularity of BERT model is that
it learns information from both the right and left sides of a
token’s context during the pretraining and training phases. BERT
is composed of a stack of 12 identical layers. Each layer consists
of 2 sublayers. The first is a multihead self-attention mechanism,
and the second is a simple, position-wise fully connected
feed-forward network. In other words, the text encoder converts
text into a numeric representation. On many tasks, including
text classification, its performance is systematically superior to
that of the convolutional and autoregressive models used until
then [11].

French derivatives of the BERT model such as FlauBERT [12]
and CamemBERT [13] have been trained on very large and
diverse French corpora. FlauBERT is a French BERT trained
on a very large and heterogeneous French corpus. Models of
different sizes were trained using the Jean Zay supercomputer
of the Centre National de la Recherche Scientifique; there are
3 sizes: small (54 million parameters), base cased (138 million
parameters) and uncased (137 million parameters), as well as
large (373 million parameters). CamemBERT is based on
RoBERTa [14], which is an evolution of BERT in several
aspects, including the use of the masked language model as the
sole pretraining objective. Similar to FlauBERT, CamemBERT
is available in different sizes: base (110 million parameters)
and large (335 million parameters); moreover, it can be trained
on different training corpora such as OSCAR (either 138 GB
or 4 GB of text) [15], CCNET (either 135 GB or 4 GB) [16],
or French Wikipedia (4 GB).

One of the most interesting examples of transformer architecture
is Generative Pretrained Transformer-2 (GPT-2), released by
OpenAI in 2019. GPT-2 is a large transformer-based model
composed solely of decoder blocks, with 1.5 billion parameters
on its extra-large version, and trained on a data set of 8 million
web pages to predict the next word from the previous words
[17]. A total of 3 other sizes of GPT-2 were released before the
largest: 124 (small), 355 (medium), and 774 (large) million
parameters. This model’s ability to generate text attracted the
attention of the community quickly because of the difficulty in
distinguishing the produced artificial texts from the texts written
by humans, suggesting that some of the meaning present in
natural language was embedded. Moreover, beyond its ability
to generate coherent texts, GPT-2 can perform other tasks such
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as answering questions or classifying documents. As with
BERT, the conservation of several self-attention block weights
from a pretrained model is sufficient to transfer contextual
representations into another data set. The training of the GPT-2
model is thus carried out in 2 distinct phases. The first phase of
self-supervised generative pretraining consists of the reading
of a corpus of texts. This leads to the ability to generate texts
automatically. The second supervised training phase consists
of resuming the learning process in a corpus of annotated texts
to create a system capable of performing specific tasks (eg,
classification). BelGPT2 is a Belgian small GPT-2 pretrained
on a French corpus of 60 GB (Common Crawl, Project
Gutenberg, Wikipedia, EuroPARL, etc) that was released at the
end of 2020 [18].

Related Work
Extracting mechanisms and types of traumas are a matter of
multiclass classification. Multiclass classification of French
medical data involves a wide variety of techniques. For example,
for the 2018 Conference and Labs of the Evaluation Forum
eHealth task 1 challenge [19], the objective of which was to
extract ICD 10th Revision codes from the death certificates
provided by the Centre for Epidemiology of Medical Causes of
Death, Cossin et al [20] tested an approach based on ontologies,
whereas Flicoteaux et al [21] proposed an approach using a
probabilistic convolutional neural network (CNN), and Ive et
al [22] resorted to the association of a recurrent neural network
with a CNN. By contrast, Metzger et al classified free-text
clinical notes from ED related to suicide attempts using random
forest and naive Bayes–type algorithms [23]. Recent studies
have shown the effectiveness of transformers in classification
tasks for EHR free-text data such as ICD coding [24,25],
phenotyping [26], and readmission prediction [27]. Therefore,
within the framework of the TARPON (Traitement Automatique
des Résumés de Passage aux urgences dans le but de créer un
Observatoire National) project, which aims to demonstrate the
feasibility of setting up a national observatory of trauma, we
propose here to compare the performances of several transformer
models in the classification of ED visits for trauma based on
clinical notes from the adult ED of the Bordeaux University
Hospital. We compared the transformers FlauBERT,
CamemBERT, BelGPT2, and a French GPT-2 model pretrained
on a domain-specific corpus called GPTanam with term
frequency–inverse document frequency (TF-IDF)/support vector
machine (SVM), which was used as a baseline model. To the
best of our knowledge, no previous performance evaluation of
multiple transformers’ classification application has been
conducted on complex and unstructured clinical data from ED
combining common French language, medical data, and jargon.

Methods

Medical Ethics Regulations and General Data
Protection Regulation
This study was authorized by the Bordeaux University Hospital
Ethical Board under number GP-CE2021-21. A data
management plan was created and reviewed by the privacy
security board to meet the institutional and national requirements
in France for General Data Protection Regulation compliance.

Database
Clinical notes were extracted from the EHR of the adult ED
stored in the information system of the University Hospital of
Bordeaux, France. They correspond to 375,478 medical records
of visits to the adult ED of Bordeaux Hospital from 2012 to
2020. The variables available were age, sex, date and time of
the visit, the clinical note generated by the physicians or interns,
and the clinical note written by the triage nurses.

Labeling Strategy
In total, 69,110 clinical notes were randomly extracted for
manual annotation. Our coding team consisted of trauma
epidemiologists, emergency physicians, emergency nurses,
research assistants, and biostatisticians, amounting to a total of
16 coders. The annotation phase lasted 5 months. For each
clinical note, a code describing the content of the text was
assigned. The annotation grid used for coding was developed
for the needs of the project. The code associated with each
clinical note consisted of 9 fields. The fields were as follows:
“First visit (to the emergency department for this reason),”
“Location (of the trauma),” “Activity (performed during the
trauma),” “Type of Sport (practiced during the trauma),”
“Subject under the influence,” “Notion of pre-traumatic
discomfort,” “MVA (Motor Vehicle Accident)-Secondary
Prevention Elements,” “MVA-Antagonist,” and “Type of trauma
or Mode of travel for the MVA.” As the objective was to classify
the types of trauma, we mainly used the data of the field “Type
of trauma or Mode of movement for the MVA.” As the
distribution of the fields was unbalanced, we created a composite
variable containing 8 mutually exclusive classes to have a larger
number of clinical notes per class. Therefore, we grouped certain
types of traumas (ie, “Fall,” which included “Fall from own
height,” “Fall from a given height,” and “Fall on stairs”). The
composite variable included the following classes or labels:
“Accident of exposure to body fluids (blood exposure accident,
unprotected sex at risk),” “Assault,” “Motor Vehicle Accident
(MVA),” “Foreign body in eyes,” “Fall (except sports),” “Sports
accident,” “Intentional Injury,” and “Other trauma” as shown
in Multimedia Appendix 1. The interannotator agreement was
assessed with a random sample of 1000 clinical notes labeled
by 2 annotators, leading to a Cohen κ score [28] of 0.84.

A sensitivity analysis was performed to study the impact of
potentially ambiguous content on classification. Therefore, the
test sample was reread by an expert. Potentially ambiguous
content in terms of classification is defined here as the
accumulation of several mechanisms or types of traumas or a
major difficulty in assigning a label to a clinical note given its
text.

Corpus Statistics
In total, 22,481 manually labeled clinical notes from the
Bordeaux University Hospital were included in the study.
One-third (22,481/69,110) of the total annotated clinical notes
were labeled as visit to the ED resulting from a trauma. The
average number of sentences in the corpus was 3.25 (SD 2.56;
range 1-63). The average length of clinical notes was 58 (SD
38) words, with a minimum of 1 word (eg, “Accident
d’exposition au sang”) and a maximum of 630 words. The
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number of unique unigrams, bigrams, and trigrams were 70,99,
395,827, and 777,459, respectively.

Models and Experiment Settings
The models selected for comparison and freely available as
open-source content were a traditional machine learning model
(baseline model) with TF-IDF/SVM couple as well as 3
transformer-type models pretrained on French corpora:
CamemBERT [13], FlauBERT [12], and BelGPT2 [18]. We
then chose the best performing model and applied a
supplementary step of self-supervised training with the
remaining 306,368 unlabeled clinical notes. This model is called
here as GPTanam. Table 1 lists the size and configuration of
each transformer model.

For TF-IDF, tokenization was performed using the National
Language Toolkit package (version 3.6.6; NLTK) [29], and
linear support vector classifier was applied using scikit-learn
(version 0.24.1) [30]. The most frequent words (eg, “that,” “he,”
and “the”) were removed. Tokenization was performed using
SentencePiece [31] for CamemBERT, Byte-Pair Encoding for

FlauBERT, and a byte-level Byte-Pair Encoding for both GPT-2
models [32]. The data were cleaned using regular expressions
with the re package in Python (version 3.7). Unicode
normalization was performed in the 8-bit Universal Character
Set Transformation Format. The linear support vector classifier

parameters were as follows: tolerance=1 × 10–5, penalty=l2,
loss=squared hinge, dual optimization=true, C=1.0, multiclass
strategy=one versus rest, verbose=0, and a maximum of 1000
iterations. For all 3 transformers, the optimizer was AdamW,

with an epsilon of 1 × 10–8, and the maximum length was 512.
GPTanam had training and evaluation batch sizes of 5 and a

learning rate of 2 × 10–5. For FlauBERT and CamemBERT, the
batch size was 16 for training and 20 for evaluation, and the

learning rate was 5 × 10–5. The models were trained using the
Hugging Face library under the Pytorch framework on our
workstation with a single Titan RTX (Nvidia) graphics
processing unit with 24 GB of video RAM. Performance
analysis was done using scikit-learn and imbalance-learn
(version 0.9.1).

Table 1. Transformer models’ sizes and configurations.

Pretraining corpus size (GB)Parameters (millions)Embedding dimensionAttention headsLayersModel

1351107681212CamemBERT-base-CCNETa

711387681212FlauBERT-base-cased

57.91177681212BelGPT2

58.61177681212GPTanam

aCCNET: criss-cross attention for semantic segmentation.

Self-supervised Learning and Fine-tuning Phase
Considering the GPTanam model, the first step comprising
self-supervised learning was performed with 306,368 clinical
notes with 1 epoch [33]. For all the models, a random sample
of 80.80% (18,166/22,481) of the clinical notes labeled as
trauma was dedicated to supervised learning. This data set was
divided into a training sample (14,532/18,166, 79.99%) and a
validation sample (3634/18,166, 20%) in an 80/20 ratio. We
trained each model 9 times with different seeds on 7 epochs for
CamemBERT and FlauBERT and 5 epochs for BelGPT2 and
GPTanam. To obtain a single prediction for the 9 different
executions of the chosen epoch (based on the maximum
validation micro F1-score) for each model, a vote was taken.

Test Phase
The test sample contained 19.19% (4315/22,481 records) of the
labeled data set. The second reading of these clinical notes
resulted in 10.82% (467/4315) being tagged as clinical notes
with potentially complex or ambiguous content in terms of
classification. Therefore, the analysis included both the complete
test data set (4315/22,481, 20%) and the data set without

complex and ambiguous content (3848/22,481, 17.11%). To
obtain the probabilities for each prediction, a softmax activation
layer was applied to the 4 transformer models.

Data Sets
The label distribution among the corpus and each training,
validation, and test data set are presented in Table 2. The most
common type of trauma was the class “Fall” followed by “Other
trauma” and “Motor Vehicle Accident.” An example of clinical
notes translated from French is shown in Multimedia Appendix
2.

The median age at the time of visit was 37 (IQR 24-58—first
and third quartiles) years, and 58.46% (13,143/22,481) of the
patients were male. EHRs were introduced in 2012 at the
Bordeaux University Hospital, which explains the lower
proportion of data for this particular year. In 2019, there was a
decrease in ED venues, whereas in 2020, there was a significant
increase in ED venues. Table 3 summarizes the characteristics
of the train, validation, and test data sets for the study
population. The distribution of the variables age, sex, and year
of venues at the ED were comparable among the 3 data sets.
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Table 2. Label distribution among train, validation, and test data sets.

Total (N=22,481, 100%),
n (%)

Test data set (n=4315,
19.19%), n (%)

Validation data set
(n=3634, 16.16%), n (%)

Train data set (n=14,532,
64.64%), n (%)

Type of trauma

213 (0.9)41 (1)40 (1.1)132 (0.91)Accident of exposure to bodily
fluids

2478 (11.02)498 (11.54)393 (10.81)1587 (10.92)Assault

3091 (13.75)568 (13.16)495 (13.62)2028 (13.95)MVAa

1008 (4.48)186 (4.31)180 (5)642 (4.42)Foreign body in eye

7494 (33.33)1554 (36.01)1162 (31.97)4778 (32.87)Fall

2023 (9)371 (8.59)341 (9.38)1311 (9)Sport accident

526 (2.33)112 (2.59)73 (2)341 (2.34)Intentional injury

5648 (25.12)985 (22.82)950 (26.14)3713 (25.55)Other trauma

aMVA: motor vehicle accident.

Table 3. Train, validation, and test data set characteristics.

Total (N=22,481)Test data set (n=4315)Validation data set (n=3634)Train data set (n=14,532)

37 (24-58)37 (24-58)37 (24-57)37 (24-58)Age (years), median (IQRa)

13,143 (58.46)2476 (57.38)2181 (60.01)8486 (58.39)Sex (male), n (%)

Year of EDb venue, n (%)

336 (1.49)66 (1.52)52 (1.43)218 (1.5)2012

2166 (12.2)418 (12.3)359 (12.4)1389 (12.2)2013

2215 (12.3)386 (11.3)385 (13.3)1444 (12.6)2014

2253 (12.6)425 (12.5)326 (11.2)1502 (13.1)2015

2210 (12.3)426 (12.6)365 (12.6)1419 (12.4)2016

2324 (12.9)461 (13.5)370 (12.8)1493 (13.1)2017

2304 (13.5)474 (13.9)405 (13.9)1425 (12.5)2018

1083 (6.2)218 (6.4)175 (6)690 (6)2019

2856 (16)532 (15.6)468 (16.1)1856 (16.2)2020

4724 (20.9)899 (26.4)737 (25.4)3118 (27.3)Missing values

aIQR: first and fourth quartiles are given.
bED: emergency department.

Performance Criteria
The measures chosen were macro-average precision and micro
F1-score, which, in the multiclass framework, are equal to
accuracy. For the following equations, n is the number of
samples (clinical notes), TP is true positive, FP is false positive,
and FN is false negative.

Macro-Average Precision
Precision expresses the proportion of units a model classifies
as positive that are actually positive. In other words, precision
indicates how much one can trust the model when it predicts
that a record is classified in a given class. In the case of
multiclass classification, the macro-average precision over all
i classes can be evaluated by macro-averaging, wherein the
precision over each i class is first calculated and then the
precisions over all n classes are averaged. There is no relation
to class size, as classes of different sizes are also weighted in

the numerator. This implies that the effect of larger classes is
as important as that of smaller ones. Therefore, each clinical
note is equally important with this measure [34].

Micro F1-Score
F1-score is defined as the harmonic mean of precision and recall
in binary class problem. To extend the F1 measure to
multiclasses, 2 types of average, microaverage and
macro-average, are commonly used. In microaveraging, the F1

measure is computed globally over all class decisions, with
precision and recall being obtained by summing over all
individual decisions. The microaveraged F1 measure gives equal
weight to each clinical note and is, therefore, considered as an
average over all the clinical note or category pairs [35].
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Data Security
Identifying information was found in the data set. Therefore,
we deidentified all clinical notes using named entity recognition
with FlauBERT. Data processing and computing were conducted
within the facilities of the ED of the University Hospital of
Bordeaux, which have received regulatory clearance to host and
exploit databases with personal and medical data. All the
patients from whom information was retrieved were aged ≥15
years.

Error Analysis
An error analysis was performed with unigrams and bigrams
for the best performing model. All misclassified clinical notes
were read by an expert to determine whether the human
annotation labels were appropriate.

Results

Fine-tuning the Performance of Models
Unlike statistical methods such as TF-IDF, the supervised
fine-tuning of transformer models is time consuming and can

be greatly accelerated by the use of graphics processing units.
The self-supervised fine-tuning step for the GPTanam model
required approximately 12 hours. At that point, GPTanam could
generate artificial clinical notes, as seen in Multimedia Appendix
3, that could not be easily differentiated from the original ones.
One epoch of supervised fine-tuning required 15, 16, 19, and
18 minutes for CamemBERT, FlauBERT, BelGPT2, and
GPTanam, respectively. When looking deeper into each
transformer model’s F1-scores on the validation data set, Figure
1 shows that CamemBERT reached its maximum F1-score
(0.873) at epoch 6, FlauBERT achieved an F1-score of 0.874
at epoch 5, BelGPT2 reached its peak (0.890) faster at epoch
3, and GPTanam reached 0.980 at epoch 2. Moreover,
GPTanam’s F1-score on the validation data set was the highest
among the 4 transformer models. We conjecture that a
self-supervised step on a domain-specific corpus for GPTanam
contributed to the learning of the semantic representations,
which resulted in a faster convergence in the learning of the
classification task.

Figure 1. F1-score curves for CamemBERT, FlauBERT, BelGPT2 and GPTanam on the validation dataset.

Performance of Models
The average macro precision and micro F1-scores were
systematically higher for the transformers than for the
TF-IDF/SVM couple on the complete test data set, as shown in
Table 4. Among the transformers, GPTanam achieved an
average micro F1-score of 0.969, outperforming CamemBERT,
FlauBERT, and BelGPT2, for which average F1-scores were
0.878, 0.873, and 0.887, respectively. The macro-average
precision was higher than the F1-score in almost all cases, except
for TF-IDF/SVM, for which the macro precision was lower
than the micro F1-score (macro precision=0.860 and micro
F1-score=0.864).

The distribution of n clinical notes per class was not balanced,
and the micro F1 scores were, in all cases, lower in the classes
where n was lower. Concerning the micro F1-score of the
different classes, GPTanam had higher scores than the other
transformers and TF-IDF. The performance of GPTanam was
high for all classes except for intentional injuries; we assumed
that this might be associated with the semantic heterogeneity
and variety of the class. Indeed, this class encompassed
self-harm (self-mutilation, punching due to rage, and
self-stabbing) and suicide attempts (shooting, alcohol or drug
poisoning, and car crashing), with few examples per injury. By
contrast, classes such as motor vehicle accident (MVA) and fall
have semantic consistency with a larger number of examples.
The confusion matrix is shown in Multimedia Appendix 4. An
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error analysis of the intentional injury class, as well as the other classes, is provided in the next section.

Table 4. Micro F1-scores for all classes and models with microaverage F1-scores and macro-average precision on the complete test data set.

Micro F1-scoresTest data set
(n=4315), n (%)

Type of trauma

GPTanamBelGPT2FlauBERTCamemBERTTF-IDFa/SVMb

0.91 c0.830.840.840.8341 (1)Accident of exposure to bodi-
ly fluids

0.960.910.920.910.9498 (11.54)Assault

0.970.910.910.900.91568 (13.16)MVAd

0.970.820.820.840.79186 (4.3)Foreign body in eye

0.980.920.910.920.91554 (36.01)Fall

0.940.850.830.830.82371 (8.6)Sport accident

0.840.770.730.760.75112 (2.6)Intentional injury

0.980.850.820.830.8985 (22.8)Other trauma

0.9690.8870.8730.8780.864N/AeMicro F1-score

0.9700.890.8800.8800.860N/AMacro precision

aTF-IDF: term frequency–inverse document frequency.
bSVM: support vector machine.
cThe best F1-scores are in italic.
dMVA: motor vehicle accident.
eN/A: not applicable.

Error Analysis
The error analysis results are presented in Textbox 1.

Removing complex and ambiguous clinical notes were
associated with an increase of performance for all the models;
the average gain of F1-scores was 0.04 for TF-IDF/SVM,
CamemBERT, FlauBERT, and BelGPT2. The average gain of
the micro F1-score was 0.01 for GPTanam, which seems to be
more robust in classifying complex and ambiguous content.

The difference in performance when potentially complex and
ambiguous content was considered was greater for
TF-IDF/SVM, CamemBERT, FlauBERT, and BelGPT2 than
for GPTanam, especially with the classes MVA and Sport

Accident, where the average gain of the micro F1-score per
class was 0.07, as shown in Figure 2. Performance for the class
“Accident of exposure to bodily fluids” did not improve for
TF-IDF/SVM, CamemBERT, and FlauBERT when complex
and ambiguous content was removed from the test data set. The
performance of GPTanam did not improve for the classes
“Foreign body on the eye” and “Other trauma,” but the F1-scores
were already very high for these classes—0.97 and 0.98,
respectively. Performance was slightly improved for “Assault,”
“Fall,” “MVA,” “Sport Accident,” and “Other trauma” when
potentially complex and ambiguous content was removed from
the test data set for all the models as seen in Multimedia
Appendix 5 and the confusion matrix in Multimedia Appendix
6.
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Textbox 1. Error analysis results.

Accident of exposure to bodily fluids

The bigram analysis showed that the keywords “contact blood” were absent in the top 10 bigrams in the incorrectly classified clinical notes, whereas
the unigrams analysis showed that “HIV” is the ninth unigram (after “aes,” “blood,” “needle,” “source,” “intercourse,” “dakin,” “work,” and “sexual”).

Assault

Regarding the class “Assault,” the top 3 bigrams were “physical assault,” “declare having,” and “punch” (coup poing in French) for the correctly
classified clinical notes, whereas “left hand,” “hand trauma,” and “mechanical fall” were the most frequent bigrams. The verification of the 18 clinical
notes manually annotated as “Assault” showed that for 11 (61%) of them, the label predicted by the model was correct (n=1, 9% fall; n=8, 73%
self-harms; n=1, 9% motor vehicle accident [MVA]; and n=1, 9% sport accident paintball).

MVA

The acronym “mva” (n=700, 26%) was the most represented unigram in the correctly classified corpus, whereas “pain” was the most represented
unigram in the clinical notes classified as not MVA. When analyzing the 6 incorrectly classified clinical notes, 3 (50%) of them were wrongly labeled
as they were in fact referring to an assault, a fall, and a basketball accident. The 3 (50%) remaining clinical cases contained 2 types of traumas such
as falling on the street.

Foreign body in the eye

The unigram analysis for this class showed that the unigrams “eye” and “the eye” were the most represented (n=140, 13%), whereas “left” and “hear”
were the top 2 unigrams in the clinical notes classified as not being “foreign body in the eye.” In fact, one of these clinical notes was related to a
foreign body in the heart, and 2 others were assault without mention of eye trauma.

Fall

The top 3 bigrams for the correctly classified clinical notes were “mechanical fall,” “loss of consciousness,” and “cranial trauma” and “right ankle,”
“ankle trauma,” “left ankle” for the incorrectly classified ones. In total, 21 of the incorrectly classified clinical notes encompassed a double mechanism
of trauma: 1 (5%) sport accident, 16 (76%) MVAs, and 4 (19%) assaults involving a fall were present. A total of 9 notes mentioned back pain, ankle
and knee twists, pain while getting off of a truck, or a patient found at the bottom of the stairs without mention of falling.

Intentional injury

The most frequent unigrams and bigrams were different between the correctly and incorrectly classified clinical notes. The most represented unigrams
and bigrams were, respectively, “imv” (“voluntary drug intoxication” in French) and “suicide attempt” in the correctly classified corpus of clinical
notes, whereas “hand” and “punch given” were the most common in the incorrectly classified notes. Indeed, the model classified 10 clinical notes as
assault, whereas these clinical notes were related to a patient having punched something or himself.

Sport

In the correctly classified clinical notes, the most frequent unigrams were “pain,” “left,” and “trauma” and the most frequent bigrams were “right
ankle,” “functional impotence,” and “left knee.” In the incorrectly classified notes, the most frequent unigrams and bigrams were, respectively, “fall,”
“trauma,” and “bike” and “bike fall,” “right knee,” and “knee pain.” A total of 13 falls occurred while biking (the notes did not mention the place)
and were classified as MVA. Five incorrectly classified notes were eye trauma while practicing sports.

Removing complex and ambiguous clinical notes were associated with an increase of performance for all the models; the average gain of F1-scores
was 0.04 for TF-IDF/SVM, CamemBERT, FlauBERT, and BelGPT2. The average gain of the micro F1-score was 0.01 for GPTanam, which seems
to be more robust in classifying complex and ambiguous content.

The difference in performance when potentially complex and ambiguous content was considered was greater for TF-IDF/SVM, CamemBERT,
FlauBERT, and BelGPT2 than for GPTanam, especially with the classes MVA and Sport Accident, where the average gain of the micro F1-score per
class was 0.07, as shown in Figure 2. Performance for the class “Accident of exposure to bodily fluids” did not improve for TF-IDF/SVM, CamemBERT,
and FlauBERT when complex and ambiguous content was removed from the test data set. The performance of GPTanam did not improve for the
classes “Foreign body on the eye” and “Other trauma,” but the F1-scores were already very high for these classes—0.97 and 0.98, respectively.
Performance was slightly improved for “Assault,” “Fall,” “MVA,” “Sport Accident,” and “Other trauma” when potentially complex and ambiguous
content was removed from the test data set for all the models as seen in Multimedia Appendix 5 and the confusion matrix in Multimedia Appendix
6.
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Figure 2. Plot of micro F1-scores of all models for each class for both the complete test data set (blue bars) and the test data set without potentially
ambiguous content as regard to its classification (pink bars). TF-IDF: term frequency–inverse document frequency.

Discussion

Transformers: A New State of the Art
The transformers showed interesting results when applied to
free-text data from the ED of the Bordeaux University Hospital;
a GPT-2 model with a French tokenizer and a self-supervised
training step on a domain-specific corpus in addition to a large
French corpus reached an average micro F1-score of 0.969. This
model showed better performance than TF-IDF/SVM and the
other transformer models on average metrics and for all classes.
In 2018, when reviewing deep learning algorithms for clinical
natural language processing, the study by Wu et al projected
the rise in the popularity of transformer models [36]. However,
some studies showed that traditional approaches, when tailored
to the specific language and structure of the text inherent to the
classification task, can achieve or exceed the performance of
more recent ones based on contextual embeddings such as BERT
[37]. Further study could involve comparing our model’s
performance with that of bidirectional long short-term memory
with pretrained embeddings such as Word2Vec or transformer
embeddings and CNN.

Self-supervised Training on Domain-Specific Corpus
and Tokenizer
The decision to use pretrained models on French corpora with
a French tokenizer has probably contributed to the global
performance of the chosen transformer models. General
language transformer models pretrained on a cross-domain text
corpus in a given language have recently flourished. BelGPT2

was the first GPT-2 model fine-tuned on a French heterogeneous
corpus (CommonCrawl, French Wikipedia, and EuroParl)
released on the Hugging Face platform. The self-supervised
training of transformers in a specific domain can improve the
performance of tasks such as classification [38], text generation
[39], and predicting hospital readmission [40]. Despite many
experiments using BERT, GPT-2 has not been studied as
extensively as BERT yet. Our team showed that the amount of
data required to achieve a given level of performance (area
under the curve >0.95) was reduced by a factor of 10 when
applying self-supervised training on emergency clinical notes
to a binary classification task [41]. Here, we confirmed the
benefits of a self-supervised training step on a domain-specific
corpus. However, it is questionable whether this approach will
be applicable when extending the TARPON project to data from
other EDs in France, as each region or ED uses a specific
language in addition to the medical language, which uses many
abbreviations that can vary locally (eg, assault is written as
“brawl” in Bordeaux and “hep” means hepatitis). A possible
solution would be to train the model on a corpus resulting from
the extraction of ED notes at a national level. Similarly, the
treatment of medical concepts and abbreviations remains an
area for improvement, as not all EDs use the same abbreviations
in the same context. The use of ontologies developed in the
field of emergencies could constitute an area for improvement.
Transformers have also recently been tested for the identification
and replacement of abbreviations, with good results for BERT
[42,43]; however, there has not yet been a test on data from a
mixture of common language and medical terms in French.
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In addition, because the authors who proposed the CamemBERT
model did not compare the performance of different models
from the OSCAR, CCNET, and Wikipedia data sets in a
classification task, a future study could compare the different
sets in our database in this regard. While we have only used the
basic models of CamemBERT, FlauBERT, and GPT-2, it would
be appropriate to test the different sizes of pretraining data sets
on a classification task as well as the different sizes of models.
Indeed, Martin’s [44] team has shown that the standard
CamemBERT model (110 million parameters) trained on all
138 GB of OSCAR text does not massively outperform the
model trained “only” on the 4 GB sample in morphosyntactic
labeling, syntactic parsing, named entity recognition, and natural
language inference. One perspective considered is to test
different models of French transformers that have been released
since CamemBERT, FlauBERT, and BelGPT2 such as Pagnol
and BARThez.

Taxonomy
The performance of the models improved when we excluded
the clinical notes that we considered the most complex and
ambiguous from our test data set. The classification error
analysis showed that when clinical notes encompassing 2
mechanisms of trauma (ie, “fall from bike on the street”) were
removed from the test data set, the models performed better.
This expected result shows that since the advent of transformers,
the margin of progress in a free-text classification task is
nowadays low. This behavior was less important with GPTanam,
which seems to have benefited from the self-supervised
pretraining phase for reducing classification errors by learning
semantic representations beforehand. However, the annotation
grid created for the project is partly responsible for some
classification errors in the sense that there are areas of semantic
overlap between classes. In addition, the coding system used
did not allow for the coding of several traumatic mechanisms
(eg, a collision between 2 individuals followed by a fall). To
be able to account for these situations, a new coding system
will be used for the next phases of the project, using the recently
released version of trauma classification grid used by the
FEDORU (Fédération des Observatoires Régionaux des
Urgences) and OSCOUR.

Improving Trauma Public Health Surveillance
The costs of injury and morbidity are immense not only in terms
of lost economic opportunities and demands on national health

budgets but also in terms of personal suffering [45]. However,
few countries have surveillance systems that generate reliable
information on the nature and extent of injuries, especially
nonfatal injuries. The traditional view of injuries as “accidents”
or random events has resulted in the historical neglect of this
area of public health [46]. However, in recent decades, public
health officials have been recognizing traumas as preventable
events and have been promoting evidence-based interventions
for the prevention of traumas worldwide [47]. Many injury
interventions are already in place (eg, transportation
requirements such as setting speed limits, safe automobile
design, seatbelt and other safety restraint use, and use of helmet
and other protective equipment) and have achieved significant
public health improvements, including the reduction of trauma
occurrence [48].

The automatic labeling of ED clinical notes will contribute to
an effective real-time public health surveillance system for
traumas. Future steps encompass deployment in hospitals’ IT
departments in Gironde, France, at first, and then at a national
scale.

Conclusions
Transformers have shown great effectiveness in a multiclass
classification task on complex data encompassing narrative,
medical data, and jargon. The choice of this type of architecture
in the automatic processing of ED summaries to create a national
observatory is relevant. Applying a self-supervised training step
on a specific domain corpus has substantially improved the
classification performance of a French GPT-2 model. The next
labeling strategy within the framework of the TARPON project
will be carried out using a standardized trauma classification
tool, which will allow a more precise classification of trauma
mechanisms owing to a clearer delineation between the different
classes (little overlap of semantic fields). The objective is
eventually to have a single code for ED summaries, including
several variables (eg, place of occurrence, activity during the
trauma, and role in a road accident). It is necessary to investigate
the possibility of making predictions with a model trained on
each variable or using a single model trained on all variables.
If the latter method is chosen, a larger model of GPT-2 will
probably be required. Furthermore, the expansion of acronyms
is under consideration in the automation pipeline.
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Composite variable creation. MVA: motor vehicle accident.
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Emergency department electronic health record visualization with clinical note translated in English.
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Multimedia Appendix 3
Example of 2 clinical notes artificially generated by GPTanam right after the self-supervised training step with a setup of maximum
40 tokens generated. Clinical notes in French are on the left, and translated notes in English are on the right.
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Multimedia Appendix 4
Confusion matrix for the GPTanam model on the complete test data set. Ratio and percentage of correctly classified clinical notes
per class are given. MVA: motor vehicle accident.
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Multimedia Appendix 5
Average macro-precision and micro F1-score for each model for the test data set without complex/ambiguous content in clinical
notes. MVA: motor vehicle accident; SVM: support vector machine; TD-IDF: term frequency–inverse document frequency;.
[PNG File , 25 KB - ai_v2i1e40843_app5.png ]

Multimedia Appendix 6
Confusion matrix for the GPTanam model on the test data set without complex/ambiguous content in clinical notes. Ratio and
percentage of correctly classified clinical notes per class are given. MVA: motor vehicle accident.
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Abstract

Background: Natural language processing (NLP) has become an emerging technology in health care that leverages a large
amount of free-text data in electronic health records to improve patient care, support clinical decisions, and facilitate clinical and
translational science research. Recently, deep learning has achieved state-of-the-art performance in many clinical NLP tasks.
However, training deep learning models often requires large, annotated data sets, which are normally not publicly available and
can be time-consuming to build in clinical domains. Working with smaller annotated data sets is typical in clinical NLP; therefore,
ensuring that deep learning models perform well is crucial for real-world clinical NLP applications. A widely adopted approach
is fine-tuning existing pretrained language models, but these attempts fall short when the training data set contains only a few
annotated samples. Few-shot learning (FSL) has recently been investigated to tackle this problem. Siamese neural network (SNN)
has been widely used as an FSL approach in computer vision but has not been studied well in NLP. Furthermore, the literature
on its applications in clinical domains is scarce.

Objective: The aim of our study is to propose and evaluate SNN-based approaches for few-shot clinical NLP tasks.

Methods: We propose 2 SNN-based FSL approaches, including pretrained SNN and SNN with second-order embeddings. We
evaluate the proposed approaches on the clinical sentence classification task. We experiment with 3 few-shot settings, including
4-shot, 8-shot, and 16-shot learning. The clinical NLP task is benchmarked using the following 4 pretrained language models:
bidirectional encoder representations from transformers (BERT), BERT for biomedical text mining (BioBERT), BioBERT trained
on clinical notes (BioClinicalBERT), and generative pretrained transformer 2 (GPT-2). We also present a performance comparison
between SNN-based approaches and the prompt-based GPT-2 approach.

Results: In 4-shot sentence classification tasks, GPT-2 had the highest precision (0.63), but its recall (0.38) and F score (0.42)
were lower than those of BioBERT-based pretrained SNN (0.45 and 0.46, respectively). In both 8-shot and 16-shot settings,
SNN-based approaches outperformed GPT-2 in all 3 metrics of precision, recall, and F score.

Conclusions: The experimental results verified the effectiveness of the proposed SNN approaches for few-shot clinical NLP
tasks.

(JMIR AI 2023;2:e44293)   doi:10.2196/44293
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Introduction

Background
Deep neural networks (DNNs), due to their performance [1],
currently dominate both computer vision and natural language
processing (NLP) literature. However, fully using the
capabilities of DNNs requires large training data sets. To tackle
this problem, researchers have tried to reduce the complexity
of the DNN models to obtain comparable performance when
the training data set is small [2]. The few-shot learning (FSL)
paradigm is an alternative attempt that aims to improve model
performance under data constraints. The goal of FSL is to
efficiently learn from a small number of shots (ie, data samples
or instances). The number of samples usually ranges from 1 to
100 per class [3,4]. There is a growing interest in the artificial
intelligence (AI) research community in FSL, and several
different strategies have been developed for FSL, including
Bowtie Networks [5], Induction Networks [6], and Prototypical
Networks [7].

A Siamese neural network (SNN), sometimes called a twin
neural network, is an artificial neural network that uses 2
parallel, weight-sharing machine learning models to compute
comparable embeddings. The SNN architecture has shown
promising results as an FSL approach in computer vision for
similarity detection [8] and duplicate identification [9]. Yet, its
usage in NLP has been understudied, and, to the best of our
knowledge, there have not been any studies investigating SNNs
for clinical NLP.

In SNNs, neural networks are trained to compute embeddings.
In NLP, deep learning has achieved state-of-the-art performance
since it could generate comprehensive embeddings to encode
semantic and syntactic information. The primary use of deep
learning in NLP is to represent the language in a vectorized
form (ie, embeddings) so that the representation can be used
for different NLP tasks, such as natural language generation,
text classification, and semantic textual similarity. Thus, having
a robust embedding-generation mechanism is crucial for most
NLP tasks. Since the context of words, sentences, and more
generally, text is important to learn meaningful embeddings,
context-aware embedding-generation models, such as
bidirectional encoder representations from transformers (BERT)
[10], often show promising results. Furthermore, depending on
the domain, the context also varies. For this purpose, researchers
and engineers have built domain-specific, specialized models
for use in downstream tasks. Examples of such models include
BERT for biomedical text mining (BioBERT) [11] trained from
biomedical literature texts and Bio + clinical BERT
(BioClinicalBERT) trained from clinical texts [12]. However,
leveraging contextual embeddings for FSL has rarely been
studied in clinical NLP.

FSL is critical for clinical NLP as annotating a large training
data set is costly and usually requires involving domain experts.
On the other hand, it is common to have a few clinical text
samples annotated by physicians. One example could be clinical
notes with annotations of a rare disease, with the number of
samples limited due to the nature of the disease. Despite such
challenges, the importance of using AI in clinical applications

cannot be understated. AI could assist physicians in their
decision-making, facilitate clinical and translational research,
and significantly reduce the need for manual work. This study
proposes an FSL approach based on SNNs to tackle clinical
NLP tasks with only a few annotated training samples. Two
SNN-based FSL approaches are proposed: pretrained SNN
(PT-SNN) and SNN with second-order embeddings (SOE-SNN).
Both approaches used the 3 different transformer models of
BERT, BioBERT, and BioClinicalBERT. We evaluated the
proposed strategies on the clinical sentence classification task.
Clinical text classification refers to the classification of clinical
sentences based on predefined classes. We show that SNN-based
methods outperform the baseline, generative pretrained
transformer 2 (GPT-2) model in few-shot settings for the task.
Finally, we discuss the limitations and future work.

Related Work
There have been studies evaluating the usability of SNNs for
image classification. Li et al [13] used SNNs for the
classification of high-dimensional radiomic features extracted
from MRI images. Hunt et al [14] applied SNNs for the
classification of electrograms. Zhao et al [15] have used SNNs
for hyperspectral image classification.

In sentence classification, Reimers and Gurevych [16] used
SNNs to derive semantically meaningful sentence embeddings
that can be compared using cosine similarity. It is important to
note that the package we used in our experiments to generate
embeddings was based on this paper [16]. However, the primary
goal of our experiments was not generating sentence
embeddings, but rather designing techniques for using such
embeddings in few-shot clinical sentence classification tasks.

In the context of FSL, SNNs have been used by Torres et al
[17] for one-shot, convolutional neural networks–based
classification to optimize the discovery of novel compounds
based on a reduced set of candidate drugs. Droghini et al [18]
employed SNNs for few-shot human fall detection purposes
using images. However, none of these studies used SNN-based
FSL for NLP.

In few-shot text classification, Wei et al [19] used data
augmentation to improve the performance of triplet networks.
Liu et al [20] proposed distribution estimation to augment the
labeled samples by sampling from the estimated distribution.
Wang et al [21] represented each task using gradient information
from a base model and trained an adaptation network that
modulates a text classifier conditioned on the task representation.

There is only a recent study by Müller et al [22] that explored
SNNs for FSL in NLP and demonstrated the high performance
of pretrained SNNs that embed texts and labels. To the best of
our knowledge, none of the studies referenced above are using
SNNs to perform FSL in the clinical NLP domain.

Methods

Ethical Considerations
As the study is using a publicly available data set that is
accessible under the data use agreement, there is no requirement
for an institutional review board.
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Data Set Derived from the Medical Information Mart
for Intensive Care
The sentences were obtained from the Medical Information
Mart for Intensive Care (MIMIC-III) database [23]. We used
the same data set as in the HealthPrompt paper by Sivarajkumar
and Wang [24], but with classes suitable for 4-shot, 8-shot, and
16-shot FSL experiments. In total, the data set had 444 samples

and 4 classes. Table 1 shows the distribution of classes in the
data set.

Since we had 444 samples in total and performed 4-, 8-, and
16-shot experiments, the train size varied and was 16, 32, and
64 samples with the test sizes of 428, 412, and 380 samples,
respectively.

Table 1. Few-shot sentence classification data set (N=444).

Sample, n (%)Label

245 (55.2)ADVANCED.LUNG.DISEASE

117 (26.4)ADVANCED.HEART.DISEASE

48 (10.8)CHRONIC.PAIN.FIBROMYALGIA

34 (7.7)ADVANCED.CANCER

Sentence-Level Embeddings
For generating contextual, sentence-level embeddings, we used
the sentence-transformers package [25]. The package provides
intuitive and easy-to-use methods for computing dense vector
representations of sentences, paragraphs, and images. The
models are based on transformers such as BERT, RoBERTa
[26], and so on, and achieve state-of-the-art performance in
various tasks. The generated embeddings are such that similar
texts are close in the latent space and can efficiently be found
using cosine similarity. Thus, for sentences a and b with the
corresponding embeddings A and B, we can compute the cosine
similarity as follows:

cosine similarity(A, B) = (A ⋅ B) / (||A||2 ||B||2) (1)

Model Architecture
The SNN’s architecture leverages 2 parallel weight-sharing
machine learning models (Figure 1). In the forward pass, 2
samples are passed into the models and mapped down to the
latent space. The embeddings in the latent space are then
compared using a similarity function, as shown in Equation 2.
The similarity function is a hyperparameter that can vary based
on the task and could range from Euclidean distance to
Manhattan distance or cosine similarity. Depending on the

similarity function, the similarity value can then be mapped
onto the (0, 1) interval by applying the Sigmoid function.
Finally, a high similarity value means that the input samples
likely belong to the same category and vice versa.

out = σ(distance(emb1, emb2)) (2)

During training, SNN conducts representation learning [27] and
attempts to have the best approximation for the input
embeddings. The representation is learned by penalizing the
loss if the model yields a high similarity value for inputs from
different classes or if the model yields a low similarity value
for inputs from the same class.

The SNN architecture naturally allows for data augmentation.
For instance, in the case of 8-shot learning, the traditional
training approach would involve passing 8 samples directly into
the model. This approach is very limiting with such a small
number of samples. SNN takes a different route and instead
considers unique comparisons within the training set. With the
training set consisting of 8 samples, there are 8 ∗ 7 / 2 = 28
unique comparisons. Thus, instead of 8 training samples, we
get 28, which is 3.5 times more. In the case of 16 samples, the
improvement is even more significant as the number of unique
comparisons is 120, and there is a 7.5-fold data augmentation.

Figure 1. Siamese neural network (SNN) architecture.

More generally, under N-way-K-shot classification settings, for
the data set Dtrain with N class labels and K labeled samples for
each class, the following holds after SNN-style augmentation:

Dtrain SNN = {(xi, xj) | xi, xj ∈ Dtrain, i < j} (3)

size(Dtrain SNN) = ((NK)2 – NK) / 2 (4)

Pretrained SNN
In the first approach, we leverage the pretrained language
models (PLMs) to generate embeddings for the SNN, called
pretrained SNN (PT-SNN). We used 3 PLMs in this approach,
namely BERT, BioBERT, and BioClinicalBERT, to generate
embeddings for the input training samples.
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In the following, we illustrate how to use the PT-SNN for
classification. Suppose we want to perform binary classification.
We are given 2 classes C1 and C2, a training set Dtrain, and a
testing set Dtest. We first compute embeddings for all samples
in both Dtrain and Dtest. For every testing sample, using the
generated embeddings, we compute the similarity with respect
to every training sample and compute the mean similarity values
for classes. For instance, mean similarity value for some samples
x ∈ Dtest with respect to C1 and C2 might be 0.2 and 0.6,
respectively. Since 0.6 is greater than 0.2, we classify sample

x as being in class C2. It should be noted that the algorithm is
similar to the k-nearest neighbors [28] classification algorithm.

Note that our classification approach is such that using Sigmoid
is not necessary. In the case of SOE-SNN, it is required during
training, but not during testing (See Algorithm 1 in Textbox 1).

Algorithm 1 presents the pseudocode for the classification
algorithm and the evaluation approach. Here, EvalIters refers
to the number of averaging iterations for addressing the
instability issues. In our case, EvalIters is 3.

Textbox 1. Algorithm 1—our proposed algorithm for Siamese neural network–style classification and evaluation for few-shot learning.

Require: Dtrain: Train data set

Require: Etest: Test data set embeddings

Require: Ltest: Test data set labels

Require: EvalIters: Number of evaluation iterations

Require: RandSubset: A function that randomly subsets a data set with the given seed

Require: L1Normalize: L1-normalizes the input tensor

Require: L2Normalize: L2-normalizes the input tensor

Require: Arange: Constructs a tensor of numbers from the given start and end (exclusive) with the step size of one

Require: Argmax: Finds the index of the maximum value along the given dimension

Require: ComputeMetrics: Computes evaluation metrics: precision, recall, and F score

Require: MatMul: Performs a matrix multiplication of the given tensors

Require: Max: Finds the maximum value of all elements in the input tensor

Require: Mean: Calculates the mean of a vector along the given dimension

Require: NumElements: Finds the number of elements in the input tensor

Require: Transpose: Transposes the input tensor

Require: Zeros: Creates the tensor of zeros with the given dimensions

     1: Metrics ← Zeros(EvalIters, 3);

     2: for Idx ← 0 to EvalIters do

     3: Etrain, Ltrain ← RandSubset(Dtrain, Seed = Idx);

     4: L2train ← L2Normalize(Etest);

     5: L2test ← L2Normalize(Etrain);

     6: SimilarityTable ← MatMul(L2test, Transpose(L2train));

     7: LabelTable ← Zeros(Max(Ltrain) + 1, NumElements(Ltrain));

     8: LabelTable [Ltrain, Arange(NumElements(Ltrain))] ← 1;

     9: LabelTable ← L1Normalize(LabelTable);

     10: Out← Argmax(MatMul(SimilarityTable, Transpose(LabelTable)), Dim = 1);

     11: Metrics[Idx] ← ComputeMetrics(Ltest, Out);

     12: end for

     13: Precision, Recall, Fscore ← Mean(Metrics, Dim = 0).

We use the vectorized implementations of cosine similarity,
group by, and aggregate operations described in Multimedia
Appendix 1.

Such a strategy for classification can be slow in cases where
the training set is large. However, the proposed approach is

feasible in the FSL settings, where the number of annotated
samples is limited. Thus, we do not expect significant
performance drawbacks when the number of samples is not
large. Furthermore, the proposed PT-SNN approach can be
high-performing under FSL settings.

JMIR AI 2023 | vol. 2 | e44293 | p.141https://ai.jmir.org/2023/1/e44293
(page number not for citation purposes)

Oniani et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We have also released a codebase implementing the proposed
algorithms and models [29].

SNN With Second-Order Embeddings
The second proposed approach is SOE-SNN where we apply
an additional recurrent neural network (RNN) layer, such as
long-short term memory or gated recurrent unit to the generated
embeddings and then train the SNN model in the fashion
described in the model architecture section (Figure 2). In our
experiments, we used bidirectional long-short term memory for
producing second-order embeddings.

Specifically, we first obtain the embeddings for all training
samples from the PLMs. Half of the samples are used for
training the RNN, and the other half is used for the classification

algorithm described in Algorithm 1. For the RNN half, all
possible unique pairs of the samples are generated and labeled
1 if the samples in the pair are of the same class or 0 if they
come from different classes. Binary cross entropy [30] and
AdamW [31] are used as the loss function and the optimizer,
respectively. The loss function and the optimizer were used for
training the RNN. Similar to the PT-SNN, the transformer model
that generates embeddings was not updated, and as such, one
could think of this as a frozen component of the training
pipeline.

Model evaluation is done in the same manner as in PT-SNNs,
where we compute mean similarity scores and average out the
metrics over 3 evaluation iterations to handle the potential
instability issues.

Figure 2. Siamese neural network with second-order embeddings (SOE-SNN) architecture. RNN: recurrent neural network.

FSL Model Evaluation
Systematically evaluating FSL model performance can be tricky
since fine-tuning or making predictions on small data sets could
potentially suffer from instability [32]. To address this issue,
we propose the averaging strategy for model evaluation. For
every few-shot experiment (eg, 4-shot, 8-shot, and 16-shot
experiments), we use randomized sampling to sample 4, 8, or
16 samples per class and create a training data set. We perform
this M times, and therefore, for every experiment, M randomly
generated training sets are evaluated on the test set. Finally, the
metrics are averaged out and reported as the final scores.

Metric = (Σi=1
M Metrici) / M (5)

Such an approach gives a more robust view of the model’s
performance in possibly unstable scenarios. Therefore, we
choose M=3 and employ this strategy in all reported metrics.
As for metrics, we choose precision, recall, and F score.

Baseline Model
Despite the availability of newer GPT models such as ChatGPT
and GPT-4, they cannot be used on the MIMIC data set as per
the terms of the data use agreement. Therefore, we used the
open source GPT-2. We used the GPT-2 [33] with 355 million
parameters as the baseline model. We obtained 4, 8, and 16
samples per class to generate predictions. To achieve this, we
used the transformers package [34]. Note that no fine-tuning
was done in this case, and instead, the existing GPT-2 model
was used directly for generating responses.

We used a prefix prompt with all possible classes appended to
the sentence for classification, followed by the incomplete
sentence that would have to be completed by GPT-2. The
proposed prompt is similar to the cloze prompt that showed the
best performance in Sivarajkumar and Wang [24]. We modified
the prompt by adding additional information at the end of the
text (all 4 labels) and moved the mask at the end, effectively

turning it into a prefix prompt. Thus, we used the following
prompt:

{text}. options are advanced cancer, advanced heart disease,
advanced lung disease, chronic pain fibromyalgia. type of
disease {mask}

where {text} is the input text and {mask} is the placeholder for
GPT-2 to fill in with the generated text. Appending the list of
labels to the end of the input text was done to help the GPT-2
model by showing all available options. We used the maximum
context size of 1024—the most GPT-2 can handle. If the total
number of tokens exceeded 1024, the sentence was trimmed
from the end to keep the prompt intact.

Finally, the generated responses were analyzed and evaluated
by the annotator. The annotator labeled every GPT-2 response
with the semantically closest class (1 of 4 options). Note that
the annotator evaluated the responses only once. Thus, for
GPT-2, the number of averaging iterations is 1 (ie, M=1).

Results

We present the results of 4-shot, 8-shot, and 16-shot experiments
for few-shot sentence classification task. We used models based
on BERT, BioBERT, BioClinicalBERT. The results are shown
in Table 2.

In the 4-shot sentence classification task, the baseline, GPT-2
model had the highest precision (0.63). BioClinicalBERT-based
SOE-SNN came next with a precision score of 0.57. PT-SNN
had the highest recall and F score values of 0.45 and 0.46,
respectively. BioClinicalBERT-based PT-SNN was the second
with recall and F score of 0.42 and 0.43, respectively. Thus, in
4-shot settings, GPT-2 had a higher precision, but its recall and
F score were lower than those of SNN-based approaches.

In 8-shot experiments, BioClinicalBERT-based PT-SNN
outperformed all other approaches in precision, with a value of
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0.64. BioBERT-based SOE-SNN had both the highest recall
and the highest F score of 0.50 and 0.53, respectively. GPT-2
did not have the highest score in any of the metrics. Hence, for
8-shot learning, SNN-based approaches outperformed GPT-2.

As for 16-shot learning, BioClinicalBERT-based SOE-SNN
had the highest precision value of 0.70. BioBERT-based

PT-SNN had the highest recall (0.55), and
BioClinicalBERT-based PT-SNN had the highest F score (0.58).
GPT-2 did not have the highest score in any of the metrics, with
most models having higher precision, recall, and F score.
Overall, SNN-based approaches outperformed the baseline
GPT-2 model.

Table 2. Few-shot sentence classification.

F scoreRecallPrecisionShotsModelApproach

0.420.380.634GPT-2GPT-2a

0.370.370.494BERTcPT-SNNb

0.460.450.534BioBERTdPT-SNN

0.430.420.504BioClinicalBERTePT-SNN

0.300.260.494BERTSOE-SNNf

0.170.190.524BioBERTSOE-SNN

0.240.270.574BioClinicalBERTSOE-SNN

0.420.380.638GPT-2GPT-2

0.470.450.628BERTPT-SNN

0.500.480.618BioBERTPT-SNN

0.490.440.648BioClinicalBERTPT-SNN

0.460.430.558BERTSOE-SNN

0.530.500.618BioBERTSOE-SNN

0.320.320.588BioClinicalBERTSOE-SNN

0.420.380.6516GPT-2GPT-2

0.520.510.6416BERTPT-SNN

0.560.550.6516BioBERTPT-SNN

0.580.540.6916BioClinicalBERTPT-SNN

0.480.440.5916BERTSOE-SNN

0.360.380.4316BioBERTSOE-SNN

0.380.390.7016BioClinicalBERTSOE-SNN

aGPT-2: generative pretrained transformer 2.
bPT-SNN: pretrained Siamese neural network.
cBERT: bidirectional encoder representations from transformers.
dBioBERT: bidirectional encoder representations from transformers for biomedical text mining.
eBioClinicalBERT: Bio + clinical bidirectional encoder representations from transformers.
fSOE-NN: Siamese neural network with second-order embeddings.

Discussion

Limitations and Future Work
There are several limitations of the work that can be addressed
by further exploring FSL and SNNs. First, we did not compare
the results to traditional baseline models such as support vector
machine, logistic regression, multinomial logistic regression,
random forest, and so on. Second, other data sets could also be
used for evaluating the performance of SNNs in text
classification. Third, since we can perform sentence-level
classification, another interesting research direction could be
document classification, where a document can be modeled as

a collection of sentences. Fourth, in the SOE-SNN, since we
only experiment with 1 splitting strategy (half for fine-tuning
embeddings and half for classification and evaluation), other
RNN training versus classification ratios can also be noteworthy.
Additionally, it is important to note that data sets for FSL,
especially clinical FSL, are difficult to find. Ge et al [35] have
emphasized that “(68%) studies reconstructed existing datasets
to create few-shot scenarios synthetically.” Thus, building a
brand-new FSL data set and then evaluating the performance
of the proposed methods could also be an interesting future
research direction.
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Conclusion
We conducted few-shot learning experiments evaluating the
performance of SNN models on the clinical sentence
classification task. The SNN models were based on transformer
models—BERT, BioBERT, and BioClinicalBERT. Since

performance evaluation on small data sets may suffer from
instability, a special evaluation strategy was used. We conclude
that, overall, SNN-based models outperformed the baseline
GPT-2 model for sentence classification tasks. The limitations
of the work have also been discussed alongside potential future
directions of research.
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Abstract

Background: Neuroimaging is the gold-standard diagnostic modality for all patients suspected of stroke. However, the
unstructured nature of imaging reports remains a major challenge to extracting useful information from electronic health records
systems. Despite the increasing adoption of natural language processing (NLP) for radiology reports, information extraction for
many stroke imaging features has not been systematically evaluated.

Objective: In this study, we propose an NLP pipeline, which adopts the state-of-the-art ClinicalBERT model with domain-specific
pretraining and task-oriented fine-tuning to extract 13 stroke features from head computed tomography imaging notes.

Methods: We used the model to generate structured data sets with information on the presence or absence of common stroke
features for 24,924 patients with strokes. We compared the survival characteristics of patients with and without features of severe
stroke (eg, midline shift, perihematomal edema, or mass effect) using the Kaplan-Meier curve and log-rank tests.

Results: Pretrained on 82,073 head computed tomography notes with 13.7 million words and fine-tuned on 200 annotated notes,
our HeadCT_BERT model achieved an average area under receiver operating characteristic curve of 0.9831, F1-score of 0.8683,
and accuracy of 97%. Among patients with acute ischemic stroke, admissions with any severe stroke feature in initial imaging
notes were associated with a lower probability of survival (P<.001).

Conclusions: Our proposed NLP pipeline achieved high performance and has the potential to improve medical research and
patient safety.

(JMIR AI 2023;2:e42884)   doi:10.2196/42884
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natural language processing; deep learning; electronic health records; ischemic stroke; cerebral hemorrhage; neuroimaging;
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Introduction

Overview
Computed tomography (CT) and magnetic resonance imaging
(MRI) are the gold standards for assessing and triaging patients
with suspected strokes. However, free-text imaging reports
containing important radiological findings are embedded in
electronic health records (EHRs) systems in an unstructured
narrative format, precluding data encoding [1] to enable clinical
decisions and support research applications [2-4]. Fortunately,
the limitations of unstructured data have been mitigated by
recent advancements in information extraction and processing
methods, such as natural language processing (NLP).

Traditional rule-based NLP algorithms that use handcrafted
dictionaries, keywords, and decision rules to analyze the
structure of the language have classically been adopted for
analyses of textual data [5-7]. However, the creation and
maintenance of decision rules are labor-intensive tasks, and the
quality of rules significantly influences model performance. In
recent years, data-driven methods, including machine learning
and deep learning, have been developed. Machine learning
approaches use derived features (eg, term frequency and n-gram)
from text to train supervised-learning models (eg, support vector
machine [SVM] or random forest) and predict desirable outputs
on new documents [3,8,9]. Deep learning methods often involve
more sophisticated architectures (eg, recurrent neural networks,
convolutional neural networks, and self-attention) and use word
embeddings to account for the sequence and context of natural
language [1,10,11].

The Bidirectional Encoder Representations from Transformers
(BERT) NLP model, which uses a 24-layered deep learning
architecture, was published in 2018 and achieved state-of-the-art
performance on NLP benchmarks [12]. A clinical version,
ClinicalBERT, was later developed by pretraining the BERT
model on EHR notes to achieve improved performance on
clinical data [13]. Furthermore, the ClinicalBERT model has
also been trained and validated for the extraction of radiological
features from chest and bone x-ray notes [14,15].

In the context of cerebrovascular disease and stroke, NLP has
been applied to classify various stroke phenotypes [3,8,9] and
perform feature extraction [1,5,6]. Despite these emerging
applications, optimal use of NLP pipelines for stroke research
is yet to be achieved. More specifically, limited studies have
used BERT to extract important neuroimaging findings, such
as midline shift [16] and mass effect [17]. Therefore, the use of
NLP-based extraction of many critically important neuroimaging
features has not been systematically implemented. We evaluated
a deep learning–based NLP model (HeadCT_BERT) that is
built upon ClinicalBERT and fine-tuned for the extraction and
structured data generation of 13 critical stroke neuroimaging
features.

Related Work

NLP on Stroke Imaging Notes
NLP has been adopted to automate stroke acuity classification.
Li et al [8] used head CT and MRI radiology reports to train a

random forest model for ischemic stroke acuity classification.
Kim et al [9] evaluated logistic regression, naïve Bayesian,
decision tree, and SVM models to identify ischemic stroke from
MRI reports. In addition, Garg et al [3] trained a variety of
machine learning algorithms (ie, k-nearest neighbors, SVM,
random forest, extra trees classifier, and XGBoost) to identify
ischemic stroke subtypes from neurology progress notes and
neuroradiology reports. In addition to NLP-based classification
algorithms, a few studies adopted NLP for stroke imaging
feature extraction. Yu et al [5] used a rule-based NLP tool,
CHARTextract, to extract the type of occlusion, presence of
established ischemia, and hemorrhage from CT reports. Gordon
et al [17] proposed a machine learning–based method using
XGBoost to extract the intracranial mass effect. However, there
are several untapped avenues for the applications of
state-of-the-art NLP methods in the stroke and cerebrovascular
disease domain.

Fine-Tuning BERT for Medical Imaging Findings
Extraction
The most common application of BERT is to fine-tune the
out-of-box network for the NLP task. Olthof et al [18] fine-tuned
the BERT model with 3268 labeled radiology reports of injured
extremities and chest radiographs for extracting the presence
of injury. The BERT network was appended with a binary
classifier layer and trained (“fine-tuned”) with the labeled
reports. The authors reported that BERT outperformed
rule-based classifiers and machine learning classifiers and
achieved an F1-score of 0.95 and an area under receiver
operating characteristic curve (AUROC) of 0.99. Fink et al [19]
fine-tuned the German-language BERT with structured oncology
reports for rapid tumor response category classification. The
results showed that the BERT model (F1=0.70) achieved a
similar performance as that of medical students (F1≈0.73),
although it was inferior to radiologists’ performance (F1=0.79).

Pretraining and Fine-Tuning BERT for Medical
Imaging Findings Extraction
Pretraining BERT with domain-specific text is an additional
step that may boost model performance in subsequent
fine-tuning. Smit et al [14] used an automatic labeling algorithm
to tag 200,000 radiology reports for pretraining. After
pretraining, 1000 reports were randomly sampled and annotated
by radiologists for fine-tuning. The final NLP model, CheXbert,
achieved state-of-the-art performance on one of the largest chest
x-ray data sets, MIMIC-CXR, with an F1-score of 0.798, which
is close to radiologists’ performances (F1=0.805). Dai et al [15]
took a similar approach using x-ray radiology reports for bone
fracture. The authors developed a rule-based automatic labeling
algorithm to label 6048 reports for model pretraining.
Subsequently, the model was fine-tuned with a subset of 4890
manually annotated reports for fracture status detection (ie,
positive, negative, or uncertain) and fracture type, bone type,
and location extraction. To our knowledge, BERT pretraining
in the biomedical field is underused and has not been attempted
within the cerebrovascular disease domain.
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Methods

Data Source and Variables
Registry for Neurological Endpoint Assessments among Patients
with Ischemic and Hemorrhagic Stroke (REINAH) [20] is a
data warehouse built upon the EHR at Houston Methodist, a
tertiary health care system serving the greater Houston
metropolitan area. REINAH hosts data for over 45,000 patients
with cerebrovascular disease, representing over 982,000
neuroimaging records obtained between September 2007 and
August 2022. From REINAH, we queried records that (1) had
final results available before data collection on July 19, 2021;
(2) had an imaging type of “CT head without contrast”; and (3)
had attached imaging notes. All imaging notes were written in
short paragraphs and stored as plain text. The age, sex, race,
ethnicity, BMI, insurance type, stroke type, and National
Institutes of Health Stroke Scale scores were extracted from
each patient’s initial stroke encounter.

Ethics Approval
This study was approved by the Houston Methodist Institutional
Review Board (PRO00025034).

Annotation
We identified 20 clinically relevant stroke-related features to
extract, including hemorrhage volume, midline shift, herniation,

perihematomal edema, white matter hyperintensity, intracerebral
hemorrhage (ICH) location, lacunes, old stroke, remote stroke,
subacute infarct, cerebral atrophy, intraventricular hemorrhage,
acute ischemia, subdural hematoma, subarachnoid hemorrhage,
extra-axial hemorrhage, encephalomalacia, mass effect, and
location for any non-ICH lesion (finding location). Each imaging
note could include none, one, or multiple concepts. As illustrated
in Figure 1, we randomly sampled 400 notes for model
fine-tuning and evaluation and adopted the Begin-Inside-Outside
method [21], which tags the starting position and end position
of predetermined imaging features of interest in the text. We
then randomly partitioned the 400 samples into the following
three data sets: (1) a communication set containing 50 notes;
(2) a reviewer-agreement set with 50 notes; and (3) two
independent-review sets, each containing 150 notes. Two
clinically trained reviewers in neuroimaging (ATB and TP) then
manually annotated the imaging notes in 3 sequential stages.
In the first stage, the communication set was annotated
collaboratively by the 2 reviewers. In the second stage, reviewers
performed separate annotations of the reviewer-agreement set,
and Kappa statistics and percent agreement were evaluated.
Inconsistent annotations were discussed to reach a consensus.
Finally, independent review sets were separately annotated.
Stroke imaging features that were identified in less than 20 notes
were excluded from modeling.

Figure 1. Methodology flowchart. We used unannotated computed tomography (CT) imaging notes to pretrain the natural language processing (NLP)
model and used a subset of annotated imaging notes to fine-tune and evaluate it. BERT: bidirectional encoder representations from transformers;
REINAH: Registry for Neurological Endpoint Assessments among Patients with Ischemic and Hemorrhagic Stroke.
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Text Processing
Before a sequence of human language can be processed by NLP
models, the text often goes through processes of segmentation,
tokenization, and word embedding [22]. To segment notes, we
first fixed a segment length of 32 words and a step size of 10
words. For each note, the first 32 words were taken as a segment,
which was then shifted to the right by 1 step (10 words) to
isolate the next segment of 32 words. This process was repeated
until the end of the note was reached, thereby transforming a
single long note into multiple short, overlapping, text segments.

For each segment, word tokenization, which transforms
sentences and phrases into individual word-tokens, was
performed using the WordPiece [23] algorithm implemented
in the Python Transformers module (version 4.10.0) and based
on a predefined dictionary. In-dictionary words with
predetermined tokens (eg, “stroke” and “patient”) were mapped
to respective numeric IDs (word embedding). Conversely,
out-of-dictionary words (eg, “edema” and “hemorrhage”) were
split into multiple in-dictionary tokens and mapped to multiple
token IDs (Table 1).

Table 1. Examples of text segmentation and word embeddinga.

Word embedding ID(s)Word-token(s)Input word

6625strokestroke

5351patientpatient

(5048, 14494)(ed, ##ema)edema

(23123, 1766, 1197, 19911)(hem, ##or, ##r, ##hage)hemorrhage

aThe WordPiece algorithm takes each word as input. If a word matches a predefined word-token, embedding is done by assigning a token ID to the
word. If a word does not match any predefined token, the word is split into multiple fractions and matched with predefined tokens.

Deep Learning NLP Models
Our NLP model training involved two phases, as follows: (1)
an optional general training phase (“pretraining”) that
familiarized the model with clinical terminology in head CT
notes, and (2) a required task-specific training phase
(“fine-tuning”), where the model learned to identify the 13
remaining stroke features (Table S1 in Multimedia Appendix
1).

Pretraining
Though NLP models can be trained with solely fine-tuning,
recent studies have reported an improved performance after
general [12,24] and domain-specific [13,25] pretraining. We
used the ClinicalBERT model, which has been pretrained on
general English corpora and EHR narratives [13]. We
hypothesized that further pretraining it with our head CT notes
using masked language model (MLM) [12] would boost the
performance for stroke feature extraction. Details of NLP model
pretraining are provided in Table S2 in Multimedia Appendix
1. MLM used a “self-supervised” algorithm that generated labels
without human annotation. A note was first tokenized into a
sequence of word-tokens, and 15% of the tokens were randomly
selected. Among each selected token, there was an 80%
probability it would be masked (replaced by a “[MASK]” token),
a 10% probability it would be replaced by a random token, and
a 10% probability it remains unchanged. The MLM pretraining
trained the NLP model to do “cloze,” that is, input a sequence
of word-tokens with masked tokens and predict the masked
tokens using the context. It is hypothesized that through learning
the cloze task, the NLP model can generalize this knowledge
to improve the performance of other NLP tasks. We
continuously pretrained the ClinicalBERT model with 74.0k
head CT imaging notes from 2007 to 2020, including a total of
13.7 million words for 5 rounds (“epochs”), and used
stand-alone 8.2k notes from January to July 2021 for MLM
evaluation (Table S3 in Multimedia Appendix 1). This

pretraining process produced a BERT model, which we labeled
“HeadCT_BERT,” that is specific to the head CT imaging
domain and can be further fine-tuned for downstream NLP
tasks.

Fine-Tuning
To train the HeadCT_BERT for stroke features extraction, our
downstream task in this study, we fine-tuned it with a
development set of 200 notes annotated with stroke features.
The HeadCT_BERT was appended with a feedforward layer
with sigmoid activation function (“classification layer”) for the
stroke feature classification. For each input segment (coded as
a sequence of word-tokens with a maximum length of 64), the
network outputs an array of probabilities (one probability for
each stroke feature). The entire network (HeadCT_BERT +
classification layer) was trained simultaneously. To prevent the
model from becoming too attuned to the details of the
development set, and consequently losing flexibility for new
data (ie, to avoid overfitting), the development set was divided
into a training set (80% of the notes) and a validation set (the
remaining 20% of notes) [26]. Model weights were saved as
checkpoints after each epoch, and optimal checkpoint weights
were selected during validation as our final NLP model. The
same fine-tuning process was also performed on the out-of-box
ClinicalBERT model for comparison. The deep learning model
was implemented using Python 3.9.6, PyTorch 1.9.0, and
Transformers 4.10.0. Model computations were performed on
an NVIDIA RTX 5000 graphics processing unit.

Prediction and Evaluation
The NLP model predicts the probabilities of stroke features in
each segment. We aggregated the prediction to note level by
selecting the maximum probability of each stroke feature among
segments. The final prediction for each note consists of a
probability per stroke feature (multilabel classification). We
considered stroke features with a probability >.5 as presence.
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To evaluate our NLP model performance, we used a stand-alone
evaluation set of 200 annotated imaging notes. Evaluation
metrics included recall (sensitivity), specificity, precision
(positive predictive value), and F1-score (the harmonic mean
of precision and recall). F1-score ranges from 0 to 1, with 1
implying perfect model performance, AUROC curve, and
accuracy. We also calculated predicted probabilities and fraction
of stroke features and presented probability calibration curves
(reliability diagrams).

Sensitivity Analysis
One challenge for NLP modeling is the need for a large amount
of human annotation, which is time consuming and labor
intensive. To explore the relationship between the number of
annotated training notes and model performance, and potentially
reduce the annotation workload, we performed a sensitivity
analysis that compared NLP models that were fine-tuned with
different development set sizes: 25, 50, 100, and 150 notes.
Each subset was split into a training set (80%) and a validation
set (20%) and was evaluated on the set of 200 notes.

Structured Data Generation
Upon achieving satisfactory evaluation, we ran the model on
all head CT imaging notes to automatically generate a structured
data set of stroke imaging features. Each feature was represented
as a binary variable (yes/no) associated with an imaging note.
We further performed survival analysis with the Kaplan-Meier
curves to evaluate the association between having any of the
severe stroke features (eg, midline shift, perihematomal edema,
and mass effect), as captured by NLP, and mortality for patients
with acute ischemic stroke (AIS) and ICH. Differences in
survival curves were compared using log-rank tests. We
calculated survival rates and median survival days.

Results

Of the 982,536 available images in REINAH, we identified
82,073 head CT imaging notes representing 24,924 unique
patients, of whom, 13,439 (53.9%) were female, 14,028 (56.3%)
were non-Hispanic White, and 15,121 (60.7%) were Medicare
beneficiaries, with an overall median age of 69 (IQR 58.5-78.3)
years. With regard to stroke subtypes (at the initial encounter),
12,623 (54.4%) of patients had AIS diagnosis, 1307 (5.6%) had
subarachnoid hemorrhage (SAH), 7084 (30.5%) had a transient
ischemic attack (TIA), and 2208 (9.5%) had ICH. For patients
with AIS, the median National Institutes of Health Stroke Scale
within 6 and 12 hours of admission was 3.0 (IQR 1.0-7.0),
whereas it was 7.0 (IQR 2.0, 19.0) for patients with ICH. The
400 randomly sampled notes represented 398 unique patients.
Their sociodemographic characteristics were consistent with
the overall population of patients with head CT images.
However, a greater proportion of sampled (vs full cohort)
patients had a subarachnoid hemorrhage or an ICH, perhaps
owing to head CT being a gold standard for evaluation of ICH.
Although median BMI was not significantly different in the
annotation sample (vs full cohort), the full cohort had a

significantly higher proportion of missing BMI information
(Table 2).

After annotation, stroke imaging features, including hemorrhage
volume, herniation, ICH location, location of other relevant
findings, remote stroke, subdural hematoma, and extra-axial
hemorrhage, were excluded from modeling due to low
frequencies (Table S1 in Multimedia Appendix 1). The
interreviewer agreement analysis showed an excellent agreement
between the 2 annotators (0.85 % average Kappa and 97.1%
agreement).

Our fine-tuned HeadCT_BERT model had an AUROC of 0.9831
and an F1-score of 0.8683. The F1-scores were greater than 0.9
for 8 of 13 (61.5%) stroke imaging features, and the AUROCs
were greater than 0.96 for all features except for acute ischemia.
Results show that after fine-tuning, both ClinicalBERT and
HeadCT_BERT achieved favorable performances, while
HeadCT_BERT demonstrated marginally better performance
(Table 3 and Table 4; Figure S2 in Multimedia Appendix 1).

The sensitivity analysis revealed sigmoid shapes for both
models, indicating that improvement in model performance
wanes as sample size approaches an optimal point. Specifically,
we found marked performance improvements when increasing
the training sample size from 25 to 50 and 100 notes. From 100
to 150, however, performance gain decreases, and from 150 to
200 notes, the performance gain is minimal, indicating that the
NLP models had achieved near-optimal performance (Figure
S1 in Multimedia Appendix 1).

The probability calibration curves showed HeadCT_BERT is
well calibrated for some stroke features (eg, midline shift, white
matter hyperintensity, subacute infarct, acute ischemia,
subarachnoid hemorrhage, and encephalomalacia), while
ClinicalBERT is well calibrated for midline shift, white matter
hyperintensity, old stroke, subacute infarct, cerebral atrophy,
acute ischemia, ICH, encephalomalacia, and mass effect (Figure
S3 in Multimedia Appendix 1).

Running on a single–graphics processing unit server, our final
NLP model processed ~230 imaging notes per minute and
automatically generated a structured stroke imaging feature data
set from 24,924 patients with head CT notes across the hospital
system. In the resulting data set, 3826 (15.4%) of patients had
a mass effect, 3600 (14.4%) had perihematomal edema, 1908
(7.7%) had a midline shift, and 5146 (20.6%) had 1 or more
than 1 severe stroke features (eg, midline shift, mass effect, or
perihematomal edema; Table 5).

Survival analysis based on the initial head CT notes of 6463
AIS and 1243 ICH emergency admissions showed that patients
with severe stroke features had higher mortality and shorter
survival times (AIS: 18.4% mortality rate and 585 days median
survival time; ICH: 20.7% mortality rate and 572 days median
survival time) compared to other patients (AIS: 10.1% mortality
rate and 759 days median survival time; ICH: 17.8% mortality
rate and 638 days median survival time). Differences in survival
probability over time are shown as Kaplan-Meier curves. Among
AIS admissions, patients with severe stroke features had
significantly lower survival probabilities (P<.001; Figure 2).
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Table 2. Patient characteristics (average age and BMI are reported at imaging encounters). Italicized P values are significant.

P valueAnnotation sampleHead CTa populationCharacteristics

40082,073Imaging notes, N

39824,924Unique patients, N

.2268.0 (56.4, 78.1)69.0 (58.5, 78.3)Age (years), median (Q1, Q3)

.41Age (years), n (%)

57 (14.3)3025 (12.1)0-49

61 (15.3)3793 (15.2)50-59

103 (25.9)6149 (24.7)60-69

177 (44.5)11,957 (48)≥70

.69Gender, n (%)

219 (55)13,439 (53.9)Female

179 (45)11,485 (46.1)Male

.22Race or ethnicity, n (%)

206 (51.8)14,028 (56.3)Non-Hispanic White

102 (25.6)5690 (22.8)Black

61 (15.3)3412 (13.7)Hispanic

16 (4)1209 (4.9)Asian

13 (3.3)585 (2.3)Other or unknown

.5927.3 (23.5, 31.0)27.3 (23.7, 31.7)BMI (kg/m2), median (Q1, Q3)

.001BMI (kg/m2), n (%)

13 (3.3)637 (2.6)Underweight

108 (27.1)6193 (24.8)Normal

123 (30.9)6518 (26.2)Overweight

107 (26.9)6610 (26.5)Obese

47 (11.8)4966 (19.9)Missing

Insuranceb, n (%)

.15Medicare

142 (35.7)9803 (39.3)No

256 (64.3)15,121 (60.7)Yes

.12Medicaid

373 (93.7)23,793 (95.5)No

25 (6.3)1131 (4.5)Yes

.04Commercial

306 (76.9)20,194 (81)No

92 (23.1)4730 (19)Yes

.79Exchange

389 (97.7)24,437 (98)No

9 (2.3)487 (2)Yes

<.001Primary stroke typec, n (%)

29 (7.7)1307 (5.6)Subarachnoid hemorrhage

100 (26.5)7084 (30.5)Transient ischemic attack

59 (15.6)2208 (9.5)Intracerebral hemorrhage
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P valueAnnotation sampleHead CTa populationCharacteristics

189 (50.1)12,623 (54.4)Acute ischemic stroke

NIHSSd Stroke Scale for acute ischemic stroke, median (Q1, Q3)

.093.0 (1.5, 9.0)3.0 (1.0, 7.0)Average NIHSS in 6 hours

.243.0 (1.0, 8.0)3.0 (1.0, 7.0)Average NIHSS in 12 hours

NIHSS Stroke Scale for intracerebral hemorrhage, median (Q1, Q3)

.946 (1.5, 18.0)7.0 (2.0, 19.0)Average NIHSS in 6 hours

.817.0 (2.0, 18.0)7.0 (2.0, 19.0)Average NIHSS in 12 hours

aCT: computed tomography.
bInsurance type was collected throughout all imaging encounters.
cFor patients with multiple stroke visits, the initial encounter’s stroke scale and primary stroke type are presented. We perform hypothesis testing to
compare the 398 sampled patients with the nonsampled population. Chi-square tests were adopted for categorical variables, and Kruskal-Wallis tests
were adopted for continuous variables.
dNIHSS: National Institutes of Health Stroke Scale.

Table 3. Final natural language processing model evaluation with the evaluation set (N=200) at the imaging note level.

Accuracy (95% CI)AUROCa (95% CI)F1-scoreRecallPrecisionSpecificityStroke feature

0.9950 (0.9852-1.0048)0.9973 (0.9792-1.0154)0.96770.937511Midline shift

0.9900 (0.9762-1.0038)0.9994 (0.9917-1.0071)0.94740.94740.94740.9945Perihematomal edema

0.9650 (0.9395-0.9905)0.9704 (0.9452-0.9955)0.96130.9560.96670.9725White matter hyperintensity

1.0000 (1.0000-1.0000)1.0000 (1.0000-1.0000)1111Lacunes

0.9450 (0.9134-0.9766)0.9693 (0.9277-1.0110)0.84060.87880.80560.9581Old stroke

0.9550 (0.9263-0.9837)0.9789 (0.9321-1.0258)0.68970.55560.90910.9945Subacute infarct

0.9400 (0.9071-0.9729)0.9673 (0.9369-0.9978)0.91670.98510.85710.9173Cerebral atrophy

0.9600 (0.9328-0.9872)0.9798 (0.9259-1.0338)0.66670.61540.72730.984Intraventricular hemorrhage

0.9400 (0.9071-0.9729)0.9362 (0.8570-1.0154)0.70.77780.63640.956Acute ischemia

0.9550 (0.9263-0.9837)0.9872 (0.9532-1.0212)0.80.85710.750.9665Intracerebral hemorrhage

0.9900 (0.9762-1.0038)1.0000 (1.0000-1.0000)0.90910.833311Subarachnoid hemorrhage

0.9950 (0.9852-1.0048)0.9989 (0.9890-1.0088)0.97560.952411Encephalomalacia

0.9800 (0.9606-0.9994)0.9952 (0.9743-1.0161)0.91310.840.9777Mass effect

aAUROC: area under receiver operating characteristic curve.

Table 4. Average natural language processing model evaluation metrics among 13 stroke features for the fine-tuned models.

Accuracy, mean (SD)AUROCa, mean (SD)F1-score, mean (SD)Stroke feature

0.9700 (0.0225)b0.9831 (0.0189)b0.8683 (0.1176)bHeadCT_BERT (final model)

0.9665 (0.0237)0.9786 (0.0216)0.8564 (0.1173)ClinicalBERT (baseline model)

aAUROC: area under receiver operating characteristic curve.
bItalicized values denote performance of the proposed model.
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Table 5. Natural language processing (NLP) model generating structured stroke feature data sets from imaging notesa.

Intracerebral hemorrhage admission

initial CTe (N=1243), n (%)

Acute ischemic stroke admission

initial CTd (N=6463), n (%)
Head CTb imaging patientsc

(N=24924), n (%)

Characteristics

407 (32.7)3429 (53.1)16,014 (64.3)White matter hyperintensity

268 (21.6)2262 (35)13,615 (54.6)Cerebral atrophy

91 (7.3)1324 (20.5)7426 (29.8)Old stroke

116 (9.3)1386 (21.4)6622 (26.6)Lacunes

500 (40.2)614 (9.5)3826 (15.4)Mass effect

1096 (88.2)354 (5.5)3822 (15.3)Intracerebral hemorrhage

623 (50.1)436 (6.7)3600 (14.4)Perihematomal edema

50 (4)373 (5.8)3453 (13.9)Encephalomalacia

33 (2.7)1173 (18.1)3426 (13.7)Acute ischemia

28 (2.3)841 (13)2675 (10.7)Subacute infarct

245 (19.7)132 (2)2179 (8.7)subarachnoid hemorrhage

345 (27.8)184 (2.8)1908 (7.7)Midline shift

405 (32.6)37 (0.6)1409 (5.7)Intraventricular hemorrhage

845 (68)901 (13.9)5146 (20.6)Severe stroke featuresf

aOur final NLP model processed 82,073 head computed tomography notes for 24,924 unique patients in the entire hospital system and generated
structured data sets.
bCT: computed tomography.
cThe stroke features in the overall population were aggregated at the patient level.
d,eThe stroke features in the initial head CT of acute ischemic stroke and intracerebral hemorrhage emergency admissions were presented.
fSevere stroke features include midline shift, perihematomal edema, or mass effect. Severe stroke feature is a composite feature.

Figure 2. Kaplan-Meier curve of survival probability from initial admissions. Patients whose initial imaging includes severe stroke features (eg, midline
shift, mass effect, or perihematomal edema) had a lower survival probability. (A) Acute ischemic stroke admissions (P<.001). (B) Intracerebral hemorrhage
admissions (P=.19).
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Discussion

Principal Findings
We propose an NLP pipeline to extract ischemic and
hemorrhagic stroke characteristics from head CT imaging notes
(HeadCT_BERT model). Built upon one of the latest clinical
NLP models, the HeadCT_BERT model achieved an excellent
average AUROC of 0.9831 and an accuracy of 97%. Our NLP
pipeline showed promising performance for the detection of
midline shift, perihematomal edema, lacunes, subarachnoid
hemorrhage, encephalomalacia, and mass effect, with AUROCs
for each of these features exceeding 0.99 and F1-scores above
0.9 for the evaluation set. Other features, including white matter
hyperintensity, old stroke, subacute infarct, cerebral atrophy,
intraventricular hemorrhage, and ICH showed AUROCs between
0.96 to 0.98. Other NLP studies have achieved optimal AUROC
values of 0.9625 for mass effect extraction [17], 0.96 for stroke
presence, and 0.93 for stroke acuity [1]. Our method achieved
comparable or better performance for extracting stroke imaging
features.

In 2018 alone, 11.5 million head CT scans were performed in
the United States [27], generating valuable information that can
be used to answer a multitude of stroke-related research
questions. In the absence of methods to extract information in
unstructured formats, the generation of insights from such
sources is limited. This underscores the value of our NLP
pipeline, which provides a fast, scalable, and automatic solution
for the processing of unstructured text data.

Application of our pipeline in a health care environment has
the potential to benefit both medical research and patient safety.
For example, in this study, we demonstrated the use of NLP for
retrospectively identifying cohorts of patients with AIS and
ICH with severe stroke features. We identified 901 (13.9%)
AIS and 845 (68%) patients with ICH with severe stroke
neuroimaging features and demonstrated lower survival rates
for patients with these severe features, consistent with previous
studies [28,29]. Beyond outcome prediction, modifications of
our pipeline may also be implemented to improve patient safety.
For example, NLP pipelines that detect incidents can be used

to improve patient outreach workflows by optimizing reporting
procedures for health care providers as well as the patients and
their families [30]. Our pipeline has the potential to process
imaging notes in real time, generate flags for severe stroke
findings, and trigger reminders and alerts within the EHR
system.

Despite the performance of our NLP pipeline, this study has
limitations. First, it was conducted and evaluated in a single
organization, where many of the notes may have been written
by a relatively small number of radiologists or neuroradiologists.
Therefore, the generalizability of the trained NLP models could
be limited by overly consistent wording and grammar in training
data. However, as one of the largest hospital systems,
comprising 7 certified stroke care hospitals in the Houston
metropolitan area, we feel that our inclusion of a diverse
collection of notes yields enough variability in the training data
to mitigate this issue. Second, although our HeadCT_BERT
model demonstrated slightly improved performance for stroke
features extraction, it is hard to compare our model with
ClinicalBERT due to the lack of well-established NLP
benchmarks for head imaging reports. Future efforts to create
head imaging NLP benchmarks are needed for comprehensive
evaluation. Finally, the probability calibration curves of both
HeadCT_BERT and ClinicalBERT for individual stroke features
demonstrate a mixed performance in calibration, indicating
potential imbalance of certain stroke features in the training
data set. As a result, using a probability of .5 as a general cut-off
might not be optimal for all stroke features. Future work is
required to adequately calibrate the model for all stroke features.

Conclusions
This study represents a step forward in NLP adoption for
neuroimaging among patients with cerebrovascular disease. Our
work demonstrates an effective and customizable NLP pipeline
for retrieving multiple stroke features from large amounts of
unstructured imaging notes. Derived from the latest artificial
intelligence technology, we believe our model will benefit stroke
research and patient safety. To fully understand the impact on
the health care industry, future work in the data pipeline
deployment and evaluation is anticipated.
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Abstract

Background: With the growing volume and complexity of laboratory repositories, it has become tedious to parse unstructured
data into structured and tabulated formats for secondary uses such as decision support, quality assurance, and outcome analysis.
However, advances in natural language processing (NLP) approaches have enabled efficient and automated extraction of clinically
meaningful medical concepts from unstructured reports.

Objective: In this study, we aimed to determine the feasibility of using the NLP model for information extraction as an alternative
approach to a time-consuming and operationally resource-intensive handcrafted rule-based tool. Therefore, we sought to develop
and evaluate a deep learning–based NLP model to derive knowledge and extract information from text-based laboratory reports
sourced from a provincial laboratory repository system.

Methods: The NLP model, a hierarchical multilabel classifier, was trained on a corpus of laboratory reports covering testing
for 14 different respiratory viruses and viral subtypes. The corpus includes 87,500 unique laboratory reports annotated by 8 subject
matter experts (SMEs). The classification task involved assigning the laboratory reports to labels at 2 levels: 24 fine-grained
labels in level 1 and 6 coarse-grained labels in level 2. A “label” also refers to the status of a specific virus or strain being tested
or detected (eg, influenza A is detected). The model’s performance stability and variation were analyzed across all labels in the
classification task. Additionally, the model's generalizability was evaluated internally and externally on various test sets.

Results: Overall, the NLP model performed well on internal, out-of-time (pre–COVID-19), and external (different laboratories)
test sets with microaveraged F1-scores >94% across all classes. Higher precision and recall scores with less variability were
observed for the internal and pre–COVID-19 test sets. As expected, the model’s performance varied across categories and virus
types due to the imbalanced nature of the corpus and sample sizes per class. There were intrinsically fewer classes of viruses
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being detected than those tested; therefore, the model's performance (lowest F1-score of 57%) was noticeably lower in the detected
cases.

Conclusions: We demonstrated that deep learning–based NLP models are promising solutions for information extraction from
text-based laboratory reports. These approaches enable scalable, timely, and practical access to high-quality and encoded laboratory
data if integrated into laboratory information system repositories.

(JMIR AI 2023;2:e44835)   doi:10.2196/44835

KEYWORDS

health; informatics; natural language processing; knowledge extraction; electronic health record; EHR

Introduction

Clinical laboratory data account for a large proportion of data
stored in electronic health record systems worldwide and present
a wealth of information vital for evidence-based
decision-making and public health improvement [1,2].
Laboratory information systems record, manage, and store
laboratory test data to facilitate reporting to clinicians and
jurisdictional laboratory information repositories [3]. These
repositories often include test orders and results from various
laboratory service providers, such as hospitals, public health
agencies, and private companies, and are populated as part of
clinical care.

Several factors limit the secondary use of laboratory data for
other purposes. The most important are concerns about the
quality of the data, lack of standardization, and difficulty
extracting the needed information [4,5]. Laboratory data vary
over time due to evolving standards of care and changing
population demographics. Furthermore, specific categories of
laboratory data are reported as free text in an unstructured format
with no standard vocabulary in the actual contents, which adds
more complexity for their secondary uses [1]. Therefore, efforts
are needed to eliminate redundancies, extract the necessary
information, and derive accurate interpretations from laboratory
data.

Our institute, ICES, has developed a specific information
extraction workflow to manage the interpretation of a large
volume of provincial clinical laboratory results, as shown in
Figure 1. The workflow, called a semi–rule-based workflow,
relies on time-consuming and operationally resource-intensive
approaches, including a library of rule-based and handcrafted
tools. These tools are explicitly programmed for various
laboratory result categories and must be refined continually. To
address challenges with our existing semi–rule-based workflow
and automate the exhaustive information retrieval task, we built
a deep learning–based natural language processing (NLP) tool.

The objective of this study was to assess the feasibility of our
deep learning–based NLP model and evaluate its performance
relative to the semi–rule-based workflow.

The development of NLP methods is essential to automatically
transform laboratory reports into a structured representation
that scales data usability for research, quality improvement, and
clinical purposes [6-12]. NLP enables automated extraction of
information, and its use in the clinical domain is growing, with
increasing uptake in various applications such as biomedical
named entity recognition [11,12], summarization [10], and
clinical prediction tasks [9]. More recently, deep learning
approaches such as convolutional neural networks, recurrent
neural networks (RNNs), and RNN variants such as bidirectional
long short-term memory (Bi-LSTM) have been successfully
applied to clinical NLP tasks [10,13-16]. They are now
considered the baseline techniques for various information
extraction tasks [11,12,17-20].

In this study, we focused on automating the retrieval of
information related to respiratory viruses from the laboratory
repository of Ontario, Canada’s most populous province.
Respiratory viruses account for a substantial burden of disease
globally [21,22], causing both respiratory and nonrespiratory
illnesses [23]. It is impossible to distinguish which respiratory
virus is causing infection based on clinical examination alone,
necessitating laboratory testing for confirmation. We sought to
(1) implement a deep learning–based NLP predictive model to
extract respiratory virus information from the laboratory
repository and (2) evaluate the generalizability and robustness
of predictions (extracted information) across different categories
of respiratory viruses and test sets. Our study findings can
inform public health practitioners and researchers about using
NLP approaches to empower and facilitate access and retrieval
of information from a collection of text-based laboratory reports
without any time-consuming handcrafted rule-based approaches.
This can facilitate the development of a scalable and easily
deployable automated information extraction tool.
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Figure 1. Semi–rule-based workflow versus fully automated deep learning natural language processing (NLP) approach. Semi–rule-based relies on
time-consuming and operationally resource-intensive approaches for the information extraction task. The corpus was derived from the Ontario Laboratories
Information System (OLIS). Following basic text-cleaning steps, around 87,500 unique laboratory reports were collected and included in our corpus to
be used in parallel by both semi–rule-based and deep learning NLP approaches. Semi–rule-based workflow is a multistep procedure where all the unique
reports were grouped by Logical Observation Identifiers Names and Codes (LOINC), year, and location in the first step. In the second step, subject
matter experts (SMEs) created a list of dictionaries for terms related to the different viruses and strains and a set of if-then-else rules to generate
interpretations and extract information from each laboratory report. The dictionaries and if-then-else rules were packaged as a python library called the
rule-based text parser. Finally, the parser was improved based on inputs from 3 SMEs in an iterative manner.

Methods

Study Design
The data set used in this study was a collection of laboratory
reports that covered testing for 14 different respiratory viruses
and viral subtypes (Table 1), most of which were in the form
of texts. The reports were text-based and required cleaning,
parsing, and encoding.

The data set was derived from the Ontario Laboratories
Information System (OLIS). OLIS has over 100 contributors,
which comprise hospital, commercial, and public health
laboratories, adding to the complexity and variability of the
clinical data. These data were analyzed at ICES.

The automated encoding of laboratory testing reports into
respiratory viruses is framed as a multilabel hierarchical
classification task to address the needs of knowledge users in

our institute in distinguishing respiratory viruses. According to
our users, information at 2 resolution levels is needed: high and
low. Therefore, we defined 2 levels of a classification hierarchy,
and at each level, the classification was multilabel. Each input
text sequence was assigned to a nonempty subset of various
labels, as shown in Figure 2. In the first level of the hierarchy,
the classifier assigned outputs to 24 mutually nonexclusive
fine-grained labels. The fine-grained labels were reassigned to
6 coarse-grained sets of labels in the second level of the
classification hierarchy. In this work, “sequence” refers to the
input laboratory reports to the NLP model, which may be single
or several sentences. A “label” also refers to a status of a specific
virus or strain being tested or detected.

To summarize, the information extraction for an input text
sequence involved retrieving virus types and identifying their
status as being tested and/or detected. Figure 2 illustrates a
running example of the input and output of the deep
learning–based NLP model.
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Table 1. Details of the respiratory viruses embedded in text-based laboratory reports derived from the Ontario Laboratories Information System (OLIS).

Specimens may be tested for 1 or more of the following viruses: influenza, RSVa, adenoviruses, seasonal coronaviruses, enterovirus/rhinoviruses,

parainfluenza viruses, HMVb, and bocavirusc.

Detectedf,

n (%)

Testede,

n (%)

Mention countsd,

n (%)

Viruses

2 (1)45 (6)21,614 (7)Adenovirus

5 (3)96 (13)5112 (2)Bocavirus

9 (5)95 (13)9128 (3)Coronavirus (seasonal)

35 (20)78 (11)49,282 (16)Any influenza

30 (18)80 (11)44,753 (15)Influenza A

17 (10)N/Ag6797 (2)Influenza A H1

18 (10)N/A9929 (3)Influenza A H3

12 (7)78 (11)40,840 (13)Influenza B

19 (11)92 (13)13,262 (4)Enterovirus/rhinovirus

3 (2)46 (6)21,194 (7)HMV

4 (2)46 (6)21,584 (7)Parainfluenza

11 (6)68 (9)38,080 (12)Any RSV

2 (1)N/A11,227 (4)RSV A

3 (2)N/A11,094 (4)RSV B

170 (100)724 (100)303,896 (100)Total

aRSV: respiratory syncytial virus.
bHMV: human metapneumovirus.
cThe testing modalities employed include single and multiplex polymerase chain reaction (PCR), direct fluorescent antibody, viral culture, and enzyme
immunoassay rapid antigen tests. Repeated testing may involve multiple laboratories and testing modalities.
dRepresents the counts of specific virus terms from all the distinct laboratory reports (unique sequences). It does not provide any clinical information
regarding the prevalence of the aforementioned viruses in Ontario.
eRepresents the proportion of mentions flagged as tested by the parser.
fRepresents the proportion of mentions flagged as positively detected by the parser. Note that tested and detected are not mutually exclusive; we first
determined whether it was tested for (ie, has e a result) and then flagged it as detected if the result is positive. Detected is a subset of the tested.
gN/A: not applicable. Note that the subtypes of influenza A and RSV were only analyzed for detection but not testing, as the scope of the planned
analyses for using the respiratory virus data was primarily focused on the larger virus categories.
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Figure 2. The fully automated deep learning–based natural language processing (NLP) approach is a hierarchical-based multilabel classification task
that retrieves virus (or strain) types and identifies their status as being tested and/or detected. Note that a sequence refers to the input laboratory reports
to the NLP approach, which may be a single or several sentences. A label also refers to the status of a specific virus or strain (tested or detected).
“influenza is tested” implies it was tested for any influenza type; however, the total number of “influenza is tested” is greater than the total number of
“influenza A tested + influenza B tested” since not all influenza types are mentioned. The same applies to “influenza is detected” and “RSV is tested.”
HMV: human metapneumovirus; NAAT: nucleic acid amplification test; PCR: polymerase chain reaction; RSV: respiratory syncytial virus.

Corpus Development Description

About OLIS
To create the corpus for this study, over a million observations
corresponding to 99 unique Logical Observation Identifiers
Names and Codes (LOINC) were pulled from OLIS, and the
text-based laboratory results were extracted from the
observations. OLIS was created and is managed by Ontario
Health, from whom ICES receives an ongoing data feed. At the
time of writing this paper, the OLIS data held at ICES consists
of >9000 unique LOINC and >5 billion laboratory observations
across 150 laboratory test centers in Ontario. As such, the
clinical laboratory data have considerable complexity and
variability.

Development of the Ground Truth
In this study, we leveraged the semi–rule-based workflow, an
information extraction workflow relying on a rule-based and
handcrafted tools library, to create ground truth for the deep
learning model. A group of 8 SMEs was engaged in performing
the required tasks in the workflow; they comprised 2 infectious
disease epidemiologists (authors JCK and SAB), 2 infectious
disease microbiologists (AM and SM), a genomic specialist

(AMA), a research methodologist (MA), a data analyst (BC),
and a machine learning scientist (ED). These tasks included
basic text cleaning, quality checking, and rule-based algorithm
development for interpreting reports, as shown in Figure 1. In
our institute, LOINC are mainly used to filter OLIS observations
into relevant groupings (eg, respiratory viruses) and not for
encoding and interpretation since they are not always used
appropriately by those entering the data into OLIS.
Consequently, the SMEs identified a list of 99 LOINC related
to respiratory viruses, and all the laboratory reports in OLIS
corresponding to these LOINC were retrieved. The workflow
consists of 3 tasks, which are detailed in the subsequent
paragraphs.

First, the data analyst and data scientist (authors BC and ED)
scanned the text strings. After performing basic text cleaning
(eg, removing punctuations, stop words, case normalization,
lemmatization, and stemming) and removing duplicates, they
created a meaningful list of 87,500 unique laboratory reports.

Next, the unique reports were grouped by laboratory and facility
names, LOINC, and year. Then, 3 SMEs, including 2 analysts
and an infectious disease specialist, manually reviewed multiple
samples per group and created a knowledge base and sets of
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if-then-else rules to generate interpretations for each laboratory
report. Specifically, the knowledge base consisted of dictionaries
for terms related to the different viruses and strains. The
if-then-else rules provided instructions for grouping virus terms
with respective results packaged as a Python library, which we
refer to in this study as the rule-based text parser.

Following the initial development of the rule-based text parser,
it was improved based on inputs from 3 other SMEs in an
iterative manner. The text parser was applied to the entire corpus
to generate annotations at each iteration. Next, the data analyst
manually reviewed the interpretations and flagged unclear results
to be reviewed by SMEs at another iteration. In addition, a small
random sample of unflagged test results was provided to SMEs
to be reviewed at this iteration. The SMEs subsequently
reviewed the list and provided new rules to be added to the text
parser. This procedure was repeated until there were no more
flagged test results.

Model Development and Evaluation

NLP Model Description
The deep learning–based NLP model consisted of 3 components
that were trained jointly: the word embedding layer, the
Bi-LSTM layer, and the output layer. The word embedding
layer computed a vector representation of each word in the text
as a combination of a character-based representation learning
model [24,25] and word vectors initialized with pretrained global

vectors (GloVe) embeddings [26]. The embedding layer was
coupled with a Bi-LSTM on top of it to generate conceptually
and contextually meaningful representations of words. An output
layer of a size equal to the number of distinct labels was placed
on top of Bi-LSTM, and the last hidden state of the Bi-LSTM
was projected into the output layer.

Model Evaluation
The model’s robustness and generalizability were evaluated
internally and externally on various test sets, as shown in Table
2. The internal test set used for model training was a randomly
sampled subset representing 10% (n=6719) of the laboratory
reports from OLIS from 2007 to 2018. The performance of the
model was also evaluated on 2 out-of-time test sets, including
samples from an entirely different time period: (1) a large
pre–COVID-19 (2019) sample and (2) a small post–COVID-19
(2020) sample. A separate test set, denoted as the external test
set, included samples up to 2019 from 2 separate laboratories
(testing sites not included in the development of the model) and
was used to assess the external generalizability of the model.
F1-scores, along with precision and recall scores, were calculated
for the model’s predictions. A 2-tailed paired t test was used to
determine whether there was a statistically significant difference
in the F1-scores between classes and test sets. In addition, 95%
CIs were calculated for the precision and recall scores to
quantify the uncertainty of the model's estimates.

Table 2. Data set statistics for laboratory descriptions of the development and test sets.

Any virusAny RSVc virusAny influenza virusbSequencesa, n
(%)

Cohorts

Tested, n (%)Detected, n (%)Tested, n (%)Detected, n (%)Tested, n (%)Detected, n (%)87411 (100%)Total

Development set (2009-2018)

40,652 (46)22,284 (25)27,196 (31)3959 (4)35,292 (40)13,792 (16)60,471 (69)Training set

4534 (5)2541 (3)3009 (3)428 (0.5)3941 (4)1604 (2)6719 (8)Internal test set

Out-of-time test sets

8643 (10)4745 (5)5957 (7)706 (0.8)6903 (8)3019 (3)15,908 (18)Pre–COVID-19
(2019)

27 (0.03)<6 (0.006)11 (0.01)<6 (0.006)11 (0.01)N/Ad100 (0.01)Post–COVID-19
(2020)

3237 (4)1431 (2)2546 (3)261 (0.2)3020 (34)864 (1)4213 (5)External test set
(2009-2018)

aRepresents the counts of unique sequences; a sequence refers to the input laboratory reports to the NLP model, which may be a single sentence or
several sentences.
bDetected and tested represent the aggregation of the proportion of any mentions of the virus terms from the total unique sequences in the data set.
cRSV: respiratory syncytial virus.
dN/A: not applicable.

Ethical Considerations
The use of the data in this study was approved by the ICES
Privacy and Legal Office. Projects that solely use data collected
by ICES under section 45 of Ontario’s Personal Health
Information Protection Act (PHIPA) are exempt from research
ethics board review. Section 45 of the PHIPA authorizes ICES
to collect personal health information, without consent for the
purpose of analyzing or compiling statistical information

concerning the management, evaluation, monitoring, and
allocation of resources to or planning for the health system.

Results

The development corpus, including training and test sets,
included 87,500 sequences involving ~5 million tokens. The
summary statistics for the data sets are shown in Table 2. The
NLP model was implemented in TensorFlow on an NVidia
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Tesla (Nvidia) graphics processing unit, and Adam optimization
was used as the optimization algorithm (more details in
Multimedia Appendix 1). The maximum sequence length was
fixed to 400 words. The model was trained several times with
random initialization on the development corpus, and the results
of the top 10 best-performing models on the test sets are
presented in this paper. The results for the fine-grained
classification in the first level of the hierarchy are presented in
Table 3 and aggregated by microaveraging across the 24
fine-grained labels. Detailed performance for each label is also
shown in Multimedia Appendix 2. The F1-score performance
of the model in the second level of the hierarchy, coarse-grained
multilabel classification, for “any influenza,” “any RSV”
(respiratory syncytial virus), and “any virus” are shown in Table
3. In addition, the variation of the model’s precision and recall
scores using bar plots and 95% CIs are shown in Figure 3.

As expected, the performance on the internal test set was better
than the out-of-time (pre–COVID-19) and external test sets. In
this regard, the F1-score results of the test sets were compared,
and noticeable differences were observed between the pairs of
internal and out-of-time (pre–COVID-19) test sets, internal and
out-of-time (post–COVID-19) test sets, and internal and external
test sets. The out-of-time (post–COVID-19) test set was a small

and imbalanced sample, including 100 sequences with <6
mentions of any virus as being detected. The sample included
12 sequences labeled as being tested for coronavirus, and our
model correctly classified them with an F1-score of 0.67.
Regarding the degree of uncertainty in the estimates, fewer
variations in precision and recall scores are observed for the
internal and out-of-time test sets (pre–COVID-19). On the
contrary, the estimates on the out-of-time (post–COVID-19)
and external test sets have larger CIs.

In general, the models’ estimates on any test sets were variable
across classes with varying degrees of uncertainty. The averaged
F1-scores of the estimates for both fine-grained (microaveraged)
and “coarse-grained any virus” classes were above 90% on the
internal test set. The F1-score for the “coarse-grained any
influenza detected” on all test sets was above 91%. Overall, the
performance for coarse-grained detected classes was lower than
for coarse-grained tested classes. Among the detected classes,
the performance for “any influenza virus” was evidently higher
than “any RSV virus.” The same result was observed between
“any influenza virus” and “any RSV virus.” Comparably, larger
CIs are evidenced for the “coarse-grained any RSV detected”
estimates.

Table 3. The prediction results (F1-score) of the top 10 best-performing models on the in-time, out-of-time, and external test sets. The fine-grained
results are aggregated by microaveraging across 24 fine-grained labels.

External test setOut-of-time test setaInternal test setVariables

(Post–COVID-19)(Pre–COVID-19)

96.23 (0.38)60.45 (7.99)94.31 (0.59)97.3 (0.25)Fine-grained microaveraged, mean (SD)

Coarse-grained any influenza virus, mean (SD)

91.11 (2.14)N/Ac94.47 (1.04)97.64 (0.28)Detectedb

98.94 (0.1)69.8 (4.43)97.26 (0.45)98.71 (0.15)Testedb

Coarse-grained any RSVd, mean (SD)

57.68 (12.53)48.33 (44.76)81.56 (3.63)90.94 (1.7)Detected

98.02 (0.47)95.6 (5.69)96.18 (0.9598.16 (0.34Tested

Coarse-grained any virus, mean (SD)

82.83 (3.27)31.71 (9.44)92.31 (1.59)95.01 (1)Detected

98.59 (0.2)75.87 (4.82)96.3 (0.35)98.4 (0.17Tested

aThe out-of-time test set (post–COVID-19) is a very small and imbalanced sample, including only 100 sequences with no mentions of any virus detected.
bDetected and tested represent the aggregation of the proportion of any mentions of the virus terms from the total unique sequences in the data set.
cN/A: not applicable.
dRSV: respiratory syncytial virus.
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Figure 3. The precision and recall scores of the predictions of the top 10 best-performing models with 95% CIs. The fine-grained results are aggregated
by microaveraging across 24 fine-grained labels. RSV: respiratory syncytial virus.

Discussion

Principal Findings
In this study, we demonstrated an implementation and evaluation
of an NLP model for an automated and reductive information
extraction task in a province-wide laboratory data repository.
Our results suggest that the NLP model is a promising approach
for information extraction from text-based laboratory reports
as an alternative method to address the time-consuming and
operationally resource-intensive nature of handcrafted rule-based
models.

Overview of Model Findings

Generalization Across Various Test Sets
Overall, the NLP solution, which was a hierarchical multilabel
classifier, performed well on the internal, out-of-time
(pre–COVID-19), and external (different laboratories) test sets.
Except for the internal test sets, the other test sets were sourced
from either a more recent time period or other laboratory sites,
but the model was able to generalize well with microaveraged
F1-score >94% across all classes. The performance of the model
on the other out-of-time (post–COVID-19) test set was
satisfactory; however, due to its small sample size with many
underrepresented classes, it was not possible to draw any
conclusion. The out-of-time (post–COVID-19) test set was
pulled from the 2020 cohort to simulate a nonstationary
production environment for observation.

Stability and Performance Variation Between Classes
In general, the model’s performance on any test sets was variable
across classes and virus types due to the imbalanced nature of
the corpus and sample sizes per class. There were intrinsically

fewer classes of viruses detected compared with those tested.
Therefore, the model’s performance was noticeably lower in
the “detected” cases. Among the detected cases, the lowest
performance was observed for RSV, and the highest
performance among the tested cases was observed for influenza.
Moreover, more considerable variations were observed for the
positive predictive and sensitivity values of the detected classes,
particularly for the “any RSV virus detected” class.

Comparison With Prior Work
Deep learning–based NLP approaches have demonstrated
efficacy in many clinical NLP tasks and have thoroughly
permeated the informatics community. The existing body of
literature has mainly focused on using deep learning models to
extract and interpret cancer-related clinical concepts [17,27,28]
from free text or other clinically meaningful entities from
radiology reports or hospital notes [10,15]. At the time of writing
this paper, only 1 study has explored the use of an NLP system,
Topaz, for the automated extraction and classification of
influenza-related terms from text emergency reports [29-31].
To our knowledge, our study is the first to explore using deep
learning models for efficient processing and extraction of
clinically meaningful knowledge pertaining to respiratory
viruses from a laboratory repository.

One strength of the NLP approach used in this study is its
scalability for various text-based laboratory scenarios. As the
size and complexity of laboratory data grow, so does the need
for scalable and reusable tools for automated extraction of
knowledge from vast amounts of clinical notes and quick
generalization from 1 task to another. Manual processing of
laboratory reports severely limits the utilization of rich
information embedded in the data repositories and makes the
process of data cleaning and quality improvement prohibitively
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expensive. Usually, the rules learned from cleaning a single
collection of laboratory reports show little generalizability
toward other collections. On the other hand, deep learning–based
NLP algorithms are well poised to scale the information
extraction process. Although building deep learning–based NLP
models is computationally intensive and memory demanding,
the benefit-to-cost ratio of these models in clinical settings will
continue to increase.

Limitations
Although this deep learning model promises great potential for
digitized health data, putting the model into production and
prospectively validating operational data is as crucial as model
building and a critical step in assessing and ensuring its
operational effectiveness. However, we expect the model’s
performance to deteriorate as it goes into production, potentially
impacting data quality. Moving forward, we plan to run a
silent-period production validation to further prospectively
explore the model’s performance. During the silent period, our
model will be integrated into the data quality and management
workflow for the laboratory data repository, and the outputs
will be internally validated in a fashion that would avoid
exposure to data users. We also plan to run rigorous evaluation
and continuous refinement of the model in the silent period to
assess its performance better before it enters production.
Transformers heralded a new era in the NLP field and have
shown to be very successful in many tasks. Our future direction
includes improving the performance of our NLP pipeline by
adding transformer models.

Another significant limitation of this study is that the model
was only trained on respiratory virus laboratory reports. Even
within that collection, some categories were naturally
underrepresented, which impacted the model's generalizability.
Therefore, during the silent period, more records from a diverse
set of laboratory reports from various categories will be
annotated and made available to the model, and the model will
be updated accordingly. Finally, this study lacks explainability,
which could limit the adoption of our deep learning–based
models in future applications. Therefore, we plan to develop
parallel pipelines that help explain the representations of the
laboratory reports and the classifier’s decision boundary. 

Conclusion
The health industry is rapidly becoming digitized, and
information extraction is a promising method for researchers
and clinicians seeking quick retrieval of information embedded
in texts. This study described developing and validating a deep
learning–based NLP approach to extract respiratory virus testing
information from laboratory reports. We demonstrated that our
system could classify and encode large volumes of text-based
laboratory reports with high performance without any of the
previous time-consuming handcrafted feature engineering
approaches. Taken together, the findings of this study provide
encouraging support that NLP-based information extraction
could become an important component of laboratory information
repositories to assist researchers, clinicians, and health care
providers with their information and knowledge management
tasks.
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Abstract

Background: Surveillance of hospital-acquired pressure injuries (HAPI) is often suboptimal when relying on administrative
health data, as International Classification of Diseases (ICD) codes are known to have long delays and are undercoded. We
leveraged natural language processing (NLP) applications on free-text notes, particularly the inpatient nursing notes, from
electronic medical records (EMRs), to more accurately and timely identify HAPIs.

Objective: This study aimed to show that EMR-based phenotyping algorithms are more fitted to detect HAPIs than ICD-10-CA
algorithms alone, while the clinical logs are recorded with higher accuracy via NLP using nursing notes.

Methods: Patients with HAPIs were identified from head-to-toe skin assessments in a local tertiary acute care hospital during
a clinical trial that took place from 2015 to 2018 in Calgary, Alberta, Canada. Clinical notes documented during the trial were
extracted from the EMR database after the linkage with the discharge abstract database. Different combinations of several types
of clinical notes were processed by sequential forward selection during the model development. Text classification algorithms
for HAPI detection were developed using random forest (RF), extreme gradient boosting (XGBoost), and deep learning models.
The classification threshold was tuned to enable the model to achieve similar specificity to an ICD-based phenotyping study.
Each model’s performance was assessed, and comparisons were made between the metrics, including sensitivity, positive predictive
value, negative predictive value, and F1-score.

Results: Data from 280 eligible patients were used in this study, among whom 97 patients had HAPIs during the trial. RF was
the optimal performing model with a sensitivity of 0.464 (95% CI 0.365-0.563), specificity of 0.984 (95% CI 0.965-1.000), and
F1-score of 0.612 (95% CI of 0.473-0.751). The machine learning (ML) model reached higher sensitivity without sacrificing
much specificity compared to the previously reported performance of ICD-based algorithms.

Conclusions: The EMR-based NLP phenotyping algorithms demonstrated improved performance in HAPI case detection over
ICD-10-CA codes alone. Daily generated nursing notes in EMRs are a valuable data resource for ML models to accurately detect
adverse events. The study contributes to enhancing automated health care quality and safety surveillance.
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Introduction

Pressure injury (PI), also known as a pressure ulcer, is an injury
of the skin and deep tissues caused by external pressures.
Annually, PIs affect approximately 250,000 to 500,000
Canadians, with an estimated prevalence of 26.0% in health
care institutions [1,2]. Hospital-acquired pressure injuries
(HAPIs) are PIs developed during an inpatient hospital stay.
HAPIs can significantly extend a patient’s hospitalization length
of stay and cause severe secondary complications, such as
muscle and profound tissue impairment [3]. HAPI is considered
mostly preventable, and its prevalence has been reckoned as an
acceptable indicator of the quality of care [4,5]. Collecting HAPI
status using chart review is time and labor-intensive, thereby
not suitable for large-scale population-based applications.
Considering all the factors, there is a need for automated ways
to accurately and timely identify HAPIs for analyzing large
cohort studies that support quality improvement efforts and
assisting unit managers with developing reliable patient safety
programs. The International Classification of Diseases, 10th
Revision, adapted to the Canadian health system (ICD-10-CA),
can be used to estimate the prevalence of adverse events from
administrative data. However, the coded administrative data are
prone to miss positive cases: previous research demonstrated
that the sensitivity of the ICD algorithm for identifying HAPI
cases is around 30% compared to chart review [1]. In addition
to the sensitivity issue, ICD codes are not generally assigned
with a specific time when diseases occur. Therefore, they are
unsuitable for reporting the time when HAPIs occur [6]. Thus,
there is a need for more accurate HAPI detection.

Electronic medical records (EMRs) are used to track and
organize patient information for efficient treatment of medical
conditions in a secure system [7]. Free-text clinical notes in
EMRs consist of detailed descriptions of patients' conditions
and treatment. Additionally, clinical notes are typically written
in a continuous manner across patients' interactions with health
care systems, making clinical notes more real-time compared
to diagnosis codes. Despite the rich information the clinical
record may have, coders often cannot read every entry, given
their limited time per chart and many patients have prolonged
hospital stays. Recent studies suggest that using free-text in
EMRs alone, or incorporating EMR data elements, can
significantly improve the accuracy of case identification of
specific comorbidities [8-16]. Xu et al compared the ICD
algorithm with algorithms based on EMR keyword search,
which achieved a high sensitivity of 0.655 (95% CI 0.601-0.710)
[8]. The Canadian health system operates as a publicly funded
single-payer insurance system by the federal, provincial, and
territorial governments [17]. Additional crown institutions at
the provincial and federal-level monitor adverse events such as
HAPI. For example, in Alberta, Canadian Institute for Health
Information, the federal crown corporation, works with Alberta

Health Services (provincial health care agency) to monitor PIs
[18,19]. To date, there is no mandatory collection of PIs within
Canadian acute-care facilities. Real-time PI evaluation and
auditing using ICD codes are not possible as Canadian health
data systems are set up such that ICD codes are assigned outside
of providing care and have a few months lag in data extraction,
transfer, and load [20]. Consequently, these agencies aim to
monitor but are unable to conduct real-time auditing of PIs in
Canada. Therefore, there is a need to develop EMR data-specific
algorithm for identifying PIs for monitoring and auditing within
Canadian acute-care facilities. Our objective was to create EMR
data-specific algorithms for HAPIs. Availability and
implementation of PI-specific algorithms within a clinical
information system would allow the abovementioned federal
and provincial agencies to conduct real-time surveillance of
HAPIs, improving patient safety, enhancing the quality of care,
and reducing the burden of costs associated with adverse events.
The EMR phenotype case detection is evaluated via comparison
with confirmed HAPIs status acquired in a clinical trial [21].

Methods

Study Design
This is an EMR phenotyping study for enhancing HAPI
identification using free-text notes. Obtained clinical trial data
were linked to administrative and EMR data for model
development and validation. The natural language processing
(NLP) method’s performance was compared with results from
the ICD validation study conducted in Alberta, Canada, by
Wong et al [21]. Detailed information for HAPIs identification
can be found in their study.

Clinical Trial Data
Previously completed randomized controlled trial (RCT) data
of 678 eligible consenting inpatients were obtained from an
affiliated research team and were used as the reference standard
[21]. The trial evaluated the efficacy of a pressure-sensing
mattress in preventing interface pressure. A research nurse
performed a clinical head-to-toe skin assessment for PI
formation, and suspected deep tissue injuries were monitored
throughout 3 days of enrollment [21]. Assessments were
conducted within 24 hours of admission, on the day of trial
enrollment, and the third day after enrollment, and documented
in Allscripts Sunrise Clinical Manager (SCM) EMR (Figure 1).
Three days were chosen as a length of time for the research
nurse to perform data collection and risk assessment for 3
reasons. First, this is the average length of stay in the local
inpatient units, and a longer trial period may include varying
nursing practice due to hospital discharge with a shorter length
of stay, unit changes, and more nursing shift changes. Second,
the dedicated investigation team deemed 3 days sufficient for
pressure-related skin and soft tissue changes to develop. Lastly,
as a continuous collection of interface pressure throughout the
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enrollment period leads to a large volume of data, 3 days
allowed for optimal data collection while maintaining participant
enrollment.

The research nurse, who measured pressure-related skin
ulcerations, was trained as a wound care specialist in the
provision of pressure ulcers, ostomy, and continence care [21].
The patients’ PI status check on admission was determined
based on when the patient was admitted. The clinical trial team
relied on the medical record if the patient had been admitted
long before the study and consented to the study. If the patient
agreed to participate in the trial right after being admitted to the
hospital, the research nurse noted the PI status on admission.

The following data elements were abstracted from the clinical
trial data: record ID, medical unit, sex, first-skin assessment

date, second-skin assessment date, presence of PIs, and other
possible related conditions (cerebrovascular disease, diabetes
mellitus, etc). The clinical trial measured and classified PIs into
6 stages: stage 1, stage 2, stage 3, stage 4, suspected deep tissue
injury, and unstageable PIs [22]. Stages of PIs were identified
according to the National Pressure Ulcer Advisory Panel’s
pressure ulcer staging system [23]. Stage 1 PIs include sores.
Stage 2 captures open wounds on the surface of the skin. Stage
3 PIs represent wounds extending beneath the skin and affecting
fat tissue. At stage 4, PIs are deep and reach into muscles, bones,
and tendons. The trial is registered at clinicaltrials.gov
(NCT02325388). Additional details surrounding the clinical
trial data were published by Wong et al [21].

Figure 1. Illustration of the clinical trial for assessment of PI status in the enrolled patient cohort (n=678) and the data input used for the development
of classification models. PI: pressure injury.

Study Cohort

Inclusion and Exclusion Criteria
During the RCT, eligible patients were at least 18 years old,
were expected to have a length of stay of at least 3 days, and
did not receive near-end-of-life care within 3 days of trial
enrollment [21]. Participants were recruited from nursing units
with a high risk for PI development including acute medical,
neurosurgery, neurology, and intensive care [21]. For this study,

patients were excluded if their data did not link to EMR data,
had incomplete skin assessments, or included erroneous
assessment or discharge dates. Patients with PIs on the day of
admission were also excluded in order to track only PIs
developed during hospitalization. Furthermore, intensive care
unit (ICU) patients were excluded since their data were stored
in another data warehouse with distinct data elements from
those found in SCM and required restricted access. After careful
selection, the final cohort of eligible patients was 280 (Figure
2).
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Figure 2. Flowchart of inclusion and exclusion criteria for the patient cohort based on trial completeness, PI status, and age (minimum age of 18 years
old) for all controls in the panel. ICU: intensive care unit; PI: pressure injury; SCM: Sunrise Clinical Management.

Data Linkage to Discharge Abstract Database and
SCM EMR
Deterministic data linkage was performed between the RCT
data, administrative data from the discharge abstract database
(DAD), and SCM EMR data [24]. SCM was the EMR system
employed in Calgary hospitals at the time of the study. Data
linkage steps followed a previously established methodology
[25]. First, the PI RCT data were linked to the DAD using the
provincial health number and admission date. Then, DAD
variables were used to connect these data with SCM.

Document Types and Sequential Forward Type
Feature Selection
In total, 37 types of documents were noted for the included
patients during the clinical trial. Nursing notes were the primary
source of suitable HAPI information and constituted the largest
proportion of the documents. Among the nursing notes, “Patient
Assessment” contained the assessment of skin and wounds
under the Integument section. The Integument section described
skin integrity, bruises, wound formation, and exposure to air.
The “Patient Assessment Neuro” document included the patient's
neurological state, where the main components related to PIs
were level of consciousness, communication, and sensory
deficit. The “Patient Care” document included patients' hygiene,
activity, exercise, and nutrition, such as mobility, positioning,

and assistance with a meal. The remaining document types
contained daily intake and output, physiological indicators, pain
scale, and other related data. Discharge summaries, unit transfer
notes, and inpatient triage reports were not written for most
patients during the clinical trial because the trial was primarily
conducted in the middle of the hospital stay.

Forward feature selection was used to determine the best
combination of documents with 2 machine learning (ML)
models: extreme gradient boosting (XGBoost) and random
forest (RF) [26,27]. Forward feature selection is an iterative
way to obtain the best subset of features [28]. The analyses
began with no feature in the input of models. Then, in each
iteration, new features were added and observed for
improvements (Figure 3). The experiments were run with each
feature from the list of all possible features, where the best
predictor was then added to our feature set. This iteration ended
when introducing a new feature did not significantly improve
the targeted metric. In our experiments, the forward feature
selection was performed for every document type. Instead of
adding 1 feature in each iteration, all documents belonging to
1 type were added to the input of models. This feature selection
stopped when adding a new document type did not increase the
target metric. Due to the long convergence time, the forward
feature selection was not conducted during the development of
the deep learning model. Rather, the same optimal document
set determined by ML models was used.
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Figure 3. A visual illustration of the sequential forward selection process for identifying feature subsets that maximize the performance of the ML
pipeline. The candidate feature subsets were evaluated by using 5-fold cross-validation. For each subset of document types, 40 experiments were
conducted with all possible combinations of 5 folds, 2 vectorizers, and 4 ML models. FPR: false positive rate. ML: machine learning; TF-IDF: term
frequency-inverse document frequency; TPR: true positive rate.

Natural Language Processing

Bag of Words Preprocessing and ML
All nursing notes of selected document types were merged into
1 text and converted into a bag-of-words (BOW) vector with
the count of words or term frequency-inverse document
frequency (TF-IDF) vectorizer by using a Python scikit-learn
ML library [29-31].

A binary classification model was developed to identify HAPI
cases by considering all patients who developed any stage of
PI during a hospital stay as positive cases and patients without
PIs as the negative cohort. The BOW matrices were used as the
independent input for the models. RF and XGBoost
classification models were trained to perform classification.
These 2 models were chosen because they were representative
of ensemble models: RF for bagging and XGboost for boosting.
Ensemble models have been shown to display superior
performance than a single classifier [32]. Two sets of
hyperparameters were tried for each model. The 5-fold
cross-validation was conducted to determine the most useful
document types, high-performing ML model, and its
hyperparameters.

Deep Learning Model
A hierarchical attention network (HAN) structure with
bidirectional encoder representations from transformers (BERT)
was used to classify the text in the EMR clinical notes [33,34].
BERT is a contextualized word representation model that uses
a masked language model that predicts randomly masked words

in a context sequence. Publicly released BERT parameters are
trained on corpora such as Wikipedia, which is formatted
differently from clinical text. As such, ClinicalBERT, a language
model specifically pretrained using clinical notes, was used for
the text evaluation [35]. Medical language has been
demonstrated to contain vast amounts of discipline-specific
jargon, abbreviations, and acronyms while being a
domain-specific and technical language [36]. Multiple studies
have demonstrated that ClinicalBERT performs better than
BERT [37,38]. Therefore, the decision to proceed with
ClinicalBERT for our study was made. The ClinicalBERT
embedding was not fine-tuned with clinical notes data due to a
moderate sample size. Rather, the ClinicalBERT was
downloaded and tested from a GitHub repo found in the study
where Alzentzer et al observed performance improvements on
three common clinical NLP tasks after training BERT models
on clinical notes and discharge summaries [38,39]. The
document embedding layer weights were not taken from
ClinicalBERT. As the maximum sequence length of BERT
limits it from handling text with more than 512 tokens, sentence
embeddings generated by ClinicalBERT are fed to another
transformer to obtain the “document embedding,” a highly
abstracted vector capturing global information about the whole
document [35,38]. HAPI status was classified based on this
document embedding (Figure 4). The project-specific document
embedding transformer was trained from the ground up through
random initialization. Details of implementation and training
of our HAN-BERT models are described in Figure S1 in
Multimedia Appendix 1 [40,41].
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Figure 4. Composition of input sequence representations for text classification using BERT. The meaning of one sentence is summarized into the
vector of [CLS] (classifier), an artifact token concatenated at the beginning of each sentence to become the sentence embedding. The sentence embedding
is then fed to another transformer to generate the document embedding. An output layer with SoftMax activation provides the probability of text
classification. BERT: bidirectional encoder representations from transformers.

Model Evaluation
We used 5-fold stratified cross-validation to split the 97 positive
cases and 183 patient controls into 5 groups. Due to the fact
both numbers were not divisible by 5, there was a minor
difference in the distribution of cases and controls between
groups, although the effort was placed to retain the most similar
distribution between the 5 groups. Each time we selected 4
groups as a training set, the remaining group was used as a test
set. The splitting was the same for ML and deep learning
experiments. A comparison of different document type subsets
was executed with the best model to determine which document
type subset would yield the best performance of PI detection.
To fairly compare our method with ICD-based PI identification
algorithms, the classification threshold was tuned to achieve
similarly estimated specificities (0.988 and 0.959) of 2
ICD-based algorithms developed and validated in a previous
study by Ho et al [1]. The first case definition is more specific
and yields greater detection precision. The second definition is
more inclusive of nonspecific codes for wounds and is likely
to capture a larger number of cases. Sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), and F1-scores were calculated as target metrics.
Additionally, PPV, NPV, sensitivity, and specificity of the 4
algorithms and 2 ICD algorithms were calculated with changing
thresholds ranging from 0.05 to 0.95. F1-score is a measure of
accuracy through a combination of sensitivity and PPV. F1 has

a maximum score of 1 when both sensitivity and PPV are 1,
and a minimum of 0 when either sensitivity or PPV is 0. We
calculated the binomial proportion CIs for sensitivity, specificity,
PPV, and NPV using the Statsmodels package in Python (Python
Software Foundation) [42]. The CIs of the F1-score were from
5-fold cross-validation.

Ethics Approval
The study was approved by the Conjoint Health Research Ethics
Board at the University of Calgary, Calgary, Alberta
(REB13-0794).

Results

Characteristics of Study Cohort
The study included 280 eligible participants (Figure 2). Among
the 280 patients, a research nurse identified 183 patients with
no HAPIs, and 97 patients were found to have HAPIs. Table 1
provides demographic details of the patient cohort. The P values
were calculated with MedCalc’s statistical calculators [43,44].
The median age was 68 (IQR 55-79) years. The cohort consisted
of 127 (45.36%) females, and the median length of stay was 46
(IQR-79) days. A more detailed review of input data and
linguistic inquiry and word count analysis for the number of
words, sentences, and patients based on document types can be
found in Table S1 in Multimedia Appendix 2.
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Table 1. Descriptive statistics of patients (N=280).

P valuePatients without pressure injury
(n=183)

Patients with pressure injury
(n=97)

AllCharacteristics

.6285 (46.45)42 (43.30)127 (45.36)Female, n (%)

.1067 (53-79)68 (59-80)68 (55-79)Age (years), median (IQR)

.3746 (19-109)48 (28-96)46 (22-104)Length of stay (days), median (IQR)

.5287 (47.54)50 (51.55)137 (48.93)Cerebrovascular disease, n (%)

.0228 (15.30)26 (26.80)54 (19.29)Chronic obstructive pulmonary disease, n (%)

.0436 (19.67)30 (30.93)66 (23.57)Congestive heart failure, n (%)

.3424 (13.11)9 (9.28)33 (11.79)Myocardial infarction, n (%)

.7917 (9.29)10 (10.31)27 (9.64)Dementia, n (%)

.2830 (16.39)21 (21.65)51 (18.21)Peripheral vascular disease, n (%)

.5780 (43.72)39 (40.21)119 (42.50)Hemiplegia or paraplegia, n (%)

.621 (0.55)1 (1.03)2 (0.71)Leukemia, n (%)

.502 (1.09)2 (2.06)4 (1.43)Lymphoma, n (%)

.0220 (10.93)21 (21.65)41 (14.64)Peptic ulcer disease, n (%)

.00527 (14.75)28 (28.87)55 (19.64)Moderate or severe renal disease, n (%)

.9915 (8.20)8 (8.25)23 (8.21)Liver disease, n (%)

.04552 (28.42)39 (40.21)91 (32.50)Diabetes mellitus, n (%)

.5831 (16.94)19 (19.59)50 (17.86)Solid tumor, n (%)

.0427 (14.75)24 (24.74)51 (18.21)Connective tissue, n (%) disease

.3073 (39.89)45 (46.39)118 (42.14)History of smoking, n (%)

.5026 (14.21)11 (11.34)37 (13.21)Currently smoking, n (%)

.328 (4.37)7 (7.22)15 (5.36)History of illicit drug use, n (%)

.855 (2.73)3 (3.09)8 (2.86)Currently use illicit drugs, n (%)

Data Linkage and Extraction
Table 2 shows the patient and document count and document
word count for the patients eligible for this study. Most
PI-positive patients had “Patient assessment” document type

(60 (61.86%) patients with HAPI versus 82 (44.81%) patients
without HAPI), and patients in the negative groups
predominantly had “Patient assessment Neuro.” However,
patients from both groups had a similar amount of “Patient care”
during the trial (Table 2).
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Table 2. Characteristics of extracted documents, different components of nursing notes, and the average number of documents written by nurses.

Patients without HAPI (n=183)Patients with HAPI (n=97)All (N=280)Document type

Patient assessment

82 (44.81)60 (61.86)142 (50.71)Number of patients with this type of document, n
(%)

0.00 (0.00-16.00)12.00 (0.00-18.00)1.00 (0.00-17.00)Number of notes per patient, median (IQR)

370.00 (303.00-421.00)385.00 (311.00-441.00)376.00 (306.00-430.00)Word count per note, median (IQR)

Patient assessment neuro

102 (55.74)39 (40.21)141 (50.36)Number of patients with this type of document, n
(%)

8.00 (0.00-13.00)0.00 (0.00-13.00)2.50 (0.00-13.00)Number of notes per patient, median (IQR)

430.00 (346.00-499.00)424.00 (324.00-493.50)428.00 (343.0-498.0)Word count per note, median (IQR)

Patient care

183(100)97 (100)280 (100)Number of patients with this type of document, n
(%)

16.00 (13.00-23.50)16.00 (13.00-19.00)16.00 (13.00-21.20)Number of notes per patient, median (IQR)

133.00 (66.00-176.00)147.00 (91.00-185.00)138.00 (72.00-179.00)Word count per note, median (IQR)

Document Subset and Classification Models
Across a subset of document types and all tested classification
techniques, the combination of Patient Assessment, Patient
Assessment Neuro, and Patient Care yielded the highest outputs
in terms of target metrics.

The TF-IDF vectorizer with RF classifier demonstrated the best
performance in terms of sensitivity, PPV, and NPV when fixed
at the specificity of 0.988 and 0.959 thresholds. The performance
results are reported in Table 3.

For a specificity of 0.988, the sensitivity of the (TF-IDF+RF)
EMR-based model was 0.464 (95% CI 0.365-0.563), which
surpassed the sensitivity 0.277 (95% CI 0.174-0.380) achieved
by the ICD-based algorithm [1]. The PPV of our model had a
mean of 0.938 (95% CI 0.869-1.000), which is higher than the
reported 0.917 (95 % CI 0.854-0.980) of the ICD algorithm.
The NPV was 0.776 (95% CI 0.722-0.830), which is also higher
than the 0.739 (95% CI 0.638-0.840) reported in the ICD
validation [1]. For a specificity of 0.959 achieved by the loose
ICD-based algorithm, the EMR model sensitivity reached 0.546
(95% CI 0.447-0.645) compared to 0.328 (95% CI 0.220-0.436)
found in ICD reporting [1]. Both PPV and NPV of EMR model

were also higher (0.855 (95% CI 0.767-0.943) vs 0.793 (95%
CI 0.700-0.886) and 0.798 (95% CI 0.745-0.851 vs 0.746 (95%
CI 0.646-0.846) than those detected by ICD algorithm
respectively. The deep learning model underperformed with the
area under the receiver operating characteristic curve
(AUC-ROC) score of 0.68 (SD 0.04), compared to the RF with
the highest area under the curve (AUC) score of 0.80 (SD 0.08),
followed by XGBoost with the AUC score of 0.75 (SD 0.07;
Figure 5). Considering the prevalence of 34.6% in our study,
the baseline area under the precision-recall curve (AU-PRC) is
0.346. Figure 6 shows that an AU-PRC of 0.77 (SD 0.06) was
achieved for the RF models using TF-IDF tokenization, 0.74
(SD 0.08) was achieved for the RF models using count
tokenization, 0.67 (SD 0.04) was achieved for the XGBoost
models, and 0.60 (SD 0.06) for the deep learning models. These
results are greater than 0.346, and we conclude that these
classifiers do not discriminate by random chance and perform
well in finding positive HAPI cases without accidentally
marking negative patients as positive. Figure S1 in Multimedia
Appendix 3 shows the PPV, NPV, sensitivity, and specificity
of the 4 algorithms and 2 ICD algorithms, with changing
thresholds ranging between 0.05 and 0.95.
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Table 3. The performance of NLPa methods on free-text electronic medical record documents at varying thresholds for the probability of pressure

injury detection. The model was compared to ICDb algorithms such that the model was trained to mimic its specificity.

F1-score %

(95% CI)

NPVd %

(95% CI)

PPVc %

(95% CI)

Specificity %

(95% CI)

Sensitivity %

(95% CI)

Model

Specificity near 0.988

0.425 (0.312-0.538)0.739 (0.638-0.840)0.917 (0.854-0.980)0.988 (0.963-1.013)0.277 (0.174-0.380)ICD (Ho et al [1])

0.612 (0.473-0.751)0.776 (0.722-0.830)0.938 (0.869-1.000)0.984 (0.965-1.000)0.464 (0.365-0.563)TF-IDFe+random forestf

0.550 (0.361-0.739)0.758 (0.704-0.813)0.909 (0.824-0.994)0.978 (0.957-0.999)0.412 (0.314-0.510)Count+random forest

0.450 (0.340-0.559)0.727 (0.671-0.782)0.857 (0.741-0.973)0.973 (0.949-0.996)0.309 (0.217-0.401)TF-IDF+XGBoostg

0.394 (0.207-0.580)0.716 (0.660-0.772)0.867 (0.745-0.988)0.978 (0.957-0.999)0.268 (0.180-0.356)Word Embedding+BERTh

Specificity near 0.959

0.464 (0.350-0.578)0.746 (0.646-0.846)0.793 (0.700-0.886)0.959 (0.913-0.100)0.328 (0.220-0.436)ICD (Ho et al [1])

0.665 (0.577-0.753)0.798 (0.745-0.851)0.855 (0.767-0.943)0.951 (0.919-0.982)0.546 (0.447-0.645)TF-IDF+random forest

0.546 (0.359-0.733)0.758 (0.702-0.813)0.837 (0.733-0.940)0.956 (0.927 -0.986)0.423 (0.324-0.521)Count+random forest

0.552 (0.404-0.699)0.758 (0.702-0.813)0.837 (0.733-0.940)0.956 (0.927-0.986)0.423 (0.324-0.521)TF-IDF+XGBoost

0.420 (0.280-0.560)0.720 (0.663-0.776)0.824 (0.695-0.952)0.967 (0.941-0.993)0.289 (0.198-0.379)Word embedding+BERT

aNLP: natural language processing.
bICD: International Classification of Diseases.
cPPV: positive predictive value.
dNPV: negative predictive value.
eTF-IDF: term frequency-inverse document frequency.
fThe best model.
gXGBoost: extreme gradient boosting.
hBERT: bidirectional encoder representations from transformers.
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Figure 5. The ROC curves derived from the random forest with TF-IDF and word count, XGBoost, and deep learning models. AUC: area under the
curve; ROC: receiver operating characteristic; TF-IDF: term frequency-inverse document frequency; XGBoost: eXtreme gradient boosting.

Figure 6. The area under the precision-recall curve (AU-PRC) performance of 4 models: random forest with TF-IDF and word count, XGBoost, deep
learning model. AUC: area under the curve; PRC: precision-recall curve; TF-IDF: term frequency-inverse document frequency; XGBoost: eXtreme
gradient boosting;
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Discussion

Principal Findings
Multiple methods were applied, and different combinations of
clinical text were analyzed to determine the efficiency of NLP
models in detecting HAPIs from nursing notes. The results of
NLP models were compared with the ICD-based algorithm
reported in the previous study [1]. An AUC of 0.80 (SD 0.07)
of the ML model indicates fair accuracy in terms of produced
sensitivity and specificity. The results demonstrate that different
combinations of EMR data leverage NLP models to improve
upon ICD-10–based HAPI case definitions. The TF-IDF with
RF produced higher sensitivity at a strict specificity level. The
satisfactory performance of ML models indicates that the
free-text documented during hospitalization contains valuable
information for HAPI detection. Developing algorithms using
EMR data will facilitate the timely and accurate capture of HAPI
incidences and measure the quality of nursing practice during
patient hospitalization.

From the forward document type selection, we found that apart
from the notes that directly document skin conditions in the
patient assessment, the entries noting the patient’s
consciousness, nutrition, and mobility were helpful in indicating
HAPI. This makes clinical sense because the reduced level of
consciousness, nutrition, and mobility are factors that may
contribute to HAPI [45]. In addition, our findings align with
several risk factors of the Braden Scale [46]. Given that many
factors of the Braden Scale are documented in nursing notes
daily, it may be promising to use NLP to automatically extract
the Braden Scale’s factors and achieve better PI detection or
prediction upon the automatically rated Braden Scale [46].

The results showed that the XGBoost and RF methods perform
better than the advanced deep learning models by a large margin.
The joint effort of the TF-IDF vectorizer and tree-based
classifier enabled the pipeline to stay robust to irrelevant
vocabularies, even when the sample size was smaller than the
feature size. The feature selection played a role in this task
because a great part of the text in clinical documents was not
relevant to HAPIs and only contributed noise for the
classification task. On the other hand, deep learning models
allowed every input word to contribute to the document
embedding upon which the model judged the presence of HAPIs.
The suboptimal performance of the deep learning model may
have been avoided if the transformers' attention mechanisms
had more training samples to converge. The noisy data and not
a very large sample size were possibly the main factors that
made the deep learning models perform poorly. However, this
hypothesis needs further examination.

Compared to these previous studies that used EMR to automate
phenotyping, our model achieved higher sensitivity while
reporting comparable values for performance metrics such as
PPV and NPV. Furthermore, our model can identify HAPIs
with high specificity and improved sensitivity during the first
three days in routine clinical practice settings. Melton et al [47]
found NLP to be reliable and effective in detecting 16 out of
65 adverse events in 1000 manually reviewed charts. The model
by Melton et al [47] then processed all inpatient cases with EMR

discharge summaries, achieving high specificity (0.9996) and
low sensitivity (0.28). Our model results are in line with other
studies that used free-text clinical notes to predict incidences
of distinct adverse events [48-51].

Limitations
The study is not without limitations. First, the exclusion of ICU
patients due to data elements being distinct from SCM led to a
smaller sample size and a narrower clinical cohort. Nevertheless,
the remaining data from the clinical trial represented a
population at risk for HAPIs. Second, both the patient and nurse
knew at the admission of a clinical trial measuring PI would be
the trial goal, which may have impacted the data entry quality
of PI and frequency of patients to report PI-related discomfort.
Third, the model produced relatively modest sensitivity.
However, this sensitivity is deemed valuable, given that the
specificity was set to a high threshold, and the input was
restricted to the first 72 hours after enrollment [16]. The
sensitivity reported in similar studies used the whole or more
extended hospitalization stay and more data elements [50-52].
In addition, the sensitivity of our study was obtained through a
comparison to a clinical trial instead of chart review data. Chart
review does not always capture all positive cases due to possible
errors in the review process [53,54]. Fourth, the comparison
with deep learning is not likely to be very fair because
BERT-based models are usually applied to larger cohorts.
Nevertheless, our result can be served as a reference for model
selection for researchers working with similar sample sizes.
Prabhakar et al applied ClinicalBERT to phenotype 10 diseases
on a cohort consisting of 1610 discharge summaries [41]. When
only using ClinicalBERT, they obtained a very similar F1-score
(0.46) compared to our result [41]. The suboptimal performances
of the advanced deep learning model may suggest that study
needs to be more evolved before applying deep learning to
free-text-based clinical phenotyping. Tree-based ML models
are recommended for detecting adverse event conditions from
noisy, moderately sized text samples.

Future Directions
The present work focused on demonstrating ML models on
cross-sectional EMR data can outperform the ICD-based PI
identification algorithm. Future directions could include (1)
leveraging cost-sensitive learning to assign various weights to
assess the impact of misclassifying the patients with a PI, (2)
identification of the potential risk features or predictors that
may be associated with PI, (3) comparison of HAN-BERT
against other novel NN structures, and (4) detailed ablation
studies for assessing the performance of components on the
designed models that will hopefully be integrated into a clinical
decision-support system. These studies will require larger
sample sizes than our current pilot study, but our current work
can be used to create such a cohort.

Conclusions
Our study revealed the feasibility of using inpatient clinical
notes documented for 3 days to detect HAPIs with increased
accuracy over ICD methods. NLP and ML application on
inpatient clinical notes allowed better and more timely use of
the clinical narratives compared to summarizing them into ICD
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codes and DAD, thereby being a promising solution for precise,
time-sensitive, population-based disease phenotyping. With the
advent of digital technologies in health care, the results
contribute toward an automated approach to better cohort
identification, patient surveillance, and quality improvement
for the treatment of hospital-acquired adverse events. The

application of the model is particularly relevant for effectively
mining clinical data that does not capture a large sample size
for adverse effects phenotyping. The proposed method of
identifying patients in acute care hospitals who are likely to
have or develop PI will most likely be used by front-line hospital
staff to prevent or manage PI earlier and more effectively.
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Abstract

Background: Aspirin-exacerbated respiratory disease (AERD) is an acquired inflammatory condition characterized by the
presence of asthma, chronic rhinosinusitis with nasal polyposis, and respiratory hypersensitivity reactions on ingestion of aspirin
or other nonsteroidal anti-inflammatory drugs (NSAIDs). Despite AERD having a classic constellation of symptoms, the diagnosis
is often overlooked, with an average of greater than 10 years between the onset of symptoms and diagnosis of AERD. Without
a diagnosis, individuals will lack opportunities to receive effective treatments, such as aspirin desensitization or biologic
medications.

Objective: Our aim was to develop a combined algorithm that integrates both natural language processing (NLP) and machine
learning (ML) techniques to identify patients with AERD from an electronic health record (EHR).

Methods: A rule-based decision tree algorithm incorporating NLP-based features was developed using clinical documents from
the EHR at Mayo Clinic. From clinical notes, using NLP techniques, 7 features were extracted that included the following: AERD,
asthma, NSAID allergy, nasal polyps, chronic sinusitis, elevated urine leukotriene E4 level, and documented no-NSAID allergy.
MedTagger was used to extract these 7 features from the unstructured clinical text given a set of keywords and patterns based on
the chart review of 2 allergy and immunology experts for AERD. The status of each extracted feature was quantified by assigning
the frequency of its occurrence in clinical documents per subject. We optimized the decision tree classifier’s hyperparameters
cutoff threshold on the training set to determine the representative feature combination to discriminate AERD. We then evaluated
the resulting model on the test set.

Results: The AERD algorithm, which combines NLP and ML techniques, achieved an area under the receiver operating
characteristic curve score, sensitivity, and specificity of 0.86 (95% CI 0.78-0.94), 80.00 (95% CI 70.82-87.33), and 88.00 (95%
CI 79.98-93.64) for the test set, respectively.

Conclusions: We developed a promising AERD algorithm that needs further refinement to improve AERD diagnosis. Continued
development of NLP and ML technologies has the potential to reduce diagnostic delays for AERD and improve the health of our
patients.

(JMIR AI 2023;2:e44191)   doi:10.2196/44191
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Introduction

Aspirin-exacerbated respiratory disease (AERD) is an acquired
inflammatory condition characterized by the presence of asthma,
chronic rhinosinusitis with nasal polyposis, and respiratory
hypersensitivity reactions on ingestion of aspirin or other
nonsteroidal anti-inflammatory drugs (NSAIDs) [1]. These
reactions typically involve the upper and lower airways and
may include nasal congestion, sneezing, rhinorrhea, cough, and
wheezing [1]. The prevalence of AERD is approximately
0.3%-0.9% in the general population, but the actual prevalence
is unknown in practice, as AERD has no unique International
Classification of Diseases, Ninth Revision (ICD-9) or ICD-10
codes [2,3]. In the general population, the mean age of onset of
AERD is approximately 30 years [2,4], and the prevalence of
AERD is estimated to be 7%-15% in individuals with asthma
and 10%-16% in individuals with chronic rhinosinusitis with
nasal polyposis [5]. Individuals with AERD have significant
symptom burden and morbidity, including severe and
recalcitrant sinus disease, high rates of polyp recurrence and
revision surgery, and higher asthma exacerbation and
hospitalization rates [1]. Despite AERD having a classic
constellation of symptoms, the diagnosis is often overlooked,
with an average of greater than 10 years between the onset of
symptoms and diagnosis of AERD [6]. Without a diagnosis,
individuals will lack opportunities to receive effective
treatments, such as aspirin desensitization or biologic
medications [5,7].

One opportunity to improve diagnostic delays with AERD
involves leveraging the immense volume of clinical data
available in electronic health records (EHRs). By leveraging
natural language processing (NLP) and machine learning (ML),
analyses of medical concepts from unstructured clinical
documents may aid in early detection of AERD [8]. In this
study, we developed a combined algorithm of NLP with ML to
identify individuals with AERD.

Methods

Ethical Considerations
This study was approved by the Mayo Clinic institutional review
board as exempted from ethics approval in accordance with the
ethical standards of the responsible committee on human
experimentation and the Helsinki Declaration of 1975, as revised
in 2000.

Procedure
Patients who were evaluated within the Allergy and Immunology
divisions at Mayo Clinic from January 2001 to March 2022 and
met diagnostic criteria for AERD based on accepted guidelines
[1] were retrospectively identified by chart review. In total, 200
patients with AERD and 200 patients without AERD were
identified. Of these patients, we randomly selected 100 patients

with AERD and 100 without AERD to serve as the training set,
and the remaining were used for the test set.

A rule-based decision tree algorithm incorporating NLP-based
features was developed to identify patients with AERD using
clinical documents from the EHR at Mayo Clinic. From clinical
notes, 7 features were extracted using NLP techniques based
on common characteristics of AERD [1]. These features
included the following: prior AERD diagnosis, asthma, NSAID
allergy, nasal polyps, chronic sinusitis, elevated urine
leukotriene E4 level, and documented no-NSAID allergy. “Prior
AERD diagnosis” was defined as whether the patient had a
diagnosis of AERD before or had suspicion of a high chance
of AERD by the physician. For “asthma,” “nasal polyps,” and
“chronic sinusitis,” the patient needed to have a diagnosis
confirmation by the physician in the clinical documents.
“Elevated urine leukotriene E4 level” indicated if the patient
had any record in lab results of a urine leukotriene E4 level
greater than 104 pg/mg creatinine. “NSAID allergy” was defined
as a patient having had a respiratory reaction to an NSAID.
Meanwhile, “documented no-NSAID allergy” indicated that a
health care provider recorded “unconfirmed or no specific
history of NSAID allergy up to date” in the clinical documents.
Given the successful use cases of MedTagger [9] to identify
disease in different clinical domains [10,11], we used
MedTagger to extract these features with the given set of
keywords (including typos, abbreviations, and acronyms) and
patterns based on the chart review of 2 allergy and immunology
experts for AERD. If the extracted features were located in
particular note sections (ie, “History of Present Illness,”
“Allergies,” “Past Medical/Surgical History,”
“Impression/Report/Plan,” “Diagnosis,” “Principal Diagnosis,”
“Secondary Diagnoses,” and “Post Procedure Diagnosis”), they
were considered valid AERD features. We collected each feature
in all clinical documents per patient in the past 5 years from the
last clinic visit because clinical characteristics of AERD can
evolve over time (ie, development of NSAID allergy).

We counted the number of times each extracted feature appeared
in the clinical documents for each patient and used this count
as the numerical representation of each feature. To identify the
most practical combination of features for discriminating
between different presentations of AERD, we optimized the
hyperparameters of the classification and regression tree (CART)
decision tree classifier with the identified features on the training
set using sklearn [12,13]. We performed hyperparameter tuning
on 5 different parameters with 1 model setting, as follows: (1)
criterion, with options of gini or entropy; (2) maximum depth,
ranging from 1 to 10 with an interval of 1; (3) minimum samples
split, ranging from 2 to 10 with an interval of 2; (4) minimum
samples leaf, ranging from 1 to 10 with an interval of 1; (5)
maximum features, ranging from 1 to 7 with an interval of 1;
and (6) a fixed random number generation seed was used to
ensure reproducibility. Furthermore, to achieve the highest area
under the receiver operating characteristics curve (AUC) score,
these hyperparameters were tuned for two types of feature sets:
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(1) quantitatively represented as numerical values per patient
and (2) binary, where “1” denotes the presence and “0” denotes
the absence or missing status of each extracted feature per
patient. We constructed a decision tree using the best feature
set with optimized hyperparameters and then calculated the
AUC scores for a range of cutoff thresholds from 0.1 to 1.0 in
intervals of 0.1 to determine the optimal cutoff threshold based
on a given training set. The resulting tree with the optimized
parameters and cutoff threshold converted into sequential rule
sets to evaluate the performance in the test set.

Results

In our cohort, the mean age of the 400 patients was 55.5 years,
and 54% (216/400) were female. Table 1 displays the descriptive
statistics for each feature, comparing the presence or absence
of the feature in the training and test sets. Based on the training
set, we obtained the sequential rule sets through the optimized
decision tree (with criterion as gini, maximum depth as 7,
minimum samples leaf as 7, minimum samples split as 2,
maximum features as 3, random state as 20, and best cutoff
threshold as 0.6 for parameter settings) using the numerical
represented feature set in Table 2. The sequential rules listed in

Table 2 describe several clinical factors that include diagnosis
of AERD (referred to as AERD), diagnosis of allergy to an
NSAID (referred to as NSAID allergy), diagnosis of chronic
sinusitis, documented history of tolerance to an NSAID (referred
to as non-NSAID allergy), and a prior abnormally elevated urine
leukotriene E4 level (referred to as LAB).

In Table 2, it was observed that the derived sequential rule,
ranging from 1 to 9, captured 28% (56/200) of the cases in the
test set. However, a significant portion of the test set (112/200,
56%) was not identified according to the original intended
sequential rule but rather by a different sequence rule. For
example, rule 6 failed to capture 73 cases, whereas rule
9—which is less strict than rule 6—captured 59 of those 73
cases that were supposed to belong to rule 6. Similarly, rule 3
captured 15 cases of the remaining 18 cases that should have
been identified by rule 1. Therefore, the overall accuracy was
0.84.

The AERD algorithm achieved an AUC score of 0.92 (95% CI
0.93-1.00) and 0.86 (95% CI 0.78-0.94) for the training and test
sets (Figure 1 and Figure 2), respectively. The optimal cutoff
point was 0.6 on the training set (Figure 1). Additional
performances are presented in Table 3.

Table 1. Descriptive statistics of aspirin-exacerbated respiratory disease (AERD) features, describing its presence as 1 and absence as 0 (N=200).

Test, n (%)Train, n (%)AERD Feature

60 (30)103 (52)AERD

82 (41)192 (96)Asthma

121 (61)98 (49)NSAIDa allergy

192 (96)175 (88)Nasal polyps

180 (90)182 (91)Chronic sinusitis

179 (90)93 (47)LABb

101 (51)70 (35)Documented no-NSAID allergy

aNSAID: nonsteroidal anti-inflammatory drug.
bLAB refers to the elevated urine leukotriene E4 level.
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Table 2. Derived sequential rules for aspirin-exacerbated respiratory disease (AERD) algorithm and the resulting performance in the test set.

Confidence (%)aError, nCorrect, nCase, nAERDSequential rulesRule

4001230NoAERD≤3.5, NSAID allergyb≤2.5, Chronic Sinusitisc≤6.5, and then document-
ed non-NSAID allergy≤0.5

1

0009NoAERD≤3.5, NSAID allergy≤2.5, Chronic Sinusitis≤6.5, and then documented
non-NSAID allergy>0.5

2

9304043NoAERD≤3.5, NSAID allergy≤2.5, Chronic Sinusitis>6.5, and then documented
non-NSAID allergy≤0.5

3

75034NoAERD≤3.5, NSAID allergy≤2.5, Chronic Sinusitis>6.5, and then documented
non-NSAID allergy>0.5

4

00010YesAERD≤3.5, NSAID allergy>2.5, and then Chronic Sinusitis≤9.05

10174YesAERD≤3.5, NSAID allergy>2.5, and then Chronic Sinusitis>9.06

0000YesAERD>3.5, NSAID allergy≤1.5, and then LABd≤0.57

0002NoAERD>3.5, NSAID allergy≤1.5, and then LAB>0.58

0002YesAERD>3.5, NSAID allergy>1.59

00016YesOthers10

00010No

80207999YesThe cases were not identified according to the original intended sequential
rule; instead, a different sequence rule was used.

N/Ae

73123345No

aConfidence = the numbers of correct cases divided by numbers of real cases in the test set multiplied by 100 for the particular rule from 1 to 9.
bNSAID allergy refers to diagnosis of allergy to a nonsteroidal anti-inflammatory drug (NSAID).
cChronic sinusitis refers to diagnosis of chronic sinusitis.
dLAB refers to a prior abnormally elevated urine leukotriene E4 level.
eN/A: not applicable.

Figure 1. Area under the receiver operating characteristic curve (AUC) scores at different threshold values on the training set.
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Figure 2. Receiver operating characteristic (ROC) on the test set.

Table 3. Performance of the rule-based aspirin-exacerbated respiratory disease (AERD) algorithm.

Accuracy (%; 95% CI)Negative predictive value
(%; 95% CI)

Positive predictive value
(%; 95% CI)

Specificity (%; 95% CI)Sensitivity (%; 95% CI)Data set

92.50 (87.93-95.74)88.99 (81.56-94.18)96.70 (90.67-99.31)97.00 (91.48-99.38)88.00 (79.98-93.64)Train

84.00 (78.17-88.79)81.48 (72.86-88.31)86.96 (78.32-93.07)88.00 (79.98-93.64080.00 (70.82-87.33)Test

Discussion

Principal Findings
In our study, we demonstrated that an algorithm, which
combines NLP and ML techniques, can identify patients with
AERD with a positive predictive value of approximately 86.96
and a negative predictive value of 81.48. Our results are
comparable to prior work [3] on automated diagnosis of AERD
from EHR data using structured query language statements for
data analysis and resulting in positive predictive values ranging
from 78.4 to 88.7, depending on the cohort being analyzed.

Prior diagnosis of AERD presents the highest impacted feature
(ie, a majority of sequential rules contain prior diagnosis of
AERD feature) to detect diagnosis of AERD. In the training
and test sets, 85% (85/100) and 91% (91/100) of patients with
AERD had a prior diagnosis of AERD, respectively. We also
extracted new clinical factors associated with AERD (“elevated
urine leukotriene E4 level” and “alcohol intolerance”) that were
not previously studied. Furthermore, the “elevated urine
leukotriene E4 level” feature may need to be considered as a
new meaningful feature associated with AERD because the
presence of the term “AERD” with an “elevated leukotriene E4
level” was a common feature of rule sets 7 and 8. Most patients
with AERD in the test set were accurately identified by having
had an AERD diagnosis and a documented NSAID allergy
(Table 2). Lastly, diagnosis of nasal polyps was not used to
construct the optimal decision tree, which may indicate that it
may be an insignificant feature to distinguish patients with
AERD from possible AERD candidates.

The test set included 32 errors from 200 patients, which upon
review, were due to either unidentified rule sets for patients
with AERD (n=11) or missing and incorrect feature extraction
because of unseen keywords or patterns for features (n=9)
primarily. For example, the sentence “Patient took an aspirin
approximately ten years ago for headache and developed a
sensation of pressure in his nose and sinuses” is an unseen
pattern for prior AERD features. Based on the expression, “a
sensation of pressure in his nose and sinuses,” the sentence
should be a prior AERD feature; however, AERD algorithm
categorized it as absence of an AERD feature because this
pattern was not available in the training phrase. A total of 6
patients had necessary feature information beyond the past 5
years of clinical documents from the last visit day; 6 patients
had necessary information belonging to an unknown note section
in the training set for feature extraction. When examining the
specific rules, rule sets 2-3 resulted in very few errors (Table
2). In contrast, the absence of terms explicitly documenting the
absence of NSAID allergy and lack of references to an elevated
leukotriene E4 level resulted in more errors in the AERD
algorithm.

Diagnosing and confirming AERD may be a prolonged process,
as the associated clinical features may present at different times
in a variety of time sequences. As a result, there is no solid ICD
code (structured data) to represent AERD, and AERD-associated
clinical characteristics are often undocumented in clinical texts
(unstructured data) in the EHR. This lack of information
regarding AERD results in the low quality of data sources and
potential bias for ML models [14]. Additional efforts (eg,
standardizing routine exams for AERD) are necessary to fill
these missing information gaps in practice.
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This AERD algorithm has limitations in deploying to detect
patients with confirmed AERD in a practical setting without
further refinement. We focused on identifying feature selections
in the limited parameter tuning using a balanced data set (N=200
for patients with AERD and N=200 for patients without AERD),
which was not a real-world situation. We used the minimum
sample size due to the nature of AERD, which has a low
prevalence. The rule-based algorithm is used because the limited
sample and feature set provide high interpretability and accuracy
at downstream tasks rather than neural network MLs, which
require a large training data set. However, this algorithm
provides a valuable contribution to capturing potential patients
with AERD in the setting of a large health system EHR because
the prevalence of patients with AERD is low in clinical settings.
To follow up, we plan to rank features with diverse identified

feature sets and parameter tuning for the decision tree model
within a large cohort. We will investigate our new feature in
the EHR, which is information about urine leukotriene E4 levels
in the extensive feature selections, and we will explore
additional features for AERD (eg, alcohol sensitivity, anosmia,
and prior sinus surgeries).

Conclusions
We developed an AERD algorithm, which combines NLP and
ML techniques, to enhance AERD diagnosis in practice. On top
of prior work [3], we used NLP with a potential feature—urine
leukotriene E4 levels from EHR—which have been shown to
aid in AERD diagnosis [15]. Leveraging NLP and ML
techniques in practice has the potential to reduce diagnostic
delays for AERD and improve the health of patients.
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Abstract

Background: Extractive question-answering (EQA) is a useful natural language processing (NLP) application for answering
patient-specific questions by locating answers in their clinical notes. Realistic clinical EQA can yield multiple answers to a single
question and multiple focus points in 1 question, which are lacking in existing data sets for the development of artificial intelligence
solutions.

Objective: This study aimed to create a data set for developing and evaluating clinical EQA systems that can handle natural
multianswer and multifocus questions.

Methods: We leveraged the annotated relations from the 2018 National NLP Clinical Challenges corpus to generate an EQA
data set. Specifically, the 1-to-N, M-to-1, and M-to-N drug-reason relations were included to form the multianswer and multifocus
question-answering entries, which represent more complex and natural challenges in addition to the basic 1-drug-1-reason cases.
A baseline solution was developed and tested on the data set.

Results: The derived RxWhyQA data set contains 96,939 QA entries. Among the answerable questions, 25% of them require
multiple answers, and 2% of them ask about multiple drugs within 1 question. Frequent cues were observed around the answers
in the text, and 90% of the drug and reason terms occurred within the same or an adjacent sentence. The baseline EQA solution
achieved a best F1-score of 0.72 on the entire data set, and on specific subsets, it was 0.93 for the unanswerable questions, 0.48
for single-drug questions versus 0.60 for multidrug questions, and 0.54 for the single-answer questions versus 0.43 for multianswer
questions.

Conclusions: The RxWhyQA data set can be used to train and evaluate systems that need to handle multianswer and multifocus
questions. Specifically, multianswer EQA appears to be challenging and therefore warrants more investment in research. We
created and shared a clinical EQA data set with multianswer and multifocus questions that would channel future research efforts
toward more realistic scenarios.

(JMIR AI 2023;2:e41818)   doi:10.2196/41818
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Introduction

Background
The thought process involved in clinical reasoning and
decision-making can be naturally framed into a series of
questions and answers [1,2]. Achieving human-like
question-answering (QA) capability is highly regarded in
artificial intelligence (AI). Medical QA research has garnered
terrific momentum over the past decade, and a new generation
of AI scientists is undergoing a state-of-the-art update at a
daunting pace almost every month (if not every week). One of
the very sought-after applications is to find the answer within
a given document, or extractive QA (EQA), which enables
patient-specific QA based on the information provided in the
clinical text [3]. As an essential component in most AI
engineering undertakings, EQA training data determine not only
the likelihood of success in terms of annotation quality but also
the fidelity of representing the target scenario.

Along with other issues observed in existing medical EQA
corpora [4], the mainstream annotation approach knowingly
simplifies the task into a “one answer per document” scheme.
Although the simplification makes development and evaluation
easier for promoting initial growth of the field, it is unrealistic
because EQA can naturally have multiple qualified answers (or
answer components) within 1 document, and often all of them
must be captured to sufficiently answer a question [5].
Moreover, a question can naturally involve multiple focus points
such as “Why A, B, and C…” rather than requiring the user to
ask 1 question for each point. To address this gap, we created
an EQA data set that involves realistic, multianswer and
multifocus cases by converting the concept-relation annotations
from an existing clinical natural language processing (NLP)
challenge data set. Our generated RxWhyQA data set includes
a total of 96,939 QA entries, where 25% of the answerable
questions require the identification of multiple answers and 2%
of them ask about multiple drugs within 1 question. We also
developed a baseline solution for multianswer QA and tested
it on the RxWhyQA.

The novelty of this study is reframing the original relation
identification task into an EQA task, which simplifies the
conventional 2-step approach of named entity recognition and
relation classification into 1-step information extraction guided
by natural language questions. Our primary contribution is the
RxWhyQA as a resource that offers realistic constructs to
facilitate NLP research in this underexplored area. To our
knowledge, there has not been any EQA data set that contains
multianswer and multifocus questions based on clinical notes.

Related Work
QA is a versatile task that can subsume diverse NLP tasks when
properly represented [6]. More than a decade of research has
focused on the EQA task in NLP [7]. As the name implies, EQA
can be viewed as question-guided information extraction from
a given text. Unlike conventional approaches that require the
identification of the involved entities as one task followed by
determination of the target relation between the entities as the
other task, EQA consolidates these steps into a smooth one-shot
task where the user asks a natural language question for the

system to understand the focus point, identify relevant cues in
the text, and locate the answer that satisfies the relation of
interest. Although EQA demands higher machine intelligence,
it is efficient in terms of the data schema for modeling and the
human-computer interaction for users.

The Stanford Question Answering Dataset (SQuAD) [8]
established a widely adopted framework for EQA, and in the
later version (version 2.0) [9], the task also requires a system
to refrain from answering when no suitable answer is present
in the text. In the clinical domain, corpora have been developed
for EQA based on electronic health records (EHRs). In the study
by Raghavan et al [10], medical students were presented with
structured and unstructured EHR information about each patient
to generate realistic questions for a hypothetical office
encounter. Using the BioASQ data set based on biomedical
literature, Yoon et al [5] proposed a sequence tagging approach
to handling multianswer EQA. In the consumer health domain,
Zhu et al [11] developed a Multiple Answer Spans Healthcare
Question Answering (ie, MASH-QA) data set specifically
involving multiple answers of nonconsecutive spans in the target
text. As a non-English example, Ju et al [12] developed a
Conditional Multiple-span Chinese Question Answering data
set from a web-based QA forum. Pampari et al [13] developed
the emrQA, a large clinical EQA corpus generated through
template-based semantic extraction from the Informatics for
Integrating Biology & the Bedside NLP challenge data sets.
We took a similar approach as the emrQA but additionally
included multianswer and multifocus questions that better reflect
natural clinical EQA scenarios.

Methods

Generating the QA Annotations From a Relation
Identification Challenge
Our source data were based on the annotations originally created
for the National NLP Clinical Challenges (n2c2) corpus of 2018,
which aimed to identify adverse drug events by extracting
various drug-related concepts and classifying their relations in
the clinical text [14]. Their final gold standard included 83,869
concepts and 59,810 relations in 505 discharge summaries. In
this study, we focused on generating QA pairs from the subset
of drug and reason concepts (ie, mainly about the prescribing
justification) and the relations between the concepts. Each
relation consisted of 2 arguments: a drug concept and a reason
concept, as in an example pair such as drug-reason
(morphine-pain). Accordingly, a question around the drug
concept could be derived, such as “Why was morphine
prescribed to the patient?” and the reason concept “pain” would
be designated as the answer. In the n2c2 corpus, each pair of
drug and reason concepts had their text mentions annotated in
the corresponding clinical document. The properties make for
a good EQA data set where the system is expected to consider
the actual contexts surrounding the drug and reason rather than
performing a simple lookup. This is especially important for
extracting off-label uses because a standard indication
knowledge base would not cover those exceptions documented
in real-world clinical text.
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From the n2c2 annotations on each clinical document, we
leveraged several relation types between the drug and reason
concepts: 1 drug 0 reason, 1 drug 1 reason, 1 drug N reasons,
N drugs 1 reason, or M drugs N reasons. The most
straightforward were the 1-drug-1-reason relations (eg, the
morphine-pain relation mentioned above), each translated into
a 1-to-1 QA entry. The 1-drug-0-reason relations apparently
corresponded to the 1-to-0 (unanswerable) QA entries. We
preserved the 1-drug-N-reasons relations directly as 1-to-N QAs
that require locating multiple answers in the text. For the
N-drugs-1-reason and M-drugs-N-reasons relations, we
preserved the original multidrug challenge in questions such
as, “Why were amlodipine, metoprolol, and isosorbide
prescribed to the patient?” The M-drugs-N-reasons relations
would also derive multianswer entries such as those derived
from the 1-drug-N-reasons relations. In addition to the generated
QA entries, we also supplemented paraphrastic questions [15]
that may enhance the generalizability of the trained systems.

Quantitative and Qualitative Analysis of the Derived
QA Annotations
Along with descriptive statistics of the QA entries and the
number of answers per question, we computed the frequencies
of the specific drug and reason concept terms (after applying
lexical normalization such as lowercase) among the QA entries.
The frequencies were meant to offer an intuitive estimate of the
abundance of train/test data available for each specific concept
or concept pair. We then randomly sampled 100 QA entries for
manual review: 50 from those with a single answer and 50 from
those with multiple answers. The common patterns informative
to QA inference were summarized, offering evidence on what
the potential AI solutions could leverage. In addition, we
measured the distance (by the number of sentences) between
the question and answer concepts. For each specific drug-reason
pair, we considered the shortest distance if there were multiple
occurrences of either concept. The distance was deemed 0 if
the pair occurred within the same sentence. Distance may serve
as a surrogate for measuring the challenge to AI systems, where
a longer distance implies a more challenging task. In addition,
we sampled 100 random drug-reason pairs from each test run
(experimental setup described below) to estimate the prevalence
of off-label uses in the derived data set. The
MEDication-Indication (MEDI) knowledge base (version 2)
high-precision subset [16] was first used to screen for on-label
uses by exact string match (with normalizing to lowercase), and
the remaining drug-reason pairs were reviewed by a domain
expert (HJ) to determine off-label uses.

Development of a Baseline Solution

Data Preparation and Model Training
The annotations conform to the SQuAD 2.0 JSON format and
can be readily used to train Bidirectional Encoder
Representations from Transformers (BERT) [17] for EQA tasks.
We randomly partitioned the data set into the train, develop
(dev), and test sets by the 5:2:3 ratio, corresponding to 153, 50,
and 100 clinical documents, respectively. Random partitioning
was carried out 3 times, each executed as a separate run of the
experiment for quantifying performance variability. The base
language model was ClinicalBERT [18], a domain-customized
BERT trained on approximately 2 million clinical documents
from the MIMIC-III (version 1.4) database. We fine-tuned
ClinicalBERT first on a why-question subset of SQuAD 2.0,
followed by fine-tuning on the train set. Training parameters
used in the ClinicalBERT fine-tuning were batch_train_size=32,
max_seq_length=128, doc_stride=64, learning_rate=3e-5, and
epochs=5. The dev set was then used to learn the threshold for
determining when the ClinicalBERT model should refrain from
providing any answer.

Incremental Masking to Generate Multiple Answers
To force the fine-tuned ClinicalBERT model to continue seeking
other suitable answers in each clinical document, we
implemented the following process on the test set as a heuristic
baseline:

1. Let the EQA model complete its usual single-answer
extraction and record the string of the top answer. No further
action is needed if the model refrains from answering.

2. Perform a case-insensitive string search using the top
answer (from step 1 above) throughout the clinical note
from where it was extracted and replace every occurrence
into a dummy underscore “______” string of identical
length. This literally generates a new version of the text by
masking the original top answer in each question.

3. Run the same EQA model for another round on the entire
masked test set again to determine whether the model could
identify additional answers elsewhere or started to refrain
from answering.

The 3 abovementioned steps were repeated until the model did
not generate any new answers on the entire test set. Together,
model training and the heuristic multianswer generation process
are summarized in Figure 1.
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Figure 1. A flowchart of our heuristic approach to constructing a single-answer extractive question-answering model generates multiple answers by
incremental masking. The main steps go from left to right. The upper-right “Answer-masking” box illustrates an example of masking where the model’s
answer “leg edema” is replaced with a dummy underscore to force the model to look for viable alternative answers elsewhere in the text. BERT:
Bidirectional Encoder Representations from Transformers; dev: develop; n2c2: National NLP Clinical Challenges; NLP: natural language processing;
SQuAD: Stanford Question Answering Dataset.

Evaluation of the Baseline Solution
After the first round of masking, we began to have more than
1 answer generated by the model for some of the questions.
Accordingly, the evaluation program (specifically for the overlap
mode) was adapted to accommodate such M-to-N answer
comparisons in determining the token-wise proportional match.
When anchoring on each gold-standard answer, we selected the
model answer with the most overlapping tokens as the best
answer in setting the weighted true positive (TP) and false
negative (FN); the weighted false positive (FP) was set vice
versa by anchoring on each model answer—see equations 1-4
for definitions. On top of these weighted matches between
gold-standard and model answers in each question, we tallied
them over each entire test set to compute the solution’s
precision, recall, and F1-score, followed by qualitative error
analysis.

Results

Descriptive Statistics of the Derived RxWhyQA Data
Set
We leveraged a total of 10,489 relations from the n2c2 adverse
drug events NLP challenge and derived the data set, consisting
of 96,939 QA entries. Table 1 summarizes the 5 major
drug-reason relation categories in the n2c2 corpus, the strategies
that we implemented to convert them into QA entries, and their
resulting frequencies. Table 2 shows the distribution for the
number of answers per question: 75% of the questions have a
single answer, while 25% of them require multiple answers.
Duplicate answer terms located at different positions of the
clinical documents were retained. For example, the procedure
“CT” might be mentioned at several places in the text and be
recorded as the answer to “Why was the patient prescribed
contrast?” We included each such identical term and their
different offsets as multiple answers so that the EQA solutions
may leverage such nuances. The final data set was formatted
into a SQuAD-compatible JSON file and shared through the
n2c2 community annotations repository [19]. Figure 2 illustrates
a multianswer entry in the RxWhyQA data set.
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Table 1. Categories, examples, and conversion strategies for making the drug-reason relations into the extractive question-answering annotations.

Entries, nConversion strategyExampleCategory in the n2c2a corpus

46,278Make an unanswerable QAc entryMirtazapine 15 mg PO QHSb (only the drug is
mentioned but no reason is documented)

1 Drug, no Reason

28,224dMake a 1-to-1 QA entryThe patient received morphine for pain as needed1 Drug, 1 Reason

N/AeBreak into N separate 1-to-1 relations
and make each a 1-to-1 QA entry

Hypertension: severely elevated blood pressure.
Started amlodipine, metoprolol, and isosorbide.

N Drugs, 1 Reason

22,437gList the N reasons under the answer
block to form a 1-to-N QA entry

Albuterol sulfate 90 mcg… Puff Inhalation Q4Hf

for sob or wheeze.

1 Drug, N Reasons

N/AList the N reasons under answer block
to form an M-to-N QA entry

Left frontoparietal stroke - maintained on ASAh

and plavix …. Hx of CVAi: restarted ASA/Plavix

per the GIj team's recommendation.

M Drug, N Reasons

an2c2: National NLP (natural language processing) Clinical Challenges.
bPO QHS: one pill to be taken orally at bedtime.
cQA: question-answering.
d28,224 entries in total for the 1-drug-1-reason and N-drugs-1-reason categories together in the corpus.
eN/A: not applicable.
fQ4H: every 4 hours.
g22,437 entries in total for the 1-drug-N-reasons and M-drug-N-reasons categories in together in the corpus.
hASA: acetylsalicylic acid (aspirin).
iHx of CVA: history of cerebrovascular accident.
jGI: gastrointestinal.

Table 2. Unique answers among answerable questions.

Unique answers, n (%)Frequency

28,224 (75)1

6804 (18)2

1530 (4)3

954 (3)≥4

Figure 2. A multianswer entry in the generated RxWhyQA data set. The “id” field is the unique ID for the question-answering entry in the data set.
The “_mname” field indicates the medication name; that is, the anchor concept in the question. The “answer_start” is the character offset where the
answer term occurs in the clinical document, which is hosted in the “context” field (not shown here). When “is_impossible” is false, the question-answering
entry is answerable.
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Content Analysis of the RxWhyQA Data Set
The 5 most frequently asked drug terms (with noting the number
of QA entries) in the answerable questions (frequencies) were
the following: coumadin (1278), vancomycin (1170), lasix (963),
acetaminophen (801), and antibiotics (783). Without any
overlap, the 5 most frequent drug terms in the unanswerable
questions were the following: docusate sodium (648), metoprolol
tartrate (504), aspirin (468), pantoprazole (450), and penicillins
(414). Among the answerable QA entries, the 5 most frequently
seen pairs were the following: acetaminophen-pain (504),
senna-constipation (369), oxycodone-pain (261), coumadin-afib
(252), and acetaminophen-fever (234). As a potential surrogate
measure of task difficulty, Table 3 shows the distribution for

the number of sentences between the question anchor and answer
term in each answerable QA entry. The majority (n=32,409,
72%) of the drug and reason terms occur within the same
sentence, and the portion increases to 90% (72%+18%) when
adding those with the drug and reason occurring in an adjacent
sentence (ie, distance=1). In the extreme case, the drug and
reason terms are 16 sentences apart from each other. Table 4
summarizes the commonly observed contexts from manually
reviewing 100 random samples of the answerable QA entries.
There were 7, 10, and 3 off-label uses, respectively, in each of
the random 100 drug-reason pairs reviewed by the domain
expert, making the estimate of off-label uses average at 6.7%
in the RxWhyQA data set. The detailed off-label review results
are available in Multimedia Appendix 1.

Table 3. Distribution for the distance between question and answer terms (0=the question and answer terms occur in the same sentence).

QAa entries, nDistance (be sentence) between the question and answer items

32,4090

81541

26462

11883

4054

1535

816

727

278

09

010

011

912

913

014

015

916

aQA: question-answering.

Table 4. Common patterns (observed >10 times) between the question and the answer terms in 100 random question-answering entries. Each reason
or drug represents where a question or answer anchor term occurs in the pattern. The shorthands are used as follows: ellipsis stands for 0 to multiple
words, parentheses denote scoping, square brackets with pipes indicate a boolean OR set, and a question mark denotes a binary quantifier for presence
or absence.

FrequencyPattern

25Reason … (being)? [received|started|restarted|required|maintained|continued?] (on)? Drug

18Drug … [prn|PRN|(as needed for)?] Reason

14Drug … (was)? [attempted|given|dosing|taking] for (any)? [possible|likely|presumed]? Reason

13Reason … (was)? [managed|treated|improved|recommended|downtrended|resolved|reversed|needed] with Drug

F1-Score of the Baseline EQA Solution
The performance in determining the F1-score across 3
experimental runs is summarized in Figure 3, where the
subfigures represent different slices. Specifically, the underlying

set relations are the following: the full set (Figure 3A) minus
the unanswerable questions (Figure 3B) yields the answerable
questions, which can be represented by either single-answer
questions (Figure 3C) plus multianswer questions (Figure 3D)
if sliced per the number of answers or by questions asking about
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a single drug (Figure 3E) plus questions asking about multiple
drugs (Figure 3F) if sliced per the number of drugs asked in the
question. Each bar represents the average F1-score across the
runs and with the range marked for each incremental masking
step. As seen in Figure 3A, the overall F1-score increased
immediately after applying the first round of answer masking
(from “original” to “mask 1”, P<.05), which then stayed constant
throughout the remaining mask iterations. The increase in the
F1-score in Figure 3A corresponds to the exact pattern in Figure
3D, suggesting that the performance gain was mainly from the
multianswer questions; that is, the target originally intended by
the masking. Multianswer questions appear to be more

challenging than single-answer questions on comparing Figures
3C and 3D. According to Figures 3E and 3F, asking about
multiple drugs at once made it easier for the model to find the
right answer, albeit with wide performance variation. The BERT
model was good at refraining from answering unanswerable
questions, as indicated by the high F1-scores in Figure 3B. The
detailed results of the 3 experimental runs are available in
Multimedia Appendix 2. There were 189 QA entries associated
with the off-label uses identified by manually reviewing 300
random drug-reason pairs from the 3 test runs, all of which
happened to be single-answer cases. We computed for this small
set a single aggregate F1-score, which was 0.49 and appeared
consistently lower than the range shown in Figure 3C.

Figure 3. F1-scores of the fine-tuned Bidirectional Encoder Representations from Transformers extractive question-answering model across the
incremental masking rounds. Each bar represents the average F1-score based on 3 experimental runs, with the minimum and maximum range marked
(light blue). (A) The full set, (B) unanswerable questions, (C) questions with exactly 1 answer, (D) questions with multiple answers, (E) questions asking
about a single drug, and (F) questions asking about multiple drugs.

Discussion

Significance and Contributions
Although why-QA only covers a subdomain of clinical QA, it
represents a unique category that deals with the cause,
motivation, circumstance, and justification. It was estimated
that 20% of the top 10 question types asked by family physicians
[20] could be rephrased into a why-question. Clinical why-QA
is important because (1) the ultimate task resembles expert-level
explanatory synthesis of knowledge and evidence and (2) it
aligns with identifying reasons for the decisions documented
in clinical text. Therefore, the contents and challenges offered
by the RxWhyQA data set itself have independent, practical
value for developing clinical QA applications. Although
drug-reason QA appears to be a niche topic, a working solution
developed on the data set can broadly benefit research around
adherence to clinical guidelines, care quality assessment, and
health disparity from prescribing variations.

The generated RxWhyQA data set can serve as the training and
testing of AI systems that target excerpting pertinent information
in a clinical document to answer patient-specific questions. In

addition to the unanswerable questions that require a system to
refrain from extracting FP answers, the RxWhyQA data set
features 9288 questions that require the system to identify
multiple answers, which is a realistic challenge in clinical QA.
The data set also contains 611 questions that ask about the
reason for prescribing multiple drugs at once. The multianswer
and multifocus questions represent a key improvement beyond
existing clinical EQA data sets, of which the rigid constructs
would preclude AI solutions from learning to deal with more
realistic use scenarios. Additionally, our experiments on these
special constructs validated the challenging nature of
multianswer questions and revealed that multifocus questions
may turn out to be easier due to the availability of richer
information for use by the model. Our drug-reason–focused
data set may offer a coherent theme that enables better controlled
experiments to compare how the different QA constructs (eg,
single- vs multianswer questions) affect AI system performance.

Properties Found About the RxWhyQA Data Set
The frequent drugs and drug-reason pairs likely imply the
clinical practice in the original n2c2 cohort. The finding that
the top 5 drugs in the unanswerable questions (ie, no answer
provided in the gold-standard annotation) were different from
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those in the answerable questions suggests that the prescription
of certain drugs might be self-evident without needing a
documented reason. Our question-answer–mentioning distance
analysis showed that 90% of the drug-reason pairs were within
the same or an adjacent sentence in the RxWhyQA data set,
indicating modest demand for long-distance inference by AI
solutions. We were able to identify frequent contextual patterns
such as “PRN” (ie, pro re nata) or “as needed for” (Table 4) that
AI models may learn to facilitate locating the answers. It is
estimated that the data set contains 6.7% of off-label drug uses
as the target answers, which would be useful for training systems
to identify such cases and facilitate research on understanding
the medical practice variation or innovation.

Behavior of the Baseline EQA Solution
The notable increase in the F1-score (Figure 3D) after applying
1 round of masking suggests that the masking effectively forced
the BERT model to look elsewhere, which resulted in an
increase in the F1-score by retrieving the majority of the
additional answers (see Table 2). Interestingly, we noticed in
many cases that the model clung on to the masked span (ie,
capturing the “________” as an answer) where some of such
strong contextual patterns were present. This phenomenon
supports that transformer-based EQA models do leverage
contextual information than merely memorizing the surface
question-answer pairs. Moreover, our post hoc inspection noted
that correct (synonymous) answers were found by the model
that were not in the gold-standard annotation (eg, “allergic
reaction” versus “anaphylaxis” to a question about “epipen”),
suggesting that the performance could be underestimated. As
a caveat, we were aware that our baseline solution was
essentially a convenient hack that made a model trained for
single-answer EQA to find multiple answers through a stepwise

probing procedure. As more advanced approaches constantly
emerge [21,22], we welcome the research community to evaluate
them by using the RxWhyQA data set. For example, the lower
F1-score on those off-label uses indicates that they might
represent challenging cases and demand more robust AI
solutions.

Limitations
We admit several limitations in this study: (1) the source n2c2
corpus represented a specific cohort that may not generalize to
every clinical data set, (2) we did not exhaustively diversify the
paraphrastic questions but left it for future exploration on other
promising approaches [23], (3) we did not intend to extensively
compare state-of-the-art solutions for multianswer QA but rather
intended to offer a convenience baseline along with releasing
the RxWhyQA corpus, (4) the drug-reason relations represent
a narrow topic for EQA development and evaluation. However,
we believe that the definite theme would preferably make it a
less confounded test set for assessing the effect of multianswer
and multifocus questions on AI systems.

Conclusions
We derived and shared the RxWhyQA, an EQA data set for
training and testing systems to answer patient-specific questions
based on clinical documents. The RxWhyQA data set includes
9288 multianswer questions and 611 multifocus questions, each
representing a critical scenario not well covered by existing data
sets. Upon evaluating a baseline solution, the multianswer
questions appeared to be more challenging than single-answer
questions. Although the RxWhyQA focuses on why-questions
derived from drug-reason relations, it offers a rich data set
involving realistic constructs and exemplifies an innovation in
recasting NLP annotations of different tasks for EQA research.
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Abstract

Background: Depression and momentary depressive feelings are major public health concerns imposing a substantial burden
on both individuals and society. Early detection of momentary depressive feelings is highly beneficial in reducing this burden
and improving the quality of life for affected individuals. To this end, the abundance of data exemplified by X (formerly Twitter)
presents an invaluable resource for discerning insights into individuals’ mental states and enabling timely detection of these
transitory depressive feelings.

Objective: The objective of this study was to automate the detection of momentary depressive feelings in posts using contextual
language approaches.

Methods: First, we identified terms expressing momentary depressive feelings and depression, scaled their relevance to
depression, and constructed a lexicon. Then, we scraped posts using this lexicon and labeled them manually. Finally, we assessed
the performance of the Bidirectional Encoder Representations From Transformers (BERT), A Lite BERT (ALBERT), Robustly
Optimized BERT Approach (RoBERTa), Distilled BERT (DistilBERT), convolutional neural network (CNN), bidirectional long
short-term memory (BiLSTM), and machine learning (ML) algorithms in detecting momentary depressive feelings in posts.

Results: This study demonstrates a notable distinction in performance between binary classification, aimed at identifying posts
conveying depressive sentiments and multilabel classification, designed to categorize such posts across multiple emotional
nuances. Specifically, binary classification emerges as the more adept approach in this context, outperforming multilabel
classification. This outcome stems from several critical factors that underscore the nuanced nature of depressive expressions
within social media. Our results show that when using binary classification, BERT and DistilBERT (pretrained transfer learning
algorithms) may outperform traditional ML algorithms. Particularly, DistilBERT achieved the best performance in terms of area
under the curve (96.71%), accuracy (97.4%), sensitivity (97.57%), specificity (97.22%), precision (97.30%), and F1-score
(97.44%). DistilBERT obtained an area under the curve nearly 12% points higher than that of the best-performing traditional ML
algorithm, convolutional neural network. This study showed that transfer learning algorithms are highly effective in extracting
knowledge from posts, detecting momentary depressive feelings, and highlighting their superiority in contextual analysis.

Conclusions: Our findings suggest that contextual language approaches—particularly those rooted in transfer learning—are
reliable approaches to automate the early detection of momentary depressive feelings and can be used to develop social media
monitoring tools for identifying individuals who may be at risk of depression. The implications are far-reaching because these
approaches stand poised to inform the creation of social media monitoring tools and are pivotal for identifying individuals
susceptible to depression. By intervening proactively, these tools possess the potential to slow the progression of depressive
feelings, effectively mitigating the societal load of depression and fostering improved mental health. In addition to highlighting
the capabilities of automated sentiment analysis, this study illuminates its pivotal role in advancing global public health.

(JMIR AI 2023;2:e49531)   doi:10.2196/49531
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Introduction

Mental health is an essential aspect of people’s overall
well-being and daily functioning. According to the World Health
Organization [1], approximately 25% of the global population
experiences a mental health condition at some point in their life,
making mental disorders a significant public health concern.
Mental health conditions can have substantial socioeconomic
impacts on individuals and society, including reduced quality
of life and workforce productivity and increased health care
costs. Accordingly, it is vitally important to prioritize and
address mental health conditions by adopting effective strategies
to curb their prevalence [2].

Subthreshold depression, or momentary depressive feelings,
refers to depression symptoms that are not severe enough to be
considered as a major depressive disorder [3]. Despite not
meeting the criteria for a depression diagnosis, momentary
depressive feelings can still significantly impact an individual’s
daily life and well-being. Frequent or prolonged experiences of
momentary depressive feelings can be a sign of the development
of depression [4-6] and can lead to decreased energy, loss of
interest in activities, and persistent low mood [7-9]. Mitchell et
al [10] found that people with subthreshold depression reported
higher levels of disability and decreased quality of life compared
to those not reporting any symptoms.

Early detection of momentary depressive feelings is important
for an individual’s mental health and well-being because it
allows identifying individuals who may be at a higher risk of
developing depression [11,12] and lets them address these
feelings before they escalate into a more severe form of
depression [6,13]. Detecting momentary depressive feelings
can also provide important information for researchers and
mental health professionals, leading to a better understanding
of the nature of depression, and can be used to provide
preventative interventions and support to help individuals
maintain their mental health. However, it is worth noting that
depression is a complex condition with multiple causes, and the
detection of momentary depressive feelings should be considered
in conjunction with a comprehensive evaluation of an
individual’s overall mental health [14].

Momentary depressive feelings can be detected through different
standard methods including self-report measures, behavioral
observations, and physiological measures [15]. Self-report
measures ask individuals to reflect on their current mood and
symptoms, whereas behavioral observations involve observing
and recording an individual’s behavior and facial expressions.
Physiological measures, such as measuring cortisol levels, heart
rate variability, and skin conductance, can also provide insight
into an individual’s emotional state [16].

Momentary depressive feelings are often accompanied by
distinctive linguistic patterns, allowing us to understand an
individual’s emotional state and cognitive processes. One
prevalent symptom is the expression of negative sentiment and
emotion [17]. People with momentary depressive feelings or

who are in depression frequently use language dominated by a
pessimistic lexicon, conveying feelings of hopelessness, sadness,
and despair. This linguistic tendency reflects their internal
emotional turmoil and offers an insight into the depth of their
distress. Another linguistic hallmark is the increase in
self-referential language. The excessive use of first-person
pronouns such as “I” or “me” suggests a potential focus on one’s
own experiences and an emphasis on the self [18,19]. The study
of these linguistic symptoms within contextual contents offers
promising avenues for the detection of momentary depressive
feelings using advanced methods. Contextual approaches have
demonstrated outstanding ability in discerning linguistic markers
of depression. These methods consider not only individual words
but also the surrounding context, enabling a more accurate
interpretation of the intended meaning.

One prominent opportunity in this domain involves sentiment
analysis. Sentiment analysis attempts to gauge the emotional
tone of the text. Contextual approaches for sentiment analysis
such as Valence Aware Dictionary for Sentiment Reasoning
(VADER) rely on predefined sentiment scores assigned to
words. These models can swiftly identify texts with
predominantly negative sentiments [20]. However, their generic
lexicons might not capture the nuanced depressive expressions.
Machine learning (ML) techniques such as support vector
machines and decision trees have also been applied to classify
depressive textual content. These models learn to differentiate
between depressive and nondepressive contents by extracting
features from the text, including n-grams and linguistic patterns
[21]. Yet, these methods can struggle with complex contextual
cues inherent in sentiment discourse. Subsequently, more
sophisticated models have emerged using contextual methods
such as Word2Vec and FastText to discover semantic
relationships within text. These models offer the advantage of
representing words in context, which is vital for detecting subtler
depressive symptoms [22]. Similarly, deep learning architectures
such as convolutional neural network (CNN) and long short-term
memory network have been used to capture sequential
dependencies in text, enhancing the understanding of the
temporal progression of depressive feelings [23,24].

In recent years, the advent of pretrained language models such
as Bidirectional Encoder Representations From Transformers
(BERT) [25] has revolutionized the application of natural
language processing (NLP) [26], including depressive feeling
detection. NLP offers promising alternative methods for the
detection of momentary depressive feelings using social media,
such as Facebook, Instagram, and X (formerly Twitter), where
individuals can broadcast their thoughts and feelings in real
time [27]. NLP can be used to identify patterns in language and
sentiment to recognize specific language and behavioral markers
that may be indicative of depression. Sentiment analysis can be
used to determine the underlying emotional tone and identify
individuals at risk of depression using large-scale data sets.
Numerous studies have applied sentiment analysis and text
classification in the area of mental health [28-30] to detect
effectively depressive feelings and depression [31-36].
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X has emerged as a popular social media platform for mental
health research due to its vast and diverse text-based data. Its
real-time nature makes it particularly well-suited for studying
a variety of mental disorders such as dementia [37], depression
[38], Alzheimer disease [39], and schizophrenia [40]. The
analysis of X data allows the detection of momentary mood
changes and depressive feelings, offering a unique opportunity
for identifying individuals who may be at risk of developing
depression. X data also provide a chance to investigate the
expression of mental disorders and develop novel ML-based
methods for detecting other mental disorders.

The primary objective of this study is to develop contextual
language approaches and assess their effectiveness in detecting
momentary depressive feelings in posts. With the aid of
large-scale data and advanced NLP techniques, this study aims
to analyze linguistic features and patterns in posts to detect
momentary depressive feelings. This study has the potential to
provide valuable insights into the relationship between language

and mental health. Additionally, it may contribute to the
development of tools for the early detection and prevention of
depression.

Methods

Study Design
The overview and workflow of this study are presented in Figure
1. First, we identified and collected words expressing depression.
We then scraped and manually labeled posts. Next, the posts in
our data set were preprocessed and cleaned. Finally,
state-of-the-art NLP algorithms were used for the detection of
momentary depressive feelings in posts. This study was
performed using Python (version 3.9; Python Software
Foundation) and R (R Foundation for Statistical Computing)
programming languages with different packages. The data
collection, preparation, and ML algorithms used in this study
are discussed in the following sections.

Figure 1. The workflow of data collection and architecture of the proposed detection approaches. ALBERT: A Lite BERT; BERT: Bidirectional
Encoder Representations From Transformers; BiLSTM: Bidirectional Long Short-term Memory; CLS: classification tasks; CNN: Convolutional Neural
Network; DistilBERT: Distilled BERT; FC: fully connected; RoBERTa: Robustly Optimized BERT Approach.

Data Collection and Preparation

Overview
Contextual language approaches have been found to be effective
in processing large text data sets, making them appropriate for
text-based tasks such as sentiment analysis and for determining
whether individual posts may express momentary depressive
feelings. Accordingly, in order to collect appropriate data, we
first need to construct a suitable lexicon and then use it to scrape
for appropriate posts. The data are then manually labeled in
preparation for training the ML algorithms.

Lexicon Construction
In the process of lexicon construction, we carefully examined
and reviewed major studies that delve into the correlation

between social media and depression, aiming to compile
essential terms for our depression lexicon [41,42]. We
specifically focused on key terms relevant to depressive feelings
and collected a variety of these terms as previously highlighted
in relevant research. Following the elimination of any redundant
terms, we arrived at a total of 41 distinct key terms within our
lexicon. Recognizing that the quality of the lexicon is pivotal
for accurate contextual language analysis, 2 researchers (AAJ
and CB) assessed the relevance of each term in our lexicon to
depressive feelings using a 5-point scale, where a rating of 5
indicates significant relevance. In this study, we elected to only
incorporate key terms with a score of 3 or higher. By applying
this criterion, the lexicon was refined to contain 32 terms, as
illustrated in Textbox 1.
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Textbox 1. The lexicon for momentary depressive feeling detection.

Included depressive feeling lexicons (n=32)

• Beat down, nervousness, stressed, disheartened, dysfunction, moody, low interaction, no focus, unhappy, insomnia, low self-esteem, feel down,
have no emotional support, sleep problems, bipolar, devastated, anhedonia, depression, depressive, lack of interest, lonely, miserable, sad,
worthless, feel isolated, live anymore, stop the pain, depressed, loss of meaning in life, self-harm, suicidal, and suicide

Excluded depressive feeling lexicons (n=9)

• Instability, imbalance, broken, disillusioned, emotional, uneasiness, disturbed, anxiety, and fatigue

Post Scraping
The Twint package was used to collect posts using a constructed
lexicon and key terms. Twint is a Python package that allows
scraping posts, followings, followers, likes, etc, from X without
using X’s application programming interface. It provides several
customization options for searching specific posts based on
keywords, location, language, date, and more. Unlike the X
application programming interface, Twint does not have any
rate limits or access restrictions, making it possible to scrape
large amounts of data. posts posted between January 1, 2022,
and December 30, 2022, were extracted.

Post Labeling
Two researchers (AAJ and CB) labeled posts as expressing or
not expressing momentary depressive feelings. To determine
intercoder reliability, the researchers read and scored the same
100 posts on a 5-point scale, with 5 indicating significant
relevance to momentary depressive feelings, and achieved
intercoder reliability of 86% based on the percent agreement
method [43]. Each researcher was then given 2000 posts to
label. For binary classification, out of 4000 labeled posts, 1840
posts that received a score of 3 or higher were used as positive
samples. To construct a balanced data set, 1840 negative samples
(posts not expressing momentary depressive feelings) were
randomly selected, and a final data set was constructed
consisting of 3680 samples with an equal number of positive
and negative samples. For multilabel classification, all labeled
posts in 5 categories on a scale of 1 to 5 were included.

Preprocessing
Given that posts frequently contain misspelled words, irrelevant
characters, emoticons, and unconventional syntax—considered
noise in NLP—we implemented various preprocessing steps
on our data set before training the algorithms. Key preprocessing
steps included:

1. Filtration: Removing punctuations, emoticons, duplicates,
replies, URLs, and HTML links

2. Tokenization: Breaking a phrase or sentence into individual
words called tokens

3. Lowercasing: Converting all uppercase letters to lowercase
and ensuring consistent word vectors across multiple
instances of the same word

4. Lemmatization: Removing inflectional parts in a word or
converting the word into its base form

5. Stemming: Removing prefixes or suffixes from words to
obtain their root form

6. Removing stop words: Articles, prepositions, and pronouns
(eg, the, in, a, an, and with) known as the “stop words” are

uninformative, and removing them helps the model to focus
on the important words

ML Algorithms

Transfer Learning Algorithms

BERT Algorithm

BERT [25] is a state-of-the-art deep learning algorithm used
extensively for NLP tasks using a transformer architecture to
learn contextual representations of words in a sentence. BERT
scrutinizes the words and their relationships in the post to
capture nuanced meanings and emotions to analyze the textual
content of the posts (eg, posts expressing momentary depressive
feelings).

BERT Family Algorithms

In this study, we also used several subtypes of the BERT
algorithm, that is, A Lite BERT (ALBERT) [44], Robustly
Optimized BERT Approach (RoBERTa) [45], and Distilled
BERT (DistilBERT) [46], to investigate their performance in
detecting momentary depressive feelings.

Traditional ML Algorithms

CNN Algorithm

The CNN [47] is a deep learning algorithm that has been widely
used in various computer vision and, more recently, in text
analysis tasks. In post classification, CNNs can be used to detect
posts with particular content (eg, momentary depressive
feelings) by learning a representation of the post’s text that is
fed into an algorithm to make a detection [48,49].

Bidirectional Long Short-Term Memory

Bidirectional long short-term memory (BiLSTM) is a type of
recurrent neural network that is particularly well suited for
processing sequential data such as text [50]. Unlike traditional
neural networks that process input sequences in only one
direction, BiLSTMs process the input sequence in both forward
and backward directions, enabling the network to capture
contextual information from both past and future time steps.
This capability results in improved performance on text mining
tasks. In the context of post analysis, a BiLSTM can be trained
on a large data set of posts to learn the contextual relationships
between the words in a post and detect whether a post expresses
momentary depressive feelings. The BiLSTM considers the
order of words in a post and the relationships between them,
enabling it to capture more complex patterns and relationships
in the data compared to traditional feedforward neural network.
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Evaluation
To investigate and evaluate the performance of competing
algorithms, a 10-fold cross-validation (CV) approach is carried
out. This involved randomly partitioning the input data into 2
sets: a CV set (2944/3680, 80% labeled posts) and a test set
(736/3680, 20% labeled posts). The CV set was further divided
into 10 subsets, allowing us to construct and train 10 distinct
models. These models were subsequently evaluated using unseen
data. The use of unseen data in CV is crucial for assessing the
generalization capability of the models. This evaluation with
unseen data helps mitigate the risk of overfitting and provides
a more reliable estimation of the algorithm's performance in
real-world scenarios [51]. The algorithm’s overall performance
was computed by averaging the results obtained from the 10
runs. To assess the performance of competing algorithms to

accurately identify posts expressing momentary depressive
feelings, 6 evaluation metrics were calculated: area under the
curve (AUC), accuracy, sensitivity, specificity, precision, and
F1-score [52].

Hyperparameter Sensitivity
To optimize algorithm performance, the tuning of
hyperparameters emerges as a necessity. Yet, it is important to
recognize that a universal approach for hyperparameter selection
is not known to exist. In light of this, this study took a
multifaceted approach by delving into distinct sets of
hyperparameter values for each algorithm. This approach
enabled us to carefully identify the configuration that attains
high performance. A summary of contextual approaches and
their respective hyperparameters used in this study can be found
in Table 1.

Table 1. Hyperparameters for different contextual approaches.

HyperparametersAlgorithm

BERTa, ALBERTb, RoBERTac, and DistilBERTd • Learning rate (Adam): (5×10–5, 4×10–5, 3×10–5, 2×10–5, and 1×10–5)
• Batch size: (8, 16, 32, and 64)
• Training epochs: (2, 3, 4, 5, 6, and 7)

CNNe • Learning rate: (1×10–4, 1×10–3, and 1×10–2)
• Kernel size: (2, 3, 4, 5, and 6)
• Batch size: (16, 32, 64, and 128)
• Training epochs: (2, 3, 4, 5, 6, and 7)

BiLSTMf • Batch size: (16, 32, 64, and 128)
• Training epochs: (2, 3, 4, 5, 6, and 7)

aBERT: Bidirectional Encoder Representations From Transformers.
bALBERT: A Lite BERT.
cRoBERTa: Robustly Optimized BERT Approach.
dDistilBERT: Distilled BERT.
eCNN: convolutional neural network.
fBiLSTM: bidirectional long short-term memory.

Ethical Considerations
In contrast to conventional research involving human
participants, ethical guidelines pertaining to social media
research propose that publicly accessible data (eg, posts publicly
posted on X) can be used for research purposes without
necessitating supplementary consent or ethics endorsement
[53,54]. In this study, we did not interact and intervene with the
users whose public posts were collected and analyzed
user-generated posts. It is worth noting, however, that any
potentially associated identifying personal information (eg, user

IDs and URLs) has been carefully eliminated to uphold
anonymity and safeguard the privacy of X users.

Results

Hyperparameter Sensitivity Analysis
In this study, various contextual language approaches were used,
each with a range of hyperparameters tuned to achieve optimal
performance. Multiple iterations of each algorithm were carried
out using different hyperparameter configurations. The
hyperparameter combinations that yielded the highest
performance for each model are summarized in Table 2.

JMIR AI 2023 | vol. 2 | e49531 | p.206https://ai.jmir.org/2023/1/e49531
(page number not for citation purposes)

Jamali et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Optimal hyperparameter configurations.

HyperparametersAlgorithm

Kernel sizeTraining epochsBatch sizeLearning rate (Adam)

N/Ab3163×10–5BERTa

N/A4162×10–5ALBERTc

N/A3321×10–5RoBERTad

N/A3162×10–5DistilBERTe

44641×10–3CNNf

N/A332N/ABiLSTMg

aBERT: Bidirectional Encoder Representations From Transformers.
bN/A: not applicable.
cALBERT: A Lite BERT.
dRoBERTa: Robustly Optimized BERT Approach.
eDistilBERT: Distilled BERT.
fCNN: convolutional neural network.
gBiLSTM: bidirectional long short-term memory.

Performance Assessment
In this study, we undertook both binary and multilabel
classifications. Nevertheless, it is noteworthy that the outcomes
of the multilabel classification (see Multimedia Appendix 1 for
details) were not as encouraging as those achieved in the binary
classification task. Our analysis revealed an interesting finding
in the context of multilabel classification, namely, that posts
expressing depressive feelings, regardless of their intensity or
scale, pose a challenge for classification models. The complexity
of these posts makes it challenging to achieve precise
categorization since they encompass a range of emotional states
that may not align neatly with predefined categories. This insight
highlights the complexity of classifying nuanced sentiment,
particularly in the context of depressive expressions.

The performance of different algorithms in detecting momentary
depressive feelings with binary classification is presented in
Table 3. Our results indicated that BERT and DistilBERT
outperformed in momentary depressive feelings detection and
achieved the highest values in almost all performance metrics
with AUC values of 95.80% and 96.71%, respectively.
Additionally, both algorithms demonstrated high accuracy
(96.03% and 97.40%), sensitivity (96.22% and 97.57),
specificity (95.83% and 97.22%), precision (95.96% and
97.30%), and F1-score (96.09% and 97.44%). The performance
of traditional ML algorithms was relatively poor with the highest
scores achieved by CNN (AUC: 84.81% and accuracy: 84.79%)
and BiLSTM (AUC: 79.91% and accuracy: 79.86%). These
findings indicated that the transfer learning algorithms
performed significantly superior by a substantial margin. For
instance, DistilBERT achieved an AUC value nearly 12% points

higher than the highest AUC achieved by CNN (84.81%). These
findings confirm the feasibility of this algorithm in detecting
momentary depressive feelings highlighting the effectiveness
of transfer learning algorithms in NLP tasks.

It is important to note that the transfer learning algorithms,
especially DistilBERT and BERT, achieved high values in other
performance metrics such as sensitivity, specificity, precision,
and F1-score, in addition to overall accuracy. High sensitivity
and specificity demonstrate that these algorithms were able to
accurately identify posts with momentary depressive feelings
while avoiding false positive and false negative predictions.
The significant performance variation observed between BERT
and its more lightweight counterpart, ALBERT, was an
important finding of this study. ALBERT incorporates
parameter-reduction techniques, which may impact its ability
to capture intricate nuances within the data as effectively as
BERT. Furthermore, we have closely examined potential
disparities in pretraining strategies and fine-tuning procedures,
seeking to identify any factors that might contribute to the
observed divergence in performance. By elaborating on these
architectural and procedural distinctions, we aim to provide a
comprehensive understanding of the reasons underlying BERT’s
superior performance over ALBERT. This analysis not only
informs this study but also contributes to the broader discourse
on the comparative strengths and limitations of these prominent
language models.

Overall, these results support the use of transfer learning
algorithms for momentary depressive feelings detection in posts.
Figure 2 depicts the class-wise results of competing algorithms
using confusion matrices.

JMIR AI 2023 | vol. 2 | e49531 | p.207https://ai.jmir.org/2023/1/e49531
(page number not for citation purposes)

Jamali et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. The performance of different algorithms using post binary classification.

Performance metricsAlgorithm

F1-score (%)Precision (%)Specificity (%)Sensitivity (%)Accuracy (%)AUCa (%)

96.0995.9695.8396.2296.0395.80BERTb

87.0186.2185.5687.8486.7181.36ALBERTc

85.6879.2675.0793.2284.2584.15RoBERTad

97.4497.3097.2297.5797.4096.71 fDistilBERTe

83.8090.8291.9777.7884.7984.81CNNg

79.0983.2384.4975.3479.8679.91BiLSTMh

aAUC: area under the curve.
bBERT: Bidirectional Encoder Representations From Transformers.
cALBERT: A Lite BERT.
dRoBERTa: Robustly Optimized BERT Approach.
eDistilBERT: Distilled BERT.
fThe best values for the performance metrics are in italics.
gCNN: convolutional neural network.
hBiLSTM: bidirectional long short-term memory.

Figure 2. Confusion matrices produced by the competing algorithms for the test set. ALBERT: A Lite BERT; BERT: Bidirectional Encoder
Representations From Transformers; BiLSTM: bidirectional long short-term memory; CNN: convolutional neural network; DistilBERT: Distilled
BERT; RoBERTa: Robustly Optimized BERT Approach.

Discussion

Principal Findings
This study aimed to detect momentary depressive feelings in X
data using contextual language approaches. Our results indicated
that (pretrained) transfer learning algorithms such as DistilBERT
can effectively detect momentary depressive feelings with an

accuracy of 97.4%. In this study, we used a comprehensive
process of lexicon construction, data collection, and NLP-based
ML algorithms to obtain accurate results. Our findings have
practical implications in the mental health field by offering a
potential framework for monitoring and detecting individuals’
mental health states in real time, which could facilitate timely
interventions and support. For instance, this research can
contribute to the development of automated systems that analyze
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social media posts, enabling mental health professionals to
identify individuals expressing depressive feelings and
subsequently provide support and resources.

The success of this study can be largely attributed to the
effective use of a precise lexicon that contained a list of key
terms relevant to depressive feelings based on prior research.
These key terms were then manually evaluated to ensure their
accuracy and relevance. The high intercoder reliability achieved
by the researchers is a testament to the quality of the post
labeling. This approach fostered the quality of the lexicon,
leading to the accurate detection of momentary depressive
feelings. Furthermore, the manual labeling of posts also
contributed to the accuracy of the study because automatic
labeling typically introduces noise into data and degrades
algorithm performance [55].

In this study, we used a range of algorithms, including BERT,
ALBERT, RoBERTa, DistilBERT, CNN, and BiLSTM.
Notably, DistilBERT outperformed the other algorithms in
detecting momentary depressive feelings. The use of multiple
algorithms allowed for a comprehensive evaluation of the
effectiveness of various algorithms in detecting momentary
depressive feelings. These findings, consistent with previous
studies, highlight the superiority of transfer learning algorithms
in NLP tasks, particularly in the detection of momentary
depressive feelings in social media data. This study used
state-of-the-art algorithms that leverage large amounts of data
and generalize to new tasks. Transfer learning algorithms are
especially adept at processing large data sets and can identify
patterns and features that are difficult to capture with traditional
ML algorithms.

Within the domain of binary and multilabel classification, our
analysis uncovers a compelling revelation. Specifically, our
findings highlight the intricate nature of posts conveying
depressive emotions, irrespective of their varying degrees or
gradations. These posts present a formidable obstacle for
classification models due to their nuanced character,
encompassing a broad range of emotional states that defy simple
categorization. This insight serves as a poignant reminder of
the challenges inherent in accurately classifying such nuanced
sentiments, especially when addressing the realm of depressive
expressions.

The significant findings of this study have the potential to make
a meaningful impact on mental health, particularly in momentary
depressive feelings detection. Early detection of momentary
depressive feelings can pave the way for timely interventions
and ultimately improve mental health outcomes. The approach
presented in this study could be integrated into social media
monitoring tools to identify individuals who are at risk of
developing depression or who may benefit from mental health
interventions. This approach could lead to more efficient and
effective mental health interventions, resulting in better
outcomes for individuals with mental health conditions and
reducing the burden imposed by mental health disorders. The
findings of this study provide a beneficial stepping stone for
the development of new and innovative approaches to mental
health monitoring and intervention.

Although the findings of the study are promising, there are
limitations. First, the study only focused on momentary
depressive feelings, and the results may not be generalizable to
other mental health conditions such as anxiety, stress, or other
mood disorders. Second, the study relied solely on X data, which
may not represent the broader population. Future research could
investigate the use of other social media platforms or clinical
data to assess the effectiveness of contextual language
approaches for detecting mental health conditions in a more
diverse population. Additionally, these approaches may be
limited in their ability to capture the nuances and complexity
of mental health conditions. Although this method is effective,
it may not always detect posts that express subtle or indirect
signs of mental health conditions. Future studies could explore
the use of ML techniques to learn from the data to detect
momentary depressive feelings rather than relying on predefined
lexicons. This approach could lead to more accurate results and
more effective detection of mental health conditions. Finally,
the study only used English posts, which further limits the
generalizability of the findings.

Conclusions
This study aimed to detect momentary depressive feelings using
X data and contextual language approaches. In this study, we
applied a methodology consisting of data collection, manual
labeling, and post analysis with contextual language approaches.
A lexicon containing 32 keywords relevant to depressive
feelings was established, and then, using this lexicon, Twint
was used to extract posts from January 2022 to December 2022.
Six baseline algorithms were used for the detection of
momentary depressive feelings, and the results were evaluated
using AUC, accuracy, sensitivity, specificity, precision, and
F1-score.

Our results showed that DistilBERT, a transfer learning
algorithm, had the highest performance in terms of the
evaluation metrics described. The study found that transfer
learning algorithms are promising tools in NLP tasks, for
example, extracting knowledge and detecting patterns in posts,
particularly in the detection of momentary depressive feelings.

Our findings demonstrated X data can be used for the detection
of momentary depressive feelings. This is achieved through the
development of an automated framework for continuously
monitoring and detecting individuals’ real-time mental states.
These findings have significant implications for timely mental
health interventions. Early detection of momentary depressive
feelings can prevent the escalation of these feelings to more
severe depressive symptoms and reduce the burden imposed on
people and society. This methodology can be easily applied to
large X data sets, making it a useful tool for monitoring
depressive symptoms on a large scale. Moreover, this
methodology can be improved to be applied to other social
media platforms and various mental health conditions. Overall,
this study contributes to the growing body of research on using
social media data for mental health research. Our approach
provides a useful tool for researchers interested in studying
momentary depressive feelings using social media data.
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Abstract

Background: Artificial intelligence (AI) and machine learning (ML) technology design and development continues to be rapid,
despite major limitations in its current form as a practice and discipline to address all sociohumanitarian issues and complexities.
From these limitations emerges an imperative to strengthen AI and ML literacy in underserved communities and build a more
diverse AI and ML design and development workforce engaged in health research.

Objective: AI and ML has the potential to account for and assess a variety of factors that contribute to health and disease and
to improve prevention, diagnosis, and therapy. Here, we describe recent activities within the Artificial Intelligence/Machine
Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Ethics and Equity Workgroup (EEWG)
that led to the development of deliverables that will help put ethics and fairness at the forefront of AI and ML applications to
build equity in biomedical research, education, and health care.

Methods: The AIM-AHEAD EEWG was created in 2021 with 3 cochairs and 51 members in year 1 and 2 cochairs and ~40
members in year 2. Members in both years included AIM-AHEAD principal investigators, coinvestigators, leadership fellows,
and research fellows. The EEWG used a modified Delphi approach using polling, ranking, and other exercises to facilitate
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discussions around tangible steps, key terms, and definitions needed to ensure that ethics and fairness are at the forefront of AI
and ML applications to build equity in biomedical research, education, and health care.

Results: The EEWG developed a set of ethics and equity principles, a glossary, and an interview guide. The ethics and equity
principles comprise 5 core principles, each with subparts, which articulate best practices for working with stakeholders from
historically and presently underrepresented communities. The glossary contains 12 terms and definitions, with particular emphasis
on optimal development, refinement, and implementation of AI and ML in health equity research. To accompany the glossary,
the EEWG developed a concept relationship diagram that describes the logical flow of and relationship between the definitional
concepts. Lastly, the interview guide provides questions that can be used or adapted to garner stakeholder and community
perspectives on the principles and glossary.

Conclusions: Ongoing engagement is needed around our principles and glossary to identify and predict potential limitations in
their uses in AI and ML research settings, especially for institutions with limited resources. This requires time, careful consideration,
and honest discussions around what classifies an engagement incentive as meaningful to support and sustain their full engagement.
By slowing down to meet historically and presently underresourced institutions and communities where they are and where they
are capable of engaging and competing, there is higher potential to achieve needed diversity, ethics, and equity in AI and ML
implementation in health research.

(JMIR AI 2023;2:e52888)   doi:10.2196/52888

KEYWORDS

artificial intelligence; AI; Delphi; disparities; disparity; engagement; equitable; equities; equity; ethic; ethical; ethics; fair; fairness;
health disparities; health equity; humanitarian; machine learning; ML

Introduction

Recent events and academic literature have underscored a role
for the field of artificial intelligence (AI) and machine learning
(ML) technology to take all stakeholders’ impressions and
concerns into account to inform approaches for achieving health
equity [1-5]. It has also become imperative to strengthen AI
and ML literacy in underserved communities and build a more
diverse workforce in AI and ML design and development.
However, whether as a practice or as an academic discipline,
AI and ML are not yet engineered to address all
sociohumanitarian issues and complexities. This is especially
true for socially and economically marginalized communities
whose members are frequently unheard or have limited
engagement in research, discovery, and innovation pipelines
for cultivating shared prosperity.

The general population still has limited knowledge about AI
and ML, with 1 study reporting that only about one-quarter of
people have heard of AI or ML, and only about half are at least
somewhat aware of AI and ML [6]. Furthermore, individuals
and communities who are subject to potentially detrimental
outcomes (persons with mental health care needs and disabilities,
persons with marginalized racial or ethnic identities, etc) may
be more aware of the potential harms of AI and ML, particularly
when it comes to the risk of harm from bias [7,8]. Thus, people
who are presently or historically underserved or marginalized
may be particularly concerned that they will be harmed by AI
or ML technologies, especially in cases where AI or ML is used
or applied without their awareness.

The overall lack of understanding about AI and ML and the
awareness of bias among historically and presently marginalized

populations could result in limited trust in the technology and
its use. To build trust among those most subject to bias or at
risk of detrimental outcomes, it is critical for AI and ML
developers to assess their own reliability and adapt their
practices to build trustworthiness with the most vulnerable
stakeholders. In this context, it is also important to recognize
that trust varies across and within populations, and people may
have more or less trust in health care technologies based on
factors such as previous experience of racial bias [9].

If implemented responsibly, AI and ML has the power to
account for and assess a variety of factors that contribute to
health and disease to improve prevention, diagnosis, and therapy.
The ability to predict the risk of adverse health outcomes and
identify high-risk patients for targeted preventive interventions
offers tremendous potential to improve the health of individuals
and medically underserved populations [10,11].

A great deal of AI and ML today is developed without
meaningful engagement of individuals and communities, even
when those individuals and communities have (knowingly or
unknowingly) generated data used by AI and ML models. When
there are proactive efforts to engage communities in AI and ML
design, development, or application, various factors may
negatively affect how people respond (Textbox 1). For instance,
failure to educate about AI and ML and contextualize its impact
on an individual and their community may bias individuals’
consent to contribute data to build such technologies and,
subsequently, lead to biased outcomes in terms of who benefits
from the technology’s development and application.
Consequently, poor engagement can exacerbate inequities in
the creation, development, and application of AI and ML.
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Textbox 1. Factors that may engender inequitable access to artificial intelligence (AI) and machine learning (ML) or demotivate participation in AI
and ML.

Factors that demotivate participation in AI and ML

• Cultural norms or expectations that discourage the use of AI and ML technology

• Fear and reservations that the AI and ML tool may be used to cause harm

• The history of major AI and ML–developing institutions is not inclusive of all communities, thus defying communities’ trust

• The lack of access to high-performance infrastructure and resources needed to execute AI and ML models

• The lack of interest, excitement, or perception of “hype”

• Unaddressed confusion, misinformation, or disillusionment

Factors that exacerbate inequitable access to the benefit of AI and ML

• Asymmetric ability to extract value from AI and ML

• Insufficient access to the internet, data, and data services (ie, digital divide)

• Insufficient funding or economic opportunities

• There is an intractable disagreement and power imbalance between stakeholders about how AI and ML should be used or applied

• Lack of institutional leadership or commitment

• Limited experience, knowledge, and education

• Sociocultural factors affecting digital access and inclusion

The underengagement of communities in research, development,
and use of AI and ML often reflects limited knowledge and
crucial misunderstandings about AI and ML, including how it
is used in health care settings to advance health-related
innovations and solutions. Thus, stronger, more targeted, and
more intentional engagement is required to help these groups
identify and address real or potential harms associated with the
problematic implementation of AI and ML in high-consequence
settings. To address this challenge, the US National Institutes
of Health’s Artificial Intelligence/Machine Learning Consortium
to Advance Health Equity and Researcher Diversity
(AIM-AHEAD) was established in 2021 with a mission to
address factors that undermine achieving health equity through
the design, use, and application of AI and ML, including the
lack of the following:

• An adequately diverse workforce
• Adequate data and data infrastructure
• Adequate community engagement
• Adequate oversight, governance, and accountability
• Consensus that ethics can strengthen innovation

The tension between individual desires and population needs
challenges ethics and equity in AI and ML settings. Thus, the
Ethics and Equity Workgroup (EEWG) was formed within the
AIM-AHEAD Consortium to ensure that ethics and fairness are
at the forefront of AI and ML applications to build equity in
biomedical research, education, and health care. Activities
within the workgroup have included deliberations and

discussions to develop and reach consensus on actionable
guiding principles, a glossary of key terms, and other
engagement tools to encourage greater attention to ethics and
equity in AI and ML development. This study describes these
activities with the intent to serve and inform the AIM-AHEAD
community of stakeholders; external consortia, organizations,
and communities that have goals similar to the AIM-AHEAD;
and those interested in ethical and equitable AI and ML
development and applications more broadly.

Methods

Workgroup Establishment
The AIM-AHEAD EEWG was created in 2021 to guide the
ethical and equitable development and implementation of AI
and ML tools and processes broadly within the AIM-AHEAD.
Simultaneously, an Equitable Policy Development Workgroup
was developed within the AIM-AHEAD Infrastructure Core.
To ensure rapid and coordinated progress with respect to
embedding ethics and equity into AIM-AHEAD activities, both
within and outside of the Infrastructure Core, the EEWG’s
efforts were harmonized and merged with the Infrastructure
Core’s Equitable Policy Development Workgroup upon
recommendation by the EEWG cochair and multiple principal
investigators for the AIM-AHEAD Infrastructure Core. The
newly reconfigured EEWG began by defining its scope of
activities (Figure 1).
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Figure 1. Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Ethics and Equity
Workgroup’s scope of activities. AI: artificial intelligence.

Workgroup Membership
At the start of the program in year 1, the EEWG was comprised
of 51 members (AIM-AHEAD principal investigators and
coinvestigators) and 3 cochairs. AIM-AHEAD participants
either requested to join or were selected to join by their project
leaders within the program. During year 2, the EEWG’s
membership was consolidated into 2 cochairs and approximately
40 AIM-AHEAD principal investigators, coinvestigators,
leadership fellows, and research fellows. This reduction in
EEWG cochairs and members occurred for two main reasons:
(1) time and effort among members were reallocated to other
activities within the AIM-AHEAD (administrative planning for
regional hubs, research, etc), and (2) given the evolution of the
program over time, the year 1 members were provided an
opportunity to recommit to the EEWG for year 2. In both years,
EEWG cochairs and members represented a variety of academic
disciplines and focus areas, including but not limited to
medicine, computational science, population health, health
science, data science, bioethics, law, community engagement,
human-centered design, health disparities research, biological
science, social science, and engineering.

Development of a Set of Ethical Principles for AI and
ML
The initial effort of the EEWG during year 1 was to produce a
set of principles and a glossary to inform the practice of ethics
and equity in AI and ML development and implementation in
health research. During year 1, members convened in weekly
meetings that led to consensus on the development of specific
workgroup deliverables. EEWG members reviewed the literature
to identify relevant sources with perspectives on ethics, equity,
and social determinants of health, especially those that were
community driven, and lessons that could inform the
development and use of AI and ML in health disparity and
disease prevention research [12-27].

To develop the principles, the EEWG used a modified Delphi
approach to facilitate discussions around tangible steps that the
Consortium should take to ensure that ethics and fairness are
at the forefront of AI and ML applications to build equity in
biomedical research, education, and health care [28].
Specifically, the EEWG engaged in weekly (year 1) and
biweekly (year 2) meetings to suggest, review, and deliberate
a corpus of published content and literature considered useful
toward integrating ethics and equity into AI and ML
development and contributed original thought leadership and
content in reaction to the content and literature reviewed to
devise actionable principles. The EEWG approached the
development of the principles with optimism about the potential
of AI and ML to address health disparities by empowering
communities, yet with recognition of complex societal
challenges: inadequate or misrepresentation in data sets,
algorithmic bias, imbalances in communities’ access to data
and information about themselves, misuses of AI and ML tools,
and threats to the civil and human rights of individuals and
communities who are or may be subject to illegal or pervasive
AI and ML surveillance, to name just a few.

Development of a Glossary
To develop the glossary, during year 1, the EEWG began by
defining ways in which outputs of AI and ML can (1) fail to be
informative or useful for individuals and groups; (2) distinguish
among individuals in inappropriate ways as a result of bias,
failure of inclusion, or misuse; or (3) be poorly vetted by
individuals and groups who are or may be subject to potentially
harmful actions and decisions made by key or authoritative
stakeholders that rely on AI and ML for decision support as a
result of insufficient engagement with key stakeholders,
including data participants.

Using a modified Delphi approach that likewise involved
polling, ranking, and other exercises, consensus was reached
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on terms to define [29]. During its meetings, the EEWG
discussed all possible terms that would be key to define to
inform the ethical and equitable development and application
of AI and ML, followed by 2 rounds of ranking and polling
exercises to narrow their suggestions to 12 sentinel terms.
Sentinel terms discussed during meetings, for example, included
demographical terms such as self-defined or assigned race,
ethnicity, sex, ability, and gender that can lead to errors in the
development of AI and ML, which can in turn lead to potentially
irreversible, intergenerational, and multigenerational harm to
individuals and groups subjected to decisions informed by or
based on AI and ML outputs. During year 2, remote meetings
were held on a biweekly basis to further deliberate and refine
the principles and glossary. Refinements were based on expert
stakeholder feedback gathered through a survey among
participants in the AIM-AHEAD pilot project and during remote
convenings.

Development of an Interview Guide
The EEWG initially sought to conduct a quantitative survey to
assess how AIM-AHEAD researchers would implement the
principles in practice. A draft survey was developed by 2
volunteers within the workgroup, who later shared the draft
survey with the broader workgroup for iterative feedback and
edits during weekly (year 1) and biweekly (year 2) meetings.
The draft survey was also shared with awardees of
AIM-AHEAD pilot projects for feedback. As the EEWG
deliberated on the feedback, it ultimately determined that a
qualitative interview (vs a quantitative survey) would be a more
useful approach to garnering AIM-AHEAD researchers’
perspectives on implementing the principles in practice.
Thereafter, the EEWG met regularly to convert the quantitative
survey into an interview guide with the intent of learning the
interviewees perspectives and natural reactions to the
AIM-AHEAD ethics and equity principles and glossary.

Ethical Considerations
The EEWG’s efforts in developing the interview guide and
conducting the interviews were focused exclusively on
program-specific planning for the AIM-AHEAD and were not
intended as human subjects research. AIM-AHEAD
investigators’ responses to the interviews were wholly voluntary,
and their comments were used exclusively to develop the
program’s principles and were subject to further assessment for
generalizable knowledge.

Results

AIM-AHEAD Ethics and Equity Principles

Overview
Based on the EEWG’s internal Delphi process, informed by
insights from interviews with AIM-AHEAD investigators, the
workgroup articulated 5 core principles, each with subparts,
which articulate best practices for working with stakeholders
from historically and presently underrepresented communities.

1. Build trust with communities
2. Design and implement AI and ML with intention
3. Cocreate, do not dictate

4. Build capacity
5. Reset the rules

Build Trust With Communities
Researchers should build trust and share power to enable
data-driven decision-making among multiple partners—this
must be earned through longstanding, sustained relationships
in the community, which takes time, investment, and resources
to manifest.

• Through authentic community engagement, determine,
understand, and deliver value in a manner that is community
driven, community defined, and community led.

• Use asset-based language and thinking in collecting,
interpreting, and reporting community-level data (in lieu
of deficit-based language and thinking).

• Be transparent about the structure of AI models, data that
are contextually limited or incomplete, and limitations in
the capabilities of data analytics tools and platforms.

• Commit to ongoing engagement and bidirectional
communication between AI and ML developers and
communities around interventions to address limitations in
the capabilities of data analytics tools and platforms.

Design and Implement AI and ML With Intention
Researchers should take collective action and engage in
data-driven decision-making toward embedding equity, which
requires shared goal setting, design, implementation, and
accountability.

• Determine shared goals that serve as a commitment anchor
and barometer for cocreated actions.

• Design with intent to overcome root causes of bias to solve
or address (vs merely explore) an immediate, ongoing, or
systemic problem affecting communities experiencing
certain hardships that have contributed to health inequity.

• Develop and implement ongoing AI and ML design
mechanisms and procedures to monitor AI and ML
algorithms with the goal of preventing or mitigating harm.

Cocreate, Do Not Dictate
Researchers should move from superficial community
engagement to true community partnership through meaningful
cocreation.

• Develop AI and ML infrastructure, protocols, and programs
in partnership with key and affected community
stakeholders.

• Avoid tokenizing individuals and communities to achieve
asymmetric goals that are or can be perceived as to the
detriment of communities.

• Limit the use of computational methods that are or can be
perceived as a substitution for data that would be only
obtained through strong community engagement.

• Be transparent about the short-, medium-, and long-term
sponsorships, investors in, and potential beneficiaries of
AI and ML projects.

Build Capacity
Researchers should invest in people, data, and computational
technology—today, as community leaders dig into this work,
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and tomorrow, as society collectively builds a stronger, more
diverse tech talent pipeline.

• Educate stakeholders to enable AI and ML competency
across clinical practice, community, and research settings
(eg, build AI and ML model fact labels that can summarize
or explain algorithms).

• Develop a plan to promote eHealth literacy in marginalized
and underserved communities and groups.

• Build equitable access to AI and ML technology, its
development, applications, and uses across real-world health
contexts including social determinants of health and
research.

• Develop a plan for building capacity that includes hiring
and supporting a diverse workforce, dedicating funds for
sustaining an existing workforce, and creating metrics that
allow institutions to measure their success.

Reset the Rules
Researcher should reexamine the mechanisms that hold
institutions accountable and resist the urgency of quick fixes to
complex issues like systemic racism.

• Engage communities to determine their experiences with
and desires to overcome the digital divide and facilitate the
equitable inclusion and consideration of populations in AI
and ML models and algorithms.

• Create equitable and liberated access to AI and ML
development, implementation, and maintenance to oversee
and correct model drift and guide entities in their reactions
to AI and ML outputs.

• Identify and correct information asymmetries that may lead
to communities’ lacking pertinent, actionable, and critical
information that is exclusively held by powerful institutions.

AIM-AHEAD Ethics and Equity Glossary Terms
Developers of AI and ML platforms and tools must contemplate,
anticipate, mitigate, and address potential issues with
downstream data aggregation, interpretation, and use. Meeting
these goals requires a shared understanding of the terms used
in these policies and processes. The EEWG determined that, in
many cases, sensitive demographic characteristics (eg, race,
ethnicity, sex, ability, and gender) are particularly problematic
as variables used in AI and ML because they are often
inappropriately understood as being rooted solely or primarily
in genetic or phenotypic differences rather than strongly
influenced by discriminatory sociohistorical and sociocultural
practices.

To capture and promote a shared understanding of key terms,
the EEWG developed a glossary of 12 words (Table 1) out of
28 considered that follow or build upon existing understandings
of these concepts, highlighting their particular importance for
the optimal development, refinement, and implementation of
AI and ML.

In addition, the EEWG developed a concept relationship diagram
that describes the logical flow of and relationship between the
definitional concepts described in Table 1 and Figure 2. The
center of this diagram is equity, which requires AI developers
and implementers to enforce fairness and avoid bias in a
population with sufficient diversity by being inclusive. To
implement diversity, representatives that are characterized by
a minimal set of aspects—ethnicity, race, gender, and sexual
orientation—need to be collected. They will form a
representative sample if they can reflect the characteristics of
a population. A representative sample can mitigate algorithmic
bias, which is one specific type of bias.
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Table 1. Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) ethics and equity
glossary terms and definitions.

AIM-AHEAD definitionGlossary termNo

Distinct patterns of language, lifestyle, illness, and health beliefs encountered among an individual or rep-
resentative population, regardless of race, and that may subject the individual or population to bias or dis-
crimination.

Ethnicity1

A social construct or assumption based on patterns in an individual’s or representative population’s language,
lifestyle, and health beliefs and immutable characteristics, such as skin tone, color, or hair texture, regardless
of immigration status, socioeconomic status, genetic ancestry, or geographic origin, that may subject the
individual’s or population to bias, structural racism, or discrimination that would warrant corrective antiracism
actions.

Race2

Systematic error in information originating, gathering, or assessment activities, leading to selecting or en-
couraging one outcome or answer over others, which can result in human decisions and values that echo
societal or historical inequities and produce inconclusive or limited assumptions about the broader population.

Bias3

Equity is fairness and justice in policy, practice, and opportunity designed to address the distinct challenges
of nondominant social groups with an eye to progressive outcomes. Health equity is the state in which ev-
eryone has the opportunity to attain full health potential, and no individual is disadvantaged from achieving
this potential because of social position or any other socially defined circumstance.

Equity4

Systematic and repeated errors in the collection and consideration of a variety of factors, including but not
limited to the design of the algorithm; unintended or unanticipated use or decisions relating to the way data
are collected, represented, or used; lack of sensitivity to identity factors that contribute to bias in the evalu-
ation of the algorithm, or misappropriation of the algorithm through miscommunicating or misunderstanding
its limitations.

Algorithmic bias5

The wide variety of shared and different personal and group characteristics among human beings. There
are many kinds of diversity, including gender, sexual orientation, class, age, country of origin, education,
religion, geography, physical or cognitive abilities, or other characteristics. Valuing diversity means recog-
nizing differences between people, acknowledging that these differences are a valued asset, and striving
for diverse representation as a critical step toward equity.

Diversity6

Avoiding bias by providing equitable and open access to opportunities and resources for engagement. This
can be accomplished, for example, by enforcing fairness in the data collection methods, enforcing fairness
in the assignment of labels, developing explainable, transparent, and interpretable models, having diverse
teams monitor models, and looking for biases and eliminating them.

Inclusive7

Intent to promote nondiscrimination and population representation when assessing a group’s eligibility for
a benefit or penalty. This is particularly important given the statistical likelihood that artificial intelligence
and machine learning systems could produce discriminatory outputs once algorithms are implemented
across one or more data sets.

Fairness8

An individual or body chosen or appointed to act or speak for an individual, population, or subpopulation
sharing a set of features or characteristics, including but not limited to gender, race, or sexual orientation.

Representative9

A subset of a population that reflects the characteristics of the entire population from which it has been se-
lected.

Representative sample10

An individual’s sense of oneself as male, female, or something else. When an individual’s gender identity
and biological sex are not congruent, the individual may identify along the transgender spectrum. An indi-
vidual may choose to change their gender one or more times. Varying cultural indicators of gender, such
as clothing choice, speech patterns, and personality traits, relate to gender but are not acceptable means to
determine another’s gender identity. The change in an individual’s gender can be used to abuse, discriminate
against, and misrepresent individuals and groups.

Gender identity11

An individual’s capacity for attraction to and sexual activity with the same or different sex. An individual’s
sexual orientation is indicated by one or more of the following: how an individual identifies their own
sexual orientation, an individual’s capacity for experiencing sexual and affectional attraction to people of
the same or different gender, and an individual’s sexual behavior with people of the same or different gender.
Sexual orientation incorporates three core ideas: consensual human relationships—sexual, romantic, or
both—the biological sex of an individual’s actual or potential relationship partners, and enduring patterns
of experience and behavior. Sexual minorities, or people whose sexual orientation does not conform to
heteronormative cultural expectations, are vulnerable to violence and discrimination.

Sexual orientation12
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Figure 2. Definitional concepts of Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity
(AIM-AHEAD) ethics and equity glossary terms.

Interview Guide
As mentioned, extensive and iterative feedback received during
the development of the quantitative survey led the EEWG
cochairs and members to determine that a qualitative
engagement approach is warranted to facilitate meaningful and
diverse stakeholder engagement to disseminate and facilitate
implementation of the principles and glossary. Therefore, the
EEWG developed an interview guide that can be used or adapted
to garner and understand AIM-AHEAD members’ and other
community perspectives on the principles and glossary. The
interview guide is provided in Multimedia Appendix 1.

Discussion

Overview
The role of those who will be affected by the findings of the
research enterprise has evolved from their initial role as objects,
as illustrated in the iconic painting of Edward Jenner
administering the life-saving inoculation of the English boy
with cowpox in 1796, the multiepisode television documentary
“Microbes and Men,” and the abuses of Black men in the US
Public Health Service Study of the natural history of untreated
syphilis at Tuskegee [30-33]. Over time, more attention has
been devoted to assessing the potential harms and benefits of
research to the people who are studied, albeit primarily as
viewed by investigators, typically White men, and institutional
review boards, typically comprised of researchers with minimal
or latent community involvement. Incentivizing representation
of nonscientific, nonaffiliate community members on
institutional review boards, engaging members of historically
underrepresented groups in more visible roles as investigators,
and engaging minority-serving institutions as partners in AI and
ML research is necessary to promote equitable access to
opportunities and careers in AI and ML. Such an intentional

approach also, importantly, demonstrates an appreciation for
local knowledge and facilitates the design of more culturally
informed interventions that consider how research will affect
heterogeneous populations being studied in AI and ML research.
This form of appreciation is necessary for tailoring engagement
to the needs of diverse groups and understanding how to
overcome barriers to AI and ML research and use [34].

Beyond promoting diverse and equitable opportunities for
participation in AI and ML research, it is necessary to recognize
the need to translate that work into actual practice, which
historically has also been a barrier to health equity. For example,
the association of the lower-quality data measured by pulse
oximetry with dark skin tones has long been known, and there
have been versions of the technology designed to account for
this discrepancy, but versions of pulse oximeters with biased
tendencies remain in wide use [35]. There is a real risk that AI
and ML technology will follow a similar pathway if there is not
sufficient action to build ethics and equity into the research.

Overall, our effort reported here achieves 2 goals. The first is
to describe what is needed procedurally and substantively to
achieve equity. This is a complex process that must take place
and evolve over time. It cannot be addressed as a 1-time event
or by filling out a checklist. Achieving equity requires
rebalancing the interests at stake in research, which, at a
minimum, means truly considering and addressing the interests
of the people who will be affected by the results. Ideally,
research participants can become cocreators as ethics in AI and
ML and related ethical principles evolve into more commonly
accepted policies and practices. The second goal of this reported
effort is to emphasize that addressing equity requires an
inclusive, ongoing process with a shared understanding of salient
terms that will evolve over time. Recent engagements within
the AIM-AHEAD program have noted this to be true even for
terms like AI and ML, as today very few stakeholders have been
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able to clearly articulate how AI and ML can be or is used in
the real world [34]. New and ongoing national initiatives, such
as the National Academy of Medicine’s AI Code of Conduct
project, which intends to develop a “code of conduct for the
development and use of AI in health, medical care, and health
research,” are encouraged to learn from the EEWG’s efforts
[36].

Our work builds on and can be incorporated into current AI and
ML ethics and equity frameworks and policies within and
outside of the United States, focused on improving population
health through broad community involvement in AI and ML
application development [17,36-38]. This includes, but is not
limited to, the National Institutes of Health’s policies and
programs on AI and ML application development in health
research; policy developments undertaken by the US Senate
Health, Education, Labor, and Pensions Committee; the National
Academy of Medicine’s Artificial Intelligence Code of Conduct
project; the European Commission’s Guidelines for Trustworthy
AI; Asilomar AI Principles; and lastly and importantly, a
groundbreaking and recent US White House Executive Order
explicitly supporting the mission of the AIM-AHEAD
[36,39-42].

Importantly, our work provides a complementary, fundamental,
and basic blueprint or process, along with operational tools and
building blocks, to educate stakeholders on this practice of
creating safe spaces and setting culture tones for diverse
stakeholder engagement and consensus around best practices
and shared terminology. Also importantly, our tools enable the
collection of ongoing and iterative feedback concerning the
local implementation of our principles and glossary. Iterations
may be further disseminated, along with public-facing
endorsements of the principles and glossary in their current
form, by like-minded stakeholders seeking to ensure that
researcher diversity, community, and social justice concerns
influence AI and ML application development processes in
health research and, broadly, science and technology.

Inclusive and ongoing processes to develop a shared
understanding of salient terms like AI and ML and those
described in our glossary require more time, greater inclusion,
and deeper incorporation of diverse community perspectives.
This approach differs drastically from the typical project life
cycles afforded by the gold rush mentality that has emerged
with AI and ML today. Therefore, one key step, moving
forward, would be to persuade leaders in the AI and ML research
enterprise to broadly disseminate the lessons that may be learned
in operationalizing our EEWG principles and glossary. Programs
such as the AIM-AHEAD need to objectively assess their
administrative processes and evaluation criteria for what
constitutes ethical and equitable opportunities for an AI and
ML investigation, including investigator inclusion, data
governance, data sources, and data infrastructure.

There are limitations to consider in our process and
recommendations. First, the EEWG has continuously revisited
the principles and glossary for potential editing based on the
members’evolving experience and expert opinions, even though
making these deliverables “living documents” complicates the

process of achieving sustainable consensus. Nonetheless, the
principles and glossary will require reflection, appreciation, and
adjustments over time to account for the effects of real-world
events, human choices, or interpersonal phenomena from
relevant perspectives. Also, some of our proposed glossary
terms may already be limited in scope with respect to real-world
events and phenomena. For instance, although our definition
of “representative” concerns “an individual or body chosen or
appointed to act or speak for an individual, population, or
subpopulation,” there are certain matters in which a
representative may be self-appointed without specific
authorization from those they wish to represent.

Therefore, ongoing engagement around the use of our principles
and glossary in AI and ML research settings is encouraged to
maximize their potential benefits and minimize any potential
harm. However, ongoing engagement with institutions that have
limited resources to support their full participation requires
careful consideration and discussion of how to incentivize,
support, and sustain meaningful engagement beyond mere
compensation. One way to accomplish this is to seek
institutional input through authentic connections to determine
what they consider a valuable investment for their time, instead
of deciding for them. For example, such connections can be
made both within and outside of conferences, convenings, and
events hosted by minority-serving institutions nationwide (eg,
the Annual Biomedical Research Conference for Minoritized
Scientists or the National Society of Black Engineers’ Annual
Convention).

Conclusions and Next Steps
An overemphasis on speed or velocity works against taking the
time needed to foster the inclusion of historically and presently
underrepresented communities in the development of AI and
ML, ultimately rewarding AI and ML “haves” over “have-nots.”
In the private sector (eg, big technology companies and startups),
the pace of AI and ML development is extremely rapid and
difficult to manage. Inequitable divisions in access to resources
like computers, smartphones, and the internet have vastly
decreased over the past decade. Yet, AI and ML technology
that is used with adequate operational know-how and e-literacy,
cost of use, human resources and staffing needs to maintain
cyberinfrastructure, and many other technical and nontechnical
resources, is where these inequitable divisions can be addressed.

An equity-oriented public sector intervention, such as the
AIM-AHEAD, can be more effective in achieving diversity and
inclusion goals by emphasizing actions that do not sacrifice
trust-building for the sake of rapid development of technology,
especially in the initial stages. By slowing down to meet
historically and presently underresourced institutions and
communities where they are and where they are capable of
engaging and competing, we can more effectively evaluate AI
and ML implementation and results for bias over time and
expand the potential to achieve the aims of ethics and equity.
We envision a virtuous cycle of shared learning, building on
our EEWG deliverables, that may bridge researchers and
impacted communities into a new intersection of computational
sciences, ethics, and health equity.
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Abstract

Background: The identification of objective pain biomarkers can contribute to an improved understanding of pain, as well as
its prognosis and better management. Hence, it has the potential to improve the quality of life of patients with cancer. Artificial
intelligence can aid in the extraction of objective pain biomarkers for patients with cancer with bone metastases (BMs).

Objective: This study aimed to develop and evaluate a scalable natural language processing (NLP)– and radiomics-based
machine learning pipeline to differentiate between painless and painful BM lesions in simulation computed tomography (CT)
images using imaging features (biomarkers) extracted from lesion center point–based regions of interest (ROIs).

Methods: Patients treated at our comprehensive cancer center who received palliative radiotherapy for thoracic spine BM
between January 2016 and September 2019 were included in this retrospective study. Physician-reported pain scores were extracted
automatically from radiation oncology consultation notes using an NLP pipeline. BM center points were manually pinpointed
on CT images by radiation oncologists. Nested ROIs with various diameters were automatically delineated around these
expert-identified BM center points, and radiomics features were extracted from each ROI. Synthetic Minority Oversampling
Technique resampling, the Least Absolute Shrinkage And Selection Operator feature selection method, and various machine
learning classifiers were evaluated using precision, recall, F1-score, and area under the receiver operating characteristic curve.

Results: Radiation therapy consultation notes and simulation CT images of 176 patients (mean age 66, SD 14 years; 95 males)
with thoracic spine BM were included in this study. After BM center point identification, 107 radiomics features were extracted
from each spherical ROI using pyradiomics. Data were divided into 70% and 30% training and hold-out test sets, respectively.
In the test set, the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of our best performing
model (neural network classifier on an ensemble ROI) were 0.82 (132/163), 0.59 (16/27), 0.85 (116/136), and 0.83, respectively.

Conclusions: Our NLP- and radiomics-based machine learning pipeline was successful in differentiating between painful and
painless BM lesions. It is intrinsically scalable by using NLP to extract pain scores from clinical notes and by requiring only
center points to identify BM lesions in CT images.

(JMIR AI 2023;2:e44779)   doi:10.2196/44779
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Introduction

Overview
Most patients with cancer with bone metastasis (BM) experience
pain [1] and most receive radiotherapy to control it [2]. But, it
has been shown that due to the subjective and qualitative nature
of the pain, clinicians often underestimate pain [3]. As a result,
many patients with BM receive radiotherapy after their pain has
already become debilitating [4].

Although patient-reported outcomes can be used to obtain pain
scores directly from patients themselves, the efficacy of these
pain scores is limited due to the fact that these ratings are highly
qualitative and subjective [5]. Because of this, it is desirable to
have pain scoring systems that are more objective. The goal of
this study was to explore ways to automatically and objectively
quantify pain associated with BMs using computed tomography
(CT) images.

We hypothesized that tumor features extracted from CT images
of BMs contain imaging biomarkers that may be used to
objectively identify BM-associated pain. These pain biomarkers
may provide the opportunity to develop objective pain scoring
tools to aid in the diagnosis, treatment, understanding, and
prognosis of BM pain.

Background
The search for imaging and nonimaging pain biomarkers has
been the focus of numerous studies [5-12]. Various studies
[13-21] have shown how artificial intelligence (AI), including
machine learning and radiomics, can be used to understand and
quantify pain. For example, Mashayekhi et al [22] showed that
radiomic features extracted from the CT images of the pancreas
can help to identify functional abdominal pain in patients.
Vedantam et al [23] explored the viability of using radiomics
features extracted from magnetic resonance images to detect
pain following percutaneous cordotomy. At least 1 study [13]
has reported using radiomics to identify painful metastatic
lesions in radiographic images. However, we found no reports
in the literature of a scalable approach that can be used
efficiently on a large set of unlabeled patient data. To the best
of our knowledge, our work is the first to combine natural
language processing (NLP) and radiomics to enable an efficient
and scalable pain identification pipeline using unstructured data.

A fundamental challenge in developing any AI model for use
in medicine is the need to obtain sufficient patient data for
training and testing. For example, the data set used by
Wakabayashi et al in the study that we mentioned earlier [13],
was limited to 69 patients. One limiting factor is obtaining
standard patient-reported pain scores for use as ground-truth
data, and another limiting factor is obtaining segmented images
from which to extract tumor biomarkers. For the work reported
in this paper, we overcame the data set size limitation by using
2 novel strategies. First, by combining NLP with radiomics, we
quickly mined pain scores from clinical notes and used these

NLP-extracted scores to label our radiomics features for
supervised learning. Second, by asking our clinical colleagues
to pinpoint only the center points of BM lesions in radiotherapy
simulation CT images, we maximized the number of lesions
identified in the time available. In the medical field, NLP has
shown promising results in extracting biomedical information
and clinical outcomes such as pain from unstructured text data
[24-26]. Moreover, as we reported previously [21], by
automatically delineating geometrical regions around BM lesion
center points, it is possible to successfully extract radiomics
features for robust BM lesion detection. In this study, we report
how our combined radiomics-NLP machine learning pipeline
can successfully identify pain in radiotherapy simulation CT
images of patients with cancer with BMs.

Methods

Ethical Considerations
This retrospective study was approved by the research ethics
board of the McGill University Health Centre (2020-5899) with
the waiver of informed consent. We confirm that the entire
research was performed in accordance with research ethics
board’s guidelines and regulations.

Data Selection
Our patient-selection process is outlined in Figure 1. The initial
number of 200 pairs of radiation oncology consultation notes
and CT images of patients with spinal BM were included in this
study based on the minimum sample size calculation as
explained in Section A.1 in Multimedia Appendix 1 [27]. In
total, 120 of the notes and all 200 of the CT images from this
study were independently used in 2 studies we previously
reported on [21-25]. The first [25] of these studies showed the
feasibility of extracting pain from consultation notes of patients
with cancer, using NLP. The second [21] demonstrated the
feasibility of using lesion center point–based radiomics models
to differentiate healthy and metastatic bone lesions in CT scans
of patients with BMs. This study combined the data and results
from these 2 prior studies and expanded upon them to build an
NLP- and radiomics-based model to detect pain using the CT
scans of patients.

We searched our institution’s Oncology Information System
for the radiotherapy plans of patients diagnosed with a
“secondary malignant neoplasm of bone” between January 2016
and September 2019. From the retrieved list, we selected those
who were treated for thoracic spinal BM. Then, we retrieved
the corresponding consultation notes and simulation CT images.
A note-image pair was included if (1) the note was in English,
(2) pain was documented, (3) the simulation CT image was
taken up to 10 days post consultation, and (4) simulation CT
revealed BM lesions in the thoracic spine. Patients with multiple
but nonoverlapping note-image pairs were considered
independent samples. We only considered the same patients as
new participants if they had CT scans and associated
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consultation notes for BM lesions in different areas of their
spines. As a result, each BM lesion was included only once in
our study. Also, it should be noted that palliative patients
normally have their simulation CT scan (for treatment planning)
on the same day or within a few days after the consultation, and
radiotherapy is delivered on the same day or within a few days
after treatment planning. To assure that there is no change in
the BM lesion structure or pain status, we did not allow more
than a 10-day gap between the two. Figure A1 in Multimedia

Appendix 1 displays the distribution of the time interval between
the radiotherapy consultation and CT acquisition dates.

We randomly assigned note-image pairs to the training or
cross-validation set (approximately 70%) or the holdout test set
(approximately 30%). We used stratified randomization to
preserve the original sample ratio between pain labels in each
sample set. In addition, we performed a paired t test and a
chi-square analysis [28] to ensure that there was no systematic
bias in any of our sample sets regarding gender, age, or primary
cancer type. Patient demographics are presented in Table 1.

Figure 1. The patient selection criteria used to obtain the radiotherapy consultation notes and simulation computed tomography (CT) images that
formed our training and test data sets. The initial number of 200 note-image pairs included in this study was based on the minimum sample size calculation
as explained in Section A.1 in Multimedia Appendix 1. BM: bone metastases; DICOM: Digital Imaging and Communications in Medicine; RT:
radiotherapy; T-spine: thoracic spine. *Four patients had pairs in both the training and test sets.
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Table 1. Patient demographics in the training and test sets.

P valueaTest set (n=55)Training and validation set (n=121)Characteristics

N/AbGender, n (%)

25 (45)56 (46)Female

30 (55)65 (54)Male

N/AAge (years), mean (SD)c

.9964 (12)63 (14)Female

.7264 (13)67 (14)Male

.06Primary cancer type, n (%)

20 (36)32 (26)Lung

11 (20)23 (19)Breast

5 (9)19 (16)Prostate

6 (11)8 (7)Multiple myeloma

2 (4)7 (6)Renal cell carcinoma

31 (56)64 (53)Other and unknown

.42Bone metastasis lesions, n (%)

76 (47)220 (52)Lytic

57 (35)122 (29)Blastic

30 (18)81 (19)Mix

N/APain label, n (%)

136 (83)357 (84)Pain

27 (17)66 (16)No pain

aP values for numerical values (age) and categorical features (primary cancer site and bone metastasis lesion type) were calculated using a 2-tailed
heteroscedastic t test and a chi-square test, respectively.
bN/A: not applicable.
cThe P value for the age difference between males and females was .20 for the training and validation set and .50 for the test set.

NLP-Extracted Pain Labels
Due to the absence of patient-reported pain scores in our
Oncology Information System, we extracted physician-reported
pain scores from patients' radiation oncology consultation notes
using our previously reported NLP pipeline [25]. While pain
scores were typically reported as part of the “history of the
present illness” in our hospital, for the sake of generalizability,
we extracted pain scores from the entire note.

Our NLP pipeline first processed the text with MetaMap [29]
and mapped it to the UMLS (ie, Unified Medical Language
System) Metathesaurus [30] in order to identify pain
terminologies and their severity scores. Next, it applied rules
to filter out hypothetical, conditional, and historical references
to pain in order to focus solely on references to pain at the time
of the consultation. Then, it calculated the average pain intensity
(API) in each note by averaging the pain scores therein. Finally,
it assigned each note a “verbally declared pain” (VDP) label,
as VDP=“no pain” (if API 0), and VDP=“pain” (if API0). These
pain labels were used to train, validate, and test our radiomics
model.

Expert-Extracted Pain Scores
To evaluate the effect of NLP-extracted pain labels on the
performance of our pipeline, we also generated best-available
ground-truth pain labels using expert-annotated pain scores. To
do so, our radiation oncologists used the texTRACTOR [31]
pain labeling application to manually read consultation notes
and label valid pain scores in our training and test data sets
using a 4-grade verbal rating scale (no pain, mild, moderate,
and severe). A mention of pain was regarded as valid if it
reflected the status of pain at the metastatic sites for which
treatment was planned at the time of the consultation. Table A1
in Multimedia Appendix 1 contains all the NLP- and
expert-extracted pain scores, and Figure A2 in Multimedia
Appendix 1 illustrates the level of agreement between them.
Due to the quality of the documented pain scores and lack of
interrater agreement among experts (Fleiss κ=0.43), as explained
by Naseri et al [25], we subsequently defined a binary pain score
as “no pain” and “pain” in order to establish satisfactory
interrater agreement (κ=0.66) [25]. To create binary ground-truth
pain labels comparable to the NLP-extracted labels, we assigned
notes scored as “no pain” to “no pain” and notes scored as
“mild,” “moderate,” and “severe” pain to “pain.” These
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expert-extracted pain scores were used to measure how well the
NLP pipeline works.

Center Point Identification of BM Lesions
BM lesion center points were identified by a team comprising
a staff radiation oncologist (SS) with 10 years’ experience, a
radiation oncology fellow (MT), and 3 third-year radiation
oncology residents (J Khriguian, PR, and MF). Simulation CT
DICOM (ie, Digital Imaging and Communications in Medicine)
files were exported from the radiotherapy treatment planning
software and deidentified. Then, the CT images were randomly
divided into 5 sets and loaded into the diCOMBINE [32]
application for BM lesion center point identification. Our experts
were blinded to patients’ pain statuses and identities. We
requested each expert to label center points for all visually
identifiable BM lesions in all CT images within 1 of the 5 sets,
and another expert was assigned to validate their labels. A key
benefit of this radiomics pipeline [21] is that it does not require
full lesion segmentation, making it feasible to engage busy
clinicians.

Segmentation of Regions of Interest
Using our previously reported methodology [21], we
automatically segmented lesion center point–based nested

spherical (SP) regions of interest (ROIs). To do this, we first
delineated nested spherical ROIs around the identified BM
lesion center points (see Textbox 1, top panel). ROI diameters
ranged from 7 mm (3×3 voxels) to 50 mm (average size of the
vertebral body) [33]. Then, in addition to what was reported by
Naseri et al [21], we used Hounsfield units thresholding to
exclude fat and air regions from the delineated ROIs. For this,
motivated by Deglint et al [34] and Ulano et al [35], we applied
a threshold to remove voxels with negative Hounsfield units
from our ROIs. Hounsfield units of <0 are associated with fat
and air [34]. We used OpenCV [36] (version 4.4.0) for
Hounsfield units thresholding and applied a Gaussian filter to
reduce noise. Then, we used pynrrd [37] (version 0.4.2) to export
each ROI as a 3D binary mask and store it as a.nrrd [38] file.
Finally, we aggregated these nested ROI masks to form
ensemble ROIs. In this study, we examined 2 contrasting
ensemble (EN) ROIs as shown in Textbox 1 (bottom panel):
one with small size and 3 layers (EN3) and the other with large
size and 6 layers (EN6). Wakabayashi et al [13] and Naseri et
al [21] have shown that radiomics-based machine learning
models trained on ensemble ROIs have better classification
performance than single ROI–based models.

Textbox 1. The characteristics of the spherical and ensemble regions of interest (ROIs) used in this study.

Nested spherical (SP) ROIs with Hounsfield units (HUs) intensity thresholds (HU>0):

• SP7 (diameter 7 mm)

• SP10 (diameter 10 mm)

• SP15 (diameter 15 mm)

• SP20 (diameter 20 mm)

• SP30 (diameter 30 mm)

• SP50 (diameter 50 mm)

Ensemble (EN) ROIs:

• EN3 (ROI SP7+SP10+SP15)

• EN6 (ROI SP7+SP10+SP15+SP20+SP30+SP50)

Radiomics Models
Our radiomics pipeline is illustrated in Figure 2. We essentially
used our previously reported pipeline [21] but with our NLP-
and expert-extracted pain labels to train and test it. We made
one improvement to the pipeline by incorporating
Imbalanced-learn [39] (version 0.7.0) as a resampling step to
account for imbalance (see below).

Radiomics features were extracted from each CT image using
masks composed of the ensemble ROIs listed in Textbox 1.
Then, the feature space was scaled using z score normalization
[40], and the associated NLP-extracted binary pain labels
(pain=1, no pain=0) were incorporated. A single NLP-extracted
pain score was assigned to all the lesions extracted from a given
paired CT image.

Due to the nature of BM pain [41], there was a large imbalance
between the number of painful and painless lesions (493 pain,

93 no pain). Therefore, we used the Synthetic Minority
Oversampling Technique (SMOTE) [42] in the training phase
as it has been shown to be the best-performing resampling
method for radiomics [43]. We did not apply resampling to our
test set in order to maintain the original sample imbalance. Then,
the Least Absolute Shrinkage And Selection Operator [44]
feature selection method was applied to the feature space to
remove noninformative features. Least Absolute Shrinkage And
Selection Operator is a commonly used feature selection method
in radiomics studies [45,46]. Finally, we examined the Gaussian
process regression, linear support vector machine, random forest,
and neural networks classifiers, as they were the best performing
machine learning classifiers in our previous work. We evaluated
the performance of our models on the training set using 5-fold
cross-validation. Final evaluation was performed on the test set.
The receiver operating characteristic (ROC) [47] curve, area
under the ROC curve (AUC), precision, sensitivity, specificity,
and F1-score metrics were used to report the performance of
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our models on the training and test sets. We also trained and
tested our best performing pipeline using the expert-extracted

pain scores (best-available ground-truth) to evaluate the impact
of NLP-extracted pain labels.

Figure 2. The radiomics-based pipeline that we used to select and train a machine learning model to separate painful and painless bone metastasis
lesions. Our pipeline is the same as that published by Naseri et al [21] but using NLP-extracted pain labels and modified to account for sample imbalance.
AUC-ROC: area under the receiver operating characteristic curve-receiver operating characteristic; CT: computed tomography; GPR: Gaussian process
regression; LASSO: Least Absolute Shrinkage And Selection Operator; L-SVM: linear support vector machine; ML: machine learning; NLP: natural
language processing; NNet: neural network; RF: random forest; ROI: region of interest; SMOTE: Synthetic Minority Oversampling Technique.

Results

Patient Demographics
A total of 176 pairs of radiotherapy consultation notes and
simulation CT images of patients with thoracic spinal BM were
included in this study. As summarized in Table 1, a total of 121
sample pairs (mean patient age 63, SD 14 years; males: n=65,
mean age 67, SD 14 years; P=.20) were included for training
and cross-validation, and 55 sample pairs (mean patient age 64,
SD 12 years; males: n=25, mean age 64, SD 13 years; females:
mean age 64, SD 23 years; P=.50) were included in the test set.
The sample selection procedure and data quantities are presented
in Figure 1. The demographics of the patients in the training
and test sets are presented in Table 1. The most common primary

cancer sites were the lungs (n=52), breasts (n=34), and prostate
(n=24).

A total of 586 BM center points were identified by our experts
on the training (n=423 lesions) and test (n=163 lesions) data
sets. In the training set, 357 (84%) lesions were labeled by the
NLP pipeline as painful and 66 lesions were labeled as painless.
In the test set, 136 (83%) lesions were identified by the NLP
pipeline as painful, and 27 lesions were labeled as painless. This
represented a significant but equal imbalance in our training
and test sets.

Segmented ROIs
Examples of segmented ROIs with the Hounsfield units
threshold applied are presented in Figure 3 for painful and
painless BMs.
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Figure 3. Examples of segmented nested spherical regions of interest (ROIs) with the Hounsfield units threshold applied on computed tomography
images of patients with painful (A, B) and painless (C, D) bone metastases lesions. Nested ROIs with diameters of 50, 30, 20, 15, 10, and 7 mm are
shown in the insets as different hues.

Testing Our Radiomics Models
In total, 107 radiomics features were extracted from each of the
6 nested ROIs. Then, they were aggregated to form feature
spaces for the EN3 (with 321 features) and EN6 (with 642
features) ensemble ROIs. Figure 4 shows the ROC curve of
each model in the training (black lines) and test (red squares)
data sets using the EN3 and EN6 ROIs. On the training set, the
gray range represents the mean (SD) AUC of the 5-fold

cross-validation. The AUC and F1-score grids are presented in
Table 2.

The precision, accuracy, sensitivity, specificity, F1-score, and
AUC values of our best-performing pipeline (neural networks
with the EN6 ROI) are presented in Table 3. The performance
of this pipeline (trained and tested) on the data set of
expert-extracted pain labels (best-available ground-truth) is
provided as a quality measurement. The performance of the
model described previously by Wakabayashi et al [13] is also
provided for comparison.

JMIR AI 2023 | vol. 2 | e44779 | p.232https://ai.jmir.org/2023/1/e44779
(page number not for citation purposes)

Naseri et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Receiver operating characteristic curves for our classifiers using 3-layer ensemble (EN3) (top row) and 6-layer ensemble (EN6) (bottom
row) lesion center point–based ensemble regions of interest in training (black lines) and test (dark red squares) data sets. AUC: area under the receiver
operating characteristic curve; GPR: Gaussian process regression; L-SVM: linear support vector machine; NNet: neural network; RF: random forest.

Table 2. The area under the receiver operating characteristic curves (AUCs) and F1-scores of our machine learning classifiers in the training and test
data sets using the ensemble (EN) regions of interest EN3 and EN6 for each of the RF (random forest), GPR (Gaussian process regression), L-SVM
(linear support vector machine), and NNet (neural networks) classifiers.

Test setTraining setRegion of interest

NNetL-SVMGPRRFNNetL-SVMGPRRF

Areas under the receiver operating characteristic curve

73.375.272.167.394.684.798.198.3EN3

82.582.480.674.194.089.898.398.1EN6

F1-scores

63.665.464.760.990.579.489.990.0EN3

69.567.466.963.891.684.793.093.0EN6

Table 3. The performance of our best-performing natural language processing (NLP)–radiomics pipeline (neural networks with the ensemble 6 region
of interest) on the training and test sets using NLP and manually extracted pain labels, together with the results from a prior study by Wakabayashi et
al [13].

AUCaF1-scoreSpecificitySensitivityPrecisionAccuracy

94.091.686.492.493.292.4This study (training set)

82.569.585.359.267.981.0This study (test set)

98.194.489.798.794.894.2This study (training set); using manual pain scores

82.368.085.764.764.983.5This study (test set); using manual pain scores

82.0—86.071.0—b73.9Wakabayashi et al [13] (training test only)

aAUC: area under the receiver operating characteristic curve.
bNot determined.

Discussion

Underestimation and undertreatment of cancer pain can
significantly diminish the quality of life of patients with cancer.
Accordingly, systems that can objectively measure cancer pain

have the potential to improve quality of life. In this study, we
created a scalable NLP-radiomics pain identification pipeline.
Our pipeline is designed for palliative treatment for patients
with cancer undergoing radiotherapy therapy, for whom there
are typically just 2 contemporaneous sources of relevant medical
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information at the time of the treatment: consultation notes and
simulation CT images. We used an NLP pipeline to extract
physician-reported pain scores from radiotherapy consultation
notes. NLP-extracted pain scores are appropriate, when
structured patient-reported pain scores are unavailable (as is the
case for at least 25% to 35% of all patients with cancer [13,48]
and for all patients with cancer receiving palliative care who
are treated with radiotherapy at our institution at the time the
data were used in this study). Our lesion center point–based
spherical ROI delineation method significantly sped up the ROI
segmentation procedure, enabling us to rapidly delineate BM
center points in 176 images in this study. For comparison, the
radiomics pipeline that was developed by Wakabayashi et al
[13] required full 3D segmentation of each ROI (69 images).

Due to the unbalanced nature of BM pain, our data set contained
significantly fewer “no pain” samples. In order to better train
our models, we applied SMOTE resampling to the training set
to balance the number of samples with the NLP-extracted “pain”
and “no pain” labels. We did not apply any resampling
techniques to our test (hold out) set to maintain the original
sample imbalance. Therefore, while our training set was
balanced, our test set had 5 times more “pain” cases than “no
pain” cases (136 pain versus 27 no pain cases). This caused a
significant change in the pipeline’s performance between the
training and test sets. It has been shown that oversampling
improves the overall performance of machine learning models,
but the effect is stronger on the training set due to the inclusion
of replicated samples in the cross-validation subsets [49].
Moreover, the imbalance in our test set led to high specificity
(ability to properly identify pain instances) and low sensitivity
(ability to correctly identify no pain cases) in the performance
evaluation. For comparison, the sample imbalance reported by
Wakabayashi et al [13] was 2:1, resulting in a more balanced
relationship between the sensitivity and specificity of their
model.

The performance of our pipeline did not improve much when
we trained and tested it using expert-extracted pain labels
(best-available ground-truth). This might be the case because,
in the first experiment, we both trained and tested our pipeline
using NLP-extracted pain labels, and in the second experiment,
we both trained and tested our pipeline using expert-extracted
pain labels. Consequently, after being trained with one set of
labels (NLP- or expert-extracted), our pipeline performed well
on the test set that was labeled using the same method (NLP or
expert). We also demonstrated that our pipeline’s performance
is comparable to that of Wakabayashi et al [13], who achieved
their results using patient-reported pain labels.

Our pipeline performed significantly better on the EN6 ROIs
than on the EN3 ROIs. This could be the case because in
comparison to EN3, our EN6 ROIs include additional ROIs
with sizes of 20, 30, and 50 mm. From visual inspection, we
suspect that, in addition to the characteristics of the BM lesion
itself, its location (eg, its proximity to the spinal cord) may be
a significant contributor to the BM pain. As a result, larger ROIs
enable our algorithm to extract characteristics from outside the
BM lesion. Wakabayashi et al [13] also demonstrated the
effectiveness of using ROIs outside of the BM lesion.

We are unable to offer a convincing explanation as to why neural
networks outperformed random forest and support vector
machine classifiers in our analysis. Notwithstanding, it has been
demonstrated that neural network classifiers perform better
when applied to more difficult problems and larger data sets,
while random forest and support vector machine classifiers
typically perform well with smaller data sets [46,50,51].

Our pipeline was successful in extracting radiomics biomarkers
capable of distinguishing between painful and painless BM
lesions. These biomarkers potentially provide the opportunity
to objectively identify clinical pain-related indicators that may
aid in the diagnosis, treatment, and understanding of BM pain.

Our work has several limitations. First, we used data from a
single center for this retrospective study. A multicenter study
with a larger data set is necessary to assess the generalizability
of our radiomics pipeline for pain quantification. We anticipate
that the performance of our NLP-radiomics pipeline will vary
based on the pain scoring systems of the cohorts tested. Second,
by using lesion center point–based geometrical ROIs, we ignored
lesion characteristics such as size and shape, which may be
important in the context of pain. Although we used Hounsfield
units intensity thresholding to preserve some tumor information,
we are considering implementing deep learning–based ROI
segmentation in the future as it may better account for full tumor
and surrounding tissue characteristics. Lastly, we used SMOTE
resampling to address the issue of class imbalance. An
alternative solution might be to develop cost-sensitive machine
learning classifiers that account for the cost of misclassifying
minority samples [52]. However, there is no clear consensus in
the literature on whether cost-sensitive learning outperforms
resampling [53]. A model that can differentiate between painful
and painless lesions from medical imaging is a critical
component of any possible radiomics-based pain quantification
pipeline. This work not only shows the feasibility of developing
a pain quantification tool, but also it removes some of the
barriers to its development. As a result, our future work will be
to apply our pipeline to patients’ past and current CT images
and consultation notes in order to develop a longitudinal model
of pain. Such a model should take into account not only images
(taken before, during, and after delivering radiotherapy) but
also other internal and external parameters that can influence
how pain evolves over time (such as primary cancer type,
radiation dose, other treatments, and pain medications). Also,
it will include patient-reported pain scores to provide more
accurate ground-truth pain labels in order to develop a more
robust deep learning–based NLP pipeline [24,54]. This,
however, is beyond the scope of this investigation.

In conclusion, we demonstrated that our NLP and
radiomics-based machine learning pipeline can effectively
differentiate between painful and painless BM lesions in
simulation CT images using ensemble lesion center point–based
geometrical ROIs. Using NLP-extracted pain labels in
conjunction with lesion center point–based radiomics features
is time efficient. This helps to pave the way for the development
of quickly trained and efficient clinical AI-based
decision-making tools that can objectively measure cancer pain.
Such a tool may help alleviate the burden of pain management
and improve the quality of life of patients with BMs.
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Abstract

Background: Ground-glass opacities (GGOs) appearing in computed tomography (CT) scans may indicate potential lung
malignancy. Proper management of GGOs based on their features can prevent the development of lung cancer. Electronic health
records are rich sources of information on GGO nodules and their granular features, but most of the valuable information is
embedded in unstructured clinical notes.

Objective: We aimed to develop, test, and validate a deep learning–based natural language processing (NLP) tool that
automatically extracts GGO features to inform the longitudinal trajectory of GGO status from large-scale radiology notes.

Methods: We developed a bidirectional long short-term memory with a conditional random field–based deep-learning NLP
pipeline to extract GGO and granular features of GGO retrospectively from radiology notes of 13,216 lung cancer patients. We
evaluated the pipeline with quality assessments and analyzed cohort characterization of the distribution of nodule features
longitudinally to assess changes in size and solidity over time.

Results: Our NLP pipeline built on the GGO ontology we developed achieved between 95% and 100% precision, 89% and
100% recall, and 92% and 100% F1-scores on different GGO features. We deployed this GGO NLP model to extract and structure
comprehensive characteristics of GGOs from 29,496 radiology notes of 4521 lung cancer patients. Longitudinal analysis revealed
that size increased in 16.8% (240/1424) of patients, decreased in 14.6% (208/1424), and remained unchanged in 68.5% (976/1424)
in their last note compared to the first note. Among 1127 patients who had longitudinal radiology notes of GGO status, 815
(72.3%) were reported to have stable status, and 259 (23%) had increased/progressed status in the subsequent notes.

Conclusions: Our deep learning–based NLP pipeline can automatically extract granular GGO features at scale from electronic
health records when this information is documented in radiology notes and help inform the natural history of GGO. This will
open the way for a new paradigm in lung cancer prevention and early detection.

(JMIR AI 2023;2:e44537)   doi:10.2196/44537
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Introduction

The goal of lung cancer treatment is primary prevention, early
prediction, and detection of lung malignancy to reduce lung
cancer mortality. Currently, prevention screening programs
have proven to be effective in the early detection of many
cancers [1]. Low-dose computed tomography (CT) has been a
standard method for lung cancer screening in the United States
since the National Lung Screening Trial in 2011 [2,3]. With the
increased utilization of CT scans and advances in CT techniques,
the detection rate of pulmonary nodules has increased during
the last decade [4]. Approximately 20% to 30% of CT images
detect pulmonary nodules with ground-glass opacity (GGO), a
subtype of pulmonary nodules [5-7]. GGOs, either pure GGOs
(without a solid component) or part-solid GGOs (with a solid
component), have gained significant attention in recent years
due to their malignancy potential [8-11] ever since Jang and
colleagues [12] found that ground-glass attenuation could be a
sign of lung adenocarcinoma. However, identifying malignant
lesions based on GGO images from CT scans remains a
challenge since both benign and malignant lung lesions can
appear as GGOs [13-15]. Persistent GGOs, which have not been
resolved in subsequent CT scans between 6 and 12 months, are
more likely to be associated with precancerous or cancerous
conditions, while transient and self-resolving GGOs are benign
[16-19]. Other GGO features such as larger baseline nodule
size, spiculated shape, upper lobe location, presence of a solid
component, and less than 5 nodules in quantity are known to
be highly associated with the probability of malignancy [20-23].
Understanding the characteristics and prognosis of GGOs is
critical for predicting and preventing lung cancer development
by adopting proper management [24,25].

Radiomics is a study field leveraging artificial intelligence (AI)
to extract medical information from radiology images. Recent
advances in radiomics have significantly improved the accuracy
of identifying malignant lesions [26-28] and made possible
differentiating etiologies of GGOs [29]. However, limited access
to scans, the high cost, and the complexity of processes [30-32]
have hindered the routine knowledge extraction from CT scans
and prompted the use of patient electronic health records
(EHRs). EHRs are rich sources of patients’ clinical information
including radiological findings [33,34], which are generally
captured in unstructured data fields. However, large-scale
extraction of GGO information from an enormous collection
of unstructured EHR data is almost impossible without
leveraging the power of natural language processing (NLP).

NLP is an AI approach that enables extracting large-scale
information automatically from clinical notes and presenting
the extracted information in a computer interoperable structured
format. Over the last 2 decades, NLP has played a critical role
in representing medical information that is embedded in

unstructured clinical notes [35-39] and has been applied to the
field of radiology [40]. Pons et al [34] systematically reviewed
67 NLP studies in radiology reports and demonstrated how
radiology fields benefit from NLP techniques. Linna and Kahn
[41] also highlighted the potential benefits of NLP technology
in multiple areas, such as improved diagnostic decision-making,
patient care, and delivery. Although the development of deep
learning methods and transformer models like Bidirectional
Encoder Representations From Transformers (BERT) showed
a significantly improved impact in named entity recognition
and relation extraction [42], these state-of-the-art NLP methods
have not been applied yet to extract data on GGOs and their
related features. A few shallow NLP parsers have been
developed to identify cohorts with GGOs [14,43-46]. Recently,
a rule-based GGO NLP algorithm was developed and applied
in combination with negation and temporal algorithms to extract
and characterize all GGO attributes from radiology reports [4].

This study aimed to investigate the feasibility of
developing a deep learning–based NLP model to extract GGO
features systematically from radiology notes for the longitudinal
analysis of patient-level GGO features on a large scale with
ontology-guided contextual embedding and temporal reasoning.
The utility of the NLP was then evaluated by deploying it to
longitudinal data to assess changes in GGO features
longitudinally, which is vital for understanding the natural
history of GGOs in the real-world lung cancer setting.

Methods

Ethics Approval
This study was approved by the Program for the Protection of
Human Subjects at the Mount Sinai School of Medicine
(IRB-17-01245).

Study Cohort
The cohort of patients diagnosed with lung cancer between 2010
and 2021 (13,216 patients) was curated from the Mount
Sinai/Sema4 Healthcare system, which contains longitudinal
data for approximately 3.9 million patients. Demographic and
other clinical variables were obtained by either extracting from
structured data or curating the relevant information from
unstructured clinical notes (ie, radiology notes and progress
notes). The study cohort includes (1) pathology-confirmed
patients with lung cancer; (2) non–pathology-confirmed patients
with lung cancer via ≥3 visits and International Classification
of Diseases (ICD) lung cancer codes (ICD-9: 162 and ICD-10:
C34); and (3) non–pathology-confirmed patients who had <3
visits with lung cancer ICD codes. We curated these initial lung
cancer cohorts to develop and test the GGO NLP pipeline, which
can then be applied to other relevant cohorts in the future. Figure
1 shows how we selected study cohorts and their radiology notes
from EHRs for the next steps of model training and evaluation.
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Figure 1. The workflow of the ground-glass opacity (GGO) natural language (NLP) pipeline. The workflow shows how we selected study cohorts and
their radiology notes from EHRs for the next steps of model training and evaluation. EHR: electronic health record; ICD: International Classification
of Diseases.

NLP Framework

Overview
The framework we propose to curate GGOs and their
related attributes are described as follows: (1) preprocessing
and query expansion; (2) GGO ontology construction and
annotation; (3) NLP model development; (4) postprocessing
and entity normalization; and (5) NLP pipeline evaluation. These
are discussed in greater detail in the following subsections.

Preprocessing and Query Expansion
The preprocessing phase focused on query expansion. An initial
list of seed terms was obtained from a manual survey of the
literature and a review of clinical notes by a clinical researcher
and a domain expert (authors KL and MM). A bigram word2vec
algorithm [47] was developed to identify additional significant
terms potentially related to GGO to ensure the encapsulation
of an expansive cohort. The expanded list of query terms was
then applied to extract a comprehensive set of GGO-specific

patient notes that were subsequently leveraged for NLP
modeling.

GGO Ontology and Annotation
NLP is the process of simulating an expert’s knowledge and
understanding of the free text using modeling. As the first step
of NLP, we built up an ontology that was established based on
clinical expert opinion, comprehensive literature, and patient
note review. The GGO ontology includes entities that are critical
for cancer prediction based on previous studies and available
from our radiology notes. Our GGO ontology includes 15
entities comprising pure GGO, part-solid GGO, GGO size, GGO
quantity (number), GGO location, GGO shape/margin, GGO
solidity, temporal (date), potential GGO cause (neoplasm,
infectious/inflammation, hemorrhage, and other pulmonary
lesions), and GGO status change (better, stable, and worsen).
Moreover, it has 7 semantic relations between entities: has size
information (info), has number info, has location info, has
shape/margin info, has solidity info, has status, has a potential
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cause (Figure 2A). This ontology was used as a guideline for
manual annotation. GGO status change indicates any description
of size or solidity changes (eg, increased, getting smaller, getting
denser). The primary GGO entities, either pure or part solid,
were associated with their attributes like size, location, and so
on. Then, 2 independent domain experts manually annotated
the 15 entities and 7 semantic relations in the clinical notes
(Figure 2B) using the Clinical Language Annotation, Modeling,
and Processing (CLAMP) NLP toolkit [48], and a third domain
expert (KL) reviewed the annotations.

Since a biomedical concept could be described in heterogeneous
forms, continuous discussions and agreement between annotators
and domain experts were needed to confirm that the annotations
represented the expert’s understanding of biomedical knowledge.
Interannotator agreement scores (kappa scores) were measured
between the first 2 annotators in the same set of notes until they
reached over 90% in entities and over 80% in relation annotation
before commencing the independent annotation.

Figure 2. The ontology of ground-glass opacity (GGO) and the sample note with GGO annotations. A) The ontology of GGO. A total of 15 entities
and 7 semantic relation types were defined in the GGO ontology. Entity semantic types: GGO location, GGO number, GGO shape/margin, GGO size,
GGO solidarity, GGO status change: better, GGO status change: stable, GGO status change: worsen, GGO term: pure GGO term, GGO term: part-solid
GGO, potential GGO cause: infectious/inflammatory, potential GGO cause: neoplasm, potential GGO cause: hemorrhage, potential GGO cause: other
pulmonary lesions, and temporal. Relation semantic types: has location info, has number info, has shape/margin info, has size info, has solidarity info,
has status, and has potential causes. B) Sample deidentified radiology reports with GGO annotations. Each part-solid nodule or ground-glass nodule is
associated with attributes (such as size, location, status, change, shape, and/or solidity information) and potential etiologies. The upper panel shows a
radiology report with multiple GGOs and their attributes; the lower panel shows a GGO and its associated potential etiologies. CT: computed tomography;
PET: positron emission tomography.
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NLP Model Development
A multilayer deep learning architecture was implemented for
NLP modeling. The text was first transformed as sequential
vectors of characterization in the embedding step. The vectors
were then sent to the bidirectional long-short term memory
(Bi-LSTM), an artificial neural network of text classification
architecture, for pattern recognition in both forward and
backward directions [49]. The patterns were sent to the next

layer of a conditional random field (CRF) model to compute
prediction probability (Figure 3A) [50]. In the example sentence
of Figure 3A, the “ground-glass opacity” is predicated as the
entities of “GGO,” while “right apex” is predicated as
“location.” The model was trained, calibrated, and tested for
optimal performance. Among manually annotated clinical notes,
80% (798/998) were used for training the GGO model and 20%
(200/998) were used for validation.

Figure 3. A deep learning natural language processing (NLP) pipeline for ground-glass opacity (GGO) curation and the process of GGO entity
normalization. A) Multilayer deep learning NLP architecture for GGO curation. All clinical notes underwent word embedding before being sent to the
bidirectional long-short term memory (Bi-LSTM), an artificial neural network of text classification architecture. The outputs were fed to a conditional
random fields (CRF) model to predict the GGO entities and relations. B) GGO entity normalization. The raw outputs of NLP models (upper panel) were
normalized to standardized concepts (lower panel) for each GGO attribute (middle panel).
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Postprocessing and Entity Normalization
A postprocessor was developed to subsequently postcoordinate
and refine the output. All predicated entities from the raw text
were normalized to standardized concepts based on clinical
experts’opinions and were then ready for downstream analysis.
Figure 3B illustrates examples of extracted GGO feature entities
categorized and normalized for the data analysis. GGO location
was extracted and classified into 2 levels; the first level
corresponded to a high-level indication of right, left, or bilateral
lungs, and the second level corresponded to a more granular
indication of the anatomic location like right upper lobe (RUL),
right middle lobe (RML), or right lower lobe (RLL), left upper
lobe (LUL), and left lower lobe (LLL). We categorized GGO
size into 3 groups: <6 mm, 6 to 20 mm, and >20 mm based on
expert opinion and the practice guidelines for nonsolid nodules.
Potential etiologies found in the notes were classified into 3
subgroups: infectious/inflammatory, malignant, and others,
whereby precancerous conditions such as atypical adenomatous
hyperplasia and adenocarcinoma in situ were included in the
malignant category. Others include all benign pulmonary lesions
like fibrosis/scarring and hemorrhage.

NLP Pipeline Evaluation
The performance of the GGO NLP pipeline was estimated in
the validation set with precision via the positive predictive value
(PPV) and recall via sensitivity, as well as F1-score, a balanced
score between false positives (FPs) and false negatives (FNs).
Recall was calculated as the ratio of the number of entities that
were identified by the pipeline over the total number of the
corresponding entities in the manually annotated gold standard,
such as true positive (TP)/(TP + FN). Precision was measured
as the ratio of the number of distinct entities returned by the
pipeline that was correct according to the gold standard divided
by the total number of entities found by our pipeline, such as
TP/(TP + FP). The F1-score was calculated as the harmonic
mean of PPV and sensitivity, such as 2 × PPV × sensitivity/(PPV
+ sensitivity). The manual annotation and training process was
repeated with additional manually annotated notes until the
model achieved an average F1-score >0.8.

Characterization of GGO Cohorts and Longitudinal
Analysis of GGOs
To demonstrate the utility of our GGO NLP pipeline, the NLP
was deployed to the lung cancer cohort identified in the Mount
Sanai/Sema4 data set to identify a cohort of patients with GGOs.

Since the persistence of GGOs is an important indicator of
malignancy [18,19], a subset of patients with persistent GGOs
was identified by the NLP. Persistence was defined as either
patients having multiple GGO reports, except when the last
report indicated resolution of the GGO, or patients having only
1 GGO report but with an indication of the increase in the size
or quantity or change in solidity. We used the NLP pipeline to
identify GGO features from patient notes over time and assessed
longitudinal changes in GGO features for this cohort.

To evaluate whether our automatically extracted information
was consistent with published findings, such as larger baseline
size or upper lobe location of GGOs being highly associated
with the malignancy [22], we selected patients who had their
first GGO report before lung cancer diagnosis date and
performed a descriptive statistical analysis across the natural
history of GGOs.

Finally, we extracted patients’ demographics and other clinical
characteristics including smoking status, comorbidities, and
family disease history from structured EHR data to characterize
the population with GGOs. All statistical analyses were
conducted using R software (R Foundation for Statistical
Computing) and done both at the GGO level and patient level
depending on the type of assessment.

Results

Patient Characteristics
The distribution of demographic and other clinical characteristics
(ie, smoking status, comorbidities, and family history of cancer
for the overall GGO cohort) over GGO persistency is shown in
Table 1. The average age of the GGO cohort was 68 years;
53.77% (2431/4521) were female, and 52.95% (2394/4521)
were White. Smoking data were not available for half the cohort,
while among those for whom smoking data were available,
37.63% (1701/4521) of patients were either former or current
smokers. Almost 70% (3086/4521) of patients had a history of
cancer, and around 13% (606/4521) had a history of chronic
obstructive pulmonary disease. The majority (3269/4521,
72.30%) of the GGO cohort had persistent GGOs and similar
distributions of patient characteristics as the overall GGO cohort.
Most GGO reports were found in the postlung cancer diagnosis
period (2815/4251, 62.3%) (Figure S1 in Multimedia Appendix
1).
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Table 1. Distribution of demographic and other clinical characterization of GGOa cohorts.

GGO cohort persistencyOverall (N=4521), n (%)Variables

Nonpersistent GGO (n=1252), n (%)Persistent GGO (n=3269), n (%)

Gender

641 (51.20)1790 (54.76)2431 (53.77)Female

611 (48.80)1479 (45.24)2090 (46.23)Male

Race

694 (55.43)1700 (52)2394 (52.95)White

188 (15.02)603 (18.45)791 (17.50)Other

192 (15.34)530 (16.21)722 (15.97)Black or African American

119 (9.50)244 (7.46)363 (8.03)Unknown

26 (2.08)139 (4.25)165 (3.65)Asian

33 (2.64)50 (1.53)83 (1.84)Native Hawaiian or other Pacific
Islander

0 (0)3 (0.09)3 (0.07)American Indian or Alaska Native

Ethnicity

578 (46.17)1864 (57.02)2442 (54.01)Not Hispanic or Latino

537 (42.89)955 (29.21)1492 (33)Unknown

120 (9.58)399 (12.21)519 (11.48)Hispanic or Latino

17 (1.36)51 (1.56)68 (1.50)Not reported

Smoking status

747 (59.66)1557 (47.63)2304 (50.96)No record of smoking

291 (23.24)996 (30.47)1287 (28.47)Former smoker

116 (9.27)395 (12.08)511 (11.30)Never smoker

97 (7.75)317 (9.70)414 (9.16)Smoker

1 (0.08)4 (0.12)5 (0.11)Passive smoker

Comorbiditiesb

160 (12.78)444 (13.58)604 (13.36)History of COPDc

373 (29.79)924 (28.27)1297 (28.69)History of heart disease

78 (6.23)262 (8.01)340 (7.52)History of chronic kidney disease

9 (0.72)27 (0.83)36 (0.80)History of NMSCd

897 (71.65)2189 (66.96)3086 (68.26)History of any cancer except NM-
SC

Family history

1 (0.08)7 (0.21)8 (0.18)Family history of lung cancer

16 (1.28)63 (1.93)79 (1.75)Family history of any cancer

aGGO: ground-glass opacity.
bEach patient can have more than 1 comorbidity.
cCOPD: chronic obstructive pulmonary disease.
dNMSC: nonmelanoma skin cancer.

Performance of the GGO NLP Pipeline
Among the cohort of 13,216 patients with lung cancer, 4521
(34.2%) had GGO reports, which comprised the “GGO cohort.”
The NLP identified GGO features in 29,496 radiology notes
of 4521 patients. Performance metrics for each GGO feature

are shown in Table 2. The NLP pipeline achieved between 95%
and 100% precision scores, 89% and 100% recall scores, and
92% and 100% F1-scores on different GGO features in the
independent validation set. As an example, the GGO NLP
algorithm correctly identified 986 pure GGOs out of 987 in the
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gold standard and 145 part-solid GGOs out of 146 in the gold standard with a recall of 99.7% and 99%, respectively.

Table 2. Quality metrics of the NLPa pipeline.

F1-scoreRecallPrecisionGolddPredictcRightbSemantic

0.9910.99989987986GGOe term: pure GGO

0.990.990.99146146145GGO term: part-solid GGO

0.990.9911009999GGO solidity

0.9810.95144151144GGO shape/margin

0.980.980.99667659653GGO size

0.970.960.99160156154GGO quantity

111464646GGO status change: better

0.990.971110107107GGO status change: worsen

0.920.890.95572535510GGO status change: stable

0.990.990.99148147146Potential GGO cause: infectious/inflammatory

0.950.920.99132122121Potential GGO cause: neoplasm

0.950.950.97767371Potential GGO cause: others

0.930.920.95127012201164GGO location

0.9910.97165017001650Temporal

aNLP: natural language processing.
bThe number of accurately extracted entities based on the gold standard.
cThe number of entities predicted from the NLP pipeline.
dManually annotated entity by annotators.
eGGO: ground-glass opacity.

GGO Characteristics
Almost all patients (n=4432, 98%) had at least 1 pure GGO in
their reports, and 11% (n=505) patients had terms related to
part-solid GGOs. As shown in Table 3, GGO location
(3588/4521, 79.36%) was most often mentioned in notes and
captured by NLP followed by potential etiology, GGO size, and
change in GGO status. Over 60% (2277/3588, 63.46%) of
patients had GGOs in both lungs, followed by the right lung
only, with 43.42% (3948/9093 GGOs) of GGOs located in the
upper lobes (Table S1 in Multimedia Appendix 1). Similarly,
43.80% (1095/2500) of patients had more than 1 potential
etiology mentioned in their clinical notes, with the most common
etiology being infectious or inflammatory. Around 10% (31/319)

of patients in the malignant neoplasm etiology group had
precancerous conditions. Among the 2350 patients identified
with data on GGO size, almost half of the patients had GGOs
baseline size in the range category between 6 and 20 mm
(1138/2350, 48.43%), followed by >20 mm (340/2350, 14.5%)
and <6 mm (274/2350, 11.6%) categories. The vast majority
(845/1043, 81%) of patients with reported GGO shape or margin
indicated nodules with irregular or spiculated shape, and most
patients seemed to have multiple GGOs (898/904, 99.3%) rather
than single GGOs (6/904, 0.7%), but data for this attribute were
not frequently captured in notes. The quantity entities, even
when captured, were not described as integer values in most
cases but as concept values such as numerous, scattered, and
several.
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Table 3. Distribution of NLPa-identified GGOb features in patients with GGO findings.

Patients (N=4521), n (%)GGO attributes

4432 (98)Pure GGO

505 (11)Part solid GGO

Locationc

2277 (63.5)Bilateral/both

438 (12.2)Left

831 (23.2)Right

42 (1.1)Unknown/subpleural

Potential etiologyc

795 (31.8)Infectious/inflammatory

319 (12.8)Malignant neoplasm

291 (11.6)Other

1095 (43.8)More than 1 cause

Sizec

274 (11.6)<6 mm

1139 (48.5)6-20 mm

340 (14.5)>20 mm

597 (25.4)More than 1 size

GGO statusc

97 (4.2)Better

1388 (59.4)Stable

288 (12.3)Worse

564 (24.1)More than 1 status

Shape/marginc

845 (81)Irregular/spiculated

63 (6)Rounded/smooth

135 (13)More than 1 shape

Change in GGO sized

240 (16.8)Increase in size

208 (14.6)Decrease in size

976 (68.5)Stable in size

Change in GGO statuse

259 (23)Increased

27 (2.4)Decreased

815 (72.3)Stayed stable

26 (2.3)Resolved

aNLP: natural language processing.
bGGO: ground-glass opacity.
cPatient numbers were calculated from the first notes. GGO status was based on the description in the notes.
dLongitudinal analysis between the first and the last notes.
eLongitudinal analyses between the first and the subsequent notes.
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Longitudinal Analysis
Longitudinal analysis in patients with at least 2 GGO notes
revealed that size increased in 16.8% (240/1424) of patients,
decreased in 14.6% (208/1424), and remained unchanged in
68.5% (976/1424) in their last note compared to the first note
(see Table 3 and Table S2 in Multimedia Appendix 1). The
Figure S2 boxplot in Multimedia Appendix 1 shows GGO sizes
at baseline and latest notes. Patients with GGO size available
for only a single date were excluded from the plot. The largest
GGO size was used if there was more than 1 size reported on
the same day. The median GGO sizes among all relevant patients
were smaller at the end point. We noticed that the patients
starting with a large (>20 mm) baseline GGO size had a more
medium/small GGO size reported at the end point compared
with patients starting with a medium-sized GGO (see the bottom

right corner split by the red lines in Figure S2 in Multimedia
Appendix 1).

A similar longitudinal analysis was performed to assess changes
in GGOs over time, including indications in notes about changes
in size and/or solidity or any descriptions of change. For this
analysis, patients with more than 2 notes were included, and
the most severe status change with the order of
increased>stable>decrease was selected if more than 1 status
change was reported in a day. Most patients (815/1127, 72.3%)
had notes reporting a stable status of their GGOs, and “stable”
was the only status reported for 40% (450/1127) of patients.
The sequence of GGO status changes in the first 10 notes is
depicted in Figure 4. For patients reported as stable, the
subsequent report was usually stable again, followed by an
increased status.

Figure 4. Analysis of ground-glass opacity (GGO) change in longitudinal notes. GGO status change (size and/or solidity) in the first 10 notes is
visualized in the Sankey diagram. If a report had multiple status changes, the worst status change was selected. The majority of GGO stayed stable.
Dec: decreased; Inc: increased; Res: resolved; Sta: stable.

Analysis of GGO Features and Interval Days Between
GGO and Lung Cancer in the “Pregroup”
To examine whether our data are aligned with current knowledge
about the impacts of size and location of nodules on lung
malignancy, we analyzed GGOs in patients who had their first
GGO reports before the lung cancer diagnosis date (called
pregroup hereafter). Of 4521 patients with GGOs, 1706 (37.7%)
were stratified into the pregroup. Among the 1706 pregroup
patients, 853 (50%) patients had GGOs that can be classified
exclusively into 1 baseline size group (<6 mm, 6-20 mm, or
>20 mm). Table 4 shows the interval days between the first
GGO report dates and the lung cancer diagnosis dates in each
size group. We noted that 78% (136/174), 58% (319/550), and
47.3% (61/129) of patients had lung cancer diagnosis within 6

months in the >20 mm, 6 to 20 mm, and <6 mm groups,
respectively. On the contrary, 16.6% (29/174), 31.5% (173/550),
and 39.5% (51/129) of patients developed lung cancer after 1
year in the >20 mm, 6 to 20 mm, and <6 mm groups,
respectively. Next, we investigated the location of GGOs in the
pregroup. A total of 861 (50.5%) patients had a GGO location
that could be classified into 1 location group (LLL, LUL, RLL,
RML, or RUL). The upper lobe location was more frequently
detected compared with the lower lobe location. Among the
patients, 62.6% (539/861) had GGOs in the upper lobes, either
RUL (336/861, 39%) or LUL (203/861, 23.6%). Moreover,
27.4% (236/861) of patients had GGOs in the lower lobes, either
RLL (142/861, 16.5%) or LLL (94/861, 11%). The remaining
10% (86/861) of patients had GGOs in the middle lobe (RML).

Table 4. Patients in each size category at the different timelines from the first ground-glass opacity (GGO) notes to lung cancer diagnosis.

Total, n (%)>3 years, n (%)1 year to 3 years, n (%)6 months to 1 year, n (%)<6 months, n (%)Size/timeline

129 (100)22 (17)29 (22.5)17 (13.2)61 (47.3)<6 mm

550 (100)79 (14.4)94 (17.1)58 (10.5)319 (58)6-20 mm

174 (100)15 (8.6)14 (8)9 (5.2)136 (78.2)>20 mm
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Discussion

Principal Findings
To understand the nature of GGOs in lung cancer cohorts, we
constructed a GGO NLP pipeline in this study. Our data
demonstrated high accuracy and efficiency of GGO feature
identification for both pure GGOs and part-solid GGOs when
this information was captured in notes. By implementing our
model, we achieved automated extraction and analysis of GGO
features in a huge volume of clinical notes, which enabled the
identification of patients with GGOs for whom other clinical
data were also available. Our model also enabled analysis of
changes in GGO features over time by leveraging available
longitudinal data at scale.

Similar to findings from Zheng et al [4] that utilized data from
the community practices, we found that the laterality of the
GGO nodules was more frequently documented in notes than
other features like margins and shape. Hence, our study further
supports the need for potentially standardizing the
documentation of CT findings in radiology reports and progress
notes. Early detection of GGOs and understanding of GGO
features are critical for clinical decision-making, and they enable
earlier intervention [51]. GGO status changes, including
increased size and solidity, were described as critical factors
for making a clinical decision on the resection [22]. Although
a decrease in average nodule size has been observed across chest
CT reports in general over time [4], in our study, we were able
to use longitudinal data to track nodule changes specifically in
each patient over time. Further analysis of whether this finding
is related to treating larger GGOs can provide a better
interpretation of this result and insights into GGO treatment. In
our study, we also observed that the majority of patients with
a GGO larger than 20 mm were diagnosed with lung cancer in
the 6 months following the GGO finding.

Although GGO solidity information is one of the most critical
prognostic factors [52], except for the pure or part-solid GGO
information, additional GGO solidity information—such as
absolute solid component sizes or solidity status changes—was
not automatically extracted in previous NLP studies. In this
study, we showed the feasibility of tracking the solidity status
changes, as captured in the notes, but changes in every nodule
may not be reflected. The solidity status changes including
density change were curated by comparing the baseline and last
note GGO terms. Our data revealed that most patients with
solidity change information showed either a solidity increase
(from pure to part solid) or stayed stable.

The quantity of GGO nodules is another crucial piece of
information. It has been found that 1 to 4 GGO in a single note
can be cancerous with no significant difference between 1 to 4
nodules, but ≥5 is more likely infectious/inflammatory in the
etiology [53,54]. In many notes, the entities indicating the total

number of GGO were not found. Radiologists described the
number of GGO nodules as concepts like numerous or scattered
rather than giving the actual number of GGO nodules when
there are multiple GGO. Although we classified the number of
GGO as multiple or single in this study, further subtyping the
number of GGO nodules as 1 to 4 or ≥5 in future work by
counting each GGO term extracted and their related attributes,
such as location and size, could provide better insights.

Strengths and Limitations
Although NLP technologies have significantly impacted
real-world evidence generation, there remain unmet needs in
clinical data retrieval such as relation recognition, longitudinal
analysis, and providing insights rather than extracting data only,
as Sheikhalishahi et al [39] described in their systematic review.
In our deep learning model, we showed the feasibility of relation
extraction rather than isolated entity extraction only and the
temporal reasoning for the longitudinal analysis of patient-level
data analysis. Transformer models such as BERT-based models
can be examined together in future work.

There are several limitations to our study. We analyzed the
GGO data in a lung cancer cohort for the initial feasibility
assessment. However, our NLP pipeline can be easily expanded
to other cohorts such as non–lung cancer cohorts with GGO
reports in future studies, which provides more opportunities
such as analyzing the associated risk factors of developing lung
cancer from GGO. Additionally, a deeper analysis of pre- and
postdiagnosis patient journeys can provide more insights into
preventing and detecting lung malignancy. In radiology reports
with multiple GGOs, tracking individual GGOs across reports
over time for the longitudinal analysis of individual GGOs is
challenging. Further efforts for identifying and monitoring each
GGO can give us better insights into each GGO’s nature and
outcome. NLP is naturally limited by its ability to capture only
documented information. However, Zheng et al [4] reported
trends of increasing documentation of smaller nodules and their
features in radiology reports. Given this fact, NLP can be
utilized as a powerful tool to study the natural history of GGOs
and identify cohorts of interest for further analysis or for more
in-depth radiomics work.

Conclusions
Our study demonstrates that the deep NLP model can
automatically extract granular GGO features, when documented,
at scale. The model could be deployed further to large volumes
of longitudinal free-text reports to continuously update prognosis
as an individual’s disease course unfolds and leverage the
longitudinal data with treatment patterns, clinical outcomes,
and risk factors for various applications. The AI-enabled model
offers a potential advantage as an automated clinical decision
support tool to identify cohorts of interest for radiomics and
optimize resource utilization for cancer prevention, early
detection, and effective management.
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Abstract

Background: The accuracy of movement determination software in current activity trackers is insufficient for scientific
applications, which are also not open-source.

Objective: To address this issue, we developed an accurate, trainable, and open-source smartphone-based activity-tracking
toolbox that consists of an Android app (HumanActivityRecorder) and 2 different deep learning algorithms that can be adapted
to new behaviors.

Methods: We employed a semisupervised deep learning approach to identify the different classes of activity based on
accelerometry and gyroscope data, using both our own data and open competition data.

Results: Our approach is robust against variation in sampling rate and sensor dimensional input and achieved an accuracy of
around 87% in classifying 6 different behaviors on both our own recorded data and the MotionSense data. However, if the
dimension-adaptive neural architecture model is tested on our own data, the accuracy drops to 26%, which demonstrates the
superiority of our algorithm, which performs at 63% on the MotionSense data used to train the dimension-adaptive neural
architecture model.

Conclusions: HumanActivityRecorder is a versatile, retrainable, open-source, and accurate toolbox that is continually tested on
new data. This enables researchers to adapt to the behavior being measured and achieve repeatability in scientific studies.

(JMIR AI 2023;2:e42337)   doi:10.2196/42337

KEYWORDS

activity classification; deep learning; accelerometry; open source; activity recognition; machine learning; activity recorder; digital
health application; smartphone app; deep learning algorithm; sensor device

Introduction

Background
The last decade has seen a significant increase in worldwide
smartphone ownership [1], with approximately half of the
world’s population now owning a smartphone and a device
penetration rate of 80% in Germany and the United Kingdom
[2]. Even low-end smartphones are equipped with various
sensors, including accelerometers, gyroscopes, proximity
sensors, magnetometers, and GPS receivers, along with
energy-efficient processors and stable internet connections.

With the advent of smartphones and wearables, physical activity
analysis has greatly gained in popularity. Accelerometry-based
behavior analysis has a variety of applications, such as fall
detection in older patients [3], health monitoring [4],
work-related stress analysis [5], and sleep analysis [6]. The
widespread use of accelerometry in everyday smartphone apps
has reduced the cost of gyroscope and accelerometer sensors,
which has in turn accelerated their development. While
wearables have gained popularity as accelerometer devices,
smartphones still make up the majority of them.
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Many studies have shown the accuracy and reliability of
smartphone sensors in accelerometry [7-9]. Although wearables
tend to provide more accurate behavior classifications, the
potential of using smartphones far outweighs the additional
accuracy gained from wearables. Although they are more precise
thus far [10], the cost of wearables for larger study populations
is very high, compared with the widespread popularity and
affordability of smartphones, making them a more accessible
option for research. Additionally, smartphone apps are easier
to distribute, update, configure, and adapt to specific research
questions than wearables. Wearables also have the disadvantage
of limited software support and closed-source software, making
research based on previous software nonreproducible after
algorithm updates. This means that wearables bought for
research purposes must be replaced on a regular basis.

Most importantly, however, the default software of wearable
manufacturers is in almost all cases not open-source, meaning
that after each change of the algorithm (ie, app update) that
classifies behavior, research based on previous software is not
reproducible anymore. Furthermore, in most cases, charges
apply for the use of the said software. On the other hand, some
smartphone manufacturers offer free, open-source toolboxes
for movement activity recognition, such as Samsung and
Huawei. However, these toolboxes only recognize a limited
number of activity types and are at the time of writing not
trainable to new activities. The purpose of both, however, is for
them to be integrated into applications, so they can be used to
determine whether a smartphone user is moving and is active
or not, in order to interact with application functionality, such
as energy saving while not moving, clocking active hours, or
encouraging movement when a user is inactive. While data can
be collected and stored, the behavior classes are fixed and
neither trainable nor retrainable. To address these limitations,
the scientific community needs access to an open-source,
adaptable behavior analysis toolbox that also facilitates
reproducible research and is adaptable to specific research
questions. To fulfil this need, we present our open-source, deep
learning–based behavior analysis toolbox. Our Human Activity
Analysis toolbox includes a proprietary Android app, 2 deep
learning algorithms, scripts to process data, and a continually
expanding sample data set. The toolbox has been validated with
a sample of 68 University of Bern students and employees.

Activity Recognition and Deep Learning Background
Deep learning algorithms have gained importance in classifying
human behavior based on sensor data collected from
accelerometers, gyroscopes, and magnetometers [11-18] (for a
deeper understanding and comprehensive overview, see [19]).
These algorithms are based on artificial neural networks, and
specifically, deep neural networks (DNNs) have become the
dominant approach for activity recognition as of 2022. DNNs
consist of multiple layers of neurons of similar or different types,
and the functionality of these neurons is determined by the
nature of the layers and the way they are interconnected [20,21].
It is important to note that a standard neural network consists
of many simple, connected processors called neurons, each
producing a sequence of real-valued activations. Depending on
the problem and how the neurons are connected, such behavior
may require long causal chains of computational stages. Thus,

if multiple layers of neurons are used sequentially, we speak of
DNNs [20].

Most DNN architectures consist of a convolutional neural
network (CNN) layer, followed by either a feedforward neural
network (FNN) layer or a recurrent neural network (RNN) layer.
Unlike the output from an RNN neuron, which is fed back into
the same layer, the output from an FNN neuron is only
connected to the next layer. CNNs handle variable input
dimensions quite well and are mainly used for feature extraction
for the RNN or FNN layer, which, combined with a prior CNN,
output a better generalization than if fed with raw sensor data
[22]. However, FNNs only work well with data of the same
input dimensions, and RNNs only work with a fixed number of
streams. As a result, the widely used CNN-RNN-FNN
combinations do not work with varying input dimensions. This
means that if data collection from one sensor stops, the
movement type cannot be classified by the DNN that was trained
on multiple input dimensions. In order to save battery life in
smartphones during long-term recordings, it is often desirable
to temporarily disable certain sensors or to vary the sampling
rate of sensors, which results in changing the input dimensions
for the DNN.

When a participant is sitting for an extended period, disabling
the gyroscope sensor can conserve battery life. This is because
the rotational position is unlikely to change significantly without
significant acceleration changes unless the person is in an
aircraft and the gravitational acceleration is being compensated
for in the data. In order to determine when the activity type
changes, it is sufficient to use a low recording frequency. This
means that it is possible to deactivate the gyroscope and
magnetometer and lower the accelerometer recording frequency.
To determine when the activity type changes, a very low
recording frequency suffices, so it is desirable to deactivate the
gyroscope and magnetometer and lower the accelerometer
recording frequency significantly. Dummy data can be generated
to compensate for missing data in order to maintain the accuracy
of the trained CNN-FNN-RNN model [23]. However, this
approach can result in a loss of accuracy in classification.
Another solution is to insert a global pooling layer, but this also
leads to a reduction in accuracy. This, however, leads to
accuracy loss in classification. Another solution is to insert a
global pooling layer [24], but this also leads to a reduction in
accuracy.

Previous publications on accelerometry-based movement
recognition have shown great success but significant limitations.
Ordóñez and Roggen [15] presented a deep-CNN–based
framework, which they tested against models such as decision
tree, random forest, and support vector machines. Trained and
then tested on a data set, the accuracy reached up to 86.7%. The
authors then analyzed which component of the data had the
biggest impact on classification accuracy and determined this
to be changes in acceleration, which is in line with our own
results.

Wang et al [11] offer a comprehensive survey of recent
advancements in activity recognition and associated
methodologies. Their work sheds light on the various strengths
and weaknesses of deep learning models when it comes to
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activity classification. Although most models perform accurately
on their trained data [25], significant limitations remain. First,
the lack of extensive, labeled accelerometry data sets limits their
efficacy. Second, the generalization capabilities of models need
improvement. Third, models struggle with sensor noise and
input variability, highlighting a need for greater robustness. Our
algorithms aim to address these issues, working to mitigate the
associated limitations and enhance overall model performance.
To achieve this, we build upon previous research by
incorporating and improving upon their methodologies while
also introducing our own additional data set for algorithm
training.

Malekzadeh et al [26] proposed a new model, which tries to
counteract the aforementioned shortcomings by introducing a
dimension-adaptive pooling (DAP) layer, which makes DNNs
robust to changes in not only sampling rates but also
dimensional changes of the data due to varying sensor
availability.

The authors also introduced a dimension-adaptive training layer,
and combined it with the classical CNN-FNN-RNN approach
and the DAP layer. They claim that dimension-adaptive neural
architecture (DANA) can prevent losses in classification
accuracy, even under varying sensor availability and temporal
sampling rate changes. This model was tested on 4 publicly
available data sets, including the MotionSense [27] data set,
which consists of accelerometer data from 24 students at Queen
Mary University of London.

Our goal was to not only implement this model into our own
DNN, but also to improve upon it and validate it using our own
data. The robustness of the DANA model is very promising,
making it a valuable addition to our research.

Methods

Ethical Considerations
According to the guidelines stated on the Ethics Commission
page of the University of Bern's Faculty of Human Sciences,
no ethics committee approval was required for this research.

This conclusion is based on the fact that all data was collected
with participants' informed consent, the data collection was
conducted anonymously, and the research activities only
involved non-hazardous tasks such as standing, sitting, walking,
and ascending or descending stairs. No personal data was
collected.

Training Data
The data used for the initial training of the neural network was
gathered from the MotionSense Github repository. These data
consist of accelerometer and gyroscope readings from an iPhone
6s (Apple Inc), collected at a frequency of 50 Hz by 24
participants who followed a set of actions on the campus of
Queen Mary University of London. These actions included
ascending or descending stairs, sitting, walking, standing, and
jogging (Figure 1). The data recorded gravity, acceleration,
rotation, and attitude on 3 axes.

After conducting a principal component analysis, we found that
the X, Y, and Z acceleration and rotational changes were the
most predictive factors in classifying the participant’s behavior
(Figure 2). Therefore, only these 6 values were used in the
training of the algorithm. As a result, our app only records these
6 values, which are then used for further analysis.

To gather more data and validate our model, we set up our own
course of action on the campus of the Centre for Sports Science
at the University of Bern, modeled after the course used at
Queen Mary University. A total of 68 participants (aged 21-59,
median 26, SD 3.2 years), who were students and employees
of the University of Bern, completed the course while our
HumanActivityRecorder Android app (Multimedia Appendix
1) was running and collecting data. All participants were fully
informed about the task and gave their consent for the data
collection.

The course consisted of approximately 300 seconds of walking,
jogging, sitting, and walking up and down stairs and standing
still (Figure 3). All participants completed all segments of the
course, and the corresponding data segments were manually
labeled for use in training the models.
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Figure 1. Course for accelerometer data collection on the campus of the Queen Mary University of London for the MotionSense data set; graph from
Malekzadeh et al [26].

Figure 2. Data example of the MotionSense data set. Note that some values do not change significantly when normalized over the course of recording
and are therefore of lesser interest for the prediction of behavior.
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Figure 3. Course on the premises of the University of Bern. Participants followed the indicated path, starting walking, followed by jogging, sitting,
ascending stairs, standing, and descending stairs. Completion took an average of approximately 300 seconds.

The participants completed the course in 2 groups with different
instructions. Group 1 (n=29, median age 26, SD 5.2 years) was
instructed to wear the smartphone in their preferred manner.
Group 2 (n=39, median age 27, SD 4.7 years) wore the
smartphone in the right front trousers’ pocket, with the display
facing toward the body and the top of the phone pointing down
while standing. This placement is consistent with the data
collection method used for the MotionSense data set, as
discussed above. It was found that the orientation of the
smartphone has a significant impact on the performance of the
model. To ensure consistency and comparability between the
data sets, our algorithm was trained on the data of group 2, as
wearing the smartphone in an individually preferred manner
(group 1) resulted in significantly worse performance in
classification accuracy. For a detailed comparison of
classification accuracy between groups 1 and 2, please refer to
Multimedia Appendix 2.

App
The accelerometer and gyroscope data were collected using our
custom-made HumanActivityRecorder Android app, which was
developed using Android Studio 4.1 with Java 1.8.0_271 (Figure
4). The app records accelerometer and gyroscope data at a
sampling rate of 50 Hz and is publicly available on the Google
Play Store as version 13 of the HumanActivityRecorder app.
The accelerometer data are recorded in the x-, y-, and z-axes,
while the gyroscope data consist of rotation around these axes
(roll, pitch, and yaw) at the same frequency. The data are then
automatically sent to a server and can be downloaded as a CSV
or JSON file. The source code is available on Github [28]. The
app is compatible with Android 5.0 and later versions. We used
an Honor View 20 smartphone for data collection to ensure
consistency in recording. Only 1 device was used.
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Figure 4. Comparison of the models used in our study. The dimension-adaptive neural architecture (DANA) model, consists of several additional
layers, which we found did not improve the classification of our data. Note that in our simplified model, the dimension-adaptive pooling (DAP) layer
has been omitted as well, since our data are dimensionally consistent. LSTM: Long short-term memory.

Recording
Before beginning the data collection process, the participants
were asked for their name, age, and consent. The data collection
paradigm was explained to them and demonstrated through a
walk-through by the data collector. The participants then
completed the course, which included walking, jogging, sitting,
ascending and descending stairs, and standing still, while the
app recorded their accelerometer and gyroscope data. After
completing the course, the participants were given a chocolate
bar as an incentive. The accelerometer data were processed and
categorized using a Jupyter notebook script, which automates
the workflow to ensure consistency in categorization. This script
is part of our toolbox.

Deep Learning Model
We implemented a modified version of the DANA model
proposed by Malekzadeh et al [19], which involved removing
and modifying several layers. This modification was made after
testing the model (trained and tested on MotionSense data) and
finding that the omission of these layers did not noticeably
decrease the model’s performance.

It is important to note that in our simplified model, we removed
the DAP layer as our input data are dimensionally consistent at
the time of testing. To validate the models, we trained them
both on the MotionSense data set and our own data set, as well
as testing both combinations.

Results

Through a systematic variation of the number of nodes and
layers, we determined that the best balance between accuracy
and complexity is achieved with the described architecture. This
architecture was determined based on the accuracy of the models
in classifying movement types of the MotionSense data set when
trained on the same data set. Interestingly, when we trained on
the MotionSense data set and tested on our own data, our model
performed better than DANA, yet still with room for
improvement, at 63% vs 26%.

When trained on the same data set as the one they are tested on,
both models performed well in classifying behavior. The DANA
model achieved approximately 87% accuracy when trained and
tested on the MotionSense data set and approximately 90%
accuracy when trained and tested on our own data, depending
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on the sampling rate (Figure 5). However, when trained on the
MotionSense data set and tested on our own data, the accuracy
of DANA drops to around 26%, also depending on the
dimensionality of the input, while our model performs at around
63%, but much less robust against the dimensionality input
(Figure 6). This still leaves room for improvement but shows

the comparatively high generalization ability of our model. It
is important to note that neither the MotionSense data nor our
own data include magnetometer data, which is why the DANA
model performs poorly (at or near zero accuracy) when reduced
to only magnetometer input. The graph includes this information
for consistency.

Figure 5. Accuracy in classifying using the dimension-adaptive neural architecture (DANA) model (A) trained and tested on MotionSense data; (B)
our model trained and tested on our data; (C) DANA trained on MotionSense and tested on our data; and (D) our model trained on our own data and
tested on MotionSense data. Note that the dimensionality is varied here to showcase the robustness, and our model is impacted more strongly by a varied
dimensionality input. Acc: accelerometer; Gyr: gyroscope; Mag: magnetometer.
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Figure 6. Confusion matrices of accuracy in classifying (A) using our own simplified model trained on MotionSense data tested on MotionSense data;
(B) trained on MotionSense data and tested on own data; (C) trained and tested on our own data; and (D) trained on our own data and tested on
MotionSense data. Note that dimensionality is not varied here as all sensors are available. dws: downstairs; jog: jogging; sit: sitting: std: standing; ups:
upstairs; wlk: walking.

Our simplified model does not include the DAP layer and is
less robust against input dimensional variance, as our input data
dimensions did not vary. However, it is easily adaptable if
desired. Despite this, our model outperforms the DANA model
in terms of accuracy. When trained on the MotionSense data
set and tested on it, our model achieved 95.4% accuracy. It was
equally accurate when trained on our own data and tested on it,
with 92.4% accuracy. However, when trained on the
MotionSense data and tested on our own data, accuracy drops
to 25.8%, but when trained on our data and tested on
MotionSense, accuracy reached 63.4%.

Discussion

Conclusions
Both models included in our toolbox perform well when trained
and tested on the same data set. However, they do not perform
well when trained on one data set and tested on the other, as
was the case in our study. This highlights the problem of the
unavoidable part of overfitting the collected data to improve
algorithm performance, although this is controlled for as far as
possible. Despite this, both models (DANA and our own)
performed similarly when trained on one data set and tested on
the other. Our model is slightly more accurate, but the DANA
model is more robust with regards to dimensional variance in
the input. However, there is a significant difference in computing
time when training the models. The DANA model, when trained
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using Google Colab with CPU and GPU resources, took around
11 hours to train each time. On the other hand, our model can
be trained in about 5 minutes with 100 epochs of training using
only CPUs in Google Colab. Note that this estimation does not
include hyperparameter testing.

Given the amount of data used to train the models, the results
are surprisingly accurate. Commercial wearables, such as
sports-oriented smartwatches, often have a function to display
the user’s current activity. However, these displayed activities
are often incorrect, even for activities that seem obvious to the
user. Considering these devices are widely available and sold
to millions of people, we expected movement detection to be
much more challenging, and our accuracy to be in the low 60%
range.

While the accuracy of movement classification is very good,
there is still room for improvement, which we plan to achieve
by training the algorithm on additional data from diverse
populations or environments. We recommend using the DANA
model to classify behavior in data that have been gathered at
different dimensions or with variable input dimensions.
However, if the input type is consistent, we recommend our
model as it is slightly more accurate and much easier to train.
Both algorithms are available at our Github repository, along
with the HumanActivityRecorder app and the scripts to process
the data. In a future step, we plan to integrate both algorithms

into the app and evaluate their performance in a subsequent
study.

Limitations
The orientation of the smartphone during recording has an
impact on classification accuracy if the sample size is not large
enough, as shown in our comparison of classification accuracy
of groups 1 and 2 (Multimedia Appendix 2). However, if trained
on large data sets with varying orientation, this effect disappears.
For comparability, we based our model on the group with the
same orientation as in the MotionSense data set. Accounting
for orientation was outside the scope of our study. To address
the impact of smartphone orientation on classification accuracy
in medium-sized samples, an easy solution would be to
incorporate an orientation recognition stage that detects the
orientation of the smartphone and branches the data to models
that have been individually trained on each orientation. This
would ensure more accurate classification regardless of the
smartphone orientation.

Authenticity
The results of the study are presented clearly, honestly, and
without fabrication, falsification, or inappropriate data
manipulation. The results of this study do not constitute
endorsement by this Journal. This manuscript has not been
published elsewhere, and it has not been submitted
simultaneously for publication elsewhere.
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Multimedia Appendix 1
Screenshots of the Android app. From left to right: start screen, sociodemographics, and recording screen.
[PNG File , 151 KB - ai_v2i1e42337_app1.png ]

Multimedia Appendix 2
Accuracy of the classification of our model (A) trained and tested on group 1 data; (B) trained on group 1 data and tested on
MotionSense data; (C) trained and tested on group 2 data; and (D) trained on group 2 data and tested on MotionSense data. Group
1 was instructed to wear the smartphone wherever they preferred individually. Group 2 was instructed to wear it screen inside,
top facing downward in the right trouser pocket, in line with data collection for the MotionSense data set, to ensure maximum
comparability.
[PNG File , 139 KB - ai_v2i1e42337_app2.png ]
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CNN: convolutional neural network
DANA: dimension-adaptive neural architecture
DAP: dimension-adaptive pooling
DNN: deep neural network
FNN: feedforward neural network
RNN: recurrent neural network
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Abstract

Background: As new technologies emerge, there is a significant shift in the way care is delivered on a global scale. Artificial
intelligence (AI) technologies have been rapidly and inexorably used to optimize patient outcomes, reduce health system costs,
improve workflow efficiency, and enhance population health. Despite the widespread adoption of AI technologies, the literature
on patient engagement and their perspectives on how AI will affect clinical care is scarce. Minimal patient engagement can limit
the optimization of these novel technologies and contribute to suboptimal use in care settings.

Objective: We aimed to explore patients’ views on what skills they believe health care professionals should have in preparation
for this AI-enabled future and how we can better engage patients when adopting and deploying AI technologies in health care
settings.

Methods: Semistructured interviews were conducted from August 2020 to December 2021 with 12 individuals who were a
patient in any Canadian health care setting. Interviews were conducted until thematic saturation occurred. A thematic analysis
approach outlined by Braun and Clarke was used to inductively analyze the data and identify overarching themes.

Results: Among the 12 patients interviewed, 8 (67%) were from urban settings and 4 (33%) were from rural settings. A majority
of the participants were very comfortable with technology (n=6, 50%) and somewhat familiar with AI (n=7, 58%). In total, 3
themes emerged: cultivating patients’ trust, fostering patient engagement, and establishing data governance and validation of AI
technologies.

Conclusions: With the rapid surge of AI solutions, there is a critical need to understand patient values in advancing the quality
of care and contributing to an equitable health system. Our study demonstrated that health care professionals play a synergetic
role in the future of AI and digital technologies. Patient engagement is vital in addressing underlying health inequities and fostering
an optimal care experience. Future research is warranted to understand and capture the diverse perspectives of patients with
various racial, ethnic, and socioeconomic backgrounds.
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Introduction

Background
Artificial intelligence (AI) technologies are being rapidly
adopted and implemented in health care settings to augment
clinical decisions and the delivery of patient-centered care [1].
The use of AI applications presents a paradigm shift in health
care and serves as a positive enabler for achieving the quintuple
aims of health care [2]. In particular, AI applications have the
potential to further integrate health equity and patient activation
to ameliorate siloed and biased care, as advocated by the
National Academy of Medicine [2,3]. Fostering a
patient-centered culture that considers health equity entails
continued partnerships with patients and encourages them to
be coleaders of change within the clinical ecosystem [2]. This
shift must emerge from the leadership and organizational levels
and should include both a commitment to and development of
strategic priorities, which include patient and family engaged
care [2]. For instance, the Canadian Institute for Advanced
Research urges the need for a collaborative and integrative effort
to establish an AI for Health strategy to accelerate the adoption
and scaling of AI-enabled technologies to provide compassionate
and safe care [4]. The Canadian Institute for Advanced Research
highlights the importance of including patient perspectives in
the development, implementation, and evaluation of AI
initiatives [4]. A few studies have reported that a co-design
approach engaging patients and the public during the
development process could enhance the accuracy, equity, and
transparency of AI models [5-7]. Patients are key beneficiaries
in the adoption and implementation of AI technologies in clinical
settings; thus, engaging patients allows for diversity in
perspectives, and their values and needs are included [8,9].

Importance of Fostering Patient Engagement
Patient engagement is defined as an individual’s active
involvement in the care decision-making process and
collaboration with key stakeholders to build an equitable and
sustainable health system [10,11]. Understanding patient
perceptions is an initial step in fostering patient engagement
and ensuring the responsible and safe use of these novel
technologies in clinical care settings [8]. A recent survey
conducted by the Biron Health Group in Quebec indicated that
many residents were in favor of using AI technologies to address
health system issues and optimize clinical innovations [12]. The
study showed that 63% agreed that AI could prevent adverse
outcomes, while 40% believed that it could be used to augment
clinicians’ expertise and lead to profound changes in care [12].
Many papers focused on patient perspectives of AI in various
medical specialties, such as cardiology, dermatology, and
radiology, and how they conceptualize AI technology in health
care [13-21]. Although there are several studies focused on
understanding patient perspectives in relation to specific AI
technologies, patients need to be engaged at different stages of
the AI implementation process [9,22-24]. The long-term

sustainability of AI technologies in clinical environments vastly
relies on patient acceptance, which is influenced by their
knowledge and perception of opportunities as well as risks
associated with using AI solutions [15].

Despite the positive views on the potential of clinical
applications of AI and the promise of AI, there are many fears
and misconceptions that remain. A few studies have shown that
patients expressed concern regarding the use of personal health
records for profit or being distorted by hackers, as this could
have an impact on their employment or insurance coverage
[15,25]. Balthazar et al [25] contended that even when patients
have an in-depth understanding and thoughts on the appropriate
use of their personal health information, they may not be able
to understand the foundational concepts of machine learning
models to make predictions or discern the difference between
terms such as privacy and confidentiality. Another significant
concern noted in the literature is the systemic bias that can
potentially be embedded in AI models and that can stigmatize
or marginalize certain populations [7,8,25]. Patients’
perspectives on AI may differ based on their socioeconomic
status, ethnicity, and vulnerability [25]. Furthermore, patient
engagement helps to cocreate the health care system, address
the underlying social determinants of health [2,26], and
ultimately democratize access to AI innovations [5]. Thus,
minimizing the consequences and concerns of AI technologies
is pivotal in facilitating trust and ensuring the successful
adoption of these tools in clinical practice.

Establishing patient trust becomes increasingly difficult in a
rapidly evolving digital space with complex and less-transparent
AI technologies [8]. Studies have asserted that even though AI
can empower patients, the lack of transparency and explanation
of processes owing to the black box phenomenon could diminish
patients’ trust if the model is not reflective of current evidence,
is biased, or is erroneous [27-30]. Notwithstanding the high
accuracy and advancements in AI technologies, patients value
human judgment when making care decisions [31]. Empathy,
compassion, and trust play a significant role in forming the basis
for augmenting patient-centered care and ensuring the
sustainability of AI innovations [27,32]. It is vital for care
providers to actively engage patients when making care
decisions and foster a therapeutic relationship [32]. Kerasidou
[32] highlighted that patients preferred to interact with health
care professionals (HCPs) who both have clinical expertise and
provide empathetic and compassionate care. An interpersonal
care model allows HCPs to better understand and address
individual needs and to build patients’ trust [7,32]. In addition,
the literature emphasizes the importance of public perception
and literacy in fostering trust and removing any potential
misconceptions regarding AI [28]. Esmaeilzadeh et al [27]
advocated for patient education to ensure that patients are
prepared to make informed decisions and communicate
effectively with their care providers. The authors underlined
the importance of patients being active partners during the
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adoption and integration of AI innovations in their care [27].
Thus, patient engagement helps diminish the gap between
patients’ expectations of AI technologies and their experiences
with care providers [33].

Current Landscape
Cutting-edge technologies such as AI are poised to transform
the health care system, as we slowly shift to a new revolution
in the next era [20]. This shift is facilitated through medical
education; however, there are gaps in its implementation across
all levels of medical education. This includes the lack of
standardization, varying levels of AI literacy among faculty,
and limited infrastructure for embedding AI concepts within
existing curricula [34]. There is a need for medical education
to go beyond medical informatics and machine learning,
enabling HCPs to operationalize these novel tools at the point
of care [34]. Despite the use of AI to accelerate innovations in
patient care and the need for patient voices, there is limited
literature on patient engagement and their perceptions of how
AI will affect care delivery, thus ensuring AI technologies are
aptly integrated within the clinical environment and cultivating
patient trust [9]. To put the needs of patients first in creating a
healthier world using AI, the objective of this study was to
elucidate patients’perceptions of what skills they believe HCPs
should have in preparation for this AI-enabled future and how
we can better engage patients when adopting and deploying AI
technologies in health care.

Methods

Study Design
A qualitative study design was used to elicit participants’
perceptions of the adoption and implementation of AI within
the health care ecosystem.

Ethics Approval
This study was approved by the University Health Network
Research Ethics Board (ID:20-6148.2).

Study Participants
A maximum purposive sampling approach was used to ensure
that the participants represented various comfort levels with AI
technology and contexts in which they received care. It was
also used to gain insights into the diverse perspectives that
should be considered when adopting and deploying AI
technologies in clinical settings. Purposive sampling enables
researchers to identify and select participants based on their
ability to yield relevant information about a particular
phenomenon [35,36]. Participants were recruited from a national
group of approximately 25 patients via email invitations sent
on behalf of the research team by education committee members
of Canada Health Infoway. Participants who consented to
participate in the interviews were asked to inform individuals
within their networks via a snowball sampling approach [37].
The snowball sampling method was used to recruit additional
participants, who may add valuable perspectives to the study
and enable an in-depth understanding of the phenomenon.
Individuals were eligible to participate if they were patients at

any Canadian medical center (acute or long-term) and were able
to provide informed consent.

Data Collection
Semistructured interviews were conducted with patients on the
web via Microsoft Teams, in following COVID-19 pandemic
social distancing measures. An instructional designer and
research associates who have experience in qualitative research
methods conducted the interviews. In addition, the interviewers
have formal education in health informatics (TJ), public health
(SY), educational technology (MC), and educational and
counseling psychology (MZ). A semistructured interview guide
consisting of 13 open-ended questions was used to guide
discussions (Multimedia Appendix 1). The interviewers probed
participants when necessary to further explore and understand
salient ideas. The participants’ level of comfort in sharing their
perceptions and experiences determined the length of the
interview. The interviews lasted approximately 17 to 48 minutes.
The interviews were conducted until the researchers felt that no
new ideas emerged and data saturation was achieved.
Participants were offered an honorarium of CAD $50 (US
$37.32) in the form of e-gift cards. Verbal informed consent
was obtained before conducting interviews. All interviews were
digitally audio-recorded, professionally transcribed, and
deidentified. The transcripts were reviewed for accuracy by a
research associate.

Data Analysis
Reflexivity is crucial in qualitative research, as it enables
researchers to position themselves and reflect on the biases,
values, and experiences that they bring [38,39]. Recognizing
the researchers’ perspectives and positionality, research rigor
was asserted by providing a reflexive stance in the research
process, including different viewpoints from the team. Seven
members of the core research team participated in the coding
and analytic process, including 4 research associates from the
digital education department at a large multisite academic health
sciences center (TJ, SY, MZ, and SB), instructional designer
(MC), 2 patient partners (JA and SO), and a senior investigator
(DW, a PhD education researcher). This enabled a rigorous
interpretation and analysis of the findings. A systematic process
outlined by Braun and Clarke [40] was used to inductively
analyze the data. Two research associates (TJ and SY)
independently analyzed the first 3 transcripts from an
exploratory lens and developed an initial coding structure. Each
of the remaining transcripts were coded independently by two
study team members (TJ and MC, MZ or SB). New data were
constantly compared with the existing data, thus resulting in
iterative refinement of the coding structure and the structuring
of further data collection. Iterative discussions with the research
team helped contextualize the overarching themes and resolve
disagreements. The senior investigator (DW) on the team
reviewed all themes and provided additional input when
consensus could not be reached. Two patient partners who were
part of the study team (JA and SO) reviewed the themes, which
allowed for triangulation of the data from various perspectives.
Data were analyzed for emerging themes using NVivo version
12 (QSR International), a qualitative data analysis software
program. The rigor and quality of thematic analysis were
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evaluated using a 20-question evaluation tool [41]. The team
also maintained a record of each team member’s coding, notes
from meetings, and different versions of the coding structure.
This review enhanced the credibility and trustworthiness of the
findings. Furthermore, an intercoder agreement was established
using NVivo 12 to ensure transparency and rigor of the data.

Results

Overview
In total, 12 interviews were conducted between August 2021
and December 2021. Of the 12 participants, 10 (83%) were

females, and 2 (17%) were males. Table 1 shows the
characteristics of the study participants. The average length of
the interviews was 30 minutes. Most participants were very
comfortable with the technology and somewhat familiar with
AI. Thematic analysis of the data yielded three major themes,
each with several subthemes (Table 2): (1) cultivating patients’
trust, (2) fostering patient engagement, and (3) establishing data
governance and validation of AI technologies.
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Table 1. Participant characteristics (N=12).

Value, n (%)Characteristic

Demographics

Age (years)

0 (0)Young adult (18-40)

7 (58)Middle age (40-60)

5 (42)Senior (≥60)

Sex

2 (17)Male

10 (83)Female

Location

8 (67)Urban

4 (33)Rural

Comfort with technology

3 (25)Not at all comfortable

3 (25)Somewhat comfortable

6 (50)Very comfortable

Familiarity with AIa

3 (25)Not at all familiar

7 (58)Somewhat familiar

2 (17)Very familiar

AI information source

4 (33)Family and friends

5 (42)Career

2 (17)Scholarly articles

3 (25)Non–peer-reviewed articles

2 (17)Social media

3 (25)Other

Medical care

Frequency of visiting an HCPb

2 (17)Once a year

2 (17)Fewer than 4 times a year

8 (66)4 to 6 times a year

Type of HCP

3 (25)Cardiologist

10 (83)General practitioner

3 (25)Ophthalmologist

3 (25)Physiotherapist

3 (25)Surgeon

8 (67)Other

aAI: artificial intelligence.
bHCP: health care professional.
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Table 2. Summary of key themes.

SignificanceTheme and quote

Theme 1: cultivating patients’ trust

Subtheme: providing safe and compassionate care

• Transparent communication and acknowledging patient concerns
and needs are imperative in fostering patients’ trust.

• “I would feel comfortable as long as I still had a voice. And
they listen to the voice, OK, as opposed to the data... I mean,
if I trust my health care provider and they’re thorough and • Most importantly, participants seemed critical of the use of digital

technologies and their impact on therapeutic relationships. Compas-reliable, I would go along with it.” [ID 8]
sion was identified as crucial in achieving patient-centered care;• “I mean, I think I would worry about us totally removing the

human part of this. That compassion and connection with a and ensuring the presence of technology does not encumber the
human and relational aspects of a patient-provider relationship.person who understands your health condition is really impor-

tant... I would like a person who understands the question that
I’m asking. So, I think it’s making sure that we don’t under-
value the importance of connection to other human beings,
especially when we’re talking about health care and the fears
and anxieties that come up, about our health, so that we have
someone who can not only answer our questions, but under-
stand our fears and worries...” [ID 9]

Subtheme: achieving transparency in care decisions

• Given the rapid proliferation of digital technologies for patient care,
participants stressed the need to be governed or regulated by the

• “I want to know for sure like that it’s a legitimate app that
it’s recommended by like major hospitals and those sorts of

organization for the privacy and legitimacy of the app.things, because right now everybody’s making apps and it’s
very hard to tell what’s real and what’s not, especially at my
age. I find my generation, my husband, we’re much less
trusting and we get confused, like the example of that bot that
I was very unhappy with the bot being there [instead of a
person]. But I would also be good if, let’s say there are apps
that it was overseeing. So, with a hospital, those sorts of
things, like I really would like proof. And if it was dealing
with my physician, well, then having her backing that would
make me feel more comfortable using the app as well.” [ID
2]

Theme 2: fostering patient engagement

Subtheme: enabling patients to be coleaders in their care

• Participants highlighted the importance of HCPsa engaging them• “The only thing I would say at the outset would be it’s the
machine that is running the process and I would want to be during the clinical decision-making process and providing an oppor-
assured that the patient’s feelings and voice would still be tunity for them to share their thoughts and perspectives.
heard. Because there are things that, you know, there are
things maybe ninety-nine percent going one way, but there
is still that one percent that maybe the patient feels. Maybe
there’s other things going on with that patient that would
come out in a meeting with a doctor.” [ID 8]

• “I think it’s important that we as patients are as involved in
our care as possible. I would like to expect that my GP would
engage me in the decision-making about my care, even if an
algorithm directed him to do something or not do something,
I think that’s an important aspect of communication.” [ID 4]

Subtheme: increasing confidence among patients
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SignificanceTheme and quote

• When using technologies at the point of care, HCPs need to explain
to patients the benefits and risks associated with it; thus, enabling
them to be informed and understand how decisions are made.

• One participant emphasized that the patient-provider interaction is
not a transaction as the technology can become a third player and
the provider may neglect the compassionate aspect of the relation-
ship.

• In addition, educating patients on the fundamentals of AIb and
other technologies can increase their confidence.

• “Some people will want to know a lot and some people will
want to know less. But certainly, the overall importance of
sharing on some level so that we can improve our systems, I
think is critical, but how do we do it safely? And if we can
explain that to people in a way that gives them confidence
and that they know their information will not be released to
the wrong people in an identifying way, that’s important, but
it doesn’t obviate the risk completely. So, I still think that you
know, people need to at least have the opportunity to under-
stand that this is a really complicated and important decision
to make… how could that information be used in ways that
are contrary to your best in financial health or otherwise?”
[ID 4]

• “…a health professional who can also help me and guide me
if there’s something that I don’t understand, or I’m missing
a piece of this puzzle. So, a coach and educator. Yeah,
someone who’s got my back with the AI as well. So again, I
just think we can’t lose sight of that human touch and how
we learn and digest and understand information. It’s not just
a transaction.” [ID 9]

Theme 3: establishing data governance and validation of AI technologies

Subtheme: responsibility of data stewards

• Participants expressed concerns regarding how their data will be
used and who will have access to it. They identified the need to
provide them with a choice to opt-in or opt-out of the secondary
use of data.

• “…I have strong objections to it being sold. I know the [orga-
nization] was making their data available to a private company
at one point. And I know there are doctors in Ontario who
feel that the health record is theirs, and they own it. And so,
the information and it may be mine, but since they own the
program that holds my data, they feel they have every right
to sell it, and they do. So, I want more control over who gets
to use it and why. And I mean, I think a lot of people would
say, I’m fine for the public good, I’m fine with research that
will benefit me, and people like me. But they draw the line
at people making money from their personal data.” [ID 10]

• “I would like to know if there’s any third parties going to see
it. My other concern… Say the insurance, I tested positive
for breast cancer, and it was a genetic one, I’m going through
that right now. What how having AI and data out there on a
computer without being shared with insurance companies,
which is more likely to happen than it is right now. So, yeah,
I would want to know how my privacy is being respected.
And any third parties involved and any changes I’d want to
be updated and if there were changes and third parties were
going to see it, I’d have the choice of letting them or complete-
ly removing all my information.” [ID 2]

Subtheme: quality assurance and validation of AI technologies

• Quality assurance and validation of AI technologies are pivotal in
ensuring the confidentiality of patient data and protecting them
against nefarious acts.

• “Then that becomes no different if there’s no oversight or no
background or no warnings about them or disclaimers, then
it becomes just the same as people Googling everything. So,
I would want it to be a better tool and a somewhat regulated
tool or something so that it’s actually endorsed by the medical
community before it’s available, or at least obviously they’re
not going to be able to control everything that’s available on
the Internet. But at least there would be some education to
the public that to use the tools that we endorse or use the tool
endorsed by your hospital or your province or whatever, there
would be some kind of oversight. That’s all I’m concerned
about, that it just becomes the next version of Google.” [ID
7]

Subtheme: ensuring AI technologies used in clinical contexts are equitable and inclusive
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SignificanceTheme and quote

• One of the participants stated that AI could be an unbiased tool for
HCPs to use in their care as it removes some of the preconceived
perceptions that lead to further marginalization of certain groups.

• HCPs need to become adept in examining and acknowledging im-
plicit biases to make informed decisions and prevent unintended
consequences on patient care.

• “Oh, yeah, definitely as a tool to assist physicians, I think it
would be great. And I think that there are circumstances where
the artificial intelligence tool might do a better job than the
doctor. Because you know, a lot of people in health care are…
people have preconceived notions about them, right. For in-
stance, if somebody decides that you’re a hysterical woman,
you won’t get the same care as you would if you had didn’t
have that notation in your health record. And so, I think that
with the use of artificial intelligence, it takes out some of the
bias.” [ID 10]

• “I guess it really depends on who has actually set up the AI
and what biases they have and what has actually been pro-
grammed into the system and if that’s actually missing data,
just because of the bias and missing marginalized populations
or people that don’t have a lot of money or are of a different
race. And look, I just think there was something that I saw a
while back about an app, you know, telling somebody had
heart attack symptoms, and if it was male, it would say you
should go to the hospital. But if it was female, it was like, oh,
you don’t have a heart attack. You have I’m guessing this
was a while ago, I’m guessing probably anxiety! So, there’s
like [sex] differences, too. And so, I just wonder about the
disparities that could be created, if it hasn’t been created with
the people that it’s looking at.” [ID 5]

aHCP: health care professional.
bAI: artificial intelligence.

Theme 1: Cultivating Patients’ Trust

Providing Safe and Compassionate Care
Most participants believed that trust is fundamental to ensuring
that AI technologies are successfully integrated into clinical
care settings. They would be comfortable using an AI-based
application if they knew it was coming from a trusted source
such as their health care provider. However, they also mentioned
that they would feel uncomfortable if they did not have the
opportunity to discuss the technology with their health care
provider or did not have a follow-up conversation with them:

I would feel comfortable as long as I still had a voice.
And they listen to the voice, OK, as opposed to the
data...I mean, if I trust my health care provider and
they’re thorough and reliable, I would go along with
it. [ID 8]

Using this technology in conjunction with the clinician’s
expertise helps foster trust and ensures greater accountability.
A few participants asserted that they would prefer their care
provider to use their own knowledge and experience to make
an informed decision and not solely based on the technology
itself. As technologies are being integrated into clinical settings,
patients do not want anything to change in the way they interact
with their care provider or the way in which information is
provided:

I mean, I think I would worry about us totally
removing the human part of this. That compassion
and connection with a person who understands your
health condition is really important...I would like a
person who understands the question that I’m asking.
So, I think it’s making sure that we don’t undervalue

the importance of connection to other human beings,
especially when we’re talking about health care and
the fears and anxieties that come up, about our health,
so that we have someone who can not only answer
our questions, but understand our fears and worries.
[ID 9]

Participants indicated that face-to-face interactions and the
clinician’s presence are important for creating a safe space and
maintaining trust. Participants commented that having a
conversation with a clinician, as opposed to only interacting
with the AI technology, provides support and reassurance,
particularly when discussing sensitive health concerns such as
mental health issues.

Achieving Transparency in Care Decisions
Participants would like clear communication from their HCPs
on what applications and analytic health care tools are available
and whether they are being used in their care. The participants
expressed their desire for transparency in how physicians
combined their judgment and technology to arrive at diagnoses
and care decisions. Other participants noted that care providers
did not have to understand the technical aspects of AI
technology but needed to be confident in what they are
prescribing and practicing to ensure that it is safe for patients.

Several participants also reported that care providers who
willingly answered their questions or demonstrated ways to
interact with the technology significantly increased their
confidence levels in the technology. One participant mentioned
that in comparison with providers who chose not to explain or
demonstrate an AI technology, having an HCP explain what
they did greatly boosted a patient’s positive perception of the
technology and their comfort with it. Some participants also
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preferred to see how physicians interacted with the technology
and process they used to make clinical decisions. Furthermore,
patients would prefer guidance on using health technologies
and ascertaining what information is relevant to their own health
care. One participant mentioned that they liked information on
how the backend technology of an AI-enabled mobile
application (app) was created. Regardless of the degree to which
patients wanted to understand how an app works, they conveyed
the need for any apps used to be vetted and recommended by
their HCP:

I want to know for sure like that it’s a legitimate app
that it’s recommended by like major hospitals and
those sorts of things, because right now everybody’s
making apps and it’s very hard to tell what’s real and
what’s not, especially at my age. I find my generation,
my husband, we’re much less trusting and we get
confused, like the example of that bot that I was very
unhappy with the bot being there [instead of a
person]. But I would also be good if, let’s say there
are apps that it was overseeing. So, with a hospital,
those sorts of things, like I really would like proof.
And if it was dealing with my physician, well, then
having her backing that would make me feel more
comfortable using the app as well. [ID 2]

Differences were found in the level of knowledge patients want
to know about how AI technologies or apps work and the
potential impacts on care decisions. However, all participants
expressed the importance of transparency and communication
in an app or provider’s process for making care
recommendations or decisions. Patients also want to be informed
of the AI technologies that exist and whether they should be
used in their care. Although there was a difference in the level
of knowledge patients wanted their HCPs to have, the
participants emphasized comfort in their recommendations and
transparency.

Theme 2: Fostering Patient Engagement

Enabling Patients to Be Coleaders in Their Care
Enabling patients to become coleaders is vital when using digital
technologies to inform care decisions. Participants asserted that
it is important for health care organizations to actively listen to
and understand the needs of the public:

The only thing I would say at the outset would be it’s
the machine that is running the process and I would
want to be assured that the patient’s feelings and
voice would still be heard. Because there are things
that, you know, there are things maybe ninety-nine
percent going one way, but there is still that one
percent that maybe the patient feels. Maybe there’s
other things going on with that patient that would
come out in a meeting with a doctor. [ID 8]

Two participants specifically mentioned that they would like
to be engaged and involved in the shared decision-making
process, which also helps foster trust. For instance, if the AI
application detects a concern, the patient would expect the care
provider to have a discussion with them to identify the next
steps:

I think it’s important that we as patients are as
involved in our care as possible. I would like to expect
that my GP would engage me in the decision-making
about my care, even if an algorithm directed him to
do something or not do something, I think that’s an
important aspect of communication. [ID 4]

Participants reported that the integration of digital solutions as
part of patient care is contingent upon the relationships they
have established with their HCPs.

Increasing Confidence Among Patients
In the use of an AI app or technology, participants expressed
the need for a log-in ID; a password; and an accessible,
easy-to-use interface. They commented that having access to
technology, such as being able to view the results on a cloud
platform or digital patient profile, would be valuable and aid in
their decision-making process. Furthermore, participants
highlighted the need for patient education:

Some people will want to know a lot and some people
will want to know less. But certainly, the overall
importance of sharing on some level so that we can
improve our systems, I think is critical, but how do
we do it safely? And if we can explain that to people
in a way that gives them confidence and that they
know their information will not be released to the
wrong people in an identifying way, that’s important,
but it doesn’t obviate the risk completely. So, I still
think that you know, people need to at least have the
opportunity to understand that this is a really
complicated and important decision to make...how
could that information be used in ways that are
contrary to your best in financial health or otherwise?
[ID 4]

Although patients do not need to understand all details of their
diagnosis, it is essential to provide them with relevant
information at the right level. Participants reported that
education helps increase awareness of existing AI technologies
and how these technologies are used to augment patient care.
Another participant stated that it would be beneficial if medical
professionals provided support and allocated some time to help
patients understand the AI technologies being used in clinical
practice. Hence, understanding the fundamentals underpinning
AI technology helps foster confidence among patients and
increases their appreciation for the support provided by the
technology:

A health professional who can also help me and guide
me if there’s something that I don’t understand, or
I’m missing a piece of this puzzle. So, a coach and
educator. Yeah, someone who’s got my back with the
AI as well. So again, I just think we can’t lose sight
of that human touch and how we learn and digest and
understand information. It’s not just a transaction.
[ID 9]

An intuitive, interactive AI app or technology was also
mentioned as an important element of confidence. When patients
use technology as part of their care, they want to ensure that
their concerns, thoughts, and opinions are heard. When their
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care provider was not physically present, patients expressed the
desire for a connection. That is, despite the lack of a physical
presence, patients preferred using a technology with interactive
features to respond to their questions or concerns.

Theme 3: Establishing Data Governance and
Validation of AI Technologies

Responsibility of Data Stewards
Participants expressed privacy concerns, such as how their health
data would be used and shared, and for what purposes. In
particular, participants mentioned fear of their personal data in
apps being sold to private companies or used for illicit purposes:

I have strong objections to it being sold. I know the
[organization] was making their data available to a
private company at one point. And I know there are
doctors in Ontario who feel that the health record is
theirs, and they own it. And so, the information and
it may be mine, but since they own the program that
holds my data, they feel they have every right to sell
it, and they do. So, I want more control over who gets
to use it and why. And I mean, I think a lot of people
would say, I’m fine for the public good, I’m fine with
research that will benefit me, and people like me. But
they draw the line at people making money from their
personal data. [ID 10]

Participants voiced several concerns about the privacy of their
health data and its potential for long-term use when entering
web-based portals or apps. Many participants suggested the
importance of choice regarding the types of information used
for secondary purposes. They also expressed value in having
the option to accept or reject the use of their information by
third parties and to be able to remove their data, if desired. One
participant worried about long-term consequences, such as
familial genetic records being attached to future generations
and potential lifetime implications from youth sharing personal
information on mental health chatbots. Another felt it was
important to understand how their health data were used to
augment AI and its financial implications. Patients also wanted
to be informed of how their health data would be protected,
how to access their own data, who had access to it, and potential
long-term consequences. Gatekeepers were identified as critical
in ensuring the compliance and security of patient data as well
as managing any regulatory risks:

I would like to know if there’s any third parties going
to see it. My other concern...Say the insurance, I
tested positive for breast cancer, and it was a genetic
one, I’m going through that right now. What how
having AI and data out there on a computer without
being shared with insurance companies, which is
more likely to happen than it is right now. So, yeah,
I would want to know how my privacy is being
respected. And any third parties involved and any
changes I’d want to be updated and if there were
changes and third parties were going to see it, I’d
have the choice of letting them or completely
removing all my information. [ID 2]

Informed consent to access data, disclosure of use, and potential
risks were stated as critical measures to protect patient privacy.
Data protection and security were emphasized as key mitigation
steps to ensure that patient data would not be disclosed. If data
were shared without consent or accidentally, participants
expressed the need for legal barriers, so that third-party
companies would have no recourse. Participants desired apps
to be verified by trusted sources, such as hospitals and the
government, with transparency on the backend technologies
deployed within them and how their data would be handled.

Quality Assurance and Validation of AI Technologies
Interestingly, participants also highlighted the need to
understand more about how health care systems benefit from
investment in AI technologies. They reported that this would
help deliver care more effectively through the use of preventive
tools and by identifying optimal treatment options. Some
participants argued that AI technologies could contribute to
additional health expenditures and further amplify the pressure
on an overburdened health care system. In a public health
system, it is essential to maximize benefits across the system
and reduce costs.

Moreover, participants reported the need for governance and
oversight in terms of quality of assurance and accessibility of
technology. Participants emphasized that there should be a
governing body that evaluates the technologies used in clinical
care before endorsing them:

Then that becomes no different if there’s no oversight
or no background or no warnings about them or
disclaimers, then it becomes just the same as people
Googling everything. So, I would want it to be a better
tool and a somewhat regulated tool or something so
that it’s actually endorsed by the medical community
before it’s available, or at least obviously they’re not
going to be able to control everything that’s available
on the Internet. But at least there would be some
education to the public that to use the tools that we
endorse or use the tool endorsed by your hospital or
your province or whatever, there would be some kind
of oversight. That’s all I’m concerned about, that it
just becomes the next version of Google. [ID7]

Participants preferred a regulated technology that was validated
by the medical community before being available to the public.
One participant mentioned that, without regulation, random
apps would be produced and sold to hospitals.

Ensuring AI Technologies Used in Clinical Contexts
Are Equitable and Inclusive
Participants would like to understand how AI technologies will
be used in their health care, who would be using them, and for
what reasons. One of the participants also mentioned that AI
could be an unbiased solution for physicians to use in their care:

Oh, yeah, definitely as a tool to assist physicians, I
think it would be great. And I think that there are
circumstances where the artificial intelligence tool
might do a better job than the doctor. Because you
know, a lot of people in health care are...people have
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preconceived notions about them, right. For instance,
if somebody decides that you’re a hysterical woman,
you won’t get the same care as you would if you had
didn’t have that notation in your health record. And
so, I think that with the use of artificial intelligence,
it takes out some of the bias. [ID 10]

Some participants reported the use of biased data for model
development and the lack of diversity represented in data sets
as problematic. Inherent biases are sometimes created when
data sets are not heterogeneous, which can exclude vulnerable
populations. Sex and racial disparities, for instance, can also be
created if inherently biased data are included in data sets and
applications:

I guess it really depends on who has actually set up
the AI and what biases they have and what has
actually been programmed into the system and if
that’s actually missing data, just because of the bias
and missing marginalized populations or people that
don’t have a lot of money or are of a different race.
And look, I just think there was something that I saw
a while back about an app, you know, telling
somebody had heart attack symptoms, and if it was
male, it would say you should go to the hospital. But
if it was female, it was like, oh, you don’t have a heart
attack. You have I’m guessing this was a while ago,
I’m guessing probably anxiety! So, there’s like sex
differences, too. And so, I just wonder about the
disparities that could be created, if it hasn’t been
created with the people that it’s looking at. [ID 5]

The participants stressed the importance of ensuring that the
training and testing data sets are heterogeneous and
representative of the target population. Acknowledging these
biases enables clinicians to make informed decisions and prevent
any unintended consequences of patient care.

Discussion

Principal Findings
As new technologies and AI solutions emerge within health
care, it is crucial to ensure that patients are included in the
delivery of their own care. Advancements in digital technologies
have revolutionized the possibilities of delivering optimal and
patient-centric care in this continuously evolving health care
ecosystem. Despite the rapid penetration of innovative
technologies in clinical care, little is known about the
effectiveness of AI technologies. The efficacy and long-term
adoption of these technologies depend greatly on patient
engagement and adherence [15]. McMahon [42] contended that
patient engagement as part of medical education and continuing
professional development is crucial in providing an opportunity
for HCPs to develop their patient-centric skills, increase
sensitivity to patient needs and values, and foster
interprofessional collaborative practice. Patient expertise is
based on their unique experiences of receiving care and the
impact of the social determinants of health. Therefore, it is
important to acknowledge and appreciate the value of these
diverse patient viewpoints [43,44]. In addition, patient
participation is reported to improve care providers’

communication skills and empathy and increase their awareness
of patients’ needs in marginalized communities [45-47].

This study aimed to understand patients’ perspectives on how
to better foster patient engagement in the uptake of AI
technologies and what competencies they believe are essential
in preparing HCPs for digital care. Through semistructured
interviews with patient partners, three predominant themes
emerged: (1) cultivating patients’ trust, (2) fostering patient
engagement, and (3) establishing data governance and validation
of AI technologies. Participants in both urban and rural settings
highlighted similar ideas with regard to AI adoption.

In a recent scoping review, Charow et al [34] identified key
competencies that are currently taught as part of the AI
curriculum and what programs should be taught. The authors
used Bloom Learning Taxonomy to group curriculum topics
[34]. Table 3 illustrates the overlap of competencies identified
in the scoping review and highlighted by the participants in this
study.

As technologies are being integrated within care settings,
participants in this study emphasized that it is important for
HCPs to acknowledge how data are acquired and processed and
explain a rationale when making decisions. Interestingly, the
psychomotor and affective domains of Bloom Learning
Taxonomy were reiterated by participants. Critical appraisal,
ethical and legal considerations, communication, interpersonal
skills, empathy, compassion, and emotional responsiveness
were highlighted as important competencies to minimize the
negative implications of AI integration at the point of care.

This study highlights the importance of establishing trust and
transparency as part of the patient-clinician relationship. Many
participants stated that lack of transparency in data access and
use could potentially erode their trust in using AI for care
delivery. This was in line with a previous study [30], which
suggested that physicians must have a thorough knowledge of
the AI technologies used and be prepared to provide a coherent
rationale when making clinical decisions. For instance, if a
patient is diagnosed with cancer, they would want to understand
how AI technology arrived at that decision [48]. What becomes
a challenge, however, is that advanced AI technologies are often
built using complex algorithms, which may be difficult to
explain, even if clinicians have the technical expertise [48]. In
a qualitative study that examined patient privacy perspectives
on health information exchange, trust was identified as a key
antecedent for establishing effective patient-clinician
relationships [49]. Transparent communication regarding the
use of AI technologies serves as an initial step toward cultivating
trust [49]. The authors noted a significant association between
patients’ trust in clinicians and their willingness to share
personal health information [49].

Patients believe the clinician’s presence is important, particularly
when discussing sensitive information regarding their care. AI
technologies should support existing patient care and not replace
physician interactions. Similar to our study, previous research
indicated that patients valued the interaction with the clinician
rather than with AI technology alone [29]. AI technologies can
potentially diminish clinician-patient interactions and jeopardize
the humanistic facet of patient care [15,50]. Patients who
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interacted only with AI technologies in their care reported a
lack of compassion and empathy [19,21,22] and a limited
opportunity for patients to ask follow-up questions, discuss
treatment options, and receive emotional support [19,21].
Davenport and Kalakota [48] further reinforced this point,
highlighting the importance of establishing an empathetic
relationship between clinicians and patients. In other studies,
patients specified that the AI output should be verified by the
physician for accuracy [22] and be used as a second opinion to
inform clinical decisions [9,19]. In the event of a disagreement
between the physician and the AI technology, patients favor the
physician’s judgment as the final decision [9,22]. Yang et al
[21] reported that AI can serve as a copilot in automating tasks
and optimizing the quality of care. More importantly, the
literature emphasizes the role of providers in decision-making,
as they need to adapt the AI results based on the uniqueness of
each patient and their circumstances [9].

Engaging patients in proactive care leads to better patient
experience and improved health system outcomes [48]. The
findings from this study suggest that education on AI
innovations helps to create awareness and foster confidence
among patients. As a result, patients’ self-efficacy increases,
enabling them to be knowledgeable and competent in safely
navigating a digitized health care environment. This also
contributes to the increased acceptance of AI technologies in
practical settings to enhance the quality of care. Recent studies
on patient perspectives on the use of AI in health care reported
that it is critical for patients to be educated on the threats of AI
technologies in an ever-increasing technology-enabled care
environment [50,51]. Cultivating a strong culture of
cybervigilance across this new digital space is vital for
delivering care and ensuring that large amounts of sensitive and
valuable data in vulnerable systems are protected. Moreover,
Kovarik [52] reported that patients should be educated on the
fundamentals of AI, which will be valuable when discussing
diagnoses and treatment options.

Furthermore, the findings of this study underline the need for
data stewards and regulations to ensure the protection and
confidentiality of patient data. Consistent with previous
literature, patients reported high levels of concern toward the
misuse of their personal health information [15,48,51]. Patients
in this study also expressed privacy concerns, such as how their
health data would be used, how their data would be shared, and
for what purposes. This ambivalence has resulted in increased
fear among patients, and the need for choice and autonomy.
Participants stated that it was important to have a choice in
terms of consenting to what information they would prefer to
opt-in or opt-out for secondary use of data. In a review article
on the practical implementation of AI technologies, the authors
asserted that cybersecurity measures need to be implemented
to address concerns about the inappropriate use of patient data

[53]. A few studies have reported that patients feared that their
personal health information might be not anonymized or be
used for profit by insurance and third-party companies [15,50].
In one study, patients perceived that insurance companies could
use AI technologies to discern new information about their
health and make changes to their premiums [9].

Oversight and regulatory measures are necessary to ensure the
confidentiality of patient data and to protect against nefarious
acts [9]. The AI implementation toolkit developed by Canada
Health Infoway provides guidance on an AI governance
framework [54]. This framework consists of 3 key constructs
that oversee the responsible and ethical implementation of AI
technologies: people, policies, and procedures [54]. The people
construct consists of skillsets required to form a committee that
provides procedural and practical guidance for AI
implementation [54]. Policies focus on providing directions for
risk considerations related to AI [54]. Procedures provide
operational guidance on implementation aspects, including risk
assessment, data testing, and monitoring [54]. Establishing
governance structures is pivotal in monitoring ethical issues
and mitigating any negative repercussions as a result of AI
implementation in a milieu of increasing vulnerability to data
breaches [48]. Matheny et al [3] delineated that it is imperative
to involve patients and their families when developing regulatory
and legislative solutions regarding the use of AI technologies
in clinical contexts.

Finally, the participants noted the importance of examining
implicit biases to ensure that AI technologies are inclusive and
equitable. Biases in data sets may pose challenges in
generalizing results and further exacerbate health inequities as
well as discriminatory practices. This point was reinforced in
a nominal group technique study that emphasized the negative
implications of using homogenous data sets for developing
algorithms [23]. One example of this is when AI models are
developed based on data from a single health care institution,
which may not be representative of a larger population [55].
The literature also reports that developers could inadvertently
integrate their biases into the model development process [9].
Daneshjou et al [56] noted that there are no standards for
describing data sets used for AI model development.
Descriptions of data sets could aid in a better understanding of
models and any underlying biases. Interestingly, our study also
accentuated the notion of using AI technologies to reduce bias
from a patient perspective. In health care, clinicians sometimes
have preconceived notions about their patients; hence, a patient
may not receive the same care as they would if they did not
have that notation in their health records. Participants believed
that AI technologies could remove some of the preconceived
ideas and perceptions that contribute to the marginalization of
specific populations when providing care, thus creating a more
equitable and inclusive care environment.
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Table 3. Overlap of competencies identified in the scoping review and highlighted by participants in this study.

Competencies highlighted by participants in this
study and the scoping review (Charow et al [34])

Competencies identified in the scoping review (Charow et al [34])Bloom taxonomy domain

Cognitive •• Ethics and legal issuesFundamentals of AIa

• Data governance• Implementation of AI
• Big data
• Data science, machine learning, and statistics
• Multidisciplinary collaboration
• Strengths and limitations of AI
• Predictive analytics
• Economic considerations
• EHRb fundamentals

Psychomotor •• InterpretationAnalytical
• •Problem solving Communication

•• Critical appraisalProduct development
• •Data visualization Medical decision-making

• Cultivation of compassion and empathy

Affective •• Perceptions of humanistic AI-enabled careChange management
• •Adoption of AI Create and sustain a culture of trust and trans-

parency with stakeholders and patients

aAI: artificial intelligence.
bEHR: electronic health record.

Limitations
The findings of this study should be examined in light of these
limitations. A limitation of this study is that the study population
included no individuals in the age range of 0 to 40 years. Despite
the less frequent use of health care services in this age group,
they may represent a more technology-savvy population. This
study provides diverse perspectives from rural and urban settings
in Canada, as context plays a pivotal role in influencing the
uptake of technology. This study provides a nuanced
understanding of patient perceptions in both settings and how
their perceptions may be similar. The interviews were conducted
until theoretical saturation was achieved (n=12). In addition, a
rigorous analytical approach was adopted, including iterative
discussions with the research team and patient partners to
validate emerging themes. Another limitation of this study was
the recruitment of predominantly female patients, contributing
to an underrepresentation of male voices. Demographic data
such as race, ethnicity, employment, disability, and language
were not collected, as the purposive sampling attempted to
recruit participants based on comfort with the technology and
the contexts in which they received care.

Conclusions
This study revealed that to successfully adopt AI technologies
in care settings, it is crucial to foster patient trust, build
continued partnerships with patients, and establish data
governance and validation of AI technologies. As we shift to a
digital form of care, AI innovations are being rapidly adopted
and implemented within the clinical ecosystem at a fast pace to
advance the delivery of patient care and enhance efficiency at
a systems level. Rather than AI becoming a replacement for
humanistic care, AI and care providers play a synergetic role
in the future of digital care. Understanding the needs and values
of patients helps ensure the safe, effective, and responsible use
of AI. Patient engagement helps to provide a real-world
perspective and coconstruct knowledge from an end-user
standpoint, thus ensuring that AI innovations are successfully
integrated into practice settings. The findings of this study have
implications for all stakeholders with accountability to ensure
that patients are actively engaged in sustaining safe and
high-quality care.
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Abstract

Background: Artificial intelligence (AI) is a branch of computer science that uses advanced computational methods, such as
machine learning (ML), to calculate and predict health outcomes and address patient and provider health needs. While these
technologies show great promise for improving health care, especially in diabetes management, there are usability and safety
concerns for both patients and providers about the use of AI/ML in health care management.

Objective: We aimed to support and ensure safe use of AI/ML technologies in health care; thus, the team worked to better
understand (1) patient information and training needs, (2) the factors that influence patients’ perceived value and trust in AI/ML
health care applications, and (3) how best to support safe and appropriate use of AI/ML-enabled devices and applications among
people living with diabetes.

Methods: To understand general patient perspectives and information needs related to the use of AI/ML in health care, we
conducted a series of focus groups (n=9) and interviews (n=3) with patients (n=41) and interviews with providers (n=6) in Alaska,
Idaho, and Virginia. Grounded theory guided data gathering, synthesis, and analysis. Thematic content and constant comparison
analysis were used to identify relevant themes and subthemes. Inductive approaches were used to link data to key concepts,
including preferred patient-provider interactions and patient perceptions of trust, accuracy, value, assurances, and information
transparency.

Results: Key summary themes and recommendations focused on (1) patient preferences for AI/ML-enabled device and application
information, (2) patient and provider AI/ML-related device and application training needs, (3) factors contributing to patient and
provider trust in AI/ML-enabled devices and applications, and (4) AI/ML-related device and application functionality and safety
considerations. A number of participants (patients and providers) made recommendations to improve device functionality to
guide information and labeling mandates (eg, link to online video resources and provide access to 24/7 live in-person or virtual
emergency support). Other patient recommendations included (1) providing access to practice devices, (2) providing connections
to local supports and reputable community resources, and (3) simplifying the display and alert limits.

Conclusions: Recommendations from both patients and providers could be used by federal oversight agencies to improve
utilization of AI/ML monitoring of technology use in diabetes, improving device safety and efficacy.

(JMIR AI 2023;2:e46487)   doi:10.2196/46487
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Introduction

Artificial intelligence (AI), a branch of computer science,
attempts to build devices and software programs that explore
and gather new knowledge, learn, and apply reasoning [1,2].
Machine learning (ML), a term often used interchangeably with
AI, differs from AI in that in ML computer systems are able to
adapt without following explicit instructions, using algorithms
and statistical models to analyze and draw inferences from
patterns in data [3,4]. Research in non–health care fields
suggests that accountability is the most important attribute of
AI, with fairness, security, privacy, and accuracy rated to have
similarly high importance, and that transparent and
comprehensible AI/ML systems are preferred [5-7]. Among the
few studies that have explored patient perceptions of AI and
related digital health applications, accuracy of decisions and
patient empowerment have been identified as the 2 most
important criteria [5,6]. In fact, a recent survey of health care
workers in India found that technical skills, ethical concerns,
and risk mitigation strategies were 3 key factors influencing
perceptions regarding AI/ML use and that AI has a strong
positive impact on patient cognitive engagement with health
technologies [8].

As use of AI/ML in the health care arena is rapidly expanding,
greater than expected benefits and patient outcomes have been
seen [1]. Examples of AI/ML applications include but are not
limited to diagnostic supports, image interpretation, tools that
support rapid or automated data capture, and disease
management [1,2]. In fact, recent studies have explored use of
AI/ML in primary care [9] to support clinical decision-making
and treatment management decisions for a number of chronic
conditions, such as cardiovascular disease [10], mental health
[11], and diabetes care [2]. However, little is known about how
patients and providers feel about use of AI/ML in chronic
disease management, if unmet AI/ML training needs influence
AI/ML adoption, and most importantly, how barriers should be
addressed (eg, labeling, training, and required supports). Left
unaddressed, AI/ML concerns (eg, potential interpretation errors
and data privacy issues) and use in nonrepresentative samples
(eg, educated, well-resourced populations), could contribute to
lack of patient and provider trust in AI/ML applications, health
inequities, reduced efficacy, and poor patient outcomes, as well
as preventable safety concerns [7,12,13].

The US Food and Drug Administration (FDA) is responsible
for protecting public health by ensuring the safety, effectiveness,
quality, and security of drugs, biological products, medical
devices, and software (eg, mobile health apps) [14]. In 2014,
the FDA established the Patient Engagement Advisory
Committee (PEAC) to ensure safe and effective AI/ML
implementation in the health care setting. The PEAC, made up
of patients and providers, is responsible for premarket review
of AI/ML devices, guiding device labeling requirements, and
supporting “transparency and real-world performance
monitoring” to ensure safe and effective AI/ML use from
premarket development through the postmarketing period

[14,15]. The primary objective of this qualitative inquiry is to
build upon the work of the FDA and PEAC to (1) understand
general patient AI/ML information needs, (2) understand factors
that influence patients’ perceived valuing of and trust in AI/ML
devices to support diabetes management, and (3) guide current
and future FDA AI/ML labeling requirements to ensure the
appropriate information is accessible and supports safe and
effective use of AI/ML-enabled devices.

Methods

Overview
Barriers to technology utilization (eg, understanding, access,
and perceived need) differ by population and geographic region
(eg, access in rural, underresourced, and ethnically diverse
communities) [16,17]. Patients (and providers) may have limited
awareness of the many AI/ML applications available to support
patient health management. Assumed AI/ML application
complexity, novelty, and costs make it difficult for patients to
recognize and communicate their reservations and management
needs with providers (eg, their general perceptions of the value
of the relevant technologies, unmet information needs, necessary
regulatory concerns, and assurances required to trust AI/ML
applications) [17-20]. Due to the variety and relative maturity
of available AI/ML diabetes management and prevention
applications, we chose to focus on perceptions, information,
and implementation needs of patients and providers considering
and using AI/ML applications to manage their diabetes.

Setting
To understand general patient perspectives and information
needs related to the use of AI/ML in health care, we conducted
a series of 9 focus groups and 3 interviews that included a total
of 41 patients and interviews with 6 providers, including nurse
case managers, pharmacists, physicians, and an endocrinologist
serving 3 different patient populations in Alaska (n=9), Idaho
(n=23), and Virginia (n=8). Within the context of this study,
members of the research team and target research population
were part of the community of interest (individuals with type
1 or type 2 diabetes, their caregivers, and health care providers
managing diabetes) and familiar with the needs of the patients
with diabetes. Project team members have conducted similar
qualitative studies in the past and understand the health care
access and resource disparity barriers (eg, education,
transportation, and financial deficits) that exist for patients and
providers living in underresourced, underrepresented rural and
urban communities across Alaska, Idaho, and Virginia.

Approach
To ensure consistency in the data collection process, a
moderator’s guide was developed to facilitate and standardize
the focus groups and interviews. Guided by the established
health technology assessment literature, the moderator’s guide
scenarios and questions were developed and drafted by the
research team and focused on (1) participant understanding of
smart products and devices that use AI to manage diabetes, (2)
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information needs to effectively and safely use AI/ML
applications, and (3) participant suggestions on how best to
communicate the necessary information to patients and providers
to safely and effectively use applications and devices. For each
application or device, we generated a patient-friendly description
of the technology and how AI/ML was used. We generated
context-specific queries for each example. Questions assessed
patient and provider information needs, expected regulatory or
other assurances, trust, and general perceptions of the value of
the application. Scenarios were tested and refined during pilot
sessions with a set of 4 patients and a provider. Questions were
posed to providers in semistructured interviews that were similar
to those asked of patients; the questions focused on information
needed by patients to safely and effectively use AI/ML
applications for diabetes management.

All focus group sessions and semistructured interviews were
conducted by trained team personnel (RR, CL, and IW) who
understand diabetes management challenges patients and
providers face, know how to think about the problem (ie,
reflexivity), and are sensitive as to how the data collection
process may shape individual- and community-level responses
(ie, research problem framing). This unique combination of
professional experience, health training, and community
engagement supported a more comprehensive understanding of
training needs, sustainable training program development and
implementation, and took into account prior assumptions, factors
(ie, social contextual inquiry), and approaches used by the team
(eg, diabetes and device information sharing) to overcome
limited patient and provider AI/ML understanding and identify
and recognize unmet information needs due to limited device
and system experience [21].

RR, the qualitative research lead, conducted a 60-minute
Zoom-based training session with all research team members
to ensure focus group and interview consistency. Pilot training
sessions were recorded, providing pertinent technology-based
examples that focused on unmet patient and provider training
needs (ie, use, maintenance, and troubleshooting), device safety
concerns (alerts, warnings, and functionality), preferences for
device testing, information sharing concerns, and other factors
directly and indirectly related to device use (trust).

Ethical Approval
This study was granted expedited approval with a waiver of
written consent (IRB-FY2021-259 for the work with patients
and IRB-FY2021-260 for the work with providers) by the Idaho
State University Institutional Review Board (IRB) and is subject
to university research governance procedures. The Idaho State
University IRB was also approved as the single IRB of record
for the University of Virginia site. Participants or their legal
guardians verbally consented to participation at the time of the
interviews or focus group scheduling. Verbal consent was
confirmed and documented again prior to the interviews or focus
group initiation. All research was performed in accordance with
relevant guidelines and regulations applicable to human subject
participation and the Declaration of Helsinki.

Theoretical Framework
The Consolidated Framework for Implementation Research
(CFIR) provides a menu of distinct constructs associated with
effective program implementation (eg, implementation and
organizational climate, culture, and context) and systematic
analysis, and it supports incorporation of organization findings
into practice [22,23]. Implementation climate, our primary
construct, focuses on the impact that climate has on the
implementation of innovative and progressive services, and the
extent to which organization members perceive that an
innovation is expected, supported, and rewarded by their
organization or community [23-26].

Participant Selection
To recruit patients with type 1 or type 2 diabetes, flyers were
distributed through local community groups, health care clinics,
and diabetes educators. These groups included, but were not
limited to, the Diabetes Alliance of Idaho, Camp Hodia, Idaho
Primary Care Association, Community Council of Idaho, local
community venues (churches and libraries), and local health
care clinics (St. Luke’s Endocrinology, Idaho Nutrition
Associates, Idaho State University clinics, Full Circle Health,
and University of Virginia [UVA] Health). The flyer was also
shared with Facebook groups, including the Juvenile Diabetes
Research Foundation Idaho, Native American Coalition of
Boise, and Latter-Day Saints church groups. Lastly, the flyer
was also promoted through paid promotion on Facebook. Paid
promotion targeted the southern Idaho and Anchorage, Alaska,
areas.

The flyer contained information regarding the study purpose,
focus group eligibility, compensation, investigator contact
information, and a screening survey link for interested
individuals. The screening survey included full study details
and collected eligibility and contact information. After
individuals completed the screening survey, the project
coordinator or research team member called them to confirm
their interest in participation, reviewed consent, collected
necessary information (ie, participant age, gender, diabetes
diagnosis, race/ethnicity, technology use, and education level)
and enrolled them. Participants could also complete the consent
paperwork electronically or use paper forms, in person, before
the focus group or interview. We used inclusive focus group
methods to ensure participants’ psychological safety and to
encourage engagement. Two sessions had a majority of African
American participants and 1 session had a majority of Native
American/Alaska Native individuals.

Investigators used their relationship with area providers to
recruit participants. In addition to these established relationships,
area providers were also identified through an online search and
contacted via email. We sought to recruit both physicians and
certified diabetes care and education care specialists (CDCES)
who care for patients with diabetes. After providers expressed
their interest and willingness to participate in interviews,
screening paperwork was completed, and their consent was
verbally obtained prior to beginning the interview. We
conducted semistructured interviews with providers using the
established moderator’s guide and Zoom, an online meeting
platform. All focus group and interview sessions were
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audio-recorded and transcribed. Individuals received a US $75
gift card as an incentive for their participation.

Data Analysis
Grounded theory guided data gathering, synthesis, and analysis
[27-29]. Thematic content and constant comparison analysis
were used to identify relevant themes and allow for general and
across-group assessments for both exploratory and verification
purposes. An inductive approach was used to link data to key
concepts, including patient perceptions of trust, value, accuracy,
transparency, assurances, and preferred patient-provider
approaches to application interaction [28,29]. QDA Miner
(Provalis) [30] qualitative coding software was used for analysis.
During the first stage of analysis, each transcript was
systematically coded by at least two coders, with an initial
codebook created based on moderator questions and initial
review of the transcripts. Data were chunked into smaller units,
definitions were established for each code, and the
code/definition was attached to each unit (open coding). During
the second stage, codes were grouped into categories (axial
coding). Lastly, in the third stage, the researchers met frequently
to refine and finalize codes (selective coding), identify
discrepancies, achieve consensus, and establish the final
codebook. Two coders systematically coded the data generating
descriptive and analytic themes and identified patterns and
dominant concepts that emerged during analysis. Where
possible, codes associated with responders (ie, patient
characteristics) were also included (Multimedia Appendix 1).

Representative quotes were sorted by codes, summary
descriptions for each code were written, and information was
linked to demographic data to identify additional patterns and
themes. Preferred information or labeling presentation
approaches and desired content were categorized and
cross-referenced to patient classifications and themes were
identified and prioritized. We used progressive analysis (data
analysis concurrently with data collection) to support selection
of scenarios and decisions on when enough sessions had been
completed to achieve saturation in qualitative responses to key
concepts [27,28,31]. Our full team of investigators reviewed
(and iterated as needed) definitions, coding rules, and emerging
themes (within the context of relevant interviewee quotes) for
rigor, credibility, authenticity, sensitivity, and thoroughness
[31]. The Consolidated Criteria for Reporting Qualitative
Research (COREQ) were used to ensure comprehensive
reporting of the qualitative data [32].

Results

General Characteristics
Between August and October 2022, we recruited and
interviewed 41 patient participants (Table 1) to participate in 1
of 9 patient focus group sessions, 3 patient interview sessions
(it should be noted that with teenagers, we conducted one-on-one
sessions due to after-school conflicts), or 6 provider interviews.
Provider interviews consisted of 3 pharmacists or CDCES, 2
primary care providers, and 1 diabetologist.
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Table 1. Participant demographics (N=41).

ValuesCharacteristics

Age category, n (%)

38 (93)Adults (aged 20-89 years)

3 (7)Teenagers (aged 16-19 years)

48.4 (20.4)Age, (years), mean (SD)

48 (32-66)Age, (years), median (IQR)

Gendera, n (%)

19 (46)Male

21 (51)Female

Diabetes type, n (%)

17 (41)Type 1

24 (59)Type 2

Raceb, n (%)

7 (17)Alaska Native/American Indian

13 (32)Black

24 (59)White

Advanced technology usera, n (%)

33 (80)Yes

7 (17)No

Education level, n (%)

3 (7)Some high school

6 (15)High school, General Educational Development test, or equivalent

4 (10)Trade school, apprenticeship, or equivalent

8 (20)Associate’s degree

9 (22)Bachelor’s degree

11 (27)Postgraduate or professional degree

aData for 40 participants only; percentages are of 41 participants and do not add up to 100.
bNot mutually exclusive groups; percentages do not add up to 100.

Themes, Subthemes, and Representative Quotes
Representative quotes are provided with relevant codes, themes,
and subthemes: information needs (Multimedia Appendix 2),
safety (Multimedia Appendix 3), and trust (Multimedia
Appendix 4). Information needs were broken down into general
needs, as well as training and informational support needs,
preferences for information sharing, sources of information,
troubleshooting, and information maintenance needs. Themes,
subthemes, and representative quotes highlighted in Multimedia
Appendix 2 emphasized the importance of patient training and
ready access to necessary information tools and resources,
especially in response to AI/ML application alerts and warnings.
Participants requested that information and training be provided
in a number of different ways (eg, pamphlets, in-person training,
computer-guided supports, and sharing of patient experiences).
Multimedia Appendix 3 presents safety concerns and needs
identified by participants. Suggestions focused on input controls,
alerts, reporting, override functions and manufacturer labeling,

information, and device mandates that could increase safety and
improve AI/ML application trust. Lastly, Multimedia Appendix
4 shows factors affecting participant trust and use of AI/ML
applications. Reliability and accuracy of the measures in the
specific population, AI/ML application limitations, and the
impact of endorsements on trust are presented.

Discussion

Principal Findings
In health care, use of advanced computational methods and
related AI/ML applications is expanding [1,2]. Provider- and
patient-facing devices and applications (eg, continuous glucose
monitors, insulin pumps, electronic health record–integrated
decision supports, and mobile health apps) show great promise
for improving diagnosis, data interpretation, and use of data to
support treatment recommendations, dosage adjustment and
management, and risk assessment [33].
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While there is emerging research on public perceptions of
responsible AI/ML application use, in general, little is known
about how user interaction with specific AI/ML applications or
related system information (eg, labels, intended use statements,
and warnings) influences patient and provider perceptions of
performance and addresses the ethical concerns or risks related
to AI/ML use, especially in diabetes management and tailored
medication therapy [2,6,34,35]. In order to provide useful
guidance related to the representation of AI or AI-related
explanations to patients with diabetes, it is important to explore
patient and provider understanding of AI/ML applications,
identify safety concerns with AI/ML use, and address underlying
mistrust of AI/ML devices to support realistic contexts of use.
In our research, we identified themes and subthemes and present
summary descriptions, representative quotes, and relevant
respondent data that identify and highlight the diverse patient
and provider perspectives on unmet or suboptimal AI/ML
application information and training needs, unaddressed safety
concerns, and factors that influence patient and provider trust
in the use of AI/ML applications for diabetes management.

Information and Training Needs
As we are all aware, diabetes is highly prevalent in the United
States, affecting approximately 10% of Americans and 27% of
people aged over 65 years [32]. The potential for AI/ML
applications to improve outcomes for people living with diabetes
is significant; however, information and training are necessary
to support the human factors associated with safe and effective
AI/ML application use in diabetes management, especially in
older adults [35-37]. Patients need to understand all metrics
displayed on the device to safely and effectively manage their
diabetes. In our qualitative work, we found many patients rely
on health care professionals as their primary resource for
information about the appropriateness, quality, and safety of
selected diabetes management technology. Most health care
professionals may not have the necessary knowledge and
experience with all available technology platforms to support
meaningful use and troubleshooting of AI/ML applications for
diabetes management; therefore, they require external support.
In fact, according to a technology review conducted by the
United Kingdom’s National Health Service, rapid technological
change requires that all health care providers (eg, doctors,
nurses, pharmacists, and paramedics) receive extensive
technology training [38].

This finding is consistent with the literature exploring patients’
and health care professionals’ perspectives toward technology
use in diabetes management [39] and the concerns regarding
safe and effective use of available technology that may be
exacerbated if and when AI/ML applications become more
available to patients (ie, over-the-counter and prescription
applications) [40]. Therefore, it is essential that both patient
and provider information and training needs are addressed to
ensure patient diabetes management and safety needs are met
by AI/ML device use (eg, understanding of device functionality,
data availability, and safety functions). In fact, most participants
in our study wanted and needed more information about the
device or application than they initially received during training
(eg, what it was measuring, why it was measuring it, and how
results would be used to improve their health). Patients requested

that device information be clear, concise, and written in lay
terms and that comprehensive information be provided in a
number of different ways (eg, in-person training, hands-on
device training, real-world instructional videos, manufacturer
videos clips and targeted frequently asked questions, pamphlets,
and cheat-sheets) to accommodate different learners and learning
styles. Many patients also requested that peer-to-peer training
and evidence-based informational resources be provided to
support real-life device use and troubleshooting. We also found
that the amount of information provided at any one time was
often a limiting factor and was both overwhelming and
confusing to the patients and caregivers. It is important to note
that initially, patients in our study were unsure of their own
information needs, and that questions arose with daily device
and application use over the following weeks. This suggests
that a tiered or layered approach to teaching [41], validated and
used in adult learning and education models, be included.
Maintenance, troubleshooting, and potentially life-threatening
alerts might be necessary to ensure appropriate and safe device
use. A number of patients and providers in our study suggested
a tiered approach to both knowledge assessment and
functionality, which would require a minimal level of disease
state and device or application knowledge to allow users to
enable specific functions. The staged or tiered approach to
training was viewed by many patients as an effective and
efficient training mechanism aligned with patient understanding.
The ability to watch instructions in segments was thought to
allow for device mastery. Patients also requested the ability to
trial a number of devices and to be connected to all relevant
systems to ensure that the device is appropriate for them (eg,
considering type of diabetes and experience with technology).
This is consistent with patient training needs and requests seen
in literature regarding human factors and usability engineering
for medical device labeling and function, especially among
older adults [36,39,42].

Lastly, there were a number of participant suggestions regarding
training and support that could be provided by device
manufacturers to improve device use and testing. Suggestions
included the following: (1) provide a basic starter guide for the
first few days of use; (2) provide practice devices that allow for
hands-on trials; (3) provide links to online resources, local
supports, and reputable community resources (eg, professional
organizations, blogs, and personal reviews) on the manufacturer
website; (4) provide 24/7 live in-person or virtual emergency
support; and (5) provide brief, searchable, instructional
resources, such as videos indexed by problem and answers to
frequently asked questions.

Safety
In respect to safety, patients in our study were most concerned
with (1) having a clear understanding of alerts and warnings,
(2) being able to recognize and rapidly respond to a potentially
life-threatening situation (eg, device overrides, function
lockdowns, and system-down alerts), (3) knowing immediately
if there were device connectivity issues that impede overall
diabetes management (eg, the continuous glucose monitor not
connected to the insulin pump), and (4) having safeguards to
reduce the risk of user error (eg, data field restrictions and order
entry confirmation requirements).
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Participants wanted access to real-time, live device safety
support offering them the ability to more effectively and
efficiently troubleshoot issues with devices that directly control
insulin delivery. Participants also voiced concerns regarding
the number of alerts they received, the alert descriptions being
provided as codes, the information provided by the manufacturer
or provider about what to do to address the alert (device
instructions), and mechanisms in place to stop alerts once the
patients has addressed them (to avoid alert fatigue). This is
consistent with the scientific and lay literature; having clear
predictive and real-time alerts is important but so is ensuring
that alerts can be tailored to patient needs and address provider
concerns [43-45].

Providers stressed the importance of patients having access to
a limited number of clear, clinically important alerts and
necessary alarms and the provision of patient education focused
on understanding what to do in the case of an alert or alarm. If
users cannot see or interpret the alert, they will not respond
appropriately, a documented challenge for many older adults
[37,46]. In order for required safety information provided to
patients to be useful, it needs to be immediate, detailed, and
prescriptive and provide simple instructions to the patient and
caregiver [47,48]. It is also important that device updates related
to safety and device functionality be pushed out automatically
to ensure continued safe and effective device and application
use. Lastly, it was recommended by participants that all safety
features need to either remind or directly connect patients to
providers, emergency services (eg, 911 and Medic Alert), and
necessary troubleshooting resources to help support patient
understanding and encourage patient ownership of care.

Trust
Trust in the device or application was based on trust in the health
care provider’s recommendations and the participant’s
experience with that health care provider; however, it also
extended beyond the clinical interface to the collection,
collation, and use of personal data [49-53]. In our study,
individuals consistently treated by the same health care provider
or specialist appeared to have more trust in the
provider-recommended device. However, it is important to note
that concerns regarding blind trust were voiced by a number of
patients and providers in our study and that trust in the device
was directly related to patient experience, device accuracy, and
duration of device use.

AI/ML application use can be associated with a number of risks
as well as benefits. As such, our findings are supported by other
research that emphasizes the complexity of and need for trust
being embedded in all aspects of AI. Specifically, Lockey et al
[50] support this finding, showing that transparency,
explainability, and accuracy metrics are important, although

they may not be sufficient, to garner trust in AI applications. In
line with our methodological approach, Lockey and colleagues
[50] also suggest the need to examine multiple key stakeholders
in relation to AI systems and their varying expectations and
alignment with the outcomes of using the AI device.

Participants expressed the need for exposure to the device and
a mechanism in place to double-check readings and functionality
to build trust; they also expressed to need for the opportunity
to question device results and troubleshoot concerns with
providers and other health care team members. Participants
raised an important point on having detailed and accessible
information on the population characteristics (ie, age,
race/ethnicity, gender, and diabetes type) of those who tested
the device or application. Participants wanted to know that the
device was tested in individuals similar to them. These results
are in line with best practices for ensuring and promoting trust
in AI implementation, such as including representative and
equitable populations in its development, having a user-centered
design, and ensuring constant accountability of the algorithm
being used to maintain accuracy [51]. Given the importance of
human factors and the associated patient outcomes in use of AI
devices, it is essential to understand how trust is linked to the
needs of the user and design requirements [52,53]. Our data
support optimizing the opinions of patients and users and
acknowledging that trust shapes clinicians’ and patients’ use
and initial adoption of AI devices [52].

The implementation of the strategies discussed above can
increase proper use, safety, and trust regarding AI-enabled
medical devices. In an informal review of patient-facing AI
systems available from the FDA [54], we found that current
apps and systems lack detailed information and resources for
users, both patients and providers. We believe this makes our
findings even more important. As manufacturers and device
makers hopefully integrate our suggestions, real-world examples
will arise. Further investigation will then be needed to optimize
AI system interfaces.

Conclusions and Next Steps
Our work supplements the emerging literature related to public
perceptions of responsibility and ethics in AI/ML device and
application use [7,13,14]. We hope that our findings inform the
FDA’s decisions on public health and safety related to AI/ML
devices and applications. AI/ML applications demonstrate a
great deal of promise; however, even greater outcomes will be
realized if ethical and responsible AI design engenders greater
engagement and use by all. It is important to understand how
to present information to patients about AI/ML characteristics
identified as important to them, such as data privacy, fairness,
accuracy, and risks.
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Abstract

Background: The use of patient health and treatment information captured in structured and unstructured formats in computerized
electronic health record (EHR) repositories could potentially augment the detection of safety signals for drug products regulated
by the US Food and Drug Administration (FDA). Natural language processing and other artificial intelligence (AI) techniques
provide novel methodologies that could be leveraged to extract clinically useful information from EHR resources.

Objective: Our aim is to develop a novel AI-enabled software prototype to identify adverse drug event (ADE) safety signals
from free-text discharge summaries in EHRs to enhance opioid drug safety and research activities at the FDA.

Methods: We developed a prototype for web-based software that leverages keyword and trigger-phrase searching with rule-based
algorithms and deep learning to extract candidate ADEs for specific opioid drugs from discharge summaries in the Medical
Information Mart for Intensive Care III (MIMIC III) database. The prototype uses MedSpacy components to identify relevant
sections of discharge summaries and a pretrained natural language processing (NLP) model, Spark NLP for Healthcare, for named
entity recognition. Fifteen FDA staff members provided feedback on the prototype’s features and functionalities.

Results: Using the prototype, we were able to identify known, labeled, opioid-related adverse drug reactions from text in EHRs.
The AI-enabled model achieved accuracy, recall, precision, and F1-scores of 0.66, 0.69, 0.64, and 0.67, respectively. FDA
participants assessed the prototype as highly desirable in user satisfaction, visualizations, and in the potential to support drug
safety signal detection for opioid drugs from EHR data while saving time and manual effort. Actionable design recommendations
included (1) enlarging the tabs and visualizations; (2) enabling more flexibility and customizations to fit end users’ individual
needs; (3) providing additional instructional resources; (4) adding multiple graph export functionality; and (5) adding project
summaries.

Conclusions: The novel prototype uses innovative AI-based techniques to automate searching for, extracting, and analyzing
clinically useful information captured in unstructured text in EHRs. It increases efficiency in harnessing real-world data for opioid
drug safety and increases the usability of the data to support regulatory review while decreasing the manual research burden.

(JMIR AI 2023;2:e45000)   doi:10.2196/45000

KEYWORDS

electronic health records; pharmacovigilance; artificial intelligence; real world data; EHR; natural language; software application;
drug; Food and Drug Administration; deep learning
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Introduction

Postmarketing drug safety surveillance at the Center for Drug
Evaluation and Research (CDER) of the US Food and Drug
Administration (FDA) aims to detect, characterize, monitor,
and prevent adverse drug reactions (ADRs) for FDA-approved
drugs and therapeutic biologic products. Biomedical resources
used to detect adverse drug event (ADE) safety signals include
clinical trials, spontaneous adverse event (AE) reports submitted
to the FDA Adverse Events Reporting System (FAERS),
published scientific reports in the literature, and others. The
FAERS database compiles AE and medication error reports
submitted to the FDA to support postmarket drug safety
monitoring. FAERS monitoring has yielded information on rare
ADEs, but the information is limited by underreporting [1,2].
Multimodal approaches to pharmacovigilance using multiple
biomedical resources may offer improved drug safety signal
detection compared to reliance on single resources [3].

Electronic health records (EHRs) are a rich source of real-world
information that may potentially serve as a new complementary
drug safety resource. Although not specifically created to
document ADEs, the EHR may provide information about
product side effects, including those that occur a prolonged time
following initial drug exposure [4], and may contribute to
assessments of the safety of generic and pediatric drug products
[5,6]. EHRs have been explored to complement ADE signal
identification from spontaneous AE reports [7].

Published scientific reports describe various natural language
processing (NLP) and artificial intelligence (AI)-based
approaches to analyzing text from EHRs for ADE detection and
pharmacovigilance. Named entity recognition (NER) to identify
drug and AE mentions in text followed by extraction of the
relationships between those entities is a critical technical
challenge in building successful analytical algorithms. In
general, keywords, rule-based algorithms, and machine learning
methods have been used for case detection [8]. Some early
studies used trigger phrases to screen the text of discharge
summaries for AE concepts [9,10]. Established NLP algorithms
applied to AE detection include MedLEE, which identifies
clinical concepts and cross-maps them to Unified Medical
Language System (UMLS) concepts [11]; MetaMap, which
processes biomedical text and maps it to the UMLS [12]; and
Clinical Text Analysis and Knowledge Extraction System
(cTAKES), an NLP system that incorporates rules and machine
learning [13]. More recent studies use multiple NLP models,
including long short-term memory (LSTM), conditional random
field (CRF), support vector machines (SVMs), and bidirectional
encoder representations from transformers (BERTs) [14]. Shared
task challenges designed to promote advances in NLP for drug
safety and ADE detection from EHRs have been conducted in
recent years, including the MADE 1.0 challenge [15] and the
n2c2 Clinical Challenge [16]. Text analytic engines, such as
Amazon Comprehend Medical, Microsoft Text Analytics for
Health, and the Google Healthcare Natural Language application
programming interface, are deep learning–based pretrained
models. These models can perform a variety of general health
care NLP tasks, such as NER, relation detection, entity
disambiguation, and others [17]. We combine a similar deep

learning model with domain-specific, rule-based algorithms
from domain expertise to detect opioid-related ADEs (ORADEs)
from clinical notes.

Using novel AI methods, time-consuming manual chart review
can be automated to provide active surveillance with enhanced
detection of emerging product safety issues in near–real time.
Opioids are one of the most frequently implicated drug classes
for ADRs in hospitalized patients and are associated with
confusion, constipation, respiratory depression, sedation, ileus,
hypotension, and other ADRs [18]. One study reported an
ORADE prevalence rate of 9.1% in previously opioid-free
surgical patients [19]. In this manuscript, we report on the
development of and user feedback for SPINEL (Supporting
Pharmacovigilance by Leveraging Artificial Intelligence
Methods to Analyze Electronic Health Records Data), a novel
AI-enabled software prototype that analyzes unstructured text
in discharge summaries to extract candidate ADEs for opioid
drugs. FDA participants provide feedback on the serviceability
of the prototype in meeting their needs to support drug safety,
research, and regulatory decision-making.

Methods

Ethical Considerations
This study does not meet the requirements of research involving
human subjects as defined by the US Department of Health and
Human Services (45CFR46) for the following reasons: (1) there
was no interaction or intervention with human subjects; (2)
MIMIC is a free, publicly available database and the authors
have completed the required Collaborative Institutional Training
Initiative training and data use agreement; (3) all MIMIC III
data were deidentified in accordance with Health Insurance
Portability and Accountability Act requirements, including
removal of 18 identifying data elements; (4) protected health
information has been removed from free text fields; and (5) no
personally identifiable information was available to the study
investigators.

Data Source

EHR Data
We limited our work to publicly accessible EHR databases and
focused on the free text in discharge summaries from the
Medical Information Mart for Intensive Care III (MIMIC III)
[20]. This database contains EHRs from 2001 through 2012
from a single health care center; the records are encoded with
codes in the International Classification of Diseases, Ninth
Revision (ICD-9). We leveraged ICD-9 code E935.2, which
indicates opioids and other narcotics causing AEs in therapeutic
use, to prescreen discharge summaries that may contain
information on ORADEs. We identified 227 summaries
consisting of 227 unique hospital-event records for 226 unique
patients. We planned to explore the more recently released
MIMIC IV EHR database for additional cases, but the discharge
summaries were not made publicly accessible until after this
project was completed.
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Reference Data Set for Testing and Training
Considering that ICD-9 codes have limited positive predictive
value for drug safety surveillance [21], 2 medical students (AV,
KZ) and a physician (AS) conducted independent manual
reviews of the 227 discharge summaries identified by ICD-9
prescreening (as above) to manually assess for documentation
of ORADEs in the text. We did not use a formal annotation
guideline; positive assessments were based on specific textual
mentions describing opioid drug exposure and adverse events
either linked or potentially linked to the exposure irrespective
of the severity or seriousness of the events. To create a reference
data set of discharge summaries with true positive and negative
cases, positive assessment for an ORADE required agreement
among all 3 reviewers. Discrepancies were reconciled through
joint discussion. The 3 reviewers had similar assessments for

ORADE documentation for 174 (77%) of the 227 discharge
summaries reviewed. We trained our AI-enabled model on 181
(80%) of the discharge summaries and used the remaining 46
(20%) for testing.

NLP Process

Detection of Sections in Discharge Summaries
Based on a manual review, we identified 3 sections with the
highest frequency of ORADE mentions: “brief hospital course,”
“hospital course,” and “history of present illness.” In our
AI-enabled model (Figure 1), we used the Sectionizer module
in the MedSpacy open-source Python library [22] to automate
the identification of those component sections in the sample of
discharge summaries.

Figure 1. The artificial intelligence–enabled model is depicted with natural language processing and rule-based algorithms, MedSpacy sectionizer
components, Spark NLP for Healthcare entity recognition components, SciSpacy disambiguation of terms, Usagi interconnection of UMLS concepts
with MedDRA terminology, and further filtering of ORADE pairs. A higher resolution version of this figure is available in Multimedia Appendix 1.
MIMIC: Medical Information Mart for Intensive Care; NLP: natural language processing; POS: part of speech; UMLS: Unified Medical Language
System; MedDRA: Medical Dictionary for Regulatory Activities; ORADE: opioid-related adverse drug event.

Identifying ORADE Context Sentences Using Keywords,
Trigger Phrases, and Rule-Based Algorithms
Using MedSpacy components, we divided the unstructured text
in the 3 component sections of the discharge summaries into
individual sentences. We identified the context sentences in 2
stages. In the first stage, we identified the sentences that
contained one or more mentions of opioid-drug generic terms
or opioid-drug brand names using keyword lists manually
constructed by one of the team members (AS). The drug names
were aligned with RxNorm terminology.

In the second stage, we used 2 rule-based approaches to identify
context sentences with mentions of possible ORADEs. First,
the trigger-phrase rule: We applied trigger phrases [23] to link
mentions of an opioid drug with ADE terms using the MedSpacy
context algorithm [24]. We curated 58 additional trigger phrases
(Multimedia Appendix 2) from the training subset of the
reference data set and included them in our analysis. To capture
mentions of opioid drugs and ADEs that did not co-occur in the
same sentence, we searched for those terms in the 3 sentences
preceding and following the sentence of interest based on
reported heuristics [23].

An example of a trigger-phrase rule is as follows: “It is
noteworthy that the patient had received 0.5 mg Ativan x2 and
morphine earlier in the afternoon and there is a concern that this
may have contributed to his altered mental status.” In this
context sentence, an opioid drug (“morphine”) is identified
alongside a trigger phrase (“contributed to”). The Spark-NLP
NER model identified the AE term as altered mental status.
This term was resolved to the Medical Dictionary for Regulatory
Activities (MedDRA) term mental state abnormal using Usagi
(Observational Health Data Sciences and Informatics) and the
corresponding UMLS concept, as in the section on
disambiguation of the ORADEs below. The candidate ORADE
pair generated from this information is morphine-mental state
abnormal.

Second, the antidote-based ADE detection rule: We identified
ORADE context sentences by identifying mentions of the drug
naloxone, an FDA-approved medication that reverses an
overdose caused by an opioid drug. To capture mentions of
naloxone and opioid drugs that did not co-occur in the same
sentence, we searched through the preceding and following 3
sentences. Antidote signals have been used in detecting ADRs
in published literature reports [25,26].
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An example of an antidote-based ADE detection rule is as
follows: “He received dilaudid q 2 hr at 7:30 am, 9:30 am, 11:30
am. Code blue was called for respiratory arrest (unwitnessed).
0.4 mg of Narcan IV was administered followed by 1 mg of IV
Narcan. This resulted in improvement of his respiratory status
and regain of his consciousness.” In this example, the
antidote-based detection rule captures mentions of naloxone in
the context sentence, respiratory arrest in the preceding sentence,
and the Dilaudid mention in the prior sentence to generate the
candidate ORADE pair Dilaudid-respiratory arrest.

NER to Identify ORADEs in Clinical Text
Having detected opioid drug terms, we used a pretrained NER
model, Spark NLP for Healthcare, which uses deep
learning–based NER to identify possible AE terms in sentences.
The model is a biLSTM, convolutional neural network,
character–based deep learning model trained using biomedical
NER data sets such as AnatEM, BC5CDR, BC4CHEMD,
BioNLP13CG, JNLPBA, Linnaeus, NCBI-Disease, and S800
[27]. After identifying the AE terms in the context sentences,
we connected all opioid mentions in the context sentences with
the AE terms to create candidate ORADE pairs.

Disambiguation of ORADEs
AE terms can appear with different spellings, spelling errors,
or abbreviations; therefore, we used the UMLS to map the free
text to standardized concepts. We used ScispaCy to map the
raw phrase found in the discharge summary to the standard
UMLS translation of the concept [28]. Furthermore, we used
Usagi to obtain the MedDRA term for the UMLS concept. The
identified MedDRA AE term is mapped to the opioid drug term
to create a candidate ORADE pair that incorporates standardized
MedDRA terminology, including preferred terms (PTs) or
lower-level terms (LLTs).

Prototype User Testing and Feedback From Participants
We recruited 15 CDER staff members to assess the various
features, functionalities, and graphic visualizations. They were

experienced in the use of web-based software tools but were
not involved in the development of this prototype.

Testing Design and Conduct
A testing guide was provided that included login instructions,
descriptions and screenshots of the application features and
components, and instructions for exporting outputs. Test
participants worked remotely, were not monitored, and were
given 1 week to complete their testing. Participants were free
to explore the application for their regulatory work.

For user testing, we extracted from the MIMIC III database a
subset of discharge summaries filtered for an opioid drug
keyword. The subset included 31,052 notes corresponding to
30,326 hospital admission events for 24,539 patients.

Metrics
Each participant completed an anonymous electronic survey
covering technical operation, ease of navigating and interpreting
various visualizations, and user satisfaction for drug safety and
research (Multimedia Appendix 3).

Results

ORADE Detection
The prototype application successfully detected ORADEs that
correspond to known opioid drug toxicities. The most commonly
identified opioid drugs and the top 3 most frequent ORADEs
per drug are summarized in Table 1.

To assess the contribution of keywords with trigger phrases and
antidote (naloxone) signals for ORADE detection, we examined
quantitative parameters for a filtered MIMIC III data subset, as
shown in Table 2.

Table 2 shows that keywords with trigger phrases detect most
unique AEs and candidate ORADEs in context discharge
summaries. In comparison, the approach based on the antidote
(ie, naloxone) makes a much smaller relative contribution to
ORADE detection.

Table 1. Opioid-related adverse drug event detection from the text of the electronic health record discharge summaries.

Top 3 most frequently identified opioid-related adverse drug eventsMost frequently identified opioid drugOpioid drug class

Hypotension; somnolence; nauseaMorphineNatural

Confusion; hypotension; agitationHydromorphoneSemisynthetic

Hypotension; adverse reaction; hepatitis CFentanylSynthetic

JMIR AI 2023 | vol. 2 | e45000 | p.296https://ai.jmir.org/2023/1/e45000
(page number not for citation purposes)

Sorbello et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Relative contribution of keywords with trigger phrase and antidote (ie, naloxone) signals for candidate opioid-related adverse drug event
detection. International Classification of Diseases (Ninth Revision) code E935.2, which specifies opioids and other narcotics causing adverse effects in
therapeutic use, was used to create a filtered subset of Medical Information Mart for Intensive Care III (MIMIC III) discharge summaries having at least
one opioid-related adverse drug event pair.

ORADE detection based on both
trigger phrases and antidote signals

ORADE detection based only
on antidote (naloxone) signals

ORADEa detection based on
keywords with trigger phrases

6 (50%)6 (50%)12 (100%)Number of unique opioid drugs detected
(n=12)

15 (13%)8 (7%)110 (94%)Number of unique AEsb detected (n=117)

17 (8%)13 (6%)205 (94%)Number of unique candidate ORADE pairs
(n=219)

12 (12%)8 (8%)95 (94%)Number of discharge summaries (n=101)

12 (12%)8 (8%)94 (94%)Number of unique patients (n=101)

aORADE: opioid-related adverse drug event.
bAE: adverse event.

Error Analysis
An error analysis was performed to characterize incorrect
candidate ORADE pairs and is summarized with mitigation
strategies in Table 3.
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Table 3. Error analysis of false-positive and false-negative candidate opioid-related adverse drug event pairs.

Mitigation strategyExampleCategory/type and relative frequency

False positive

Condition terms that include “pain” are ex-
cluded.

Text: “She was given fentanyl for the back pain with subsequent

hypotension.” Incorrect candidate ORADEb pair: fentanyl-back
pain

Drug indication pairsa

The context sentence is scanned for the
following phrases using regular expressions:
“change to,” “switch to,” “change from drug
X to drug Y,” or “switch from drug X to
drug Y.” Candidate opioid drug-drug medi-
cation change event pairs so generated are
excluded.

Text: “She was changed from Percocet to Ultram due to nausea,
which resolved.” Incorrect candidate ORADE pair: Ultram-nau-
sea

Drug/medication change eventsc

The assertion module in Spark NLPg for
Healthcare is used to detect negation so that
any negated condition term is not included
in a candidate ORADE pair.

Text: “No further apneic events.” Incorrect candidate ADE: ap-
neic events

Negated ADEd mentions where

the AEe is not due to a drugf

False negative

Severe constipation was detected, but the
current model could not find which pain
medication it was related to. To resolve, we
will explore more data and consider other
rules or models.

Text: “She had been treated with high dose fentanyl and benzo-
diazepines which were the most likely cause of delirium.... She
was also found to be severely constipated. # Constipation: patient
developed severe constipation related to pain medication. She
was manually disimpacted and started on an aggressive [sic]
bowel regimen.” Missed candidate ORADE pair: opioid drug-
constipation

Concept fragmentationc

To resolve, we will explore more data and
consider other rules or models.

Text: “He does endorse decreased sleep latency, falling asleep
in less than 5 minutes, and also questionable daytime hypersom-
nolence, but denies morning headaches. Of note, patient received
prescription for Vicodin upon discharge from ED on [**2173-8-
28**].” Missed candidate AE: hypersomnolence

Entity not recognized as an AE

Narcotics could be added to the opioid
keyword list. To resolve to a specific opioid
drug, we will explore more data and consid-
er other rules or models.

Text: “His hospital course was complicated by a respiratory code
on the floor attributed to respiratory suppression from narcotics.”
Missed candidate drug: narcotics

Entity not recognized as an opi-

oid drugc

aMost commonly encountered error.
bORADE: opioid-related adverse drug event.
cModerately encountered error.
dADE: adverse drug event.
eAE: adverse event.
fRarely encountered error.
gNLP: natural language processing.

Prototype Application Performance Metrics
We calculated the performance metrics accuracy, recall,
precision, and F1-score using conventional mathematical
formulas [14]. The AI-enabled model achieved accuracy, recall,
precision, and F1-scores of 0.66, 0.69, 0.64, and 0.67,
respectively, based on the test subset of 46 discharge summaries.
Candidate ORADE pairs generated with this software prototype
are hypothetical and do not indicate causality or absolute risk
for an association. Further assessment is required by subject
matter experts.

Prototype Application Analytics Dashboard
The Qlik Sense data analytics platform (QlikTech International
AB) was used to implement the SPINEL dashboard with
interactive graphics, visualizations, and line listings. The landing
page (Figure 2) has 4 sheet tabs: ORADE, Patient Demographic,
Chord Diagram ORADEs, and Brand and Generic Drugs. They
are described below with morphine used as an arbitrarily
selected opioid drug for the graphics and visualizations.

The ORADE tab (Figure 3) has four components: (1) a pie chart
that shows subsets of the 3 classes of opioid drugs, (2) a
histogram of all subjects per drug, (3) a tree map of the
MedDRA PTs and LLTs for each drug, and (4) a second
histogram of patient count by MedDRA PT and LLT for the
selected drug(s) of interest.
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Figure 2. The landing page for SPINEL (Supporting Pharmacovigilance by Leveraging Artificial Intelligence Methods to Analyze Electronic Health
Records Data) depicting a pie chart (upper left) of the 3 opioid classes; a histogram (upper right) of the subject counts per opioid drug; a tree map (lower
left) of the electronic health record–derived opioid-related adverse drug profiles, where the adverse events for each opioid drug are represented by nested
rectangles and the size of the nested rectangle relates to the patient count per adverse event; and a histogram (lower right) of patient count by MedDRA
(Medical Dictionary for Regulatory Activities) preferred term and lower-level term for the drugs. A higher resolution version of this figure is available
in Multimedia Appendix 1.

Figure 3. The opioid-related adverse drug page depicting a pie chart (upper left) and a histogram (upper right) of the 101 subjects who received at least
one opioid class drug, a tree map (lower left) of the electronic health record–derived opioid-related adverse drug profile for the most frequently identified
opioid class drugs, and a histogram (lower right) of patient count by MedDRA (Medical Dictionary for Regulatory Activities) preferred term and
lower-level term for the top 3 most frequently identified opioid-related adverse drugs. A higher resolution version of this figure is available in Multimedia
Appendix 1.

The patient demographic tab (Figure 4) includes the following
components: (1) a histogram of age, (2) a pie chart of gender,
(3) another histogram of ethnicity, and (4) a line listing of the
individual patients with AEs and associated demographics.

The chord diagram tab (Figure 5) displays a graphic to visually
explore interconnections between opioid drugs and AE
mentions.

The brand and generic drugs tab (Figure 6) includes multiple
displays: (1) a pie chart with the percentage patient count by
brand or generic drug type, (2) a stacked bar chart of patients
by opioid class and drug type, and (3) a searchable, scrollable
spreadsheet listing of the drug name, drug type, and adverse
events associated with the subject IDs.
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Figure 4. Patient demographics page depicting a histogram for morphine treated-patients by age (upper left), a pie chart for gender (upper right), a
histogram for ethnicity (lower left), and a line listing (lower right) of the individual patients with adverse events and associated demographics. Morphine
is an arbitrarily selected natural opioid drug. A higher resolution version of this figure is available in Multimedia Appendix 1.

Figure 5. Cord diagram page visually depicting the interconnections between the opioid drug of interest (morphine in this example) and adverse event
mentions as derived from the electronic health record discharge summaries. The larger the caliber of the connecting cord, the higher the adverse drug
event frequency. Morphine is an arbitrarily selected natural opioid drug. A higher resolution version of this figure is available in Multimedia Appendix
1.
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Figure 6. Brand and generic drugs page depicting a pie chart (upper left) of brand, generic, or replaced/discontinued drug type, a stacked bar chart
(upper right) of patients by type, and a line listing (lower section) of the patients by drug name, drug type, and adverse events. A higher resolution
version of this figure is available in Multimedia Appendix 1.

Results of User Testing
SPINEL was assessed as a highly desirable prototype that
satisfies end user needs for supporting opioid drug safety signal
detection from EHR data. The application was easy to use, the
visualizations enhanced detection of drug safety signals, and
the prototype ranked high in saving time compared to manual
chart review. Survey results were based on a Likert rating scale
(Multimedia Appendix 4).

Fifteen FDA staff completed the survey questionnaire with 11
providing observational feedback. Participant feedback
uncovered a few minor bugs and indicated the following areas
for potential improvement: (1) enlarge the tabs and
visualizations, (2) enable more flexibility and customizations
to fit each end user’s needs, (3) provide additional instructional
resources to enhance learning about the various features and
functionalities, (4) add multiple graph export functionality, and
(5) add project summaries. Possible mitigation strategies include
adding a slider bar with zoom function for the more complex
visualizations, providing an instructional video on the
application’s features and functionalities, providing tool-tip
pop-ups and a supplemental “user tips” guide to highlight key
features or functionality, modifying the export function to
accommodate multiple graphics, and developing a customizable
user portal to include project summaries.

Discussion

Principal Results
The AI-enabled SPINEL prototype successfully detects known
opioid drug toxicities from free text in EHRs and provides a
framework to uncover emerging safety data that could
potentially augment regulatory review and decision-making.
Automated processing and analysis of EHR data reduces the

research burden compared to manual chart review, saving
considerable time and effort. The prototype expedites the quick
perusal of data for trends and patterns reflecting drug toxicities
while facilitating drilling down into the data to patient-level
line listing information. FDA participants conveyed high
satisfaction ratings for this prototype and acknowledged its
potential to add value in harnessing unstructured text in EHRs
for pharmacovigilance.

In applying our AI-based model, we limited our analysis to
discharge summaries because published studies confirm that
discharge summaries are the best subsection of the EHR for
gathering information about ADEs reported by physicians
[29-31]. In reviewing the discharge summaries, we observed
considerable heterogeneity in the quality of reporting and the
depth of detail conveyed about possible ORADEs, which could
affect the accuracy and other performance metrics for the
software application. We applied 2 rule-based algorithms to
enhance ORADE detection from discharge summaries. Our
results demonstrate that the majority of candidate ORADE pairs
and context discharge summaries are detected using keywords
with trigger phrases. As described in published literature [32],
this approach to searching for drug safety signals is best for
uncovering ADEs potentially related to specific drug products
as delineated in the keyword list (opioids in our use case). As
new drug products are approved by the FDA, the keyword list
would need manual updating to keep it current. However, for
broader and more generalized searching, this could become
cumbersome, as new keyword lists would need to be manually
compiled for each drug grouping or class of interest.

The accuracy, recall, and precision of this prototype will need
to be improved to better align with established NLP processors.
Two steps to be considered in future work to improve
performance are (1) leveraging information from established
drug databases, such as the DailyMed database of the most
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recent FDA-approved drug product labels to filter out false
positive ORADEs due to drug-indication pairs and (2) using
large language models (LLMs) such as GPT-4 [33], BioGPT
[34], or GatorTron [35] to improve capture of mentions of opioid
drugs and ADE terms that may be separated by multiple
paragraphs.

Limitations
This project encountered three main challenges and limitations.
First, patient cohort identification: Use of ICD-9 codes to
prescreen discharge summaries for potential cases of ORADEs
could be impacted by selection and misclassification biases
resulting in a subset that may not reflect the total number of
ORADE cases in the MIMIC III data. These biases could result
in a skewed patient sample wherein there may be missed patients
with ORADEs or patients incorrectly classified as having an
ORADE due to erroneous coding. In addition, in focusing only
on the free-text discharge summaries, we may have missed
patients whose ORADEs were captured only in other text reports
that we did not explore, such as physician notes, nursing notes,
and consultation reports. Together, these issues may prevent us
from capturing the full extent and scope of patients experiencing
ORADEs from the MIMIC III EHRs. In future work, a more
robust approach to identifying patients with ORADEs will be
considered, including use of a standardized annotation guideline
and reporting of interannotator agreement scores related to
development of a reference data set; possible inclusion of
objective components for case ascertainment, such as laboratory
or medical imaging abnormalities; and expanding the scope of
reports assessed to include physician notes, nursing notes, and
consultation reports, where available, in addition to discharge
summaries. Second was the use of MIMIC III. The single-center
MIMIC III EHR database may not reflect the broad diversity
of the US population, which could limit generalizability for

drug safety surveillance to larger and more diversified domains
and lend to potentially biased assessments. Third, the lack of a
publicly available reference standard data set hindered efforts
to evaluate the NLP component of our AI-enabled model in
detecting ADE safety signals from text in EHRs. The small size
of our reference data set risked overfitting and biased
assessments.

There were limitations inherent in the user testing procedures.
User testing was unmonitored and conducted without
prespecified tasks. This approach accommodated participants
working in remote locations to explore the software in their
regulatory work. However, direct observation by a facilitator
may have enabled us to gather more details about end-user
experience. Additionally, the sample size of intended users was
small. Feedback from a larger group of CDER regulatory staff
may be more informative about the potential impact on their
regulatory work and decision-making.

Conclusions
SPINEL, our novel AI-enabled software, extracts ORADEs
from free-text discharge summaries in EHRs, streamlines
workflow, and augments access to real world data for
pharmacovigilance. Detecting opioid safety signals from EHRs
enhances the capacity to harness an important yet underutilized
resource of clinically relevant information for regulatory review
and decision-making.

Future work will explore detecting newly emerging opioid drug
safety issues using a larger and more diversified EHR database,
investigating various methods to improve NLP performance,
resolving application features per FDA participant feedback,
and integrating knowledge graphs to interconnect information
from EHRs with reports published in the literature.
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Abstract

Background: Deep learning models have shown great success in automating tasks in sleep medicine by learning from carefully
annotated electroencephalogram (EEG) data. However, effectively using a large amount of raw EEG data remains a challenge.

Objective: In this study, we aim to learn robust vector representations from massive unlabeled EEG signals, such that the learned
vectorized features (1) are expressive enough to replace the raw signals in the sleep staging task, and (2) provide better predictive
performance than supervised models in scenarios involving fewer labels and noisy samples.

Methods: We propose a self-supervised model, Contrast with the World Representation (ContraWR), for EEG signal representation
learning. Unlike previous models that use a set of negative samples, our model uses global statistics (ie, the average representation)
from the data set to distinguish signals associated with different sleep stages. The ContraWR model is evaluated on 3 real-world
EEG data sets that include both settings: at-home and in-laboratory EEG recording.

Results: ContraWR outperforms 4 recently reported self-supervised learning methods on the sleep staging task across 3 large
EEG data sets. ContraWR also supersedes supervised learning when fewer training labels are available (eg, 4% accuracy
improvement when less than 2% of data are labeled on the Sleep EDF data set). Moreover, the model provides informative,
representative feature structures in 2D projection.

Conclusions: We show that ContraWR is robust to noise and can provide high-quality EEG representations for downstream
prediction tasks. The proposed model can be generalized to other unsupervised physiological signal learning tasks. Future directions
include exploring task-specific data augmentations and combining self-supervised methods with supervised methods, building
upon the initial success of self-supervised learning reported in this study.
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Introduction

Deep learning models have shown great success in automating
tasks in sleep medicine by learning from high-quality labeled

electroencephalogram (EEG) data [1]. EEG data are collected
from patients wearing clinical sensors, which generate real-time
multimodal signal data. A common challenge in classifying
physiological signals, including EEG signals, is the lack of
enough high-quality labels. This paper introduces a novel
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self-supervised model that leverages the inherent structure within
large, unlabeled, and noisy data sets and produces robust feature
representations. These representations can significantly enhance
the performance of downstream classification tasks, such as
sleep staging, especially in cases where only limited labeled
data are available.

Self-supervised learning (specifically, self-supervised contrastive
learning) aims at learning a feature encoder that maps input
signals into a vector representation using unlabeled data.
Self-supervised methods involve two steps: (1) a pretrain step
to learn the feature encoder without labels and (2) a supervised
step to evaluate the learned encoder with a small amount of
labeled data. During the pretrain step, some recent methods (eg,
Momentum Contrast [MoCo] [2] and the simple framework for
contrastive learning of visual representations [SimCLR] [3])
use the feature encoder to construct positive and negative pairs
from the unlabeled data and then optimize the encoder by
pushing positive pairs closer and negative pairs farther away.
A positive pair consists of 2 different augmented versions of
the same sample (ie, applying 2 data augmentation methods
separately to the same sample), while a negative pair is
generated from the augmented data of 2 different samples. For
example, the augmentation method for EEG data can be
denoising or channel flipping. In this practice, existing negative
sampling strategies often incur sampling issues [4,5], especially
for noisy EEG data, which significantly affects performance
[6]. Specifically, in the self-supervised learning setting (without
labels), the negative samples are actually random samples, which
may be from the same latent class. Using these “negative
samples” can potentially undermine model performance.

Technically, this study contributes to the pretrain step, where
we address the aforementioned limitations of existing negative
sampling strategies (eg, MoCo [2] and SimCLR [3]) by
leveraging global data statistics. In contrastive learning, positive
pairs provide similarity-related information, while negative
pairs provide contrastive information. Both types of information
are essential in learning an effective feature encoder. This study
proposes a new contrastive learning method, named Contrast
with the World Representation (ContraWR). In our ContraWR,
we construct positive pairs using data augmentation, similar to
existing methods, while we use one global average
representation over the data set (called the world representation)
as the negative sample to provide the contrastive information.
Derived from global data statistics, the world representation is
robust even in noisy environments, and it follows a new
contrastive guidance in the absence of labels: the representation
similarity between positive pairs is stronger than the similarity
to the world representation. Moreover, in this study, we later
strengthen our model with an instance-aware world
representation for individual samples, where closer samples

have larger weights in calculating the global average. Our
experiments show that the instance-aware world representation
makes the model more accurate, and this conclusion aligns with
the findings from a previous paper [6] that harder negative
samples are more effective in learning feature encoding.

We evaluated the proposed ContraWR on the sleep staging task
with 3 real-world EEG data sets. Our model achieved results
comparable to or better than those of recent popular
self-supervised methods including MoCo [2], SimCLR [3],
Bootstrap Your Own Latent (BYOL) [7], and simple Siamese
(SimSiam) [8]. The results also show that self-supervised
contrastive methods, especially our ContraWR method, are
much more powerful in low-label scenarios than supervised
learning (eg, 4% accuracy improvement on sleep staging with
less than 2% training data of the Sleep EDF data set).

Methods

EEG Data Sets
We considered 3 real-world EEG data sets for this study (the
first 2 data sets entirely comprise at-home PSG recordings):

1. The data set of the Sleep Heart Health Study (SHHS) [9,10]
is a multicenter cohort study from the National Heart Lung
& Blood Institute (Bethesda, Maryland), assembled to study
sleep-disordered breathing, which comprises 5804 adult
patients older than 40 years and 5445 recordings in the first
visit. We used first-visit polysomnography (PSG) data in
the experiments. Each recording has 14 PSG channels, and
the recording frequency is 125.0 Hz. We used the C3/A2
and C4/A1 EEG channels.

2. The Sleep EDF [11] cassette portion is another benchmark
data set collected in a 1987-1991 study of age effects on
sleep in healthy Caucasians. The data comprise 78 subjects
aged 25-101 years who were taking non–sleep-related
medications; the data set contains 153 full-night EEG
recordings with a recording frequency of 100.0 Hz. We
extracted the Fpz-Cz/Pz-Oz EEG channels as the raw inputs
to the model.

3. The Massachusetts General Hospital’s (MGH’s) MGH
Sleep data set [1] was collected from MGH’s sleep
laboratory, which comprises more than 5000 individuals,
where 6 EEG channels (ie, F3-M2, F4-M1, C3-M2, C4-M1,
O1-M2, and O2-M1) were used for sleep staging, recorded
at a 200.0-Hz frequency. After filtering out mismatched
signals and missing labels, we finally curated 6478
recordings.

The data set’s statistics can be found in Table 1, and the class
label distribution is shown in Table 2.
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Table 1. Data set statistics.

Storage (GB)Epochs, nRecordings, nChannels, nLocationName

2604,535,94954452At homeSleep Heart Health Study

20415,0891532At homeSleep EDF

13224,863,52364786In the laboratoryMGHa Sleep

aMGH: Massachusetts General Hospital.

Table 2. Class label distribution of the data sets.

Epochs, n (%)Name

RN3N2N1W

632,865 (14.0)571,191 (12.6)1,856,130 (40.9)169,021 (3.7)1,306,742 (28.8)Sleep Heart Health
Study

25,835 (6.2)13,039 (3.2)69,132 (16.6)21,522 (5.2)285,561 (68.8)Sleep EDF

671,168 (13.8)855,980 (17.6)700,347 (14.4)481,488 (9.9)2,154,540 (44.3)MGHa Sleep

aMGH: Massachusetts General Hospital.

Problem Formulation
To set up the experiments, the raw subject EEG recordings,
which are multichannel brain waves, were used. First, the
unlabeled subject recordings were grouped as the pretrain set,
and the labeled recordings were grouped into the training or
test sets. The training and test sets are usually small, but their
EEG recordings are labeled, while the pretrain set contains a
large number of unlabeled recordings. Within each set, the long
recordings are segmented into disjoint 30-second windows.

Each window is called an epoch, denoted as x∈RC×N. Each
epoch has the same format: C input channels and N time stamps
from each channel.

For these data sets, the ground truth labels were released by the
original data publishers. To align with the problem’s setting,
participants were randomly assigned to the pretrain set, training
set, and test set in different proportions (90%: 5%: 5% for the
Sleep EDF and MGH sets and 98%: 1%: 1% for the SHHS set,
since they have different amounts of data). All epochs
segmented from a participant are placed within the same set.
The pretrain set is used for self-supervised learning; hence, we
removed their labels.

In the pretrain step, the EEG self-supervised representation
learning problem requires building a feature encoder f(⋅) from
the pretrain set (without labels), which maps an epoch x into a

vector representation h∈Rd, where d is the feature
dimensionality, such that the representation h can replace raw
signals for downstream classification tasks. Evaluation of the
encoder f(⋅) was conducted on the training and test data (with
labels). We focus on sleep staging as the supervised step, where
the feature vector of a sample x will be mapped to 5 sleep cycle
labels, awake (W), rapid eye movement (REM; R), non-REM
1 (N1), non-REM 2 (N2), and non-REM 3 (N3), based on the
American Academy of Sleep Medicine’s (AASM’s) scoring
standards [12]. Specifically, based on the feature encoder from
the pretrain step, the training set is used to learn a linear model

on top of the feature vectors, and the test set is used to evaluate
the linear classification performance.

Background and Existing Methods

Overview
Self-supervised learning occurs in the pretrain step, and it uses
representation similarity to exploit the unlabeled signals, with

an encoder network f(⋅):RC×N→Rd and a nonlinear projection

network g(⋅):Rd→Rm. Specifically, for a given signal x from the
pretrain set, commonly, one applies data augmentation methods
a(⋅) to produce 2 different modified signals x ̃', x ̃'' (after this
procedure, the format does not change), which are then

transformed into h', h''∈Rd by f(⋅) and further into z', z''∈Rm by
g(⋅). The vectors z’, z’’ are finally normalized with the L2 norm

onto the unit hypersphere .

We call the anchor, the positive sample, and these 2
together are called a positive pair. For the projections zk obtained
from other randomly selected signals (by negative sampling

strategy), their representation is commonly conceived of as
negative samples (though they are random samples), and any
one of them together with the anchor is called a negative pair
in the existing literature [2,3]. The loss function L is derived
from the similarity comparison between positive and negative
pairs (eg, encouraging the similarity of positive pairs to be
stronger than that of all the negative pairs, referred to as the
noise contrastive estimation loss [13]). A common forward flow
of self-supervised learning on EEG signals can be illustrated as

.

For data augmentation, this study used bandpass filtering,
noising, channel flipping, and shifting (see the definition in
Multimedia Appendix 1 and the visual illustrations in
Multimedia Appendix 2). We conducted ablation studies on the
augmentation methods in our experiment and have provided
the implementation details. To reduce clutter, we also used z to
denote the L2 normalized version in the rest of the paper.
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ContraWR

Background

As mentioned above, most existing models use random samples
as negative samples, which can introduce issues (that the
negative sample might be from the same latent class) for the
pretrain step and undermine representation quality. To address
the issue, this paper proposes a new self-supervised learning
method, ContraWR. ContraWR replaces the large number of
negative samples with a single average representation of the
batch, called the world representation or global representation.
This way is robust as it avoids constructing negative pairs where
2 data are actually obtained from the same latent class. The
world representation servers as a reference in our new
contrastive principle: the representation similarity between a
positive pair should be stronger than the similarity between the
anchor and the world representation. Note that the world
representation is not fixed but changes with the encoder updating
the parameters.

The World Representation

Assume z’ is the anchor, z’’ is the positive sample, and zk

denotes a random sample. We generate an average representation
of the data set, zw as the only negative sample. To formalize,
we assume k∼p(⋅) is the sample distribution over the data set
(ie, k is the sample index), independent of the anchor z’. The
world representation zw is defined by zw=Ek∼p(⋅)[zk].

Here, we denote D=[z:||z||≤1, z∈Rm]. Obviously, zw∈D. In the
experiment, zw is approximated by the average over each batch;
that is, we used the average sample representation over the batch

as the world representation, where M is the batch size.

Gaussian Kernel Measure

We adopted a Gaussian kernel defined on D,
sim(x,y):D×D→(0,1] as a similarity measure. Formally, given

2 feature projections z’, z’’ the similarity is defined as , where
σ is a hyperparameter. The Gaussian kernel combined with the
following triplet loss gives the alignment and uniformity
properties in the loss convergence (Multimedia Appendix 3).
When σ becomes large, the Gaussian kernel measure will reduce
to cosine similarity.

Loss Function

For the anchor z’, the positive sample z’’ and the world
representation zw, we devise a triplet loss, L=[sim(z',
zw)+δ–sim(z', z'')]+, where δ>0 is the empirical margin, a
hyperparameter. The loss is minimized over batches, ensuring
that the similarity of positive pairs sim(z’, z’’), is larger than
the similarity to the world representation sim(z’, zw), by a margin
of δ.

The pipeline of our ContraWR is shown in Figure 1. The online
networks fθ(⋅), gθ(⋅) and the target networks fϕ(⋅), gϕ(⋅) share an
identical network structure. Encoder networks fθ(⋅), fϕ(⋅) map 2
augmented versions of the same signal to respective feature
representations. Then, the projection networks gθ(⋅), gϕ(⋅) project
the feature representations onto a unit hypersphere, where the
loss is defined. During optimization, the web-based networks
are updated by gradient descent, and the target networks update
parameters from the online network with an exponential moving
average (EMA) trick [2].

θ(n+1)← θ(n)–η⋅∇θL

ϕ(n+1)←λ⋅ϕ(n)+(1–λ)⋅θ(n+1)

where n indicates the nth update, η is the learning rate, and λ
is a weight hyperparameter. After this optimization in the
pretrain step, the encoder network fθ(⋅) is ready to be evaluated
on the training and test sets in the supervised step.

Figure 1. The Contrast with the World Representation (ContraWR) model pipeline. We show the 2-way model pipeline in this figure. The web-based
network (upper) is updated by gradient descent, while the target network (lower) is updated by the exponential moving average. Finally, the results of
the 2 models form the triplet loss function.
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ContraWR+: Contrast With Instance-Aware World
Representation

Background

To learn a better representation, we introduced a weighted
averaged world representation based on the harder principle:
the similarity between a positive pair should be stronger than
the similarity between the anchor and the weighted average
feature representations of the data set, where the weight is set
higher for closer samples. We call the new model ContraWR+.
This is a more difficult objective than the simple global average
in ContraWR.

Instance-Aware World Representation

In this new model, the world representation is enhanced by
modifying the sampling distribution to be instance-specific. We
define p(⋅|z) as the instance-aware sampling distribution of an
anchor z, which is different from the sample distribution p(⋅)

used in ContraWR, , where T>0 is a temperature
hyperparameter, such that similar samples are selected with
higher probability parametrized by p(⋅|z). Consequently, for an

anchor z’, the instance-aware world representation becomes .

Here, T controls the contrastive hardness of the world
representation. When T→∞, p(⋅|z) is asymptotically identical
to p(⋅), and the above equation reduces to the simple global

average form zw=Ek∼p(⋅)[zk]; while T→0+, the form becomes
trivial, zw=argmaxzk(sim(z', zk)))). We have tested different T
and found that the model is not sensitive to T over a wide range.
Here, zw is also practically implemented by using the weighted
average over each batch. We can rewrite the similarity measure
given the anchor zi and the new world representation zw as:

sim(zi, zw)=sim(z', Ek∼p(⋅|z')[zk])

In this new method, we also used triplet loss as the final
objective.

Implementations

Signal Augmentation

For the experiments, we used four augmentation methods,
illustrated in Multimedia Appendix 2: (1) bandpass filtering: to
reduce noise, we used an order-1 Butterworth filter (the
bandpass is specified in Multimedia Appendix 2); (2) noising:
we added extra high- or low-frequency noise to each channel,
mimicking the physical distortion; (3) channel flipping:
corresponding sensors from the left side and the right of the
head were swapped due to symmetricity; and (4) shifting: within

one sample, we advanced or delayed the signal for a certain
time span. Detailed configurations of augmentation methods
vary for the 3 data sets, and we have listed them in Multimedia
Appendix 2.

Baseline Methods

In the experiments, several recent self-supervised learning
methods were implemented for comparison.

MoCo [2] devises 2 parallel encoders with an EMA. It also uses
a large memory table to store new negative samples, which are
frequently updated.

SimCLR [3] uses an encoder network to generate both anchor
and positive samples, where negative samples are collected
from the same batch.

BYOL [7] also uses 2 encoders: a web-based network and a
target network. They put one more predictive layer on top of
the web-based network to predict (reconstruct) the result from
the target network, while no negative samples are presented.

SimSiam [8] uses the same encoder networks on 2 sides and
also does not use the negative samples.

Average k-nearest neighbor TopX is our developed baseline
model, which identifies the top X nearest neighbors for each
sample within the batch and uses the average representation of
these top X neighbors as the negative sample. We used the same
triplet loss as our ContraWR model. In the experiments, we
tested X=1, X=5, and X=50. When X approaches the batch size,
this model will gradually reduce to ContraWR.

Model Architecture

For a fair comparison, all models, including baseline approaches
and our models, use the same augmentation and encoder
architecture, as shown in Figure 2. This architecture cascades
a short-time Fourier transform (STFT) operation, a 2D
convolutional neural network layer, and three 2D convolutional
blocks. Empirically, we found that the application of neural
networks generates better accuracy on the STFT spectrogram
of the signals than on the raw signals. The same practices were
reported by Yang et al [14,15].

We also considered a supervised model (called Supervised) as
a reference model, which uses the same encoder architecture
and adds a 2-layer fully connected network (128, 256, and 192
units for the Sleep EDF, SHHS, and MGH data sets,
respectively) for the sleep staging classification task. The
supervised model does not use the pretrain set but is trained
from scratch on raw EEG signals in the training set and tested
on the test set. We also included an untrained encoder model
as a baseline, where the encoder was initialized but not
optimized in the pretrain step.
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Figure 2. The short-time Fourier transform (STFT) convolutional encoder network. The encoder network first transforms raw signals into spectrogram
via STFT, and then a convolutional neural network–based encoder is built on top of the spectrogram. ELU: exponential linear unit; FFT: Fast Fourier
Transform; Conv.:convolution operation.

Evaluation Protocol
We evaluated performance on the sleep staging task with overall
5-class classification accuracy. Each experiment was conducted
with 5 different random seeds. For self-supervised methods, we
optimized the encoder for 100 epochs (here, “epoch” is a concept
in deep learning) with unlabeled data, used the training set to
find a good logistic classifier, and used the test set data for
evaluation in accordance with He et al [2] and Chen et al [3].
For the supervised method, we trained the model for 100 epochs
on the training set. Our setting ensures the convergence of all
models.

Results

Better Accuracy in Sleep Staging
Comparisons on the downstream sleep staging task are shown
in Table 3.

All self-supervised methods outperformed the untrained encoder
model, indicating that the pretrain step does learn some useful
features from unlabeled data. We observed that ContraWR and
ContraWR+ both outperform the supervised model, suggesting
that the feature representations provided by the encoder can
better preserve the predictive features and filter out noises than
using the raw signals for the sleep staging task, in cases when
the amount of labeled data available are not sufficient (eg, less
than 2% in Sleep EDF). Compared to other self-supervised
methods, our proposed model ContraWR+ also provided better
predictive accuracy; that is, about 1.3% on Sleep EDF, 0.8%
on SHHS, 1.3% on MGH Sleep. The performance improvements
were mostly significant (P<.001; comparing MoCo vs Sleep
EDF data sets, P=.002). MGH Sleep data contain more noise
than the other 2 data sets (reflected by the relatively low
accuracy with the supervised model on raw signals).
Performance gain was notably much more significant on MGH
over other self-supervised or supervised models (about 3.3%
relative improvement on accuracy), which suggests that the
proposed models handle noisy environments better.
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Table 3. Comparison of sleep staging accuracy with different methods.

Sleep staging accuracy (%), mean (SD)aName

MGHb Sleep data setSleep Heart Health Study data setSleep EDF data set

69.73 (0.4324)75.61 (0.9347)84.98 (0.3562)Supervised

55.64 (0.0082)60.03 (0.0448)77.83 (0.0232)Untrained Encoder

62.14 (0.7099)77.10 (0.2743)85.58 (0.7707)MoCoc

67.32 (0.7749)76.61 (0.3007)83.79 (0.3532)SimCLRd

70.75 (0.1461)76.64 (0.3783)85.61 (0.7080)BYOLe

62.08 (0.4902)74.25 (0.4796)84.78 (0.8028)SimSiamf

60.73 (0.7423)69.70 (0.8944)80.39 (1.3721)AVG-KNN-Top1g

69.14 (0.3393)75.18 (0.7845)83.24 (0.6182)AVG-KNN-Top5

71.95 (0.3482)77.63 (0.3625)86.35 (0.3246)AVG-KNN-Top50

71.97 (0.1774)77.52 (0.5748)85.94 (0.2326)ContraWRh

72.03 (0.1823)77.97 (0.2693)86.90 (0.2288)ContraWR+

aCalculated over 5 random seeds.
bMGH: Massachusetts General Hospital.
cMoCo: Momentum Control.
dSimCLR: simple framework for contrastive learning of visual representations.
eBYOL: Bootstrap Your Own Latent.
fSimSam: simple Siamese.
gAVG-KNN-TopX: average k-nearest neighbor TopX.
hContraWR: Contrast with the World Representation.

Ablation Study on Data Augmentations
We also inspected the effectiveness of different augmentation
methods on EEG signals, shown in Table 4.

We empirically test all possible combinations of 4 considered
augmentations: channel flipping, bandpass filtering, noising,

and shifting. Since channel flipping cannot be applied by itself,
we combined it with other augmentations. The evaluation was
conducted on Sleep EDF data with the ContraWR+ model. To
sum up, all augmentation methods are beneficial, and
collectively, they can further boost the classification
performance.

Table 4. Evaluation accuracy of different augmentations.

Accuracy (%), mean (SD)aAugmentations

84.23 (0.2431)Bandpass

83.60 (0.1182)Noising

84.65 (0.2844)Shifting

85.77 (0.2337)Bandpass + flipping

84.45 (0.1420)Noising + flipping

85.13 (0.0558)Shifting + flipping

85.37 (0.1214)Bandpass + noising

84.78 (0.1932)Noising + shifting

85.25 (0.1479)Shifting + bandpass

85.76 (0.1794)Bandpass + noising + flipping

85.17 (0.2301)Noising + shifting + flipping

86.38 (0.2789)Shifting + bandpass + flipping

aCalculated over 5 random seeds.
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Varying Amount of Training Data
To further investigate the benefits of self-supervised learning,
we evaluated the effectiveness of the learned feature
representations with varying training data on Sleep EDF (Figure
3). The default setting is to split all the data into pretrain,
training, or test sets by 90%: 5%: 5%. In this section, we
maintained the 5% test set constant and resplit the pretrain and
training sets (after resplitting, we ensured that all the training
set data have labels and removed the labels from the pretrain
set), such that the training proportion becomes 0.5%, 1%, 2%,
5%, and 10%, and the rest is used for the pretrain set. This
resplitting was conducted at the subject level, after which we

again segmented each subject’s recording within the pretrain
or training set. We compared our ContraWR+ model to MoCo,
SimCLR, BYOL, SimSiam, and the supervised baseline models.
Similar ablation studies on SHHS and MGH can be found in
Multimedia Appendix 4. Our model outperforms the compared
models consistently with different amounts of training data. For
example, our model achieves similar performance (with only
5% data as training) to that of the best baseline, BYOL, which
needs twice the amount of training data (10% data as training).
Also, compared to the supervised model, the self-supervised
methods performed better when the labels were insufficient; for
example, only ≤2% of the data were labeled.

Figure 3. Model performance with different amounts of training data (on the Sleep EDF data set). The curves indicate mean values and shaded areas
show the SD of the training/test over 5 random seeds. All models have the same encoder network architecture. For the self-supervised method, we
trained a logistic regression model on top of the frozen encoder with the training set, and for the supervised model, we trained the encoder along with
the final nonlinear classification layer from scratch with the training set. The proportion of training data is 0.5%, 1%, 2%, 5%, and 10%. Each configuration
runs with 5 different random seeds and the error bars indicate the SD over 5 seeds. BYOL: Bootstrap Your Own Latent; MoCo: Momentum Contrast;
SimCLR: simple framework for contrastive learning of visual representations; SimSiam: simple Siamese.

Representation Projection
We next sought to assess the quality of the learned feature
representations. To do this, we used the representations produced
by ContraWR+ on the MGH data set and randomly selected
5000 signal epochs per label from the data set. The ContraWR+
encoder is optimized on the pretrain step without using the
labels. We extracted feature representations for each sample
through the encoder network and used uniform manifold
approximation and projection (UMAP) [16] to project onto the

2D space. We finally color-coded samples according to sleep
stage labels for illustration.

The 2D projection is shown in Figure 4. We also computed the
confusion matrix from the evaluation stage (based on the test
set; also shown in Figure 4). In the UMAP projection, epochs
from the same latent class are closely colocated, which implies
that the pretrain step extracts important information for sleep
stage classification from the raw unlabeled EEG signals. Stage
N1 overlaps with stages W, N2, and N3, which is as expected
given that N1 is often ambiguous and thus difficult to classify
even for well-trained experts [1].
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Figure 4. Uniform manifold approximation and projection and confusion matrix. (A) Using the Massachusetts General Hospital’s (MGH’s) MGH
Sleep data set, we projected the output representations of each signal into a 2D space and color by the actual labels. (B) We have included a confusion
matrix on sleep staging.

Hyperparameter Ablation Study
To investigate the sensitivity of our model to hyperparameter
settings, we tested with different batch sizes and trained on
different values for the Gaussian parameter σ, temperature T,
and margin δ. We focused on the ContraWR+ model and
evaluated it on the Sleep EDF data set. During the experiment,
the default settings are a batch size of 256, σ of 2, T of 2, δ of

0.2, learning rate η of 2×10–4, weight decay of 10–4, and epoch
of 100. When testing on 1 hyperparameter, others are maintained
constant.

The ablation study’s results are in shown in Figure 5; the red
star indicates the default configuration. Each configuration runs

with 5 different random seeds, and the error bars indicate the
SD over 5 experiments. We see that the model is not sensitive
to batch size. We see that over a large range (<10) the model is
insensitive to the Gaussian width σ. For temperature T, we noted
previously that a very small T may be problematic, and a very
large T reduces ContraWR+ to ContraWR. Based on the ablation
experiments, the performance is relatively insensitive to choices
of T. For the margin δ, the difference in distance is bounded
(given a fixed σ of 2):

Thus, δ should be large enough; that is, δ≥0.1.
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Figure 5. Ablation study on batch size and 3 hyperparameters. The curves indicate the mean values and shaded areas show the SD of training/test over
5 random seeds. The red star denotes the default setting. It is obvious that with a larger batch size, the model will perform better, but it is not sensitive
to all hyperparameters.

Ethical Considerations
This study has been approved by the Institutional Review Board
of Beth Israel Deaconess Medical Center (BIDMC IRB protocol
#2022P000417 [Brain Informatics Database]).

Discussion

Principal Results
Our proposed ContraWR and ContraWR+ models outperformed
4 recent self-supervised learning methods on the sleep staging
task across 3 large EEG data sets (P<.001 in almost all cases).
ContraWR+ also superseded supervised learning when fewer
training labels were available (eg, a 4% improvement in
accuracy when less than 2% of data were labeled). Moreover,
the models provided well-separated representative structures in
2D projection.

Comparison With Prior Work

Self-Supervised Learning
Many deep generative methods have been proposed for
unsupervised representation learning. They mostly rely on
autoencoding [17-19] or adversarial training [20-22]. Mutual
information maximization is also popular for compressing input
data into a latent representation [23-25].

Recently, self-supervised contrastive learning [2,3,7,8,14] has
become popular, where loss functions are devised from
representation similarity and negative sampling. However, one
recent study [4] highlighted inherent limitations of negative
sampling and showed that this strategy could hurt the learned
representation significantly [5]. To address these limitations,
Chuang et al [5] used the law of total probability and
approximated the per-class negative sample distribution using
the weighted sum of the global data distribution and the expected

class label distribution. However, without the actual labels, the
true class label distribution is unknown. Grill et al [7] and Chen
and He [8] proposed ignoring negative samples and learning
latent representations using only positive pairs.

In this paper, we leverage the negative information by replacing
negative samples with the average representation of the batch
samples (ie, the world representation). We argue and provide
experiments showing that contrasting with the world
representation is more powerful and robust in the noisy EEG
setting.

EEG Sleep Staging
Before the emergence of deep learning, several traditional
machine learning approaches [26-28] significantly advanced
the field using hand-crafted features, as highlighted by Biswal
et al [29]. Recently, deep learning models have been applied to
various large sleep databases. SLEEPNET [29] built a
comprehensive system combining many machine learning
models to learn sleep signal representations. Biswal et al [1]
designed a multilayer recurrent and convolutional neural
network model to process multichannel signals from EEG. To
provide interpretable stage prototypes, Al-Hussaini et al [30]
developed a SLEEPER model that uses a particular deep
learning approach called prototype learning guided by a decision
tree to provide more interpretable results. These studies rely on
a large set of labeled training data. However, the annotations
are expensive, and oftentimes the labeled set is small. In this
study, we exploited the large set of unlabeled data to improve
the classification, which is more challenging.

Self-Supervised Learning on Physiological Signals
While image [31,32], video [33], language [34,35], and speech
[36] representations have benefited from contrastive learning,
research on learning physiological signals has been limited
[37,38]. Lemkhenter et al [39] proposed phase and amplitude
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coupling for physiological data augmentation. Banville et al
[40] conducted representation learning on EEG signals, and
they targeted monitoring and pathology screening tasks, without
using frequency information. Cheng et al [41] learned
subject-aware representations for electrocardiography data and
tested various augmentation methods. While most of these
methods are based on pairwise similarity comparison, our model
provides contrastive information from global data statistics,
providing more robust representations. Also, we extracted signal
information from the spectral domain.

Strengths and Limitations
The strengths of our study are (1) we used 3 real-world data
sets collected from different institutes and across different year
ranges, and 2 are publicly available; (2) our PSG recordings are
diverse and generalizable, including 2 data sets collected at
home and 1 collected in the laboratory setting, all having
relatively large sizes; (3) we have open-sourced our data
processing pipelines and all programs used for his study [42],
including the baseline model implementations; and (4) we
proposed new data augmentation methods for PSG signals and
have systematically evaluated their effectiveness. However, the
following limitations of our study should be noted: (1) we fixed

the neural network encoder architecture in the study, which we
plan to explore using other models including recurrent neural
networks in the future; (2) we have used STFT to extract
spectrograms, but we may consider alternative techniques such
as wavelet transformation in future; and (3) our current data
augmentation methods are based on clinical knowledge, and
we aim to investigate data-driven approaches to design more
effective methods in the future.

Conclusions
This study is motivated by the need to learn effective EEG
representations from large unlabeled noisy EEG data sets. We
propose a self-supervised contrastive method, ContraWR, and
its enhanced variant, ContraWR+. Instead of creating a large
number of negative samples, our method contrasts samples with
an average representation of many samples. The model is
evaluated on a downstream sleep staging task with 3 real-world
EEG data sets. Extensive experiments show that the model is
more powerful and robust than multiple baselines including
MoCo, SimCLR, BYOL, and SimSiam. ContraWR+ also
outperforms the supervised counterpart in label-insufficient
scenarios.
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Abstract

Background: Major depressive disorder is a common mental disorder affecting 5% of adults worldwide. Early contact with
health care services is critical for achieving accurate diagnosis and improving patient outcomes. Key symptoms of major depressive
disorder (depression hereafter) such as cognitive distortions are observed in verbal communication, which can also manifest in
the structure of written language. Thus, the automatic analysis of text outputs may provide opportunities for early intervention
in settings where written communication is rich and regular, such as social media and web-based forums.

Objective: The objective of this study was 2-fold. We sought to gauge the effectiveness of different machine learning approaches
to identify users of the mass web-based forum Reddit, who eventually disclose a diagnosis of depression. We then aimed to
determine whether the time between a forum post and a depression diagnosis date was a relevant factor in performing this
detection.

Methods: A total of 2 Reddit data sets containing posts belonging to users with and without a history of depression diagnosis
were obtained. The intersection of these data sets provided users with an estimated date of depression diagnosis. This derived
data set was used as an input for several machine learning classifiers, including transformer-based language models (LMs).

Results: Bidirectional Encoder Representations from Transformers (BERT) and MentalBERT transformer-based LMs proved
the most effective in distinguishing forum users with a known depression diagnosis from those without. They each obtained a
mean F1-score of 0.64 across the experimental setups used for binary classification. The results also suggested that the final 12
to 16 weeks (about 3-4 months) of posts before a depressed user’s estimated diagnosis date are the most indicative of their illness,
with data before that period not helping the models detect more accurately. Furthermore, in the 4- to 8-week period before the
user’s estimated diagnosis date, their posts exhibited more negative sentiment than any other 4-week period in their post history.

Conclusions: Transformer-based LMs may be used on data from web-based social media forums to identify users at risk for
psychiatric conditions such as depression. Language features picked up by these classifiers might predate depression onset by
weeks to months, enabling proactive mental health care interventions to support those at risk for this condition.

(JMIR AI 2023;2:e41205)   doi:10.2196/41205
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Introduction

Background
Major depressive disorder (MDD) is one of the most prevalent
mental illnesses worldwide, affecting nearly 5% of adults [1].
Depressive episodes, which are symptoms of MDD and other
psychiatric conditions, are even more common, with nearly
30% of individuals developing them at least once in their
lifetime [2]. The characteristics of MDD and depressive episodes
(“depression” hereafter) include low mood, feelings of
worthlessness or guilt, and recurrent thoughts of death [3]. Early
intervention has been reported to significantly improve patient
outcomes and reduce the financial burden on health care services
[4]. However, the stigma associated with psychiatric conditions,
such as depression, leads to patients underreporting to health
care services [5,6].

Given that a number of individuals who would normally meet
the criteria for depression underreport to health care services,
consideration should be given to how key symptoms may
manifest in written language on social media platforms [7].
Longhand discussion websites such as Reddit are a rich source
of such information where users may publish a series of posts
spanning many months or years [8]. Natural language processing
(NLP) can be used to identify features in posts that are predictive
of a user who may have depression. Crucially, if affected users
are identified before formal diagnosis, this may provide an
opportunity for early health care intervention in these cases.

In this study, we derive a specialized subset of an annotated
data set that contains Reddit posts belonging to users who have
received a diagnosis of depression. This subset allowed us to
consider posts before each user’s approximate diagnosis date.

We used state-of-the-art, domain-specific language models
(LMs) to assist in the detection of depression. These LMs
outperformed the baseline approaches in various experimental
settings. Notably, they are adept at early detection of depression.
Moreover, through our model analysis, we provide an exhaustive
analysis of the temporal aspect related to preemptive detection,
providing insights into the time depression symptoms
materialized before the diagnosis. Finally, we investigated the
role of sentiment in depressed users’ posts and provided a
qualitative analysis based on the model performance.

Related Work
There is a growing body of literature on the use of NLP
techniques to analyze depression patterns on social media [9,10].

Yates et al [11] developed an approach to distinguish forum
users who self-reported a diagnosis of depression from those
who did not. It used a convolutional neural network to aggregate
user posts in a purpose-built data set, the Reddit Self-reported
Depression Diagnosis (RSDD) data set. Their follow-up work
involved the conception of a sister data set, RSDD-Time [12],
which contained Reddit posts where users declared a past
diagnosis of depression, and this diagnosis was linked to an
estimated date. Dates were inferred from explicit but often
imprecise time expressions in user posts. However, these works
did not consider the preemptive detection of depression among

Reddit users in their data sets. That is, they did not consider
methods for detecting depression in users before their diagnoses.

Recent NLP studies have explicitly focused on the early
detection of depression. Preemptive detection of mentions of
depression among Twitter users has been demonstrated with a
degree of success by Owen et al [13]. Abed-Esfahani [14]
reported similar findings using Reddit data. However, both
studies were limited by the uncertainty of whether the users
referring to this condition were formally diagnosed. Shah et al
[15] also considered approaches for the early detection of
depression in Reddit users. In this case, it was determined
whether the user had received a physician’s diagnosis. However,
it was not certain whether the users’ posts occurred before or
after their diagnoses because the dates of the diagnoses were
unknown. To gauge the effectiveness of the preemptive detection
methods, a series of user posts before a known diagnosis date
is required. Eichstaedt et al [16] examined the language in
Facebook posts that may have been predictive of depression,
as shown in patients’ medical records. They achieved an
F1-score of 0.66 via logistic regression modeling, which used
only the language preceding each patient’s depression diagnosis.

Therefore, this study also sought to extend existing work on
preemptive depression detection. We considered social media
users whose depression diagnosis date is known and used LMs
to harness the language of user posts.

Ren et al [17] performed emotion-driven detection of depression
using Reddit, achieving F1-scores exceeding 0.9. Their work
considered individual depression posts, rather than a series of
posts. Nevertheless, their effective use of emotional semantic
information suggested that the dissection of our own results
could be enhanced using sentiment analysis, which we included
in our analysis to provide further insights.

Objectives
We sought to gauge the performance of several machine learning
classifiers in the task of distinguishing between RSDD data set
users reporting and not reporting a diagnosis of depression,
which from here onward we will term as “depressed” and
“controls,” respectively. We then used the best-performing
classifier in a temporally driven binary classification task. The
purpose was to determine the volume of posts in a depressed
user’s post timeline, which was the most indicative of their
illness. To do this, we considered only the posts authored before
the depressed users’ estimated diagnosis dates. Moreover, we
considered only posts published up to 6 months before those
dates.

The motivation for considering this 6-month time range hails
from Winkour et al [18], and their observation that over 50%
of patients with depression experienced their first onset at least
6 months before their formal diagnosis. Reece et al [19] made
similar observations when examining Twitter users.

The time during which individuals with symptoms or traits of
depression remain undiagnosed poses serious health risks.
Patients who remain undiagnosed and thus untreated experience
a worse outcome than would be the case if they were treated
[20], particularly after their first episode [21]. Methods for
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assessing suitable time points for health care interventions are
needed to identify ways to improve patient outcomes. They are
also likely to advance the field of psychiatric therapeutics by
supporting modifications to clinical guidelines or the design of
randomized controlled trials [22]. A larger body of evidence on
this matter could also help identify patients to be targeted for
more thorough mental health assessments and provided with
further resources, support, and treatment [23].

Methods

Data Description

Overview
Our work is based on the RSDD and RSDD-Time data sets [24].
The RSDD contains Reddit posts of 9210 depressed users and
108,731 control users. The posts were published between

January 2006 and October 2016. The representation of users in
RSDD is presented in Textbox 1.

RSDD-Time contains 598 annotated Reddit posts, each of which
belongs to a user who declares that they have been formally
diagnosed with depression. The posts were published between
June 2009 and October 2016. Of these posts, 529 belonged to
depressed users that were also present in the RSDD.

RSDD-Time annotations include the recency of a user’s
diagnosis with respect to the date on which their post was
authored. The permissible recency annotations are as follows:

0, unspecified; 1, in the past; 2, up to 2 months ago; 3, between
2 months and 1 year ago; 4, between 1 and 3 years ago; and 5,
more than 3 years ago.

The representation of users in RSDD-Time is depicted in
Textbox 2.

Textbox 1. An abstract representation of Reddit Self-reported Depression Diagnosis user data. It is not permissible to reveal true user IDs, post dates,
or post texts due to privacy reasons.

{user_id: 1, posts: [ (<date 1>, <text>),..., (<date n>, <text>) ], label: <either depressed or control>},

{user_id: 2, posts: [ (<date 1>, <text>),..., (<date n>, <text>) ], label: <either depressed or control>},

...,

{user_id: n, posts: [ (<date 1>, <text>),..., (<date n>, <text>) ], label: <either depressed or control>}

Textbox 2. An abstract representation of Reddit Self-reported Depression Diagnosis–Time user data. It is not permissible to reveal true user IDs,
diagnosis post texts, or post dates, due to privacy reasons.

{user_id: 1, diagnosis_post: <text>, post_date: <date>, recency: <0, 1, 2, 3, 4, or 5>},

{user_id: 2, diagnosis_post: <text>, post_date: <date>, recency: <0, 1, 2, 3, 4, or 5>},

...,

{user_id: n, diagnosis_post: <text>, post_date: <date>, recency: <0, 1, 2, 3, 4, or 5>}

Deriving RSDD-Matched
We used this information to estimate the diagnosis dates of the
529 users present in both RSDD and RSDD-Time. Those with
recency annotations of 0 or 1 were ignored because their
diagnosis dates could not be estimated with any degree of
accuracy. For each of the remaining users, we determined
whether the estimated diagnosis date fell between the date of
their first RSDD post and the date of their RSDD-Time
diagnosis post. A total of 72 depressed users remained in the
study.

A total of 10 matching control users were sought for each of
the 72 depressed users. To accomplish this, candidate control
users were randomly retrieved from the RSDD and analyzed
sequentially. The candidates’ posts dated before the
corresponding depressed user’s estimated diagnosis date were
considered. If the number of posts belonging to the candidate

did not vary by >15% with respect to the depressed user, the
candidate was considered a match. A control user matched in
this manner was not considered a candidate for subsequent
depressed users.

Because sufficient matching control users could not be found
for 2 of the depressed users, they were excluded from the
resulting data set. The data set contained 70 depressed users,
each of whom had 10 matching control users. Thus, there were
a total of 770 users. The posts were published between April
2006 and June 2016. We named our data set RSDD-Matched.
The characteristics of RSDD-Matched are shown in Table 1.
Statistics pertaining to individual users in RSDD-Matched can
be found in Multimedia Appendix 1.

Because RSDD does not include posts made in mental health
subreddits, a depressed user’s diagnosis is certain to not be
revealed until the time of their diagnosis post. There is language
indicative of mental health conversation in the other subreddits.
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Table 1. Statistics of the Reddit Self-reported Depression Diagnosis–Matched data set.

Control usersDepressed users

70070Total users

364,74736,826Total posts

8,188,0901,742,388Total words

521.1526.1Average posts per user

22.447.3Average words per post

11Shortest post (words)

18942642Longest post (words)

Descriptive Analysis of RSDD
To better understand our data set, we performed a simple
descriptive analysis of RSDD. Word-level exploratory analyses
of corpora have been extensively used in corpus linguistics and
NLP to gain insight into word prominence. Typically, these
follow a bag-of-words [25], pointwise mutual information [26],
or term frequency–inverse document frequency (TF-IDF) [27]
approach. In our case, we used lexical specificity [28], which
is a statistical measure based on hypergeometric distribution,
to identify the most prominent words in a corpus. We chose to
use lexical specificity because it is structured in a way that is
ideal for extracting corpus-specific vocabulary given a global
corpus (RSDD) and its subsets (depressed and control users)
[29]. It is also a more robust metric for term importance when
dealing with different lengths of text [30], which is often the
case for Reddit posts.

RSDD is partitioned into 2 subsets, or subcorpora, one
containing posts of depressed users, and another containing
posts of the control users. After lemmatizing the corpus, lexical
specificity analysis revealed the unigrams (single words) that
were the most frequently used by depressed and control
participants (Table 2). The score column indicates the relevance
of a unigram to each subset. For reference, the term “woman”

makes up 0.18% (460,893/257,873,124) of the total words that
appear in the depressed user subset compared with only 0.06%
(569,330/950,988,726) of the control user subset.

To put the results into context, we should mention that a lexical
specificity score of X for a given word W with frequency f
means that the probability of W occurring at least f times in the

subcorpus is lower than 10–X (assuming a random distribution).
For instance, a lexical specificity score of 42,234 for “game”
means that the probability of “game” having a frequency of

f=5,373,938 or higher in the control users subcorpus is 10–42,234

(ie, an exceptionally low probability which means “game” is
overrepresented in the control users’ subset). In general, we can
observe a pattern in which depressed users tend to use more
relationship or family-related words (eg, “woman” or
“relationship”) and words related to the depression symptoms
themselves (eg, “life”). In contrast, control users seem to use
more mundane terms related to the subreddit communities, such
as game-related terms (eg, “game” or “team”). Although this
analysis is based only on the statistical frequency of the terms
used, it may provide further evidence that developing automatic
methods to identify users with depression may indeed be
feasible. In the Results section, we extend this initial inspection
to better understand the errors made by the automatic models.
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Table 2. Top ranked words of Reddit Self-reported Depression Diagnosis depressed and control users in terms of lexical specificity.

ScoreUser, word

Depressed users

338,131.45people

164,368.51know

150,440.49thing

118,483.23feel

97,250.09time

96,165.35woman

79,611.79go

75,379.17want

67,769.01life

62,606.64relationship

Control users

42,234.94game

39,445.65trade

30,031.17key

24,333.73team

17,389.38play

16,186.61player

14,032.27shiny

13,265.87hatch

10,177.49thank

10,005.14add

Methodology
In this section, we provide more details of our proposed methods
for tackling the depression detection task. Framing the task as
a machine learning problem, we considered 9 methods based
on linear classifiers and more recent LMs.

The initial baselines entailed a support vector machine (SVM)
architecture. SVM is an algorithm that learns by example to
assign labels to objects [31]. In our case, the objects are Reddit
users, and permissible labels are “depressed” and “control.”
SVMs have demonstrated effectiveness in the detection of
depression-related posts in Reddit [8,32]. Our SVM
configurations used different features derived from user posts.
These features included TF-IDF, word embeddings, and a
combination of both TF-IDF and word embeddings. The TF-IDF
[33] features represent the words deemed most notable among
the user posts. Word embedding is a real-valued vector
representation of a word [34]. Words with similar meanings
have vectors with similar values.

The SVM model used was that of scikit-learn [35], as was the
TF-IDF vectorizer implementation. The word embeddings
generated for each Reddit post were drawn from global vectors
trained on Wikipedia and Gigaword data [36]. These vectors
had a dimensionality of 300, similar to the average embedding
generated. We performed Reddit posttext preprocessing before

their input to the SVM. All posts underwent quotation
normalization; therefore, each quotation character was
represented by a single apostrophe. All new lines and carriage
return characters were replaced with spaces so that posts were
represented as a single line string. The posts were then
concatenated on a per-user basis so that each user’s posting
history was represented as a single-line string. SVM used a
linear kernel, which is appropriate for text-classification
problems [37-39].

The remaining 6 classifiers were transformer-based LMs. LMs
are a statistical means of predicting words [40], whereas
transformers provide a neural-network-based approach to
generating such models [41]. Transformer-based LMs have
proven effective in detecting psychiatric illness-related Reddit
posts [12,42,43]. Therefore, we chose to use transformer-based
LMs to support the detection of depression in RSDD-Matched.
We chose Bidirectional Encoder Representations from
Transformers (BERT) [44] and A Lite BERT (ALBERT) [45],
which are appropriate for a wide variety of applications. We
also chose 4 specialist LMs: BioBERT [46], Longformer [47],
MentalBERT [48], and MentalRoBERTa [48]. BioBERT is
suitable for use where biomedical concepts are prevalent, such
as electronic medical records [49], patient descriptions [50],
and health-related Twitter posts [51]. Longformer is designed
for use when text is formed from long documents. Indeed, there
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were posts in RSDD-Matched that exceed 2000 words. Finally,
MentalBERT and MentalRoBERTa are customized for the
domain of mental health care and trained using text drawn from
mental health discussion forums.

All 6 transformer-based LMs were pretrained bidirectional
language representations. This means that for any given word
in a text segment, its neighboring words to both the left and
right are examined so that the context of the word is well
understood. These representations lend themselves to high
performance in text classification tasks when compared with
traditional approaches using SVMs, for example [52,53].

We used the Simple Transformers software library [54] to
deploy LMs. The library provides an application programming
interface to the transformer library, which itself provides access
to the BERT, ALBERT, BioBERT, Longformer, MentalBERT,
and MentalRoBERTa models [55]. The BERT, ALBERT,
BioBERT, Longformer, MentalBERT, and MentalRoBERTa
classifiers used were “bert-base-uncased,” “albert-base-v1,”
“biobert-base-cased-v1.1,” “longformer-base-4096,”
“mental-bert-base-uncased,” and “mental-roberta-base,”
respectively. In addition to the default hyperparameters of the
Simple Transformers, the LM classifiers were instantiated, with
the sliding window enabled. Transformer-based LMs may
consume only a limited number of tokens (512 tokens). Because
the posting histories of most users in RSDD-Matched exceed
512 words, a specialist approach to applying LMs to these posts
is needed. Sliding window is one such approach [56].

Experimental Setup

Preemptive Depression Identification Experiment
The first experiment examined the performance of several
machine learning classifiers in the task of distinguishing between

depressed and control users in RSDD-Matched. The purpose
of this experiment was to understand the extent to which the
preemptive detection of depression in social media is possible.
Moreover, this experiment was aimed at understanding the
capabilities of machine learning classifiers for this task and the
suitability of different methods in the task. The results were
used to provide a competitive model for subsequent fine-grained
temporal experiments.

We used 9 different classifiers. Three entailed an SVM, as
described in the Methodology section. The remaining 6 were
BERT, ALBERT, BioBERT, Longformer, MentalBERT, and
MentalRoBERTa, which are also described in the Methods
section.

In addition to the aforementioned classifiers, we included a
naive baseline that predicted positive instances in all cases.

Because the number of positive instances (ie, depressed users)
in RSDD-Matched was small, we chose not to use a traditional
train-test split. Instead, we used 5-fold cross-validation; an
approach also used by Eichstaedt et al [14]. Furthermore, we
varied the number of matching control users across the 4
iterations of the experiment (Table 3).

The purpose of these variations is to test the performance of
classifiers against increasingly imbalanced data sets. This
mimics the conditions likely to be observed in web-based forums
where the number of positive instances (ie, depressed users) is
dwarfed by the number of negative instances (ie, nondepressed
users).

Table 3. Variations of the preemptive depression identification experiment in terms of the number of matching control users considered.

Total usersMatching control users per depressed userDepressed users

140170Variation 1

280370Variation 2

420570Variation 3

7701070Variation 4

Temporal Experiment
The purpose of the second primary experiment was to determine
which posting period in a depressed user’s post timeline was
the most indicative of depression. This involved the use of a
subset of RSDD-Matched users. The performance of binary
classifiers versus temporal subsets of the posts in the 6 months
before the users’ estimated diagnosis dates was measured.

The RSDD-Matched subset contained only depressed users who
had at least one post in the 2 weeks before their estimated
diagnosis date. Of the 70 depressed users in our RSDD subset,
14 did not have any posts in this 2-week period. Consequently,
we used only 56 depressed users in the temporal experiment.
Furthermore, not all 10 control users matched with each of the
56 depressed were useable because some did not have at least
one post in this 2-week period. Thus, we performed additional

random exclusions of controls to rebalance the data set. After
these exclusions, the data set used in the temporal experiment
contained 56 depressed users, each of which had 3 matching
control users, totaling to 224 users.

The results of the preemptive depression identification
experiment were used to partially inform the design of the
temporal experiment. Because BERT scored the highest average
F1-score across all runs of the preemptive depression
identification experiment, it was decided that this was the sole
general-purpose transformer-based LM to be used in the
temporal experiment. Likewise, MentalBERT had the highest
average F1-score; therefore, it was selected as the sole specialist
LM. The 3 variations of the SVM classifier used in the
preemptive depression-identification experiment were used once
again.
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Once again, we used 5-fold cross-validation. Two chief
variations of the RSDD-Matched subset and several different
temporal configurations were used (Table 4).

The 2 chief strands to our experimental setup are summarized
in Figure 1.

We complemented the temporal experiment with sentiment
analysis. The purpose of this study was to identify whether there
is a link between sentiment and depression with respect to user
posts. Text sentiment has been extensively used as a predictor
for detecting signs of depressive mood in microblog users
[57-59]. Specifically, negatively charged text has often been
correlated with depression via expressions of low mood and
suicidal ideation [60]. Approaches used to extract sentiment
from social media posts include the use of LMs [61] and
lexicons such as Valence Aware Dictionary and Sentiment
Reasoner (VADER) [62].

To determine whether there is a relationship between sentiment
and depression, we used BERTweet-sentiment, a state-of-the-art
transformer model, to classify each post in RSDD-Matched as
either negative, neutral, or positive. BERTweet-sentiment is
based on the BERTweet [63] implementation, which is trained
on a large Twitter corpus and fine-tuned for sentiment analysis.
Although the model is not trained on Reddit data, we believe
that there are enough overlapping lexical characteristics between
the 2 domains in terms of internet slang and text lengths that
justify its use.

Our sentiment analysis focused on changes in the sentiment
distribution of depressed and control users over time. In step

with the design of our temporal experiment, each user’s posts
are divided into 6 temporal bands, namely 0-4, 4-8, 8-12, 12-16,
16-20, and 20-24 weeks before their estimated diagnosis date
(for a control user, this is the estimated diagnosis of its matched
depressed user). The average percentage of each sentiment in
each band was considered.

To establish whether the diagnosis was associated with the
sentiment of a post, 2 regression models were used. The first
was based on the lme4 framework [64], and the second on mgcv
[65]. The implementations used were those of the R (version
4.02) statistical environment [66]. We set our outcome variable
to be whether a post is “sentimental” (that is, either negative or
positive) or not (neutral), and a logistic mixed effects regression
was fitted using all the available posts with the individual user
identifier as a random effect term. As fixed effects, we used the
estimated depression diagnosis (ie, either depressed or control),
the time to estimated diagnosis in weeks, the post’s word count,
and the interaction term of estimated diagnosis with time.

Having sought to establish whether the diagnosis of the user
was associated with the sentimentality inferred for each post,
we also considered a more fine-grained multinomial regression
model. This is equivalent to fitting a series of logistic models
against a reference category [67] and is similar to the “stacked”
designs used in other disciplines [68]. For our purposes, we will
consider “neutral” as the reference category of our multinomial
outcome, so all effect sizes will indicate the probability of a
post being positive or negative instead of neutral.

Table 4. Variations of the temporal experiment in terms of the number of matching control users and numbers of weeks of posts before estimated
diagnosis dates considered.

Weeks of posts included before estimated
diagnosis date

Total usersMatching control users per depressed userDepressed users

4, 8, 12, 16, 20, and 24112156Variation 1

4, 8, 12, 16, 20, and 24224356Variation 2
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Figure 1. Summary of the 2 chief experimental setups. ALBERT: A Lite Bidirectional Encoder Representations from Transformers; BERT: Bidirectional
Encoder Representations from Transformers; LM: language model; SVM: support vector machine; TF-IDF: term frequency–inverse document frequency;
RSDD: Reddit Self-reported Depression Diagnosis.

Results

Preemptive Depression Identification Experiment
The results of the preemptive depression identification
experiment are presented in Tables 5-8. Each table shows a
variation in the number of matched control users. Positive
predictive value, sensitivity, and F1-score were used to measure
the performance in each variation. The positive predictive value
denotes the number of users classified as depressed who were
indeed depressed. Sensitivity denotes how many of the depressed
users were correctly classified as depressed. The F1-score, which
is the harmonic mean of the positive predictive value and
sensitivity, is suitable for use with data sets such as ours, where
the class distribution (of depressed and controls) is uneven [69].
In contrast, accuracy is not suitable for such data sets [70].
Therefore, we used F1-score as the primary performance metric.

Using F1-score as a primary performance indicator,
MentalBERT performs best across the variations.

A detailed breakdown of the results of the preemptive depression
identification experiment can be found in Multimedia Appendix
1.

Word embeddings (vector representations) result in strong
sensitivity (recall), whereas TF-IDF features cause deficient
performance. The positive predictive value (precision) was best
observed when using the specialist LM, MentalBERT. The best
F1-score was also achieved by MentalBERT and exceeded the
naive baseline.

We now consider the selected users from RSDD-Matched and
the performance of the classifiers against them. We will examine
one misclassified user per variation in the experiment (in terms

of depressed users and the number of matched controls). For
each variation, we will examine the strongest performing
classifier and the user that it misclassified with the highest
probability.

To identify the potential reasons for the misclassifications, we
examined the lexical properties of user posts using 3 approaches.
The first approach involves ascertaining the chief topic conveyed
by the posts, a topic represented by 5 words. Topic modeling
via latent Dirichlet allocation was used to accomplish this
[71,72]. The second approach examines the chief TF-IDF
features of the user posts. The third approach is to count the
frequencies of depressed and control vocabularies (Table 2) that
appear across the posts.

We present the misclassified depressed users with respect to
each variation in the experiment (Table 9). We also present the
misclassified control users with respect to each variation (Table
10).

One depressed user is often misclassified. User d13 was deemed
a control user using 3 different classifiers across 3 different
variations. Although depressed vocabulary counts slightly
outweigh their control counterparts, the totals for both
vocabularies were nominal. The topic of the user’s posts is
probably more indicative of the reasons for the misclassification.
Certainly, a theme concerning death or dying appears to be
present, but this is diluted by optimistic sounding references of
temporal and geographic nature. Further diluting references are
revealed among the TF-IDF features, where strong terms such
as “love” are present. It seems that the classifiers construe such
references as those belonging to a control user.

User d38 may have been misclassified for similar reasons.
Counts for both depressed and control vocabularies were small.
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Positive terms, such as “welcome” and “invite” might be deemed
to belong to a control user.

An inferior performance was observed across the classifiers in
the most imbalanced environment. We examine depressed user
d57, which has been misclassified with a probability close to
certainty. The depressed vocabulary count dwarfs the control
vocabulary count. However, when making its decision, the
classifier seems to harness the overarching nature of the user’s
posts, as indicated by the topic model and TF-IDF features. The
prevalence of “good” natured posts will inevitably see the user
deemed similar to a control user when represented in a vector
space.

We now consider misclassified control users with respect to
each variation in the experiment (Table 10).

Certain users appear to be confounding across several different
classifiers and variations. User c13 was strongly misclassified
as a depressed user by both MentalBERT and MentalRoBERTa
in the relatively noisy environments of 3 and 5 matched control
users, respectively (Table 10). The depressed vocabulary counts
far outweigh the control vocabulary counts for this user. In
addition, the theological topic and TF-IDF features of the user’s

posts are deemed likely to be those of a depressed user,
according to the classifier.

MentalBERT demonstrated adeptness in the most balanced
variation in the experiment. We sought possible explanations
for the misclassification of user c521. The control vocabulary
count slightly outweighed that of depressed vocabulary.
Moreover, the topic model and TF-IDF features are composed
of terms that complement the control vocabulary. Intuitive
reasons for misclassification as depressed are difficult to cite.
Therefore, it is possible that, in a balanced environment, the
classifier simply has too few control users to compare with
depressed users.

In the noisiest environment, the simpler word-based model
(SVM using word embeddings) demonstrated the strongest
performance. Transformer-based language modeling cannot be
performed. The vocabulary of the most strongly misclassified
user in this case (c535) only offers a tenuous explanation. The
count of depressed vocabulary was small, although it outweighed
that of the control vocabulary. However, the topic and TF-IDF
terms appeared to complement the depressed vocabulary, which
may have been the cause of the misclassification.

Table 5. Binary classification scores using all posts of 70 depressed users and 1 of their matched control usersa.

F1-score, mean (SD)Sensitivity, mean (SD)Positive predictive value, mean (SD)

0.590 (N/A)0.557 (N/A)0.637 (N/Ad)SVMb using TF-IDFc

0.548 (N/A)0.543 (N/A)0.558 (N/A)SVM using word embeddings

0.596 (N/A)0.557 (N/A)0.673 (N/A)SVM using TF-IDF and word embed-
dings

0.709 (0.012)0.805 (0.022)0.638 (0.021)BERTe LMf

0.683 (0.010)0.786 (0.015)0.606 (0.008)ALBERTg LM

0.707 (0.005)0.862 (0.022)0.601 (0.005)BioBERT LM

0.719 (0.018)0.838 (0.036)0.633 (0.009)Longformer LM

0.738 (0.013)0.848 (0.008)0.660 (0.019)MentalBERT LM

0.709 (0.006)0.819 (0.022)0.629 (0.002)MentalRoBERTa LM

0.667 (N/A)1.000 (N/A)0.500 (N/A)Naive baseline—all depression

aLanguage model experiments were run 3 times each, therefore both mean and SD scores are provided.
bSVM: support vector machine.
cTF-IDF: term frequency–inverse document frequency.
dN/A: not applicable.
eBERT: Bidirectional Encoder Representations from Transformers.
fLM: language model.
gALBERT: A Lite Bidirectional Encoder Representations from Transformers.
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Table 6. Binary classification scores using all posts of 70 depressed users and 3 of their matched control usersa.

F1-score, mean (SD)Sensitivity, mean (SD)Positive predictive value, mean (SD)

0.153 (N/A)0.086 (N/A)0.800 (N/Ad)SVMb using TF-IDFc

0.459 (N/A)0.529 (N/A)0.411 (N/A)SVM using word embeddings

0.107 (N/A)0.057 (N/A)0.800 (N/A)SVM using TF-IDF and word embeddings

0.546 (0.025)0.481 (0.022)0.653 (0.033)BERTe LMf

0.547 (0.018)0.476 (0.009)0.652 (0.034)ALBERTg LM

0.496 (0.020)0.410 (0.030)0.654 (0.028)BioBERT LM

0.534 (0.031)0.476 (0.036)0.653 (0.036)Longformer LM

0.562 (0.016)0.509 (0.008)0.657 (0.034)MentalBERT LM

0.522 (0.002)0.471 (0.015)0.614 (0.023)MentalRoBERTa LM

0.167 (N/A)1.000 (N/A)0.250 (N/A)Naive baseline—all depression

aLanguage model experiments were run 3 times each, therefore both mean and SD scores are provided.
bSVM: support vector machine.
cTF-IDF: term frequency–inverse document frequency.
dN/A: not applicable.
eBERT: Bidirectional Encoder Representations from Transformers.
fLM: language model.
gALBERT: A Lite Bidirectional Encoder Representations from Transformers.

Table 7. Binary classification scores using all posts of 70 depressed users and 5 of their matched control usersa.

F1-score, mean (SD)Sensitivity, mean (SD)Positive predictive value, mean (SD)

0.053 (N/A)0.029 (N/A)0.400 (N/Ad)SVMb using TF-IDFc

0.372 (N/A)0.471 (N/A)0.309 (N/A)SVM using word embeddings

0.027 (N/A)0.014 (N/A)0.200 (N/A)SVM using TF-IDF and word embeddings

0.379 (0.017)0.290 (0.022)0.615 (0.028)BERTe LMf

0.354 (0.006)0.281 (0.009)0.555 (0.030)ALBERTg LM

0.331 (0.027)0.252 (0.021)0.627 (0.034)BioBERT LM

0.363 (0.059)0.286 (0.038)0.624 (0.108)Longformer LM

0.400 (0.040)0.329 (0.043)0.572 (0.002)MentalBERT LM

0.419 (0.010)0.343 (0.000)0.562 (0.027)MentalRoBERTa LM

0.286 (N/A)1.000 (N/A)0.167 (N/A)Naive baseline—all depression

aLanguage model experiments were run 3 times each, therefore both mean and SD scores are provided.
bSVM: support vector machine.
cTF-IDF: term frequency–inverse document frequency.
dN/A: not applicable.
eBERT: Bidirectional Encoder Representations from Transformers.
fLM: language model.
gALBERT: A Lite Bidirectional Encoder Representations from Transformers.
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Table 8. Binary classification scores using all posts of 70 depressed users and 10 of their matched control usersa.

F1-score, mean (SD)Sensitivity, mean (SD)Positive predictive value, mean (SD)

0.000 (N/A)0.000 (N/A)0.000 (N/Ad)SVMb using TF-IDFc

0.268 (N/A)0.371 (N/A)0.212 (N/A)SVM using word embeddings

0.000 (N/A)0.000 (N/A)0.000 (N/A)SVM using TF-IDF and word embeddings

0.025 (0.00)0.014 (0.000)0.100 (0.000)BERTe LMf

0.025 (0.001)0.014 (0.000)0.089 (0.019)ALBERTg LM

0.009 (0.016)0.005 (0.008)0.067 (0.115)BioBERT LM

0.021 (0.037)0.019 (0.033)0.024 (0.019)Longformer LM

0.026 (0.001)0.014 (0.000)0.167 (0.058)MentalBERT LM

0.057 (0.018)0.034 (0.008)0.272 (0.185)MentalRoBERTa LM

0.167 (N/A)1.000 (N/A)0.091 (N/A)Naive baseline—all depression

aLanguage model experiments were run 3 times each, therefore both mean and SD scores are provided.
bSVM: support vector machine.
cTF-IDF: term frequency–inverse document frequency.
dN/A: not applicable.
eBERT: Bidirectional Encoder Representations from Transformers.
fLM: language model.
gALBERT: A Lite Bidirectional Encoder Representations from Transformers.

JMIR AI 2023 | vol. 2 | e41205 | p.330https://ai.jmir.org/2023/1/e41205
(page number not for citation purposes)

Owen et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 9. Depressed users most strongly misclassified in each variation of the preemptive depression identification experimenta.

One depression user per 10
control users (1:10)

One depression user per 5
control users (1:5)

One depression user per 3
control users (1:3)

One depression user per
control user (1:1)

SVMc using word embeddingsMentalRoBERTa LMMentalBERT LMMentalBERT LMbClassifier

d57d13d38d13User

0.980.990.940.93Control probability

55,897169618881696Sum of post lengths in
words

Topic •••• goodnewssir-geonews
• •••hawaii timehawaiiwelcomed

•••• peopletimeinvitetime
• •••dead yearsdeadleave

•• ••warlockblue problemblue

Chief TF-IDFd features •••• goodlovesirlove
• •••minnesota knowminnesotageo

•••• usediablowelcomediablo
• •••time maketimeinvite

•• ••warlockman timeman
••• •budleavebud thank

•••• linkzoidbergtitanzoidberg
• •••like wantlikepsn

•• ••runmonth trymonth
••• •hawaiineedhawaii like

Depressed vocabulary counts

64111people

93606know

35303thing

10222feel

99585time

7101woman

54303go

71313want

28202life

2000relationship

Control vocabulary counts

9010game

2000trade

4000key

4232team

35010play

8000player

0000shiny

0000hatch

15011thank

14020add

aLexical properties of those users’ posts are provided.
bLM: language model.
cSVM: support vector machine.
dTF-IDF: term frequency–inverse document frequency.
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Table 10. Control users most strongly misclassified in each variation of the preemptive depression identification experimenta.

One depression user per 10
control users (1:10)

One depression user per 5
control users (1:5)

One depression user per 3
control users (1:3)

One depression user per
control user (1:1)

SVMc using Word embed-
dings

MentalRoBERTa LMMentalBERT LMMentalBERT LMbClassifier

c535c13c13c521User

0.910.910.950.99Depressed probability

1595848984891513Sum of post lengths in words

Topic •••• peoplegodgodelo
• •••play shitjesusjesus

•••• redditpeoplepeopleteam
• •••bronze guygoodgood

•• ••lifegames manlife

Chief TF-IDFd features •••• saygodgodteam
• •••just thankthinkthink

•••• guywaywaysuck
• •••elo peoplethingthing

•• ••tryplay reddittry
••• •knowknowgame man

•••• makejesusjesuslike
• •••good tellpeoplepeople

•• ••saysydtko watchsay
••• •likelikewin let

Depressed vocabulary counts

648484people

336362know

128283thing

1661feel

4662time

0440woman

5440go

116163want

146460life

0880relationship

Control vocabulary counts

0007game

0000trade

0000key

0009team

0669play

0002player

0000shiny

0000hatch

1441thank

0001add

aLexical properties of those users’ posts are provided.
bLM: language model.
cSVM: Support Vector Machine.
dTF-IDF: Term Frequency–-Inverse Document Frequency.
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Temporal Experiment
We then performed a temporal experiment. Because BERT
achieved the highest F1-score across all preemptive depression
identification experiment variations, it was selected as the
exclusive general-purpose LM here. For the same reason,
MentalBERT was selected as an exclusive specialist LM. The
results are presented in Tables 11 and 12. Each table shows a
variation in the number of matched control users. The average
performance of each LM across the 2 variations is shown in
Figure 2.

For BERT, the strongest sensitivity and F1-scores were observed
when only 12 weeks (approximately 3 months) of posts before
the estimated diagnosis dates were considered. Subsets larger
or smaller than 12 weeks caused degradation in the classifier
performance. For MentalBERT, the strongest sensitivity and
F1-scores were obtained when either 16 or 24 weeks of posts
were considered. With BERT scoring a higher F1-score at 12
weeks than MentalBERT, this suggests that the final 12 weeks
of posts before a depressed user’s estimated diagnosis date may
be the most indicative of their illness.

An explanation for the slightly inferior performance of
MentalBERT may be found in its construction: it is pretrained
on text from mental health subreddits such as “r/depression”
and “r/mental health” [48]. However, RSDD (from which we
derived RSDD-Matched) does not contain posts from mental
health subreddits. Therefore, when RSDD-Matched data are
limited, as in our temporal experiment, more general-purpose
models, such as BERT, may be able to achieve stronger
performance. BERT is pretrained on more general corpora, such
as Wikipedia [44].

A detailed breakdown of the results of the temporal experiment
can be found in Multimedia Appendix 1.

We once again consider selected users from RSDD-Matched
and the performance of the classifiers against them. We again
examined one misclassified user per variation in the experiment
(in terms of depressed users and number of matched controls).
For each variation, we will examine the strongest performing

time span, and the user that is misclassified with the highest
probability. To identify the reasons for the misclassifications,
we again examined the lexical properties of the user posts using
topic models, TF-IDF features, and vocabulary (Table 2)
frequency counts.

Misclassified depressed users with respect to the 2 variations
in the experiment are listed in Table 13.

User d52 is a depressed user misclassified in both balanced and
imbalanced environments, where only the final 12 weeks of
their posts are considered. The vocabulary of these posts
intersected with very little of the chief depressed vocabulary.
It intersects with slightly more of the chief control vocabulary.
The topic and TF-IDF features, intuitively speaking, appear to
belong to that of a control rather than a depressed user. Perhaps,
a balanced environment with temporally limited post histories
provides little training data from which the classifier can learn
to differentiate between controls and depressed users. Although
rare, these cases may occur in practice and highlight the
importance of being careful in overrelying on automatic models
for individual assessments without human expert intervention.

We now consider the misclassified control users with respect
to the 2 variations in the experiment (Table 14).

First, we consider user c481. Both its depressed and control
vocabulary counts were zero, which offers some insight into
misclassification. The topic and TF-IDF features of the posts
appear to align with those of the control user. However, it is
likely that the prevalence of “pain” is a confounding factor. This
term may be intuitively linked to depressed users, which may
mislead the classifier. Again, the limited temporal range of posts
in this setting provided little data from which the classifier could
learn.

User c13 is a confounder in the preemptive depression
identification experiment and has been proven to be so in the
temporal experiment. Even when considering only the last 12
weeks of the user’s posts in an imbalanced environment,
theologically themed vocabulary is not diluted. It intersects
strongly with the vocabulary of depressed users and explains
this misclassification.
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Table 11. Binary classification scores using 56 depressed users and 1 of their matched control users and 6 temporal post subsetsa.

F1-score, mean (SD)Sensitivity, mean (SD)Positive predictive value, mean (SD)

Last 4 weeks

0.675 (0.023)0.830 (0.039)0.575 (0.027)BERTb LMc

0.698 (0.017)0.835 (0.026)0.612 (0.026)MentalBERT LM

Last 8 weeks

0.700 (0.037)0.854 (0.071)0.598 (0.026)BERT LM

0.699 (0.022)0.842 (0.047)0.603 (0.020)MentalBERT LM

Last 12 weeks

0.726 (0.015)0.912 (0.018)0.605 (0.014)BERT LM

0.715 (0.008)0.888 (0.010)0.600 (0.013)MentalBERT LM

Last 16 weeks

0.684 (0.007)0.863 (0.026)0.570 (0.009)BERT LM

0.703 (0.016)0.907 (0.028)0.575 (0.009)MentalBERT LM

Last 20 weeks

0.694 (0.025)0.893 (0.036)0.569 (0.023)BERT LM

0.696 (0.014)0.882 (0.027)0.578 (0.018)MentalBERT LM

Last 24 weeks

0.683 (0.010)0.871 (0.027)0.565 (0.021)BERT LM

0.707 (0.011)0.890 (0.010)0.591 (0.014)MentalBERT LM

All posts

0.710 (0.019)0.824 (0.032)0.627 (0.018)BERT LM

0.732 (0.006)0.861 (0.000)0.638 (0.009)MentalBERT LM

0.667 (N/A)1.000 (N/A)0.500 (N/Ad)Naive baseline

aThe classifiers used are BERT LM and MentalBERT LM, both of whose experiments were run 3 times each, therefore both mean and SD scores are
provided.
bBERT: Bidirectional Encoder Representations From Transformers.
cLM: language model.
dN/A: not applicable.
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Table 12. Binary classification scores using 56 depressed users and 3 of their matched control users and 6 temporal post subsetsa.

F1-score, mean (SD)Sensitivity, mean (SD)Positive predictive value, mean (SD)

Last 4 weeks

0.489 (0.010)0.538 (0.019)0.480 (0.027)BERTb LMc

0.525 (0.007)0.577 (0.009)0.494 (0.019)MentalBERT LM

Last 8 weeks

0.472 (0.035)0.538 (0.036)0.446 (0.032)BERT LM

0.461 (0.023)0.524 (0.029)0.427 (0.027)MentalBERT LM

Last 12 weeks

0.543 (0.035)0.619 (0.037)0.498 (0.031)BERT LM

0.494 (0.009)0.569 (0.017)0.448 (0.007)MentalBERT LM

Last 16 weeks

0.504 (0.011)0.565 (0.021)0.471 (0.010)BERT LM

0.541 (0.028)0.643 (0.037)0.481 (0.023)MentalBERT LM

Last 20 weeks

0.510 (0.034)0.577 (0.037)0.475 (0.039)BERT LM

0.524 (0.009)0.595 (0.011)0.487 (0.018)MentalBERT LM

Last 24 weeks

0.518 (0.033)0.591 (0.036)0.470 (0.033)BERT LM

0.536 (0.022)0.591 (0.018)0.501 (0.022)MentalBERT LM

All posts

0.562 (0.015)0.519 (0.032)0.625 (0.021)BERT LM

0.540 (0.003)0.508 (0.010)0.588 (0.005)MentalBERT LM

0.400 (N/A)1.000 (N/A)0.250 (N/Ad)Naive baseline

aThe classifiers used are BERT LM and MentalBERT LM, both of whose experiments were run 3 times each, therefore both mean and SD scores are
provided..
bBERT: Bidirectional Encoder Representations From Transformer.
cLM: language model.
dN/A: not applicable.

Figure 2. Average performances of Bidirectional Encoder Representations from Transformers (BERT) and MentalBERT between 4 and 24 weeks
before the estimated diagnosis date.

JMIR AI 2023 | vol. 2 | e41205 | p.335https://ai.jmir.org/2023/1/e41205
(page number not for citation purposes)

Owen et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 13. Depressed users most strongly misclassified in each variation of the temporal experiment. Lexical properties of those users’posts are provided.

One depression user per 3 control users (1:3)One depression user per control user (1:1)

Last 12 weeksLast 12 weeksTime span

BERT LMBERTa LMbClassifier

d52d52User

0.9350.869Control probability

12251225Sum of post lengths in words

england belgium hamster time teamengland belgium hamster time teamTopic

Chief TF-IDFc features •• thankthank
• •team team

•• playerplayer
• •help help

•• timetime
• •goal goal

•• cagecage
• •post post

•• secondsecond
• •start start

Depressed vocabulary counts

00people

11know

11thing

00feel

44time

00woman

00go

22want

00life

00relationship

Control vocabulary counts

22game

00trade

00key

44team

00play

11player

00shiny

00hatch

22thank

11add

aBERT: Bidirectional Encoder Representations From Transformers.
bLM: language model.
cTF-IDF: term frequency–inverse document frequency.
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Table 14. Control users most strongly misclassified in each variation of the temporal experiment. Lexical properties of those users’ posts are provided.

One depression user per 3 control users (1:3)One depression user per control user (1:1)

Last 12 weeksLast 12 weeksTime span

BERT LMBERTa LMbClassifier

c13c481User

0.9170.963Depressed probability

8489258Total length of posts in words

Topic •• godfood
• •clove jesus

•• peopletomorrow
• •pain good

•• lifesuspect

Chief TF-IDFc features •• godreply
• •eat think

•• wayfood
• •cat thing

•• tryclove
• •pain know

•• jesussuspect
• •tooth people

•• sayvet
• •water like

Depressed vocabulary counts

240people

180know

140thing

30feel

30time

20woman

20go

80want

230life

40relationship

Control vocabulary counts

00game

00trade

00key

00team

30play

00player

00shiny

00hatch

20thank

00add

aBERT: Bidirectional Encoder Representations From Transformers.
bLM: language model.
cTF-IDF: term frequency–inverse document frequency.
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Sentiment Analysis
A sentiment analysis was then performed to complement the
temporal experiment. We present the band-wise changes in
sentiment for each class (Figures 3 and 4). It is observed that
negatively charged posts for depressed users are less frequent
as we approach the (estimated) diagnosis date, which may be
deemed counterintuitive (Figure 3). However, it is also notable
that depressed users’ posts were, on average, more negative
than those of control users throughout the 24-week period
(Figure 4). This aligns with previous studies that found a positive
correlation between mental illness and negative sentiments [73].

We then sought to establish whether the diagnosis was
associated with the sentiment of the post. The results of the
logistic regression model (Table 15) indicate that there is a clear
significant association between the diagnosis and the

“sentimentality” of the post (P<.05), despite no apparent effect
of temporality. Interestingly, the word count of a post appeared
as a significant covariate of this model (P=.001), indicating that
longer posts are slightly more likely to be classified as
“sentimental,” irrespective of the depression status of the user.

Table 16 presents the results of the Multinomial Regression
Model. Again, all effect size estimates were compatible with
our inferences on the basis of a simpler logistic model. However,
the multinomial analysis gives us an additional perspective: the
effects of depression diagnosis are similar between positive and
negative sentiments, with overlapping CIs statistically
indistinguishable. This is the case despite the varying effects
of other covariates, such as word count, which displays
regression β coefficients of opposite signs in both sentiments
(more words associate with negative posts, whereas fewer words
associate with positive posts).

Figure 3. Change in the average percentage of positive and negative posts across 6 temporal bands: 0 to 4, 4 to 8, 8 to 12, 12 to 16, 16 to 20, and 20
to 24 weeks before the estimated diagnosis date (for a control user, this is the estimated diagnosis of its matched depressed user).

Figure 4. Average percentage of positive and negative posts per temporal band. Temporal bands include 0 to 4, 4 to 8, 8 to 12, 12 to 16, 16 to 20, and
20 to 24 weeks before the estimated diagnosis date (for a control user, this is the estimated diagnosis of its matched depressed user).
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Table 15. Logistic regression results for predicting whether a post is neutral or not neutral.

P valueSEOdds ratioβVariable

<.0010.0351.1770.163Depression diagnosis

.750.0130.996−0.004Time to diagnosis

.0010.0121.0410.040Post word count

.410.0131.0110.011Interaction (diagnosis ×
time)

Table 16. Multinomial regression results for predicting whether a post is positive or negative.

P valueSEOdds ratioβSentiment and variable

Positive

<.0010.0471.2090.190Depression diagnosis

.370.0161.0150.015Time to diagnosis

<.0010.0190.932−0.070Post word count

.0060.0161.0460.045Interaction (diagnosis × time)

Negative

<.0010.0411.1630.151Depression diagnosis

.240.0160.981−0.019Time to diagnosis

<.0010.0141.1080.103Post word count

.180.0160.979−0.021Interaction (diagnosis × time)

Discussion

Principal Findings
We obtained evidence that LMs (particularly BERT-like models)
can be used in preemptive mental health detection and analysis
in longhand forums, even if they have room for improvement.

In our preemptive depression detection experiment, depressed
and control subjects were placed in ratios of 1:1, 1:3, 1:5, and
1:10. The purpose was to simulate increasingly realistic settings
in which most users were controls. In the balanced arrangement
of 1:1, we obtained an F1-score of 0.738 using the MentalBERT
LM. This is comparable with the works of Eichstaedt et al [14],
de Choudhury et al [74], and Reece et al [19], who obtained
F1-scores of 0.660, 0.680, and 0.650, respectively. This study
provides evidence that LMs are more effective than existing
methods for predicting depression in social media data before
diagnosis.

Our temporal analysis suggested that the final 12 weeks
(approximately 3 months) of posts before a depressed user’s
estimated diagnosis date are likely to be the most indicative of
their condition. Another broader interpretation is that LMs do
not appear to improve with the addition of more data before
12-16 weeks. The BERT and MentalBERT obtained F1-scores
of 0.726 and 0.715, respectively.

This is in contrast to a certain extent with the results of
Eichstaedt et al [14], albeit using area under curve scores rather
than F1-scores. Six months before the diagnosis date, 0.72 was
obtained, and 3 months prior, 0.62 was obtained. From these
results, it is difficult to draw clear conclusions because the

results may be affected by the nature of the data and models
used.

We also observed that posts made during the 4- to 8-week period
before the user’s estimated diagnosis date are also pertinent.
They exhibited more negative sentiment than posts made during
any other 4-week period (up to 24 weeks before their estimated
diagnosis date). This finding may be supportive of prior work
that distinct changes in mood may be predictive of the onset of
depression [75].

We were able to corroborate the importance of sentiment in the
discourse of depressed users. We found that depressed users
are approximately 1.18 times more likely to make a sentimental
post than nondepressed users.

Limitations
Constraints on our investigation primarily concern
RSDD-Matched, where 70 depressed users make up a small
sample. However, use 5-fold cross-validation to mitigate this
and performed different experiments with various numbers of
control users.

RSDD-Matched is derived from RSDD and RSDD-Time. As
a result, the diagnosis dates of the users in RSDD-Matched are
estimates only. Furthermore, posts made in mental health
subreddits were deliberately elided from the RSDD and were
not available for consideration by our machine classifiers.

Conclusions
Using state-of-the-art LMs, this study posits how far the
diagnosis of depression in a person with depressive traits can
be determined in advance. With this knowledge, it may be
possible to direct people with depression to physicians much
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sooner than they would otherwise. Moreover, perhaps more
importantly, we have shown how these automatic NLP tools
can serve to analyze the main traits arising from web-based
posts.

We have also observed that the sentiment exhibited in web-based
forum postings demonstrates good sensitivity in detecting
depressive traits.

Further work may include a multimodal approach to the
detection of people with depression in web-based forums such
as Reddit. For example, along with the text of Reddit users’
posts, we might also consider the subreddits where they have

upvoted and downvoted posts. The awards received or given
may also indicate a user’s mental health. Such a study would,
of course, be contingent on the ability to synthesize a suitable
data set or source an existing one. Moreover, the use of temporal
information such as temporal word embeddings [76] may
enhance any multimodal approach.

Methods for gauging the severity of depression in web-based
forum users should also be investigated. This might involve
mining language features from user posts and observing how
they correlate with ground-truth severity. Features of interest
may include terms used in Linguistic Inquiry and Word Count
dictionaries, sentiment, and emotion [77].
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Abstract

Background: Accurate projections of procedural case durations are complex but critical to the planning of perioperative staffing,
operating room resources, and patient communication. Nonlinear prediction models using machine learning methods may provide
opportunities for hospitals to improve upon current estimates of procedure duration.

Objective: The aim of this study was to determine whether a machine learning algorithm scalable across multiple centers could
make estimations of case duration within a tolerance limit because there are substantial resources required for operating room
functioning that relate to case duration.

Methods: Deep learning, gradient boosting, and ensemble machine learning models were generated using perioperative data
available at 3 distinct time points: the time of scheduling, the time of patient arrival to the operating or procedure room (primary
model), and the time of surgical incision or procedure start. The primary outcome was procedure duration, defined by the time
between the arrival and the departure of the patient from the procedure room. Model performance was assessed by mean absolute
error (MAE), the proportion of predictions falling within 20% of the actual duration, and other standard metrics. Performance
was compared with a baseline method of historical means within a linear regression model. Model features driving predictions
were assessed using Shapley additive explanations values and permutation feature importance.

Results: A total of 1,177,893 procedures from 13 academic and private hospitals between 2016 and 2019 were used. Across
all procedures, the median procedure duration was 94 (IQR 50-167) minutes. In estimating the procedure duration, the gradient
boosting machine was the best-performing model, demonstrating an MAE of 34 (SD 47) minutes, with 46% of the predictions
falling within 20% of the actual duration in the test data set. This represented a statistically and clinically significant improvement
in predictions compared with a baseline linear regression model (MAE 43 min; P<.001; 39% of the predictions falling within
20% of the actual duration). The most important features in model training were historical procedure duration by surgeon, the
word “free” within the procedure text, and the time of day.

Conclusions: Nonlinear models using machine learning techniques may be used to generate high-performing, automatable,
explainable, and scalable prediction models for procedure duration.
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Introduction

Background
Across health care settings, anesthesiologist staffing and
resources are commonly allocated based on procedure volume,
concurrency, complexity, and projected duration [1,2]. Although
preparing allocations is often done far in advance, depending
on institutional processes, daily scheduling requires accurate
information regarding recovery room availability as well as
surgical, anesthesiology, and nurse staffing, all of which directly
rely on accurate determination of procedure duration. More
accurate prediction of procedure duration may allow for more
effective assignment of procedure rooms, more efficient
scheduling of cases (eg, staggering procedure rooms for
surgeons with multiple cases), more predictable hours for
involved staff, and clearer patient communication. Firmer
understanding also relates to the high cost of running procedure
rooms and maintaining optimal procedure room use. In addition,
inaccurate estimates of case length affect patient care because
they lead to gaps within block schedules that are not optimally
used. This can lead to add-on cases not being completed in a
timely manner as well as bed control issues in the inpatient
setting or discharge issues in the outpatient setting. To manage
procedure time, most institutions use either surgeon-directed
procedure durations or procedure durations based on historical
averages [3,4], which can be frequently inaccurate [1,2]. Because
of the complexity of the problem and the inclusion of large
numbers of features with potential interactions, linear regression
methods to predict procedure durations have demonstrated
varying levels of success [5-9]. Machine learning approaches
have been proposed to mitigate this issue. In short, machine
learning aims to extract patterns of knowledge from data, the
benefit being the ability to process large volumes of disparate
data, exploring potentially nonlinear interactions that may
challenge the required assumptions of conventional analysis.
Nonetheless, current studies have been limited to single or few
institutions, smaller sample sizes (between 400 and 80,000
cases), specific surgical subpopulations (robotic [10], colorectal
[11], and pediatric [12]), or the use of proprietary algorithms
[10-16]; for example, the study by Lam et al [11] was
multicenter but had approximately 10,000 colorectal cases. The
studies by Tuwatananurak et al [13] and Rozario and Rozario
[14] used proprietary tools, which may be useful for adoption
but do not permit the same level of transparency or
explainability as other methods. The included features varied
significantly across previous studies.

Objectives
Given the limitations of previous studies and the dependency
of machine learning performance on training set size and
heterogeneity, we developed a machine learning algorithm
derived from a large multicenter data set for a more accurate
prediction of surgical procedure duration compared with

historical averages of procedure time. We hypothesized that a
machine learning algorithm derived from a large multicenter
data set with >1 million procedures would more accurately
predict surgical procedure duration than a baseline linear
regression approach. Using an explainable machine
learning–based algorithm, the results can provide additional
valuable insight regarding procedure duration and variability.
The clinical objective of this protocol was to determine whether
a machine learning algorithm scalable across multiple centers
could make estimations of case duration within a tolerance limit
because there are substantial resources required for procedure
room functioning that relate to case duration.

Methods

Ethics Approval
We obtained institutional review board approval for this
multicenter observational study from New York University
(NYU) Langone Health, New York, NY (S19-01451), and the
requirement for written informed consent was waived by the
institutional review board.

Study Design
We followed multidisciplinary guidelines for reporting machine
learning–based prediction models in biomedical research
[17,18]. Study outcomes, data collection, and statistical methods
were established a priori and presented and approved at a
multicenter peer review forum on January 13, 2020, before data
analyses [19].

Data Source
Data were provided by the Multicenter Perioperative Outcomes
Group (MPOG). Within this research consortium, data from
enterprise and departmental electronic health record systems
are routinely uploaded to a secure centralized database. Methods
for local electronic health record data acquisition, validation,
mapping to interoperable universal MPOG concepts, and secure
transfer to the coordinating center have been previously
described [20] and used in multiple published studies [21-24].
In brief, each center uses a standardized set of data diagnostics
to evaluate and address data quality on a monthly basis. Random
subsets of cases are manually audited by a clinician at each
center to assess, and attest to, the accuracy of data extraction
and source data. At each institution participating in the MPOG,
at the time of clinical onboarding (ie, when a new site joins the
MPOG), a site-level data audit that involves hundreds of cases
is initially performed until reaching a level of accuracy
acceptable to the local site data quality reviewer. After this
iterative process, the onboarded sites undergo a manual review
of a minimum of 5 cases per month to ensure that changes in
clinical and documentation practice patterns do not meaningfully
degrade data quality over time [20]. All institutions were in the
United States and ranged from community hospitals to large
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academic centers. A list of included centers is provided in Table
S1 of Multimedia Appendix 1.

Study Population
The study population included adult and pediatric patients who
underwent procedures requiring anesthesiologist care between
June 1, 2016, and November 30, 2019. Labor epidurals, labor
analgesia, and procedures lacking relevant time points
(patient-in-room duration) or provider information (surgeon
and anesthesia staff identities anonymized) were excluded. Other
missing data were handled as described in the following
subsections.

Primary Outcome
The primary outcome was procedure duration. Procedure
duration was defined according to the precomputed procedure
room duration electronic health record phenotype, interoperable
across a wide variety of electronic health record vendors. The
implications of over- and underpredicting the length of the
procedure cannot be universally defined because this will be
dictated by institutional policy and culture, but, broadly,
overprediction (predicting a longer case than actual duration)
may result in underuse of a given surgical block time, whereas

underprediction (predicting a shorter case than actual duration)
may result in inadequate staffing models.

Basic Model Features
The features considered were determined by availability within
the MPOG data and included certain patient characteristics such
as sex, height, weight, and BMI; medical comorbidities;
allergies; baseline vital signs; functional status; home
medications; the day of the week; procedure text; procedure
room type; anesthesia techniques; case times and durations; and
deidentified institution and staff identities. Features were
selected for modeling based on a review of the existing literature
as well as by clinical and managerial experience [6,8,25]. Table
1 indicates the features that were ultimately selected to be used
for the primary model and sensitivity analysis models using
data available at varying time points relative to the start of the
procedure. The primary model used features only available at
the time the patient arrived in the procedure room. Of the 2
secondary models, one used features restricted to those available
at the time of surgical scheduling, and the other used features
expanded to those available after patient arrival to the procedure
room up to the time of procedure start. This is described further
in the Sensitivity Analyses subsection.
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Table 1. Summary of prediction model features.

Included in Time of Surgical
Incision model (secondary
model)

Included in Time of Patient

in ORa model (primary
model)

Included in Time of
Scheduling model (sec-
ondary model)

Model feature

✓✓✓Case duration

✓✓✓Holiday

✓✓✓Weekend

✓✓✓Surgical service

✓✓✓Surgical procedure text

✓✓✓Anonymized surgeon identity

✓✓✓Patient age

✓✓✓Patient BMI

✓✓✓Location type (acute care hospital, mixed use OR, freestand-
ing ambulatory surgical center, etc)

✓✓✓Institution

✓✓✓Preoperative comorbidities, including arrhythmia, CHFb,

CADc, HTNd, MIe, COPDf, diabetes, renal failure, liver
disease, coagulopathy, cancer, and psychiatric illness (based

on MPOGg phenotype or preoperative anesthesia H&Ph)

✓✓✓Number of allergies

✓✓Preoperative laboratory values, including creatinine,

hemoglobin, albumin, INRi, and glucose levels

✓✓Preoperative baseline blood pressure

✓✓Preoperative existing airway

✓✓Anonymized anesthesia staff

✓✓ASAj physical status score

✓Type of anesthesia

✓Type of airway management

✓Presence of nerve block

✓Presence of neuraxial block

✓Number of intravenous lines at the time of surgical procedure
start

✓Presence of arterial line at the time of surgical procedure
start

✓Time from patient arrival in the OR to anesthesia induction
end

✓Time from anesthesia induction end to surgical incision

aOR: operating room.
bCHF: congestive heart failure.
cCAD: coronary artery disease.
dHTN: hypertension.
eMI: myocardial infarction.
fCOPD: chronic obstructive pulmonary disease.
gMPOG: Multicenter Perioperative Outcomes Group.
hH&P: history and physical examination.
iINR: international normalized ratio.
jASA: American Society of Anesthesiologists.
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Experience and Historical Features
Additional features were derived from surgical staff and
institution identity (Textbox 1).

Derived experience and historical features were computed on
a monthly basis from the earliest available date to the month
before a given procedure; for example, procedures for the month
of February 2019 would include derived features from June
2016 (the first available date in the data set) until January 2019.
Procedure-wise features (eg, features derived from the first
available date until the actual date of the procedure) were not
included in the data set owing to computational processing
power cost. Only the primary surgeon identity, anesthesiologist
identity, and current procedural terminology (CPT) code were
used in feature engineering. Density features were included to

account for surgeons or institutions that were not included from
the earliest date in the MPOG data set; for example, a surgeon
who performed 20 procedures in 2 months would have the same
density as a surgeon who performed 40 procedures in 4 months
to mitigate model bias attributable to surgeons or institutions
first appearing in the data set beyond the start date of the data
set. Surgeon and institution experience are limited by the start
date of the data set and would not account for experience before
this start date. The same surgeon would have 2 different
identities at different facilities because surgeons may
fundamentally do different things based on the hospital they
are practicing at, given the resources available to them at that
specific hospital and practice patterns that are generally followed
at that hospital.

Textbox 1. Additional features.

• Surgeon experience: total number of procedures performed by surgeon

• Surgeon procedure experience: total number of a given procedure (by anesthesiology current procedural terminology [CPT] code) performed by
surgeon

• Institutional procedure experience: total number of a given procedure performed at an institution

• Historical procedure duration: historical mean duration of a given procedure (by CPT code)

• Historical procedure duration by institution: historical mean duration of a given procedure at an institution

• Historical procedure duration by surgeon: historical mean duration of a given procedure by surgeon

• Surgeon total density: surgeon experience divided by time since surgeon’s first procedure

• Surgeon procedure density: surgeon procedure experience divided by time since surgeon’s first procedure

• Institutional procedure density: institutional procedure experience divided by time since institution’s first procedure

Procedure Text Features
Although it was an option to include only the machine
learning–generated anesthesia CPT code as a feature, it was felt
that these codes lack the granularity that would be needed for
more accurate prediction in this context. Procedure text refers
to the name of the surgical procedure as booked by the surgeon.
As the data set was being generated from a variety of
institutions, procedure text may refer to either a scheduled
procedure or a performed procedure and may vary in
descriptiveness based on surgeon preference and institutional
culture. Examples of procedure text may be “laparoscopic
cholecystectomy with intraoperative cholangiogram” or
“posterior cervical fusion C3-C7.” Natural language processing
was used to convert text into a form usable by machine learning.
Through a manual review of the corpus, common misspellings
were corrected, and the 5 most common abbreviations were
expanded (as detailed in Multimedia Appendix 1 [refer to R
Code for Data Processing]). To decrease vocabulary size, text
was standardized through the removal of punctuations and
common stop words (eg, “a,” “an,” and “the”). Additional words
deemed likely to be nondeterminative of procedure duration,
such as “right” and “left,” were also preemptively removed.
After text processing, term matrices were created with 1- and
2-word n-grams. Term frequency–inverse document frequency
was used to transform text into numerical values. Because of
the vastness of the corpus, but also to retain as many relevant
terms as possible, terms with document frequency >0.995 were

removed because these terms likely did not contain important
information. Similar processing of procedure text for machine
learning has been described in other published works [21]. The
code for natural language processing is provided along with
other data processing code in Multimedia Appendix 1 (refer to
R Code for Data Processing).

Power Analysis
Previous studies estimating procedure duration have used
between 400 and 80,000 cases [9,10,12,13,26]. On the basis of
experience and other comparable machine learning problems,
we estimated that at least 100,000 cases encompassing a wide
range of surgical procedure types would be adequate. On the
basis of initial cohort size queries, there were >100,000 cases
available for training, testing, and validation. A greater number
of cases with a wider diversity in procedure types leads to a
stronger machine learning model with less overfitting and
ultimately greater generalizability [27,28].

Data Preprocessing
All data were examined for missingness and veracity; cases
with missing procedure duration and surgeon or anesthesia staff
identities were eliminated. Outlier cases with durations of >1440
minutes were removed. Any feature missing >40% of the values
or missing from >40% of the institutions was excluded. The
remaining features were considered qualifying data. Different
machine learning algorithms automatically treated missing
values differently: generalized linear models use mean
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imputation to handle missing data. The missing values are
replaced with the mean of the nonmissing values for that feature.
Gradient boosting machines learn optimal splits in the decision
trees for missing values. These algorithms do not impute missing
data; instead, they find the best path in the decision trees for
the observations with missing values. Deep learning algorithms
perform mean imputation by default for handling missing data;
they replace the missing values with the mean of the nonmissing
values for that feature during training. Machine learning
packages used for modeling also reject unimportant features,
and this functionality was retained during modeling.

Statistical Analyses: Model Development
The primary model was designed using a temporal reference
point of patient arrival to the procedure room and thus only used
data available before this event. The analysis was performed in
R statistical software (R Foundation for Statistical Computing),
using the H2O package of machine learning algorithms [29].
The models were generated and run via a server with a 2.9 GHz
Intel processor with 96 GB RAM and a 64-bit operating system.
This is comparable to a standard hospital computer system.
Categorical variables were automatically processed to one-hot
encoding. Predicted anesthesia CPT codes were used to
characterize procedure types, using a previously published
prediction model [21]. Multiple supervised machine learning
regression algorithms were trained, including deep learning,
gradient boosting machine, and stacked ensemble methods. In
brief, deep learning helps to identify complex patterns, in which
layers of nodes receive input and offer output, with successive
layers representing more complex combinations of prior simpler

layers [30]. By contrast, gradient boosting machines use weaker
learners, specifically decision trees, by iteratively modifying
the weights of each observation and progressively combining
the trees together to improve the fit of the model [31]. Finally,
stacked ensemble methods use combinations of strong learners
(ie, deep learning, gradient boosting, and logistic regression)
to optimize performance [32,33]. The best-performing model
was further tuned, depending on the available hyperparameters
for tuning. Hyperparameter tuning was accomplished using grid
search, the default within the H2O package. Although the
gradient boosting machine model was trained and tuned
separately (h2o.gbm function in the H2O package), the deep
learning and stacked ensemble models were generated using an
automatic machine learning method (autoML function in the
H2O package), which created and compared 10 distinct machine
learning models.

Data Partitioning
Split-set validation was used, in which 70% of the data were
used for training and 30% for testing. Internal validation was
additionally performed by using 5-fold cross-validation on the
training set. In k-fold cross-validation, the training data set is
divided into k subsets or folds. Each fold acts as a validation
set for a specific model, whereas the remaining k-1 folds are
used to train the model. This process is repeated k times, with
each fold being used as a validation set exactly once. The model
performance is then averaged over all k iterations. Data from 1
randomly selected institution were not included in the training
or test sets and were used as a true holdout data set for external
validation to further assess model generalizability (Figure 1).

Figure 1. Study inclusion and exclusion criteria and machine learning model training and validation and testing schematic.
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Performance Metrics
Model performance was assessed primarily using mean absolute
error (MAE) and root mean square error (RMSE). In addition,
for comparison with other published models and to further
account for both distribution and outliers, median absolute error
with IQR and mean absolute percentage error (MAPE) were
also calculated. Because of high dimensional distributions and
assumptions required for the generation of prediction intervals,
two methods of assessing procedure duration variance were
used: (1) a second model was trained, using the absolute error
of each procedure prediction in the training set as the target
output, and this model was then applied to the test set to generate
a prediction error for each test set case; and (2) the loss function
was modified to a quantile distribution, and 2 additional models
were trained at values of 0.2 and 0.8 quantiles. A bootstrap
method with 1000 repetitions was also attempted for generating
a prediction interval, although we anticipated and confirmed
that this was computationally expensive and time consuming
beyond the utility of the workflow necessities of this algorithm.

The tuned best-performing final machine learning model was
compared with a common historical reference model: historical
procedure time by surgeon as the sole feature (independent
variable) of a linear regression model. This was the same derived
feature included in the machine learning models [5,34]. This
feature was selected for comparison because historical
procedure time by surgeon is commonly used by many
institutions as the sole variable in their prediction models when
cases are booked into the procedure room schedule. A
comparison was performed using the Wilcoxon rank sum test
on the model errors. Other available approaches such as
Bayesian methods were not used for comparison owing to
differences in the intended implementation, the availability of
certain factors such as surgeon-estimated operative times, and
the requirement to significantly modify the data structure.

All models were assessed for the distribution of error, overage
(how frequently actual duration exceeded predicted duration),
underage (how frequently actual duration underestimated
predicted duration), and the percentage of procedures in which
the predicted duration fell within 20% of the actual duration.
Overage and underage are useful for broadly understanding
whether the models tend to overestimate or underestimate the
prediction. For each generated prediction interval (either
predicted error or quantile loss function models), the percentage
of procedures within the predicted range is also included as a
performance metric. As performance metrics for procedure
duration calculation vary widely in the literature and are often
challenging to interpret by practicing clinicians and procedure
room managers, we surveyed several procedure room managers
to determine the most intuitive and useful metrics for use in a
real-world setting. Finally, model use times were assessed to
confirm that high-performing models are not too
computationally intensive for practical use.

Model Explainability Subanalysis
To facilitate improved explainability for applicable models,
global and local plots of Shapley additive explanations (SHAP)
values were developed [35]. SHAP is a framework built on
game theory that provides greater interpretability of machine

learning models. Global visualizations included permutation
feature importance and SHAP global summary dot plots [36].
SHAP global summary dot plots relate the value of features to
the outcome, as opposed to permutation feature importance,
which relates the value of the feature to a selected performance
metric. The SHAP value indicates how the value of a feature
for a given procedure contributed to the prediction. A positive
SHAP value contribution indicates that a feature increased the
prediction above the average value, whereas a negative SHAP
value contribution indicates that a feature decreased the
prediction below the average value.

In addition, sample outputs were developed, including predicted
duration, prediction interval, and SHAP local plots indicating
the features, including direction and magnitude, that affected
the output most for a given procedure. Similar approaches for
explainability have been used in other medical machine learning
applications within health care [37,38].

Sensitivity Analyses
To better characterize the trade-offs between prediction model
actionability and accuracy, 2 additional models were generated
for use at different time points. One model used features
restricted to those available at the time of surgical scheduling,
and the other model used features expanded to those available
after patient arrival to the procedure room, up to the time of
procedure start (eg, surgical incision for operative procedures).
Table 1 describes the models that were developed and the
features that were determined available for use in the models.

To characterize the extent to which longer procedures influenced
the results, 2 secondary subgroup analyses were performed,
restricted to procedures lasting <180 minutes and <120 minutes.
These 2 subgroup analyses were selected as clinically practical
choices from the perspective of procedure room scheduling
administrators. Given that longer procedures would likely be
associated with greater error in prediction, this would provide
an indication of the performance of shorter procedures.

Results

Population Baseline Characteristics
The training and testing data set included 1,018,173 unique
procedures across 13 institutions, and the holdout data set
included 159,720 procedures from a single institution (Figure
1). The number of cases at each deidentified center is provided
in Table S2 in Multimedia Appendix 1. The median procedure
duration was 94 (IQR 50-167) minutes; the 5th and 95th
percentile durations were 21 and 361 minutes, respectively.
Study population baseline characteristics, summarizing all
features included in the models, are available in Table S3 in
Multimedia Appendix 1. Creatinine, albumin, and international
normalized ratio levels exceeded the 40% missing data threshold
and were not included in further analyses.

Primary Model Performance Metrics
After modeling and hyperparameter tuning, both the stacked
ensemble model and the gradient boosting machine model
resulted in comparable performance, with MAEs of 33 minutes
and 34 minutes, respectively. The deep learning model
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demonstrated an MAE of 35 minutes and an RMSE of 57
minutes at the time of patient arrival to the procedure room, an
MAE of 69 minutes and an RMSE of 85 minutes at the time of
scheduling, and an MAE of 38 minutes and an RMSE of 62
minutes at the time of incision. The gradient boosting model
was selected as the final model because the other performance
metrics were comparable, and the tree-based nature of the
algorithm allowed for global and local explainability. The final
hyperparameters were 500 trees, maximum depth of 5, learning
rate of 0.1, stopping tolerance of 0.01, and stopping metric of
MAE, with all other hyperparameters at the default setting. The
MAE was 19 (IQR 7.5-43) minutes, and the MAPE was 34%.
The final model was applied to the single holdout institution
for external validation, and model performance metrics are
described in Table 2, including an MAE of 38 minutes, which
is comparable with the MAE of the test set. For comparison,
the performance metrics and specifications of the stacked
ensemble model are provided in Tables S4 and S5, respectively,
in Multimedia Appendix 1. The linear regression method using

historical procedure time as the sole feature (independent
variable) demonstrated an MAE of 43 minutes on the test set
and an MAE of 48 minutes on the external validation set and
an MAPE of 45%. The difference in error between the linear
regression model and the final machine learning model was
statistically significant (P<.001).

Using 2 different methods for generating prediction intervals,
it was determined that the error prediction model resulted in
actual procedure times within the predicted range 64% of the
time within the primary analysis (Table 2). As anticipated, the
bootstrap method was highly computationally expensive (at
least 15 min to compute a single prediction interval) and
considered impractical for the workflow setting. The prediction
intervals of longer-duration procedures were wider than
shorter-duration procedures. From observation of the error
distribution plots (Figure 2), it seemed clear that longer
procedures typically tended to have greater error than shorter
procedures. The computation time to predict on the test set
(>300,000 cases) was 10 seconds.

Table 2. Performance of optimized surgical duration prediction models at each time point: test set, external validation set, and prediction intervals.

Time of Surgical Incision mod-
el (secondary model)

Time of Patient in ORa model
(primary model)

Time of Scheduling model
(secondary model)

Test set

34 (47)34 (47)34 (47)Mean absolute error (min), mean (SD)

595959Root mean square error, min

585858Overage, %

424242Underage, %

464646Prediction within 20% of actual duration, %

External validation set

38 (52)38 (52)38 (52)Mean absolute error (min), mean (SD)

Prediction intervals

Error prediction model: 65;
quantile loss function: 61

Error prediction model: 63;
quantile loss function: 61

Error prediction model: 64;
quantile loss function: 61

Actual duration within prediction interval, %

aOR: operating room.
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Figure 2. Patient-in-room duration plotted against prediction error. (A) Time of Patient in OR [Operating Room] model (primary model). (B) Time of
Scheduling model (secondary model). (C) Time of Surgical Incision model (secondary model).

SHAP Global Summary and Feature Importance
The features with the highest importance by feature importance
were historical procedure duration by surgeon, the word “free”
in the procedure text (eg, “free flap”), and the time of day. The
features with the highest importance based on global SHAP

values were historical procedure duration by surgeon, the time
of day, and American Society of Anesthesiologists physical
status score. SHAP global summary dot plots of each time point
model are shown in Figure 3. Permutation feature importance
for each time point model is shown in Figure S1 in Multimedia
Appendix 1.
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Figure 3. Shapley additive explanations (SHAP) global summary dot plots. (A) Time of Patient in OR [Operating Room] model (primary model). (B)
Time of Scheduling model (secondary model). (C) Time of Surgical Incision model (secondary model). The feature ranking (y-axis) implies the order
of importance of the feature. The SHAP value (x-axis) is a unified index reflecting the impact of a feature on the model output. In each feature importance
row, the attributions of all cases to the outcome were plotted using different colored dots, of which the redder dots represent a higher (or positive, if
binary) value, and the bluer dots represent a low (or negative, if binary) value, along a gradient from red to blue. ASA: American Society of
Anesthesiologists; CPT: current procedural terminology; INR: international normalized ratio.

Sample Output
Model outputs feasible for use in real time included predicted
time in minutes, the prediction interval as a range, and the SHAP

local explainability plot. As examples, outputs of 5 randomly
selected procedures from the test set are shown in Figure 4. For
further explanation, a local explainability plot can be easily
generated as shown.
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Figure 4. Sample output, including Shapley additive explanations (SHAP) local plot. A positive SHAP value contribution indicates that a feature
increased the prediction above the average value, whereas a negative SHAP value contribution indicates that a feature decreased the prediction below
the average value.

Sensitivity Analyses
In a sensitivity analysis restricted to features available at the
time of procedure scheduling, the final model was the gradient
boosting machine with an MAE of 34 minutes; for the analysis
expanding features to those available up to the time of procedure
start (eg, surgical incision), the final model was again the
gradient boosting machine with an MAE of 34 minutes (Table
2). At each time point, unused or unimportant columns were
dropped by the machine learning algorithm (Table S6 in
Multimedia Appendix 1). In the secondary subgroup analyses
restricted to shorter procedures, when applying the primary
model to procedures lasting <180 minutes, the MAE was 24
minutes, and for procedures lasting <120 minutes, the MAE
was 22 minutes.

Discussion

Principal Findings
In this study, we generated machine learning models for the
prediction of procedure duration. The final model was the
gradient boosting machine, with an MAE of 34 minutes in the
test set and an MAE of 38 minutes in the external validation
set. This multicenter data set provided a high procedure volume
and a wide breadth of procedure types across multiple
institutions. Model output included a prediction interval and
local explainability for each prediction.

The features with the highest permutation importance were
historical procedure duration by surgeon, the word “free” within
the procedure text, and the time of day, and those with the
highest SHAP values were historical procedure duration by
surgeon, American Society of Anesthesiologists physical status
score, and the time of day. We speculate that the word “free”
having high permutation importance is related to the nature of
“free flap” surgery, historically a lengthy procedure. The
nonlinear interactions among procedure, surgeon, patient illness
severity, and resource availability (the time of day) describe the
largest component of the prediction of our model.

Prediction plots suggest that error increases with procedure
duration. This result is corroborated by the sensitivity analysis
that examined only procedures lasting <120 minutes and <180
minutes, both of which resulted in a lower MAE. Future work
might explore different models for different ranges of booking

duration because the models might identify factors in longer
procedures that are different from those in shorter procedures.

Supporting Literature
This study expands beyond previous work on single surgical
specialties or single-center studies [6,10,13]. Our results show
strong performance similarly improved on historical prediction
methods [26]. Although it is difficult to compare across different
data sets, our model performed grossly better than a
single-center model for the prediction of robotic surgery duration
(RMSE 80.2 min) [10] and a prospectively evaluated
single-center model (MAE 49.5 min) [39]. Compared with a
proprietary model tested on 1000 procedures at a single center,
which demonstrated a median absolute error of 20 (IQR 10-28)
minutes, our model performed comparably with a median
absolute error of 19 (IQR 7.5-43) minutes [13]. When compared
with a single-center model with a similar analytic approach, our
model fared slightly poorer, with an MAPE of 34%, compared
with the best surgeon-specific model, with an MAPE of 27%
[26]. The approach included multiple surgeon-specific models
[26] (as opposed to our unified model, which included all
surgeons); considering the high importance of historical case
time by surgeon within our model, this difference in
performance is expected.

Study Strengths
There have been successful attempts at predicting procedure
length, although implementation is often limited by a number
of factors, including moderate performance, cumbersome
workflow, or the high frequency of unavailable variables. Our
major strength is the vast amount of multicenter data. The
inherent heterogeneity of practice environments permits
potential broader generalizability and customizability of the
model, as evidenced by the performance on the test sets and
external validation sets. In addition, our approach used
commonly available data within the electronic health record
that does not rely on human input (ie, human-estimated
procedure times), permitting potential improved external
implementation.

Our study also introduces several derived features that can be
used in other similar projects because the explainability analyses
suggest that historical case length by surgeon, institution case
density, historical case length by institution, and historical case
length all have an impact on performance. These features are

JMIR AI 2023 | vol. 2 | e44909 | p.355https://ai.jmir.org/2023/1/e44909
(page number not for citation purposes)

Kendale et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


relatively simple to compute using the code provided in
Multimedia Appendix 1 (refer to Supplementary Code
subsection).

Our aim was to develop an easy-to-implement solution with an
easy-to-interpret and valuable output. In addition to procedure
duration prediction, prediction interval as a measure of variance
is useful. Procedures with a high variance can be viewed as less
predictable and scheduled accordingly, either after more
predictable duration procedures or with no procedures to follow.
Furthermore, including an explainability aims to minimize black
box modeling, building algorithm trust and allowing valuable
insight. The global SHAP summary plots improve upon variable
importance by relating features to outcome as opposed to
relating features to performance metric. The local SHAP plots
offer explanations of the drivers of an individual prediction.
Although most of these features may not be modifiable, this
provides users a data-driven understanding of the drivers of
procedure duration [39]; for example, case durations may be
overread by a procedure room clinician administrator (similar
to an electrocardiogram being overread by a cardiologist), and
they may be better able to trust or not trust a predicted procedure
duration, based on what is most influencing the prediction, and
make modifications to procedure room schedule and staffing
accordingly. Ideally, the algorithms (similar to most health care
artificial intelligence [AI] applications) are used in conjunction
with expert opinion and not typically as a sole arbiter of
decision-making. In addition, actual cases may on occasion
deviate from the booked case. Using the provided example, for
instance, the surgeon may decide immediately before the
procedure that they will now perform a free flap (or not perform
one), or the time of day changes owing to an urgent add-on case
bumping the current case. Through a quick review of the
explainability, the procedure room managers can estimate how
this may affect the case duration and plan case allocation and
staffing accordingly for the procedures to follow. Finally, there
is currently a systemic lack of trust in health care AI
applications, as evidenced by several thought leaders in AI,
medical ethics, and medical law [40-42]. To a significant degree,
this is a result of the black box nature of most health care AI
applications, seeding distrust for most health care clinicians.
Providing explainability allows far greater transparency in the
decision-making process and is supported by several prior
studies [43-47].

Unexpected Findings
Performance metrics at each time point were ultimately similar,
and many of the additional features available at later time points
were dropped by the machine learning algorithm for being
unimportant to model prediction. This suggests that the
information provided by many of these features does not provide
an overall improvement in the performance of the models and
that the features with the highest importance also tend to be the
ones with greater availability and at earlier time points. This
provides reassurance that the model is likely to be robust within
various data schemas as long as the natural language processing
and feature engineering remain consistent and use electronic
health record features routinely available at a majority of
institutions. In addition, this can be useful for case schedulers

to fill a procedure room block efficiently, and procedure room
managers can appropriately allocate resources potentially earlier.

Limitations
Despite the performance of the models, there are still a number
of limitations to our approach. First, although the volume of
data is high, the data as provided are relatively uniformly
curated. Although this may be seen as a benefit from a data
analysis perspective, it does mean that the precise data
processing performed here is specific to this data structure and
not necessarily to local institution data structure. The
single-institution validation model aids in supporting potential
generalizability, but data processing may differ by institution.
Two simple solutions include using a shadow copy of local data
that restructures data to the same schema or retraining of the
model using local data schema. Second, the features with the
highest variable importance need to be both available and
reliable. Third, financial analyses related to time are beyond the
scope of this study owing to multiple factors being involved,
including staffing models and staffing ratios, procedure type,
procedure acuity, payer status, and local policy [48,49]. Next,
there may be procedures that occurred on the same patient.
Ultimately, the explainability analyses suggested that patient
characteristics had little contribution to make to the model
performance compared with the more impactful derived features
and natural language processed procedure text. In addition, the
data used in this study are all from before the international
COVID-19 pandemic because that is when the analysis was
initially performed. The algorithm would have to be updated to
include more recent postpandemic data because hospital systems
are likely to have changed. Finally, all institutions in this data
set are from the United States, which may limit international
generalizability.

Use in Practice
We are transparent in our design and have provided the code to
implement the models in Multimedia Appendix 1. A code use
schematic (Figure S2 in Multimedia Appendix 1) aids in
understanding the relationship of processing data, updating
models, and generating output. All code is available in a
web-based repository [50]. First, we provide the trained models
in R H2O format, which can be applied directly to new data
(upcoming procedures) to generate predictions (Multimedia
Appendix 1 [refer to R Code: Making Predictions Using Created
Machine Learning Models]). We provide the code needed to
preprocess data, including generating derived experience
features and natural language processing of procedure text
(Multimedia Appendix 1 [refer to R Code for Data Processing]).
This preprocessing code can generate a new training set or can
be applied to reformat new data for the provided models. Finally,
we provide the code to generate new models or to update the
existing models with more current data, including up-to-date
derived experience features (Multimedia Appendix 1 [refer to
R Code: Training and Testing ML Models]).

For use in practice, ideally, the model will be installed and
maintained locally. It can be rebuilt periodically to avoid
excessive computational requirements. Time for prediction is
negligible (1 s −0.3 s to +0.3 s). The model can be used as the
default prediction when scheduling cases, or, if used at the time
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of scheduling, it can drive alerts for procedures with scheduled
times incongruent with predicted times. A recent example of a
single-center prospective implementation of a similar model
suggests that there is a benefit to using these methods with
regard to accurate prediction of surgical times and impact on
workflow [39]. However, ultimately, institutional policy will
largely steer implementation; for example, many institutions
do not routinely use a surgeon or scheduler estimate at procedure
booking [51]. The use of this tool obviates the need for
individualized input. Future studies are necessary to

prospectively validate the performance of procedure duration
prediction models integrated into daily workflow for clinician
and administrator use in real time.

Conclusions
We report a robust and generalizable model for the prediction
of procedure duration and variability within an acceptable
tolerance derived from rigorous testing of machine learning
models applied to a large multicenter data set. Our findings may
guide the future development of procedure room workflow
implementation of procedure duration prediction models.
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Abstract

Background: Stressors for health care workers (HCWs) during the COVID-19 pandemic have been manifold, with high levels
of depression and anxiety alongside gaps in care. Identifying the factors most tied to HCWs’ psychological challenges is crucial
to addressing HCWs’ mental health needs effectively, now and for future large-scale events.

Objective: In this study, we used natural language processing methods to examine deidentified psychotherapy transcripts from
telemedicine treatment during the initial wave of COVID-19 in the United States. Psychotherapy was delivered by licensed
therapists while HCWs were managing increased clinical demands and elevated hospitalization rates, in addition to population-level
social distancing measures and infection risks. Our goal was to identify specific concerns emerging in treatment for HCWs and
to compare differences with matched non-HCW patients from the general population.

Methods: We conducted a case-control study with a sample of 820 HCWs and 820 non-HCW matched controls who received
digitally delivered psychotherapy in 49 US states in the spring of 2020 during the first US wave of the COVID-19 pandemic.
Depression was measured during the initial assessment using the Patient Health Questionnaire-9, and anxiety was measured using
the General Anxiety Disorder-7 questionnaire. Structural topic models (STMs) were used to determine treatment topics from
deidentified transcripts from the first 3 weeks of treatment. STM effect estimators were also used to examine topic prevalence
in patients with moderate to severe anxiety and depression.

Results: The median treatment enrollment date was April 15, 2020 (IQR March 31 to April 27, 2020) for HCWs and April 19,
2020 (IQR April 5 to April 27, 2020) for matched controls. STM analysis of deidentified transcripts identified 4 treatment topics
centered on health care and 5 on mental health for HCWs. For controls, 3 STM topics on pandemic-related disruptions and 5 on
mental health were identified. Several STM treatment topics were significantly associated with moderate to severe anxiety and
depression, including working on the hospital unit (topic prevalence 0.035, 95% CI 0.022-0.048; P<.001), mood disturbances
(prevalence 0.014, 95% CI 0.002-0.026; P=.03), and sleep disturbances (prevalence 0.016, 95% CI 0.002-0.030; P=.02). No
significant associations emerged between pandemic-related topics and moderate to severe anxiety and depression for non-HCW
controls.

Conclusions: The study provides large-scale quantitative evidence that during the initial wave of the COVID-19 pandemic,
HCWs faced unique work-related challenges and stressors associated with anxiety and depression, which required dedicated
treatment efforts. The study further demonstrates how natural language processing methods have the potential to surface clinically
relevant markers of distress while preserving patient privacy.
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Introduction

During the COVID-19 pandemic, health care workers (HCWs)
faced mounting stress as they cared for patients experiencing a
disease that, to date, has infected 538 million globally and 85
million in the United States alone [1]. Surges in US infection
rates forced hospitals to operate at greater than 100% capacity
[2], with COVID-19 hospitalizations in 18 states exceeding
10% of all available beds and 7 states operating at more than
15% overcapacity [3]. As a result, HCWs faced overwhelming
workloads, longer hours, increased personal infection risk,
equipment shortages, sleep disruption, and at times the need to
make ethically challenging decisions, such as rationing care for
patients [4-8]. This increased burden on HCWs was further
aggravated by the loss of social support due to quarantine
policies and the fear of infecting family and friends [6,7,9].

The well-being of HCWs is the foundation of a well-functioning
health care system [10-12]. Prior to the pandemic, HCWs
already faced higher rates of anxiety, depression [13], and
suicidal ideation [14] compared to the general population
[13,15]. The sudden increase in professional and personal stress
due to COVID-19 put HCWs, an already vulnerable population
with barriers to treatment access [16], at further risk for
developing symptoms of anxiety and depression [5,6,9]. Prior
studies have linked depression and anxiety in HCWs to
decreased patient safety and increased medical errors [17-20].
Given the adverse consequences of psychological stress for
HCWs and their patients, it is crucial to better understand the
core concerns associated with mental health symptoms such as
anxiety and depression in HCWs, especially during periods of
acute stress like COVID-19 surges. It is especially crucial to
study these concerns in ways that preserve the privacy and
anonymity of HCWs, given the professional stigma reported
by some health care providers who seek mental health treatment
[21-23].

Hastened by the pandemic, recent advances have been made in
developing and disseminating digital mental health interventions
to address acute and long-term treatment barriers, including
mobile apps and telehealth platforms connecting patients to
mental health providers [24]. Such interventions offer a unique
opportunity for understanding and addressing the mental health
concerns of vulnerable populations like HCWs. Despite their
potential, little research has examined the adoption of digital
health treatment by HCWs during COVID-19.

In addition to providing flexible options for clinical engagement,
digital treatment delivery enables the automatic collection of
large amounts of treatment data, which in turn can be analyzed
in an aggregated and deidentified fashion using machine learning
(ML) methods. Researchers in digital psychiatry and ubiquitous
computing have used ML to develop passive measures for
mental health concerns, which can be refined into clinically

relevant markers for symptom severity and embedded into
treatment pathways [25-27]. ML-based natural language
processing (NLP) holds particular promise for the study of
mental health concerns, as it allows the study of verbal
expressions of distress at scale, capturing clinically relevant
linguistic features from unstructured text as the patient-therapist
interaction unfolds [28]. Of particular interest in the study of
psychotherapy transcripts is topic modeling, an unsupervised
NLP method to parse semantic structures (or topics) from large
corpora of text without the need for line-by-line annotation [29].
Topic modeling has been used to generate knowledge in multiple
areas of science [30], and previous uses of topic modeling in
mental health include the detection of depression [31] and
anxiety [32], also in the context of the COVID-19 pandemic
[33]. In brief, topic modeling imagines that every document
within a corpus contains a mixture of corpus-wide distributions
of words within a fixed vocabulary. Topic modeling algorithms
seek to find the topics that best characterize a given corpus
across documents, as a means to understand the core content of
potentially difficult texts (such as therapy transcripts) at scale
[28]. Structural topic models (STMs) also enable the study of
covariates in their influence on topic prevalence, or the
proportion of a document associated with a topic, and topical
content, or the distribution of words used within a topic.
Compared to lexicon-based methods, topic modeling allows
assessing context-specific language (such as medical
terminology) within the corpus of transcripts. Compared to
embeddings, which capture semantic similarity at the word or
sentence level, topic modeling can also uncover broader thematic
associations across transcripts, to then group individuals based
on topical themes emerging from the transcripts. For collections
of texts like transcripts of psychotherapy sessions, topic
modeling also offers the potential to be more privacy preserving:
topic models process text into distributions of keywords and
enable researchers to study the semantic content of sensitive
therapy transcripts while preserving treatment-seekers’ privacy
by minimizing exposure of personally identifiable or sensitive
data. Topic modeling can provide empirical insights into the
stressors experienced by medical providers during this highly
stressful period of the pandemic. Moreover, by linking specific
concerns identified via topic modeling with depression and
anxiety symptoms measured with validated scales, linguistic
features can be developed to serve as passive computational
markers [34] of distress, with the potential to highlight areas of
risk or need for clinical attention. Identifying the most disruptive
risk factors for HCWs would support improvements in treatment
planning and inform the selection of mental health resources
for HCWs now, during future COVID-19 waves, or other
widespread epidemics.

In this study, we examined deidentified treatment transcripts
from 820 HCWs and 820 matched controls who received
digitally delivered psychotherapy from licensed therapists during
the first US surge of the COVID-19 pandemic, between March
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and July 2020. Our aim was to identify the unique treatment
needs of HCWs characterized as treatment topics compared to
non-HCW matched controls. We analyzed transcripts using
STM to assess the topic in the deidentified transcripts and their
associations with symptom levels. Specifically, we used topic

modeling to analyze therapeutic conversations during the first
3 weeks of treatment in HCW and controls and identified
emerging topics in a privacy-preserving fashion. We also
assessed the association of these topics with moderate to severe
levels of anxiety and depression (Figure 1).

Figure 1. Schematic overview of topic modeling with fictitious example of a transcript. Topics are generated across the full transcript corpora. Individual
topic distributions are then associated with their respective symptom ratings. GAD-7: General Anxiety Disorder Scale-7; ICU: intensive care unit;
PHQ-9: patient health questionnaire-9.

Methods

Participants and Setting
Our sample consisted of self-referred HCWs from the United
States seeking digitally delivered psychotherapy in spring 2020,
amidst the first US surge of COVID-19 hospitalizations. HCWs
were defined as health care and medical providers (eg,
physicians, nurses, residents, emergency medical service
providers, and social workers) with an active National Provider
Identifier (NPI) profile at the time of treatment. Services were
donated by a telehealth platform [35] as part of an initiative to
provide 1 month of free treatment to essential HCWs. Eligibility
was verified by the platform through employment and NPI
verification. In order to distinguish health care–specific and
general population stressors related to COVID-19, we included
a matched control sample of non-HCWs from the general
population seeking the same treatment service as the HCW

sample in spring 2020. Non-HCW patients accessed the platform
through employee assistance programs, self-referral, and as
benefits through individual insurance. From this outpatient pool,
a control sample was matched to HCWs based on demographics,
symptom scores, US state of residency, and treatment start date.
Control matching was performed algorithmically, and matching
procedures are described in Multimedia Appendix 1
[5,29,36-49].

Before starting treatment, HCWs and controls received a primary
ICD-10 diagnosis based on a standardized intake evaluation by
a licensed clinician to identify presenting complaints and
treatment history. Following the intake, HCWs and controls
were matched to a licensed therapist and received psychotherapy
through messages exchanged using a HIPAA (Health Insurance
Portability and Accountability Act)-compliant interface for
smartphones and computers. The inclusion criteria were (1)
living in the United States, (2) being an English speaker, and
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(3) having regular internet or cellphone access (to access the
digitally delivered treatment). Exclusion criteria for both
samples were (1) any condition deemed by the intake clinician
to require hospitalization; (2) suicidal thoughts or behavior
sufficient to be marked a yes on any of questions 3 through 6
(at least thoughts about a potential suicide method) on the
Columbia Suicide Severity Rating Scale Lifetime-Recent [36];
(3) current or past diagnoses of bipolar disorder, substance use
disorders, schizophrenia spectrum disorders, or psychotic
disorders; (4) patients who did not have complete baseline
symptom measures; and (5) patients who did not have treatment
transcripts available. Last, as exclusion criterion 6, during
matching procedures, we excluded from the control group any
health care professional. An overview and schematic of the
sampling procedure in this study are reported in Multimedia
Appendix 1 [5,29,36-49].

The final sample consisted of 820 HCWs and 820 matched
controls. The median treatment start date for HCWs was April
15, 2020 (IQR March 31 to April 27, 2020). For the matched
control group, the median treatment start date was April 19,
2020 (IQR April 5 to April 27, 2020).

Data Sources and Measures

Transcripts
Psychotherapy treatment transcripts consisted of deidentified
messages between patients and their therapists with their
corresponding timestamp (ie, date and time of delivery) in
masked form for the author role of the text. All transcript data
were deidentified using an algorithm to scrub out any personal
identifiers, proper nouns, locations, dates, and other potential
identifiers. Transcripts were truncated to include only messages
sent by patients from the initial intake to their first outcome
survey, typically 3 weeks after treatment initiation. HCWs and
control transcripts were both preprocessed for analysis: numbers,
punctuation, stopwords, and anonymization terms (eg,
“{NAME}”) were removed; the remaining words were stemmed
and converted to their root form (eg, computing was changed
to comput). The “vocabulary” of unique words across the
preprocessed transcripts was then made more tractable by
removing words that occurred in less than 50 documents and
then removing documents that contained no words. The final
HCW corpus contained 820 therapy transcripts and a vocabulary
of 1208 unique terms across 225,219 tokens. The final control
corpus contained 820 transcripts and a vocabulary of 1259
unique terms across 217,321 tokens.

HCW Occupations
NPI information for HCWs in our study was not available as
data due to privacy reasons. To assess the distribution of specific
health care professions in the HCW sample anonymously, we
developed a heuristic classification algorithm. The algorithm
detected instances in the transcripts where patients self-identified
as HCWs or spoke about their professional roles. Code,
heuristics, and accuracy metrics of the heuristic classification
algorithm are further reported in Multimedia Appendices 1
[5,29,36-49] and 3.

Psychiatric Symptom Measures
Depression symptoms were measured at the beginning of
treatment using the Patient Health Questionnaire-9 (PHQ-9)
[50], and anxiety symptoms were measured using the General
Anxiety Disorder Scale-7 (GAD-7) [51]. The PHQ-9 assesses
for depressive symptoms over the past 2 weeks on a 4-point
Likert scale (0=“not at all” to 3=“nearly every day”), with a
total maximum score of 27. The GAD-7 examines symptoms
of anxiety over the past 2 weeks on a 4-point Likert scale
(0=“not at all” to 3=“nearly every day”), with a total maximum
score of 21. A score of 10 or more on the PHQ-9 identifies the
presence of clinically significant moderate-to-severe depression
[50]; a score of 10 or more on the GAD-7 identifies the presence
of clinically significant moderate-to-severe anxiety [51].

Data Analysis

Treatment Topic Identification
All analyses were conducted in Python (version 3.9.9) and in
R (version 4.1.2) [37], using the package stm [38] for topic
modeling. Additional model specifications, diagnostic analyses,
model selection procedures, and code for all analyses are
reported in Multimedia Appendices 1 [5,29,36-49] and 2.

STMs were used to identify topics in the HCW and matched
control corpora. We used a mixed statistical and human
validation process to select topics (K=30) for analysis in both
HCW and control data sets (see Multimedia Appendix 1
[5,29,36-49] for full details). After identifying these topics,
results from the STM were manually coded to characterize their
relevance to one of three areas of interest: (1) mental health, (2)
COVID-19 pandemic-related disruptions, and (3) health care.
Classification of relevant topics was determined through the
consensus of a panel of experts consisting of 2 doctoral-level
clinical psychologists (MM and TDH), 1 psychiatrist (NMS),
and 1 NLP researcher (ET). Topics were examined to understand
their content based on their most characteristic words,
determined using the harmonic mean of word frequency and
exclusivity across topics [39].

Topics and Clinical Levels of Depression and Anxiety
We used STM effect estimators to study the association between
topics discussed by each patient with moderate to severe
depression or anxiety. Specifically, we ran logistic-normal
generalized linear models examining the association between
the prevalence of relevant topics in a patient’s transcripts and
their binarized psychopathology score, with GAD-7 or PHQ-9
symptom scores ≥10 classed as moderate-to-severe anxiety or
depression (Figure 1). The study combined PHQ-9 ≥10 or
GAD-7 ≥10 cutoffs to account for the high prevalence of anxiety
and depression comorbidity [52]. To estimate the parameters
of the generalized linear models, we used a global approximation
to the average covariance matrix governing the variational
posterior (vs a per-document approximation that was less
computationally tractable). Topic prevalence for a particular
topic is contrasted for 2 groups within a categorical covariate
(none-to-mild vs moderate-to-severe symptoms). For each data
set, all topics (K=30) were modeled and reported in Multimedia
Appendix 1 [5,29,36-49]; here, we report only those topics
manually characterized as relevant.

JMIR AI 2023 | vol. 2 | e47223 | p.364https://ai.jmir.org/2023/1/e47223
(page number not for citation purposes)

Malgaroli et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Ethics Approval
All patients and clinicians gave informed consent to use their
data in a deidentified, aggregated format for research purposes
as part of the user agreement before they began using the
platform. Study procedures were approved by the Cornell
University Institutional Review Board (2004009578).

Results

Sample Characteristics
HCW patients (n=820, Table 1) modally identified as female
(746/820, 91%). The mean age in the sample was 31.3 (SD 5.7)
years. They were distributed across the United States, with the
largest concentrations in New York State (114/820, 13.1%) and
California (107/820, 13%). Figure 2 reports the distribution of
professions in the HCWs identified from the transcripts, with
nurses (414/820, 50.5%) and physicians (148/820, 18.1%) being
the most frequent health care occupations. For 289 HCWs

(35.2%), this was reportedly the first psychotherapy treatment
experience. Primary diagnoses given by intake clinicians for
HCWs included anxiety disorders (463/820, 56.5%), of which
100 were generalized anxiety disorders (12.2%). Trauma- and
stressor-related disorders (275/820, 35.5%) were next most
common, with adjustment disorders as the modal diagnosis
(219/820, 26.7%) in this category. Finally, depressive disorders
(67/820, 8.2%) were least common and included 45 diagnosed
with major depressive disorder (5.5%). Based on PHQ-9 and
GAD-7 cutoffs, the prevalence of moderate to severe depression
in the HCW sample at the beginning of treatment was 43.9%
(n=360) and moderate to severe anxiety was 68.5% (n=562) A
total of 601 (73.3%) HCWs had either moderate to severe
anxiety or depression at baseline. In the matched control sample,
560 (68.3%) had moderate to severe anxiety and 408 (49.8%)
had moderate to severe depression, with 601 (73.3%) having
either moderate to severe anxiety or depression at baseline.
Characteristics for the sample of matched controls (n=820) are
reported in Table 1.
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Table 1. Demographic and clinical characteristics of health care worker sample (n=820) and matched control sample (n=820).

Matched controlsHealth care workersVariable

32 (6.6)31.3 (5.7)Age (years), mean (SD)

Diagnosis, n (%)

429 (52.3)463 (56.5)Anxiety disorders

137 (16.7)275 (35.5)Trauma- and stressor-related disorders

225 (27.4)67 (8.2)Depressive disorders

29 (3.5)15 (1.8)Other disorders

Gender, n (%)

682 (83.2)746 (91)Female

125 (15.2)69 (8.4)Male

13 (1.6)5 (0.6)Other

State, n (%)

132 (16.1)114 (13.1)California

108 (13.2)107 (13)New York

56 (6.8)55 (6.7)Florida

38 (4.6)48 (5.9)Texas

33 (4)45 (5.5)Illinois

34 (4.2)41 (5)Massachusetts

34 (4.2)35 (4.3)Pennsylvania

28 (3.4)30 (3.7)North Carolina

30 (3.7)30 (3.7)New Jersey

27 (3.9)28 (3.4)Washington

300 (36.6)287 (35)Other US states

Anxiety

12.3 (5.1)12.4 (4.9)GAD-7a score, mean (SD)

560 (68.3)562 (68.5)Moderate to severe (GAD-7 ≥10), n (%)

Depression

10 (5.8)9.4 (5.7)PHQ-9b score, mean (SD)

408 (49.8)360 (43.9)Moderate to severe (PHQ-9≥10), n (%)

Treatment

272 (33.2)289 (35.2)First experience (Yes), n (%)

04/19/2020 (4/5/2020-4/27/2020)04/15/2020 (03/31/2020-04/27/2020)Start date (month/day/year), median (IQR)

aGAD-7: General Anxiety Disorder Scale-7.
bPHQ-9: Patient Health Questionnaire-9.

JMIR AI 2023 | vol. 2 | e47223 | p.366https://ai.jmir.org/2023/1/e47223
(page number not for citation purposes)

Malgaroli et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Algorithmically identified distribution of medical professions in the HCW sample (n=820). HCW: health care worker.

Treatment Topics
STM of psychotherapy transcripts identified 30 conversational
themes for HCWs and 30 topics for non-HCW controls.
Inspection of the topics showed a cluster of themes relevant to
mental health and a cluster relevant to health care and the
pandemic (Table 2). All topics emerging from the transcripts
are reported in Figure 3.

HCWs discussed 4 topics related to practicing medicine.
Examination of the most frequent words exclusive to HCWs
indicated treatment topics focused on (1) virus-related fears
(topic H3: covid, worker, healthcar), (2) working on the hospital
floor and intensive care units (H4: unit, hospit, icu), (3) patients
and masks (H16: patient, mask, test), and (4) health care roles
including resident and attending (H29: resid, remain, attend).
In contrast, therapy transcripts from controls contained only 1

topic about the COVID-19 pandemic (C25: pandem, concern,
anxiety) and 1 occupational-related topic (C27: team, manag,
boss).

HCWs and controls each discussed 5 topics with their therapist
related to their mental health, endorsing panic attacks (HCW
H2: panic, breath, attack; control C21: breath, sleep, panic),
affective disturbances (HCW H15: depress, feel, mood; control
C16: felt, feel, self), and grief (HCW H30: death, card, die;
control C19: die, experienc, current). HCWs also endorsed sleep
disturbances (H13: sleep, night, bed), and stress (H21: stress,
challeng, increase). Among health care and mental health topics,
HCWs most frequently discussed sleep disturbances (H13: sleep,
night, bed) and the hospital floor (H4: unit, hospit, icu).
Multimedia Appendix 1 [5,29,36-49] reports the proportions of
all topics in the HCWs and control transcripts.
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Table 2. Psychotherapy topics referencing mental health, health care, and COVID-19 in health care workers and matched controls.

Top 10 terms (frequency and exclusivity)aSample, category, and topic

Health care workers (n=820)

Health care

covid, worker, healthcar, hospit, patient, physician, current, week, promot, doctorH3

unit, hospit, icu, nurs, virus, news, sick, covid, safe, fearH4

patient, mask, test, shift, unit, wear, staff, icu, ppe, coronavirusH16

resid, remain, attend, program, becom, answer, clinic, mayb, mean, studiH29

Mental health

panic, breath, attack, symptom, anxious, anxieti, exercis, chest, tool, calmH2

sleep, night, bed, shift, asleep, wake, usual, fall, morn, relaxH13

depress, feel, mood, anyth, suicid, quarantin, sad, episod, sometim, hardH15

stress, challeng, increas, relief, level, team, stressor, overal, focus, lineH21

death, card, die, grief, code, credit, pass, deal, charg, enterH30

Matched controls (n=820)

Pandemic disruptions

pandem, concern, anxieti, situat, cope, corona, group, relat, social, extremC25

nice, quarantin, late, gym, enjoy, crazi, glad, weather, excit, heaviC11

team, manag, boss, project, task, routin, offic, work, cowork, hourC27

Mental health

breath, sleep, panic, sick, attack, night, anxious, anxieti, worri, calmC21

felt, feel, self, negat, anxious, thought, sad, bad, scare, boyfriendC16

therapi, depress, therapist, issu, anxieti, disord, eat, month, cost, couplC9

anger, forgiv, discuss, hurt, angri, behavior, intak, lie, said, sexualC2

die, experienc, current, attack, medic, alcohol, rate, daili, health, panicC19

aMost frequent and exclusive words that distinguish each topic in patients’ transcripts.

Figure 3. Structural topic model estimates of association between psychiatric symptoms and mean topic prevalence. Topics on the right side of the
dotted line have higher prevalence in Controls and Health care Workers with moderate to severe anxiety and depression.
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Topics and Clinical Levels of Depression and Anxiety
After determining the distribution of topics emerging from
treatment transcripts, we examined the association of topics
discussed in psychotherapy with patients’ moderate-to-severe
anxiety or depression at 3 weeks of treatment. Effect estimates
and their 95% CIs are reported in Figure 3. Discussion of the
hospital and its locations (H5: unit, hospit, icu) was significantly
more prevalent among HCWs with moderate to severe anxiety
or depression (topic prevalence=0.035, 95% CI 0.022-0.048;
P<.001). This effect was not observed in the matched controls
for the pandemic-relevant topic (C25, pandem, concern, anxiety:
prevalence=0.003, 95% CI –0.012 to 0.018; P=.67), nor for the
work-relevant topic (C27, team, manag, boss:
prevalence=–0.005, 95% CI –0.021 to 0.011; P=.55). Other
topics were significantly more prevalent for symptomatic
HCWs, including endorsing affective disturbances (H15,
depress, feel, mood: prevalence=0.014, 95% CI 0.002-0.026;
P=.03) and sleep disturbances (H13, sleep, night, bed:
prevalence=0.016, 95% CI 0.002-0.030; P=.02). No other mental
health and health care topics occurred at significantly higher
frequency in HCWs with moderate to severe anxiety or
depression, with weak trends observed for discussions related
to panic attacks, grief, and mask-related concerns. Controls with
moderate to severe symptoms were more likely to discuss
affective disturbances (C16: prevalence=0.021, 95% CI
0.005-0.037; P=.01). Numeric estimates for all HCWs and
control topics are reported in Multimedia Appendix 1
[5,29,36-49].

Discussion

Overview
In this study, we examined topics for 820 HCWs and 820
matched general-population outpatients undergoing
psychotherapy through a telehealth platform in spring 2020
during the first US wave of COVID-19 and their associations
with moderate to severe depression and anxiety. In total, 3 weeks
of treatment transcripts were examined using NLP methods,
enabling elucidation of the content of therapy discussions
automatically at scale and in a privacy-preserving way. Results
indicated significant differences in the proportion of health
care–related topics between HCW and control cohorts, as well
as their association with moderate to severe anxiety and
depression.

Analysis of the distribution of NLP-derived treatment topics
indicated that HCWs extensively discussed health care–related
topics in psychotherapy. Specifically, HCWs had 4
conversational themes around health care, while controls only
had 1. This finding is consistent with the increased work-related
stressors experienced by HCWs during the COVID-19
pandemic, when they were particularly vulnerable to
work-related adverse impacts compared to the general
population, given the increased professional and personal
responsibilities they faced. These unique effects of COVID-19
made HCWs specifically vulnerable to mental health problems
compared to the general population [53]. In addition to the effect
of potential stressors experienced by HCWs during the
COVID-19 pandemic, this finding is also consistent with prior

literature indicating that work-related stress is almost twice as
prevalent for HCWs as for workers in other fields after
controlling for work hours, with physicians at the front line of
care at greatest risk [54]. Unique factors that contribute to this
include longer hours and greater difficulty with work-life
integration compared to other US workers.

Analysis of the prevalence of topics and their association with
symptomatology indicated that among HCWs, discussion of
hospital settings was significantly associated with moderate to
severe anxiety and depression. This association was unique for
HCWs and not present in the general-population outpatients,
despite shared anxiety, work, and health-related concerns during
the pandemic [55]. Discussion of sleep disturbances and mood
difficulties were also significantly associated with moderate to
severe anxiety and depression in HCWs. These findings confirm
the connection between anxiety, depression, and concerns related
to being a practicing medical professional during the COVID-19
pandemic [56]. Although not assessed here, possible underlying
contributing factors may be hypothesized to include longer
exposures to stressful working environments, a higher level of
personal responsibility in critical situations, and increased sleep
disruption [19]. Sleep deprivation among HCWs has been
consistently linked to increases in anxiety, depression, and
suicidal ideation [57]. These findings are especially robust for
HCWs who work longer hours, who work night shifts, and who
have less time off between their shifts [58]. Existing literature
supports a similar relationship for how work-related stress and
anxiety and depressive symptoms mutually reinforce each other
[59].

Strengths and Limitations
Findings of this study are unique due to the large corpus of
treatment transcripts from HCWs during the initial phase of the
COVID-19 pandemic, and data analytic methods exploring the
use of computational linguistics to identify stated risk factors.
To the growing body of literature documenting the challenges
posed to mental health and well-being by the COVID pandemic,
we contribute a proof-of-concept demonstrating that web-based
therapy platforms can serve as unique observatories for the
mental health needs of hard-to-reach populations like HCWs.
This study has several limitations. First, our sample consisted
of self-referred patients, and differences in access to telehealth
services could reduce the generalizability of results. Second,
our sample showed a skew toward female individuals and
nursing occupations, although this distribution aligned
consistently with US population occupational statistics for
HCWs [60]. Third, we focused our analysis on a concatenation
of all of a patient’s talk turns during the first 3 weeks of
treatment. Future work should focus on complex modeling of
topics over time, for example using sequential models to
examine topics turn-by-turn, as well as models incorporating
therapists’ talk turns. Fourth, our findings emerged from the
corpus the STM was trained on and might not generalize when
applied to different corpora, such as transcripts in languages
other than English. Future studies should consider using
pretrained large language models on wider corpora of clinical
data for more generalizable topic representations across multiple
domains and languages [61]. Fifth, topic associations with
symptoms were limited to data from validated self-report
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measures, and other methods to capture psychiatric symptoms
may return different results.

Privacy and Ethics
Important ethical considerations about patient privacy need to
be made when accessing sensitive health information such as
psychotherapy transcripts. This study included several
privacy-preserving measures to reduce risks associated with the
study. First, all patients and clinicians gave informed consent
to the use of their data in a deidentified and aggregated format
for research purposes as part of the user agreement they signed
before they began using the platform. All procedures were
approved by the university institutional review board. Second,
all transcripts were deidentified by the platform prior to the
research team accessing the data. Deidentification removed any
personal identifiers, like proper nouns, locations, and dates,
among other potential identifiers. Third, we limited our analyses
to the outputs of STM, which are distributions of common words
less likely to reveal private information than the raw text. The
first 2 authors (MM and ET) handled the primary analyses and
were the only authors to view any portion of raw deidentified
text, accessed exclusively as part of model development. Fourth,
HCWs’ NPIs and associated information were not accessed as
part of the study. Rather, specific health care occupations were
identified using named entity recognition on the deidentified
transcripts. This solution allowed us to extract occupational
information while minimizing access to the raw deidentified
transcripts, thus further preserving patient privacy.

Conclusions
Among US HCWs seeking psychotherapy treatment in spring
2020 during the first wave of the COVID-19 pandemic,
discussion of workplace-related concerns was uniquely
associated with moderate to severe anxiety and depression. The
association between health care work and psychiatric symptoms
was unique, going beyond other quality-of-life factors
potentially related to work such as poor sleep hygiene. We
contribute to the literature on the psychological burden
associated with health care work by demonstrating that
HCW-specific content related to anxiety and depression emerges
naturally in the context of web-based psychotherapy. These
findings highlight the unique mental health concerns faced by
HCWs during the COVID-19 pandemic, a time with
significantly increased work demands, lack of social support,
and fear of infection from work activity for HCWs and their
families. These stressors were in addition to work-related
stressors regularly faced by HCWs [54]. The results of this
research could help pinpoint the key factors contributing to the

high levels of depression and anxiety among HCWs and fill the
gaps in care. The increased stress put on HCWs during
COVID-19 along with the established link between HCWs’
mental health and societal well-being supports the critical need
to prioritize mental health treatment provision for HCWs.

As mental health risk factors were captured automatically from
transcripts using NLP methods, the study also serves as a proof
of concept for the automated detection of psychological distress
in HCWs. One of the main advantages of NLP markers is that
they can identify specific language patterns that are associated
with anxiety and depression. Unlike traditional assessment
methods, such as self-reported surveys and interviews, NLP
markers from psychotherapy platforms present a passive and
less burdensome way to assess therapy-seekers’ mental health,
akin to the digital biomarkers of mental health researchers have
developed from wearable and smartphone data. Defining and
validating NLP markers of anxiety and depression could lead
to more accurate and reliable assessments, which would be
beneficial for both patients and health care providers. Moreover,
NLP markers could help to better understand the underlying
mechanisms of anxiety and depression by teasing patients into
different subgroups based on their specific needs and
characteristics. By identifying these patterns, we could tailor
treatment and intervention strategies to the specific needs of
each patient in clinical settings [62,63]. Eventually, NLP
methods could support the advancement of personalized
medicine approaches where mental health needs can be
estimated routinely using automated methods in ecological or
real-world settings. This could be achieved by designing digital
apps [64] that offer periodic checks to elicit narrative content
about potential risk factors and stressors. Transcripts of the
narratives could then be analyzed to extract conversational topics
associated with probabilities of experiencing distress through
NLP techniques such as STM. For example, this approach could
identify language patterns focusing on work-related stressors
(such as our HCW sample) or behavioral disturbances (eg, poor
sleep hygiene), and then offer personalized triage and resource
recommendations. Similar work has been conducted in the
context of crisis counseling platforms to analyze patients’
messages for suicidal ideation [65,66]. Offering mental health
resources at scale through automated recommendations could
help HCWs overcome barriers to treatment access including
stigma and unpredictable work hours. Given the high-stress
nature of the health care profession, there is vast potential for
designing automated systems that can proactively evaluate
individual needs and provide personalized resources for
preventive care.
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Abstract

Background: Diabetes mellitus is the most challenging and fastest-growing global public health concern. Approximately 10.5%
of the global adult population is affected by diabetes, and almost half of them are undiagnosed. The growing at-risk population
exacerbates the shortage of health resources, with an estimated 10.6% and 6.2% of adults worldwide having impaired glucose
tolerance and impaired fasting glycemia, respectively. All current diabetes screening methods are invasive and opportunistic and
must be conducted in a hospital or laboratory by trained professionals. At-risk participants might remain undetected for years
and miss the precious time window for early intervention to prevent or delay the onset of diabetes and its complications.

Objective: We aimed to develop an artificial intelligence solution to recognize elevated blood glucose levels (≥7.8 mmol/L)
noninvasively and evaluate diabetic risk based on repeated measurements.

Methods: This study was conducted at KK Women’s and Children’s Hospital in Singapore, and 500 participants were recruited

(mean age 38.73, SD 10.61 years; mean BMI 24.4, SD 5.1 kg/m2). The blood glucose levels for most participants were measured
before and after consuming 75 g of sugary drinks using both a conventional glucometer (Accu-Chek Performa) and a wrist-worn
wearable. The results obtained from the glucometer were used as ground-truth measurements. We performed extensive feature
engineering on photoplethysmography (PPG) sensor data and identified features that were sensitive to glucose changes. These
selected features were further analyzed using an explainable artificial intelligence approach to understand their contribution to
our predictions.
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Results: Multiple machine learning models were trained and assessed with 10-fold cross-validation, using participant demographic
data and critical features extracted from PPG measurements as predictors. A support vector machine with a radial basis function
kernel had the best detection performance, with an average accuracy of 84.7%, a sensitivity of 81.05%, a specificity of 88.3%, a
precision of 87.51%, a geometric mean of 84.54%, and F score of 84.03%.

Conclusions: Our findings suggest that PPG measurements can be used to identify participants with elevated blood glucose
measurements and assist in the screening of participants for diabetes risk.

(JMIR AI 2023;2:e48340)   doi:10.2196/48340

KEYWORDS

diabetes mellitus; explainable artificial intelligence; feature engineering; machine learning; photoplethysmography; wearable
sensor

Introduction

Diabetes mellitus (DM) is a chronic and heterogeneous
metabolic disorder characterized by the presence of
hyperglycemia due to deterioration of insulin secretion, defective
insulin action, or both [1,2]. There are 3 main types of DM:
type 1 DM (T1DM), type 2 DM (T2DM), and gestational
diabetes. T2DM is the most prevalent type of diabetes, affecting
over 95% of people with diabetes worldwide [3,4].

The prevalence of DM has been proliferating in recent decades,
and it is now the most prominent and fastest-growing global
public health challenge [5,6]. Uncontrolled diabetes is associated
with an increased risk of complications such as cardiovascular
disease, kidney failure, vision loss, nerve damage, and overall
mortality [7-9]. On the basis of the latest diabetes prevalence
estimate, 10.5% of the global adult population is affected by
diabetes, and almost half of them are undiagnosed [10]. The
growing at-risk population has further strained scarce health
resources. Globally, approximately 10.6% of adults have
impaired glucose tolerance (IGT) and 6.2% have impaired
fasting glycemia (IFG) [4]. IGT and IFG are reversible
transitional conditions between normality and diabetes. These
conditions, also known as prediabetes, are characterized by
elevated blood glucose levels that are not high enough to be
classified as diabetes. However, individuals with IGT or IFG
are at increased risk of developing cardiovascular disease,
coronary heart disease, stroke, and mortality [11]. One of the
challenges with IGT and IFG is that they often do not have any
obvious symptoms, which means that they can go undetected
and undiagnosed for years. Moreover, a follow-up study
conducted in Singapore reported that one-third of these
individuals with prediabetes would likely develop T2DM within
8 years without lifestyle changes [12]. A similar study with data
from the United Kingdom has also reported that a substantial
proportion of individuals with prediabetes could progress to
T2DM within 5 years [13]. Therefore, predicting the risk of
diabetes in the asymptomatic population is a significant health
challenge that must be addressed. Early recognition of
prediabetes and undiagnosed T2DM will result in a better health
outcome or a more favorable long-term prognosis [14].

Currently, the diagnosis of diabetes and prediabetes is well
established. T2DM and prediabetes can be detected using one
of four methods: (1) the fasting plasma glucose value, (2) the
2-hour plasma glucose value during a 75 g oral glucose tolerance

test, (3) hemoglobin A1c, and (4) a random plasma glucose test
[3]. All these diagnostic screening methods are invasive and
opportunistic in nature and must be conducted in a hospital or
laboratory by trained professionals. A confirmed diagnosis
usually requires repeated testing. As all the tests are single-time
point screenings, adults aged >35 years are recommended to
undergo regular screening every 3 years. Nevertheless, at-risk
individuals hardly comply with this recommendation, especially
in developing countries, owing to the cost of diagnostic tests
and the scarcity of medical resources [15,16].

Unlike T1DM and gestational diabetes, the development of
T2DM and its complications is preventable or controllable. A
considerable number of studies have shown that lifestyle and
behavioral interventions help patients with diabetes achieve
adequate glycemic control [17,18]. Recent evidence also
suggests that early lifestyle adjustment will help participants
with prediabetes return to normoglycemia and reduce the risk
of developing T2DM [19-21]. Frequent diabetes screening
identifies individuals with a high risk of T2DM 2.2 years earlier
[22], creating a precious time frame and opportunity for taking
an early intervention to prevent or delay the onset of diabetes
and its complications and improve overall clinical outcomes.

For established individuals with diabetes, constant monitoring
of their blood glucose concentration is crucial so that appropriate
insulin dosage can be administered in a timely manner to avoid
acute and chronic complications and delay disease progression.
Conventional blood glucose measurement requires patients to
prick their fingers several times a day, which causes the
development of massive scarring and loss of sensation at the
fingertips over the year [23]. This measurement method is
invasive, inconvenient, and expensive, which are the main
barriers to the effective self-management of diabetes in the older
adult group [24,25]. To improve diabetes outcomes and assist
patients in self-managing the disease, continuous glucose
monitoring devices have entered the market and are made
available for some patients with diabetes. However, most
continuous glucose monitoring sensors currently available are
still invasive, which measures glucose concentration in the
subcutis using an electrochemical needle sensor [26]. Users
need to replace the sensor frequently and purchase different
components of the system regularly, which will cost from US
$2500 to US $6000 per year [27,28].

In recent years, the advancement and use of wearable
technologies and artificial intelligence (AI) have gradually
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changed our daily lives, as many people use wrist-worn
wearables daily for fitness and health monitoring [29]. Most
consumer wearables have incorporated green light reflection
photoplethysmography (PPG) sensors into their products.
Wearable technology has the potential to greatly expand the
impact of public health initiatives by using a proactive approach
to identify abnormal physiological signals, assessing disease
risk factors, and helping patients manage chronic conditions
and recovery [30-33].

In 2011, Monte-Moreno [34] demonstrated the use of PPG data
collected using a pulse oximeter to estimate blood glucose
levels. By analyzing the PPG waveform, features such as the
respiration frequency, heart rate variability (HRV), and other
physiological parameters can be extracted. They are then fed
into a random forest model, yielding a prediction accuracy of
87.7% based on the Clark error grid. Rodin et al [35] validated
a wearable biosensor developed by Zilberstein et al [36] as an
indirect measure of glucometry. The biosensor comprises a PPG
sensor and an optically sensitive backglass panel that changes
its optochemical characteristics according to the concentrations
of specific sweat metabolites. In total, 200 adult participants
were recruited, and each participant wore a smartwatch to extract
PPG data, while blood samples were collected from the
antecubital vein concurrently. The estimation of the blood
glucose level was derived using a proprietary algorithm
developed by SpectroPhon and compared against a glucose
lactate analyzer (YSI 2300). The proposed biosensor was able
to detect anteprandial glucose with a mean absolute percentage
error of 7.4% and a normalized root mean squared error of
11.56%, while postprandial glucose measurements yielded
7.54% mean absolute percentage error and 9.79% normalized
root mean squared error. Zhang et al [37] used a smartphone,
taking a video of the index finger covering the flash, to capture
the fluctuation in the light absorption associated with the change
in blood volume. The resulting red, green, and blue image was
then transformed into PPG data. The Gaussian fitting method
was applied to model the PPG waveform components, from
which 28 time-domain and frequency-domain features were

extracted. A support vector machine (SVM) with a Gaussian
kernel was trained with data from 80 participants to classify the
user’s glucose level as normal, borderline, or warning, with an
accuracy of 81.49%, 79.85% sensitivity, 83.19% specificity,
and 80.2% F score. The study was conducted in a highly
controlled environment with limited participants, so the
generalizability of these results is subject to certain limitations.

Conventional blood glucose monitoring technologies often
require invasive measures such as finger pricking or the use of
skin sensors and patches. These methods can be uncomfortable
and inconvenient for users and can also be financially
burdensome. To address these issues, we propose a novel
solution called blood glucose evaluation and monitoring
(BGEM) that leverages the latest advancements in signal
processing, wearable technology, and AI to detect elevated
blood glucose levels and evaluate the risk of developing
diabetes. With BGEM, users only need to measure their PPG
data using a consumer-grade wrist-worn wearable device. The
AI model will then compute relevant digital biomarkers and
evaluate the risk of prediabetes or T2DM by recognizing
elevated blood glucose levels (≥7.8 mmol/L). This solution
allows for frequent blood glucose testing without the discomfort
and inconvenience of current technologies.

Methods

PPG Sensor
PPG is a low-cost, noninvasive technique that measures the
volumetric fluctuation in arterial blood flow [38]. The human
wrist is one of the sites for measuring the PPG signal because
it has a rich arterial source and an excellent sensor placement
with minimal interference to one’s daily activities. The PPG
signal comprises superimposed pulsatile alternating current
components and direct current voltage components. A PPG
signal is obtained by illuminating the light emitting device on
the skin surface and measuring the variations in light absorption
or reflection that reflect the pulsatile flow patterns, as shown
in Figure 1.

Figure 1. Illustration of the working principle of a photoplethysmography (PPG) sensor. Changes in blood flow represent different phases within the
cardiac cycle. During the diastolic phase, blood volume, arterial diameter, and hemoglobin concentration in the measurement site are minimized, leading
to minimum absorption of light by blood and, consequently, an increase in light intensity detected by the sensor system. The reverse is valid for the
systolic phase, where a decrease in light intensity is detected instead. AC: alternating current; DC: direct current.
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The pulsatile alternating current component corresponds to the
cardiac cycle, characterizing that the wrist’s blood vessels
expand and contract with each heartbeat, whereas the direct
current component reflects constant light absorption by venous
and arterial blood, as well as other tissues [39]. The PPG signal
can detect vascular changes associated with diabetes and
contains substantial valuable information from HRV, which is
significantly associated with diabetes [40]. Hence, it will be
used in this study to extract valuable and meaningful features
to identify an individual’s glucose status (elevated or normal).

Ethical Considerations
Before commencing the study, ethical clearance was obtained
from the SingHealth Centralised Institutional Review Board of
Singapore (2020/2968) on March 21, 2021. All methods were
performed in accordance with Singapore’s clinical guidelines
and regulations. Informed consent was obtained from all the
trial participants or their legal guardians. The clinical trial was

registered on ClinicalTrials.gov (NCT05504096) on August 17,
2022.

Study Protocol
In total, 500 participants were recruited from KK Women’s and
Children’s Hospital in Singapore. Participants’ demographics
are summarized in Table 1. For most participants, the blood
glucose levels were measured before and after consumption of
75 g of a sugary drink using both the conventional glucometer
(Accu-Chek Performa) and the wrist-worn wearable device.
Participants who were excluded for the second measurement
had high blood glucose measurements ≥11.1 mmol/L on their
first measurement and hence were not administered the sugary
drink measuring 75 g.

After consuming the sugary drink, 55.1% (266/483) of the
participants had high blood glucose (≥7.8 mmol/L). The
distribution of blood glucose levels before and after consuming
the sugary drink is shown in Figure 2. A statistically significant
difference was observed between the 2 distributions (P<.001).

Table 1. Description of participants (N=500).

ValuesCharacteristics

Demographic data

38.73 (10.61); 21-81Age (years), mean (SD); range

24.4 (5.1); 16.3-71.1BMI (kg/m2), mean (SD); range

Gender, n (%)

51 (10.2)Men

449 (89.8)Women

Diabetes profile

Family history of diabetes, n (%)

157 (31.4)Yes

343 (68.6)No

Prediabetes, n (%)

17 (3.4)Yes

483 (96.6)No

Diabetes, n (%)

8 (1.6)Yes

492 (98.4)No

Gestational diabetes, n (%)

21 (4.2)Yes

428 (85.6)No

51 (10.2)N/Aa

aN/A: not applicable.
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Figure 2. The distribution of ground-truth blood glucose levels before and after sugary drinks (P<.001).

Study Device
The Actxa Spark+ Series 2, a low-cost and commercially
available wrist-worn wearable device, was used in this project.
This multifunctional device, built for everyday activities, fitness,
and preventive health monitoring, provided an adequate PPG
signal quality at 50 Hz. The wearable device is equipped with
advanced PPG technology that enables accurate and reliable
measurement of heart rate (HR) and other physiological
parameters. This is similar to the devices used in Singapore’s
nationwide health care campaigns, such as the National Steps
Challenge. It is also worth noting that our proposed solution is
device agnostic and can be easily integrated into other wearables
with PPG capabilities, allowing for a scalable and cost-effective
assessment of risk-based populations, including high-risk
participants, participants with undiagnosed diabetes, and patients
in need of primary prevention interventions.

Before Processing
The raw PPG signal was collected using both wrist-worn
wearables in 16-bit binary format. We first performed a
digital-to-analog conversion using the following formula:

Liang et al [41] suggested that a fourth-order Chebyshev II filter
provides an optimal processing performance for short PPG
signals. Hence, we adopted the recommended filter design to
remove low-frequency drift and high-frequency noise using a
band-pass Chebyshev II filter. The proposed band-pass filter
has a lower cut-off frequency of 0.3 Hz and an upper cut-off
frequency of 4 Hz.

The filtered PPG signals still contain various forms of outliers,
such as peaks with abnormally high amplitudes or distortions
in the oscillating waveform, which can be caused by movement
from the upper extremity or improper contact between the sensor
and skin. Features derived from signals that possess outliers
may not be accurate, so a z scores outlier detection with a cut-off
value of 3 SDs of the mean was applied. The identified outliers
or regions of outliers were replaced with a reasonable estimate
via a nearest neighbor interpolation for the HRV feature
extraction. Because PPG signals do not change drastically in
such a short duration, this method is determined to be an
appropriate approach to the problem. Furthermore, the number
of outliers was minimal in our data set, and hence should not
have affected the features that we generated later. The data
preprocessing steps are illustrated in Figure 3.
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Figure 3. Data preprocessing workflow. (A) Raw photoplethysmography (PPG) signal, (B) removal of the signal’s moving trend using a Chebyshev
high-pass filter, (C) use of a Chebyshev low-pass filter to eliminate high-frequency noise, and (D) final step involves outlier identification from the
filtered PPG signal. DAC: digital-to-analog conversion.

Feature Extraction

Overview
The preprocessed data were suitable for generating reliable
features, and a total of 248 features were generated. These
features can be classified into seven categories: (1) HRV
features, which encompass time domain, frequency domain,
and nonlinear HRV features; (2) waveform features; (3) HR
features; (4) energy measure features; (5) complexity measure
features; (6) continuous wavelet transform (CWT) features; and
(7) patient demographics. The complete set of features analyzed
in this study is summarized in Multimedia Appendix 1.
However, these 248 feature candidates are not all relevant to
the change in glucose level, and redundant features might cause
prediction performance deterioration. The details of the
feature-engineering and feature-selection process are discussed
in the “Feature Selection” section.

HRV Features
HRV is the variation in time intervals between consecutive
heartbeats and is widely used as a noninvasive physiological

biomarker of the autonomic nervous system response [42-44].
HRV provides a proxy to measure sympathetic nervous system
(SNS) and parasympathetic nervous system (PNS) activity,
which reflects the ability to respond to and recover from abrupt
physical, psychological, and environmental changes [44-46].
As HR estimated at any given time represents the net effect of
the neural output of the PNS, which slows HR, and SNS, which
accelerates HR, HRV also detects imbalance in the autonomic
nervous system resulting from over- or understimulation of SNS
and PNS. Therefore, the fluctuation in HRV values provide
useful insights into many clinical applications, such as mental
stress, exercise and rehabilitation, cardiovascular fitness,
pathological state, progression of chronic disease, and even
predicting the onset of diseases [47-51]. Depending on the
application, HRV features are usually extracted from an
ultra–short-term (<5 min), short-term (approximately 5 min),
or whole-day 24-hour time frame [52]. Most HRV features can
be grouped under time-domain, frequency-domain, or nonlinear
categories. In this project, most of the widely used HRV features
were included in our analysis and were extracted using a
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5-minute time frame. These HRV features are briefly explained
in Multimedia Appendix 1 using the feature indices (F1-F71).

HR Features
Prior studies have noted the influence of impaired blood glucose
on HR, especially resting HR [53,54]. Hence, HR was extracted
by finding the number of peaks for every 10 seconds of the
filtered PPG signal. The statistical features of the HR were then
calculated and used as part of the feature inputs (F72-F81).

Wavelet Analysis
A considerable number of studies have applied wavelet
transformation to analyze HRV data associated with a wide
variety of health care applications. Earlier research has used
features derived from CWT to predict blood glucose levels [55].
In this project, we applied CWT to the PPG signal using the
Mexican Hat mother wavelet. The mean, SD, and maximum
value of the resulting CWT matrix were included in the feature
vector (F82-F84).

Waveform Features
Previous studies have reported that the characteristics of the
PPG waveform extracted from healthy participants and
participants with diabetes exhibited statistical differences
[37,56]. Nirala et al [56] also suggested that the first and second
eigenvalues derived from the first derivative of the PPG signal
are the top features for identifying T2DM. In addition, several
studies have revealed a functional relationship between the PPG
signal and blood glucose levels [34,57]. Similarly, respiratory
information can also be extracted from the PPG waveform
[33,58]. However, PPG waveforms derived from signals using
a wrist-worn PPG sensor often have a nondetectable diastolic
peak and a dicrotic notch, unlike the signals collected using
fingertip PPG.

Waveform features (F85-F196) derived from the PPG waveform
were included in the feature set, and the definition of the
waveform features is illustrated in Figure 4.

Figure 4. Definition of the photoplethysmography (PPG) waveform features. AUF: area under the falling edge; Apulse: area under a PPG wave; AUR:
area under the rising edge; FN: magnitude of falling edge; Fslope: slope of falling edge; FT: fall time; RP: magnitude of rising edge; Rslope: slope of
rising edge; RT: rise time.

Energy Measures
Several studies have used the energy features extracted from
PPG signals to estimate blood glucose [34,59,60]. The
Kaiser-Teager energy (KTE) operator and logarithmic energy
are 2 commonly used methods to analyze the energy profile.
These features were computed from a 5-second sliding window,
as it ensures that the PPG signals within each window would
be long enough to contain several heartbeats but short enough
such that the wave amplitude changes are negligible.

The KTE operator is a well-known method for providing a
time-frequency analysis of the instantaneous energy of the PPG
signal from the amplitude and frequency. Using the
implementation strategy explained by Monte-Moreno [34], we
computed the energy profile of the PPG signal at each sliding

window frame, and the KTE operator for the n-th frame was
computed using the following equation:

KTEn(i) = xframe(i)
2 – xframe(i + 1) * xframe(i – 1), which

holds for i = 2,3,...,(Lframe – 1) (2)

Where xframe is the filtered PPG signal within each sliding
window frame.

The statistical metrics were computed for each frame, and the
average of the metrics for the nth frame was then calculated and
represented as F197 to F206.

To estimate the respiration rate from the PPG signal, we used
the logarithmic energy value calculated at the frame level using
the following equation:
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Where xframe is the filtered PPG signal within each sliding
window frame.

The autoregressive model coefficients of order 7 were estimated
using the Yule-Walker method, and the Python function aryule
was used for this purpose. In addition, other statistical
parameters were also computed (F207-F223).

Complexity Measures
Sample entropy (SampEn, F224) measures the unpredictability
of physiological signals and is commonly used in HRV analysis
[61]. The lower the SampEn, the more regular the signal.

SampEn can be defined after calculating the template vector

ϕm that is the probability that 2 sequences will match for m
points without allowing self-counting [62]:

Where m denotes the embedding dimension, tolerance r equals

0.1∗SD, N denotes the number of data points, and Ci
m counts,

within the tolerance resolution r, the number of matching blocks
across different embedding dimensions.

SampEn is a tool used to analyze physiological time-series data,
but it does not evaluate the complexity of the data at different
time scales. Hence, we applied multiscale entropy (MSE)
analysis on raw PPG signals to evaluate the hypothetical
difference in signal complexity across various time scales for
normoglycemia and elevated glucose levels. However, the scale
factor was inversely proportionate to the number of data points.
From our empirical results, we found that a minimum of 240
pulse waves were required to correctly compute the MSE values
over all the timescale factors (τ=20). We found that the sample
entropy calculated from PPG signals during periods of elevated
blood glucose was significantly higher than that of blood glucose
in the normal range at timescale factors between 8 and 14 (τ).
This information was then used to create features for the
detection of elevated blood glucose levels. Each timescale factor
between 8 and 14 was used as a separate feature. In addition,
the mean of the adjacent timescale factors was derived to create
additional features. These MSE features are represented in the
feature vector with feature indices F225 to F244.

Results

Software
All experiments and analyses were performed using Python
(version 3.9) and relevant libraries (Table 2). The final model
was deployed on Amazon Web Services.

Table 2. A list of the software, and relevant libraries, along with the versions used.

VersionLibrary

3.9.10Python

0.10.1Imbalanced-learn

1.2.0Joblib

1.0.0Jupyter

3.3.4Lightgbm

3.6.2Matplotlib

0.2.2Neurokit2

0.5.2Nolds

0.53.1Numba

1.23.5Numpy

1.5.2Pandas

9.3.0Pillow

1.1.3Scikit-learn

1.8.0Scipy

0.12.1Seaborn

0.8.1Spectrum

0.13.5Statsmodels

1.7.2Xgboost

Feature Selection
Considering AI ethics and the practicality of implementing the
algorithm, some demographic data, such as skin color, race,
and personal lifestyle habits, were not used as inputs to the

models. However, other general personal characteristics
associated with the risk of developing T2DM, such as age,
gender, BMI, and family health history of diabetes, were added
to the feature vector before the feature-selection process.
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The redundant or irrelevant features might hinder the
performance of the prediction model. To reduce the
dimensionality of the input features, we applied an ensemble
strategy that uses multiple feature-selection algorithms. This
creates an optimal feature subset that minimizes the prediction
error rate and is the most relevant for predicting the target
variable. The ensemble feature-selection steps are summarized
as follows:

• Six feature-selection methods, including ANOVA
correlation coefficient, mutual information, dispersion ratio,
recursive feature elimination, lasso regression, and Extreme
Gradient Boosting, were used to choose the 30 best features
independently.

• We combined the features obtained from each
feature-selection method and ranked them using a majority
vote approach to find the common features selected by more
than 1 model.

• The highly correlated features were dropped from the
selected feature subset.

In total, 12 features were selected from the entire feature set
and ranked based on the results of the feature-selection strategy
(Table 3). In our study, these selected features were the most
sensitive predictors for capturing the characteristics of a
participant’s elevated blood glucose levels.

Table 3. The selected top features after the ensemble feature-selection method.

FeatureRank

Welch_hf_rel1

AR_hf_rel2

A_FE_mean3

A_ratio_mean4

Age5

A_Pulse_iqr6

KTE_skew7

LOG_std8

BMI9

MSE_sum_13_1410

Family history11

A_ratio_max12

Gendera13

aNote that gender was not selected as a top feature in our feature-selection algorithm. However, it was previously identified as a sensitive predictor for
T2DM, in which the prevalence of T2DM in men was higher than that in women [63]. This discrepancy could be attributed to the gender imbalance in
the data set (men: 10.2%; women: 89.8%). Therefore, we included gender as one of the top features to provide a complete user profile for future
investigation and development.

The selected features could be further divided into 4 main
categories. Under the time-domain features, the selected features
were the area under the PPG curves. A_FE_mean refers to the
average area under the falling edge of each pulse (Figure 4).
A_ratio refers to the ratio of the area under the rising edge to
the area under the falling edge of each pulse (Figure 4), and
both the average and maximum values were deemed relevant
to the model’s predictions. A_pulse_iqr refers to the IQR of the
total area under each pulse (Figure 4). In the frequency domain,
the selected features were the relative powers of the
high-frequency bands in both the Welch power spectral density
(PSD; Multimedia Appendix 1, F32-F44) and autoregressive
PSD (Multimedia Appendix 1, F45-F57).

In the nonlinear domain, the selected features were either related
to the energy or the complexity of the signal. LOG_std refers
to the SD of log-energy entropy (equation 3), whereas
KTE_skew refers to the skewness of the KTE energy measure
for each sliding window (equation 2). Furthermore, the
complexity feature that was selected was the sum of the MSE
over 2 scales, 13 and 14.

Finally, the remaining selected features were demographic
features that described the age and BMI of the participants, as
well as if they had any family history of diabetes.

Machine Learning Model Performance
Seven widely used machine learning (ML) algorithms, including
the naive Bayes classifier, K-nearest neighbors algorithm,
logistic regression, random forest, SVM, XGB, and light
gradient boosting machine, were trained with the selected
features as inputs. We fine-tuned the hyperparameters of each
model and validated their performance using the stratified
10-fold cross-validation method. We adopted multiple
regularization techniques across various models to prevent
overfitting during the model training. Six evaluation metrics,
accuracy, sensitivity, specificity, precision, geometric mean
(G-mean), and F score, were used to evaluate the model’s
performance, as accuracy alone cannot provide a comprehensive
examination of model performance due to data imbalance. The
G-mean and F score are critical evaluation criteria to assess the
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models’ performance, as they are robust to significant label
imbalance.

The prediction results from each model are reported as the mean
and SD of the evaluation metrics, and Table 4 shows the

summary of the results. SVM with the radial basis function
kernel showed the best prediction performance with an average
accuracy of 84.7%, a sensitivity of 81.05%, a specificity of
88.35%, and a precision of 87.51%. In particular, the average
G-mean was 84.54% and F score was 84.03%.

Table 4. The prediction results obtained from 10-fold cross-validation using various machine learning models.

F scoreGeometric meanPrecisionSpecificitySensitivityAccuracyModel

σμσμσμσμσμσμ

5.1962.514.660.084.1259.435.7854.877.4466.174.6360.51NBa

2.6879.53.0975.42.4770.974.1562.944.3090.45376.7KNNb

5.3763.524.67634.1662.654.3061.667.0764.564.6563.1LRc

6.2376.685.7276.646.0876.816.4276.698.1876.845.7376.76RFd

4.5884.034.1884.544.2687.514.1988.346.7781.054.1484.7SVMe

5.1577.774.89784.8878.74.9879.126.58774.9178.06XGBf

4.8177.244.0777.744.179.354.4580.277.3675.543.9877.9LGBMg

aNB: naive Bayes.
bKNN: K-nearest neighbors.
cLR: logistic regression.
dRF: random forest.
eSVM: support vector machine.
fXGB: Extreme Gradient Boosting.
gLGBM: light gradient boosting machine.

Model Interpretation
The use of deep learning in the medical and health care domain
has shown great potential for solving a range of problems, such
as detecting specific symptoms or abnormalities [64,65].
However, the interpretability of deep learning models remains
a significant challenge, and it is often difficult for clinicians to
trust the decisions made using a black-box system. The lack of
model interpretability also raises ethical concerns, particularly
when the decision fails. Furthermore, our current data set is
considerably small (500 participants) compared with typical
deep learning models in other domains, which are trained with
thousands of data points. Deep learning models are known to
perform well with a larger data set and fail to learn meaningful
representations when there is a lack of data [66]. Therefore, we
did not investigate the use of deep learning in this study.

As the proposed ML model is designed to complement the
existing diabetes detection solution and is relatively new to the
clinical community, the features selected in the previous section
must be interpretable and exhibit a certain level of agreement
with existing findings. A family history of diabetes, being male,
being aged ≥45 years, and having an increased BMI have been

identified as major risk factors in the literature for developing
prediabetes or T2DM [63,67,68]. These 4 risk factors were part
of the selected predictors, and this paper provides a preliminary
attempt to explain how the selected predictors contribute to
detecting elevated blood glucose using the Shapley additive
explanations (SHAP) framework. SHAP is a game theoretical
approach that provides global and local explanations of the
association between the ML output and input features [69].

Figure 5A illustrates the SHAP values of each feature across
all the predictions from the training set. The features were
ranked by their mean SHAP values, with larger values shown
in red and smaller values shown in blue. The beeswarm plot
revealed that a family history of diabetes, increasing age, and
higher BMI are associated with a higher probability of elevated
blood glucose levels. These observations are consistent with
previous research and demonstrate that the ML algorithm has
successfully captured the relationship between these features
and elevated blood glucose levels. In addition, other proposed
features showed varying levels of impact on the model’s output.
However, the gender feature did not have any apparent effect
on the model’s predictions.
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Figure 5. The Shapley additive explanations (SHAP) plots indicate the association between the selected features and their impact on the predicted
outcome. (A) SHAP beeswarm plot and (B) SHAP waterfall plot.

In Figure 5B, each row in the plot shows how the contributions
of different features move the output of the model from the
expected value (E[f(x)]) to the actual prediction output f(x) for
a single sample with a positive class prediction (blood glucose
level ≥7.8 mmol/L) in the test set. The expected value, E[f(x)],
is determined using the entire training data set. As expected,
most features provide positive SHAP values in this sample,
which collectively push the model’s output toward the correct
prediction. However, this specific test participant’s BMI was
in the healthy range, which pushed the model’s output toward
the normal class and might have resulted in a false negative
prediction. This indicates that relying on a single feature or
demographic data alone may not provide an accurate prediction
of blood glucose levels.

Using the SHAP values, we can understand the model’s overall
behaviors and how features affect the output positively or
negatively, which can help improve the prediction model in the
future.

Assessment of the Elevated Blood Glucose Levels From
Multiple Measurements
Generally, diagnostic tests are not highly sensitive and highly
specific. Therefore, repeated measurements of the wrist-worn
wearable device were combined and assessed in an optimum
fashion to maximize sensitivity, specificity, and precision.

Consecutive measures of blood glucose were combined in
parallel using the “AND” and “OR” rules to assist in the
detection of elevated blood glucose measurement levels. The
“OR” rule increases the overall sensitivity, and the “AND” rule
increases the overall specificity, which is greater than that of
either test alone [70].

Discussion

Principal Findings
While the health care landscape is changing, the rapidly aging
society and the need for improved population health outcomes
call for new models of care to effectively prevent the onset and
delay the progression of chronic diseases. Furthermore,

short-term health behaviors contribute significantly toward
long-term health outcomes, while unattended and frequent
glucose spikes might result in prediabetes and eventually
diabetes. The availability of noninvasive and device-agnostic
blood glucose detection solutions will allow for more frequent
and better monitoring of blood glucose levels, thereby reducing
the risk of developing T2DM. This study demonstrates that a
noninvasive method of assessing diabetes risk using PPG is a
viable option to provide a cheaper and accessible modality for
the population-wide screening of blood glucose levels. This
population-based screening would allow for the earlier detection
of DM in the population, especially among those individuals
who are unaware of their elevated blood glucose levels. Hence,
timely and appropriate lifestyle advice and medical interventions
can be provided to prevent diabetes complications. This will
subsequently reduce the health care burden for both the
individual and the society.

BGEM is a cloud-based solution that can frequently monitor
multiple digital biomarkers with minimal disruption to daily
life. Developed using the advanced ML operations practice,
BGEM can be easily scaled to meet the increasing demand for
health care services. The solution includes a user-friendly mobile
app that can screen a large population to identify high-risk
individuals, people with undiagnosed diabetes, and those who
require primary prevention intervention. It also provides timely
feedback to users through the app, informing them of their
diabetes risk and providing targeted, actionable insights to
empower them to take a proactive approach to monitor their
glucose levels.

Limitations
Our pilot study has certain limitations. Since fasting blood
glucose measurements were excluded and the criteria to define
normal and abnormal levels under fasting conditions differed
from our current cut-off, we must refrain from definitively
concluding that our model is applicable to fasting conditions.
Regarding gender, our feature-selection model did not
specifically incorporate it, and our analysis using SHAP
demonstrated that gender exerted minimal influence on model
predictions. Moreover, all analyses were adjusted for the
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covariate gender, as required. Therefore, we considered gender
to have a limited impact and is not a primary limitation of our
findings. To address these limitations, we are actively planning
the subsequent phase of data collection. This phase will involve
collecting fasting blood glucose measurements in a primary
care setting, also allowing for a more balanced gender
distribution. More importantly, we could expand our participant
pool to encompass participants with prediabetes and diabetes.
By addressing these gaps, we aimed to offer a more
comprehensive and robust assessment of our model’s
applicability and effectiveness.

There was no longitudinal follow-up of the participants. External
validation of our model on an independent sample must be
undertaken to further assess the detection accuracy and
generalizability of the results. Nevertheless, as a preliminary
investigation, the potential implications of our findings are
significant as they might offer a means to identify previously
undiagnosed prediabetes or diabetes cases at the population
level. We anticipate that our study will serve as a foundational
stepping stone, paving the way for more comprehensive diabetes
research using AI and wearable devices. To the best of our
knowledge, there is no publicly available data set that
systematically examines the relationship between PPG data and
blood glucose levels. Acquiring a substantial volume of data is
imperative, encompassing a diverse and representative sample

spanning the entire spectrum of glucose values and incorporating
relevant sociodemographic factors. Such comprehensive data
can be obtained through a collaborative effort involving research
institutions and industry partners while ensuring strict adherence
to local ethical considerations and data privacy regulations.

We demonstrated that the cloud-based ML model can detect
elevated blood glucose levels, where consecutive measurements
can be combined in an optimal manner to provide high
sensitivity, specificity, and precision. However, further research
is required to address these limitations.

Conclusions
In this study, we performed sophisticated feature engineering
and found that the features derived from the MSE analysis of
PPG signals effectively detect blood glucose changes. We will
discuss this set of novel features in detail in a separate paper.
To reduce bias and evaluate the generalizability of the model,
we used a 10-fold cross-validation to assess its performance.
The SVM with the radial basis function model performed the
best, with an average accuracy of 84.7%, a G-mean of 84.54%,
and an F score of 84.03%. Previous models were developed
using smaller samples and have lower model performance
measures. Our model was developed with a larger sample of
500 participants, and most participants were assessed before
and after the consumption of a sugary drink. It also achieved
better detection accuracy.
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Abstract

Background: Artificial intelligence (AI) is often promoted as a potential solution for many challenges health care systems face
worldwide. However, its implementation in clinical practice lags behind its technological development.

Objective: This study aims to gain insights into the current state and prospects of AI technology from the stakeholders most
directly involved in its adoption in the health care sector whose perspectives have received limited attention in research to date.

Methods: For this purpose, the perspectives of AI researchers and health care IT professionals in North America and Western
Europe were collected and compared for profession-specific and regional differences. In this preregistered, mixed methods,
cross-sectional study, 23 experts were interviewed using a semistructured guide. Data from the interviews were analyzed using
deductive and inductive qualitative methods for the thematic analysis along with topic modeling to identify latent topics.

Results: Through our thematic analysis, four major categories emerged: (1) the current state of AI systems in health care, (2)
the criteria and requirements for implementing AI systems in health care, (3) the challenges in implementing AI systems in health
care, and (4) the prospects of the technology. Experts discussed the capabilities and limitations of current AI systems in health
care in addition to their prevalence and regional differences. Several criteria and requirements deemed necessary for the successful
implementation of AI systems were identified, including the technology’s performance and security, smooth system integration
and human-AI interaction, costs, stakeholder involvement, and employee training. However, regulatory, logistical, and technical
issues were identified as the most critical barriers to an effective technology implementation process. In the future, our experts
predicted both various threats and many opportunities related to AI technology in the health care sector.
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Conclusions: Our work provides new insights into the current state, criteria, challenges, and outlook for implementing AI
technology in health care from the perspective of AI researchers and IT professionals in North America and Western Europe. For
the full potential of AI-enabled technologies to be exploited and for them to contribute to solving current health care challenges,
critical implementation criteria must be met, and all groups involved in the process must work together.

(JMIR AI 2023;2:e47353)   doi:10.2196/47353

KEYWORDS

artificial intelligence; AI; machine learning; health care; digital health technology; technology implementation; expert interviews;
mixed methods; topic modeling

Introduction

Background
Rising life expectancy, increasing prevalence of
noncommunicable diseases (eg, diabetes), and staffing shortages
are among the most severe challenges health care systems face
worldwide [1]. As a result, the demand for health care services
is steadily increasing, and health care costs are soaring [2,3].
Moreover, the high demand for services, extensive
administrative and documentation requirements, and staffing
shortages lead to heavy workloads for health care workers
(HCWs) and reduce the time that staff can spend with patients
and performing actual medical duties [4]. These circumstances
jeopardize patient safety and limit the overall ability to deliver
health care services [5-8].

The use of health technologies has often been suggested as a
possible solution to address these challenges. By improving
workflows, relieving staff of routine tasks, and reducing the
frequency of medication errors and medical errors in general
[8], health technologies might help ensure better health outcomes
and increase efficiency [9,10]. In particular, artificial intelligence
(AI) through machine learning has increasingly become the
focus of health IT development in recent years. Health care
professionals and patients associate AI technology with
improved care [11,12] and reduced workloads [11,13,14].
Numerous high-performing AI algorithms have been developed
to support HCWs with various tasks in different medical fields,
such as radiology, cardiology, neurology, ophthalmology,
oncology, gastroenterology, mental health, and many others
[15-17].

However, despite the extensive research on AI applications in
health care, the implementation of AI-enabled clinical decision
support systems (AI-CDSSs) in clinical practice lags behind
what would be feasible according to technical developments
[18]. Several explanations for the slow adoption of AI systems
in health care have already been proposed. Various groups are
involved in this AI implementation process: (1) policy makers
and authorities who determine the framework conditions for
the entire process; (2) researchers and developers who develop,
train, and market the system with its various functions; and (3)
IT experts in health care facilities who sometimes make
decisions about system acquisitions, integrate them into the
existing infrastructure and maintain them if necessary, and
introduce them to the (4) HCWs who ultimately use the system
in their everyday work [19,20]. Many issues have been brought
forward by or are attributed to 2 groups of people on both ends
of the technology implementation spectrum: HCWs and policy

makers, both of whom are essential for the success of AI
technologies in health care.

On one side of the spectrum, physicians and other HCWs are
the end users of most AI systems in health care. The technology
is developed to support their workflows, but if HCWs are
reluctant to use AI systems, the proposed advantages of the
technology cannot materialize [21,22]. On the one hand, HCWs
believe that AI has the potential to improve the quality of care
through more accurate and precise diagnoses, as well as enabling
faster diagnoses and shorter wait times. It can also promote
personalized care tailored to the patient and ensure greater
consistency in diagnoses as the performance of AI technologies
does not suffer from human stress symptoms, fatigue, or
difficulty concentrating [23,24]. HCWs also expect collaboration
with AI-enabled systems to reduce daily workload and save
staff time by allowing the technology to prioritize symptoms
and patients and provide legal protection for medical staff
through ongoing documentation of the care process [23,24]. On
the other hand, however, research has shown that current and
future HCWs are reluctant to use AI applications in their daily
work for a variety of reasons. These include concerns about the
performance of the technology and fears that
overtechnologization may impair their abilities over time as AI
takes over tasks and clinicians become overly reliant and
accustomed to the technology [13,23]. Some HCWs also suspect
that AI systems will influence staff diagnostic decisions [23]
and fear that technology will make their jobs redundant [25,26].
In addition, HCWs are concerned that using these technologies
will negatively affect the physician-patient relationship and
might compromise privacy as AI systems would have to work
with patients’ sensitive data [23].

On the other side of the spectrum are policy makers (eg,
intragovernmental and governmental organizations as well as
regulatory bodies such as the US Food and Drug Administration
[FDA] or the European Medicines Agency). They are
responsible for the ethical, legal, and regulatory frameworks
and conditions for the implementation of AI systems in health
care. Policy-making bodies have already issued guidelines on
AI implementation and have discussed unresolved legal and
regulatory issues such as certification [27], liability, and data
protection [28]. Moreover, policy makers have expressed
concern about ethical issues such as discrimination and lack of
transparency, which might hinder the safe and widespread
implementation of AI applications in health care [27].

However, when it comes to the physical implementation of AI
technology into the existing health care infrastructure, in most
cases, neither policy makers nor HCWs are directly involved
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in the process. In reality, the 2 other stakeholder groups (ie,
researchers and developers as well as IT experts) are responsible
for the practical implementation of AI products in health care
facilities. Researchers have discussed many challenges
surrounding AI systems in health care. Some of these are
naturally linked to the issues raised by the other stakeholder
groups, such as the lack of trust among users [21,29]; regulatory
burdens; and concerns about accountability, ethical data use,
biases, and discrimination [30]. Other mentioned challenges
relate to more technical issues such as unsatisfactory system
performance, detection of biased data, system explainability,
cost and quality of labeled data, and computational limitations
[30,31]. The perspective of IT professionals has received
considerably less attention in the literature. Some research has
shown that they see the lack of human, professional, and
financial resources and incompatibility with existing IT
infrastructures as barriers to implementing AI technologies in
health care [32]. In addition to an acceptable user interface and
robust connectivity to the infrastructure, AI researchers and
developers are searching for contact with clinical users [33].

Besides looking at the various stakeholder groups, it is important
to consider regional differences when trying to obtain a global
perspective on the current state of AI implementation in health
care. International comparisons show substantial differences in
overall investment in developing and deploying new AI
technologies. Overall, the United States and China have raised
the most venture capital funds, followed by Europe, which,
however, lags significantly behind the former 2 [34]. When
looking specifically at health care–related investment in AI
technology, again, the United States, China, and Europe are the
3 global players, which is also reflected by their amount of
research output [35]. One study has already conducted a
cross-regional comparison of the adoption of AI in small- and
medium-sized health enterprises between Germany and China.
It showed that Germany-based professionals named challenges
related to data accessibility, transparency, and regulations more
often than their Chinese colleagues [36]. To the best of our
knowledge, no study has systematically compared European
and North American experts’ views on the opportunities and
challenges of implementing AI applications in health care.

Objectives
This study focused only on the 2 professional groups closest to
the physical integration of AI systems. We wanted to mention
that the topic should ideally be viewed more holistically.
According to the Responsible Innovation and Responsible
Research and Innovation approaches, it is important to involve
all stakeholders to prioritize the ethical, social, and sustainable
aspects of technological advances. This is to ensure that
innovation and research benefit society while minimizing harm
and accounting for societal needs and values [37].

By exploring the implementation of AI technologies in health
care, we wanted to focus on stakeholders directly involved in
the process. Researchers’ perspectives have been discussed
extensively in the literature but have mainly focused on potential
opportunities, technical challenges, and ethical issues of AI
models rather than their implementation. In contrast, the views
of IT professionals in health care have received little attention

overall. To fill this gap, this study used a mixed methods
approach to collect and compare the opinions of researchers
and IT professionals on implementing AI technology in health
care from their respective points of view. In addition, we
included respondents from North America and Europe to
uncover potential regional differences in addition to
profession-specific differences.

Methods

Sample
The 2 critical inclusion criteria for participating in this
preregistered study were profession and region. We focused on
researchers working on AI applications for health care and
medicine and IT professionals in the health care sector. These
professional groups allowed us to obtain the views and
differences in opinions of 2 key stakeholders directly involved
in the implementation of AI applications in health care practice.
The researcher group consisted of computer scientists and
clinical scientists ranging from senior doctoral candidates to
faculty members. The group of IT experts included chief
technical officers and chief information officers from hospitals,
representatives of medical device safety organizations, and chief
executive officers of health IT companies. The 2 regions of
interest were Western Europe and North America, with the
European countries of Germany, Austria, Switzerland, and
Belgium and the North American countries of the United States
and Canada being represented. By including participants from
these Western regions, we were able to gain valuable insights
into different legal and health care systems and highlight
regional differences between these global players. As the 2
professional groups are highly specific, no other selection
criteria or prerequisites, such as minimum professional
experience, were stipulated. Ultimately, 23 individuals were
interviewed, including 13 (57%) researchers (n=7, 54% from
Western Europe and n=6, 46% from North America) and 10
(43%) IT experts (n=8, 80% from Western Europe and n=2,
20% from North America).

Recruitment
Sampling was performed via a web search based on relevant
publications and matching of LinkedIn profiles. In addition,
experts were recruited via snowball sampling through the
authors’ networks and recommendations from participants and
other third parties. The participants were selected on a
nonprobabilistic basis, that is, deliberately according to the
aforementioned criteria [38]. We planned to interview at least
20 experts, balanced between professional groups and regions,
to obtain a well-rounded picture of the topic. A total of 104
candidates were approached via email, of whom 23 (22%
participation rate) agreed to participate. Interviewees received
no compensation for their participation.

Data Collection
Data for this cross-sectional, mixed methods study were
collected using semistructured expert interviews. Consequently,
all participants received the same questions from the interview
guide, with the option of the interviewers asking follow-up
questions or using prompts if needed. The authors developed
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the interview guide for this study based on the research questions
and the literature presented in the Introduction section. It
included questions from four categories: (1) the prevalence of
AI applications in hospitals and the current state of the
technology, (2) their implementation criteria, (3) the challenges,
and (4) the potential of implementing AI systems in health care.
The original interview guide was pretested twice, resulting in
minor improvements. Between November 2021 and January
2022, all 23 interviews were conducted remotely via Zoom
(version 5.8.3-5.9.1; Zoom Video Communications, Inc) and
by phone. The interviews lasted between 14.5 and 49.5 (mean
30.0, SD 8.0) minutes and were conducted in English (19/23,
83%) and, at the request of the interviewees, in German (4/23,
17%). At the start, participants were informed about the purpose,
procedure, expected duration, voluntary nature of the interview,
and how their data would be processed. The interviewees
provided informed consent to participate in the study and for
the interviews to be recorded. At the beginning of the recording,
the participants were first asked to briefly describe their
professional backgrounds as an icebreaker. This was followed
by our predefined interview questions and, if needed, follow-up
questions and prompts. After discussing all the questions,
participants had the opportunity to add anything they felt was
relevant to the topic. At the end of the interview, we asked for
other potential interviewees and thanked the interviewees for
their participation.

Data Preparation
Every participant received a nonidentifiable acronym under
which their materials were stored and analyzed. The acronym
only indicated the person’s professional group and region, which
was needed for the analysis (researcher in North America
[RENA], researcher in Western Europe [REEU], IT expert in
North America [ITNA], and IT expert in Western Europe
[ITEU]). The interview recordings were transcribed using Trint
(version unknown; Trint Limited). Contextual information that
could lead to the identification of an individual was manually
anonymized in the transcripts. All transcripts were reviewed,
translated into English if necessary, and uploaded to MAXQDA
(version 20.4.2; VERBI Software GmbH). The raw material
with sensitive data, that is, consent forms and audio or video
files, was securely stored in a password-protected digital folder.

Data Analysis
For thematic analysis of the data, we used MAXQDA. We chose
a combination of deductive and inductive qualitative methods
[39]. This approach integrates a theory-driven template [40]
and a data-driven framework [41] for developing codes. The
method includes 6 steps for data analysis, the details of which
can be found in the literature [39] and in an extra document in
the study’s repository on the Open Science Framework [42].
At the end of the thematic analysis process, 14 cross-cutting
themes and 172 subthemes were identified, divided into 4
categories, and captured in the final codebook. Three additional
themes were identified in the challenges category:
interdisciplinary work, ethics, and user. However, these were
much smaller in scope than the other themes and, therefore,
were not considered further in the rest of the study. To validate
the coding process, a third previously uninvolved author

analyzed a representative subsample of 10% (10/100) of the
data using the final coding manual [43,44]. The intercoder
agreement with a code overlap in segments of at least 90%
(90/100) was a Cohen κ value of 0.77, which is considered a
substantial match [45,46]. After the second coding, only minor
changes were made to the final codebook.

Following the qualitative thematic analysis, we also analyzed
the interviewees’ responses quantitatively using topic modeling
to identify latent topics as well as the most frequently used
words. Quantitative text analysis has been found to be a useful
tool for validating results of previous qualitative analysis
[47-49]. In this case, we first removed the introductory and
closing parts of the interviews that only contained introductions
and small talk. Furthermore, we deleted all stop words, which
are words that are commonly used with little or no relevance
to the content of a text (eg, “and” and “did”). We also
singularized all words (ie, “algorithms” became “algorithm”).
Then, we computed the frequencies of words (uni-, bi-, and
trigrams) grouped by interviewees’ region and profession. For
a better visual illustration, these were plotted in word clouds.
On the basis of the findings from the qualitative analyses that
had been validated by quantitative analysis, we extracted 14
topics using latent Dirichlet allocation [50] with Gibbs sampling
(Cronbach α=.30) [51]. Finally, we manually matched the
qualitative themes with the quantitatively extracted topics with
regard to their content. All text data processing and statistical
analyses were performed using the statistical software R (version
4.1.1; R Foundation for Statistical Computing). Specifically,
we used the R packages udpipe for tokenization [52] and
topicmodels as well as ldatuning for topic modeling [49,53].

The following documents can be found in the Open Science
Framework repository [42]: the preregistration, the list of
participants, the interview instructions and the interview guide
in English and German, the description of the qualitative coding
process, the final codebook, a table showing the frequency of
themes and subthemes, and a table of the top 10 words identified
during quantitative topic modeling.

Ethical Considerations
This study was exempt from a full ethical review by Committee
on the Use of Humans as Experimental Subjects, the institutional
review board of the Massachusetts Institute of Technology, by
meeting the criteria for exemption (E-4248).

Results

Overview
Four broad categories emerged during the qualitative analysis:
(1) the current state of AI technology in health care, (2) the
implementation criteria and requirements of AI systems in health
care, (3) the challenges in implementing AI technology in health
care, and (4) the technology’s outlook. Table 1 provides an
overview of the most relevant aspects that emerged from the
qualitative (themes) and quantitative (topics) analyses clustered
within these 4 categories. Table 2 provides a more detailed
overview of the 14 topics that emerged from the quantitative
analysis, each with the top 5 underlying words. Initially, we
present a quantitative overview of the interview content of each
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expert group. This is followed by an in-depth look at the most
relevant qualitative themes. Subthemes that fall under several
themes are described only once.

The 14 topics extracted through the quantitative analysis of our
interview data matched well with many themes from the
qualitative analysis: prevalence (topics 1 and 7), regional

differences (topic 2), capabilities (topics 3 and 7), limitations
(topic 5), performance and safety (topics 5 and 9), system
integration and human-AI interaction (topics 8 and 12), costs
(topic 11), stakeholder involvement (topic 11), employee
training (topic 4), different kinds of challenges (topics 3, 11,
12, and 13), threats (topic 11), and opportunities (topics 6, 10,
and 14).

Table 1. Relevant themes and topics from the qualitative and quantitative analyses.

Topic (quantitative)Category and theme (qualitative)

Current state of AIa systems in health care

Prevalence • AI in health care
• AI in medical imagingb

Regional differences • Regional challengesb

Capabilities • Improving the everyday experience of HCWsc

• AI in medical imagingb

Limitations • Clinical researchb

Implementation criteria and requirements of AI systems in health care

Performance and safety • Clinical researchb

• Performance

System integration and human-AI interaction • Workflow optimization
• Human-AI interactionb

Costs • Barriers to AI implementationb

Stakeholder involvement • Barriers to AI implementationb

Employee training • Employee training

Challenges in implementing AI systems in health care

Regulatory challenges • Regional challengesb

Logistical challenges • Barriers to AI implementationb

Technical challenges • Human-AI interactionb

• Industry challenges

Outlook

Threats • Barriers to AI implementationb

Opportunities • Future developments
• Technical advances
• Opportunities

aAI: artificial intelligence.
bThese quantitative topics can be assigned to several qualitative themes.
cHCW: health care worker.
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Table 2. A total of 14 quantitatively extracted topics from the interview transcripts.

5 most frequent wordsaTopic descriptionTopic name

health care, perspective, health, challenge, learnImpact of AI adoption on health outcomesAIb in health care

germany, company, clinic, regulatory, countryRegulatory challenges for AI implementation in certain
regions

Regional challenges

patient, time, nurse, care, dayIntegrating AI into routine patient care for the benefit
of HCWs

Improving the everyday experience of

HCWsc

system, decision, implement, training, medicalTraining HCWs on how the system works and its limi-
tations

Employee training

algorithm, physician, clinician, study, riskStudying the risks and benefits of AI in clinical settingsClinical research

solution, term, future stuff, united statesExploring long-term solutions and regulatory aspects
for diagnostic development

Future developments

image, radiologist, radiology, diagnosis, applica-
tion

Current AI applications in radiology and medical
imaging

AI in medical imaging

model, question, understand, talking, senseImproving institutional workflows and communications
with AI

Workflow optimization

human, data, performance, practice, superImpact of AI on performance and practicesPerformance

technology, field simply, machine learning,
change

Using technology to facilitate knowledge-based change
in medicine

Technical advances

person, situation cost, university, feelLogistical and stakeholder challenges in implementing
AI

Barriers to AI implementation

hospital, doctor, environment, person, issueUser-centered technology integration to support HCWsHuman-AI interaction

process, level, wrong, set, improveIndustry challenges in deploying AI systemsIndustry challenges

data, clinical, basically, care, answerCreating opportunities for data-driven clinical care in
specific domains

Opportunities

aThe 10 most frequent words are included in the project repository.
bAI: artificial intelligence.
cHCW: health care worker.

Quantitative Overview of Regions and Professions
Table 3 shows the 10 most frequently used words divided by
professional (researchers and IT experts) and regional groups

(Western Europe and North America). The higher the words
are ranked in the table, the more frequently they were mentioned
by the interviewed experts.

Table 3. Ten most frequently used words grouped by profession and region of the interviewees.

North AmericaWestern EuropeProfession

Researchers 1.1. algorithmperson
2. 2.data person

3.3. datapatient
4. 4.system patient

5.5. hospitalalgorithm
6. 6.doctor healthcare

7.7. humangermany
8. 8.hospital time

9.9. careprocess
10. 10.human model

IT experts 1.1. technologypatient
2. 2.algorithm clinical

3.3. healthdata
4. 4.hospital adoption

5.5. cliniccompany
6. 6.person level

7.7. modelgermany
8. 8.question opportunity

9.9. augmentationtime
10. 10.diagnosis challenge
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Current State of AI Systems in Health Care

Prevalence of AI Systems in Use
Respondents named 12 different medical fields or specialties
in which AI algorithms have been developed for clinical
practice: neurology, oncology, radiology, dermatology,
cytomorphology, surgery, pediatrics, pathology, ophthalmology,
urology, genomics, and diabetology, as well as intensive care
medicine. Many interviewees focused on AI systems for
radiology, which could indicate that this is the most mature field
for the technology. Classification of medical imaging was often
mentioned as a relevant use case, again potentially highlighting
the maturity of this application. Interviewees also mentioned
discipline-independent use cases. For instance, current AI
systems can also use text-based data from electronic health
records (EHRs) to make medical predictions using natural
language processing. AI algorithms are also used to optimize
administrative tasks such as staff scheduling and billing.
However, 48% (11/23) of the interviewees acknowledged that
many systems are not commercially available but are at the
stage of in-house scientific research projects. Almost
exclusively, European interviewees emphasized that systems
are not widely used in routine clinical practice:

We see projects on the scientific side where we use
AI. But I couldn’t describe a single use case where a
real AI, some kind of neural network deep learning
mechanism, would be in place in our normal health
care activities. [ITEU18; position 7]

Regional Differences in Research and Development
The interviewees mentioned the United States and China as
leaders in AI research, whereas Germany and many European
countries seemed to lag behind. Within Europe, the Nordic and
Baltic countries, as well as the United Kingdom, are considered
frontrunners in AI development for the health care sector:

So if you look at places like Singapore and also
China, you will also see that this area of [sic]
analyzing huge amounts of data and applying
algorithms from AI [sic] to novel case [sic], this is
something where they are, I would say, even years
ahead of what we [Germany] are doing. [ITEU18;
position 11]

Several reasons were given for why European AI research is
trailing that of the United States and China. Researchers and IT
experts primarily blamed the lack of available data for training
the models caused by stricter data protection laws and
regulations. The General Data Protection Regulation (GDPR)
implemented in the European Union in 2018 makes sharing
data between research and health care facilities within and across
countries more complicated:

I think that GDPR...makes it a little more difficult for
data sharing in Europe. And so that may be part of
why the research is not...progressing quite as fast.
[RENA05; position 20]

Researchers from Europe further pointed to the slow progress
of digitalization in health care and the lack of financial

investments as barriers to the advancement of AI-enabled
systems:

Germany is lagging behind due to digitalization...a
switch from spreadsheets to platforms that really
integrate patient data is really needed in Germany.
[REEU10; position 13]

Capabilities of Current AI Systems
Both professional groups referred to similar technical
capabilities. Currently, AI algorithms can support HCWs mostly
in 2 ways. First, the systems can perform specific, highly
repetitive tasks that are easy but time-consuming for humans.
Consequently, deploying these applications can reduce workload
and free up time for other tasks:

I should say here...that the AI applications are usually
very narrow based, which means that they can do a
simple task...But it’s automated, so it might go faster,
which is easier for the radiologist. [ITEU08; position
48]

Second, AI systems outperform humans when working with
large and complex data. This type of data is often characterized
by a diffuse structure, complex interrelationships, and
multidimensionality. By instantly incorporating more data than
a human ever could, AI algorithms can make faster and more
accurate predictions:

The way these algorithms work is they can
handle...complexity that we as humans can’t.
[RENA16; position 33]

Limitations of Current AI Systems
Both researchers and IT professionals described the fact that
AI algorithms currently cannot operate without human
supervision as a major limitation. At the moment, it is required
that HCWs verify the algorithms’ results. Thus, the full
responsibility and liability for clinical decision-making remain
with the user:

The limits, obviously, are [sic] they can’t take
responsibility for what they’re doing...They can’t take
any responsibility in terms of medical legal issues.
So whenever you do something...some poor doctor
has to sign the whole thing and then he’s responsible
for whatever happens. [REEU07; position 28]

Another limiting factor mentioned by both groups was the
technology’s high task specificity, which limits its usefulness
in 2 ways. On the one hand, AI algorithms are often programmed
to use only one source of information (eg, 1 type of medical
image) for their prediction, whereas integrating multiple sources
(eg, medical images and patient history) would yield better
results. On the other hand, medical decisions often require the
involvement of multiple disciplines, for example, radiology and
surgery. Consequently, integrating several stand-alone
algorithms or developing multitask algorithms would be needed
to support the entire workflow for multidisciplinary teams:

That’s just that...the AI system is trained for a specific
use case, for example skin cancer, then it looks at the
skin image, but does not include other things, from
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the case history or similar large. [ITEU09; position
24]

One fundamental limitation mentioned by IT professionals was
the lack of explainability of currently deployed AI algorithms.
The absence of information on how the algorithm operates
makes it difficult for users to understand why a specific
recommendation or prediction was made, which might make
them skeptical of relying on it:

So it’s always the case that they say the systems are
great, but mostly they can’t explain them reasonably.
That means that one of the current limits is the ability
to explain how the decision was actually made.
[ITEU09; position 23]

Implementation Criteria and Requirements for AI
Systems in Health Care

Performance and Safety
Both professional groups mentioned high performance in the
form of a low error rate most frequently as the primary criterion
for adopting AI-enabled systems. Accordingly, algorithms
should only be implemented in health care settings if they show
high accuracy to ensure patient safety:

Because human lives are at stake here. Currently,
there is simply no time for trivialities, but it must work
100.0%. And that’s why over 99.0, so 99.5/99.8 are
the requirements for implementing the AI system.
[ITEU03; position 28]

Some interviewees advocated comparing the performance of
algorithms with human performance and evaluating them using
the same standards. However, in reality, users seem to have
much higher performance expectations of AI systems than of
humans. Therefore, the experts argued that algorithms with a
performance that matches or exceeds that of human experts,
even if they are not always perfect, might help improve overall
decision accuracy:

If I have an algorithm whose AUC is .94. Really [sic]
good performing algorithm. But the clinicians perform
better. Their AUC is .96. It’s not a good algorithm
because you’re not outperforming clinicians. But if
you’ve got an algorithm where the performance isn’t
very good, their AUC is .68. But the clinician AUC
is .58. It’s a good algorithm because it does better
than the clinicians. [RENA16; position 38]

Researchers emphasized that algorithms must be revalidated
when deployed in a new environment as local data might differ
from the training data. Therefore, all stakeholders involved in
the implementation process must ensure that the algorithms
perform well in new environments and over time:

Ideally, you would do a revalidation of that algorithm
on your institution’s data, your patient population.
[RENA12; position 24]

System Integration and Human-AI Interaction
The experts pointed out that the successful deployment of AI
systems depends on how easily they can be integrated into the
existing technical infrastructure of the respective institution:

And how easy is it to integrate within the system?
How much time does it take to do that? How many
and how can we see the results? How can it be
integrated in our reports, for example? [ITEU08;
position 64]

Both professional groups considered good usability and smooth
workflow integration to be as important as performance for
using AI technology in health care. According to the experts,
users will only be willing to engage with a new technology if
it makes their work easier. System interfaces should be designed
intuitively enough for users to operate without substantial
training and must be adaptable to users’ needs:

For the nurses, we actually had to develop an
interface that they wanted to see. That’s very simple
for them to work with. So keeping things as simple as
possible. [RENA16; position 48]

According to 35% (8/23) of the respondents, users’ acceptance
of and trust in the technology is another essential factor (or
barrier if missing) before purchasing and deploying AI systems
in health care settings. Without the end users’ acceptance and
willingness to use these systems, the implementation process
is doomed to fail:

But [work] culture is way more important [than
performance]. So culture first, do they actually want
to use this stuff? Are they open-minded and they want
to embrace that? [RENA16; position 37]

Several researchers even suggested that AI technology should
work only in the background, automatically taking signals from
all the different data streams, integrating them, and acting
accordingly without human intervention. This would make the
system much easier to use and bypass complex
human-technology interaction issues. The interviewees claimed
that background operationality might be particularly
advantageous regarding user acceptance as issues of trust in the
technology might not even arise in solely background operating
systems. In addition, less effort and fewer resources are needed
to introduce the AI system to users if they are not directly
interacting with it:

So when you look at what the future would hold,
what’s actually going to get adopted, I think they’re
going to be solutions that are doing operational things
where the healthcare workers are not interacting in
a deliberate way with those systems. [RENA15;
position 29]

Although many experts argued that AI must be explainable so
that users know how and why the system makes a prediction,
some IT professionals completely disagreed. According to them,
staff do not even need to know whether the underlying
technology is AI-enabled so that they handle all devices
unbiased:

Nobody should know there’s an AI model inside. Is
[sic] not relevant. [ITNA04; position 33]
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Costs
Costs were also mentioned as a criterion by both professional
groups. However, the interviewees disagreed on how important
this factor is:

I would say, this is not the major factor. I mean, costs
are always a factor, but in the end, it has to be
evidence-based. In the end, you have to understand
what is the outcome of using such an algorithm.
[ITEU18; position 21]

I’m going to have to cough up a lot of money and then
when am I going to see the value of this? So it’s really
important when it comes to the implementation that
there is a very clear business case and value
proposition of why this matters now, both near-term
and long term. [ITNA02; position 26]

Stakeholder Involvement
There was only partial consensus on which actors are the most
important for the implementation of AI systems in health care.
This could be because technology procurement processes vary
widely across health care facilities. Differences were also found
between professional groups as well as between regions.

In both regions, the institution or department heads appear to
be the driving force behind technology adoption. European
researchers assumed that finance departments also play a role
in purchasing decisions:

So in the end it’s always the heads of the institutes or
the chief physicians who have to say yes...So I would
say that they are the ones who mainly have to be
convinced. [ITEU09; position 32]

Researchers from North America stated that hospitals’ IT
professionals are involved in the implementation:

The other stakeholders are typically the people who
manage the...computer systems and the people who
would have to set it up and install it. [RENA12;
position 31]

Interviewees from both professions and regions indicated that
regulatory bodies are important stakeholders for implementing
AI in health care:

If it’s not built in the institution, you would have to
go to actual regulatory approval. Certainly, if this
system is going to have a direct impact on patient
care. [ITNA04; position 22]

Moreover, some respondents also mentioned that the actual end
users, meaning patients, might be a relevant stakeholder group
for successfully implementing AI systems in health care:

And there again, we have the question: are we
allowed to do so? Is it something the patient has to
agree for and so on? So these are all criteria to
choose. [ITEU18; position 21]

Employee Training
Nearly all experts emphasized the need for basic AI skills and
knowledge so that users can safely interact with the systems
and recognize their limitations. It has been argued that training

on AI should be integrated into the curricula for current and
future HCWs who will work with AI-enhanced systems:

Part of the education of our workforce, will include
the basics of how these systems work, where they fail,
where they can potentially cause harm. [RENA15;
position 31]

However, participants disagreed on how much training is
needed. Some thought that HCWs need to be able to operate
the AI systems and understand their underlying mechanisms,
including functions and limitations. Consequently, training
should start as early as possible, preferably already during the
education period. Other experts thought that training should be
limited to the most necessary information to minimize the
burden on staff. In particular, the level of training should be
adapted to the complexity of the AI system and the learning
culture within institutions:

So what we are trying to do is to have students, first
of all, be aware of artificial intelligence and what it
is, what it can do, what it can’t. Then different
techniques like, for example, what is computer vision?
How does that work? So what is object recognition?
Then further on with natural language processing.
[REEU10; position 48]

Challenges in Implementing AI Systems in Health Care

Regulatory Challenges
Data protection and security emerged as the primary regulatory
challenges. Strict regulations limit access to data needed to
develop advanced algorithms. Interviewees from Europe
especially lamented that the inability to share data across
institutions hinders AI research and implementation:

When you take machine learning...the regulatory
challenges are the data protection regulation.
[ITEU22; position 35]

Moreover, the experts mentioned that certification processes,
especially FDA approval for medical products, are a significant
challenge for developers. Documentation guidelines interfere
with the continuous improvement of the algorithm once systems
have been deployed:

Does he have the certificate? Has the constancy test
been carried out? Every small deviation in patient
monitoring must be documented, and this is also
queried, sometimes half a year later, although the
patient has long left. [ITEU03; position 47]

Predominantly, IT professionals were concerned about liability
issues in cases when the system fails and incorrect decisions
are made as a consequence:

And you can ask the question who’s liable: the
hospital or is [sic] the company that created the
model? And we haven’t seen the first lawsuit yet.
[ITNA04; position 48]

Although regulations can slow down the development and
implementation of AI systems in health care, some experts said
that they are necessary to ensure patient safety:
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Well, the regulatory process is inherently
conservative...as slow as it needs to be to make sure
that we stay safe and that’s appropriate. [RENA05;
position 48]

Logistical Challenges
Securing funding for AI algorithms was the most frequently
cited logistical challenge. Both developers and medical
institutions face high costs in developing, acquiring,
implementing, and maintaining new systems:

The costs of healthcare are rising and rising in
Germany and in other countries, too, so hospitals do
not have all the money in the world to introduce the
systems. [REEU06; position 45]

I know that the implementation is going rather slow,
and for the vendors, it’s slower than expected, which
also makes it quite difficult for them because they
have to invest a lot of money, and they have invested.
But they also would like to see a return on investment,
of course. [ITEU08; position 33]

The lack of IT professionals needed to implement AI-enabled
systems into existing IT infrastructure was also mentioned as
a huge barrier. In addition, in-house data scientists who can
monitor and operate the systems are required, placing even
greater human resources and financial burdens on institutions:

And this may include lack of access to IT resources
and personnel, right, skilled people. [RENA15;
position 18]

Some researchers pointed out that health care institutions need
to collaborate more to improve AI algorithms and unlock their
real potential. Collaboration mainly involves sharing and
integrating data across institutions as, at the moment, important
data for optimal predictions are lost for an algorithm when
patients change institutions during their treatment. However,
sharing and integrating sensitive data is particularly complex
and resource intensive:

Healthcare is not a single point event. It’s a process.
And so somebody will go to his doctor and will get a
potential diagnosis. We get some diagnostic workup.
We’ll go to the specialist, we’ll get some more
diagnostic work up. The information from the primary
doctor gets lost. [REEU07; position 62]

Technical Challenges
Researchers identified the lack of available high-quality
preprocessed training data and data on rare diseases as a major
challenge affecting the algorithm’s performance. In addition,
using unprocessed hospital data (eg, data coming directly from
EHRs), which would be more readily available, is challenging
as these data are not standardized:

So you have label data and unlabeled data, and the
labeled data is usually labeled by human experts. And
the quality of the model always depends on whether
or not the labels are accurate. [REEU10; position
18]

IT professionals were concerned about biases in the training
data that could distort the algorithms and make their predictions
less accurate for people who were underrepresented in the
training data. Biases in the form of under- or overrepresentation
of certain patient and disease groups can occur. For instance,
wealthy and renowned hospitals, which are regularly involved
in generating training data, have a nonrepresentative patient and
disease pool. This is especially problematic as it is challenging
to detect biases in the data in the first place and to correct the
model at the operational level:

It’s also very difficult to identify whether there is a
certain bias involved. If you have a large set of data
and we know that there are typically some biases and
there is research to identify biases, but there’s very
often a hidden bias which you cannot automatically
detect. [ITEU18; position 18]

Researchers also complained about the poor and inflexible IT
infrastructure that makes the implementation of AI algorithms
challenging:

And then when we speak about technical challenges,
it’s more about the hardware, to be honest, because
although this is not always available in medical
institutions. [REEU20; position 32]

Moreover, some interviewees mentioned that AI developers
struggle to design AI system interfaces that meet user needs in
the complex health care environment. Currently, the systems
often fail to provide user-centered and user-friendly designs:

Then the other challenge is designing the human
interaction in the [sic] way that people can actually
use it. [REEU20; position 33]

Outlook

Threats
Researchers in particular expressed great concern about the
possibility that the deployment of AI-enabled systems might
exacerbate health care disparities that already exist in society.
There are several reasons for this. As mentioned previously,
biases in the algorithm’s training data might lead to less accurate
algorithmic predictions for underrepresented, often marginalized
groups, which might cause serious harm. Moreover, health care
facilities in wealthier regions tend to be the first to adopt new
technologies. As a result, their patients will benefit from AI
innovations, whereas patients in poorer areas will be left further
behind:

There’s a substantial risk for creating new or
exacerbating existing racial, sexual and
socioeconomic healthcare disparities. [RENA12;
position 56]

Another threat mentioned only by researchers was automation
bias, which is the tendency to rely too much on AI-CDSSs. As
a result, system users may fail to detect prediction errors if they
accept AI advice unconditionally. Consequently, automation
bias poses a danger if the algorithm is not highly reliable, which
could lead to many medical errors:
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You can also have things go the other way where
people put, you know, way too much trust in the AI,
and they kind of, you know, blindly...trust whatever
it’s saying. Even...if they’d stopped and thought about
it, they would realize that the result that was coming
out is nonsensical. [RENA12; position 55]

IT professionals expressed concerns about cyberattacks as AI
systems in health care are also not immune to hacking.
Cyberattacks could affect both data security and patient
outcomes if the algorithms are compromised or unavailable
because of the attack:

We had some hacker attacks in the history, in the last
5 years in some hospitals in Europe and if systems
are not available, then still all the work flows need
to be working. And if you rely too much on AI and
digitalization, of course, it’s a problem. [REEU06;
position 48]

Although it is often discussed that AI systems could make some
jobs obsolete, our interviewees unanimously predicted that the
adoption of AI technology will not lead to job losses in health
care in the near future. However, task-specific skills that require
a lot of training might decline if AI systems are widely used:

So whereas in the early days in the media, you could
read AI will replace radiologists. Well, this is of
course not true because looking at a CT scan of the
lungs is much more than only counting nodules.
[ITEU08; position 48]

If you have a system that supports you a lot, you may
also have the risk to lose [sic] your own skill in a
situation of doubt that can be very harmful. [REEU20;
position 24]

Opportunities
According to the experts, the most significant opportunity for
using AI systems in health care is the reduction in workload.
For instance, outsourcing time-consuming and repetitive tasks
to an AI system would allow HCWs to focus on more complex
tasks and patient interactions:

When it’s implemented in a very good way and the
doctors have trust, it frees time for direct
communication with the patient. [ITEU22; position
48]

IT experts saw tremendous opportunities in AI technology to
improve diagnostic accuracy and patient outcomes through
decision support. In addition, AI algorithms could enable truly
personalized health care by analyzing multiple sources of health
data simultaneously and across time. For instance, long-term
EHRs could be combined with vital signs recorded via digital
devices and analyzed using an algorithm. Long-term integrated
data analysis could potentially facilitate the early detection of
previously hidden disease patterns and provide individualized
prevention and treatment plans:

So I do think that AI will be able to provide a more
specific and more patient-specific treatment based
upon the information, the data that we obtain.
[ITEU08; position 75]

Researchers pointed out that health care logistics such as supply
chain management and billing could benefit from AI systems.
AI algorithms are already used in other industries to support
logistical, administrative, and planning processes:

There’s a lot of opportunity for AI in supply chain,
billing, claims management. [ITNA04; position 44]

Discussion

Principal Findings and Comparison With Prior Work
Plenty of research on the challenges and opportunities of AI
technology in health care has been published. However, our
novel approach of pooling the expertise of AI researchers and
IT professionals from Western Europe and North America
resulted in a novel, nuanced, and comprehensive overview based
on four main categories: (1) the current state, (2) implementation
criteria and requirements, (3) implementation challenges, and
(4) future outlook.

Within the current state theme, the interviewees mentioned that
AI systems have been developed for various medical fields and
use cases, primarily image classification in radiology and
pathology, but have yet to be widely deployed in clinical
practice. According to the literature, the 3 global players in
health AI are the United States, China, and Europe, with the
former 2 investing the most in research and development
[34-36]. Our experts agreed that the United States and China
dominate research and development but emphasized much more
that Europe lags behind, largely because of lower investment
in technology and digitalization and limited access to data
because of stricter privacy regulations. At the moment, AI
systems can support clinical decisions and diagnoses by
providing predictions for specific tasks. Previous studies have
found that many HCWs believe that AI systems will improve
diagnostic accuracy as the technology does not have classic
human limitations such as fatigue and difficulty concentrating
[23,24]. Our experts agreed that the use of AI technology can
improve diagnostic accuracy but stated that the main reason for
this improvement is the fact that AI systems are better at dealing
with large and complex data than humans. In addition, although
some HCWs expressed hope that relying on AI systems might
provide legal protections [23], our experts explained that
AI-CDSSs currently cannot operate without human oversight,
are sometimes inaccurate, and lack both explainability and
accountability. Consequently, liability fully remains with the
HCWs operating the system, a current limitation of the
technology widely discussed in the literature [30,54,55].

From the interviews, several critical implementation criteria
and requirements emerged. In accordance with the literature
[10,30], the interviewed experts agreed that high performance
is the essential criterion for implementing AI-enabled systems
in health care. Ideally, deployed algorithms should outperform
human experts, explain their predictions, be approved by
regulatory bodies, and be frequently revalidated. Easy and
unintrusive integration into existing infrastructures and
workflows, intuitive and user-friendly design, and high user
acceptance were frequently mentioned as essential requirements.
Specifically, lack of trust and user acceptance have also been
widely discussed in the existing literature as major problems
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for the successful adoption of AI technology in health care
[21,29]. There was consensus among our interviewees that the
involvement of health care facility leaders, regulatory bodies,
and end users is critical to AI adoption. Moreover, experts
emphasized that users require training to interact safely with
the technology. By already integrating the topic of AI in health
care into the medical curriculum, users can develop the
knowledge and understanding, especially of the limitations, and
the confidence needed to use AI in a clinical setting [56].

The interviewees identified multiple challenges in implementing
AI systems in health care. Many mentioned strict data protection
and security regulations, complex certification processes, and
the unresolved question of liability as fundamental regulatory
challenges to technological development and deployment. These
regulatory aspects have been discussed in previous research,
especially from the side of policy makers. In addition, previous
work has focused on ethical considerations such as the lack of
transparency and discrimination in the context of AI-CDSSs in
health care [21,29]. The experts agreed on several significant
logistical challenges such as procuring funding for AI systems,
the lack of capable IT professionals needed for technology
implementation and maintenance, and difficulties with sharing
and integrating data across institutions. From a technical
standpoint, the lack of available preprocessed, representative,
high-quality data impairs the training of high-performance AI
algorithms for the entire patient population. Researchers
surveyed in previous studies have confirmed these challenges
and also stated that useful data are expensive and often come
with computational limitations [30,31]. Our interviewees
mentioned that institutions’ outdated and inflexible IT
infrastructures are also a big challenge for deploying AI
technology. Correspondingly, IT experts in previous studies
have emphasized the compatibility problems of the systems
with the existing IT infrastructure [32].

The interviewed experts mentioned that implementing AI
technology holds both threats and opportunities for the future.
Concerns were expressed that biased training data might
exacerbate health care disparities, hurting marginalized groups,
and that automation bias might lead to medical errors. Moreover,
AI systems in health care could become a target for cyberattacks.
Previous research has shown that HCWs are concerned about
losing skills and potentially even their jobs owing to AI
technology. HCWs also worry about the adverse effects of using
AI systems for the physician-patient relationship and patient
privacy [13,23,25,26]. Our experts also acknowledged the
problem of losing training-intensive skills but disagreed with
the notion that AI systems will make some HCWs obsolete in
the foreseeable future. In addition, they did not mention
HCW-patient relationships or patient privacy as major
limitations of AI systems. Overall, our experts agreed
consistently with the previously mentioned opportunities that
the technology could offer [8-14,23,24]: workload reduction
for HCWs, improvements in diagnostic accuracy and patients’
health outcomes, and advances in personalized medicine and
optimized health care logistics.

Generally, the statements of both professional groups closely
coincided; however, we also found some interesting differences.
IT professionals emphasized China’s leading role in AI

technology more strongly than researchers. In particular, the
researchers blamed the state of digitization and numerous
regulations for why Europe is lagging behind. Researchers
emphasized the need for high security of the system and its
regular validation. Some researchers recommended simply
letting AI technology work in the background. However, if not,
the system should integrate smoothly into the existing workflow.
Consequently, researchers called for users to know how AI
systems work to understand their limitations. The 2 groups also
highlighted different implementation challenges—for example,
IT experts considered biased training data as one of the biggest
challenges. Researchers naturally focused much more on
technical challenges such as data availability, technical
infrastructure, and interfaces. Interestingly, only researchers
mentioned overreliance on the system as a real threat from AI
technology. Finally, considering future opportunities, IT experts
highlighted themes such as increasing health care service
availability and improving clinical outcomes, whereas
researchers focused more on reducing HCWs’ workloads.

After proportionally adjusting for the imbalance between
respondents from Western Europe and North America, we found
that their views differed on some topics. North American experts
spoke more frequently and in more detail about the overarching
themes of AI, machine learning, algorithms, and technology.
Many European respondents felt that the lack of available and
shareable data is the reason that AI development and adoption
in Europe are slow. They exclusively indicated that lack of
accountability and open liability issues were major limiting
factors for using AI systems. Accordingly, answering these
questions was a necessary criterion for implementing the
technology. Interviewees from North America emphasized
regular system validation and seamless workflow integration,
ideally working only in the background, as critical
implementation criteria. They also saw biased training data as
one of the biggest threats to AI integration. Overall, North
American respondents were more likely to talk about
implementation challenges.

Implications for Research and Practice
In total, 5 aspects emerged from the interviews that seem to be
particularly important in the context of AI implementation in
health care. First, data protection is a central element for AI
development and adoption as it regulates access to training data
and has implications for the performance of AI support tools.
The problem of a lack of available and shareable data is
specifically prominent in European countries. If Europe wants
to keep up with the global players in AI-enabled technology for
health care, a fundamental change in the rules on how data are
made available, shared, and integrated across institutions will
be needed. Second, all stakeholders seemed to agree that high
performance is the most fundamental aspect of successfully
implementing AI systems in health care. To ensure high
performance in the real world, AI systems have to be
continuously monitored and revalidated in the environment in
which they operate. Third, as the end users of many AI systems
for health care, HCWs play an important role in the successful
implementation of the technology and should be prepared
accordingly. HCWs should be trained on how to interact
effectively and safely with the technology and learn about its
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limitations to avoid relying on incorrect advice. Research should
be conducted to identify the most appropriate and effective
strategy to train HCWs on the technology. Fourth, it is also
striking that ethical concerns are hardly addressed except for
data protection and possible biases within the data. Further
development of AI systems in health care should necessarily
take place within a defined ethical framework for action as the
technologies are in direct contact with sensitive patient data and
humans themselves. Finally, given that researchers and IT
professionals often raise different issues on similar topics, it is
important to ensure that all stakeholders involved in AI
implementation collaborate and consider each other’s opinions.
AI systems should be developed to meet the needs of and
support practitioners in their everyday work; consequently, their
views should matter the most.

Limitations
This study has several limitations. First, the regional
backgrounds of our interview partners were not perfectly
balanced. Overall, more participants worked in Western Europe
than in North America, with a much larger proportion of the IT
experts interviewed coming from Western Europe. This might
have skewed the results toward a more European-centered view.
Even the proportional adjustment of the statements of the
underrepresented group of experts cannot guarantee a balanced
picture. Second, experts from several but not all Western
European countries, let alone all European countries, were
interviewed. In particular, experts from Baltic and Scandinavian
countries would be of interest to the study as these regions were
frequently mentioned by the interviewees as European pioneers
in AI technology. In addition, the North American expert group
consisted only of people who worked in the United States or
Canada. Third, the focus of interviewees in the field of radiology
may have been due to selection bias as several interviewees
(7/23, 30%) had strong domain expertise in radiology, which
is understandable as this is the field where AI technologies are

commonly used. However, some aspects relevant to
implementing AI-enabled systems in other medical fields may
have been overlooked. Finally, inherent features of qualitative
expert interview studies (including small and, to a degree,
self-selected samples and nonstandardized data analysis) cannot
ensure the generalizability of the results. Subsequent studies
should provide a more balanced and broader field of experts
and use more quantitative methods to improve generalizability.
To gain an even more global view of the current state of AI
systems in health care, experts from other countries, especially
China and wider parts of Europe and North America, should be
included in future research.

Conclusions
Our study provides new insights into the implementation process
of AI technology in health care from the perspective of AI
researchers and IT professionals in North America and Western
Europe. Our cross-professional and international approach
revealed nuanced views on various topics from 2 stakeholder
groups actively involved in the technology’s deployment.
Although interviewees from both groups and regions had
relatively consistent views, they often focused on different
aspects that they deemed most relevant. This highlights the
importance of systematically documenting technology adoption
expectations and challenges from different perspectives to avoid
overlooking some critical elements. Our findings provide a
broad overview of the current state, criteria, challenges, and
prospects for the deployment of AI technology in health care.
To advance the technology and make it widely available, critical
implementation criteria have to be met, and all stakeholders
must collaborate to overcome the challenges hindering the
technology from reaching its full potential. By designing the
development processes based on participatory design principles,
AI-enabled applications can truly help solve current and future
problems faced by health care systems worldwide.
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Abstract

Background: Early warning score systems are widely used for identifying patients who are at the highest risk of deterioration
to assist clinical decision-making. This could facilitate early intervention and consequently improve patient outcomes; for example,
the National Early Warning Score (NEWS) system, which is recommended by the Royal College of Physicians in the United
Kingdom, uses predefined alerting thresholds to assign scores to patients based on their vital signs. However, there is limited
evidence of the reliability of such scores across patient cohorts in the United Arab Emirates.

Objective: Our aim in this study was to propose a data-driven model that accurately predicts in-hospital deterioration in an
inpatient cohort in the United Arab Emirates.

Methods: We conducted a retrospective cohort study using a real-world data set that consisted of 16,901 unique patients
associated with 26,073 inpatient emergency encounters and 951,591 observation sets collected between April 2015 and August
2021 at a large multispecialty hospital in Abu Dhabi, United Arab Emirates. The observation sets included routine measurements
of heart rate, respiratory rate, systolic blood pressure, level of consciousness, temperature, and oxygen saturation, as well as
whether the patient was receiving supplementary oxygen. We divided the data set of 16,901 unique patients into training, validation,
and test sets consisting of 11,830 (70%; 18,319/26,073, 70.26% emergency encounters), 3397 (20.1%; 5206/26,073, 19.97%
emergency encounters), and 1674 (9.9%; 2548/26,073, 9.77% emergency encounters) patients, respectively. We defined an
adverse event as the occurrence of admission to the intensive care unit, mortality, or both if the patient was admitted to the
intensive care unit first. On the basis of 7 routine vital signs measurements, we assessed the performance of the NEWS system
in detecting deterioration within 24 hours using the area under the receiver operating characteristic curve (AUROC). We also
developed and evaluated several machine learning models, including logistic regression, a gradient-boosting model, and a
feed-forward neural network.

Results: In a holdout test set of 2548 encounters with 95,755 observation sets, the NEWS system achieved an overall AUROC
value of 0.682 (95% CI 0.673-0.690). In comparison, the best-performing machine learning models, which were the
gradient-boosting model and the neural network, achieved AUROC values of 0.778 (95% CI 0.770-0.785) and 0.756 (95% CI
0.749-0.764), respectively. Our interpretability results highlight the importance of temperature and respiratory rate in predicting
patient deterioration.

Conclusions: Although traditional early warning score systems are the dominant form of deterioration prediction models in
clinical practice today, we strongly recommend the development and use of cohort-specific machine learning models as an
alternative. This is especially important in external patient cohorts that were unseen during model development.
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Introduction

Background
Early warning score (EWS) systems are a staple of modern
clinical practice because they provide a standardized method
for detecting in-hospital patient deterioration. Several other
systems have been introduced with the advent of computerized
medical records [1,2], such as the Modified Early Warning
Score system [3] and the National Early Warning Score (NEWS)
system [4], which is recommended by the Royal College of
Physicians in the United Kingdom.

Such systems assign an overall aggregate score to the patient
to indicate their overall risk of deterioration, based on a
predetermined set of alerting ranges [5]; for example, the
alerting thresholds of the NEWS system are shown in Table 1.
Later work introduced EWS systems tailored for specific patient
subgroups, such as for pediatrics [6] or cardiovascular-related
deterioration [7]. The main strengths of EWS systems are that
they are simple, easy to use, and highly interpretable [8,9],
which facilitates their use in hospitals, including those with
limited resources [10,11].

Table 1. Summary of the National Early Warning Score system, with the thresholds of the system outlined. For a given set of vital signs measurements,
each variable is compared against its respective threshold and assigned a score accordingly. The patient’s overall score is the summation of scores
assigned to all variables.

ScoreVital sign

3210123

≥131111-13091-11051-9041-50N/Aa≤40Heart rate (beats/min)

N/AN/AN/A≥9694-9592-93≤91Oxygen saturation (%)

N/A≥39.138.1-39.036.1-38.035.1-36.0N/A≤35Temperature (°C)

≥220N/AN/A111-219101-11091-100≤90Systolic blood pressure
(mm Hg)

≥2521-24N/A12-209-11N/A≤8Respiratory rate
(breaths/min)

Voice, pain, or
unresponsive

N/AN/AAlertN/AN/AN/ALevel of consciousness

N/AN/AN/ANoN/AYesN/ASupplementary oxygen

aN/A: not applicable.

Despite their ubiquity, EWS systems also have limitations.
Many of the alerting thresholds are defined in a heuristic manner
with respect to a specific deterioration timeline, which makes
it increasingly difficult to modify the thresholds for cohorts
with significantly different characteristics or demographics than
those relied upon during model development, as witnessed
during the COVID-19 pandemic [12-14]. In addition, EWS
systems do not capture any relationships between the input
variables and commonly treat them equally, despite some being
more indicative of deterioration than others [1]. However,
because of their simplicity, they have been widely deployed in
hospitals around the world.

In recent years, machine learning (ML) techniques have gained
popularity in the development of deterioration prediction models
[15-18] by treating the problem as a binary classification task
[19-21]. Such approaches range from gradient-boosted trees
[12,22], which consist of an ensemble of tree models, to neural
networks (NNs) [21,23] and have been used in different
scenarios where deterioration prediction is needed [24-26].
Although ML models have been shown to outperform traditional
EWS systems [19,27], especially during the COVID-19

pandemic [28,29], one of their main limitations is the lack of
interpretability compared with traditional EWS systems [30].

Objectives
Our aim in this study was to propose a data-driven model that
predicts patient deterioration with high accuracy in an inpatient
cohort in Abu Dhabi, United Arab Emirates. To this end, we
assessed and compared the performance of the NEWS system
with that of 3 ML models, namely logistic regression (LR),
gradient-boosted trees, and NNs, and developed and evaluated
the models using a real-world data set collected at a
multispecialty hospital in Abu Dhabi. We also used Shapley
additive explanations (SHAP) analysis as a way to interpret the
predictions of the ML models.

Methods

This study is reported in accordance with the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) guidelines [31]. The TRIPOD
checklist can be found in Multimedia Appendix 1.
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Ethics Approval
The study received approval from the research ethics committees
at Cleveland Clinic Abu Dhabi (A-2020-102) and New York
University Abu Dhabi (HRPP-2020-55).

Data Set
We obtained a data set collected between April 2015 and August
2021 at the multispecialty facility Cleveland Clinic Abu Dhabi
in Abu Dhabi, United Arab Emirates. The data set included
patient demographics; vital signs measurements; and time
stamps relating to admission to the intensive care unit (ICU)
and mortality, which are the adverse events of interest in this
study.

We defined the inclusion and exclusion criteria following the
standard in previous work for the development of EWS systems
[2] (Figure 1). First, we grouped a set of vital signs
measurements to represent a single observation set if they had
been recorded within the same patient encounter and shared the
same time of measurement. We excluded any patients with
missing identifiers or necessary information such as records
pertaining to whether the patient was alive at the time of
discharge, patient age, and patient or encounter identifiers, as

well as time stamps of vital signs measurements. We included
inpatient admissions and excluded encounters of patients aged
<18 years at the time of admission. We only included emergency
encounters and excluded other types of admissions. Within each
encounter, we dropped any vital signs measurements recorded
after the occurrence of an adverse event, which is essentially
admission to the ICU. We excluded any observation sets that
contained ≥1 implausible observations or >2 missing vital signs
measurements. An illustration of our data set processing pipeline
is shown in Figure 2. The plausible ranges used are presented
in Table S1 in Multimedia Appendix 2.

Finally, we split the data set randomly into training, validation,
and test sets in a ratio of 7:2:1, respectively. This split was
carried out on a patient level such that all examples belonging
to a single patient were assigned to a single split only. We split
the data randomly because we assumed that most of the patients
admitted in 2020 and 2021 were patients with COVID-19
infection (the COVID-19 outbreak began approximately in
March 2020 in the United Arab Emirates); therefore, we were
interested in assessing the average performance of the models
over time. We conducted a secondary analysis where we split
the data based on time to understand the impact of a temporal
split.

Figure 1. Application of the inclusion and exclusion criteria. We illustrate here the results of applying the inclusion and exclusion criteria, where p, e,
and n represent the number of patients, encounters, and observation sets, respectively. We first excluded patients with missing information, such as age
or patient identifiers. We included inpatient encounters of adult patients (aged >18 years) and excluded nonemergency encounters. Finally, we excluded
observation sets recorded after an adverse event (AE) had occurred as well as observation sets with ≥1 implausible observations.
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Figure 2. Definition of observation sets. We illustrate here a simplified version of how we defined observation sets using 3 vital signs only: heart rate
(HR), respiratory rate (RR), and systolic blood pressure (SBP). Vital signs taken at the same time were grouped together for the same patient encounter
into observation sets. We subsequently applied our inclusion and exclusion criteria to select the relevant patient encounters and associated observation
sets.

Input Features
We extracted 7 vital signs variables that are used in the NEWS
system. These included heart rate; respiratory rate; temperature;
systolic blood pressure; oxygen saturation; level of
consciousness indicated by the alert, voice, pain, or unresponsive
score; and whether a patient was receiving supplementary
oxygen. To derive the supplementary oxygen variable, we relied
on the patient’s fraction of inspired oxygen reading. We assumed
that any fraction of inspired oxygen measurement of >21%
indicated that the patient was receiving supplementary oxygen
[32]. For level of consciousness, we used a provided binary
feature in the data set that follows the scoring of the NEWS
system (0 if a patient is alert and 3 otherwise). We applied mean
imputation to all features, except for supplementary oxygen and
level of consciousness, where a missing value was treated as
not receiving supplementary oxygen and alert, respectively. We
treated vital signs measurements recorded at the same time as
a single observation set (Figure 2), meaning that each encounter
(patient stay) contained multiple observation sets recorded at
various times during the patient stay.

Outcome Definition
We defined the composite outcome of admission to the ICU
and mortality as a deterioration (adverse) event. In cases of
multiple adverse events, we considered the time of the first
occurring event. For a given observation set, we generated
binary ground-truth labels based on whether an adverse event
occurred within a certain time window from the measurement
time of the respective observation set. If it did indeed occur
within the time window, we set the label as 1 (positive label);
otherwise, we set it as 0 (negative label). To evaluate the
performance of the models over different time windows, we
considered 4 different values: 6, 12, 24, and 36 hours. We note
that 24 hours is the standard window of evaluation in the existing
literature [33].

Prediction Models
We developed several prediction models (refer to the following
subsections) based on prevalent ML techniques. All models,
except for the NEWS system, are fitted on the training set and
optimized via hyperparameter tuning on the validation set, with
final results being reported on the test set.

NEWS System
The NEWS system [4] was developed by the Royal College of
Physicians to provide a standardized EWS system to easily and
quickly identify patients at high risk of deterioration. The NEWS
system assigns a score to 7 vital signs measurements based on
predetermined alerting thresholds (Table 1). The higher the final
score, the greater the risk of deterioration. For each observation
set, we calculated the total score based on the scores assigned
to each vital sign. We then normalized each score by dividing
it by the maximum possible NEWS score, which is 20, to
compute performance metrics.

Gradient-Boosting Model
We developed a gradient-boosting model, extreme gradient
boosting (XGBoost) [22,34], that uses an ensemble of decision
trees. We implemented this model using the XGBoost package
[34].

LR Model
LR [35] is a simple statistical method that assumes a linear
combination of the input variables and uses a sigmoid activation
to compute predictions in the range between 0 and 1. We
implemented this model using the scikit learn package [36].

NN Model
We implemented a feed-forward NN [37] consisting of 10 linear
layers with scaled exponential linear unit activation function
[38], followed by batch normalization to reduce overfitting. The
outputs of the final layer are fed to a sigmoid activation function,
which outputs predictions in the range between 0 and 1. For
this model, we applied min-max normalization to the input
features first, whereby the minimum and maximum values were
defined using the training set for all data splits. We implemented
this baseline using the PyTorch framework [39].

Evaluation Metrics
We evaluated all models using 2 main evaluation metrics: the
area under the receiver operating characteristic curve (AUROC)
and the area under the precision-recall curve (AUPRC). Both
metrics are represented as a single number between 0 and 1 to
summarize the performance of a binary classifier. The receiver
operating characteristic curve plots the true positive rate against
the false positive rate at different classification thresholds and
indicates the model’s ability to discriminate between positive
and negative classes. The precision-recall curve plots precision
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against recall at different classification thresholds and gives an
indication of the model’s average precision. The baseline
performance of a random classifier is equivalent to 0.5 for the
AUROC and to the ratio of positive samples to the total number
of samples for the AUPRC. We computed 95% CIs for the
AUROC and AUPRC metrics of all models through
bootstrapping with 1000 runs [40].

In addition, we compared the difference in performance, in
terms of the AUROC and AUPRC values, between each ML
model and the NEWS system. We report the difference and its
95% CIs using bootstrapping with 1000 runs. We computed P
values for each comparison using the 1-tailed permutation test
with 10,000 iterations [41]. All results are reported on the test
set.

Model Selection
To develop the ML models, we used random hyperparameter
search [42] to select the best hyperparameters using the
validation set (XGBoost, LR, and NN). We have summarized
the sampling ranges of the hyperparameters in Table S2 in
Multimedia Appendix 2. We ran each model 10 times with
hyperparameters selected randomly from predetermined ranges.
We then selected the model with the hyperparameters that
achieved the best performance on the validation set in terms of
the AUPRC value because it is considered a more informative
metric owing to class imbalance [43,44]. We trained the NN
models for 250 epochs. We report the performance on the test
set for the selected best models.

Model Interpretability
We used the open-source SHAP package [45] to analyze feature
importance using SHAP values for the best-performing model
in terms of the overall AUROC. We calculated the SHAP value
for each feature such that the magnitude of the SHAP value
indicates greater importance for the model’s prediction, and we
present the average of the absolute SHAP values for each of the
7 input features in the test set. We also present the SHAP plots
for the observation sets with the highest and lowest prediction
scores in the best-performing model. In addition, for each input
feature, we plotted the SHAP partial dependence plot, and
calculated the Pearson correlation coefficient and the Spearman
rank correlation coefficient between the feature values and their
respective sets of SHAP values. The partial dependence plots
show the relationship between the average SHAP value and
each possible vital signs measurement, whereas the coefficients
indicate the overall correlation between the SHAP values and
the input feature values. We also included the LR coefficients
and odds ratios as a comparison point owing to the simplicity

of the LR model and the significance of the coefficients in
summarizing the effect of each feature on the overall prediction
of the model compared with the SHAP values.

Results

Patient Cohort
We have summarized the results of applying the inclusion and
exclusion criteria in Figure 1. Our data set comprised 1,620,010
encounters from 278,186 patients, yielding a total of 9,213,040
observation sets. Of the 278,186 patients, 255,557 (91.87%)
had complete identifying information recorded in the data set,
leading to the exclusion of the rest (22,629/278,186, 8.13%),
leaving 97.87% (1,585,532/1,620,010) of the encounters and
98.31% (9,057,635/9,213,040) of the observation sets. Our study
specifically targets inpatients; therefore, of the 255,557 patients,
after excluding 223,117 (87.31%) outpatient encounters, 32,440
(12.69%) remained. Of these 32,440 patients, 31,628 (96.39%)
were aged >18 years and thus eligible for inclusion
(6,258,085/9,057,635, 69.09% observation sets recorded within
49,508/1,585,562, 3.12% encounters). Furthermore, we included
only emergency encounters; thus, of the 31,268 patients, 18,045
(57.71%) were included (3,886,591/6,258,085, 62.11%
observation sets recorded within 27,589/49,508, 55.73%
encounters). We then excluded any observation sets that
occurred after an adverse event, which meant that, of the
3,886,591 observation sets, 1,252,921 (32.24%) remained.
Finally, of the 1,252,921 observation sets, we removed 301,266
(24.05%) that contained implausible readings for their respective
vital signs, leaving 951,655 (75.95%) observation sets. Thus,
of the 18,045 patients, 16,901 (93.66%) remained in the final
cohort (associated with 26,073/27,589, 94.51% encounters
recorded between April 2015 and August 2021). We divided
the data set of 16,901 patients as follows: training set: 11,830
(70%; 18,319/26,073, 70.26% encounters), validation set: 3397
(20.1%; 5206/26,073, 19.97% encounters), and test set: 1674
(9.9%; 2548/26,073, 9.77% encounters).

We provide a summary of the cohort’s characteristics,
distributions of vital signs measurements, and occurrences of
adverse events in Table 2. We observed an average age of 55.3
(SD 19.3), 54.9 (SD 18.7), and 53.6 (SD 19.1) years across the
training, validation, and test splits, respectively. We observed
a higher proportion of male patients than female patients across
all splits, with the training set comprising 59.64% (7056/11,830)
male patients and the validation and testing sets comprising
60.17% (2044/3397) and 58.06% (972/1674) of male patients,
respectively.
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Table 2. Patient cohort summary. We provide a summary of the patient cohort characteristics across the training, validation, and test sets. This includes
the patient demographics, distributions of input features, and the prevalence of the deterioration labels across the different time windows.

Test setValidation setTraining setCharacteristic

Cohort demographics

1674 (9.9)3397 (20.1)11,830 (70)Patients (n=16,901), n (%)

972 (58.1)2044 (60.2)7056 (59.6)Male patientsa

2548 (9.8)5206 (20)18,319 (70.3)Encounters (n=26,073), n (%)

53.6 (19.1)54.9 (18.7)55.3 (19.3)Age group (years), mean (SD)

672 (26.4)1371 (26.3)4843 (26.4)<40, n (%)b

728 (28.6)1506 (28.9)5313 (29)40-59, n (%)b

1148 (45.1)2329 (44.7)8163 (44.6)≥60, n (%)b

549 (21.5)1144 (22)3979 (21.7)Encounters with composite outcome, n (%)b

836 (32.8)1657 (31.8)5594 (30.5)Encounters during the COVID-19 pandemic, n (%)b

95,755 (10.1)182,795 (19.2)673,041 (70.7)Observation sets (n=951,591), n (%)

79 (15.8; 70-89)78 (16.3; 68-89)78 (15.9; 68-90)Heart rate (beats/min), mean (SD; IQR)

18 (2.9; 18-20)18 (2.9; 18-20)18 (2.8; 18-20)Respiratory rate (breaths/min), mean (SD; IQR)

122 (20.2; 109-136)124 (21.6; 110-139)122 (20.9; 109-137)Systolic blood pressure (mm Hg), mean (SD; IQR)

36.7 (0.4; 36.5-36.9)36.7 (0.5; 36.5-36.9)36.7 (0.4; 36.5-36.9)Temperature (°C), mean (SD; IQR)

99 (2.1; 97-100)99 (2.0; 97-100)99 (2.0; 97-100)Oxygen saturation (%), (SD; IQR)

Level of consciousness, n (%)c

76,376 (97.5)144,014 (97.9)537,853 (98.1)Alert

1940 (2.5)3086 (2.1)10,685 (1.9)Voice, pain, or unresponsive

Supplementary oxygen, n (%)d

2086 (2.2)3332 (1.8)15,201 (2.3)Provided

93,669 (97.8)179,463 (98.2)657,840 (97.7)Not provided

Deterioration, n

537310,68136,760Within 36 hours

1542661100Death

531910,57136,255ICUe admission

4556930631,431Within 24 hours

71127715Death

4521923331,088ICU admission

3658763325,382Within 12 hours

2170358Death

3643758925,199ICU admission

2987647621,332Within 6 hours

937166Death

2979645221,227ICU admission

aTraining set: n=11,830; validation set: n=3397; test set: n=1674.
bTraining set: n=18,319; validation set: n=5206; test set: n=2548.
cTraining set: n=548,538; validation set: n=147,100; test set: n=78,316.
dTraining set: n=673,041; validation set: n=182,795; test set: n=95,755.
eICU: intensive care unit.
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Performance Compared With the NEWS System
We summarize the performances of the ML models and NEWS
system in Table 3 for deterioration within 24 hours in terms of
AUROC and AUPRC values. We note that the NN and XGBoost
models achieved the best performance. The XGBoost model
achieved an AUROC value of 0.778 (95% CI 0.770-0.785)
across the entire test set. The NEWS system achieved an
AUROC value of 0.682 (95% CI 0.673-0.690), which means
that the XGBoost model achieved an improvement of 0.096
(95% CI 0.088-0.103; P<.001). In terms of the AUPRC values,
compared with the NEWS system, the XGBoost model achieved
an improvement of 0.093 (95% CI 0.083-0.101; P<.001). The
NN model achieved an AUROC value of 0.756 (95% CI
0.749-0.764) and an AUPRC value of 0.222 (95% CI
0.211-0.235), leading to improvements of 0.074 (95% CI
0.067-0.081; P<.001) and 0.061 (95% CI 0.049-0.073; P<.001)
in AUROC and AUPRC values, respectively, compared with

the NEWS system. The LR model did not perform better than
the NEWS system in terms of AUROC values, and it achieved
slightly better performance in terms of AUPRC values.

In Figure 3, we show the AUROC and AUPRC results for all
models on the test set when varying the lengths of the prediction
time window as follows: 6, 12, 24, and 36 hours. We noted that
the XGBoost model and the NN model performed best across
all time windows, with a better performance by the XGBoost
model in terms of both AUROC and AUPRC values across all
time windows. We also noted a comparable performance
between the NEWS system and the LR model, with the NEWS
system achieving a superior AUROC value and the LR model
achieving a better AUPRC value. In addition, the performance
of all models decreased as the prediction time window increased.
This likely indicates that the difficulty of the task increases as
the adverse events occur further away in time.

Table 3. Model performance across different subgroups. We report performances in terms of area under the receiver operating characteristic curve
(AUROC) and area under the precision-recall curve (AUPRC) values for deterioration within 24 hours in the test set. We also provide 95% CIs computed
using bootstrapping.

NEWSbNeural networkLogistic regressionXGBoostaSubgroup

AUPRC (95%
CI)

AUROC (95%
CI)

AUPRC (95%
CI)

AUROC (95%
CI)

AUPRC
(95% CI)

AUROC (95%
CI)

AUPRC
(95% CI)

AUROC (95%
CI)

0.151 (0.142-
0.161)

0.682 (0.673-
0.690)

0.222 (0.211-
0.235)

0.756 (0.749-
0.764)

0.169
(0.158-
0.181)

0.654 (0.644-
0.663)

0.244
(0.231-
0.258)

0.778c (0.770-
0.785)

All patients

0.176 (0.163-
0.190)

0.675 (0.665-
0.685)

0.253 (0.237-
0.269)

0.752 (0.742-
0.762)

0.208
(0.193-
0.223)

0.651 (0.638-
0.663)

0.274
(0.258-
0.291)

0.775 (0.764-
0.784)

Male patients

0.129 (0.116-
0.145)

0.704 (0.689-
0.718)

0.194 (0.176-
0.216)

0.766 (0.754-
0.779)

0.137
(0.123-
0.155)

0.676 (0.662-
0.692)

0.214
(0.194-
0.236)

0.785 (0.772-
0.797)

Female patients

Age group (years)

0.120 (0.104-
0.138)

0.738 (0.717-
0.758)

0.213 (0.184-
0.249)

0.804 (0.784-
0.824)

0.153
(0.130-
0.179)

0.739 (0.718-
0.761)

0.222
(0.193-
0.256)

0.818 (0.797-
0.837)

<40

0.149 (0.134-
0.165)

0.640 (0.626-
0.655)

0.226 (0.208-
0.248)

0.734 (0.721-
0.749)

0.159
(0.143-
0.176)

0.609 (0.592-
0.626)

0.251
(0.230-
0.275)

0.758 (0.744-
0.772)

40-59

0.177 (0.162-
0.192)

0.700 (0.689-
0.712)

0.235 (0.218-
0.254)

0.757 (0.745-
0.768)

0.196
(0.181-
0.214)

0.663 (0.649-
0.676)

0.258
(0.240-
0.278)

0.779 (0.768-
0.790)

≥60

aXGBoost: extreme gradient boosting.
bNEWS: National Early Warning Score.
cThe best results in each subgroup are italicized.
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Figure 3. Performance of the models on the overall test set across the different prediction time windows. We evaluated the performance of each model
for deterioration prediction within 6, 12, 24, and 36 hours. AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating
characteristic curve; NEWS: National Early Warning Score; NN: neural network; XGBoost: extreme gradient boosting.

Performance Across Different Patient Subgroups
In Table 3, we have also summarized the performance of the
models across different patient subgroups within the test set.
Across the male population, the XGBoost model achieved the
best performance in terms of AUROC values (0.775, 95% CI
0.764-0.784), with an improvement of 0.099 (95% CI
0.090-0.109; P<.001) compared with the NEWS system. The
XGBoost model also achieved the best performance in the
female population with an AUROC value of 0.785 (95% CI
0.772-0.797) and an AUPRC value of 0.214 (95% CI
0.194-0.236), which corresponds to improvements of 0.081
(95% CI 0.070-0.092; P<.001) in AUROC value and 0.084
(95% CI 0.070-0.099; P<.001) in AUPRC value compared with
the NEWS system.

In the different age subpopulations, the XGBoost model
achieved the best results (AUROC 0.758-0.818), followed by
the NN model (AUROC 0.721-0.760). In the population
consisting of patients aged <40 years, the XGBoost model
achieved the best performance in terms of AUROC value (0.818,
95% CI 0.797-0.837) and AUPRC value (0.222, 95% CI
0.193-0.256), with improvements of 0.080 (95% CI 0.064-0.097;
P<.001) and 0.102 (95% CI 0.082-0.125; P<.001) in AUROC
and AUPRC values, respectively, compared with the NEWS
system. In the group consisting of patients aged 40-59 years,
the XGBoost model achieved an AUROC value of 0.758 (95%
CI 0744-0.772) and an AUPRC value of 0.251 (95% CI

0.230-0.275), with improvements of 0.118 (95% CI 0.104-0.133;
P<.001) and 0.102 (95% CI 0.087-0.119; P<.001) in AUROC
and AUPRC values, respectively, compared with the NEWS
system.

Finally, in the group consisting of patients aged ≥60 years, the
XGBoost model achieved an AUROC value of 0.779 (95% CI
0.768-0.790) and an AUPRC value of 0.258 (95% CI
0.240-0.278), with improvements of 0.078 (95% CI 0.069-0.088;
P<.001) and 0.081 (95% CI 0.068-0.094; P<.001) in AUROC
and AUPRC values, respectively, compared with the NEWS
system.

Performance Based on a Temporal Data Split
Given that most of the patient cohort during 2020-2021 consisted
of patients with COVID-19 infection, we investigated the impact
of increasing the size of the training set based on a temporal
data split for deterioration within 24 hours. To do so, we defined
four training sets that encompassed data collected during (1)
2016, (2) 2016-2017, (3) 2016-2018, and (4) 2016-2019. We
defined a new test set that included the observation sets of all
patients admitted to the hospital in 2020. We excluded any data
collected during 2015 and 2021 because our data set only
included a few months from both years. The new test set
consisted of 517 unique patients (307/517, 59.4% male patients),
with 638 encounters associated with an average age of 54.0
years and 23,227 observation sets (1208/23,227, 5.2%
deterioration within 24 hours).
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We summarize the results in Table 4. We observed that
increasing the size of the training set yielded marginal
improvements in terms of AUROC and AUPRC values across
all models. The NN model saw the largest improvement in
AUROC value, which increased from 0.706 (95% CI

0.688-0.722) to 0.754 (95% CI 0.739-0.769), whereas the
XGBoost model saw the largest improvement in AUPRC value,
which increased from 0.207 (0.187-0229) to 0.250 (95% CI
0.226-0.276).

Table 4. Model performance based on a temporal data split for deterioration within 24 hours. We performed a temporal data split for the training and
test sets. We fixed the test set to patient encounters recorded during 2020, whereas we expanded the training set gradually to eventually include encounters
recorded between 2016 and 2019. We report area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve
(AUPRC) values with 95% CIs.

Neural networkLogistic regressionXGBoostaDeterioration within
24 h, n (%)

Training set

AUPRC (95%
CI)

AUROC (95%
CI)

AUPRC (95%
CI)

AUROC (95%
CI)

AUPRC (95%
CI)

AUROC (95%
CI)

0.211 (0.188-
0.233)

0.706 (0.688-
0.722)

0.204 (0.182-
0.228)

0.679 (0.660-
0.696)

0.207 (0.187-
0.229)

0.740 (0.724-
0.754)

2788 (4.1)2016: n=68,499

0.241 (0.216-
0.266)

0.744 (0.727-
0.759)

0.213 (0.191-
0.237)

0.687 (0.669-
0.704)

0.232 (0.211-
0.257)

0.763 (0.747-
0.778)

7062 (4.4)2016-2017:
n=159,888

0.237 (0.213-
0.262)

0.745 (0.728-
0.760)

0.216 (0.194-
0.240)

0.69 (0.671-
0.706)

0.242 (0.218-
0.267)

0.758 (0.742-
0.773)

12,352 (4.3)2016-2018:
n=285,733

0.233 (0.211-
0.259)

0.754 (0.739-
0.769)

0.215 (0.192-
0.239)

0.688 (0.670-
0.705)

0.25 (0.226-
0.276)

0.778 (0.763-
0.792)

19,261 (4.5)2016-2019:
n=431,503

aXGBoost: extreme gradient boosting.

Interpretability Results
Table 5 shows the overall importance of each input feature in
the XGBoost model predicting deterioration within 24 hours.
The plots for the other time windows (6, 12, and 36 hours) are
shown in Figure S1 in Multimedia Appendix 2. We observed
a similar pattern across all time window values. We noted that
temperature is the most important feature, followed closely by
respiratory rate, systolic blood pressure, heart rate, level of
consciousness, oxygen saturation, and finally provision of
supplementary oxygen.

Figure 4 shows the SHAP values and the corresponding feature
values of the observation sets that were assigned the highest
and lowest predictions of deterioration. We observed that for
all observation sets with the highest assigned probabilities, the
factors contributing the most were high or low systolic blood
pressure measurements, level of consciousness where a value
of 3 indicated that the patient was unconscious, and high heart
rate measurements. In the 5 observation sets with the lowest
assigned probabilities, the patients displayed mostly normal
vital signs measurements.

Figure 5 shows the SHAP partial dependence plots for 6 (86%)
of the 7 input features. We observed that for continuous

variables (eg, heart rate, respiratory rate, oxygen saturation,
temperature, and systolic blood pressure), there is a range of
values for which the SHAP contributions are the lowest; for
example, for heart rate, the average SHAP value encounters the
sharpest drop between approximately 50 and 100 beats per
minute. For oxygen saturation, we observed that the SHAP
values decreased as oxygen saturation increased to >80%,
whereas for respiratory rate, we observed that SHAP values
increased as respiratory rate increased. Level of consciousness
is a binary variable, and it can be observed in Figure 5 that the
average SHAP value for level of consciousness varies based on
whether the patient is conscious.

Table 6 shows the Pearson correlation coefficients and Spearman
rank correlation coefficients between the SHAP values and the
feature values, as well as the LR coefficients and odds ratios.
We observed that level of consciousness shows the highest level
of correlation (Pearson correlation coefficient=0.950, Spearman
rank correlation coefficient=1.000, and LR coefficient=0.532).
We also noted that the LR coefficients are aligned with those
of SHAP, based on the relative ranking of the features with the
calculated Pearson coefficients and the LR coefficients.
Temperature exhibits the lowest level of correlation, perhaps
because of the complexity of the nonlinear relationship between
the feature and the outcome variable.
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Table 5. Feature importance of the extreme gradient boosting model. We present the results of our Shapley additive explanations (SHAP) analysis for
the extreme gradient boosting model for the deterioration within each of our proposed time windows. We provide the mean of the absolute SHAP value
for each of the 7 input features.

Mean of absolute SHAP valueVital sign

6 hours12 hours24 hours36 hours

0.0180.0180.0180.019Temperature

0.0120.0150.0150.016Respiratory rate

0.0110.0130.0130.013Systolic blood pressure

0.0080.0100.0100.011Heart rate

0.0020.0030.0030.003Level of consciousness

0.0020.0030.0030.003Oxygen saturation

0.0000.0000.0000.000Supplementary oxygen

Figure 4. Feature importance of the highest and lowest predictions of deterioration in the test set. We present the Shapley additive explanations (SHAP)
values for (A) 5 observation sets with the highest predictions of deterioration assigned by the extreme gradient boosting (XGBoost) model in the test
set and (B) 5 observation sets with the lowest predictions of deterioration. We confirmed that all observation sets in (A) did indeed experience an adverse
event within 24 hours, whereas all observation sets in (B) did not. Note that temperature values are displayed in degrees Fahrenheit. For a higher-resolution
version of this figure, see Multimedia Appendix 3.
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Figure 5. Partial dependence plots for the input features. We present the Shapley additive explanations (SHAP) partial dependence plots for six input
features: (A) heart rate, (B) respiratory rate, (C) oxygen saturation, (D) temperature, (E) level of consciousness, and (F) systolic blood pressure. The
partial dependence plot for supplementary oxygen is a flat line; hence, it has been omitted from the figure.

Table 6. Feature correlation values. We summarize the Pearson correlation coefficients and Spearman rank correlation coefficients between the
calculated Shapley additive explanations (SHAP) values and the respective features. For each feature, we also present the coefficients of the logistic
regression model and their respective odds ratios.

Logistic regression odds ra-
tio

Logistic regression coeffi-
cient

Spearman rank correlation
coefficient

Pearson correlation co-
efficient

1.0160.0160.8160.606Heart rate

1.1370.1280.4170.792Respiratory rate

0.930−0.073−0.694−0.713Oxygen saturation

1.0020.001−0.0680.006Temperature

1.7020.5321.0000.950Level of consciousness

1.0110.0110.0800.021Supplementary oxygen

1.0010.001−0.099−0.060Systolic blood pressure

Discussion

Principal Findings
EWS systems provide a standardized method for the detection
of patient deterioration [46]. Despite the proliferation of EWS
systems in electronic health record systems, they are often
developed based on heuristics or data acquired from a specific
patient cohort [12]. One such EWS system is the NEWS system
[4], which is recommended by the Royal College of Physicians
and is currently in use in some hospitals in the United Arab
Emirates. In this work, we developed and evaluated data-driven
deterioration prediction models using ML and real-world data
collected at a local hospital. We compared the performance of
the ML models with that of the NEWS system in a holdout test
set consisting of 2548 encounters and 95,755 observation sets
in terms of AUROC and AUPRC values.

Our study has several strengths. First, in the overall population,
our results showed that the XGBoost model and the NN model
achieved the best performance with improvements of 0.096
(95% CI 0.088-0.103; P<.001) and 0.074 (95% CI 0.067-0.081;

P<.001), respectively, compared with the NEWS system. This
is consistent with the findings of other studies, where the
XGBoost model predominantly achieved the best performance
compared with other models, especially with tabular input data
[34,47,48]. Considering the performance improvement with
respect to the NEWS system, we suggest in this case that a
hospital is likely to benefit more by developing its own models
using cohort-specific data, instead of relying on external models
[49]. However, this requires expertise and computational
resources that may not always be readily available. In addition,
we showed that although the models’ performance remained
stable as the training sets were expanded, and more data were
collected, future work should focus on tackling distribution
shifts owing to changes in practice over time or changes in
patient phenotype and demographics. The discrepancy in
performance across all models when using a random data split
compared with a temporal split also highlights the importance
of choosing training and test sets that best reflect the eligible
population during model deployment and implementation.

Another strength of our study is that we assessed the
performance of the models across different deterioration
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windows. We showed that as the prediction window increased
in size, the predictive performance of all models decreased
because the level of difficulty of the prediction tasks increased.
This implies that, in practice, one must deploy the model that
best aligns with the interventions that can be implemented. We
also assessed the importance of the input features as an
interpretability mechanism. In predicting deterioration within
24 hours, respiratory rate was among the top 2 most important
features. This is in line with existing work that emphasizes the
importance of respiratory rate as a clinical biomarker and
indicator of patient status [50].

Despite the contributions of our study in proposing a new
deterioration prediction model for the United Arab Emirates
population, our study has some limitations. We only assessed
the performance of our model using an internal test set from a
single center because we did not have access to any external
validation cohorts. In addition, our model relied on a small set
of 7 input features, mostly vital signs, and we did not include
any other variables that may be indicative of deterioration, such
as laboratory test results. We performed a patient-level split
across the training, validation, and test splits to avoid data
leakage across the data splits. However, this could potentially
bias the learning of the model owing to patients having multiple
encounters or observation sets within a specific data split. On
average, each unique patient had 1.6, 1.5, and 1.5 encounters
in the training, validation, and test sets, respectively; therefore,
we suspect low levels of bias, although this is a limitation of
the training strategy. As we developed models that computed
predictions every time an observation set was recorded, to mimic

EWS systems in real time, we also included all observation sets
of all encounters. In future work, more advanced data-split
training and evaluation strategies can be investigated for
encounter-level predictions with more advanced methods that
consider time-series analysis.

Future work should also focus on the development of
multimodal EWS systems, including imaging modalities such
as chest x-ray images [51]. However, this depends on the target
population of the EWS system and the availability of multimodal
data. We also did not assess the performance of the latest version
of the NEWS system [1,52], also referred to as NEWS2, which
introduced specific alerting thresholds for patients with
hypercapnic respiratory failure in a current or previous
encounter, and this is an area of future work. Another area of
future work with expected clinical impact would be to study
how existing patient management protocols can be re-evaluated
with respect to the model’s predictions and marginal risk
measures computed using SHAP analysis for the input features.

Conclusions
In conclusion, we developed and evaluated deterioration
prediction models using ML and a real-world data set and
compared their performance with that of the NEWS system,
which is commonly used in practice. In future work, we will
seek to evaluate the performance of the XGBoost model in a
silent prospective validation study to verify further areas of
improvement. Although we developed models specific to our
patient cohort, we believe that our framework may be useful to
other researchers interested in developing and evaluating
deterioration prediction models.
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Abstract

Background: Most mental health care providers face the challenge of increased demand for psychotherapy in the absence of
increased funding or staffing. To overcome this supply-demand imbalance, care providers must increase the efficiency of service
delivery.

Objective: In this study, we examined whether artificial intelligence (AI)–enabled digital solutions can help mental health care
practitioners to use their time more efficiently, and thus reduce strain on services and improve patient outcomes.

Methods: In this study, we focused on the use of an AI solution (Limbic Access) to support initial patient referral and clinical
assessment within the UK’s National Health Service. Data were collected from 9 Talking Therapies services across England,
comprising 64,862 patients.

Results: We showed that the use of this AI solution improves clinical efficiency by reducing the time clinicians spend on mental
health assessments. Furthermore, we found improved outcomes for patients using the AI solution in several key metrics, such as
reduced wait times, reduced dropout rates, improved allocation to appropriate treatment pathways, and, most importantly, improved
recovery rates. When investigating the mechanism by which the AI solution achieved these improvements, we found that the
provision of clinically relevant information ahead of clinical assessment was critical for these observed effects.

Conclusions: Our results emphasize the utility of using AI solutions to support the mental health workforce, further highlighting
the potential of AI solutions to increase the efficiency of care delivery and improve clinical outcomes for patients.

(JMIR AI 2023;2:e44358)   doi:10.2196/44358
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Introduction

Background
Common mental illnesses have become the leading cause of
disability worldwide [1]. Access to high-quality mental health
care is therefore crucial, with up to 25% of the population
experiencing depression or anxiety disorders [2,3]. The
COVID-19 pandemic has further highlighted the need for
accessible mental health treatment, precipitating increased cases
of anxiety, depression, and other mental health symptoms [4-9].
Addressing this high demand is challenging for many mental
health services that already struggle to provide adequate
treatment with limited resources, resulting in impaired patient
experience and, ultimately, worse treatment outcomes [10].

One particular challenge that mental health services face is the
long wait time between the point from when a patient seeks
support and when they begin treatment. For instance, in the
English National Health Service (NHS), between 2021 and
2022, 31% of referrals to Talking Therapy services dropped off
the wait list before starting treatment, and 9% of patients waited
for >6 weeks for their clinical assessment [11]. In addition, a
further 47% of patients experienced hidden waits of >28 days
between clinical assessment and their first treatment session,
contrary to the guidance from the National Institute of Health
and Care Excellence, which highlights the importance of timely
access to treatment [12].

Notably, against the backdrop of rising referrals, the needs of
patients are unlikely to be addressed through an increase in the
clinical workforce; in fact, there exists a national shortage of
qualified staff [13]. To remedy this precarious situation, it has
been repeatedly suggested that digital tools might represent a
viable opportunity to improve the efficiency and quality of
service delivery, as well as to enhance patient outcomes and
experience [14-17].

Previous studies have explored the use of digital solutions in
health care settings, such as artificial intelligence (AI)–based
interventions and conversational agents. However, these studies
have mainly focused on treatment support or remote monitoring
[18]. Moreover, there is little evidence of the efficacy of such
tools in real-world clinical settings [18,19]. Within the field of
mental health care, the use of AI and conversational agents has
mainly focused on self-care tools [20], whereas the efficacy of
AI in supporting clinicians in their delivery of high-quality care
has not been explored. The use of AI is well suited to address
the supply-side issues faced by mental health care providers by
improving the allocation of staff time to boost service capacity
through the support and augmentation of clinicians [21,22]. For
example, AI can enable health care professionals to prioritize
tasks and streamline processes by automating low-level clinical
functions such as adaptive information gathering to inform
assessment or treatment sessions conducted by a trained
clinician.

Digital innovation to support referral and clinical assessment
is earmarked as a key area to increase service capacity within
mental health care. One of the main aims of the referral process
is to collect information that can be used for clinical assessment
to identify symptoms and triage patients into the appropriate
treatment pathways. Therefore, the referral process and clinical
assessments represent promising targets for automation. These
early parts of the care pathway are typically conducted by
trained mental health professionals and require considerable
time from these overburdened clinical staff. Indeed, studies
have found that NHS Talking Therapies (previously Improving
Access to Psychological Therapies (IAPT)) services spend up
to 25% of their annual budget on clinical assessments [23].
Automation in this area represents a viable opportunity to release
clinical time and resources that can be reallocated to other stages
of the care pathway.

In addition to service efficiency, other patient benefits can be
generated through the implementation of AI-enabled digital
solutions. Direct benefits include reduced barriers to entry, such
as social stigma and time constraints [24], resulting in a more
accessible and patient-focused referral process. In addition,
previous research suggests that patients are more likely to report
severe symptoms in digital solutions [25], which can lead to
more accurate referral information. As a result, clinicians receive
a more comprehensive overview of the problems faced by their
patients. This presents an opportunity to accelerate clinical
assessment, improve pathway allocation, and spend more time
during clinical contacts to focus on building a strong relationship
with the patient. Indirectly, increased overall efficiency of the
service will free up resources that can be reallocated to increase
the number of available treatment sessions, which is known to
improve clinical outcomes [26].

Therefore, we hypothesize that the use of an AI-enabled referral
tool compared with other means of referral will reduce
assessment times, reduce wait times for assessment and
treatment, reduce dropout rates, reduce changes in treatment
allocation, and improve recovery rates. Moreover, we
hypothesize that these effects should be largely driven by the
collection of clinically relevant information, which can provide
valuable context for clinicians at assessment.

Objectives
In this study, we evaluated the impact of an AI self-referral tool,
a conversational AI chatbot (Limbic Access [Limbic Limited]),
in a real-world scenario. This AI self-referral tool is already
implemented as part of routine care across multiple NHS Talking
Therapy services in England. We analyzed data from 1 service
provider with Talking Therapy services across England. Data
were collected from 64,862 patients who were referred for care
either via the AI self-referral tool or via alternative methods of
referral. We show that the AI solution improves clinical
efficiency, reduces wait times and dropout rates, provides more
accurate treatment allocation, and increases recovery rates. We
further show that frontloading the collection of clinically
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relevant information ahead of the clinical assessment is a major
driver for these observed improvements. Therefore, our findings
provide novel empirical evidence that mental health care can
be significantly improved through AI solutions that support
trained clinicians in their daily work.

Methods

AI Self-Referral Tool
In this study, we evaluated the effects of a novel AI self-referral
tool (Limbic Access), which was implemented as part of routine
mental health care in several NHS Talking Therapy services.
Limbic Access is a commercial product and was developed and
commercialized by some of the authors in collaboration with
NHS Talking Therapy services. This tool was initially tested in
a pilot study with a sample of 7176 patients with 1 NHS Talking
Therapy provider. After the successful completion of this pilot
study, the tool was rolled out commercially across multiple
NHS Talking Therapy providers.

This self-referral tool is a conversational chatbot integrated into
the service’s website and assists patients in making a referral
by collecting the necessary intake information as required by
the Talking Therapy program (eg, eligibility criteria, contact
details, and demographic information). Furthermore, the chatbot
collects additional clinical information about the patient’s
presenting symptoms, such as the Patient Health Questionnaire-9
(PHQ-9) [27], Generalized Anxiety Disorder Assessment-7

[28], Work and Social Adjustment Scale [29], and a selection
of additional screening questions. These routine outcome
measures and screening questions are typically not collected at
the point of referral in NHS Talking Therapies. All the
information collected by the AI self-referral tool is then attached
to the referral record within the Talking Therapy service’s
electronic health record to support clinicians in preparing a
high-quality and high-efficiency clinical assessment.

It is important to note that when guiding a patient through
referral to Talking Therapies, the AI tool uses a checkpoint,
where there exists a point at which the patient has provided
minimal information required to submit a referral. At this
checkpoint, all the required information to submit the patient’s
referrals to the service was collected. However, patients were
then asked whether they would like to provide additional clinical
information regarding their mental health issues, which was
specifically designed to facilitate a clinician-led assessment
(Figure 1). This additional information includes free-text input
regarding the patient’s presenting symptoms as well as
standardized, clinically validated routine outcome measures
and screening questions. Empirically, most patients choose to
provide additional information (approximately 97% of referrals);
however, a subset of patients only provided minimally required
information at referral (approximately 3% of referrals). This
allowed us to implement a quasi-experimental design to test the
effects of collecting clinical information on patient treatment
outcomes.
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Figure 1. Pathway of the AI self-referral tool. The tool is embedded on National Health Service (NHS) Talking Therapies service’s web page and pops
up when a potential patient navigates to that page. Upon initiating an interaction with the chatbot, the eligibility of the patient is determined in the
eligibility module. If ineligible, the patient is signposted out of the service (indicated with a red cross mark). The signposting is based on the same
standard characteristics that would be applied in other referral pathways, such as patient’s location and age, to ensure that only patients from the service’s
catchment area and patients who are suited in terms of age will be referred. This ensures that patients do not complete the whole referral process to then
be signposted elsewhere later on. Signposting out is unrelated to their mental health symptoms. The eligible patient then continues through the referral
module which produces the minimal data set needed to refer the patient to the Talking Therapies service. After the referral module, the patient is asked
whether they would like to provide additional information. If they consent, they fill in additional information regarding their mental health issues, which
is added to the referral record sent to the Talking Therapies service. If they disagree, their referral is sent directly to the service. MDS: minimum data
set.
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Clinical Implementation of the AI Self-Referral Tool
To derive maximal clinical value from an AI self-referral tool,
appropriate implementation of this tool within a wider service
environment is of critical importance. Indeed, the realized
benefits of any digital tool rely on how it is used in practice.

Within the evaluated psychotherapy service (Everyturn Mental
Health), clinical information collected by the AI self-referral
tool was used to triage the severity of patient case presentations
(eg, mild, moderate, and severe cases of depression can be
differentiated based on the magnitude of the PHQ-9 score). Case
presentation, symptom severity, and any associated risk factors
are then used by the service to schedule an appropriate duration
for a clinician-led assessment (ie, complex or severe cases
require longer assessment slots and simpler or mild cases may
only require shorter assessment slots). In this way, the NHS
Talking Therapy service can use the clinical information to
allocate clinical resources in a tailored and efficient manner.

The psychotherapy service additionally enabled a “direct
booking” feature within the AI self-referral tool, which provided
a means for patients to directly book a preferred time for their
clinician-led assessment in the service’s calendar, thus reducing
the administrative burden on the service and enabling faster
access to a clinical assessment. This might be one mechanism
by which this novel referral pathway could reduce wait time for
patients.

Finally, all clinical information collected in the AI self-referral
tool is programmatically transferred to the service’s chosen
patient management system, which can be accessed by the
clinician leading the clinical assessment. This provides support
to the reviewing clinicians with richer contextual information.

We believe that these implementation decisions for an AI
self-referral tool are crucial to consider with respect to the
expected effects on service efficiency and quality of care.

Design
Real-world data were collected from patients entering and
receiving mental health care treatment through one specific
provider of NHS Talking Therapy services (Everyturn Mental
Health) between November 2021 and August 2022. The
participating mental health services comprised 9 individual
Talking Therapy services in different regions throughout
England. This allowed us to include data from patients
representing diverse geographic and demographic backgrounds
(refer to Multimedia Appendix 1 for details on the demographic
characteristics of the sample).

In this study, we examined the between- and within-group
effects of this AI self-referral solution. In the between-group
context, we compared patients who referred themselves to
Talking Therapy services through the AI tool with those who
were referred through other methods (eg, telephone referrals,
referrals via a web form, general practitioner referrals, and
referrals via other primary health care services). A comparison
of these 2 groups was made possible because of the constant
availability of alternative self-referral methods alongside the
AI self-referral tool. Overall, these data comprised 64,862
patients, of whom 21,568 (33.25%) patients were referred

through the AI self-referral tool and 43,294 (66.75%) patients
were referred through alternative routes.

In the within-group context, we compared users referring
through the AI self-referral tool who also completed the full
clinical information (clinical information group: 20,860/21,546,
96.82% patients) with those who only completed the minimally
required information for a referral (no clinical information
group: 686/21,546, 3.18% patients). This allowed for a
comparison of the effects of providing clinical information
ahead of the assessment to evaluate some of the mechanisms
by which the AI self-referral tool achieved its effects. Minimal
referral information was defined as patients not completing all
relevant clinical information asked for in the self-referral
process. It was expected that only a small proportion of patients
would not provide complete clinical information, as the AI
self-referral tool was designed to increase engagement and
ensure that a maximum number of patients complete all relevant
information ahead of the clinical assessment.

Ethical Considerations
As determined by the NHS and in accordance with National
Institute of Health and Clinical Excellence principles [30],
clinical audit studies within the NHS Talking Therapy
framework do not require additional patient consent or ethical
approval [30]. Moreover, the study team received written
confirmation from the Health Research Authority of England
that this study constitutes a service evaluation and, therefore,
did not require additional ethical approval. When registering to
use the AI self-referral tool, patients provided written informed
consent as part of a privacy policy agreement, allowing the
service to use anonymized patient data for auditing purposes
and to support research.

Outcome Measures
The outcome measures reported in this study were assessed
routinely during mental health care delivered by NHS Talking
Therapy services. Anonymous data were publicly reported on
the NHS Digital website [31] for the evaluation of NHS Talking
Therapy services performance. Therefore, no additional data
beyond routine care data were collected for this study.

Assessment Duration
We evaluated whether the use of the AI self-referral tool
improved clinical efficiency by reducing the time required to
complete a high-quality clinical assessment. The required length
of clinical assessment was measured in minutes.

Wait Time for Clinical Assessment
We evaluated whether the use of the AI self-referral tool reduced
the wait time for clinical assessment. The required wait time
for clinical assessment was measured in days, from the day of
referral to the day of the clinical assessment.

Wait Time for Treatment
We evaluated whether the use of the AI self-referral tool reduced
the wait time to the start of treatment. The wait time for
treatment was measured in days, from the day of referral to the
day of the first treatment session. Only the data of patients who
entered treatment were used for this analysis because, for some

JMIR AI 2023 | vol. 2 | e44358 | p.427https://ai.jmir.org/2023/1/e44358
(page number not for citation purposes)

Rollwage et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


patients in the clinical assessment, it might be decided that no
treatment is required.

Dropout Rate
We determined whether the use of the AI self-referral tool would
reduce the likelihood of patients dropping out of the service at
any point during the care pathway. Dropouts were defined as
those patients who canceled an appointment and did not rebook
a new appointment. The dropout rate was measured as the
percentage of patients who dropped out of the treatment.

Change in Allocated Treatment Level
We evaluated whether the use of the AI self-referral tool would
enable more accurate clinical assessment. A more accurate
clinical assessment would manifest in patients assigned to the
appropriate treatment pathway; therefore, the treatment pathway
would be less likely to change during treatment. Changes in
treatment are known as stepups and stepdowns in NHS Talking
Therapies. We measured the accuracy of treatment allocation
as the percentage of patients whose treatment was stepped up
or down. Only data from patients who received and finished
treatment were used for this analysis because the accuracy of
treatment allocation can only be assessed after the treatment
ends.

Recovery Rate
We evaluated whether the use of the AI self-referral tool would
enable a higher rate of recovery in the Talking Therapy service.
The recovery of patients is assessed at the end of treatment, and
the definition of reliable recovery is systematically used in NHS
Talking Therapy services [32]. This was measured by
administering an appropriate disorder-specific outcome
questionnaire and was defined as a significant reduction in
symptom scores (ie, PHQ-9 score: improved by at least 6 points
and Generalized Anxiety Disorder Assessment-7 score:
improved by at least 4 points) from the beginning to the end of
treatment and a score below the clinical cut-off at the end of
treatment. We measured the recovery rate as the percentage of
patients who achieved reliable recovery. Only data from patients
who received and finished treatment were used for this analysis
because reliable recovery could only be assessed after
completion of the treatment.

Analysis
For the analysis of wait time for treatment, we only analyzed
data from patients who had entered treatment. We included
patients who had finished their treatment for the changes in
treatment allocation and recovery rate analyses.

Because this was not a randomized controlled trial, there may
have been differences in the characteristics of the patients
referring through the AI tool versus the standard pathway, as
well as within the AI self-referral tool cohort between patients
with clinical information and patients without clinical
information. Therefore, we statistically controlled for these
potential differences to ensure that our observed results could
not be explained by these confounding factors.

The confounding factor of main concern was the severity of
patients’ mental health symptoms. These data were included
for every patient, allowing us to control for this confounding

factor when comparing the AI tool and standard referral
pathways. We measured severity as the step of treatment level
that patients were assigned to and controlled for severity in any
analysis we conducted.

There was only limited information about the group of patients
with other referral pathways available to ensure the anonymity
of this group. No demographic information or any personally
identifiable information was provided for these patients to ensure
complete anonymity of data. Therefore, we were unable to
control for demographic differences or any other personal
information in this data group.

Demographic information was available for patients who were
referred through the AI tool. Therefore, for comparison of
patients who did and did not provide complete clinical
information (all referred via the AI self-referral tool), all
analyses controlled for a list of demographic variables (eg, age,
gender, ethnicity, disability status, and receiving previous mental
health support).

To adequately control for the above-mentioned covariates, we
constructed multiple linear regression models for continuous
outcome measures and multiple logistic regression models for
binary outcome measures. The group was used as a predictor
variable (AI vs standard referral comparison: 0=standard referral
and 1=AI self-referral; clinical information vs no clinical
information comparison: 0=no clinical information and
1=clinical information), and severity was included as a covariate.
For the clinical assessment time, wait time to clinical
assessment, wait time for treatment, and severity and
demographics were the only potentially confounding effects
that we controlled for.

Regarding dropout rates, it is possible that increased assessment
and wait times could have indirectly led to increased dropouts.
Therefore, we controlled for severity and demographics,
assessment, and wait time as covariates in the logistic regression
model to predict the dropout rates. This analysis will reveal
whether the effects on dropout rates are completely explained
by the changes in assessment and wait time or whether the use
of the AI self-referral tool has an additional and independent
effect on dropout rates.

Changes in treatment allocation could potentially be influenced
by all the factors mentioned above, including dropout rates.
Therefore, we controlled for severity and demographics, dropout
rates, assessment, and treatment times in the logistic regression
to predict changes in treatment allocation.

Finally, the recovery rate is the last measure of interest, which,
in principle, could be influenced by all the factors mentioned
above. In particular, changes in treatment allocation (ie, accuracy
with which treatment allocation was assigned) could potentially
explain why differences in recovery rates were observed. To
evaluate whether the effects on the recovery rate could be
explained by effects on these other variables or whether it
represented independent and additional effects of the AI
solution, we included severity and demographics, assessment
time, wait time, dropout rates, and changes in treatment
allocation as covariates in the logistic regression predicting
recovery rates.
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Qualitative Analysis on the Reasons to Provide Clinical
Information
To investigate the impact of clinical information on relevant
outcome measures, we compared patients who provided
clinically relevant information to those who did not provide this
information.

Because this comparison was a quasi-experimental setup (ie,
patients were not randomized into the conditions), we aimed to
understand in more detail why patients chose to provide or not
provide clinical information.

For this purpose, we analyzed qualitative data from a previous
user experience study (unpublished) in which 32 ex-patients
tested the AI self-referral tool and answered a subsequent survey
on their experience with it. The original focus of this study was
to identify potential weaknesses in the design of the AI
self-referral tool, thus emphasizing ways to improve the product.
This survey included the user experience questionnaire [33] and
qualitative feedback questions about their experience. For this
purpose, in this study, we focused on the qualitative feedback
of the users. We first performed reflexive thematic analysis on
feedback entries [34], with 2 of the authors open-coding all the
feedback samples. The initial codes were discussed with the
larger group of authors, and a consensus was reached on the
resulting themes after 2 meetings. The list of resulting themes
included comprehension, information about the further steps,
ease of user interface use, number of questions, heavy nature
of questions, ease of access, and the advantages of the tool’s
human-free nature. Finally, 2 researchers coded each feedback
sample with one of the themes, and the frequency of each
category was analyzed. Therefore, we specifically focused on
the frequency of the number of questions and the “heavy” nature
of questions themes because these were related to the collection
of clinically relevant information.

Results

Between-Group Results: Patient Referrals Made via
the AI Tool Versus Alternative Routes
We first tested whether the groups of patients were comparable
in terms of their severity of mental health conditions. The groups
differed in their severity (Mann-Whitney U test; P<.001).
Patients referred through the AI self-referral tool showed slightly
lower severity (mean step of care=1.5) than those referred
through other pathways (mean step of care=1.69). Although
this was expected based on anecdotal evidence that patients
referred through standard pathways show higher severity than
patients referred through the AI tool, this finding indicates that
it is critical to control for severity in the subsequent analyses.

Assessment Time
A major aspect of an AI self-referral tool is the clinical
efficiency generated through this product by reducing the time
needed for a clinical assessment. Indeed, in the AI group (mean
assessment time=41.6 min), the clinical assessment required,
on average, 12.7 minutes less time (Multimedia Appendix 2)
compared with the standard referral pathway group (mean
assessment time 54.4 minutes). This effect was statistically

significant (t64,861=−116.57; P<.001) and could not be explained
by differences in severity because the effect remained significant
after controlling for this factor (P<.001). This finding indicates
that the use of AI in the self-referral process creates clinical
efficiency by reducing clinical assessment times.

Wait Time for Clinical Assessment
Then, we investigated whether the AI self-referral tool affected
the time that patients had to wait for their clinical assessment.
Indeed, in the AI group, the wait time for a clinical assessment
was shorter (mean 15.2 days; Multimedia Appendix 2) than that
for the standard referral pathway group (mean 17.4 days). This
effect represented an average reduction in wait time of 2.2 days
and was statistically significant (t64,861=−14.66; P<.001). This
effect could not be explained by differences in severity because
the effect remained significant after controlling for this factor
(P<.001). This finding indicates that the AI tool reduced the
wait times for clinical assessments.

Wait Time to Treatment
Further, we investigated whether the AI self-referral tool
affected the time patients had to wait until the first treatment
session. In the AI group, the wait time for the first treatment
session was shorter (mean 75.6 days; Multimedia Appendix 2)
than that for the standard referral pathway group (mean 80.6
days). This effect represented an average reduction in wait time
of 5 days and was statistically significant (t33,269=−7.1; P<.001).
This effect could not be explained by differences in severity
because the effect remained significant after controlling for this
factor (P<.001). This finding indicates that the AI tool reduced
wait time for accessing mental health treatment.

Dropout Rate
Then, we investigated whether the AI self-referral tool affected
the probability of patients dropping out of the treatment. The
probability of dropping out of treatment was significantly
reduced (t33,269=9.03; P<.001) from 26.7% probability in the
standard referral pathway group to 21.9% probability in the AI
tool group (Multimedia Appendix 2). This effect could not be
explained by differences in severity or assessment and wait
times because the effect remained significant after controlling
for this effect (P<.001). This finding indicates that the use of
the AI tool in the self-referral process reduced the likelihood of
patients dropping out of the treatment pathway.

Change in Allocated Treatment Level
Subsequently, we investigated whether the AI self-referral tool
affected the accuracy of clinical assessment by investigating
the effects on the changes in treatment allocation (ie, the lower
rate of change equals improved accuracy of clinical assessment).
Changes in treatment allocation were significantly reduced
(t20,317=−8.290; P<.001) from 10.5% of patients receiving a
change in treatment in the standard referral pathway group to
5.8% in the AI tool group (Multimedia Appendix 2). This effect
could not be explained by differences in severity, dropout rates,
or assessment or wait times because the effect remained
significant after controlling for these factors (P<.001). This
finding indicates that the AI self-referral tool improved clinical
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assessment accuracy, thus requiring fewer changes in allocation
during treatment.

Recovery Rates
Finally, we investigated whether the AI self-referral tool affected
the recovery rates of patients. Indeed, in the AI group (recovery
rate=58%), the recovery rates were significantly higher
(t20,317=38.7; P<.001; Multimedia Appendix 2) than those in
the standard referral pathway group (recovery rate=27.4%). The
effect size is noteworthy as the recovery rate was twice as high
in the AI group compared with the standard referral pathway
group. This effect could not be explained by differences in
severity, dropout rates, assessment and wait times, or by changes
in treatment allocation because the effect remained significant
after controlling for these factors (P<.001). This finding
indicates that the use of AI tool in the referral process improved
the recovery rates of patients referred through this tool in
addition to the other effects presented in this study.

Within-Group Results: Effect of Additional Clinical
Information Collected Ahead of Clinician-Led
Assessment
Having established the effects of referring through an AI
self-referral tool compared with other methods of referral, we
investigated more closely the mechanism through which these
improvements were achieved. Our initial hypothesis was that
the provision of clinically relevant data ahead of the assessment
would enable clinicians to better prepare their assessment and
create efficiency in their management of the clinical assessment,
further enabling them to arrive at accurate clinical conclusions.
To test this hypothesis, we investigated only patients referred
through the AI self-referral tool, comparing patients who had
provided clinical information in their referral to those who
provided no clinical information.

First, we ensured that the patient groups did not differ with
respect to the most relevant characteristics. Indeed, the groups
did not differ with respect to severity (Mann-Whitney U test;
P=.17), age (Mann-Whitney U test; P=.42), gender
(Mann-Whitney U test; P=.44), ethnicity (Mann-Whitney U
test; P=.39), disability status (Mann-Whitney U test; P=.62),
or previous mental health treatment (Mann-Whitney U test;
P=.76). This finding indicated that the groups were largely
comparable. Nevertheless, we included these variables as
covariates in the following analyses to ensure that even subtle
differences were controlled for.

For the group in which additional clinical information was
provided (mean assessment time 40.6 minutes), the clinical
assessment required, on average, 12.3 minutes less time
compared with the group without clinical information (mean
assessment time 52.8 minutes). This effect was statistically
significant (t21,545=−16.16; P<.001; Multimedia Appendix 3),
and this could not be explained by differences in severity or
demographics because the effect remained significant after
controlling for these factors (P<.001).

Furthermore, in the group of patients with clinical information,
the wait time for clinical assessment was shorter (mean 15 days)

than that in the group without clinical information (mean 20.2
days).

This effect represented an average reduction of wait time of 5.2
days and was statistically significant (t21,545=−9.7; P<.001;
Multimedia Appendix 3) and could not be explained by
differences in severity or demographics because the effect
remained significant after controlling for these factors (P<.001).

Finally, in the group with clinical information (recovery
rate=58.7%), the recovery rates were significantly higher
(t5990=2.3; P=.02; Multimedia Appendix 3) than in the group
without clinical information (recovery rate=46.9%). This effect
could not be explained by differences in severity, demographics,
dropout rates, assessment and wait times, or by changes in
treatment allocation because the effect remained significant
after controlling for these factors (P=.03).

Notably, there were also some effects that seemed not to be
driven by the clinical information provided ahead of time. There
were no significant differences between patients with and
without clinical information regarding dropout rates (P=.26),
wait time for treatment (P=.51), and allocation to the accurate
treatment level (P=.86). This finding suggests that the use of
an AI self-referral solution improves access and treatment, with
some of its effects being specific to the provision of high-quality
symptom data to a clinician.

Qualitative Analysis of the Reasons to Provide Clinical
Information
We compared patients who provided all clinical information
with those who did not provide this information to evaluate the
impact of this clinical information on treatment outcomes.

However, because this study was a quasi-experimental setup,
we aimed to understand why the patients chose to provide
clinical information or not. To do so, we analyzed qualitative
user research with 32 ex-patients to understand their experience
with the AI self-referral tool using reflexive thematic analysis
techniques. In this analysis, we focused on topics related to
clinical information, with 2 relevant recurring topics identified.
First, 38% (12/32) of the patients reported that the number of
questions was perceived as long and potentially overwhelming.
Second, 25% (8/32) of the patients reported that the nature of
the clinical questions was emotionally difficult and could feel
too heavy to complete.

This finding indicates that one of the main reasons for not
providing clinical information might be time constraints and
the feeling of being overwhelmed by providing detailed clinical
information during referral.

However, the participants were ex-patients who were not seeking
to refer themselves to treatment at the point of the study, which
might make the collection of this information less directly
relevant to them. Moreover, it is important to note that this study
focused on the potential weaknesses of tool design. These results
can be complemented by an analysis of 42,332 patients
providing qualitative feedback after using the AI-referral tool
in a real-world setting reported by Habicht et al [35]. In that
analysis, 89% of the patients reported positive feedback on tool
use, whereas only 7% gave neutral feedback, and 4% gave
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negative feedback. Notably, none of the negative feedback
categories included complaints regarding the length or emotional
content of the questions. This finding indicates that problems
with the number of questions and their emotional content are
rare in a real-world setting and might be more apparent when
participants are pressed to suggest potential improvements. This
finding is in line with the small number of patients not providing
clinical information in our study.

Discussion

Principal Findings
In this study, we investigated the effects of implementing an
AI self-referral tool in referral and assessment processes for
mental health care. To this end, we compared patients referred
through this AI tool against those referred through other means
of referral within the same NHS Talking Therapy services and
in a comparable time frame. In doing so, we demonstrated the
improved service efficiency and clinical efficacy associated
with this novel tool. Moreover, we investigated the mechanism
through which these improvements were achieved and found
that the provision of clinical information ahead of the mental
health assessment was critical for many of the observed effects.

We found that patients accessing care through the AI tool
showed reduced time required to complete their clinician-led
assessment, reduced wait times for the assessment and treatment
sessions, reduced dropout rates, improved accuracy of treatment
allocation, and improved recovery rates. Moreover, we showed
that the reduced assessment times, reduced wait times for
assessment, and increased recovery rates were largely driven
by the additional clinically relevant information collected from
patients during their referral via the AI tool. Although our
chatbot was friendly but not optimized to express compassion,
the increase in efficiency can be seen as compassion for patients’
time and resources [36]. Although the effect of clinical
information is more straightforward to explain for assessment
time and recovery rates, we also observed an effect on wait
times, which might appear less intuitive. The likely reason for
this effect is a direct booking feature in the AI-referral tool, in
which patients can immediately book an appointment in the
services’ patient management system. However, this feature is
only available once patients have provided all clinical
information (ie, at the end of the referral process) to allow
simple triage and assignment to the appropriate type of
assessment (eg, question 9 of the PHQ-9 is required to assess
suicidal ideation and thus associated risk). Therefore, this feature
is not available for patients who did not provide clinical
information.

It is important to note that we conducted multiple control
analyses to rule out confounding factors and to establish the
independence of these observed effects. Importantly, the severity
of cases could not explain the differences between people
referred through the AI tool compared with standard referrals.
This finding is particularly important because any difference in
recovery rates could be expected to be driven by symptom
severity; therefore, we have ensured that the improvement seen
by the AI self-referral tool cannot be explained by symptom
severity. Other potentially confounding factors (eg, users of a

new AI solution may have been more motivated to engage in
therapy than patients referred by their general practitioner) are
beyond the scope of our analyses and cannot be conclusively
ruled out. Nevertheless, other studies evaluating the AI
self-referral tool (Limbic Access) have also shown overall
positive effects on provider level [37], that is, showing that NHS
Talking Therapy providers using this tool showed overall
increased recovery rates compared with matched Talking
Therapy providers not using the tool. If a selection bias was the
explanation for the observed effects, this would suggest no
overall improvement in treatment outcomes for providers using
the tool. Thus, findings from this related study [37] make a
selection bias highly unlikely as an explanation for the observed
benefits of the AI tool.

A randomized controlled trial is the gold standard for further
confirming the observed effects of this study. However,
randomized controlled trials have their shortcomings because
they are costly to run and, therefore, limit the available sample
size. We chose our experimental design to allow us to investigate
an unprecedentedly large sample, yielding high statistical power
and excellent ecological validity for our findings. Moreover,
because our comparison is based on referrals within the same
NHS Talking Therapy service, representing multiple
geographies, our findings are unlikely to be driven by
differences in demographic variables or general factors, such
as geography, and should, therefore, be transferred to other
Talking Therapy services.

In addition, we carefully tested whether all the observed effects
were independent of each other. All reported effects remained
significant when controlling for mutual influences, indicating
that using the AI tool in the referral process has beneficial effects
on all the variables reported in this study.

We investigated the mechanisms by which the AI self-referral
tool improves clinical efficiency. We demonstrated that the
provision of clinical information in referrals may be an important
component of the observed effects. More specifically, we found
that patients who provided clinical information during their
referral had reduced assessment times, reduced wait times for
assessment, and increased recovery rates. This finding indicates
that the provision of clinical information ahead of clinical
assessment could be a critical ingredient through which the AI
tool achieved its effect on the tested outcome measures. This
finding was hypothesized and showed that an increased amount
of relevant information for the preparation of the clinical
assessment has beneficial effects on patients and IAPT services.

In contrast, it is notable that not all effects observed for the AI
solution (compared with other means of referrals) appeared to
be driven by the provision of clinical information ahead of the
clinical assessment. This might be expected for some of these
effects. For instance, the reduction in dropout rates might be
driven more by an overall positive experience that patients have
when engaging with a friendly chatbot for submitting a referral,
independent of the clinical information provided. Similarly,
reductions in wait time for treatment might be driven more by
the general administrative burden and overall resource
availability rather than the specific clinical information provided
in the referral.
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However, it is notable that the provision of clinical information
did not seem to have a significant effect on the accuracy of
treatment allocation. This effect would have been expected to
benefit from clinical information ahead of the clinical
assessment. Nevertheless, there are 2 points to be considered
with respect to this finding. First, there were a small number of
patients (153/21,568, 0.71%) who did not provide clinical
information and finished their treatment in this study, which
dramatically reduced the power of the analysis compared with
the analysis looking at the general effects of the AI solution
compared with standard pathway referrals. Therefore, the
nonsignificant results could be partly explained by the noise in
a small sample. Second, it is notable that although the clinical
information provided in this version of the AI tool is useful for
many aspects of the clinical assessment process, it is fairly
generic, mainly covering information about depression,
generalized anxiety, and functional impairment. Although this
information is useful in allocating accurate resources in the
assessment and in prioritizing severe cases, it only provides
limited information about the more specific symptoms that the
patient experiences. This is especially true when the patient is
experiencing mental health problems that do not represent
depression or generalized anxiety. Therefore, the provision of
more tailored and specific information at the point of referral
would likely yield better results and support improvements
regarding the allocation of treatment pathways.

Limitations
Although this study aimed to maximize ecological validity and
power using a large sample real-world data set, this decision
has some limitations. As discussed above, this study was an
observational study using a quasi-experimental setup. This
means that the participants were not randomly allocated to each
study arm (ie, type of referral). Although a multitude of control
analyses have been conducted to ensure that the observed effects
were not confounded by different characteristics of the patients
(eg, case severity), it is not possible to measure and control for
all potential confounding factors. Therefore, there remains the
possibility of confounding factors between the study arms.

Moreover, we investigated the effects of clinical information
and the observed benefits of the AI-enabled referral tool.
Further, this was investigated using a quasi-experimental setup,
which could have led to some form of confounds, even though
careful statistical control of different characteristics has been
conducted. It is noteworthy that in a separate usability study,

patients reported that the self-referral process can be long and
emotionally difficult, indicating that patients not providing
clinical information could have done so because of time
constraints or emotional burden. It is possible that these
characteristics (eg, reduced time capacity or difficulties in facing
emotional topics) could interact with treatment success and
could influence the observed effects, such as improved recovery
rates. Although we controlled for many confounding factors, it
was not possible to further control for these potential effects
and to conclusively rule out this possibility.

Conclusions
This study represents, to the best of our knowledge, first
evidence of the real-world impact of an AI-enabled self-referral
tool in mental healthcare. The study was conducted with a large
sample of patients in a mental health care setting, yielding a
high ecological validity of the reported findings.

Notably, the results indicated a strong positive real-world impact
of this novel AI tool (Limbic Access) on clinical efficacy and
efficiency.

The setup for this study was quasi-experimental, so that not all
confounding factors could be controlled completely. However,
we assessed and controlled for the most relevant factors that
could have differed between the groups of comparison. Notably,
none of these factors could explain the observed effects, and all
the effects remained significant after controlling for these
factors.

It is critical to note that we provided converging evidence from
multiple sources of data and different analyses. We conducted
multiple control analyses to derive the most reliable and robust
conclusions. Nevertheless, as none of the analyses included a
randomized controlled trial, the possibility of confounding
factors remained even though we controlled for most factors.
Notwithstanding, the different analyses had different strengths
and weaknesses, and no confounding factors could explain all
the observed results.

Therefore, the results highlight the specific, beneficial role that
well-designed AI solutions can play in augmenting the work of
human clinicians by supporting elements of clinical work and
through this, freeing up time for clinicians. This means that AI
solutions can enable mental health care providers to deal with
increased demand, even within a challenging funding
environment that precludes increases in staffing levels.
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Multimedia Appendix 1
Demographic characteristics of patients using the artificial intelligence (AI)-enabled referral tool and those who did not use the
AI tool (ie, referred through other means). Although for patients using the AI tool, data were collected during the self-referral
process, there were no individual-level demographics available for patients who did not use the AI tool. Group-level demographics
were acquired using data from the National Health Service Digital database.
[PDF File (Adobe PDF File), 36 KB - ai_v2i1e44358_app1.pdf ]

Multimedia Appendix 2
Comparison of treatment outcomes between referrals through the artificial intelligence (AI) self-referral tool versus standard
referrals: (A) assessment time (in min), (B) wait time from referral to assessment (in days), (C) wait time from referral to first
treatment session (in days), (D) dropout rates from treatment, (E) change in treatment level (measured as stepups and stepdowns
in treatment level), and (F) recovery rate (ie, reliable recovery). Error bars indicate SEs. Because of the large sample size, some
SEs are very small and thus hard to see. ∗∗∗P<.001.
[PNG File , 170 KB - ai_v2i1e44358_app2.png ]

Multimedia Appendix 3
Comparison of treatment outcomes between artificial intelligence tool referrals with and without clinical information: (A)
assessment time (in min), (B) wait time from referral to assessment (in days), and (C) recovery rate (ie, reliable recovery). Error
bars indicate SEs. Because of the large sample size, some SEs are very small and thus hard to see. ***P<.001 and *P<.05.
[PNG File , 116 KB - ai_v2i1e44358_app3.png ]
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Abstract

Background: The utilization of artificial intelligence (AI) technologies in the biomedical field has attracted increasing attention
in recent decades. Studying how past AI technologies have found their way into medicine over time can help to predict which
current (and future) AI technologies have the potential to be utilized in medicine in the coming years, thereby providing a helpful
reference for future research directions.

Objective: The aim of this study was to predict the future trend of AI technologies used in different biomedical domains based
on past trends of related technologies and biomedical domains.

Methods: We collected a large corpus of articles from the PubMed database pertaining to the intersection of AI and biomedicine.
Initially, we attempted to use regression on the extracted keywords alone; however, we found that this approach did not provide
sufficient information. Therefore, we propose a method called “background-enhanced prediction” to expand the knowledge
utilized by the regression algorithm by incorporating both the keywords and their surrounding context. This method of data
construction resulted in improved performance across the six regression models evaluated. Our findings were confirmed through
experiments on recurrent prediction and forecasting.

Results: In our analysis using background information for prediction, we found that a window size of 3 yielded the best results,
outperforming the use of keywords alone. Furthermore, utilizing data only prior to 2017, our regression projections for the period

of 2017-2021 exhibited a high coefficient of determination (R2), which reached up to 0.78, demonstrating the effectiveness of
our method in predicting long-term trends. Based on the prediction, studies related to proteins and tumors will be pushed out of
the top 20 and become replaced by early diagnostics, tomography, and other detection technologies. These are certain areas that
are well-suited to incorporate AI technology. Deep learning, machine learning, and neural networks continue to be the dominant
AI technologies in biomedical applications. Generative adversarial networks represent an emerging technology with a strong
growth trend.

Conclusions: In this study, we explored AI trends in the biomedical field and developed a predictive model to forecast future
trends. Our findings were confirmed through experiments on current trends.

(JMIR AI 2023;2:e45770)   doi:10.2196/45770
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Introduction

Artificial Intelligence in Biomedicine
Medicine has long been recognized as a prime area for applying
artificial intelligence (AI) [1], with biomedicine being a vibrant
and promising field. Advances in technology and science have
led to the use of various methods to obtain biomedical data,
such as clinical analyses, biological parameters, and medical
imaging. However, the diversity and complexity of these data,
along with the need for more information on certain atypical
diseases result in unbalanced and nonsmooth biomedical data.
In this scenario, machine learning can improve medical big data
analysis, reduce the risk of medical errors, and generate a more
unified diagnostic and prognostic protocol.

Recent AI research has leveraged machine learning methods to
identify patterns and complex interactions from data, which
require large amounts of data as support. Artificial neural
networks and deep learning are currently among the most
popular machine learning technologies. These methods are used
in biomedicine across all medical dimensions, from genomic
applications such as gene expression to public health care
management such as for predicting population information or
infectious disease outbreaks [2]. AI has also significantly
impacted biomedical processors such as electrocardiogram,
electroencephalogram, and electromyography classification
processors and hearing aid processors [3].

AI is increasingly being utilized in a variety of applications in
the biomedical field. Notable examples include IBM
Watson-Oncology, which selects drugs for cancer treatment
with equal or superior efficiency compared to human experts;
Microsoft’s Hanover project at Oregon, which personalizes
cancer treatment plans through analysis of medical research;
and the UK National Health Service utilizing Google’s
DeepMind platform to detect health risks by analyzing mobile
app data and medical images from patients. Additionally,
algorithms developed at Stanford University have been shown
to detect pneumonia more accurately than human radiologists;
in the diabetic retinopathy challenge, the computer was as
effective as an ophthalmologist in making referral decisions
[4]. Therefore, it is essential to analyze the trends in the
integration of these AI-related technologies with the biomedical
field to understand which technologies have played an important
role in the past, predict the current and emerging technologies
that are more likely to be important in the future, and determine
which original technologies are regaining importance in a
particular biomedical field.

Language models offer an effective means to analyze texts and
have become the basis for many applications, including machine
translation and text classification. In all text-related fields,
language models can bring new improvements and opportunities
to a greater or lesser extent and assist in literature research.

Co-word Analysis
Recently, increased attention has been paid to the management
of references and expansion of the research scope. Bibliometric
analysis summarizes the structure of a field by analyzing the
social and structural relationships between different research

components such as authors, countries, institutions, and topics.
Additionally, bibliometric analysis significantly impacts
reorienting research and identifying popular issues. Thus,
bibliometric analysis enables discovery of how research in a
given field is distributed and changing. The data collected and
the conclusions drawn from a bibliometric analysis can be used
to track popular topics, predict promising technologies, and
assist scientists in redirecting their research. There has been
substantial research and application of bibliometric analysis in
academia and industry, and extracting keywords to analyze texts
is a very common strategy in such studies. Although it is
intuitive to use the whole text as an object of analysis, this
requires extensive computational resources. Moreover, many
texts are not of high quality, some of them are repetitive or have
no actual content, and a lot of noise can make the model learn
the wrong knowledge. Therefore, keyword-focused analysis is
often a better choice. Co-word analysis is one such technique
that focuses on keywords and analyzes the content itself [5].
This analysis aims to uncover the intrinsic connections of articles
and discover trends within them with applications in many
fields, including medicine and business.

Co-word analysis was first proposed by French bibliometricians
in the late 1970s [6] as a technique for studying keywords in
the content of publications. Words in the co-word analysis are
typically derived from the article title, abstract, and full text.
These words may be specifically extracted from certain parts
of each component, depending on the goal of the analysis.
Co-word analysis assumes that words that frequently occur
together have thematic relationships with each other. Based on
this assumption, co-word analysis can be used to predict future
research in a field. Analysis of the keywords of published
articles in a given field has the potential to predict keywords
for future research in the field, which in turn portrays the future
of the research field accordingly. Co-word analysis uses several
methods based on covariate matrices, such as factor, cluster,
multivariate, and social network analyses. These methods help
researchers to obtain an overview of a field. Thus, co-word
analysis is a method to analyze papers in a field and make valid
judgments.

Text Similarity
Text similarity measurement is fundamental to natural language
processing tasks and is essential in information retrieval,
question answering, machine translation, and dialogue systems,
among other applications. In recent years, various techniques
for measuring semantic similarity have been proposed. Text
similarity techniques can be divided into two main categories:
text distance and text representation [7].

Text distance describes the semantic similarity of two text words
from the perspective of distance. Length-based and
distribution-based distance are the two main types of text
distance. Traditionally, text similarity is evaluated by measuring
the length distance, which uses the numerical properties of the
text to calculate the text vector distance length, such as the
Euclidean distance, cosine distance, or Manhattan distance [8].
However, the text similarity should not be symmetric and the
length distance does not consider the statistical characteristics
of the data. The distribution distance determines the similarity
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between documents based on the similarity of their distribution,
such as Jensen-Shannon divergence [9], Kullback-Leibler
divergence [10], and Wasserstein distance [11], among others.

Text representation methods convert text to a numerical feature
vector. These methods are mainly divided into a string-based
method, corpus-based method, semantic text matching, and
graph structure–based method. String-based methods operate
on string sequences and character compositions to measure the
similarity or dissimilarity (distance) between two text strings
for approximate string matching or comparison. The advantage
of such methods is that they are simple to compute.
Representative string-based methods include longest common
subsequence [12], Edit distance [13], Jaro similarity [14], Dice
[15], and Jaccard [16]. The corpus-based methods use
information from the corpus to compute text similarity; this
information can be either text features or co-occurrence
probabilities. In recent studies, corpus-based approaches include
three different measures: the bag-of-words model, distributed
representation, and matrix decomposition method. The
corpus-based methods mainly include bag-of-words [17], text
frequency-inverse document frequency [18], Word2Vec [19],
latent semantic analysis [20], and others. Semantic similarity
determines the similarity between text and documents based on
their meaning rather than character-by-character matching.
Deep-structured semantic models [21] are typical models in this
regard. Graph-based text similarities are mainly based on a
knowledge-graph representation and a graph neural network
representation. The graph structure better enables determining
the similarity between nodes. Knowledge graphs [22] and graph
neural networks [23] are the main methods for exploiting a
graph structure.

Predicting the Future of AI in Health Care
Some previous works have also discussed the application of AI
in medicine and possible future directions. One is integrative
analysis [24], where data from different modalities can describe
various aspects of a health problem. By mining these
heterogeneous data in an integrated way, holistic and
comprehensive insight into health can be obtained. In recent
years, there has been a growing number of studies and initiatives
related to AI in health, integrating different aspects of clinical
data and linking drug development to clinical data. AI for
precision medicine [25] represents another promising
combination of AI and medicine, which assists in solving the
most complex problems in personalized care. For example, AI
in microscopic diagnostics [26] can improve the work of
pathologists and may even gradually replace their work.

In this study, we used language models to measure the
relationship between keywords, which can subsequently assist
in building aggregation models and using adjacent keywords.
Specifically, we propose a background-enhanced prediction
method for constructing data for prediction using adjacent
keywords, which refer to matrices adjacent to a 2D correlation
matrix constructed using a clustering algorithm. This approach
allows regression models to learn better and more accurately
predict the relationships between keywords. We applied this
approach to predict the future trend of AI technologies used in
different biomedical domains based on past trends of related

technologies and biomedical domains. We further compared
the prediction results to the patterns of current trends to evaluate
the reliability of the prediction.

Methods

Data Sets
The data sets used in this study were obtained from the National
Institutes of Health PubMed and PMC collections, with
measures taken to avoid duplication by utilizing unique
identifiers.

The corpus utilized in this study consists of three parts: (1)
114,266 abstracts and 49,126 full texts from PubMed and PMC
obtained by searching keywords such as “machine learning,”
“data mining,” “artificial intelligence,” “deep learning,” and
“classifier” in the Title/Abstract field; (2) 61,382 full-text papers
from PMC obtained by searching keywords such as “machine
learning,” “data mining,” “artificial intelligence,” and “deep
learning” in all fields, serving as a complement to the previous
part; and (3) 2,507,391 full-text papers retrieved from the
PubMed Central Open Access section with no keyword filtering
to capture a comprehensive understanding of the biomedical
field.

Due to permission restrictions, full-text access was limited for
some papers. The full text of the papers primarily served for
training, with the core of our experiments lying in the analysis
and model prediction based on the abstracts.

Language Model
We utilized the word-embedding model Word2Vec as our
language model owing to its advantages of efficiency and
robustness among other available options [27].

Word embedding is a method of transforming a single word
into a digital representation that captures various features of the
word within a text, such as semantic relationships, definitions,
and contexts. These digital representations can be used to
identify similarities or dissimilarities between words.

To feed text data into a machine learning model, the text must
be converted into an embedding. A simple method to achieve
this involves “hot-coding” the text data, where each vector is
mapped to a category. However, such simple embeddings have
limitations as they do not capture the features of the words and
can be large depending on the corpus size.

The effectiveness of Word2Vec is derived from its ability to
combine vectors of similar words, leading to reliable estimates
of word meaning based on their frequency in the corpus. This
results in associations with other words, such as similar
embedding vectors of “king” and “queen.” Algebraic operations
on word embeddings can also provide approximations of word
similarity, such as obtaining the vector for “queen” by
subtracting the vector for “man” from the vector for “king” and
adding the vector for “woman.” The cosine similarity measure
is used to compare the similarity of two words, which is
calculated according to the following formula:

cos(x,y)=x·y/∣x∣×∣y∣
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To improve the suitability of the original corpus for our language
model, we performed extensive preprocessing to address any
noise that may impact the model’s effectiveness. This included
removing all numeric and nonalphabetic characters, except for
the special character “-,” which is often used to link multiple
words and create unique phrases. Additionally, to enhance the
word vectors of biomedical- and AI-related keywords, we
transformed multiword keywords in 114,266 abstracts into
single tokens by merging them; for example, “machine learning”
was merged into “machine+learning.”

The selection of hyperparameters was based on the available
computational resources and the training corpus size. Our
Word2Vec model had 300 dimensions and a window size of 5.
Our computational device is a cluster with 384 GB of memory
and 16 CPU cores. The Word2Vec model was trained
sequentially on the three data sets, with the entire training
process taking approximately 72 hours.

Background-Enhanced Prediction
Technology tends to be heavily studied in similar areas of
research. Conversely, technology and its similar variants may
be very popular in the same field. For example, techniques used
for one type of cancer may also be relevant to other types of
cancer, and various artificial neural models can all be applied
in the field of medical image recognition. Our model was
developed to predict future research trends based on direct
relationships between technologies and fields and related
technologies and fields. More specifically, we extracted the top
500 most frequent AI terms and the top 1000 most frequent
biomedical fields from the 114,266 abstracts. To distinguish AI
terms from biomedical terms, we adopted a simple classifier.

We obtained approximately 47,000 biomedical phrases from
Medical Subject Headings and approximately 700 AI algorithms
from Wikipedia. We used the average cosine similarity of each
keyword and all terms in the two-word sets to predict whether
the keyword should belong to the biomedical or AI domain.
Next, Word2vec was used to obtain embeddings from each
word. After converting all words into embeddings using
Word2vec, we applied agglomerative clustering [28] to classify
all the keywords according to their embeddings. Agglomerative
clustering is a bottom-up clustering process. Initially, each input
object forms its cluster. In each subsequent step, the two
“closest” clusters are merged until only one remains. In our
case, words with similar meanings will be grouped. Such a
hierarchy is useful in many applications, and we provide the
resulting tree diagram next to the corresponding heat map to
best visualize the relationships between the surrounding
categories.

Figure 1 depicts the co-occurrence frequency of biomedical and
AI keywords. For regression prediction, we utilized not only
the data from the orange part (information held by the keyword)
but also from the green part (information held by the word
neighboring the keyword). This inclusion provides a richer
context, offering models that include more relevant information
to learn from. The number 4 in the orange cell indicates the
number of co-occurrences of “neural network” and “cancer,”
which we not only used as input to predict the number of future
co-occurrences of the terms “neural network” and “cancer” but
also added the number of co-occurrences in the green section,
5+3+5+3+4+7+5+4, to obtain a more comprehensive prediction
using the neighboring information.

Figure 1. Co-occurrence frequency table of biomedical- and artificial intelligence–related keywords. Each number represents the number of co-occurrences
of a given artificial intelligence model and biomedical term. The orange part represents the information held by the keyword and the green part represents
the information held by the keyword's neighbors. CNN, convolutional neural network; LSTM: long short-term memory; MLP, multilayer perceptron;
NN: neural network; RNN, recurrent neural network.

Regression Model
The inputs and outputs of the regression model represent the
co-occurrence frequency of biomedical and AI keywords in
previous years and the co-occurrence frequency of future

biomedical and AI keywords obtained by prediction. Due to the
limited number of AI-related papers from 1970 to 2000, we
used semiannual statistics for January 2000 to December 2021
in our analysis. We incorporated each semiannual data set into
a training and testing prediction model. Our model uses a small
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window of the heatmap for the past 6 months, which was
constructed using specific technology and domain pairs as
features, and the model was trained on all prior-year samples
to predict the current year’s heat level. We employed six
different regression algorithms: support vector regression, lasso
regression, ridge regression, elastic net [29], orthogonal
matching pursuit [30], and passive aggressive regressor [31],
using Scikit-learn [32]. We set the parameters to random_state=0
for lasso, ridge, elastic net, and passive aggressive regressor;
normalize=True for lasso and ridge; and left the other parameters
as default values.

The data from 2016 to 2021 were used as a validation set and
the data from 2002 to 2021 were used to predict trends from
2021 to 2026.

Results

Visualization
Figure 2 presents a heatmap that illustrates the distribution of
publications from 1970 to 2021. To improve the visualization,
we limited the analysis to the top 100 frequently occurring AI
terms and the top 200 frequently occurring biomedical terms.
However, in subsequent experiments, we expanded the analysis
to include the top 500 AI terms and the top 1000 biomedical
terms. The heatmap plots the intersection of computer
technology and biomedical fields, with the heat representing
the logarithm of the number of papers published between 1970
and 2021 that mention both areas in the abstract. This map
demonstrates that neural network–based methods are the most
popular AI tools for application in the medical field.

Figure 2. Heatmap of the publications related to certain artificial intelligence (AI) technologies and biomedical fields from 1970 to 2021. The horizontal
axis is the keywords in the biomedical field and the vertical axis is the keywords of AI technology. A higher resolution version of this figure is available
in Multimedia Appendix 1.
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After encoding words using Word2Vec, each word becomes a
corresponding embedding. To evaluate the quality of the
generated embeddings, we employed t-distributed stochastic
neighbor embedding (t-SNE) [33], a technique for visualizing
high-dimensional data by projecting it onto a 2D map. The
t-SNE plots in Figures 3 and 4 reveal that the word embeddings

obtained by Word2Vec do allow words with similar meanings
to be close together in the embedding space. Figure 3 highlights
the vector positions of cancer-related keywords in 2D space,
while Figure 4 shows the positions of classifier-related
keywords.

Figure 3. Biomedical keywords in a t-distributed stochastic neighbor embedding plot.

Figure 4. Artificial intelligence keywords in the t-distributed stochastic neighbor embedding plot.

Future Trend Prediction

Figure 5 illustrates the average R2 values of all predicted and
actual results from July 2002 to December 2021, with different
window sizes of 1, 3, 5, 7, and 9. From Figure 5, we can also
see that the elastic net model provided the best results when the
window size was equal to 9, whereas some other models worked
best when the window size was equal to 3.

Since our model relies on the previous year’s heatmap as a
feature, to predict a longer time horizon, we iteratively ran our
model using the predicted heatmap of cycle x to predict the

heatmap of cycle x+1. As shown in Figure 6, although the R2

value decreased during the 5-year prediction, it was still
relatively high. We also provide a 100×200 demonstration to
visualize the prediction results in Figures 7-10. These heatmaps,
like those in Figure 2, are also used to show the frequency of
co-occurrence between the keywords of AI technology and
biomedicine. Figure 8 depicts the original publications that were
recorded between July and December 2021, while Figure 9
represents the predicted publications for the same time period.
To effectively showcase the disparity between the actual and
projected outcomes, a heatmap was generated using both the
original and predicted heatmaps. This comparison is visually
presented in Figure 10, allowing for a clear and easily
understandable differentiation between the two sets of data.
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Figure 5. Mean R-square values obtained by forecasting in half-yearly intervals from July 2002 to December 2021 under different window sizes for
different methods. SVR: support vector regression.

Figure 6. Line graph of the forecast results for each half year from 2002 to 2021. The model used was elastic net with a 9×9 window size, as this
resulted in the best prediction (R-square value).
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Figure 7. The predictions are iterated in half-year increments from July 2014 to December 2021, and the data obtained from the predictions are used
as the data set for the subsequent prediction models for training. The horizontal axis is time and the vertical axis is the R-square value. A higher resolution
version of this figure is available in Multimedia Appendix 2.
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Figure 8. Heatmap from July to December 2021 for the actual intersection of artificial intelligence (AI) technology and biomedical field applications.
The horizontal axis is the keywords in the medical field and the vertical axis is the keywords in AI technology. A higher resolution version of this figure
is available in Multimedia Appendix 3.
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Figure 9. Predicted heat map of the intersection of artificial intelligence (AI) technology and biomedical field applications from July to December
2021. The horizontal axis is the keywords in the medical field and the vertical axis is the keywords in AI technology. A higher resolution version of
this figure is available in Multimedia Appendix 4.
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Figure 10. Heatmap drawn from the difference between the predicted and actual heatmaps for July to December 2021 (Figures 9 and 8, respectively)
representing the intersection of artificial intelligence (AI) technology and biomedical field applications. The horizontal axis is the keywords in the
medical field and the vertical axis is the keywords in AI technology. A higher resolution version of this figure is available in Multimedia Appendix 5.

Co-occurrence Trend Analysis
The data obtained through statistical analysis indicated that the
number of papers combining AI with biomedicine is increasing
in spurts. From Table 1, we can see which combinations between
AI and biomedicine are the most popular. The field of genetics
shows many combinations with various AI technologies,
occupying 13 of the top 20 positions. Numerous papers on this
topic highlight its popularity [34-36]. The combination of AI
and protein ranked fourth, demonstrating that protein analysis
is a very suitable field for the use of machines. Cancer and
tumors are currently the main challenges in biomedicine, and

their combination with AI is also a popular topic at present. In
these biomedical fields, machine learning is the AI technology
with the highest number of applications. Although deep learning
and neural networks are trendy, traditional methods such as
vector automata and random forests are still the main choices
in biomedical fields. Many fundamental concepts of AI are also
included in this ranking, such as classification, regression,
cross-validation, feature extraction, receiver operating
characteristic, and others. Overall, this analysis shows that AI
has become a key technology in the biomedical field and
requires the proficiency of biomedical scientists.
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Table 1. The top 20 combinations of artificial intelligence (AI) technologies and biomedical fields that have appeared in the literature in the last 5
years.

Proportion of publications, %AI technology, biomedical fieldRank

1.650machine learning, gene1

1.038classification, gene2

0.634neural network, gene3

0.453deep learning, gene4

0.447support vector machine, gene5

0.404machine learning, protein6

0.402regression, gene7

0.385learning algorithm, gene8

0.380machine learning, cancer9

0.351classification, cancer10

0.331random forest, gene11

0.249artificial intelligence, gene12

0.241convolution neural network, gene13

0.219cross-validation, gene14

0.191feature selection, gene15

0.176neural network, cancer16

0.172classification, tumor17

0.171supervised learning, gene18

0.171machine learning, tumor19

0.169receiver operating characteristic, gene20

Since many combinations between AI and biomedicine have a
very small contribution or are nonexistent, some are not
meaningful; therefore, we set a reasonable threshold to filter
such combinations, avoiding the situation where the original
minimal combination grows by a considerable percentage with
little growth so that the table showing the trend of changes is
more meaningful. From Table 2, we can see the very rapid
growth of cases combining AI and biomedicine in the last 5
years. This is because genes, proteins, oncology, and many other
fields are growing rapidly, and core medical testing technology
such as magnetic resonance imaging is compatible with AI.

We used the best model from our proposed methodology to
forecast the trends in AI technology and biomedicine over the
next 5 years. The prediction results for the contributions of each
combination and their growth are shown in Table 3 and Table

4, respectively. The regression results were rounded for brevity
of presentation in the tables. We can use these predicted results
to provide an outlook on the future development of AI in
biomedicine. From the point of view of AI technologies,
standard techniques such as deep learning, machine learning,
and neural networks still dominate. Traditional machine learning
methods such as random forest and support vector machine are
outside the top 20 prediction results. Deep learning will
gradually become the mainstream AI technology combined with
biomedicine [37]. From a biomedical perspective, genetics will
continue to dominate. At the same time, studies focusing on
proteins and tumors will leave the top 20 and be replaced by
early diagnostics, tomography, and other detection technologies.
These are certain areas that are well suited to incorporate AI
technology.
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Table 2. The 20 most rapidly growing combinations of artificial intelligence (AI) technologies and biomedical fields in the last 5 years.

Growth, %AI technology, biomedical fieldRank

1054.545electronic, health records1

1054.545electronic health records, electronic health2

1033.333machine learning, electronic health record3

820.000machine learning, health care4

816.667machine learning, risk factor5

735.000machine learning, public health6

700.483neural network, gene7

647.059neural network, cancer8

619.697machine learning, tumor9

613.333image analysis, gene10

572.414machine learning, clinical trial11

566.667machine learning, clinical practice12

547.619decision making, gene13

511.111artificial intelligence, gene14

493.617random forest, cancer15

487.179machine learning, clinical data16

480.000electronic medical record, medical records17

467.647next generation sequencing, gene18

466.667random forest, tumor19

456.579machine learning, magnetic resonance20
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Table 3. The top 20 combinations of artificial intelligence (AI) technologies and biomedical fields that will emerge in the next 5 years.

Predicted proportion of publications, %AI technology, biomedical fieldRank

2.331machine learning, gene1

2.289artificial intelligence, early diagnosis2

1.901artificial intelligence, early detection3

1.487artificial intelligence, gene4

1.392neural network, gene5

1.288deep learning, computed tomography6

1.239artificial intelligence, systematic reviews7

1.197classification, gene8

1.188supervised learning, gene9

1.040generative adversarial network, gene10

0.881artificial intelligence, personalized treatment11

0.659machine learning, risk factors12

0.633deep learning, gene13

0.617artificial intelligence, systematic review14

0.604convolution neural network, gene15

0.593learning algorithm, gene16

0.581receiver operating characteristic, computed tomography scans17

0.578machine learning, medical records18

0.569machine learning, blood pressure19

0.554artificial intelligence, imaging modalities20
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Table 4. The top 20 rapidly growing combinations of artificial intelligence (AI) technology and biomedical fields in the next 5 years.

Predicted growth, %AI technology, biomedical fieldRank

2253.521artificial intelligence, gene1

2184.491machine learning, risk factor2

2164.150cross-validation, gene3

1504.581receiver operating characteristic, gene4

1421.751learning algorithm, gene5

1340.880neural network, gene6

1296.067convolution neural network, gene7

1280.985classification, gene8

1261.342machine learning, gene9

888.106classification, cancer10

791.807support vector machine, gene11

665.430neural network, cancer12

621.627artificial intelligence, cancer13

502.318deep learning, gene14

415.298classification, tumor15

377.864regression, gene16

333.778machine learning, protein17

322.787random forest, gene18

200.080deep learning, cancer19

192.518natural language processing, natural language20

Discussion

Principal Findings

AI Technology Trends in Biomedicine
Our findings confirm that standard AI techniques, including
deep learning, machine learning, and neural networks, continue
to be the primary driving forces behind the integration of AI
into biomedicine. However, it is noteworthy that generative
adversarial networks (GANs) [38] are gaining prominence,
particularly in the genetics field. GANs hold immense potential
for applications in medical imaging and drug discovery owing
to their ability to generate synthetic images across various
modalities.

Evolution of Biomedical Research
The data also highlight the shifting landscape of biomedical
research. While genetics remains dominant, areas such as
proteins and tumors are gradually giving way to early
diagnostics, tomography, and other detection technologies.
These developments align with the suitability of these fields for
AI integration, resulting in promising advancements in health
care analysis and diagnostics.

Impact of AI on Health Care
As suggested by previous research [24], the future of AI in
health care is promising. AI has the potential to enhance the
accuracy of cancer diagnosis and prognosis beyond that of
average statistical experts [39,40]. Furthermore, as AI

technology continues to advance, it will enable the resolution
of more complex and specialized health care problems, further
transforming the biomedical landscape.

Future Work
By utilizing keywords to filter medical papers that have applied
AI techniques, we identified key connections and trends among
them. The approach of using keywords aggregated based on
text similarity performed well in the regression model. This
approach is intuitive and leads to improved co-word analysis
for trend prediction.

Fundamentally, incorporating peripheral information led to
higher regression accuracy and more accurate predictions of
future trends. Additionally, this approach also takes into account
internal relationships within a class compared to previous
methods. However, this also raises the question of how to best
measure the degree of keyword association.

We made some simple assumptions that words with similar
meanings would complement the information of the others.
Specifically, considering only their own meanings tends to make
the predictions one-sided, while having more reference
information naturally makes the predictions more robust. This
can be seen as a type of data augmentation. There are still many
directions to explore regarding this approach. In future research,
it may be possible to use different text similarity methods such
as convolutional neural network, bidirectional encoder
representations from transformers, and various regression
models, where the reliability of text similarity determines
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whether the information obtained from the surrounding context
is valid. Additionally, different time spans for the prediction
can be studied. Although this study focused on AI techniques
in the biomedical field, the applicability of the proposed
approach extends to any study involving co-word analysis.

Limitations
While our study provides valuable insights into the trends of
AI technologies in the biomedical domain based on a
comprehensive data set from PubMed, there are several
limitations to consider. First, there is a limitation of the data
source, since our study solely relies on PubMed as the primary
source of articles, which might introduce a selection bias. There
are numerous other databases and grey literature sources that
were not considered, and their inclusion might have offered a
more comprehensive view. Second, our study lacks external
validity. Our findings, although significant in the context of our
data set, require validation with real-world applications and
events to check their external validity.

Conclusions
In this study, we aimed to explore the analysis and prediction
of trends at the intersection of biomedical and AI research. To
accomplish this, we collected a large corpus of articles from
PubMed on the intersection of AI and biomedicine. Initially,
we attempted to use regression on the extracted keywords alone.
However, we found that this approach was lacking in
information. Therefore, we proposed a method called
background-enhanced prediction to expand the knowledge
utilized by the regression algorithm by incorporating both the
keywords and their surrounding context. This data construction
method improved the performance of our forecasting models.
Our findings were validated through comparisons with current
trends. In particular, the integration of electronic medical record
big data with AI, laboratory data, clinical trials, and imaging
diagnostic tools has emerged as a prominent approach.
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Abstract

Background: Drug-induced mortality across the United States has continued to rise. To date, there are limited measures to
evaluate patient preferences and priorities regarding substance use disorder (SUD) treatment, and many patients do not have
access to evidence-based treatment options. Patients and their families seeking SUD treatment may begin their search for an SUD
treatment facility online, where they can find information about individual facilities, as well as a summary of patient-generated
web-based reviews via popular platforms such as Google or Yelp. Web-based reviews of health care facilities may reflect
information about factors associated with positive or negative patient satisfaction. The association between patient satisfaction
with SUD treatment and drug-induced mortality is not well understood.

Objective: The objective of this study was to examine the association between online review content of SUD treatment facilities
and drug-induced state mortality.

Methods: A cross-sectional analysis of online reviews and ratings of Substance Abuse and Mental Health Services Administration
(SAMHSA)–designated SUD treatment facilities listed between September 2005 and October 2021 was conducted. The primary
outcomes were (1) mean online rating of SUD treatment facilities from 1 star (worst) to 5 stars (best) and (2) average drug-induced
mortality rates from the Centers for Disease Control and Prevention (CDC) WONDER Database (2006-2019). Clusters of words
with differential frequencies within reviews were identified. A 3-level linear model was used to estimate the association between
online review ratings and drug-induced mortality.

Results: A total of 589 SAMHSA-designated facilities (n=9597 reviews) were included in this study. Drug-induced mortality
was compared with the average. Approximately half (24/47, 51%) of states had below average (“low”) mortality rates (mean
13.40, SD 2.45 deaths per 100,000 people), and half (23/47, 49%) had above average (“high”) drug-induced mortality rates (mean
21.92, SD 3.69 deaths per 100,000 people). The top 5 themes associated with low drug-induced mortality included detoxification
and addiction rehabilitation services (r=0.26), gratitude for recovery (r=–0.25), thankful for treatment (r=–0.32), caring staff and
amazing experience (r=–0.23), and individualized recovery programs (r=–0.20). The top 5 themes associated with high mortality
were care from doctors or providers (r=0.24), rude and insensitive care (r=0.23), medication and prescriptions (r=0.22), front
desk and reception experience (r=0.22), and dissatisfaction with communication (r=0.21). In the multilevel linear model, a state
with a 10 deaths per 100,000 people increase in mortality was associated with a 0.30 lower average Yelp rating (P=.005).
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Conclusions: Lower online ratings of SUD treatment facilities were associated with higher drug-induced mortality at the state
level. Elements of patient experience may be associated with state-level mortality. Identified themes from online, organically
derived patient content can inform efforts to improve high-quality and patient-centered SUD care.

(JMIR AI 2023;2:e46317)   doi:10.2196/46317

KEYWORDS

opioid use disorder; online reviews; drug-induced mortality; addiction; substance use disorder treatment; substance use disorder;
patient-centered care; digital health; treatment; substance use; online review; drug use; mortality; database; addiction; detoxification;
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Introduction

Drug-induced mortality across the United States has continued
to rise [1] from 6.2 to 21.6 age-adjusted deaths per 100,000
people over the last 20 years [2]. Recently, the Centers for
Disease Control and Prevention (CDC) reported 70,630 drug
overdose deaths in the United States—an average of 193 deaths
every day [2]. People with substance use disorder (SUD) have
higher prevalence rates of major medical conditions and a higher
disease burden compared with the general population [3].
SUD-related morbidity and mortality are projected to increase
over the next year [4]. There is an increased focus on ensuring
that efforts to address and reduce drug-induced morbidity and
mortality are patient centered to increase adoption [5,6].

To date, there are limited measures to evaluate patient
preferences and priorities regarding SUD treatment [7,8], and
many patients do not have access to evidence-based treatment
options [9]. Patients and their families seeking SUD treatment
may begin their search for an SUD treatment facility online,
where they can find information about individual facilities, as
well as a summary of patient-generated online reviews via
popular platforms such as Google or Yelp [5]. While online
reviews are not validated measures of quality of care as
compared with Press Ganey or the Hospital Consumer
Assessment of Healthcare Providers and Systems (HCAHPS),
the use of online ratings of health care experiences continues
to grow, reflecting the general trend of how consumers are
seeking health-related information [10]. Prior studies of many
medical settings, including essential health care facilities [11],
mental health treatment facilities [12], hospitals [10], emergency
departments [13], urgent care centers [13], and skilled nursing
facilities, have demonstrated that online reviews may capture
aspects of the patient experience that are associated with positive
or negative ratings, as well as quality of care [14].

Online reviews of SUD treatment facilities may reflect
information about factors associated with positive or negative
patient satisfaction [15,16]. This content may provide insights
to inform the development of SUD treatment performance
metrics and patient-driven priorities. Evaluating this is important
as understanding patient experiences is key to moving toward
more patient-centered care and improved treatment services
[17,18]. We sought to evaluate publicly available online reviews
of US SUD treatment facilities to examine the association
between online ratings of SUD treatment facilities and
drug-induced mortality across the United States. We also aimed
to explore if quality of care differences were reflected in
reviews’ narrative content. We examined the association

between thematic content of patient-generated online reviews
associated with 1-star (lowest) versus 5-star (highest) ratings
and drug-induced mortality.

Methods

Sample
All online reviews and ratings published on Yelp for outpatient
SUD treatment facilities within the United States during
September 2005 to October 2021 were collected. Facilities
designated as non-SUD health facilities (eg, optometrists or
retirement homes) were excluded (Multimedia Appendix 1).
Consistent with prior studies on online reviews, analysis using
natural language processes was used in SUD treatment facilities
with 5 or more reviews [15].

We matched the list of US SUD treatment facilities to their
corresponding facilities in the 2016 National Directory of Drug
and Alcohol Abuse Treatment Facility Record published by the
Substance Abuse and Mental Health Services Administration
(SAMHSA). Matching was done using facility name and address
to calculate the shortest string matching Levenshtein distance
[19]. If an SUD treatment facility was not listed within the
SAMHSA directory, then it was not included in the analysis.

Drug-induced mortality rates for each state were collected from
the CDC WONDER Database from 2006 to 2019, and state
averages were determined. Descriptive statistics were used to
determine the univariate and bivariate distributions of Yelp
review ratings and drug-induced mortality rates. Drug-induced
mortality was treated as a continuous variable. States were
considered to have “high” drug-induced mortality if their
average drug-induced mortality rate was above the mean for all
states. Likewise, states were considered to have “low”
drug-induced mortality if their average drug-induced mortality
rate was below the mean for all states.

Generating Topics, Identifying Themes, and Examining
Associations With Facility Online Ratings
Latent Dirichlet allocation (LDA) is a machine learning
approach that groups co-occurring words into topics. These
topics are then hand-coded to identify associated themes [20].
LDA uses an unsupervised dimension reduction procedure [20]
to identify latent topics among large quantities of text. The
distribution of LDA topics was extracted for each facility.
Themes were categorized by an independent review by 2
members of the research team (AKA and MPA), and differences
were reconciled by a third member (RMM).
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Ordinary least-squares regressions were performed to generate
topics associated with the drug-induced mortality rates of each
facility’s state average. Pearson r was used to calculate effect
size. For each topic generated, 10 reviews were identified.
Specifically, the probability of all topics for each review was
calculated, and subsequently, reviews that had the highest
probability for each topic were identified. These 10 reviews
were used by 3 coders (AKA, RMM, and MPA) to assign each
topic a theme. The Benjamini-Hochberg P correction and P<.05
were used to identify significant correlations. Paired 2-tailed t
tests with the Benjamini-Hochberg P correction were used to
measure statistically significant associations between themes
and state-level drug-induced mortality rates.

Multilevel Modeling of the Association Between Yelp
Ratings and Drug-Induced Mortality Rates
Because the multilevel mixed-effects linear regression model
accounts for variation at the facility level, all states with facilities
with at least 5 online ratings were included (n=51 states). We
used null random-intercepts models to calculate intraclass
correlations and variance partitioning coefficients to determine
the degree of clustering in ratings at the facility and state levels.
The average correlation of ratings in the same state (ie, intraclass
correlation) was 0.03, while that among ratings from the same
facility was 0.21. Variance components analysis showed that
2% of the variance in ratings was explained at the state level,
17% was explained at the facility level, and the remaining 81%
was within facilities.

Likelihood ratio tests revealed that models that accounted for
clustering at both the facility and state level fit the data better

than those that accounted for only the former (χ2
1=137.7,

P<.001), only the latter (χ2
1=946.5, P<.001), or neither

(χ2
1=1405.1, P<.001). Neither of the models that allowed the

relationship between drug mortality and rating to vary at the
state or facility level converged, so we proceeded with a 3-level,
random-intercepts model with ratings nested in facilities and
nested in states.

The 3-level, random-intercepts model used to assess the
relationship between online review ratings and drug mortality
rates integrated only 1 state-level predictor (drug-induced
mortality rates), which was grand mean centered to improve
interpretability of the intercept. As the outcome was on a 5-point
Likert scale, we conducted a sensitivity analysis rerunning the
model using a mixed-effects ordinal regression to see if it altered
the results. There were no missing data for the predictor and
outcome. All analyses were conducted in Stata (version 15;
StataCorp).

Ethical Considerations
This study was considered exempt by the University of
Pennsylvania institutional review board.

Results

Descriptive Statistics of Sample
A total of 589 SUD treatment facilities listed within the
SAMHSA directory (6.5% of 9061 US SAMSHA-designated
facilities) met the inclusion criteria of having at least 5 reviews
(n=9597 reviews; n=9597 ratings). These facilities belonged to
47 states. Most facilities represented the West US census region
(n=316), followed by the South (n=130), Midwest (n=67), and
Northeast (n=62). The number of online ratings of SUD
treatment facilities was the same as the number of online reviews
(ie, each online review had a corresponding rating, so the sample
included 9597 reviews and 9597 ratings).

Ratings for the 589 facilities had a bimodal distribution with
peaks at a rating of 1 (n=4546) and 5 (n=3649) with a median
(IQR) of 2 (2-4). The mean (SD) facility rating was 2.82 (1.87).
Among these facilities, the mean (SD) state-level drug-induced
mortality rate was 17.57 (5.30; range 7.54-35.01) age-adjusted
deaths per 100,000 people. States were considered to have
“higher than average” (ie, “high”) or “lower than average” (ie,
“low”) drug-induced mortality if their average drug-induced
mortality rate was above or below the average of 17.57
age-adjusted deaths per 100,000 people.

States With Low Drug-Induced Mortality Rates
A total of 24 (51%) of 47 states in our sample had a low
drug-induced mortality rate (mean 13.40, SD 2.45 age-adjusted
deaths per 100,000 people; see Table 1 for descriptive statistics
for low and high drug-induced mortality states).

Tables 2 and 3 display themes, correlation coefficient, and
example quotations for each theme from online reviews
associated with high or low drug mortality rates. We identified
9 distinct themes associated with low drug mortality rates and
14 distinct themes associated with high drug mortality rates.
The top 5 themes most correlated with a low mortality rate
included the following: detox and addiction rehabilitation
services (r=–0.26), gratitude for sobriety and recovery (r=–0.25),
thankful for treatment (r=–0.25), caring staff and amazing
experience (r=–0.23), and individualized recovery programs
(r=–0.20; Tables 2 and 3). Review language correlated with
positive or negative state-level drug mortality rates is displayed
in Multimedia Appendix 2.

Table 1. Descriptive statistics for low and high drug-induced mortality states included in natural language processing analyses (n=47).

Facility rating,
mean (SD)

Reviews per facility,
mean (SD)

Reviews, nSAMHSAa facilities, nCategory

3.06 (1.11)16.03 (20.40)6853399Low drug-induced mortality statesb (n=24)

2.64 (1.01)13.24 (13.13)2744190High drug-induced mortality statesb (n=23)

aSAMHSA: Substance Abuse and Mental Health Services Administration.
bStates with 5 or more reviews were included in the natural language processing analyses.
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Table 2. Themes across substance use disorder facilities most associated with states with low drug-induced mortality ratesa.

Example reviews (redacted to maintain anonymity)Top wordsDrug mortality
rates, Pearson r
(95% CI)

Theme

Program, sober, recovery,
detox, addiction, rehab, drug,

–0.26 (–0.33 to
–0.18)

Detox and addiction rehabil-
itation services

• “[Facility name] changed my life! I learned about the disease
of addiction and how to cope with life without the use of drugs
or alcohol in this program. I couldn't be more grateful for myalcohol, clean, living, house,

drugs, new, meetings, step [Facility name] family and I continue to live a life free of drugs
and alcohol by working on myself in a twelve step program.
Thank you for helping me discover a better way of living.”

Life, am, sober, years, house,
grateful, today, addiction,

–0.25 (–0.32 to
–0.17)

Gratitude for sobriety and
recovery

• “Almost 3 years ago I moved into the [facility name]. I’ve been
clean and sober ever since. The [facility name] gave me the
structure and spiritual tools to learn how to live a life ofhope, myself, saved, live,

helped, learned, gave meaning and how to be a contributing member of society sober!
In July I'll celebrate 3 years continuous years of recovery and
I owe my life to the 12 step program I work and the [facility
name]. Thanks for everything [staff name].

Life, thank, amazing, love,
truly, helping, god, grateful,

–0.25 (–0.32 to
–0.17)

Thankful for treatment • “I am truly grateful for the care I received at the [facility
name]...support staff, dietary, counselors, therapy as well as
amazing facilitators. I am both humbled and grateful for myenough, helped, saved, be-

yond, special, heart, open newfound sobriety. I truly hope I can carry this message to help
others.

Recommend, recovery, house,
amazing, great, highly, best,

–0.23 (–0.30 to
–0.15)

Caring staff and amazing
experience

• “Amazing, clean facility. Caring staff, exceptional chefs. I
highly recommend it. The detox house and residential house
are extremely nice. The rooms are spacious and all amenitiesbeautiful, anyone, food, truly,
are provided.”clients, detox, caring, comfort-

able • “This place is absolutely amazing”

Program, recovery, treatment,
addiction, support, clients,

–0.20 (–0.27 to
–0.12)

Individualized recovery
programs

• “My time spent at bayside marin has been life changing...[facil-
ity name] has given me the tools for successful recovery. The
team is top notch - highly educated in the evolving field of re-group, programs, individual,
covery...The treatment is smart and individualized. They alsoapproach, environment, high-

ly, team, each, sobriety offer a free alumni meeting one evening a week, which I attend
often. It's a great aftercare resource.”

• “The staff at [facility name] is so caring, knowledgeable and
professional. Their philosophy and addiction recovery model
is progressive and holistic, treating the whole person and
helping them relearn how to “do life” sober and happy...”

• “Facility Name” has a great vision for recovery. One size does
not fit all. Finding a unique and individualized recovery path
can mean the difference between temporarily quitting and truly
experiencing life change.”

Life, center, recovery, helped,
best, recommend, amazing,

–0.19 (–0.26 to
–0.10)

Appreciation of care team • “I don’t have the words to express the depth of my gratitude
for [facility name] and all the staff! I have an entirely different
perspective on my whole life, and a clear understanding oftruly, highly, team, love,

grateful, saved, caring, hope myself, in a universal sense. I’m home, living my life in a light
of love and compassion, thanks to the work we did at [facility
name].”

• “I am extremely grateful for the experience and treatment I re-
ceived at [facility name]. All of the staff and therapists are ex-
tremely caring and knowledgeable. In particular [name]. He
was extremely important and influential in my treatment there.
My family and I will be forever grateful for him and the rest
of the staff at [facility name]. If you know anyone struggling
with addiction, I would highly recommend [facility name].”

Therapy, day, group, week,
groups, meetings, therapist,

–0.14 (–0.22 to
–0.06)

Group therapy sessions • “I thought this class was going to be boring like most classes
are. It was quite the opposite. [The class] was very interesting
and educational… The instruction was awesome”sessions, classes, once, etc,

class, aa, meeting, each
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Example reviews (redacted to maintain anonymity)Top wordsDrug mortality
rates, Pearson r
(95% CI)

Theme

• “[Facility name] has had a complete reboot with leadership,
programming, and staff since mid-2015. They have achieved
the coveted joint commission accreditation, and hired all new
credentialed therapists as well as highly trained behavioral
health techs. This program in no way resembles the decision
point of the past which is a real source of pride with the staff
and clients. The biggest change clients will see is in the expand-
ed programming and activities covering seven days per week.”

Clients, client, director, man-
agement, clinical, run, high,
business, lack, completely,
employees, poor, focus, com-
munication, field

–0.12 (–0.20 to
–0.04)

Clinic management

• “something must be said about the love I received from this
program that was above and beyond that which is the norm...
the legal team (specifically Dr. [name]) rendered support with
progress reports to the court throughout my legal proceedings,
appeared in court for me and successfully got my 7 year prison
sentence suspended with alternate sentencing to where I did
no jail or prison time. I can’t begin to say how grateful I am to
have her support along with the entire staff of [facility name]”.

Case, manager, court, classes,
class, managers, legal, client,
jail, course, huge, dui, prob-
lems, ordered

–0.10 (–0.18 to
–0.02)

Case management and legal
support

aSignificance was measured using a paired 2-tailed t test with the Benjamini-Hochberg P correction (P<.05).
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Table 3. Themes across substance use disorder facilities most associated with states with high drug-induced mortality ratesa.

Example reviews (redacted to maintain anonymity)Top wordsDrug mortality
rates, Pearson r
(95% CI)

Theme

Facility, days, stay, discharge,
hours, without, given, during,

0.11 (0.03-0.19)Dissatisfaction with length
of stay and discharge pro-
cess

• “Ugh! Horrible! Rude staff, no individual therapy, ridiculous
rules! And discharge planning? What discharge planning?
You’re on your own there.”social, worker, plan, once,

friend, upon, case • “Complete lack of discharge planning. My daughter was sent
home with no follow up care plan and they wouldn’t even ship
her belongings.”

Insurance, pay, money, bill,
billing, paid, company, pay-

0.11 (0.03-0.19)Insurance, payments, and
billing

• “Do not come here – they are the worst clinic. The doctors are
fine but they have you waiting forever, they screwed up our
billing and wanted us to pay over $1000 in bills they submittedment, charged, received, finan-
to the wrong insurance company and then double billed them.cial, charge, covered, check,

card Save your time and go to some other place.”
• “Misleading insurance coverage information – abundantly clear

to me that they really only want private pay patients.”
• “Just received the bill for 6 days of nothing....$10,000.00 ’'m

telling you to stay away from this nasty dirty place. absolutely
worthless!!”

• “Questionable billing practices at [facility name]. My husband
received not one but two bills totaling over $23,000.00. We
discovered that neither bill had been submitted to insurance for
payment prior to billing him directly for the full amounts.”

Mental, therapy, therapist,
depression, disorder, psychia-

0.12 (0.04-0.20)Therapy for co-occurring
mental health disorders

• “[Facility name] saved my life. I am very pleased with every-
thing. I would recommend [Facility name] to anyone with eating
disorders and mental health issues.”trist, health, eating, anxiety,

diagnosis, inpatient, group,
outpatient, disorders, social

• “Admitted for my eating disorder. Excellent physicians (espe-
cially Dr. [name]), therapists, nutritionists (specifically qualified
for ED), nurses, and mental health workers. Always available
to assist...They mostly use CBT (cognitive behavioral therapy)
which is an effective method for all types of addictions/disor-
ders...I’m glad...now I have the tools I need for my recovery...I
highly recommend this treatment facility for patients with alco-
hol addiction, drug addiction, mental health disorders, and
eating disorders.”

Help, health, mental, need, is-
sues, those, services, crisis,

0.14 (0.06-0.22)Mental health resources • “Addiction and behavioral health issues are complex and seri-
ous. I have experienced ttc as a thorough and caring approach
to improving the lives of people who ask for help.”may, illness, willing, seek,

substance, serious, deal • “Very good with their counseling and resources for help.”
• “Caring group of mental health experts.”
• “Professional, kind, compassionate mental health services.”

Told, said, didn’t, then, got,
nurse, left, asked, came, took,

0.16 (0.08-0.24)Communication with nurse • “I never once saw my nurse after being in the room for an hour.
They were too busy gossiping at the nurses station so for the
reviews 9 months ago that had a response from the hospitaldown, couldn’t, mom, let,

saying saying they'll work on it is BS they'll still prioritize talking in-
stead of taking care of patients”

Patients, down, leave, please,
keep, hold, unit, send, prison,

0.17 (0.08-0.24)Patients feeling restrained or
held against their will

• “Awful awful place. do not go here. Go to your regular psych
or doctor before you ever step foot in this institution. It is more
like a prison than a mental health facility.”against, worse, police, sleep,

admitted, allowed • “A prison-like “health” facility where you may come out of a
worse...wonder why the only place with open beds and kinda
warned by medical hospital staff some patients without prison
mentality or if they're not not totally insane please watch your
backs especially vulnerable and young”
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Example reviews (redacted to maintain anonymity)Top wordsDrug mortality
rates, Pearson r
(95% CI)

Theme

• “I recommend against using this company. I went for an assess-
ment on my own accord and paid myself. The final report issued
had many errors that they refused to correct...Giving a false
assessment and not correcting it after the errors were pointed
out. I recommend you go somewhere more professional.”

• “If I could give no stars I would. Hipaa violations, unethical,
incorrect medications, unprofessional and beyond belief still
in business. Buyer beware. My records were altered and I have
to get them legally rectified...Copious violations.”

Patient, information, com-
plaint, state, against, due,
name, records, refused, priva-
cy, report, unprofessional,
file, director, law

0.17 (0.09-0.25)Patient complaints and priva-
cy concerns

• “It would have been nice if someone had told us you guys
closed early today!!!!! My husband had an appointment at
4:20pm and when we got to the clinic at 4pm, security said it
was closed!!!!! His appointment is not until 4:20pm. I called
the call center and even they said the clinic closed at 5pm!!!!!
We wasted our money for parking and most importantly our
time!!!!!!”

• “Awful experience! Zero stars if possible!!! Their intake hours
are supposed to be Monday through Friday 8:30am to 2pm. I
was told by the [curse word] that answered the phones that the
intake appointments take 1-2 hours. I went there at
1:50pm...They said it was too late and to come back tomorrow.
How could it be too late? Apparently, the intake appointments
are 2-4 hours now. They have a new system. yeah, a new waste
of my time system. No thanks.”

Told, said, called, asked, then,
see, needed, next, until, pm,
morning, friday, monday, to-
day, hour

0.21 (0.13-0.28)Communication regarding
appointments and office
closures

• “The [facility name] go can shove it- if you arrive 5 minutes
late- they tell you to go away. If you want an appointment
you're looking months out- but show up to your appointment
20 minutes early- and you'll be waiting an hour after your ap-
pointment time...”

• “Appointment time - 12:30pm, arrival time - 12:15pm, current
time - 1:39pm and I'm still waiting!! Because this place is lo-
cated in a predominantly black and hispanic neighborhood,
these people think they can disrespect our time and have us
waiting here for over an hour!! Stay away!”

• “Very poorly managed time wise. My first appointment was
over two hours late from the scheduled time. huge co-pay. My
second appointment was also over an hour late even though it
was maybe a 10 minute consultation. My yet to be third appoint-
ment has been rescheduled twice, once 15 minutes beforehand.”

Appointment, time, minutes,
wait, office, waiting, appoint-
ments, hour, before, late,
scheduled, schedule, long,
waited, seen

0.21 (0.13-0.28)Wait time for appointments

• “No one answers the phone or calls you back. I can't get a pre-
scription refilled. The automated system is like the peo-
ple...doesn’t work. Don't waste your time.”

• “This company, after an initial consultation and intent to be-
come a patient, did not respond to my multiple emails and
several calls and voicemails for over 2 months.”

Call, phone, called, back,
calls, someone, left, times,
number, calling, message, an-
swer, messages, speak, hold

0.21 (0.13-0.29)(Dissatisfaction with) phone
calls and lines of communi-
cation

• “Extremely rude and unhelpful. When I called to make an ap-
pointment the therapist was dry, rude and clearly uninterested.”

• “The medical center is great and the staff however the front
desk woman is extremely rude,cold and disrespectful. It's a
shame to have someone like her representing [facility name].

Rude, front, desk, treated, un-
professional, attitude, service,
extremely, woman, worst,
horrible, speak, lady, ask,
name

0.22 (0.14-0.29)Front desk and reception
experience

Medication, meds, doctor,
medications, off, drug, psychi-
atrist, prescription, prescribed,
pain, anxiety, drugs, withdraw-
al, med, effects

0.22 (0.14-0.30)Medication choices and pre-
scription refills
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Example reviews (redacted to maintain anonymity)Top wordsDrug mortality
rates, Pearson r
(95% CI)

Theme

• “This office is unhelpful and apathetic about refilling prescrip-
tions. I am on week two now of daily phone calls to get a non-
narcotic antidepressant prescription refilled. There is no reason
why it shouldn't be filled, yet my calls remain unreturned and
the soonest I can see a doctor is three weeks despite having 0
days left of my meds, which they know.”

• “The standard of care is dismally low. Gaslighting by doctors,
patients being told to go OD so they can qualify for care, and
patients being put out addicted to a cocktail of pills without
informed consent regarding withdrawal effects or tapering
regimens. This place exists to make money, not to heal.”

• “The psychiatrist hastily prescribed a narcotic that had a nega-
tive interaction with my other medication, she ignored the list
of meds.”

• “The nurses were horrible, unattentive, with no compassion
whatsoever. Worst hospital experience ever. Wow! I hope I
never have to go there again.”

• “Liars liars liars! incompetent, obnoxious apathetic, rude, arro-
gant. Seriously, the worst of humanity works here.”

Go, here, don’t, give, worst,
ever, horrible, stars, rude,
anyone, star, zero, nothing,
please, worse

0.23 (0.15-0.31)Rude and insensitive care

aSignificance was measured using a paired 2-tailed t test with the Benjamini-Hochberg P correction (P<.05).

States With High Drug-Induced Mortality Rates
A total of 23 (49%) of 47 states in our sample had a high
drug-induced mortality rate (mean 21.92, SD 3.69 age-adjusted
deaths per 100,000 people; Table 1).

The top 5 themes most correlated with high drug mortality rates
included care from doctors or providers (r=0.24), rude and
insensitive care (r=0.23), medication choices and prescription
refills (r=0.22), front desk and reception experience (r=0.22),
and (dissatisfaction with) phone calls and lines of
communication (r=0.21; Tables 2 and 3).

Associations Between Review Ratings and
Drug-Induced Mortality Rates
Across all states (n=11, 941 ratings), the mean (SD) mortality
rate was 17.1 (5.5; range 6.8-35.0) age-adjusted deaths per
100,000 people. Multilevel modeling revealed that in a typical
facility in a state with an average drug mortality rate, the
predicted average Yelp rating was 2.6 (95% CI 2.5-2.8) out of
5. On average, there was a negative association between drug
mortality rate and Yelp ratings (b=–0.03, 95% CI –0.05 to –0.01;
P=.005). Therefore, a state with a 10 deaths per 100,000 people
increase in drug-induced mortality was associated with a 0.30
points lower average Yelp rating. This negative association was
replicated in the mixed-effects ordinal regression model
(b=–0.04, 95% CI –0.07 to –0.01, P=.004).

Discussion

Principal Findings
This study analyzed the association between online ratings and
narrative review content from online reviews of US SUD
treatment facilities and drug-induced mortality data from the
CDC. The study has 2 main findings. First, we found that the
average negative online ratings of SUD treatment facilities were

associated with higher drug-induced mortality. Second, there
were marked differences in the themes expressed between high
versus low mortality states. These findings provide insights
about the gap that persists in understanding the associations
between online reviews and drug-induced mortality outcomes.
Further, these results may help amplify patient-generated
perceptions of poor quality of SUD care that may contribute to
increased drug-induced mortality.

For every 10 deaths per capita increase in drug-induced
mortality, the Yelp rating is expected to be 0.3 points lower.
This is important, as little research has been conducted to closely
examine the association between the online ratings and
morbidity and mortality outcomes in the context of SUD
treatment [11]. Consistent with a prior report that found that
higher online ratings of essential health care facilities were
associated with lower mortality [11], our findings suggest that
online ratings may serve as a proxy for some components of
quality of care such as communication with patients or
availability of evidence-based treatments. This work also
provides evidence that tools such as ATLAS [21], a website
developed to help patients find and compare SUD treatment
facilities, may have value in guiding patients to care options
that fit their needs and preferences.

Recently, the Shatterproof foundation developed National
Principles of Care for addiction treatment, evidence-based
practices to improve outcomes for individuals with SUD [22].
Themes associated with low mortality were consistent with
these principles. For example, their second principle, “A
personal plan for every patient,” matched the theme
“individualized recovery programs.” This theme is also in line
with a recent partnership between Shatterproof, the American
Society of Addiction Medicine, and OpenBeds to create a free,
13-item assessment to determine what type of SUD treatment
aligns best with each patient’s needs [23].
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These findings provide insights into aspects of patient
experience within SUD care that are often difficult to capture
with numerical surveys including a focus on “caring staff” and
“communication.” Themes associated with high mortality states
often pertained to poor communication and low-quality or
non–evidenced-based care. Many of these identified themes can
guide areas of improvement regarding the delivery of
patient-centered and high-quality care. The identified themes
indicate aspects of the patient experience that may contribute
to high and low state-level mortality. Ultimately, these results
underscore a process to unify patients’ “digital voices” to
improve and inform treatment for SUD.

Limitations
This study has several limitations. Reviews in the sample
represent a small proportion of a facility’s patients, and facilities
included represent a very small proportion of the SUD treatment
infrastructure. Further, online reviews may not be representative
of the population seen at each facility because Yelp does not
verify the identity of the user posting a rating or review.
Therefore, the use of only Yelp reviews as a source of online
ratings and reviews may limit the impact of our findings.
Additionally, 4 states (including Washington DC) did not have
SUD treatment facilities with more than 5 reviews, limiting
conclusions that can be drawn about the association between
themes in online ratings and mortality in those states. Further,
consistent with previously published methods [10-13,15] to
analyze thematic online review content, the analyses in this
study were not stratified by year, which limits conclusions that
can be drawn. Specifically, our data are limited by the fact that
the distribution of ratings by year is slightly skewed toward
later years when reviews of health centers on Yelp became more
popular. Other limitations of this study include its retrospective
design, selection bias, and responder bias. A final limitation is
that due to our sample size, our analyses were limited to
mortality data at the state level despite the fact that county-level
mortality data are generally available, so we could not explore
facility-level services or practices that may contribute to high
drug mortality. If more reviews become available, a county-level
analysis in the future may provide more granular results. Our

team attempted to run a similar analysis at the county level, but
the intersection of mortality data from CDC and review data
from Yelp was very small. Likewise, there may be possible
heterogeneity across SUD populations in different states that
limits the impact of these findings, as well as differences in
state-level investment in SUD care and responses to
drug-induced mortality rates that vary depending on state-level
priorities and budgetary restrictions. Although state policy likely
is linked to mortality, state-level policy differences were not
likely captured in the patient-generated online content analyzed
in this study.

This study also has strengths. Online review platforms serve as
an organic, democratizing, and accessible space for patients to
document their care experiences with rich narratives. While
reviews are not representative, Yelp uses software in place to
filter out inappropriate or inaccurate reviews. Moreover, the
anonymity of reviews may encourage patients to express the
true realities of their experiences without fear that it will impact
their care. Therefore, analyses of online review content can
provide insights to improve patient experiences and treatment
delivery that may not be captured by numerical surveys or
patient experiences surveys where patients may be concerned
that their anonymity is not protected.

Conclusions
At the state level, mean negative online ratings of SUD treatment
facilities were associated with higher drug-induced mortality.
Additionally, unique narrative content themes were identified
online reviews across states with low or high mortality. Online
reviews of SUD treatment facilities provide an opportunity to
investigate and understand elements of the patient experience,
quality of care, and state level mortality. The themes generated
from online, organically derived patient content can inform and
improve patient-centered care for SUD treatment. Future efforts
to integrate these themes into the development of an SUD
treatment facility-based performance and quality measures for
SUD treatment may help to further elucidate what aspects of
patient care may promote or improve both patient satisfaction
and drug-induced mortality.

 

Acknowledgments
The authors would like to acknowledge the faculty and staff of the Center for Digital Health and the Center for Emergency Care
Policy and Research at the University of Pennsylvania for their support of this work. Funding was provided by National Institutes
of Health, National Institute on Drug Abuse (NIH NIDA; 1R21DA050761). The authors would also like to thank Nina Sokolovic
for her guidance regarding multilevel modeling and overall support of the lead author’s research initiatives.

Data Availability
The data sets generated during and/or analyzed during this study are available from the corresponding author on reasonable
request.

Authors' Contributions
APP and SCG lead the natural language processing analyses and provided guidance on the statistical analyses led by MPA. RMM,
ZFM, and AKA lead the study design and provided guidance to MPA, SCG, and APP about the analyses. Themes were categorized
by independent review by 2 members of the research team (AKA and MPA) and differences reconciled by a third (RMM). All
authors wrote parts of the article and provided revisions to this manuscript. All authors read and approved the final manuscript.

JMIR AI 2023 | vol. 2 | e46317 | p.462https://ai.jmir.org/2023/1/e46317
(page number not for citation purposes)

Abrams et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conflicts of Interest
RMM is currently supported as principal investigator by the National Institutes of Health (NIH) National Institute on Drug Abuse
(NIDA; award 1R21DA050761); NIH National Heart, Lung and Blood Institutes of Health (awards K24-HL157621 and
R01HL14184401); and the National Institute of Mental Health (award R01MH127686). None of the other authors have competing
interests to declare.

Multimedia Appendix 1
Excluded facilities based on Yelp category label.
[DOCX File , 26 KB - ai_v2i1e46317_app1.docx ]

Multimedia Appendix 2
Words most associated with online reviews in states with (A) high and (B) low drug-induced mortality rates. Relative font size
represents stronger correlation with high or low mortality. Increased frequency of word use is represented by darker shading.
[PNG File , 219 KB - ai_v2i1e46317_app2.png ]

References
1. Substance abuse and addiction statistics. National Center for Drug Abuse Statistics. 2022. URL: https://drugabusestatistics.

org/ [accessed 2022-03-21]
2. Multiple cause of death 1999-2019 on CDC WONDER online database, released in 2020. Data are from the multiple cause

of death files, 1999-2019, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics
Cooperative Program. Centers for Disease Control and Prevention, National Center for Health Statistics. 2021. URL: https:/
/wonder.cdc.gov/mcd-icd10.html [accessed 2023-11-07]

3. Bahorik AL, Satre DD, Kline-Simon AH, Weisner CM, Campbell CI. Alcohol, cannabis, and opioid use disorders, and
disease burden in an integrated health care system. J Addict Med 2017;11(1):3-9 [FREE Full text] [doi:
10.1097/ADM.0000000000000260] [Medline: 27610582]

4. Provisional drug overdose death counts. Centers for Disease Control and Prevention. URL: https://www.cdc.gov/nchs/nvss/
vsrr/drug-overdose-data.htm [accessed 2022-03-21]

5. Agarwal AK, Guntuku SC, Meisel ZF, Pelullo A, Kinkle B, Merchant RM. Analyzing online reviews of substance use
disorder treatment facilities in the USA using machine learning. J Gen Intern Med 2022;37(4):977-980 [FREE Full text]
[doi: 10.1007/s11606-021-06618-7] [Medline: 33728567]

6. Marchand K, Beaumont S, Westfall J, MacDonald S, Harrison S, Marsh DC, et al. Conceptualizing patient-centered care
for substance use disorder treatment: findings from a systematic scoping review. Subst Abuse Treat Prev Policy 2019;14(1):37
[FREE Full text] [doi: 10.1186/s13011-019-0227-0] [Medline: 31511016]

7. Garnick DW, Horgan CM, Acevedo A, McCorry F, Weisner C. Performance measures for substance use disorders—what
research is needed? Addict Sci Clin Pract 2012;7(1):18 [FREE Full text] [doi: 10.1186/1940-0640-7-18] [Medline: 23186374]

8. Weisner C, Campbell CI, Altschuler A, Yarborough BJH, Lapham GT, Binswanger IA, et al. Factors associated with
Healthcare Effectiveness Data and Information Set (HEDIS) alcohol and other drug measure performance in 2014-2015.
Subst Abus 2019;40(3):318-327 [FREE Full text] [doi: 10.1080/08897077.2018.1545728] [Medline: 30676915]

9. County buprenorphine access in the United States. Shatterproof. URL: https://www.shatterproof.org/our-work/advocacy/
research-reports/buprenorphine-access [accessed 2022-03-21]

10. Ranard BL, Werner RM, Antanavicius T, Schwartz HA, Smith RJ, Meisel ZF, et al. Yelp reviews of hospital care can
supplement and inform traditional surveys of the patient experience of care. Health Aff (Millwood) 2016;35(4):697-705
[FREE Full text] [doi: 10.1377/hlthaff.2015.1030] [Medline: 27044971]

11. Stokes DC, Pelullo AP, Mitra N, Meisel ZF, South EC, Asch DA, et al. Association between crowdsourced health care
facility ratings and mortality in US counties. JAMA Netw Open 2021;4(10):e2127799 [FREE Full text] [doi:
10.1001/jamanetworkopen.2021.27799] [Medline: 34665240]

12. Stokes DC, Kishton R, McCalpin HJ, Pelullo AP, Meisel ZF, Beidas RS, et al. Online reviews of mental health treatment
facilities: narrative themes associated with positive and negative ratings. Psychiatr Serv 2021;72(7):776-783 [FREE Full
text] [doi: 10.1176/appi.ps.202000267] [Medline: 34015944]

13. Agarwal AK, Mahoney K, Lanza AL, Klinger EV, Asch DA, Fausti N, et al. Online ratings of the patient experience:
emergency departments versus urgent care centers. Ann Emerg Med 2019;73(6):631-638 [FREE Full text] [doi:
10.1016/j.annemergmed.2018.09.029] [Medline: 30392737]

14. Ryskina KL, Andy AU, Manges KA, Foley KA, Werner RM, Merchant RM. Association of online consumer reviews of
skilled nursing facilities with patient rehospitalization rates. JAMA Netw Open 2020;3(5):e204682 [FREE Full text] [doi:
10.1001/jamanetworkopen.2020.4682] [Medline: 32407501]

15. Agarwal AK, Wong V, Pelullo AM, Guntuku S, Polsky D, Asch DA, et al. Online reviews of specialized drug treatment
facilities-identifying potential drivers of high and low patient satisfaction. J Gen Intern Med 2020;35(6):1647-1653 [FREE
Full text] [doi: 10.1007/s11606-019-05548-9] [Medline: 31755009]

JMIR AI 2023 | vol. 2 | e46317 | p.463https://ai.jmir.org/2023/1/e46317
(page number not for citation purposes)

Abrams et alJMIR AI

XSL•FO
RenderX

ai_v2i1e46317_app1.docx
ai_v2i1e46317_app1.docx
ai_v2i1e46317_app2.png
ai_v2i1e46317_app2.png
https://drugabusestatistics.org/
https://drugabusestatistics.org/
https://wonder.cdc.gov/mcd-icd10.html
https://wonder.cdc.gov/mcd-icd10.html
https://europepmc.org/abstract/MED/27610582
http://dx.doi.org/10.1097/ADM.0000000000000260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27610582&dopt=Abstract
https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm
https://www.cdc.gov/nchs/nvss/vsrr/drug-overdose-data.htm
https://europepmc.org/abstract/MED/33728567
http://dx.doi.org/10.1007/s11606-021-06618-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33728567&dopt=Abstract
https://substanceabusepolicy.biomedcentral.com/articles/10.1186/s13011-019-0227-0
http://dx.doi.org/10.1186/s13011-019-0227-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31511016&dopt=Abstract
https://ascpjournal.biomedcentral.com/articles/10.1186/1940-0640-7-18
http://dx.doi.org/10.1186/1940-0640-7-18
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23186374&dopt=Abstract
https://journals.sagepub.com/doi/abs/10.1080/08897077.2018.1545728?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1080/08897077.2018.1545728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30676915&dopt=Abstract
https://www.shatterproof.org/our-work/advocacy/research-reports/buprenorphine-access
https://www.shatterproof.org/our-work/advocacy/research-reports/buprenorphine-access
https://europepmc.org/abstract/MED/27044971
http://dx.doi.org/10.1377/hlthaff.2015.1030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27044971&dopt=Abstract
https://europepmc.org/abstract/MED/34665240
http://dx.doi.org/10.1001/jamanetworkopen.2021.27799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34665240&dopt=Abstract
https://europepmc.org/abstract/MED/34015944
https://europepmc.org/abstract/MED/34015944
http://dx.doi.org/10.1176/appi.ps.202000267
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34015944&dopt=Abstract
https://www.annemergmed.com/article/S0196-0644(18)31322-2/fulltext
http://dx.doi.org/10.1016/j.annemergmed.2018.09.029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30392737&dopt=Abstract
https://europepmc.org/abstract/MED/32407501
http://dx.doi.org/10.1001/jamanetworkopen.2020.4682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32407501&dopt=Abstract
https://europepmc.org/abstract/MED/31755009
https://europepmc.org/abstract/MED/31755009
http://dx.doi.org/10.1007/s11606-019-05548-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31755009&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


16. Merchant RM, Volpp KG, Asch DA. Learning by listening-improving health care in the era of Yelp. JAMA 2016 Dec
20;316(23):2483-2484 [FREE Full text] [doi: 10.1001/jama.2016.16754] [Medline: 27997663]

17. Korthuis PT, Gregg J, Rogers WE, McCarty D, Nicolaidis C, Boverman J. Patients' reasons for choosing office-based
buprenorphine: preference for patient-centered care. J Addict Med 2010;4(4):204-210 [FREE Full text] [doi:
10.1097/ADM.0b013e3181cc9610] [Medline: 21170143]

18. Mark TL, Hinde J, Henretty K, Padwa H, Treiman K. How patient centered are addiction treatment intake processes? J
Addict Med 2021;15(2):134-142 [FREE Full text] [doi: 10.1097/ADM.0000000000000714] [Medline: 32826618]

19. Heeringa WJ. Measuring Dialect Pronunciation Differences Using Levenshtein Distance. Groningen: University Library
Groningen; 2004.

20. Blei D, Ng A, Jordan M. Latent Dirichlet allocation. Advances in Neural Information Processing Systems 14 (NIPS 2001).
2001. URL: https://proceedings.neurips.cc/paper/2001/file/296472c9542ad4d4788d543508116cbc-Paper.pdf [accessed
2023-11-07]

21. Shatterproof Treatment Atlas. URL: https://www.treatmentatlas.org/ [accessed 2022-03-21]
22. Shatterproof national principles of care. Shatterproof. URL: https://www.shatterproof.org/shatterproof-national-principles-care

[accessed 2022-03-21]
23. Get a treatment recommendation. Shatterproof. URL: https://www.shatterproof.org/find-help/determine-treatment-needs

[accessed 2022-03-19]

Abbreviations
CDC: Centers for Disease Control and Prevention
HCAHPS: Hospital Consumer Assessment of Healthcare Providers and Systems
LDA: latent Dirichlet allocation
SAMHSA: Substance Abuse and Mental Health Services Administration
SUD: substance use disorder

Edited by G Luo; submitted 06.02.23; peer-reviewed by Q Dong, S Zeng; comments to author 16.05.23; revised version received
29.09.23; accepted 02.10.23; published 29.12.23.

Please cite as:
Abrams MP, Merchant RM, Meisel ZF, Pelullo AP, Chandra Guntuku S, Agarwal AK
Association Between Online Reviews of Substance Use Disorder Treatment Facilities and Drug-Induced Mortality Rates: Cross-Sectional
Analysis
JMIR AI 2023;2:e46317
URL: https://ai.jmir.org/2023/1/e46317 
doi:10.2196/46317
PMID:

©Matthew P Abrams, Raina M Merchant, Zachary F Meisel, Arthur P Pelullo, Sharath Chandra Guntuku, Anish K Agarwal.
Originally published in JMIR AI (https://ai.jmir.org), 29.12.2023. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work, first published in JMIR AI, is properly cited. The
complete bibliographic information, a link to the original publication on https://www.ai.jmir.org/, as well as this copyright and
license information must be included.

JMIR AI 2023 | vol. 2 | e46317 | p.464https://ai.jmir.org/2023/1/e46317
(page number not for citation purposes)

Abrams et alJMIR AI

XSL•FO
RenderX

https://europepmc.org/abstract/MED/33728567
http://dx.doi.org/10.1001/jama.2016.16754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27997663&dopt=Abstract
https://europepmc.org/abstract/MED/21170143
http://dx.doi.org/10.1097/ADM.0b013e3181cc9610
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21170143&dopt=Abstract
https://journals.lww.com/journaladdictionmedicine/abstract/2021/04000/how_patient_centered_are_addiction_treatment.9.aspx
http://dx.doi.org/10.1097/ADM.0000000000000714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32826618&dopt=Abstract
https://proceedings.neurips.cc/paper/2001/file/296472c9542ad4d4788d543508116cbc-Paper.pdf
https://www.treatmentatlas.org/
https://www.shatterproof.org/shatterproof-national-principles-care
https://www.shatterproof.org/find-help/determine-treatment-needs
https://ai.jmir.org/2023/1/e46317
http://dx.doi.org/10.2196/46317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Review

The Application of Artificial Intelligence in Health Care Resource
Allocation Before and During the COVID-19 Pandemic: Scoping
Review

Hao Wu1, MA; Xiaoyu Lu2, DPhil; Hanyu Wang2, BA, BEc, MPhil
1Department of Politics and International Relations, University of Oxford, Oxford, United Kingdom
2School of International Studies, Peking University, Beijing, China

Corresponding Author:
Hanyu Wang, BA, BEc, MPhil
School of International Studies
Peking University
No 5 Yiheyuan Road
Haidian District
Beijing, 100871
China
Phone: 86 13261712766
Email: wang.hanyu@outlook.com

Abstract

Background: Imbalanced health care resource distribution has been central to unequal health outcomes and political tension
around the world. Artificial intelligence (AI) has emerged as a promising tool for facilitating resource distribution, especially
during emergencies. However, no comprehensive review exists on the use and ethics of AI in health care resource distribution.

Objective: This study aims to conduct a scoping review of the application of AI in health care resource distribution, and explore
the ethical and political issues in such situations.

Methods: A scoping review was conducted following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses extension for Scoping Reviews). A comprehensive search of relevant literature was conducted in MEDLINE
(Ovid), PubMed, Web of Science, and Embase from inception to February 2022. The review included qualitative and quantitative
studies investigating the application of AI in health care resource allocation.

Results: The review involved 22 articles, including 9 on model development and 13 on theoretical discussions, qualitative
studies, or review studies. Of the 9 on model development and validation, 5 were conducted in emerging economies, 3 in developed
countries, and 1 in a global context. In terms of content, 4 focused on resource distribution at the health system level and 5 focused
on resource allocation at the hospital level. Of the 13 qualitative studies, 8 were discussions on the COVID-19 pandemic and the
rest were on hospital resources, outbreaks, screening, human resources, and digitalization.

Conclusions: This scoping review synthesized evidence on AI in health resource distribution, focusing on the COVID-19
pandemic. The results suggest that the application of AI has the potential to improve efficacy in resource distribution, especially
during emergencies. Efficient data sharing and collecting structures are needed to make reliable and evidence-based decisions.
Health inequality, distributive justice, and transparency must be considered when deploying AI models in real-world situations.

(JMIR AI 2023;2:e38397)   doi:10.2196/38397

KEYWORDS

artificial intelligence; resource distribution; health care; COVID-19; health equality; eHealth; digital health

Introduction

Global responses to COVID-19 are converging with the use of
digital health and algorithms based on artificial intelligence
(AI), impacting health care systems around the world [1]. AI

was partially founded by Alan Turing, and a machine or a
process that could demonstrate intelligent behaviors in cognitive
tasks, which can pass the Turing test, would be deemed as AI
[2]. Multiple AI techniques, such as fuzzy expert systems and
Bayesian networks, have been applied both virtually and
physically in the health care field [3]. For example, clinical
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pathway analysis, a critical area in ensuring standard medical
procedures, can be analyzed by pattern-mining procedures [4].
Resource distribution includes the distribution of resources at
strategic, tactical, and operational levels and is a key issue in
health policy [5,6].

Luengo-Oroz et al proposed that the application of AI during
the COVID-19 pandemic can be broken down into 3 scales:
molecular, clinical, and societal [7]. At the molecular level,
protein structure prediction, novel nucleic acid testing, drug
repurposing, and drug discovery all rely on AI and deep-learning
algorithms [7-9]. At the clinical level, diagnosis, treatment, and
prognosis all benefit from AI. For example, AI-based computed
tomography diagnosis has been widely applied for identifying
COVID cases [7,10,11], alongside robotics and telemedicine
that facilitate clinical processes. At the societal level, AI is
applied in epidemiological research and social policymaking.
In particular, AI-based case forecasting has been in use since
the beginning of the pandemic [7,12]. The application of AI at
the societal level can stratify population risk, facilitate diagnosis
and testing, support the design of trials and drugs, and inform
policymaking, relieving the burden of COVID-19 on health
care systems and helping the society to better respond to the
pandemic [1].

The application of AI to decision-making processes in health
care systems significantly precedes the COVID-19 pandemic
[7,13]. Health policy aims at providing health care to the
population, and the decision-making process aims to address 2
core issues: screening and diagnosis, and treatment and
monitoring [7]. These 2 tasks are essential to the entire health
care system. The policymaking process includes hypothesis
generation, hypothesis testing, and action (or policy). AI can
learn from past data, including health records, past insurance
claims, and disease incidence and prevalence, to improve
hypothesis generation and testing, and thus improve the quality
of health care policymaking [7].

In the health care system, resource distribution is an essential
issue for policymakers, as resources are always scarce [14]. For
example, Kong et al argued that the primary problem in China’s
health care system is the lack of high-quality health resources
and the consequent supply-demand imbalance. They maintain
that AI could benefit from China’s enormous data and has the
potential to improve this unequal distribution of health resources
[14].

During the COVID-19 pandemic, imbalanced health care
resource distribution has been one of the central issues causing
unequal health outcomes and political tension [15,16]. Ji et al
observed that the higher COVID case-fatality rate in Wuhan
city and Hubei province compared with other parts of China at
the beginning of the pandemic could potentially be attributed
to health care resource scarcity [16]. Edejer et al projected that
the cost of health care resources to combat the pandemic would
continue to rise in low- and middle-income counties, and
concluded that a comprehensive system of resource distribution
is necessary [15].

Health care resource distribution is determined by the
supply-demand relationship, logistics, and governance structure

[17,18]. Using the COVID-19 response as an example, the
severity of the pandemic can determine the health care resources
required in each location, but the resources might not be
distributed according to need [18]. AI can be applied to study
supply-demand, logistics, and patient characteristics, but the
ethics and implications of the use of AI in policymaking remain
important issues [7].

Currently, there are no comprehensive reviews to provide an
overall picture of the literature on the application of AI in
resource distribution in health care settings, particularly with
regard to societal and ethical aspects. This study aims to conduct
a scoping review on the application of AI in health care resource
distribution, particularly during the COVID-19 pandemic and
to explore the ethics and implications of AI in health
policymaking with regard to resource distribution.

Methods

Scoping Review Design
This scoping review follows the framework proposed by Arksey
and O’Malley [19]. Briefly, the review has the following 5
stages: (1) identifying the research question, “What are the roles
of AI and machine learning in the allocation of health care
resources, before and during the COVID-19 pandemic?”; (2)
identifying suitable studies; (3) selecting studies for review; (4)
consolidating the data; and (5) summarizing and reporting the
results. This study complies with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews (PRISMA-ScR) [20] for reporting scoping
review results.

Data Source and Search Strategy
Searches were conducted in MEDLINE (Ovid), PubMed, Web
of Science, and Embase from inception to February 2022. The
search featured 2 key terms: (1) artificial intelligence, including
related terms such as big data and algorithm, and (2) health
care resource allocation. The search terms were used with the
“explode” feature where applicable. For example, in MEDLINE
and Embase, we used exp artificial intelligence/ and exp
resource allocation/, and in PubMed, relevant MeSH (Medical
Subject Heading) terms were used. The search was individually
designed and adapted for each database.

Study Selection
Inclusion and exclusion criteria were defined a priori. This
scoping review includes qualitative and quantitative studies
investigating the application of AI in health care resource
allocation. Studies that are not relevant to AI or health care
resource allocation were excluded, as were duplicate studies.
The inclusion and exclusion criteria are summarized in Table
1.

Selection was conducted in 2 steps. First, titles and abstracts
were screened for topic relevance and study design. Second,
full texts of the remaining studies were screened to check for
eligibility. All of the study selection processes were conducted
in EndNote X9 (Clarivate).
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Table 1. Inclusion and exclusion criteria.

ExclusionInclusionCriterion

Letters, comments, conference abstracts, editorials, and thesesQualitative, quantitative, mixed method, and review studies in
peer-reviewed journals

Type of study

All other languagesEnglishLanguage

Does not include (1) artificial intelligence/machine learning
and relevant terms or (2) allocation of health care resources

Includes (1) artificial intelligence/machine learning and relevant
terms and (2) allocation of health care resources

Study variables

All other resource allocation scenariosHealth care resource allocation at either the population level or
hospital level

Study context

Data Consolidation
Selected studies were input into NVivo 12 (QSR International)
for labeling and coding. Authors coded data of interest from
the articles in NVivo 12 and extracted information regarding
study author, study design, location, context, aim, main result,
AI method under study, resource allocation situation, and
policymaking relevance into a standardized Excel (Microsoft
Corp) form.

Summarizing the Results
We employed an inductive approach to summarize the results
from the included studies. First, the selected papers were
grouped into 2 types: (1) studies of model development and
validation of AI-based algorithms applied to health care resource
distribution, and (2) qualitative studies, theoretical discussions,
and review studies of the application of AI in health care
resource distribution. For studies of model development and
validation, we extracted the study objectives, resource
distribution situations, AI model input variables, and policy
relevance. For studies in the second category, objectives,
resource distribution situations, discussed topics, and policy
relevance were extracted. We further divided the input variables

of the studies of model development and validation into 2
predefined categories: (1) ecological variables or variables at
the group level, which included variables depicting
characteristics at the population level, such as infant mortality
in a region, local economic development, or disease prevalence
and incidence; and (2) individual variables, which included
variables that define individual characteristics such as diagnosis
and age.

Results

Selected Studies
In total, 298 studies were identified in 4 databases after
removing duplicates. After 1 round of screening for titles and
abstracts, 255 studies were excluded due to irrelevant topics
and unsuitable study designs. This left 43 studies for full-text
screening. Of these, 2 were excluded because they were not
directly relevant to health care, 8 because they were not related
to resource distribution, 7 because they did not feature
applications of AI, and 4 because of an inappropriate study
design. In the end, 22 studies remained for qualitative synthesis.
The PRISMA flow diagram for study selection is presented in
Figure 1.

JMIR AI 2023 | vol. 2 | e38397 | p.467https://ai.jmir.org/2023/1/e38397
(page number not for citation purposes)

Wu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the study. AI: artificial intelligence.

Summary of the Characteristics of Studies on Model
Development
The characteristics of the included studies on model
development are summarized in Table 2. The included studies
were published between 2013 and 2021. Of the 22 included
studies, 9 focused on model development and validation [21-30].
Of these, 5 studies were conducted in emerging economies,
including 2 in China [27,29], 2 in Brazil [25,28], and 1 in
Ecuador [26]. In developed countries, 3 studies were conducted.
These included 1 in Germany [23], 1 in the United Kingdom
[22], and 1 in the United States with a validation data set in
China [24]. One study was applied to a global context [21].

Of the 9 studies, 4 focused on resource distribution at the health
system level, including financial resources for public health in
Brazil [25], health care resource distribution in health planning
in Ecuador [26], medical resource allocation in the hierarchical
health system in China [29], and medical equipment allocation
in the global COVID-19 pandemic [21]. The remaining 5 studies
focused on resource allocation at the hospital level, including
bed allocation in a London hospital [22], day resources and bed
allocation in a hospital in Munich, Germany [23], human
resources and medical materials in a public hospital in China
[27], medical resource allocation in a hospital in the capital of
State of Minas Gerais in Brazil [28], and medical resource
allocation in clinics for COVID-19 patients in New York [24].
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Table 2. Characteristics of the included studies on model development and validation.

Input variablesResource allocation situationObjectivesReference

Mortality characteristics, proportion of teenage mothers,
proportion of inadequate prenatal care, fertility rate, Gini
index, proportion of elderly people in the population, liter-
acy rate, financing capacity per capita, percentage of people
with income below half minimum wage, percentage of ur-
ban households with basic sanitation, and proportion of
urban households served by garbage collection

Financial resources for public
health in Brazil

To construct a financial resource
allocation model using an artificial
neural network

Rosas et al (2013)
[25]

Bed inventory, arrival rate, mean service time, patient flow
parameters, and holding and penalty cost and other cost
considerations

Bed allocation and financial
resource utilization in the geri-
atric department of a London
hospital

To propose a bed allocation and
financial resource utilization strat-
egy through queuing modeling and
evolutionary computation

Belciug &
Gorunescu (2015)
[22]

Primary and secondary diagnoses, clinical procedures, age,
gender, and weight in newborns

Hospital resources, including
day resources and overnight
resources (beds), validated in a
mid-sized hospital near Mu-
nich, Germany

To evaluate how early determina-
tion of diagnosis-related groups
can be used for better allocation
of scarce hospital resources

Gartner & Padman
(2015) [23]

Geospatial variables based on the social determinants of
health and geospatial patterns of territorial distribution in
the allocation of equipment, supplies, and health services
in relation to the availability, accessibility, and need of the
population

Health care resource distribu-
tion in health planning in
Ecuador

To present an artificial intelli-
gence–based health planning
model based on data from geospa-
tial systems

Velez et al (2016)
[26]

Distribution of medical stations, professional level of doc-
tors (salary and seniority), patient preferences and illness
severity, medical cost, and revenue

Allocation of doctors and other
medical resources in a public
hospital system in China

To propose a health resource allo-
cation model based on mass cus-
tomization to maximize revenue
and customization

Xu et al (2018)
[27]

Number of receptionists in the reception area; number of
triage nurses in the triage room; number of laboratory
technicians in the laboratory and X-ray room; and number
of doctors, nurses, and nurse technicians in the suturing
yellow zone, orthopedics department, surgical department,
and clinical emergency area.

Medical resource allocation in
a teaching hospital in the capi-
tal of State of Minas Gerais in
Brazil

To present a model based on
agent-based simulation, machine
learning, and a genetic algorithm
for allocation of medical resources
in emergency departments

Yousefi et al
(2018) [28]

Patient diagnostic characteristics and hospital tiersMedical resource allocation in
the hierarchical medical treat-
ment system in China

To propose a framework introduc-
ing a novel approach to multi-at-
tribute decision-making problems
in the picture fuzzy context

Zhang et al (2018)
[29]

Outpatient score (age, gender, diabetes, cardiovascular
comorbidities, and systolic blood pressure) and biomarker
score (C-reactive protein, procalcitonin, and age)

Resource allocation during
COVID in New York, with
validation data sets from
Wuhan, China

To present a clinical decision-sup-
port system and mobile app to as-
sist in COVID severity assessment,
management, and care

McRae et al (2020)
[24]

COVID risk factors by region, COVID mortality by region,
and current demand for medical equipment

Pandemics in the context of
COVID

To study how reinforcement
learning and deep-learning models
can facilitate the redistribution of
medical equipment during pan-
demics

Bednarski et al
(2021) [21]

Summary of the Characteristics of Studies Involving
Reviews and Theoretical Discussions
The characteristics of studies involving reviews and theoretical
discussions are summarized in Table 3. Of the 22 included
studies, 13 were theoretical discussions, qualitative studies, or
review studies [31-43]. Of those studies, 8 studies were
qualitative discussions on the COVID-19 pandemic

[31,33,34,36,38,39,41,43], with 2 in a Chinese context [34,43]
and the rest in a global situation. The remaining 5 studies
focused on other situations, with 1 focusing on resource
allocation in intensive care units and hospital stay [40], 1 on
disease outbreaks and disasters [33], 1 on diabetic retinopathy
screening [42], 1 on human resource allocation in health systems
[35], and 1 on medical information digitalization [37].
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Table 3. Characteristics of the included studies involving theoretical discussions, qualitative studies, or review studies.

Reviewed/discussed methods for the application of AIa during
the COVID-19 pandemic

Resource allocation situa-
tion

ObjectiveReference

Intensive care unit and
in-hospital stay length

To explore how model design, biases
in data, and interactions of model pre-
dictions with clinicians and patients
exacerbate health inequalities

Rajkomar et al
(2018) [40]

• Suggested that future AI models for health care resource
distribution should include principles of distributive justice.

Global COVID-19 pan-
demic

To analyze the applications of AI dur-

ing COVID using the WHOb frame-
work of pandemic evolution

Laudanski et al
(2020) [36]

• Reviewed cases in Italy where AI was used in studying
computed tomography scans for COVID prognosis, and
suggested that AI-driven scans can help predict prognosis
and therefore allow better resource distribution.

• Discussed AI-driven triage based on patient characteristics
and AI-supported health resource allocation and ethics.

Global COVID-19 pan-
demic

To discuss the potential of using AI to
prevent and control COVID

Adly et al
(2020) [31]

• Suggested that the application of AI was valuable in med-
ical resource distribution that included the parameters of
patients and the pandemic.

Disasters and disease
outbreaks

To present approaches for using tech-
nology to facilitate resource distribu-
tion in disasters and outbreaks

Bernardo et al
(2020) [33]

• Found that data collected from crowdsourcing and the
human-technology interface could be used as data sources.

Global COVID-19 pan-
demic

To discuss the basic principles of
medical resource allocation choices
during COVID

Neves et al
(2020) [38]

• Discussed rationalization of care, medical and team con-
flict, modeling of the pandemic, and application of AI.

• Explored the use of AI as a support tool to streamline in-
ventory control and standardize resource distribution.

Diabetic retinopathy
screening

To present an overview of the applica-
tion of AI technology in ophthalmolo-
gy, with a focus on deep-learning sys-
tems

Xie et al (2020)
[42]

• Reviewed empirical considerations behind the formation
of successful screening programs.

• Examined potential methods for health economics and
safety analyses that can assess concerns regarding AI-based
screening.

COVID-19 pandemic in
Shenzhen, China

To present the COVID response of
Shenzhen, China and discuss the poten-
tial of a successful model for COVID
prevention and control

Zou et al (2020)
[43]

• Reviewed methods applied by Shenzhen, including early
action and centralized response, care for vulnerable per-
sons, community response teams, and technology.

• Discussed the integration of information technology in
Shenzhen’s response, including mobile technology, big
data, and AI.

Global COVID-19 pan-
demic

To discuss the data sharing and collec-
tion process and the ethical considera-
tions around pandemic data

Basit et al
(2021) [32]

• Discussed the required data, failures and challenges in
obtaining pandemic data, success in data access, model
creation using data, and ethical challenges associated with
data access during the COVID-19 pandemic.

• Discussed the application of AI in the allocation of inten-
sive care resources and ventilators.

COVID-19 pandemic in
China

To investigate China’s health informa-
tization, especially during the COVID-
19 pandemic

Huang et al
(2021) [34]

• Discussed the development of China’s health informatiza-
tion from 5 perspectives: health information infrastructure,
information technology applications, financial and intellec-
tual investment, health resource allocation, and the standard
system.

Human resources in
health systems

To discuss the implications of AI for
employability by analyzing issues in
the health care sector

Jain et al (2021)
[35]

• Displayed hierarchical relationships between employability
and a range of characteristics.

• Discussed measures that could potentially enhance employ-
ability in the health care sector through AI.

Medical information dig-
italization

To establish barriers that affect medical
information digitalization innovation
and development through interviews
and a literature review

Lu et al (2021)
[37]

• Applied the importance-resistance analysis model and
identified the resistant factors, including data sharing, in-
frastructure, regulation, and operations in the context of
data privacy.

• Proposed several ways to overcome these limitations, in-
cluding transparency regulation and infrastructure building.
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Reviewed/discussed methods for the application of AIa during
the COVID-19 pandemic

Resource allocation situa-
tion

ObjectiveReference

• Reviewed the biological differences that contribute to
variability in COVID manifestation.

• Reviewed efforts to use AI to integrate digital data to en-
able the identification of high-risk COVID-19 patients.

Global COVID-19 pan-
demic

To present interindividual variability
and the roles it plays in the variability
of COVID presentation and susceptibil-
ity.

Pereira et al
(2021) [39]

• Discussed how COVID exacerbated racial and socioeco-
nomic disparities.

• Explored how an AI-informed resource allocation strategy
can be influenced by biases.

Global COVID-19 pan-
demic

To discuss possible bias in the applica-
tion of AI during the COVID-19 pan-
demic

Röösli et al
(2021) [41]

aAI: artificial intelligence.
bWHO: World Health Organization.

Summary of the Policy Implications of the Selected
Studies
The policy implications of studies on model development are
relevant on 2 levels: (1) health system level [21,25,26,29] and
(2) hospital level [22-24,27,28], corresponding to situations
where the models were applied. Detailed policy implications
of the included studies on model development are summarized

in Table 4. The qualitative and review studies focused largely
on 2 issues: (1) how AI can promote the efficacy of resource
allocation [21,32,34-37,39,42,43] and (2) the ethics and equality
issues associated with using AI systems [38,40,41]. One study
highlighted the lack of AI studies on resource distribution during
COVID-19 [31]. Table 5 summarizes the policy implications
of these studies.

Table 4. Policy relevance of the included studies on model development and validation.

Policy relevanceReference

Rosas et al (2013) [25] • Divided municipalities in Brazil into quartiles of health care financial needs.
• Proposed that the selection of input variables should consider the vulnerability of the population, the true representation

of the factors of need, political choice, and the availability of reliable data.

Belciug & Gorunescu
(2015) [22]

• Provided tools to estimate the appropriate parameters for optimal resource utilization.
• Enabled the hospital manager to simulate scenarios to make the near-best decision.

Gartner & Padman
(2015) [23]

• Provided decision-makers with information on admission and scheduling decisions.
• Offered an approach to integrate and analyze the financial objectives of health care delivery.

Velez et al (2016) [26] • Facilitated the management of multidisciplinary information with the entire range of determinants of a specific context.
• Provided enough flexibility to allow the exploration of different complex circumstances in health planning.

Xu et al (2018) [27] • Reduced costs by making doctors mobile.
• Addressed personal preferences, such as treatment time and the professional level of doctors.

Yousefi et al (2018)
[28]

• Decreased the average length of stay in this emergency department case study by 14%.
• Provided a framework to efficiently combine simulation and metamodels in the health care industry.

Zhang et al (2018) [29] • Facilitated decision-making to divide patients under different conditions into different levels of hospitals in the hierar-
chical medical treatment system.

McRae et al (2020) [24] • Supported the validity of a clinical decision support system and mobile app
• Provided tools to be deployed to community clinics and sites for decision support.

Bednarski et al (2021)
[21]

• Facilitated officials managing future public health crises.
• Improved algorithm performance for future applications.

JMIR AI 2023 | vol. 2 | e38397 | p.471https://ai.jmir.org/2023/1/e38397
(page number not for citation purposes)

Wu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Policy relevance of the included studies involving theoretical discussions, qualitative studies, or review studies.

Policy relevanceReference

Rajkomar et al (2018)
[40]

• Proposed that the principles of distributive justice be incorporated into model design, deployment, and evaluation.

Laudanski et al (2020)
[36]

• Suggested that AIa can couple outbreak data with measures of potential demand and direct supplies more efficiently.

Adly et al (2020) [31] • Found that no study had been published on the application of AI in medical resource distribution during the COVID-19
pandemic as of 2020 and that such studies are required to inform policy decisions.

Bernardo et al (2020)
[33]

• Suggested that automation by AI and machine learning can further our abilities in predictive analytics.

Neves et al (2020)
[38]

• Emphasized that the ethical values for the rationing of health resources in an epidemic should converge with basic ethical
values and that transparency is essential to ensure public trust.

Xie et al (2020) [42] • Proposed that technical feasibility and patient acceptability must be assessed for AI to be deployed in real-world settings,
and that health professionals’ acceptance and interpretability of AI-based screening strategies must also be assessed.

Zou et al (2020) [43] • Proposed that the model adopted in Shenzhen, including multisectoral coordination, proactive contact tracing and testing,
timely isolation and treatment, hospital infection control, effective community management, and prompt information
dissemination, could be a potential model for other cities around the world for containing the pandemic.

Basit et al (2021) [32] • Proposed that informaticians globally should continue collecting, recording, and analyzing data with the intent of gath-
ering new knowledge and translating it into a better, faster, and more successful response to the next pandemic.

• Suggested that professionals must come together to develop ways to collect, standardize, and disseminate the data
needed to make necessary decisions.

Huang et al (2021)
[34]

• Suggested that China’s health informatization needs to strengthen top-level design, increase investment and training,
upgrade health infrastructure and information technology applications, and improve internet-based health care services.

Jain et al (2021) [35] • Proposed that an AI intervention could impact the employability of the workforce through operational and training
changes, and therefore impact human resource distribution in health.

Lu et al (2021) [37] • Provided a basis for the future development directions of medical information digitalization and its impacts on health
care and health systems.

Pereira et al (2021)
[39]

• Suggested that predicting which COVID-19 patients will develop progressive diseases that require hospitalization has
important implications for clinical trials targeting outpatients.

Röösli et al (2021)
[41]

• Proposed that transparency in reporting of AI algorithms is necessary to understand intended predictions, target populations,
hidden biases, and class imbalance problems.

aAI: artificial intelligence.

Case Study Comparison: China and Brazil
China and Brazil are both developing countries with a similar
per capita gross domestic product (China: US $10,435 and
Brazil: US $6797) [44]. During the COVID-19 pandemic, Brazil
has had one of the highest national overall cases and mortalities,
as well as per capita cases and mortalities, with 29.5 million
cases and 656,000 deaths as of March 2022 [45]. China has had
one of the lowest per capita infection rates in the world, with a
total of 124,000 cases and 4636 deaths as of March 2022 [45].
Given the similarity between the 2 countries in economic
development and the enormous difference in COVID cases and
mortalities, the resource distribution situation in the 2 countries
is worth exploring.

Rosas et al [25] proposed a financial resource allocation
algorithm for the public hospital system in Brazil based on
mortality, socioeconomic characteristics, and income inequality.
They argued that the choice of input variables for health care

policymaking should consider the vulnerability of the population
to being manipulated by those who manage public policy, the
true representation of the factors of need, exemption from the
process of political choice, and the availability of reliable data.
The focus of the model was regional economic characteristics.

Zhang et al [29] proposed a model for the allocation of medical
resources and tier classification of patients in China’s health
system, with the input variables of patient characteristics and
hospital tiers, and a focus on differentiation into different tiers
based on patients’ disease severity. Xu et al [27] proposed a
health resource allocation model for the allocation of doctors
and other medical resources in a public hospital system in China
that considered the distribution of medical stations, the
professional level of doctors (salary and seniority), patient
preferences and illness severity, medical cost, and revenue.

Overall, the allocation of medical resources based on the models
from the 3 studies demonstrated that the key considerations
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proposed by studies from China were the hospital tier system,
the professional level of doctors, the geographical distribution
of medical resources, and cost-effectiveness [27,29]. However,
the model proposed for Brazil focused on the regional economic
situation [25].

Discussion

Principal Findings
In this review, we compiled evidence on the application of AI
in health resource distribution, especially regarding
COVID-related policy. After synthesizing 22 articles, we found
that AI-based models were proposed at both hospital (secondary
care in inpatient settings) and health system (public health)
levels and that theoretical discussions and reviews focused on
the potential for AI to improve the efficacy of resource
distribution and on the ethics of applying AI in health resource
distribution. Two major themes emerged from the review. First,
we found that AI-informed resource distribution strategies are
impactful for health access and equality. Second, the approaches
can be categorized ideologically into revisionist and conservative
groups.

Impact of an AI-Informed Resource Distribution
Strategy on Health Access and Equality
AI and machine learning have considerable potential to improve
efficacy in resource distribution, especially during emergencies,
such as the COVID-19 pandemic, where quick decisions are
required based on evolving situations [34,39,43]. For example,
health informatization, particularly digital contact tracing and
AI-informed response design, played an instrumental role in
responding to COVID in China and helped local governments
to improve efficacy in allocating limited resources [34,43]. AI
can also be used to interpret diagnostic results and patient
characteristics in order to predict disease progression and
allocation of medicines, hospital beds, and medical professionals
at the hospital level [21,39].

However, very large amounts of data are necessary for AI
algorithms to make reliable and evidence-based decisions [46].
Health care institutions globally must therefore collect, record,
and analyze data. This will help policymakers gather novel
insights and translate the data into a prompt, equal, coordinated,
and more successful response to the next pandemic [32,47]. As
such, data collection must be institutionalized. The disparity in
data collection capacity potentially exacerbates the gap in
decision-making quality between countries [48,49]. For example,
from the literature, China’s information infrastructure and
data-sharing agreements expedited the data-gathering process,
a possible consequence of the centralized government system
that facilitated gathering data, which in turn made the data set
larger and more comprehensive [48]. In contrast, a selected
study showed that Brazil’s decentralized government system,
with heterogeneous policies on data privacy and data sharing,
made the collection and consolidation of data difficult [49].
However, caution should be taken in interpreting those results,
as there is no evidence that the studies selected here are
representative of the real situation in China or Brazil.

The included articles highlighted the importance of distributive
justice and transparency in AI model design. The analysis
conducted by Rajkomar et al emphasized that machine learning
systems should be used proactively to advance health equality
[40]. They proposed that distributive justice should be a core
principle in AI models, including during the design, deployment,
and evaluation processes. This perspective would include
equality in patient outcomes, performance for every
sociodemographic group, and resource allocation for each group.
As Neves et al noted, resource allocation by AI and in
emergencies should build on basic ethical values, including the
equal value of people, instrumental value, and priority for critical
situations. Transparency is the key to gaining trust when
distributing resources [38].

Revisionist and Conservative Approaches in
AI-Derived Resource Distribution
The build-up of AI models and implementation plans can be
broadly categorized into revisionist and conservative approaches.
In revisionist approaches, the models aim to revise the disparity
in resource distribution by actively correcting the biases in
previous decision-making processes. For example, the models
proposed by Rosas et al [25] for financial resource allocation
in Brazil emphasized consideration of income inequality,
vulnerable populations, political choices, and the availability
of reliable data. In conservative approaches, the models rely on
traditional metrics, including supply and demand, profitability,
and, perhaps most notably, previous decisions. This was
demonstrated in a proposed model for the allocation of medical
resources and tier classification of patients in China’s health
system by Zhang et al [29], where the input variables were
patients’characteristics and hospital tiers, and a model suggested
by Xu et al [27] for the allocation of doctors and other medical
resources in a public hospital system in China, where the input
variables included the distribution of medical stations, the
professional level of doctors, patient preferences and illness
severity, medical cost, and revenue. Doctor expertise, patient
characteristics, hospital tier, and location are common variables
in human decision-making, but AI has the potential to analyze
the data more thoroughly.

However, despite the revisionist model proposed by Brazilian
academics [25], health inequality is a prevailing issue in Brazil
across states and social classes, both before [50] and during the
COVID-19 pandemic [51]. Health inequality in Brazil increased
across states from 1990 to 2016 [43]. Comparatively, the health
care access and quality index in China was higher than that in
Brazil in 2016, suggesting better equality and health care access
in China [52]. However, due to the limitation of the research
method, this study could not show the policymaking processes
in both countries. From the selected studies alone, we observed
that although proposing revisionist AI models to address health
inequality should be encouraged, the application and practicality
of using those models to inform health policy decisions and
improve inequality should also be important considerations for
researchers.

Strengths and Limitations
This is one of the first reviews to incorporate all available
evidence qualitatively and provide a comprehensive picture of
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the model development and theoretical discussion on AI in
medical resource distribution. Our results contribute to the
ongoing discussion of applying AI in medical resource
distribution and add novel insights into the social and ethical
implications. Nonetheless, this study has several limitations.
First, due to the scope of the study, we focused on published
journal articles but did not examine policy documents or grey
literature. This could have led to incompleteness in the collected
information. Further studies could examine policy statements
and grey literature to better understand intercountry differences.
Second, we included only articles published in English and
therefore might have overlooked publications in other languages.
Third, there are potential sources of meaningful heterogeneity
in this scoping review, including the diverse use of AI
technologies, different study designs, and different locations.
The analyses in this study could be affected by such
heterogeneities. Fourth, this study is a qualitative overview of
the general application of AI in health care resource distribution
and is exploratory. We did not compare different levels of
resource distribution and distinguish various machine learning
methods in detail. Further studies are needed to explore and

contrast different AI approaches at various resource distribution
levels in detail. Lastly, due to the availability of evidence, we
only compared studies from China and Brazil. We were only
able to compare the differences between the 2 countries based
on a few studies, which could not represent the real situation in
either country. The comparison should be interpreted as
exploratory and demonstrative.

Conclusions
This scoping review synthesized evidence on the application
of AI in health resource distribution, particularly during the
COVID pandemic. The included studies suggested that AI and
machine learning have high potentials to improve efficacy in
resource distribution, especially during sudden and evolving
situations. A coordinated and continuous data sharing and
collecting mechanism is needed for better data input so that AI
can make reliable and evidence-based decisions. Various issues,
including health inequality, distributive justice, and
transparency, should be considered when deploying AI models.
Such considerations are required for implementing revisionist
AI models that can correct distribution inequality in actual policy
processes.
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Abstract

Background: Antiretroviral therapy (ART) has transformed HIV from a fatal illness to a chronic disease. Given the high rate
of treatment interruptions, HIV programs use a range of approaches to support individuals in adhering to ART and in re-engaging
those who interrupt treatment. These interventions can often be time-consuming and costly, and thus providing for all may not
be sustainable.

Objective: This study aims to describe our experiences developing a machine learning (ML) model to predict interruption in
treatment (IIT) at 30 days among people living with HIV newly enrolled on ART in Nigeria and our integration of the model into
the routine information system. In addition, we collected health workers’ perceptions and use of the model’s outputs for case
management.

Methods: Routine program data collected from January 2005 through February 2021 was used to train and test an ML model
(boosting tree and Extreme Gradient Boosting) to predict future IIT. Data were randomly sampled using an 80/20 split into training
and test data sets, respectively. Model performance was estimated using sensitivity, specificity, and positive and negative predictive
values. Variables considered to be highly associated with treatment interruption were preselected by a group of HIV prevention
researchers, program experts, and biostatisticians for inclusion in the model. Individuals were defined as having IIT if they were
provided a 30-day supply of antiretrovirals but did not return for a refill within 28 days of their scheduled follow-up visit date.
Outputs from the ML model were shared weekly with health care workers at selected facilities.

Results: After data cleaning, complete data for 136,747 clients were used for the analysis. The percentage of IIT cases decreased
from 58.6% (36,663/61,864) before 2017 to 14.2% (3690/28,046) from October 2019 through February 2021. Overall IIT was
higher among clients who were sicker at enrollment. Other factors that were significantly associated with IIT included pregnancy
and breastfeeding status and facility characteristics (location, service level, and service type). Several models were initially
developed; the selected model had a sensitivity of 81%, specificity of 88%, positive predictive value of 83%, and negative
predictive value of 87%, and was successfully integrated into the national electronic medical records database. During field-testing,
the majority of users reported that an IIT prediction tool could lead to proactive steps for preventing IIT and improving patient
outcomes.

Conclusions: High-performing ML models to identify patients with HIV at risk of IIT can be developed using routinely collected
service delivery data and integrated into routine health management information systems. Machine learning can improve the
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targeting of interventions through differentiated models of care before patients interrupt treatment, resulting in increased
cost-effectiveness and improved patient outcomes.

(JMIR AI 2023;2:e44432)   doi:10.2196/44432

KEYWORDS

HIV; machine learning; treatment interruption; Nigeria; chronic disease; antiretroviral therapy; chronic disease; HIV program;
intervention; data collection

Introduction

Antiretroviral therapy (ART) for HIV treatment has transformed
HIV from a fatal illness to a lifelong, yet manageable, chronic
disease [1]. Long-term adherence to ART and subsequent viral
load suppression decrease morbidity and mortality, and reduce
the risk of viral transmission [2]. As increasing numbers of
countries meet the United Nations Joint Programme on
HIV/AIDS (UNAIDS) 95-95-95 benchmarks, tailored
interventions and data systems are needed to proactively identify
the individuals at highest risk and reduce interruption in
treatment (IIT) to achieve and sustain epidemic control [3].
Such data and systems must reflect the reality that retention is
not a linear pathway; instead, patients cycle in and out of care.
Data from the US President’s Emergency Plan for AIDS Relief
(PEPFAR) for the period from January 1 to March 31, 2022,
show that approximately 4.8% of all patients on ART cycle in
and out of treatment (US President’s Emergency Plan for AIDS
Relief, unpublished data, March 2023). Historically, data from
sub-Saharan Africa have suggested that the proportion of
individuals remaining on HIV therapy after 3 years has been
about 65% [4].

HIV programs use a range of programmatic approaches to
support individuals in sustaining adherence to ART and
re-engaging those who interrupt treatment [5]. These
interventions for preventing IIT or re-engaging those who have
already interrupted their treatment can be time-consuming and
costly if not targeted. This can lead to inefficiencies from public
health, resource management, and sustainability perspectives
[6,7]. Innovative approaches to identifying individuals at high
risk of IIT and tailored activities to prevent IIT are needed to
ensure optimal client health and sustained epidemic control
[8,9]. Applying machine learning (ML) for predicting
individuals at high risk of IIT paves the way for differentiated
service delivery solutions that are individualized,
evidence-based, and responsive to improve retention in care
and treatment in the path toward epidemic control.

Large data sets containing individual-level data for people living
with HIV are now widely available and may create new
opportunities to identify patterns and relationships between
individual factors and observed client outcomes. Mathematical
models can take the process a step further and use retrospective
data to predict future behavior [10]. This application of ML is
part of a broader trend leveraging artificial intelligence across
a range of development sectors, including agriculture, health,
and natural disaster response systems [11,12]. HIV use cases
have been developed to understand how predictive analytics
can improve client services and reduce service delivery pain
points across the HIV continuum of care. These use cases

enhance our understanding of the theory of change for how
predictive analytics can improve HIV clinical outcomes,
program efficiency, and cost-effectiveness. One of the use cases
developed in South Africa, termed the “Fall-Out Forecaster,”
models how recognizing client risk factors can lead to optimized
treatment support interventions and minimize IIT. This model
could reduce IIT by 6%-10% and reduce care and support costs
by 4%-5% in the first 12 months [13].

The real-world application of theoretical HIV use cases of ML
in low- and middle-income settings is growing. In Nigeria and
Kenya, ML was applied to retrospective patient-level data sets.
The models identified independent predictors of IIT among
patients receiving ART in Kenya and helped create behavioral
risk profiles [14]. In South Africa, retrospective data for clinical,
laboratory, and visit patterns were used to develop an ML
algorithm that identifies individuals at risk of unsuppressed
viral load at their next visit [15]. In Haiti, health care workers
used an ML algorithm to generate client risk scores that
classified clients into five categories of risk for treatment failure
[16]. Health care workers were subsequently trained to provide
culturally sensitive, tailored psychosocial counseling to promote
retention among clients assessed as high-risk. In South Africa,
an ML model helped to define a unique set of retention services
tailored for each client [17,18]. In Mozambique, efforts starting
in 2018 used ML models to generate risk scores for client
likelihood of interrupting treatment (integrated into service
delivery via a mobile app or an OpenMRS “plug-in”); the
integration demonstrated the ability to rank clients by overall
risk, but the ability to plan treatment retention services according
to risk level is still under study [19].

In this paper, we describe the development of an ML model to
predict IIT at 30 days among people living with HIV newly
enrolled in ART in Nigeria and our experiences integrating the
model into the routine HIV treatment program. We report the
process of model development, early experiences integrating
the model into a routine health management information system,
and ML users’ perceptions and use of the model outputs for
case management.

Methods

Program Description
The Strengthening Integrated Delivery of HIV/AIDS Services
(SIDHAS) project in Nigeria supports the government of Nigeria
in implementing comprehensive HIV services in Akwa Ibom
and Cross River states. The goal is to sustain the integration of
HIV and AIDS services with tuberculosis (TB) services by
building the capacity of the government of Nigeria staff to
deliver high-quality, comprehensive, preventive care and
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treatment and other related services. The project, which began
in 2011, currently supports treatment at 154 health facilities
including public, private for-profit, and faith-based
organizations; 103 community pharmacies; and 2684 other
community ART refill structures. To support case management,
individual-level client data are recorded in the electronic medical
record system, Lafiya Management Information System
(LAMIS).

Data Collection and Cleaning
For this study, we used routine program data from the SIDHAS
project to quantify the association of individual characteristics
with IIT among people living with HIV receiving ART and
developed an ML model to predict future IIT. Data from the
patient, clinic, and pharmacy data sets from Akwa Ibom and
Cross River states in Nigeria collected from January 2005
through February 2021 were extracted from LAMIS and used
for model development. These service delivery data are collected
using standardized paper-based forms at each patient encounter
and then entered into LAMIS by facility staff. All personal
identifiers were removed, and patient data were linked to create
one consolidated data set using the unique treatment
identification number. We included all patients who were newly
enrolled on ART and provided a 30-day supply of antiretrovirals
(ARVs) at one of the SIDHAS-supported treatment facilities.
The three separate databases were reviewed, and data for
selected variables were extracted for all eligible individuals.
For the purposes of the study, individuals were defined as having
IIT if they were provided a 30-day supply of ARVs but did not
return for a refill within 28 days of their scheduled follow-up
visit date.

The consolidated data set was subjected to a series of internal
consistency checks during which records with invalid data were
removed. Reasons for record removal included that the ART
start date was listed as earlier than the date of the confirmed
HIV test, participants were enrolled too recently to have an
observed end point, and the date of the next appointment after
enrollment was missing. Participants who were transferred in
from other facilities were also excluded given that the interest
was in IIT after ART initiation.

Missing data were then addressed for the remaining records in
the cleaned data set. Two approaches were used to handle
missing data based on the nature of the data collection and
operation in the program field. First, missing data within the
patient data set were imputed using the k-nearest neighbor
algorithm [20] in which the missing value was classified by a
plurality vote of its neighbors and the class most common among
its k-nearest neighbors was assigned. Second, for variables such
as TB status that could not be imputed, missing data within the
clinic data set were classified as “missing” in the final data set.
In addition, variables such as pregnancy/breastfeeding status
for male clients or female clients younger than 10 years or older
than 60 years that had incorrect values were categorized as “not
applicable.”

Variable Selection
The predictor variables that were used for model building were
extracted from the routine health information system. They were

preselected as they were considered to be strongly associated
with treatment interruption by a group of SIDHAS project staff
and HIV prevention and treatment experts in consultation with
biostatisticians. The variables selected for the model included
age, gender, marital status, occupation, education, local
government area, baseline clinic stage, TB status, pregnancy
and breastfeeding status, and facility characteristics (service
level, facility type, ownership, population setting, state, ward,
and care entry point). The feature (predictor) importance was
applied to understand the data and to improve model building
and interpretability.

Model Development, Validation, and Testing
The final cleaned data set was randomly divided into a training
data set containing 80% of the clients and a test data set with
the remaining 20% of the clients. The first data set was used to
train predictive models using the 10-fold cross-validation
approach, while the second was used to validate model
performance. Boosting classification algorithms (eg, boosting
tree and Extreme Gradient Boosting) were applied to build
predictive models. Positive predictive value, negative predictive
value, and Cohen kappa were used to assess the performance
of predictive models. The models were further validated on a
second data set containing 1107 clients who initiated ART from
March through October 2021.

Field Implementation and User Experience
A total of 10 pilot sites were selected for field-testing of the
ML model. These sites included primary, secondary, and tertiary
service delivery points with adequate patient volume to ensure
adequate new client enrollment. The ML algorithm was
programmed into LAMIS such that after data from each new
patient were entered into the database, the person’s IIT chance
was automatically generated. At the end of each week, a list
that showed the risk of IIT among those provided with a 30-day
supply of ARVs was generated and shared with facility staff.
Project staff, health care workers, and treatment supporters at
the 10 selected facilities were trained on the basics of ML and
on the interpretation and application of IIT scores in patient
management. Persons with an IIT score of 50% or more were
considered to be at high risk for IIT and their case managers
provided additional monitoring and assigned an expert to
provide psychosocial support through virtual or physical
mechanisms to ensure that the client was mentally prepared for
the challenges of lifelong ART. All other persons received the
standard case management support that is provided to all clients.

Feedback from the health care workers at the pilot sites was
collected in two ways. First, we routinely gathered verbal
feedback as part of “daily situation room meetings.” These
standing meetings were designed to review routine data and
gave health care workers a platform to ask questions about the
scores, clarify how the tool was working, and contribute
practical suggestions for improvement. Second, we collected
user feedback formally using a Google Forms questionnaire.
The questionnaire in Google Forms was distributed
electronically to health care workers at the selected pilot
facilities, and they provided written feedback. The form
collected information on the sociodemographic characteristics
of the respondents; usefulness, acceptance, and relevance of the

JMIR AI 2023 | vol. 2 | e44432 | p.480https://ai.jmir.org/2023/1/e44432
(page number not for citation purposes)

Ogbechie et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ML outputs for improving patient care; experiences interpreting
and using the ML scores; and any suggestions for improving
the presentation of the scores. The data from the two sources
were combined and summarized according to key themes.

Ethical Considerations
The data for this study were collected from an existing project
database that is used for routine patient management and
program monitoring. The study was reviewed by the Protection
of Human Subjects Committee at FHI 360 and was categorized
as research not involving human subjects. The authors had no
access to patients or personally identifiable information for the
individuals whose data were included in the study.

Results

Model Development
After data cleaning, complete data from a total of 136,747 clients
were used for the analysis (Figure 1).

The percentage of IIT cases was 41.5% (56,581/136,747) overall
but changed over time (Table 1). It decreased significantly
during successive years, ranging from 58.6% (36,663/61,864)
before 2017 to 14.2% (3690/28,046) during October 2019
through February 2021. Clients sicker at enrollment had higher

IIT rates; IIT was 31.7% (20,465/64,508) among individuals
with stage I disease at enrollment compared to 43.5%
(12,867/29,557) among those with stage II disease and 59%
(2125/3600) among those with stage IV disease. A greater
proportion of clients whose baseline clinical stage or baseline
clinic data (TB, pregnancy, and breastfeeding status) were
missing were classified as IIT compared to individuals with
data available for these variables. Other variables that were
significantly associated with IIT rates were facility
characteristics: location, service level, and service type. IIT
rates did not vary significantly by age, gender, education level,
marital status, or occupation.

To incorporate the features of the variables, eight models were
trained using training data sets with and without year of ART
initiation, clinic data (TB, pregnancy, and breastfeeding status),
or facility characteristics. The results indicated that models
without clinic data would lose more than 10% of predictive
accuracy compared to those models with clinic data included,
whereas the facility information and year of ART initiation
variables only had a slight impact on model performance (Table
2). The results of the model testing on the data from March
through October 2021 were similar to the results observed from
the test data. These findings indicated that the predictive models
were robust and useful for future IIT prediction in the same
setting of ART programs.

Figure 1. Study cohort flow diagram. ART: antiretroviral therapy; ARV: antiretroviral; IIT: interruption in treatment.
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Table 1. Characteristics of the individuals included in the data set used for the model development.

Individuals (N=136,747), n (%)Variable and category

Interruption in treatment

56,581 (41.38)Yes

80,166 (58.62)No

Year of antiretroviral initiation

61,939 (45.3)Before 2017

46,776 (34.2)January 2017-September 2019

28,032 (20.5)October 2019-February 2021

Gender

91,982 (67.26)Female

44,765 (32.74)Male

Age (years)

5657 (4.14)<14

8685 (6.35)14-20

72,049 (52.69)21-35

50,356 (36.82)>35

Marital status

1171 (0.86)Married

64,899 (47.46)Single

52,934 (38.71)Previously married

Education

16,473 (12.05)Primary and Quranic

44,219 (32.34)≥1 year of secondary

50,912 (37.23)None

Occupation

36,863 (26.96)Employed

79,059 (57.81)Unemployed/retired/students

State

100,937 (73.82)Akwa Ibom

35,791 (26.18)Cross River

Baseline clinic stage

64,508 (47.17)Stage I

68,740 (50.27)Stage II-IV

Facility type

77,597 (56.75)Health center/clinic/posts

59,131 (43.25)General, tertiary, or cottage hospital

TBa statusb

58,953 (43.11)No signs or symptoms of TB

4745 (3.47)Currently on isoniazid prophylaxis

5167 (3.8)Confirmed/suspected TB

Pregnantc

46,883 (51.0)No
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Individuals (N=136,747), n (%)Variable and category

925 (1.0)Yes

Breastfeedingc

47,617 (51.8)No

191 (0.21)Yes

aTB: tuberculosis.
bTotals do not add up to 136,747 for all variables under TB status due to missing values for some variables.
cn=91,982 (number of females in the data set).

Table 2. Model performance evaluation with test data from January 2005 through February 2021 and validation data for model 4.

Model 8jModel 7iModel 6hModel 5gModel 4fModel 4d (selected)eModel 3cModel 2bModel 1a

0.72 (0.72-
0.73)

0.75 (0.74-
0.75)

0.70 (0.69-
0.70)

0.75 (0.74-
0.75)

0.91 (0.88-
0.93)

0.85 (0.85-0.86)0.87 (0.87-
0.87)

0.83 (0.83-
0.84)

0.85 (0.85-
0.86)

Accuracy (95%
CI)

0.62 (0.61-
0.63)

0.63 (0.62-
0.64)

0.58 (0.57-
0.59)

0.63 (0.62-
0.64)

0.79 (0.73-
0.86)

0.81 (0.81-0.82)0.84 (0.83-
0.84)

0.75 (0.75-
0.76)

0.82 (0.81-
0.82)

Sensitivity (95%
CI)

0.80 (0.79-
0.81)

0.83 (0.82-
0.84)

0.78 (0.77-
0.78)

0.83 (0.82-
0.84)

0.94 (0.92-
0.96)

0.88 (0.88-0.89)0.89 (0.89-
0.90)

0.89 (0.88-
0.89)

0.88 (0.87-
0.88)

Specificity (95%
CI)

0.69 (0.68-
0.70)

0.72 (0.71-
0.73)

0.65 (0.64-
0.66)

0.72 (0.72-
0.73)

0.77 (0.70-
0.83)

0.83 (0.82-0.83)0.85 (0.84-
0.85)

0.82 (0.82-
0.83)

0.83 (0.82-
0.83)

PPVk (95% CI)

0.75 (0.74-
0.75)

0.76 (0.76-
0.77)

0.72 (0.72-
0.73)

0.76 (0.76-
0.77)

0.94 (0.93-
0.96)

0.87 (0.87-0.88)0.89 (0.88-
0.89)

0.84 (0.83-
0.84)

0.87 (0.87-
0.88)

NPVl (95% CI)

0.420.470.360.470.720.700.730.650.69Kappa

aModel 1 included clinic variables (tuberculosis [TB], pregnancy, and breastfeeding status) and year of antiretroviral therapy (ART) initiation.
bModel 2 included clinic variables (TB, pregnancy, and breastfeeding status).
cModel 3 included clinic variables (TB, pregnancy, and breastfeeding status), facility information, and year of ART initiation.
dModel 4 included clinic variables (TB, pregnancy, and breastfeeding status) and facility information.
eModel selected for application.
fValidation data March-November 2021.
gModel 5 included year of ART initiation and did not include clinical variables (TB, pregnancy, and breastfeeding status).
hModel 6 did not include clinic variables (TB, pregnancy, and breastfeeding status), facility information, and year of ART initiation.
iModel 7 included facility information and year of ART initiation and did not include clinic variables (TB, pregnancy, and breastfeeding status).
jModel 8 included facility information and did not include clinic variables (TB, pregnancy, and breastfeeding status) and year of ART initiation.
kPPV: positive predictive value.
lNPV: negative predictive value.

Field Implementation and User Experience
The 30-day predictive model was integrated into LAMIS and
applied to 25 consecutive people living with HIV newly enrolled
on ART at selected hospitals and who were provided with a
30-day supply of an ART regimen over a 15-week period (April
to July 2022). None were seen to be a high risk for IIT based
on the predetermined 50% threshold. The predicted IIT risks
ranged from 1.8% to 25.7%. All clients received routine
psychosocial support, monitoring of possible adverse drug
reactions, and overall support through virtual check-ins and
home visits. Given that their risk prediction scores did not meet
the 50% threshold, additional intensive services were not
provided. Changes in local policies promoting multi-month
dispensing of ARVs to people living with HIV have resulted in
the majority of those who are newly enrolled on ART being
provided with a 90-day supply of medication and a smaller
proportion provided with a 30-day supply of ARVs.

Of the 48 individuals who provided feedback on usability and
acceptability, 36 (75%) indicated that the IIT prediction tool
was useful. Common reasons they cited included early
notification to the site of a client with high IIT potential and the
ability to improve case management at the site, thus helping
patient management and monitoring be more proactive than
reactive. As one facility backstop mentioned:

It has helped us to monitor our clients, calling them
up and giving them a timeline to come for their refills
so that their treatment won't be interrupted.

While most data entry clerks and monitoring and evaluation
specialists provided positive feedback on accessibility, a few
were skeptical or neutral. Those with a positive view indicated
that since the model was integrated into LAMIS, Nigeria’s
routine national HIV information system, rather than a secondary
application, it was straightforward and easy to navigate. One
data entry clerk reported:
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My experience using the machine learning predictive
is that as a data entry clerk I will use the machine to
check and relate with my case manager to track the
client in time to avoid IIT.

A monitoring and evaluation specialist from a primary health
center said:

At first, I found it challenging to understand the
chance of IIT, but after understanding and using it,
I now see it as indices to protect our program growth
from negative adjustment.

One of the more skeptical data entry clerks related that:

I haven't seen to understand the logic behind it...The
outcome didn't change the restart or return to care.
I need the ideas behind this...

Discussion

Principal Results
Using routinely collected service delivery data, we developed
an ML model to predict IIT among people living with HIV in
Nigeria that was easy to introduce and acceptable to providers
in routine clinical care settings. All models developed included
the use of routinely collected individual- and clinic-level
variables to determine the risk of IIT among clients receiving
a 30-day supply of ART. The final model chosen had both
sensitivity and positive predictive values higher than 80%. After
initial challenges, our model was successfully incorporated into
the national systems for routine individual-level case
management and monitoring and evaluation in pilot clinics. We
found health care workers to be amenable to incorporating the
prediction tool into routine work and eager to increase
opportunities to tailor interventions to those most in need. Our
ML model performed well on our test data and integrated well
into routine systems but has yet to be deployed and assessed
for effectiveness at the population level.

Limitations
The low number of clients receiving 30 days of ART limited
our ability to make programmatic adjustments based on the
likelihood of IIT and prevented the prospective assessment of
performance or effectiveness. As multi-month scripting is now
the norm, models incorporating the multi-month dosing data or
developing a new model to be used among clients receiving 3
months or more of ART are needed. Additionally, more work
is needed to understand the sensitivity and specificity of the
model on IIT after the first 30 days and the usefulness of these
models outside of the population or geography on which they
were based.

The limitations that are inherent in routinely collected service
delivery data will also need to be addressed before these data
are used for developing ML models. In Nigeria, as in many
countries, social and contextual community factors were not
routinely collected in their national health management
information system and thus were not factored into the model
despite known associations with IIT. In our data set, we
encountered high levels of missing and misclassified data that
were handled statistically yet are illustrative of the challenges

related to data quality. After the incorporation of the model into
LAMIS, staff took greater care to address delayed and
incomplete data entry, resulting in a significant reduction in the
proportion of missing data. HIV programs have changed over
time and continue to change quickly. Developing a model based
on retrospective data is a limitation, and models must be tested
prospectively to determine if the accuracy holds with newer
data. As the wealth of programmatic data continues to grow,
refining models as a tool to target services and improve the
quality of care will be critical.

Comparison With Prior Work and Implications
Using ML to improve continuity of HIV care is a practical
example of how advanced analytics can address population-
and individual-level global health challenges, as we continue
to advance digital health maturity [14,21]. While ML analytics
hold great promise for closing the final gaps to achieve the
95-95-95 targets, the representativeness of available and
accessible data must be considered [15,22]. With representative
data, ML models enable us to limit biases and increase service
equity based on standard algorithms. In addition, ML models
could be a useful tool that future programs could use to tailor
interventions to a person’s unique needs. This can decrease
differences in the quality of health care across sites or decrease
the perpetuation of any health care worker bias against some
vulnerable populations. From a sustainability perspective,
addressing constraints in digital infrastructure and human
resources are critical investments for scaling country-owned
predictive analytics for addressing IIT and other important
public health issues. Investments in this area can also contribute
to the growth of a country’s broader digital health system
architecture.

Recently, there have been increasing efforts in low- and
middle-income settings to develop and integrate predictive
analytics into public health programs and to demonstrate that
these tools can be implemented in low-resource settings. In any
setting where optimization is critical due to labor or fiscal
shortages, ML can help target the efficient use of human and
financial resources. However, it is critical to consider broader
partnerships, deployment, and scaling of ML to ensure that
ongoing investments are strategic and sustainable. Such
solutions may require additional budgeting for foundational
infrastructure (eg, connectivity, cybersecurity, cloud housing,
data management, electricity access), along with the human
resources and capacity building needed for ongoing independent
program support. Determining when it is strategic to invest in
ML given the broader investments required for sustainable ML
and the wide range of HIV interventions available to improve
treatment continuity will require assessing cost-effectiveness.
Considering costing and evaluation methodologies and
prioritizing investments that benefit the strengthening of broader
digital infrastructure are opportunities to realize economies of
scale and a greater return on investment.

Conclusions and Next Steps
Despite initial challenges, we were able to successfully develop
and deploy an ML model into LAMIS, Nigeria’s routine HIV
information system. There was a high level of acceptance of
the ML model among staff at the pilot facilities. Our model will

JMIR AI 2023 | vol. 2 | e44432 | p.484https://ai.jmir.org/2023/1/e44432
(page number not for citation purposes)

Ogbechie et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


be refined as additional data are made available; this includes
expansion to include IIT in the context of multi-month dosing.
The model will be assessed with prospective data to refine the

appropriate cutoff for determining high risk and thus the
threshold for providing additional services.
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Abstract

Background: Continuous glucose monitoring (CGM) for diabetes combines noninvasive glucose biosensors, continuous
monitoring, cloud computing, and analytics to connect and simulate a hospital setting in a person’s home. CGM systems inspired
analytics methods to measure glycemic variability (GV), but existing GV analytics methods disregard glucose trends and patterns;
hence, they fail to capture entire temporal patterns and do not provide granular insights about glucose fluctuations.

Objective: This study aimed to propose a machine learning–based framework for blood glucose fluctuation pattern recognition,
which enables a more comprehensive representation of GV profiles that could present detailed fluctuation information, be easily
understood by clinicians, and provide insights about patient groups based on time in blood fluctuation patterns.

Methods: Overall, 1.5 million measurements from 126 patients in the United Kingdom with type 1 diabetes mellitus (T1DM)
were collected, and prevalent blood fluctuation patterns were extracted using dynamic time warping. The patterns were further
validated in 225 patients in the United States with T1DM. Hierarchical clustering was then applied on time in patterns to form 4
clusters of patients. Patient groups were compared using statistical analysis.

Results: In total, 6 patterns depicting distinctive glucose levels and trends were identified and validated, based on which 4 GV
profiles of patients with T1DM were found. They were significantly different in terms of glycemic statuses such as diabetes
duration (P=.04), glycated hemoglobin level (P<.001), and time in range (P<.001) and thus had different management needs.

Conclusions: The proposed method can analytically extract existing blood fluctuation patterns from CGM data. Thus, time in
patterns can capture a rich view of patients’ GV profile. Its conceptual resemblance with time in range, along with rich blood
fluctuation details, makes it more scalable, accessible, and informative to clinicians.

(JMIR AI 2023;2:e45450)   doi:10.2196/45450
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Introduction

Background
Diabetes mellitus (DM) is a lifelong condition owing to elevated
glucose concentration in blood and has long been a major global
public health issue. According to the International Diabetes
Federation, the number of people with diabetes has risen from
151 million in 2000 to 537 million in 2021 and is projected to
reach 783 million by 2045 [1]. The World Health Organization
estimated that 1.5 million deaths were directly caused by
diabetes in 2019, making it the ninth leading cause of death [2].
Before the introduction of smart and connected health and hence
continuous glucose monitoring (CGM) wearable devices,
self-monitoring of blood glucose (BG) level played a crucial
role in the management of patients with DM. However, a
landmark paper in 2008 revealed that patients rarely measured
glucose levels after meals or overnight, which led to postprandial
hyperglycemia within the group of patients [3]. Results from a
multicenter randomized control trial further illustrated that the
use of CGM is associated with improved glycemic control in
adults with type 1 DM (T1DM). CGM for diabetes combines
noninvasive glucose biosensors, continuous monitoring, cloud
computing, and analytics to connect and simulate a hospital
setting in a person’s home. It uses sensors to measure glucose
levels just beneath the surface of the skin and sends data
wirelessly to the users’ compatible smart device or receiver [4].
CGM works as a connected and closed-loop system that enables
patients to modify their insulin dosages based on their glucose
trends in a timely manner. With the advancement of technology,
CGM has become much more accurate and assessable, making
it a vital tool for patients with DM to manage their BG level.
According to a survey in 2019, the percentage of CGM users
with T1DM in the US T1D Exchange registry has increased
from 7% in 2010 to 30% in 2018 [5]. A systematic review and
meta-analysis in 2019 concluded that the use of CGM over
self-monitoring is beneficial in terms of several clinical
outcomes [6].

Average BG to Glycemic Variability
As suggested by Huisman et al [7] and characterized by
Bookchin and Gallop [8], glycated hemoglobin (HbA1c) level
has been the gold standard for testing BG intensity and defining
diabetes since its proposal. It is a measure of average glucose
within a person over the previous 8 to 12 weeks [9] and has
been adopted by major clinical guidelines for managing the
glycemic status of patients with T1DM and diagnosing and
screening people who are at risk of type 2 DM [10-12].

The introduction of CGM opened up new areas of research for
BG control owing to the sheer volume of BG data it collects.
Despite the well-recognized evidence and wide use of HbA1c

level, there has been increasing research interest in glycemic
variability (GV), which is based on CGM data, arguing that GV
contains additional diagnostic and prognostic value that could
not be fully captured by HbA1c measurement. BG variability,
also known as GV, refers to the degree of oscillation in BG
levels [13]. Patients with diabetes often rely heavily on
continuous medication intake to maintain BG at a normal and
stable level. However, this is often difficult as food consumption

would lead to a spike in BG, whereas the use of excessively
intensive medication could lead to hypoglycemia. As HbA1c

measurement fails to effectively capture these oscillations,
HbA1c level alone is not an ideal indicator of an individual
patient’s glycemic control [14]. Studies have been conducted
to evaluate the diagnostic and prognostic value of GV. It is
shown that high GV is associated with high risk of
microvascular and macrovascular complications [15,16], high
mortality in patients who are critically ill [17-19], and high
incidence of neurological outcomes [20]. A systematic review
and meta-analysis conducted by Gorst et al [21] indicated that
high GV is associated with increased risk of renal disease,
cardiovascular events, retinopathy, ulceration, and mortality.

Quantifying GV
Several methods have been proposed to capture GV from CGM
data. SD and coefficient of variation (COV) are the 2 most
prevalent metrics in the field owing to their ease of calculation
and relative understandability. However, they are often criticized
as a statistically biased metric to represent GV because BG
readings do not follow a normal distribution and tend to skew
toward hyperglycemia, especially in patients with diabetes
[22,23]. In addition, they do not incorporate the information
about time and sequences of readings in their calculations. As
such, even if one randomly reorders a set of BG readings to
obtain drastically different glycemic curves, the SD and COV
would still remain the same.

Time in range (TIR) has been proposed by existing studies as
a way to indirectly capture GV [24-29]. TIR refers to the daily
proportion of time one’s glucose level falls within given target
ranges with breakpoints typically at 3, 3.9, 10, and 13.9 mmol/L
[29]. The major strengths of TIR are that it can be readily
computed and it is much more intuitive to clinicians, while still,
to some extent, able to capture how much a person’s BG
deviates from the target range. So far, studies have shown that
TIR alone is associated with a wide range of outcomes, such as
diabetic retinopathy [26] and various neonatal outcomes [30].
A conference conducted in 2018 reached a consensus that
outlined the use of CGM and related glycemic metrics to
improve glucose management [27,28]. Despite the widely
recognized strengths of TIR, its aggregated nature inevitably
implies that temporal fluctuation information from CGM data
is left unused, which was shown to contain further prognostic
value. In particular, as TIR also disregards the order in which
the glucose measurements were made, it fails to provide details
about specific glycemic patterns that occurred in one’s CGM
history.

Most metrics fail to account for the sequences of BG
measurements without the use of sophisticated statistical or
machine learning models because that would involve
recognizing a trend or pattern within a time series of BG data.
Thus, machine learning models have also been proposed to
compute GV. Struble [31] and Marling et al [32] applied support
vector regression to model the data points from CGM and
computed GV based on the difference between actual and
modeled data points. Eljil et al [33] suggested the use of
time-sensitive artificial neural networks to predict hypoglycemic
events, whereas Mani et al [34] used random forest models to
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predict the risk of type 2 DM. Furthermore, Hall et al [35]
defined 3 glucose fluctuation patterns, namely low, medium,
and high variability, by using dynamic time warping (DTW).
A list of analytic methods and metrics for quantifying GV in
existing literature is summarized in Table 1. Although these

machine learning–based methods successfully used the temporal
information embedded in CGM data, they were criticized to be
“not well understood in clinical practice” [36], which remains
as a major hurdle that hinders clinicians from applying these
methods in practice.
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Table 1. Summary of metrics and analytics methods for assessing glycemic variability (GV).

LimitationsStrengthsRelated publicationsMetrics and analytic
methods

SimplicityKrinsley [19]SD • Tend to be skewed and does not adjust for mean BGa

level
• Does not account for temporal information
• Limited capability of interpreting GV profiles with

only a single value

Simplicity and adjusts
for mean

Rodbard [37] and Rama Chandran et
al [38]

COVb • Does not account for temporal information
• Limited capability of interpreting GV profiles with

only a single value

SimplicityOmar et al [24], Beck et al [25], Lu
et al [26], Beyond A1C Writing
Group [27], Battelino et al [28], and
Advani [29]

TIRc • Does not account for sequence of BG measurements

SimplicityMcDonnel et al [39]IQR • Does not adjust for mean BG level
• Does not account for temporal information
• Limited capability of interpreting GV profiles with

only a single value

SimplicityOh et al [20]Range • Tend to be skewed and does not adjust for mean BG
level

• Does not account for temporal information
• Limited capability of interpreting GV profiles with

only a single value

Takes BG fluctuation
owing to meal into ac-
count

Service [22] and Service et al [40]MAGEd • Day based
• Does not adjust for mean BG level
• Does not account for sequences of BG measurements
• Limited capability of interpreting GV profiles with

only a single value

Adjusts for BG skew-
ness and measuring fre-
quency

Kovatchev et al [41] and Hill et al
[42]

LBGIe and HBGIf • Does not account for sequences of BG measurements
• Ambiguities in BG variability level
• Limited capability of interpreting GV profiles with

only a single value

Accounts for temporal
information

Struble [31] and Marling et al [32]SVRg • Limited capability of interpreting GV profiles with
only 3 discrete levels

• Subject to clinicians’ experience in determining the
variability levels; thus, lack of evidence

Accounts for temporal
information

Eljil et al [33]TS-ANNh • Limited capability of interpreting GV profiles with
only a single value

Accounts for temporal
information

Mani et al [34]RFi • Limited capability of interpreting GV profiles with
only a single value

Accounts for temporal
information

Hall et al [35]Glucotypes • Limited capability of interpreting GV profiles with
only 3 discrete levels

aBG: blood glucose.
bCOV: coefficient of variation.
cTIR: time in range.
dMAGE: mean amplitude of glycemic excursions.
eLBGI: low blood glucose index.
fHBGI: high blood glucose index.
gSVR: support vector regression.
hTS-ANN: time-sensitive artificial neural network.
iRF: random forest.

JMIR AI 2023 | vol. 2 | e45450 | p.490https://ai.jmir.org/2023/1/e45450
(page number not for citation purposes)

Chan et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Furthermore, there has been scalability issues in existing
CGM-related machine learning studies owing to the missingness
of key variables in real-world application. For example, in most
studies, participants are asked to manually log daily events (such
as meal, stress level, exercise, and illnesses) and wear a
wristband for collecting physiological data, which can
potentially provide insights about GV management [43].
However, in real-world health care, most of the time, only
routinely collected CGM and electronic patient record (EPR)
data would be available for clinicians to make decisions about
therapeutic pathways. A more scalable analytical framework is
warranted to make full use of CGM data and capture detailed
GV pattern to inform personalized therapeutic pathways.
Computationally simple methods such as COV and TIR tend
to show a narrow presentation of a patient’s GV profile but are
more recognized among clinicians and used in more clinical
studies. In contrast, despite being able to capture more
information from CGM data, complex machine learning–based
methods tend to be less intuitive for clinicians to apply in
practice. Moreover, existing methods often express GV profile
as a single value or a few discrete levels (usually high, medium,
or low) and do not reveal detailed insights about any GV patterns
that exist in the data.

In this study, we sought to address the scalability issues of
machine learning–based GV management and fill the gap
between the intuitiveness of simplistic methods, such as TIR,
and comprehensiveness of machine learning methods to
understand the underlying GV patterns in patients with T1DM
who have been using wearable CGM. The aim of this paper was
2-fold. First, we sought to develop a novel and scalable analytics
framework for efficient GV pattern recognition and attribution
that provides a more comprehensive, easy-to-understand
representation of a patient’s BG fluctuation profile, which cannot

be solely captured by clinically established metrics such as
HbA1c level and TIR. Second, we sought to propose the use of
time in patterns to depict GV profiles and show that it reveals
additional insights about CGM data and patient characteristics.
In the long run, we hope that having a rich and accessible
representation of GV profile could serve as a step toward
explainable artificial intelligence and the development of
personalized therapeutic pathways for patients with T1DM.

Methods

Overview
The analysis of this study entailed two major parts (Figure 1):
(1) extracting GV patterns from CGM and (2) clustering patients
based on time in GV patterns and evaluating the clusters. For
the first part, we gathered and filtered patients, extracted and
cleaned their CGM data from monitoring devices, and then
applied a machine learning algorithm called DTW. This enabled
us to classify the given CGM data within a time window into
one of the extracted patterns. In addition, we applied our
methods to another CGM data set to externally validate our
pattern extraction methods. In the second part, we computed
the time spent in each pattern per patient. Clinical variables
were gathered from EPR and clinical notes. Clustering methods
were further applied on time in patterns to demonstrate its
possible use cases by comparing the differences in clinical
variables across clusters of patients. Finally, we evaluated the
relationship between time in patterns developed using our
method and well-established glycemic metrics.

All analyses were performed using R (version 4.0.3; R Core
Team and the R Foundation for Statistical Computing), and the
R package dtwclust (version 5.5.12, Sarda-Espinosa) was used
for DTW-related analyses [44,45].
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Figure 1. Analytical framework for glycemic variability (GV) pattern extraction and patient clustering from continuous glucose monitoring (CGM)
data. DTW: dynamic time warping; EPR: electronic patient record.

Inclusion and Exclusion of Patients
All patients in this study attended the Centre for Diabetes and
Endocrinology of a large hospital in the United Kingdom. The
inclusion criteria included patients who (1) were diagnosed with
T1DM and (2) were given a CGM device named FreeStyle Libre
(FSL) before August 5, 2019, and had been using it for at least
one month. Patients aged <18 years or patients with unavailable
or missing National Health Service (NHS) identifiers were
excluded from this study. Of 130 patients with available CGM
data in FSL, 126 (96.9%) patients were included in this study.

Collection of CGM Data
FSL flash glucose monitoring system was used to measure the
interstitial fluid glucose level of included patients. It has been
verified by the National Institute for Health and Care Excellence
based on evidence from randomized controlled trials [46].
Patients were instructed by clinicians to use the device in
accordance with the flash glucose monitoring guidelines

suggested by NHS. When using FSL, patients continued to take
insulin according to their insulin regimes and type of insulin
they use. In addition, patients were arranged to have follow-up
consultations every 3 to 6 months, depending on their clinical
needs. Pragmatically, the glucose level was primarily measured
and recorded once every 15 minutes.

Apart from the FSL data set, CGM data from the REPLACE-BG
trial were used for external validation. The REPLACE-BG study
is a multicenter randomized trial to evaluate the stand-alone
effectiveness of CGM without confirmatory BG measurements
in 225 adults with well-controlled T1DM [47]. The trial was
chosen for external validation because it represented a patient
group that is similar and relevant to this study in 3 ways. First,
the REPLACE-BG cohort and our patient cohort both contained
patients with T1DM who were using CGM and undergoing
similar insulin treatment, which is an important inclusion
criterion in this study. Second, the REPLACE-BG trial was
conducted in the United States, whereas this study was
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conducted in the United Kingdom. The capability of our
proposed methods to be applied to patients with different
demographics can be tested. Third, as the REPLACE-BG trial
included more patients and CGM measurements, it enabled us
to validate our methods using a large sample size to demonstrate
scalability.

Retrieval and Preprocessing of Clinical Information
From Clinical Notes and EPR
The FSL CGM data set did not contain clinical variables that
are crucial to this analysis. Thus, clinical notes and EPR were
used as sources of clinical information by mapping the
participants’ NHS identifiers. All available clinical notes
between August 5, 2009, and August 5, 2019, were manually
reviewed, and the list of medication and diagnosis was extracted
for each patient. Then, the list of medication and diagnosis was
reviewed by clinicians at the Centre for Diabetes and
Endocrinology to categorize them for further analysis (Tables
S1 and S2 in Multimedia Appendix 1). In contrast, the latest
laboratory test results, including HbA1c level and estimated
glomerular filtration rate, were retrieved from the EPR.

GV Pattern Extraction With DTW
DTW was proposed by Berndt et al [48], and it aims to find
patterns in time-series data. The DTW model takes several
time-series data as input and outputs the time-series patterns
extracted and the type of pattern to which each series belongs.
The major strengths of DTW included its ability to handle
unevenly spaced time-series data, which is prevalent in CGM
data. Several researchers have applied DTW to discover clinical
insights such as the prognostic value in CGM data [35],
electrocardiograms [49], and genomic signals [50].

A few preprocessing steps were performed to transform the FSL
CGM data into inputs for the DTW model. First, if multiple
records were found within the same minute in the CGM data,
the median value was considered. Second, we divided the CGM
data of each patient into overlapping window periods. Any
window periods that had <4 measurements per hour on average
were discarded to improve model results. Third, hyperparameters
of the DTW model, specifically, the duration of each window
period and the percentage of overlap between consecutive
windows, were tuned. A grid search was performed from a
validation set over the 2 hyperparameters to determine the best
combination that optimizes a list of cluster validity indexes,
namely, Silhouette, Calinski-Harabasz, COP, and modified
Davies-Bouldin index. The search space for window duration
and overlap percentage were 120, 150, and 180 minutes and
0%, 25%, 50%, and 75%, respectively. The search space for
window duration was chosen such that the duration is sufficient
to capture the activity profile of rapid-acting insulin.

After determining the aforementioned hyperparameters, the
number of patterns to be extracted by the DTW model has to
be determined. A DTW model was trained for each of 3 to 8
patterns, and the models were compared. The optimal number
of patterns was determined by evaluating the total within-cluster
distance against the number of pattern graphs, which is also
known as the elbow method. Finally, GV patterns and the type
of pattern to which each series belongs were extracted from the

best-performing DTW model. To examine whether our method
can be generalized to other CGM data sets on patients with
T1DM, we applied the same preprocessing steps and
hyperparameters to the REPLACE-BG data set. The number of
patterns was determined similarly, and the resulting set of GV
patterns was compared with that from FSL data.

Hierarchical Clustering of Patients and Statistical
Analysis
Hierarchical clustering algorithm was used to cluster patients
with respect to time in patterns, so that no a priori information
about the number of clusters would be required [51]. The
occurrence of each pattern per patient was tallied and expressed
as a percentage of all patterns. Agglomerative hierarchical
clustering algorithm with complete linkage was applied on time
in patterns, and a dendrogram was plotted. A distance measure
specific to percentage data was used for computing the distance
matrix for hierarchical clustering instead of the conventional
Euclidean distance measure [52]. The number of patient clusters
was determined based on the greatest difference in the total
within-cluster distance from the dendrogram. Each patient was
assigned to one of the clusters for statistical analysis.

In statistical analysis, patient characteristics, including
demographics, laboratory test results, diagnoses, and
medications, were compared across patient clusters using
univariate analysis. Laboratory test results for HbA1c level and
estimated glomerular filtration rate were categorized into groups
and regarded as categorical variables in 2-tailed statistical tests.
ANOVA for continuous variables and chi-square test for
categorical or binary variables were performed, and the
corresponding P values were extracted. Missing values for each
variable were omitted from the computation of P value. P values
<.05 were considered as being statistically significant.

Ethics Approval
This study obtained ethics and data governance approval by the
Royal Berkshire NHS Foundation Trust under the reference
number A2901469.

Results

GV Patterns From DTW Model
A total of 1,590,443 CGM data points across 126 patients was
collected in this study. After hyperparameter tuning, it was
determined that 150 minutes was the optimal window duration
and 50% was the optimal overlap percentage. A comparison of
the cluster validity indexes is presented in Figure S1 in
Multimedia Appendix 1. This resulted in 149,639 window
periods (each 150-minute long) for training the DTW model.
By evaluating the graph of the total within-cluster distance
against the number of patterns, 6 was found to be the optimal
number of patterns. In contrast, GV patterns from the
REPLACE-BG data set were extracted with identical
configurations, resulting in 931,005 window periods and 5
patterns (Figures S2 and S3 in Multimedia Appendix 1).

The properties of the 6 GV patterns extracted from the FSL data
set are summarized in Table 2. Figure 2 presents several random
CGM samples from each pattern group. Results showed that
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patterns 1 and 2 represent glucose levels at approximately 3 to
6 mmol/L and 6 to 8 mmol/L, respectively, which mostly fall
within the target range. A slightly rising trend is also observed
in pattern 2. BG trends are also captured in patterns 3 and 4.
Pattern 3 represents a decline in BG from marginally
hyperglycemic to normal and is the only pattern that depicts an
obvious downward trend. In contrast, pattern 4 represents a
surge from marginally hyperglycemic to hyperglycemic. Most

of the CGM data belong to patterns 1 to 4, and each of them
accounts for approximately 20% of the data. Patterns 5 and 6
both represent less frequent hyperglycemic events at
approximately 14 to 19 mmol/L and 19 to 28 mmol/L,
respectively. Unlike the other 4 patterns, patterns 5 and 6 had
large spread and included different trends that generally falls
within their respective glucose levels. In other words, they can
include upward, downward, steady, or even parabolic trends.

Table 2. Summary of the 6 glycemic variability (GV) patterns extracted from FreeStyle Libre data set.

Occurrence (N=149,639), n (%)Pattern trendsGlucose levelGV pattern number

8440 (5.64)Steady or rising to peak and decliningSeverely hyperglycemic6

22,594 (15.10)Steady or concave up or downHyperglycemic5

28,653 (19.15)RisingFrom marginally hyperglycemic to hyperglycemic4

31,185 (20.84)DecliningFrom marginally hyperglycemic to normal3

30,255 (20.22)Steady or slightly risingNormal2

28,512 (19.05)Steady or concave upMarginally hypoglycemic or normal1

Figure 2. Glycemic variability patterns extracted from dynamic time warping model. Each gray line represents a random sample within the specific
pattern and data set, and one is highlighted in color. The dark gray line in each panel depicts the median of glycemic variability patterns extracted. FSL:
FreeStyle Libre.

External validation was performed on the REPLACE-BG data
set, and results are presented in Figure 2 and Figures S2 and S3
in Multimedia Appendix 1. It is observed that our methods were
able to generate a comparable set of GV patterns across the 2
data sets, specifically, patterns 1 to 5. Compared with FSL
patterns, the biggest difference in REPLACE-BG patterns is
the absence of pattern 6, which indicates severe fluctuations in
hyperglycemic events. This is likely owing to the difference in
inclusion and exclusion criteria between the 2 data sets. The
REPLACE-BG trial cohort deliberately included patients with
T1DM who were well controlled and excluded individuals with
substantial hypoglycemic events. Therefore, the REPLACE-BG
data set is only representative of the well-controlled T1DM
group and has limited generalizability to all patients with T1DM.
Given that the objective of this study was to generate a
comprehensive representation of GV profiles among all patients
with T1DM, all further analysis in this study was conducted
based on the 6 patterns from FSL data set.

Patient GV Profile Clusters Based on Time in Patterns
Hierarchical clustering was applied on time in GV patterns.
Overall, 4 clusters of patients were identified based on the
dendrogram (Figure 3). Most patients (74/126, 58.7%) belonged
to cluster A. Hyperglycemia fluctuation events occurred more
frequently among patients in clusters A and B. Moreover, the
time spent in GV patterns 1 and 2 for these patients was
relatively low. In particular, the 3.2% (4/126) patients in cluster
B spent much more time in GV pattern 6 than in all other
clusters. This demonstrates that their glucose level was very
poorly controlled and managed. In contrast, the glucose level
of patients in clusters C and D are more likely to fall into GV
patterns 1 and 2, which roughly resembles the target range.
However, patients in cluster C spent relatively more time in GV
patterns 3 and 4 when compared with patients in cluster D,
which indicates great fluctuation in glucose levels and high
likelihood of hyperglycemia events.
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Figure 3. Dendrogram in hierarchical clustering and heat map of time in patterns per patient. The left panel depicts the dendrogram in hierarchical
clustering. The 4 colored boxes represent 4 different patient clusters based on glycemic variability (GV) patterns. The right panel is a heat map that
depicts the underlying distribution of patterns across all patients. Each row represents a patient and each column represents 1 of the 6 extracted GV
patterns. Yellow color represents a relatively rare occurrence, and red color represents a relatively frequent occurrence.

Correlation Between GV-Based Clusters and Patient
Characteristics
Patient characteristics were compared across the 4 patient
clusters and are presented in Table 3. No statistical significance
was found across clusters in terms of demographical variables,
except for age (P=.02). Specifically, patients in cluster B were
observed to be younger and had shorter duration of diabetes
than those in the other 3 clusters (P=.04). Moreover, the patient
clusters were significantly different in various glycemic metrics,
including HbA1c level category (P<.001), COV (P=.003), and

TIR (P<.002). Patients in cluster D were associated with high
odds of meeting the HbA1c level and TIR recommended targets.
Although more than half of patients in cluster C (23/35, 66%)
met the recommended target for HbA1c level, they had one of
the greatest COV among all 4 clusters, and only 11% (4/35) of
them met the recommended target for COV. Patients in clusters
A and B were associated with significantly increased likelihood
of poorly controlled diabetes. Most patients in cluster A and all
patients in cluster B failed to fulfill HbA1c level (7/74, 10%)
and TIR targets, indicating further management needs in terms
of type or dosage of insulin intake.
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Table 3. Patient characteristics across the 4 patient clusters (N=126).

P valueaCluster D (n=13)Cluster C (n=35)Cluster B (n=4)Cluster A (n=74)Characteristics

.0233.8 (10.7)41.8 (12.9)22.8 (4.27)40.3 (14.3)Age (years), mean (SD)

.339 (69)18 (51)1 (25)34 (46)Sex (female), n (%)

.567.38 (2.66)7.34 (2.44)8.25 (2.06)7.96 (2.31)Index of Multiple Deprivation decile [53],
mean (SD)

.2223.4 (4.39)26.9 (5.69)24.1 (3.07)27.3 (4.64)BMI (kg/m2), mean (SD)

.0414.5 (14.7)24.8 (15.7)8.5 (4.36)22.2 (12.4)Duration of diabetes (years), mean (SD)

.76215 (276)167 (203)203 (56.1)218 (243)Number of days since CGMb use, mean (SD)

.85eGFRc stage, n (%)

0 (0)0 (0)0 (0)0 (0)5

0 (0)0 (0)0 (0)1 (1)4

0 (0)0 (0)0 (0)2 (3)3b

0 (0)1 (3)0 (0)4 (5)3a

6 (46)16 (46)0 (0)28 (38)2

7 (54)18 (51)4 (100)38 (51)1

<.001HbA1c
d level (mmol/mol), n (%)

7 (54)1 (3)0 (0)1 (1)≤42

3 (23)6 (17)0 (0)4 (5)43-48

2 (15)19 (54)0 (0)14 (19)48-59

1 (8)9 (26)1 (25)46 (62)59-85

0 (0)0 (0)3 (75)8 (11)≥86

<.0016.48 (1.1)8.22 (0.614)19.3 (1.46)10.8 (1.57)Glucose level, mean (SD)

.0030.37 (0.063)0.429 (0.061)0.354 (0.031)0.428 (0.066)COVe of glucose level, mean (SD)

TIRf (mmol/L), mean % (SD)

.0024.6 (5)3.2 (2.8)0.3 (0.2)1.9 (2.2)≤3

<.00111 (7.7)6.7 (2.7)0.6 (0.2)3.5 (2)3-3.9

<.00174.7 (12.9)62.4 (6.4)10.6 (2.9)43.3 (11.3)3.9-10

<.0017.5 (4.9)20.5 (4)13.3 (3.6)27.2 (6.0)10-13.9

<.0012.3 (5.8)7.3 (3.4)75.2 (5.8)24.1 (11.6)≥13.9

Time in patterns, mean % (SD)

<.00151.9 (17.9)27.6 (8.8)2.1 (0.6)13.6 (7.2)1

<.00132.5 (10.6)27.6 (5)3.6 (1.1)17 (6.1)2

<.00110.2 (6.6)23.5 (5.2)6.8 (1.7)22.4 (4.7)3

<.0015 (7.3)15.6 (4.2)10.1 (2.8)23.1 (5.7)4

<.0010.4 (0.7)5.5 (3)26.2 (5.8)19.3 (7.8)5

<.0010 (0)0.3 (0.4)51.2 (11)4.7 (6)6

Fulfillment of recommended targets [28], n (%)

<.00111 (85)23 (66)0 (0)7 (10)TIR between 3.9 and 10 mmol/L >70%
of the time

<.0017 (54)4 (11)2 (50)8 (11)COV of glucose level <0.36

<.00112 (92)26 (74)0 (0)18 (24)HbA1c level <58 mmol/mol

.105 (39)22 (63)3 (75)55 (74)Comorbidities, n (%)
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P valueaCluster D (n=13)Cluster C (n=35)Cluster B (n=4)Cluster A (n=74)Characteristics

.184 (31)19 (54)3 (75)47 (64)Diabetic complications, n (%)

Medication, n (%)

Insulin

.7512 (92)33 (94)4 (100)66 (89)Injection

.782 (15)4 (11)0 (0)11 (15)Pump

.551 (8)9 (26)1 (25)19 (26)Blood pressure

.331 (8)8 (23)0 (0)19 (26)Cholesterol

.502 (15)2 (6)0 (0)10 (14)Thyroid

.951 (8)2 (6)0 (0)4 (5)Antiplatelet

.150 (0)0 (0)0 (0)7 (10)Psychology

aP values <.05 are italicized; missing values were omitted only during the calculation of P values.
bCGM: continuous glucose monitoring.
ceGFR: estimated glomerular filtration rate.
dHbA1c: glycated hemoglobin.
eCOV: coefficient of variation.
fTIR: time in range.

Resemblance Between TIRs and Time in GV Patterns
It is possible to translate some of the TIR targets to targets of
GV patterns owing to their conceptual similarity, and it is
observed that some of the extracted GV patterns resemble the
TIR glucose cutoff points as recommended by Battelino et al
[28] (Figure 4). This can potentially serve as reference to better
understand the clinical impacts for each pattern. GV patterns 5
and 6 both belong to the very high glucose range. Thus, a

recommended target TIR of <5% within the very high glucose
range can be approximately translated to having <5% occurrence
for patterns 5 and 6. Pattern 4 generally represents high glucose
level, with cutoffs at approximately 10 and 13.9 mmol/L.
However, none of the patterns exclusively covers the very low
glucose range (<3.9 mmol/L). This is because such readings
were very rare in the data set, such that they were inherently
grouped into GV pattern 1 by the DTW model.

Figure 4. Comparison of recommended time in range (TIR) targets and extracted glycemic variability patterns. Each color in the left panel represents
a glycemic variability pattern. The lower and upper bound of each shaded region represent the 20th and 80th percentile of glucose trend for that pattern.
The median glucose trend of each pattern is highlighted. The target TIR shown in the right panel is proposed by Battelino et al [28].
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As our extracted GV patterns take fluctuation in BG into account
in addition to its magnitude, our method is able to provide
additional context for a person’s BG profile. The prevalence of
GV patterns 4 and 5 would indicate a fluctuation between high
and very high glucose ranges, whereas that of GV patterns 3
and 4 indicates a fluctuation between target to high glucose
level. This piece of information cannot be deduced from TIR.
It should be noted that taking fluctuation into account also
implies that direct translation from TIR targets to certain patterns
is unavailable, as they span across different glucose ranges. For
instance, the target glucose level ranges between 3.9 and 10
mmol/L comprises patterns 1, 2, and 3.

GV Patterns Over Time
In this study, we sought to draw insights about patients with
different time in GV patterns by using hierarchical clustering.
A total of 4 clusters was found, each with very distinguishing
glycemic fluctuation features and thus management needs. An
example of daily glucose trends from each cluster is presented
in Figure 5. Diabetes in patients in cluster D was well controlled,
and there is no need to alter their insulin regime. Although the
glucose level of patients in cluster C usually falls within target
range, it has great variability, which could indicate the need for
changing their insulin regimes to reduce fluctuation and
hyperglycemia events. In contrast, patients in clusters A and B
had very poorly controlled diabetes, and a significant increase
in fluctuation severity is observed, which suggests the need for
change in glucose management. Patients in cluster A show sharp
increases and decreases across target and hyperglycemia ranges,
whereas those in cluster B primarily fluctuate at hyperglycemia
level. A possible explanation for this is that patients in cluster
B tend to be young and had short duration of diabetes. Therefore,
the optimal way to manage their glucose levels is less apparent
and would still require some time to be determined in follow-up
consultations. Apart from existing metrics such as HbA1c level

and TIR, we believe that studying patient clusters can be
beneficial as a complementary metric during consultations,
which could improve patient care and, ultimately, clinical
outcomes.

To better understand the properties of each GV pattern, we
further evaluated the relationship between GV patterns and time
of day. The occurrence of patterns across time of day according
to cluster is presented in Figure 6. It is observed that GV pattern
1, which represents steady glucose level around marginal
hypoglycemia to normal, most frequently occurs at midnight
between 2 AM and 6 AM. This is likely owing to the absence
of food intake during the period. In contrast, GV patterns 2 and
4, which are indicators of a surge in glucose level, are more
likely to occur at typical meal hours around 9 AM, 1 PM, and
7 PM for patients in clusters C and D. Similarly, GV patterns
5 and 6 occur the most within that period for patients in cluster
B whose glucose level are very poorly controlled. These
observations are generally consistent with existing literature
about the daily fluctuation in glucose levels [29].

Apart from analyzing GV patterns over time of day, we further
investigated whether the duration of CGM use is associated
with patients’ GV profile and characteristics. On the basis of
the distribution of CGM use duration in our data set, the cohort
is divided into 3 approximately equal-sized groups to facilitate
comparison: <68 days (46/126, 36.5%), 68 to 180 days (40/126,
31.7%), and >180 days (40/126, 31.7%). Our findings revealed
that although no statistical significance was found between the
duration of CGM use and patient demographics or fulfillment
of recommended glycemic targets (all P>.05; Table 4), long
duration is associated with specific glycemic metrics, including
high mean glucose (P=.03), TIR ≥13.9 mmol/L (P=.04), and
time in pattern 6 (P=.04). This may indicate increased likelihood
of poorly controlled or managed patients who have been using
CGM for an extended period.
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Figure 5. The 1-day glucose trend of patients sampled from each cluster. The shaded region represents the target glucose range, and the 6 glycemic
variability (GV) patterns over time are highlighted in 6 colors.

Figure 6. Hourly distribution of glycemic variability (GV) patterns across a day for each patient cluster.
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Table 4. Patient characteristics across different duration of diabetes (N=126).

P valuea>180 days (n=40)68-180 days (n=40)<68 days (n=46)Characteristics

.8739.4 (14)40.4 (15.2)38.7 (12.5)Age (years), mean (SD)

.3120 (50)16 (40)26 (57)Sex (female), n (%)

.287.28 (2.73)8.1 (2.34)7.83 (2.01)Index of Multiple Deprivation decile [53], mean (SD)

.2225.7 (4)26.8 (3.9)27.8 (6.2)BMI (kg/m2), mean (SD)

.0310.5 (3.5)10.2 (2.5)9.08 (1.57)Glucose level, mean (SD)

.170.408 (0.061)0.416 (0.06)0.434 (0.074)COVb of glucose level, mean (SD)

TIRc (mmol/L), mean % (SD)

.112.6 (3)1.7 (1.5)3 (3.5)≤3

.195 (5.3)4.3 (2.8)5.9 (3.6)3-3.9

.0747.3 (18.9)49.1 (17.3)55.3 (13.5)3.9-10

.3622.8 (9)24.3 (8.5)21.7 (7.2)10-13.9

.0422.4 (21.1)20.6 (15.8)14.1 (10.3)≥13.9

Time in patterns, mean % (SD)

.0920.5 (17.5)17.4 (13.5)24.7 (14.5)1

.1019.4 (9.7)20.2 (8.8)23.4 (8.8)2

.4619.9 (7.1)21.7 (6.3)21.2 (7)3

.4018.3 (8.3)20.1 (8.2)17.8 (7.8)4

.0814.8 (11.1)15.6 (9.4)11.1 (9.2)5

.047.1 (14.9)4.9 (8.7)1.7 (2.7)6

Fulfillment of recommended targets [28], n (%)

.6513 (33)11 (28)17 (37)TIR between 3.9 and 10 mmol/L >70% of the
time

.796 (15)8 (20)7 (15)COV of glucose level <0.36

.6120 (50)17 (43)19 (41)HbA1c
d level <58 mmol/mol

aP values <.05 are italicized; missing values were omitted only during the calculation of P values.
bCOV: coefficient of variation.
cTIR: time in range.
dHbA1c: glycated hemoglobin.

Discussion

Principal Findings
As an important application of smart and connected health,
CGM has been gaining popularity rapidly ever since its inception
and is becoming a vital tool to improve glucose management
in patients with T1DM. With the increasing use of CGM for
managing patients with T1DM, metrics such as TIR are
recommended to depict GV, but a significant part of information
available in CGM data is often omitted. In this study, we
proposed a machine learning framework for extracting GV
patterns from CGM data that harnesses the strengths of machine
learning in terms of the capability of analyzing large amounts
of data. By applying DTW on CGM data, we showed that it is
possible to extract recurring patterns in CGM that inherit the
clinical concepts of TIR, a recognized CGM-derived metric.
Specifically, 6 distinctive patterns were found, and we showed

that time in patterns can be used to comprehensively represent
patients’ GV profile and to complement TIR owing to their
conceptual resemblance. We further drew insights from GV
patterns by identifying the types of patients with T1DM based
on time in patterns and addressing the relationship between GV
patterns and time of day. Our method captured information
beyond absolute glucose value and revealed the details of
glucose variability and dynamics. We demonstrated that time
in patterns is an accessible, more comprehensive representation
of a patient’s GV and could provide additional insights such as
types of patients with T1DM and time of day.

Our proposed methods successfully captured GV patterns that
inherently incorporate the idea of clinically meaningful concepts
such as mean glucose level, GV, and TIR. Time in patterns
derived from our methods contains much rich information, as
existing methods such as TIR disregard the sequence in which
the glucose measurements were made. Finally, an advantage of
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our time-in-patterns method over other proposed machine
learning–based metrics is its scalability and understandability,
which is largely owing to the ability to visualize our extracted
patterns from blood monitoring data. As mentioned in section
Quantifying GV, clinical understandability is a major issue that
hindered machine learning–based GV extraction methods from
being a widely accepted glycemic metric. For example, it is
generally more meaningful to portray GV using time in patterns,
such as 36% time spent in GV pattern 3 (rising from marginally
hyperglycemic to normal) and pattern 4 (declining from
marginally hyperglycemic to hyperglycemic), than a single SD
value such as 0.36. We also validated the blood fluctuation
patterns 1 to 5 using US-based CGM data from the
REPLACE-BG trial of 225 adults with well-controlled T1DM.
This shows that our method has the generalizability to cover
different patient cohorts from various demographics.

Limitations
This study had a few limitations. First, the duration of CGM
use varied from 1 month to 3 years across patients in this study.
Although no significant association was found between days
since the use of CGM and patient cluster (P=.76), certain effects
may not be accounted for in this study, such as seasonal effects
on glucose levels [54]. Second, the adoption of CGM at the
moment is still limited to the well-developed areas of the world
where there are information and communication technology
infrastructure with high level of digital readiness for connected
health and sufficient funding for patients with T1DM to use
wearable CGM devices. This is also reflected in our data that
the patients included in this study were predominantly living
in less deprived areas. For example, 75.4% (95/126) of the

patients in our study were living in less deprived areas according
to the Index of Multiple Deprivation (IMD) decile (IMD≥7),
and 34.9% (44/126) of them were living in the least deprived
area (IMD=10). Only 19.8% (25/126) of the patients in our
study were living in more deprived areas (IMD≤5). The average
IMD decile in different patient clusters can be found in Table
3. Therefore, the generalizability of our results to other
demographics such as patients living in rural areas is limited.
It should also be noted that apart from infrastructure and
deprivation, there are other factors affecting the adoption of
CGM such as device accuracy [55], user perception, device
obtrusiveness [56], and interpersonal influence [57]. Third, as
only the latest list of medication and laboratory test results was
collected from each patient, any change in medication or
management throughout the study period was not accounted
for. A patient who spent a lot of time in hyperglycemia may
remain in the target glucose range steadily after a change in
their insulin regime. In this case, the resulting time in patterns
would be averaged across the 2 states and fail to represent the
patient’s latest situation.

Future Studies
Future studies could focus on investigating the clinical
relationship between GV patterns and DM medications through
prospective studies and randomized control trials. By having a
more comprehensive representation of GV profile, we can better
categorize patients, which in turn would enable us to understand
more about their unique condition and needs. We believe that
this framework can ultimately serve as a step toward the
development of personalized therapeutic pathways for patients
with DM in the environment of connected health.
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Abstract

Background: Nearly one-third of patients with diabetes are poorly controlled (hemoglobin A1c≥9%). Identifying at-risk
individuals and providing them with effective treatment is an important strategy for preventing poor control.

Objective: This study aims to assess how clinicians and staff members would use a clinical decision support tool based on
artificial intelligence (AI) and identify factors that affect adoption.

Methods: This was a mixed methods study that combined semistructured interviews and surveys to assess the perceived
usefulness and ease of use, intent to use, and factors affecting tool adoption. We recruited clinicians and staff members from
practices that manage diabetes. During the interviews, participants reviewed a sample electronic health record alert and were
informed that the tool uses AI to identify those at high risk for poor control. Participants discussed how they would use the tool,
whether it would contribute to care, and the factors affecting its implementation. In a survey, participants reported their
demographics; rank-ordered factors influencing the adoption of the tool; and reported their perception of the tool’s usefulness as
well as their intent to use, ease of use, and organizational support for use. Qualitative data were analyzed using a thematic content
analysis approach. We used descriptive statistics to report demographics and analyze the findings of the survey.

Results: In total, 22 individuals participated in the study. Two-thirds (14/22, 63%) of respondents were physicians. Overall,
36% (8/22) of respondents worked in academic health centers, whereas 27% (6/22) of respondents worked in federally qualified
health centers. The interviews identified several themes: this tool has the potential to be useful because it provides information
that is not currently available and can make care more efficient and effective; clinicians and staff members were concerned about
how the tool affects patient-oriented outcomes and clinical workflows; adoption of the tool is dependent on its validation,
transparency, actionability, and design and could be increased with changes to the interface and usability; and implementation
would require buy-in and need to be tailored to the demands and resources of clinics and communities. Survey findings supported
these themes, as 77% (17/22) of participants somewhat, moderately, or strongly agreed that they would use the tool, whereas
these figures were 82% (18/22) for usefulness, 82% (18/22) for ease of use, and 68% (15/22) for clinic support. The 2 highest
ranked factors affecting adoption were whether the tool improves health and the accuracy of the tool.
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Conclusions: Most participants found the tool to be easy to use and useful, although they had concerns about alert fatigue, bias,
and transparency. These data will be used to enhance the design of an AI tool.

(JMIR AI 2023;2:e45032)   doi:10.2196/45032

KEYWORDS

artificial intelligence; medical informatics; qualitative research; prediction tool; clinicians; diabetes; treatment; clinical decision
support; decision-making; survey; interview; usefulness; implementation; validation; design; usability

Introduction

Background
Poor control, defined as a hemoglobin A1c (HbA1c) level >9.0%,
contributes to complications, including nephropathy [1-6],
retinopathy [4,7], and neuropathy [4,8]. Reducing poor control
is important because a 2% decrease in HbA1c (eg, from 9% to
7%) lowers the probability of microvascular complications by
50% to 76% [9]. The number of Americans with poorly
controlled diabetes has been increasing, contributing to
preventable morbidity and mortality [10-12]. In federally
qualified health centers (FQHCs), the percentage with poor
control was 32% in 2016 (up from 29% in 2009), suggesting
that a new approach to diabetes management is needed [13,14].
Owing to the importance of poor control, the metric has been
included in Healthy People 2030, which sets the national target
at 11.6%, and in the measure sets that payers use to assess
quality [15,16]. Thus, successfully reaching targets for diabetes
control is important not only for patient health but also for the
viability of health care organizations.

To meet these goals, researchers and clinicians are using
artificial intelligence (AI) to integrate electronic health records
(EHRs) and social risk factors, such as neighborhood
characteristics, to predict outcomes important to individuals
with diabetes, including poor control [17-22]. For instance,
communities with poor housing, transportation, poverty, and
education have higher rates of diabetes [23-25]. With the growth
of EHRs, remote patient monitoring, and geo-tracking, the
amount of data available to clinicians has increased
exponentially [26]. Although this digitization offers tremendous
opportunities for prediction, it also risks overwhelming
clinicians [27]. This is true for primary care, which influences
downstream spending and is responsible for whole person care
that spans organs and diseases and serves as a point of
integration with public health and behavioral health [28]. As a
result of these functions, primary care clinicians are particularly
susceptible to burnout, and it remains to be seen whether AI
can help [29,30].

Unfortunately, the implementation of AI tools for diabetes has
lagged, and few tools are used in practice, limiting their impact.
A systematic review identified only 51 studies involving AI
implementation [31]. Of these, 6 were related to diabetes. These
applications used computer vision to diagnose diabetic
retinopathy from retinal images and EHR data to predict those
at risk for hyperglycemia. One study examined the
implementation of a tool that predicts poor glycemic control
[32]. As it was not tailored to the clinic’s resources and
population, only 14% (4/28) of users indicated that they would

recommend the tool to others, and many users reported that the
interventions were inappropriate or not useful [32]. One
possibility is that the organization failed to adequately address
sociotechnical issues. The sociotechnical theory posits that the
implementation of technology depends on values, mindsets,
and communication and is an evolutionary process best achieved
by early and active engagement with frontline workers [33,34].
Taken together, these studies indicate that a greater focus on
AI implementation and end-user engagement during
development are needed to tailor tools to clinical resources and
workflows.

Objectives
As the absence of engagement has the potential to reduce trust
and increase errors, researchers are starting to pay attention to
end users [35] and are finding that usability of and satisfaction
with AI tools are generally high [35-37]. Although most of these
tools have targeted specialists, 1 study examined how primary
care physicians use an AI tool to diagnose skin lesions [38].
Most of these studies used quantitative methods and examined
tools that have already been developed [35-37]. This study is
novel because it qualitatively assesses the use of a poorly
controlled diabetes risk tool that has yet to be created and is
based on the theory that early engagement with clinicians and
staff will lead to methodological and design decisions that will
support the tool’s implementation. Furthermore, it is one of the
few studies to target clinicians and staff working in primary
care. The objective of this study was to assess how clinicians
and staff would use and modify an AI clinical decision support
tool for diabetes and to identify concerns and factors that affect
its adoption and implementation.

Methods

Study Design and Participants
This is a mixed methods study of semistructured interviews and
surveys to assess the perceived usefulness and ease of use, intent
to use, and factors affecting tool adoption. The inclusion criteria
were individuals (clinicians and staff) working in clinics that
care for diabetes, adults aged ≥18 years, and English speakers.
Participants were recruited via email through the researchers’
networks.

Interview Procedures
Interviews were conducted by a trained interviewer between
June 2021 and January 2022. All interviews were in English,
conducted using a web-based platform, and audio recorded.
Participants were compensated US $50 upon completion of the
interview and survey.
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Ethics Approval
The protocol was approved by the Institutional Review Board
of the University of Houston (STUDY00002980).

Interview Guide
A semistructured interview guide (Multimedia Appendix 1)
was developed by the research team (Textbox 1). The questions
were informed by the Technology Acceptance Model. This
model was developed to predict individual adoption and use of
new technology. It theorizes that individuals’ intention to use
new technology is determined by perceived usefulness, defined
as “the extent to which a person believes that using [a new
technology] will enhance his or her job performance,” and
perceived ease of use, defined as “the degree to which a person
believes that using [a new technology] will be free of effort”

[39]. The model explains approximately 40% of the variance
in individuals’ intention to use a new technology and actual use
[39]. During the interview, participants were asked to review a
sample EHR alert and were informed that their clinic is
considering the implementation of a clinical decision support
tool that uses AI. This tool incorporates data from the EHR and
the neighborhood in which the patient lives to predict whether
the patient will have uncontrolled diabetes. The alert indicates
that the fictional patient is at high risk for having an HbA1c level
of >9% over the next year. The tool suggests multiple actions
that could reduce the risk, including sending referrals to a social
worker, dietitian, or behavioral specialist, ordering an
antidepressant or a diabetes medication, and scheduling visits
every 3 months.

Textbox 1. Semistructured interview questions.

• What would you do with the information that you reviewed in the electronic health record alert?

• How useful, if at all, is this information for managing your patients with diabetes?

• What additional information would make this electronic health record alert more useful?

• How would you want the information presented to you so that it was easy to use?

• Would you prefer to receive this information at a specific point in time, such as at the point of care?

• To whom should this information be given? Consider clinicians, staff, administrators, and patients.

• What concerns do you have about using this tool?

• What are you already doing to identify people who are at high risk for uncontrolled diabetes?

• Besides uncontrolled diabetes, are there other undesirable outcomes that would be important to predict to improve the health of your patients?

• What are the factors that would affect whether this tool is implemented into practice at your clinic?

Qualitative Data Analysis
The interviews were transcribed using a web-based service
(Otter [40]). A research assistant checked the transcripts for
accuracy and cleaned and deidentified the transcripts when
appropriate. The transcripts were coded by 2 individuals using
thematic content analysis in NVivo (QSR International). First,
the coders read each transcript independently. On the basis of
the study objectives, interview guide, and responses, codes were
generated using repeated ideas. Following the first reading, the
coders compared the codes and developed a guiding codebook
(version 1) with a list of codes and definitions. Using the
updated codebook, the coders independently applied codes to
the interviews in a second reading and met to reconcile coding
discrepancies and modify the codebook (version 2). The coders
used the resultant codebook to conduct a final review of the
interviews, coming together to reconcile differences. Coding
stopped once study objectives were saturated, indicating that
no new information was identified. Following the coding
process, codes were organized into themes and findings. To
describe the strength of ideas, we calculated the number of
respondents contributing to each finding.

Survey Design
Following the interview, the participants completed a survey
(Multimedia Appendix 2). On a 7-point Likert scale (strongly
disagree to strongly agree), participants reported their intent to

use the tool, perceived usefulness, ease of use, and
organizational support for use. Next, they rank ordered the
factors influencing the tool’s implementation (cost of the tool,
accuracy, health improvement, cost to the system, usability,
impact on clinical workflows, and other). To quantify the extent
to which AI would need to outperform clinician intuition for
adoption, we asked participants to respond to the following
prompt:

A team of clinicians and staff were tasked with
predicting whether the 1000 individuals with diabetes
in your practice would have a hemoglobin A1c > 9%
in the next year. The following year, your practice
announced that the team accurately predicted the fate
of 800 of these individuals. How many people would
the AI tool need to accurately categorize for you to
consider using it?

We collected demographic information, including age, gender,
race and ethnicity, professional role, and practice setting.
Physicians also reported the years since residency graduation
and their specialty.

Quantitative Data Analysis
We used descriptive statistics to quantify demographics and
responses.
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Results

Overview
In total, 22 individuals participated in this study. They were
predominantly women, Hispanic, and physicians (Table 1). The
sample also included a nurse practitioner, physician assistant,
behavioral therapist, and social worker. Overall, attitudes toward
the tool were favorable (Table 2). Of 22 participants, 17 (77%)
somewhat, moderately, or strongly agreed that they would use

the tool, whereas this figure was 18 (82%) for its usefulness.
These figures were 82% (18/22) and 68%(15/22) for ease of
use and clinic support, respectively. When asked to rank order
the factors affecting implementation, the top 3 items were
whether the tool improved health, accuracy, and usability.
Finally, we asked participants to quantify how accurate the tool
would need to be for them to consider using it. Of 1000
individuals with diabetes, the mean number of people whose
prognosis the tool would need to accurately predict was 617
(SD 264), although the responses ranged from 20 to 900.

Table 1. Participant demographics (n=22).

Values, n (%)Characteristics

Gender

13 (59)Women

8 (36)Men

1 (5)Prefer not to answer

Race and ethnicity (select all that apply)

9 (41)Hispanic, Latinx, or Spanish origin

6 (27)White

4 (18)Asian

1 (5)Black or African American

1 (5)Middle Eastern or North African

1 (5)Prefer not to answer

Professional role

14 (64)Physician

1 (5)Nurse practitioner

1 (5)Physician assistant

1 (5)Nurse

1 (5)Behavioral specialist

1 (5)Social worker

3 (14)Other (front desk, administrative, or medical assistant)

Primary practice site

8 (36)Academic health center or faculty practice

6 (27)Federally qualified health center or look-alike

4 (18)Private solo or group practice

2 (9)Health maintenance organization (eg, Kaiser Permanente)

1 (5)Mental health center

1 (5)Other (multiple sites)

Specialty (includes physicians, nurse practitioners, and physician assistants)

15 (94)Family medicine

1 (6)Pediatrics

Years since residency graduation (physicians only)

4 (29)In residency

4 (29)1-10

3 (21)11-20

3 (21)21-30
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Table 2. Attitudes toward the tool and factors affecting implementation.

Values

1-7bAttitudesa, mean (SD)

5.6 (1.4)“I would use the clinical decision support toolc.”

5.7 (1.3)“I find the clinical decision support tool to be useful in my job.”

5.8 (1.2)“I find the clinical decision support tool to be easy to use.”

5.0 (1.7)“In general, the clinic would support my use of this clinical decision support tool.”

Factors affecting implementation (rank order)d

Factor, mean (SD)

2.5 (1.7)Whether its use improves health

2.7 (1.7)Accuracy

3.7 (1.5)Usability

3.9 (1.6)Impact on clinic workflows

4.2 (1.7)Cost

4.3 (1.6)Whether its use reduces costs to the health care system

A team of clinicians and staff were tasked with predicting whether the 1000 individuals with diabetes in your practice would have a
hemoglobin A1c >9% in the next year. The following year, your practice announced that the team accurately predicted the fate of 800

of these individuals. How many people would the AIe tool need to accurately categorize for you to consider using it?

617 (273); 20-900Values, mean (SD); range

Distribution of responses, n (%)

3 (14)0-200

1 (5)201-400

6 (27)401-600

6 (27)601-800

6 (27)801-1000

a1 indicates strongly disagrees, and 7 indicates strongly agree.
bRange of possible responses.
cn=21.
d1 indicates the most important factor, and 6 indicates the least important factor.
eAI: artificial intelligence.

Multiple themes related to care delivery and concerns about the
tool’s use, adoption, and implementation emerged from the
interviews (Table 3).
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Table 3. Identified themes and subthemes (n=22).

Participants, n (%)Themes and subthemes

How could the tool affect the delivery of care?

This tool has the potential to be useful because it provides information that is not currently available and can make care more efficient
and effective

7 (32)The tool is not currently available, addresses a clinical gap, and represents a departure from the status quo.

20 (91)Clinicians and staff would increase their focus on diabetes, by scheduling more frequent visits, interacting with patients
in between visits, managing diabetes even when acute issues emerge, and providing targeted education.

10 (45)This tool could improve population health, address quality measures, and contribute to efficient resource allocation.

11 (50)The tool would facilitate individualized and holistic care, by integrating primary care, behavioral health, and social
care.

7 (32)Participants were ambivalent about the tool’s impact on populations that have been made susceptible. Some participants
thought these were the patients who needed attention the most, whereas others thought that making a positive impact
would be difficult.

What concerns do clinicians and staff have about the tool?

Clinicians and staff were concerned about how the tool affects patient-oriented outcomes and clinic workflows

15 (68)Participants were concerned the tool would lead to harms, contribute to overdiagnosis, be used punitively, and make
care more expensive.

8 (36)The utility is limited for those clinicians who know their patients well or have access to existing programs, and some
would rather focus on people who are already uncontrolled.

14 (64)Participants were concerned that the tool would exacerbate existing problems, such as health disparities and alert fatigue.

5 (23)Participants were concerned that the tool’s accuracy and implementation were not supported by evidence.

What changes would increase adoption?

Adoption of the tool is dependent on its validation, transparency, actionability, and design and could be increased with changes to the
interface and usability

4 (18)The tool needs to be validated against patient-oriented outcomes so that clinics can quantify the potential return on their
investment.

11 (50)Knowing how the tool was developed and the rationale behind why an individual is high risk allows clinicians and staff
to gauge the tool’s credibility.

6 (27)To act on the information, clinicians and staff need to understand which risk factors are modifiable and which actions
will have the greatest impact on lowering risk.

13 (59)Using user-centered design principles has the potential to minimize the tool’s impact on workflows and maximize
readability.

2 (9)The ability to customize the tool is important because implementation could differ across practices and clinicians.

19 (86)Participants recommended integrating functionality and relevant information from within the EHRa.

22 (100)Participants recommended other events that could be predicted, including cardiovascular disease, uncontrolled hyper-
tension, worsening depression, care gaps (eg, preventive services), and missed appointments.

What factors would affect implementation?

Implementation would require buy-in and need to be tailored to the demands and resources of clinics and communities

12 (55)The local context affects what can be done in response to the information provided by the tool. Conversely, participants
will become frustrated if the tool recommends an option that is not available.

21 (95)Responding to the tool in a comprehensive manner requires the engagement of a comprehensive team. Although there
was strong consensus regarding the role of clinicians and nurses, participants expressed ambivalence regarding admin-
istrators and patients.

20 (91)Participants wanted to share this information with patients to empower them and support transparency but were also
concerned that the information would cause confusion and stress.

17 (77)There was a lack of consensus regarding when the alert should appear, with some wanting it at the point of care,
whereas others wanted to review the information outside of visits (eg, periodic lists or a dashboard).

8 (36.)Successful implementation would require trialability, training, interoperability, and buy-in.

aEHR: electronic health record.
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Theme 1
The tool has the potential to be useful because it provides
information that is not currently available and can make care
more efficient and effective.

When asked about how the tool could affect care, several
participants (7/22, 32%) noted that such a tool does not exist
and that it would fill a gap:

No, we don’t already have a system. So I think there
is value in adding a tool that would help improve
care. [Physician, academic health center]

...a lot of it [clinician decisions] is...individual
clinician suspicion...a lot of it is going to be based
on how well each clinician knows their patients.
[Physician, academic health center]

Other participants argued that the tool would facilitate the
delivery of proactive care, building on the core function of
primary care:

The primary argument for this tool...is that it’s easier
to prevent something than it is to cure it. [Physician,
academic health center]

...the heart of what we do in primary care is to try to
help patients with chronic conditions avoid long term
complications of those conditions...if [AI believes]
this person might be at greater risk, I might see [that
patient] more often. I might spend more time with
them. I might ask different questions because I would
be trying to prevent [the complication]. [Physician,
academic health center]

As a result of using the tool, clinicians and staff thought they
would increase their focus on diabetes by scheduling more
frequent visits, interacting with patients in between visits,
managing diabetes even when acute issues emerge, and
providing targeted education (20/22, 91%):

I find that for patients who are diabetic, it is the
frequency of touches at every opportunity to control
their diabetes that makes the biggest difference. And
so if a patient has come in for a cold, or even anything
else, other than diabetes, there’s an opportunity to
intervene. For those patients who are poorly
controlled, it’s usually because they’re engaging with
a system very infrequently. And so from that
perspective, getting them reengaged in the system to
become familiar with a system becomes the most
valuable tool. [Physician, Health Maintenance
Organization]

...it...makes you think twice...it...makes you pay
attention a little bit closer, and makes [you] ask, okay,
why are they at risk? What are the things that I can
do to reduce the risk? [Physician, private solo or
group practice]

...awareness is probably some of the best medicine
you can give. And my philosophy is empowering a
patient to give them the education, so they can make
better decisions moving forward...I’m trying to

empower this patient to take control of their own care.
[Physician, private solo or group practice]

Others believed that the tool could be used to improve elements
of population health, such as improving the quality of care
delivered and allocating resources to high-need patients (10/22,
45%):

...as a clinician, it’s part of my responsibility to have
some awareness of the...health...of...my small
population...And so this would help to do some of
that. [Physician, private solo or group practice]

And also, it’s part of our billing, and HEDIS measures
anyway, we’re supposed to have A1cs that are below
eight, and so I feel like this is designed to meet that
standard. [Physician, academic health center]

[Knowing which patients are at high risk is] kind of
helpful...[it tells you] where to put your resources.
[Nurse practitioner, FQHC]

By integrating information about mental health and social risk
factors, our participants (11/22, 50%) believed that the tool
would facilitate individualized, holistic care:

Now that [AI] has brought it up...I would explore
things...that cause high A1c’s like social determinants,
depression, medical intensification... [Physician,
academic health center]

I think it would be very useful, because it really takes
a kind of a holistic approach of looking at the entire
patient, and not just, I’m not just looking at like their
blood sugar. [Behavioral specialist, FQHC]

I would provide education about the connection
between depression and diabetes, and how they can
very much go hand in hand, and how a diabetes
diagnosis can either lead to a depression diagnosis
or exacerbate depression that’s already there. [Social
worker, FQHC]

Participants were ambivalent about the tool’s impact on
susceptible populations. Some participants thought that these
were the patients who needed attention the most, whereas others
thought that making a positive impact would be difficult (7/22,
32%):

I think definitely…in [an] underserved population, it
might be more beneficial, especially since they have
less access to care. [Physician assistant, FQHC]

Say...I have...10 patients in the morning, and all of
them have this alert, and so for all of them, I’m
taking...these extra steps to identify barriers...that’s
going to take more of my time. [Physician, private
solo or group practice]

The whole predicting, based on community or...based
on where the person lives...struck me a little odd...it
feels almost like...an overgeneralization...[because]
you come from this community, you are at risk...Are
we stereotyping?...Are we making
assumptions...because someone comes from...poverty,
or...a certain marginalized population? [Social
worker, FQHC]
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Theme 2
Clinicians and staff were concerned about how the tool affects
patient-oriented outcomes and clinic workflows.

Participants had myriad concerns about the tool. First, they were
concerned that the tool would lead to harms, contribute to
overdiagnosis, be used punitively, and make care more
expensive (15/22, 68%):

Would it make care worse? Yeah, potentially...So if
you’re prompted to prescribe medications...for people
who are not yet at a certain level of risk, the [benefit
to harm] ratio becomes smaller. [Physician, academic
health center]

I would be concerned about [the] over identification
[and] over diagnosis. [Physician, private solo or
group practice]

I think that increasing the cost of care is definitely
going to happen...in many systems because of how
healthcare is paid for. So if I make a referral...for the
patient, and the patient has to go and pay for the
social worker [and] dietitian, I’ve just increased the
cost of care. [Physician, academic health center]

I think that it is important to not make it look like...the
fact that [patients are still uncontrolled]...is [because]
you [are] a bad physician...I’m tired of that.
[Physician, academic health center]

In particular, those clinicians who know their patients well or
have access to existing programs thought the utility was limited,
and some would rather focus on people who are already
uncontrolled (8/22, 36%):

...a lot of it is going to be based on how well each
clinician knows their patients, and how well and how
comfortable the patient feels and speaking up on their
own behalf for concerns that might have arisen.
[Physician, academic health center]

We are asked on a monthly basis to review our
patients who are not at a goal hemoglobin A1c level.
Our...focus in the last six months has been...around
Latino pat ients . . .So I  find. . . this
particular...information to be less valuable because
we’re kind of doing it on a monthly basis already.
[Physician, health maintenance organization]

I would probably focus on the people I know who
already have A1c’s more than 9% and start working
on that population first. [Physician, mental health
center]

They were also concerned that the tool would exacerbate
existing issues such as health disparities and alert fatigue:

Racial bias is...something that’s implicitly existent in
normal data sets...this is something that just
compounds...It’s like a small mistake that compounds
into something bigger. [Physician, private solo or
group practice]

...the primary concern stems from excess information
being available...But if there’s already a lot of data
points, and they’re not...actionable, it can be

overwhelming or just ignored. [Physician, health
maintenance organization]

Finally, participants were concerned that the tool’s accuracy
and implementation would not be supported by evidence (5/22,
23%):

If it’s things that are [inaccurate and] manually
entered into the EHR system that are driving this...,
it certainly could create false alerts and waste time
or...miss people who actually are at risk
because...things weren’t...entered correctly, or left
blank. [Physician, private solo or group practice]

You have to prove to me first that identifying and
managing folks like this can actually help. [Physician,
academic health center]

It’s only useful if I trust the information. [Physician,
academic health center]

Theme 3
Adoption of the tool is dependent on its validation, transparency,
actionability, and design and could be increased by changing
the interface and usability.

The tool needs to be validated against patient-oriented outcomes
so that clinics can quantify the potential return on investment
(4/22, 18%):

The factors would be how useful the tool is, first of
all, how validated the tool is and if you can show
that...it changes outcomes. [Physician, private solo
or group practice]

The participants expected a degree of transparency and wanted
to know how the tool was developed and the rationale behind
the high risk of an individual. This information allows them to
gauge the tool’s credibility (11/22, 50%):

...if I’m going to use a tool, I want to be able to...click
a link [that] will take me to the website and I can just
learn more [about] where this is being trained.
[Physician, private solo or group practice]

It would be helpful to know why that patient is at risk.
And that will make you believe it or not. [Physician,
private solo or group practice]

I think some sort of report that shows me which
factors contributed the most to these alerts may help
me even more. [Physician, academic health center]

Knowing why someone is at high risk is necessary but
insufficient. Participants also wanted to understand which risk
factors are modifiable and which actions will have the greatest
impact on lowering risk (6/22, 27%):

...if the evidence says social work drops the risk by
50% [and] dietitian...drops the risk by 40%, on
average, but in my patient, the alert fired because of
nutritional concerns, I might choose the dietitian as
a first choice because it might have a greater impact
for this patient in particular. [Physician, academic
health center]

...what would be really helpful...would be some sense
of the potential impact of each of these, because I’m
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not going to be able to get my patient to do all six
potentially. But if they were organized in such a way
to say this step will reduce the risk by this much. That
step will reduce the risk by less...then I might be able
to prioritize. [Physician, academic health center]

Participants believed that perceived usability and readability
would be key drivers of adoption (13/22, 59%):

[Adoption] would depend very, very, very heavily on
the provider perception of usefulness and usability.
[Physician, academic health center]

Instead of showing six [actionable steps]...you...could
[show] fewer options and color [code them]...from
most benefit to least benefit. [Physician, academic
health center]

The ability to customize the tool is important because
implementation could differ across practices and clinicians
(2/22, 9%):

...there’s a lot of customization that would have to
occur on the front end, to make sure that these...action
items are clickable [and that] applicable resources
[are] available. [Physician, private solo or group
practice]

Participants recommended integrating functionality and relevant
information within the EHR (19/22, 86%). They wanted to
include a wide range of laboratories and vital signs to provide
a context for risk prediction and broaden the types of actions
that could be completed within the tool:

...one of the hard parts about managing diabetes is
knowing...they need another agent, and then maybe
which agent the insurance might cover...it would be
even more beneficial if [the tool told] me these might
be suggestive agents to add...for [better] control.
[Physician, academic health center]

I’d want to know when and what their last hemoglobin
A1c was and when their last appointment was. And
then I want to know if they have seen a dietitian in
the past and how long ago? [Physician, mental health
center]

Participants thought that this model could be applied to other
conditions and recommended that the tool be used to predict
important events in primary care, including cardiovascular
disease, uncontrolled hypertension, worsening depression, care
gaps (eg, preventive services), and missed appointments (22/22,
100%):

...you could apply the same sort of thing to preventive
care to any chronic disease to including depression,
hypertension, coronary disease. [Physician, academic
health center]

...how likely is this person going to follow through on
their screenings, [like] getting their mammogram?
[Physician, private solo or group practice]

Theme 4
Implementation would require buy-in and need to be tailored
to the demands and resources of clinics and communities.

The local context affects what can be performed in response to
the information provided by the tool. Conversely, participants
will become frustrated if the tool recommends an option that is
not available (12/22, 55%):

[My use of the tool] would depend a great deal on
what resources are actually available to me.
[Physician, academic health center]

...depending on...what your clinics resources are, if
you’re getting alerts for people that you have no
ability to help, because you don’t have access to a
social worker...that doesn’t feel really good.
[Physician, academic health center]

Responding to the tool in a comprehensive manner requires the
engagement of a comprehensive team. Although there was
strong consensus regarding the role of clinicians and nurses,
participants expressed ambivalence regarding administrators
and patients (21/22, 95%). All members of the primary care
team have potential roles to play, including front desk personnel,
pharmacists, and social workers. As roles differ for each
practice, the recipients of the information may be practice
dependent:

...staff should have the means to be able to respond
to...this...there would be a lot of a lot of value in
having multiple eyes on this to make sure that nobody
falls through the cracks. [Physician, in residency]

I don’t think this would be terribly helpful for
administrators. Sometimes it’s used punitively. And
I don’t think that that’s what we want. [Physician,
academic health center]

Regarding who should receive this information: “I
feel like each location might want to designate that.”
[Physician, academic health center]

Participants wanted to share this information with patients to
empower them and support transparency but were also
concerned that the information would cause confusion and stress
(20/22, 91%). They thought that the information without context
could be harmful and that they would need scripts to explain
the results in a patient-centric manner:

I think [who should receive the information] would
be very, very practice dependent...I think giving the
information to patients can be really valuable. I think
how it’s presented and how it’s framed [is important].
[Physician, academic health center]

I think just a lack of context for the patient on why
these certain things were ordered would be [a]
concern for high alert with the patient...[patients]
having no clue what it means could create...panic or
some distress in the patient. [Physician, in residency]

There was a lack of consensus regarding when the alert should
appear, with some wanting it at the point of care, whereas others
wanted to review the information outside of visits (eg, periodic
lists or a dashboard, 17/22, 77%):

This really depends on the operator. For me...if it
comes too early, I’ll lose it...So...I feel like [the
timing] should be adjustable. That would be best
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because every provider is very different. [Physician,
private solo or group practice]

Another thing would be making sure that it’s the right
time. So again, if I’m in room with the patient,
personally, I don’t want to see these pop up, because
I’m probably goal-oriented at that moment where I’m
trying to put in something specific and this would just
slow me down. [Physician, academic health center]

I would be more likely to address it...if it was
something I was prompted with when I opened the
labs specifically...I’m going there to review their
hemoglobin...I’m going there to review their lipids...so
if I’m going [to the chart] for that, and...I’m prompted
with this, then then I’m going to be more likely to
address it right at that moment. [Physician, in
residency]

I wouldn’t want a list of 500 patients, because there’s
no way that anybody’s going to keep track of
that...that would be very difficult. [Social worker,
FQHC]

Successful implementation would require trialability, training,
interoperability, and buy-in (8/22, 36%):

I would definitely be open to trialing it but would do
it in a quality improvement sort of a mindset where
we saw how things were going beforehand and how
things were going afterwards. And if it didn’t help
me, then I wouldn’t continue using it. [Physician,
private solo or group practice]

Also takes education. So educating providers about
what this alert is and what this means and what we
what we do with it. [Social worker, FQHC]

Discussion

Principal Findings
From the surveys, respondents found the tool to be useful and
easy to use and, if available, would use it. During the interviews,
they noted that the tool is not available now and would generally
change their behavior. With notable exceptions, many
participants reported that their organizations lacked a systematic
approach for reducing the percentage of those who are poorly
controlled. Despite these benefits, the tool was not uniformly
accepted, with several respondents indicating that it did not
provide useful information for those patients who are well
known to the practice and for those practices already offering
comprehensive services. Others were concerned that AI would
perpetuate biases and that alert fatigue would contribute to
burnout. To enhance adoption, respondents wanted to know
why the patients were at risk and what could be done to reduce
that risk. Finally, they wanted to be able to tailor the tool to
their local environment, noting that the suggestions offered and

the recipients of the information needed to be customized to the
resources, needs, and workflows of their unique clinics.

Our findings align with, and build on, the work of others. For
example, similar to our results, other clinicians have responded
favorably to the usability of tools that use AI [36,37]. Although
usability and accuracy were deemed important, our respondents
asked for steps that could be taken in response to predictions
and wanted to know that those actions would lead to better
health, echoing the sentiment found in other studies [35]. Similar
to others, they also regarded the technology with skepticism
[35,41,42]. For many years, researchers and policy makers have
issued warnings regarding the black-box nature of AI and its
role in widening disparities [43,44]. Our findings demonstrate
that these are not theoretical issues. The clinicians and staff
members in our study called for greater explainability (ie,
justifications for the tool’s output), wanted these issues explicitly
acknowledged and addressed, and cautioned that these tools
will continue to languish on shelves in the absence of
satisfactory solutions [44]. They are concerned about how AI
can perpetuate the racial biases embedded within data sets and
about their role in supporting biased systems. Taken together,
these findings highlight the importance of the tool’s
actionability, explainability, and harm minimization (resulting
from bias and workflow disruptions) for its implementation and
provide a blueprint for researchers interested in developing AI
tools for primary care settings. For example, to address these
concerns, researchers must engage communities and end users
early in the development process to identify and mitigate sources
of bias and iteratively test and refine the tool’s impact [45].

There are several limitations to this study that should be
considered when interpreting these results. First, because we
recruited participants from our networks, many of them were
from academic settings and FQHCs. Our results may differ if
we had a sample that is more representative of primary care
clinics across the United States. Second, we did not ask the
participants to use a prototype of the tool when responding to
the questions. If they had, their responses to the questions
regarding ease of use and usefulness may have been different.
However, we contend that incorporating input from end users
before a prototype is created is important for adoption. Finally,
we did not assess other factors that influence adoption, such as
computer self-efficacy, that we did not assess.

Conclusions
Most participants found the tool to be easy to use and useful.
They also believed that the tool could improve population health
and contribute to individualized care. Conversely, participants
were concerned about alert fatigue, bias, and transparency. To
gauge the tool’s credibility, they wanted to know why the
patients were at high risk and what they could do to reduce that
risk. These data will be used to inform the development of an
AI tool for diabetes.
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Abstract

Background: The regulatory affairs (RA) division in a pharmaceutical establishment is the point of contact between regulatory
authorities and pharmaceutical companies. They are delegated the crucial and strenuous task of extracting and summarizing
relevant information in the most meticulous manner from various search systems. An artificial intelligence (AI)–based intelligent
search system that can significantly bring down the manual efforts in the existing processes of the RA department while maintaining
and improving the quality of final outcomes is desirable. We proposed a “frequently asked questions” component and its utility
in an AI-based intelligent search system in this paper. The scenario is further complicated by the lack of publicly available relevant
data sets in the RA domain to train the machine learning models that can facilitate cognitive search systems for regulatory
authorities.

Objective: In this study, we aimed to use AI-based intelligent computational models to automatically recognize semantically
similar question pairs in the RA domain and evaluate the Recognizing Question Entailment–based system.

Methods: We used transfer learning techniques and experimented with transformer-based models pretrained on corpora collected
from different resources, such as Bidirectional Encoder Representations from Transformers (BERT), Clinical BERT, BioBERT,
and BlueBERT. We used a manually labeled data set that contained 150 question pairs in the pharmaceutical regulatory domain
to evaluate the performance of our model.

Results: The Clinical BERT model performed better than other domain-specific BERT-based models in identifying question
similarity from the RA domain. The BERT model had the best ability to learn domain-specific knowledge with transfer learning,
which reached the best performance when fine-tuned with sufficient clinical domain question pairs. The top-performing model
achieved an accuracy of 90.66% on the test set.

Conclusions: This study demonstrates the possibility of using pretrained language models to recognize question similarity in
the pharmaceutical regulatory domain. Transformer-based models that are pretrained on clinical notes perform better than models
pretrained on biomedical text in recognizing the question’s semantic similarity in this domain. We also discuss the challenges of
using data augmentation techniques to address the lack of relevant data in this domain. The results of our experiment indicated
that increasing the number of training samples using back translation and entity replacement did not enhance the model’s
performance. This lack of improvement may be attributed to the intricate and specialized nature of texts in the regulatory domain.
Our work provides the foundation for further studies that apply state-of-the-art linguistic models to regulatory documents in the
pharmaceutical industry.

(JMIR AI 2023;2:e43483)   doi:10.2196/43483
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regulatory affairs; frequently asked questions; FAQs; Recognizing Question Entailment system; RQE system; transformer-based
models; textual data augmentations
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Introduction

Regulatory Affairs
In a pharmaceutical company, the regulatory affairs (RA)
department is responsible for obtaining approval for new
pharmaceutical products and ensuring that approval is
maintained for as long as the company wants to keep the product
on the market. It serves as the interface between the regulatory
authorities (such as the Food and Drug Administration, European
Medicines Agency, etc) and pharmaceutical companies. It is
the responsibility of the RA department to keep abreast of
current legislation, guidelines, and other regulatory intelligence.

Regulatory data sources are dynamic and enormous. Regulatory
professionals go through the extremely tedious and grueling
task of extracting relevant information for various regulatory
tasks. The process includes generating one or more suitable key
phrases; searching for these key phrases in multiple data sources;
and combining appropriate information retrieved from different
data sources into a clear, compact, and concise summary of
findings. Keeping track of such large data sources for relevant
information manually is difficult and complex. An artificial
intelligence–powered search system can drastically reduce
manual efforts and improve the efficiency and quality of the
existing processes.

The question answering (QA) system is an efficient approach
for retrieving information. Much research has been conducted
on open-domain QA systems based on deep learning techniques
owing to the availability of vast data sources. However, the
medical domain received less attention owing to the shortage
of medical data sets. Although electronic health records
empower the field of medical QA by providing medical
information to answer user questions, the gap remains significant
in the medical domain, especially for text-based sources.

The intricate challenges of automated QA in the biomedical
domain are growing with the increasing diversity and
specialization of medical texts. One of the promising tracks
investigated in QA is to map new questions to formerly
answered questions that are “similar.” Frequently asked
questions (FAQ) component in an intelligent search system can
considerably speed up the automated search system and enhance
the status of search results. Therefore, an FAQ model component
that interacts with the user query input to return a similar
question that has already been asked in the recent past can
significantly accelerate the remaining components of the search
system pipeline and improve the system’s effectiveness.

In this study, we proposed a new approach for detecting similar
questions based on Recognizing Question Entailment (RQE)
in the RA domain. We considered FAQs as a valuable and
widespread source of information.

RQE is a crucial component of modern QA systems. The RQE
approach for a QA system is to retrieve answers to a given
question proposed by users using natural languages by retrieving
answers to an entailed and already answered question. The
answered question and its associated answer are saved in a
question-answer pair database. Question entailment is formally
defined by Ben Abacha and Demner-Fushman [1] as follows:

question A entails question B if every answer to question B is
also a correct answer to question A exactly or partially. It is a
challenging task to understand questions and judge the semantic
similarity of two questions: (1) one question could be rephrased
in many different ways and (2) two different questions may
refer to the same problem and could be answered by the same
answer [2].

Background

RQE in the General Domain
Researchers in the general domain used 2 public benchmark
data sets for question similarity tasks: SemEval and Quora
question pair. These 2 data sets have labeled training data for
question-question similarity. SemEval-2017 task 3 [3] featured
questions from subforums of StackExchange, a family of
technical community support forums. Quora question pair data
set contains pairs of similar questions asked by people on the
Quora website. The topics of these questions range from
philosophy to entertainment. The best-performing systems for
the SemEval question similarity task used syntactic tree kernels
or the SoftCosine metric [4]. Kunneman et al [5] compared 2
recent approaches (SoftCosine and Smoothed partial tree kernel)
and 2 traditional approaches (BM25 [6] and translation-based
language model) and showed that the choice of a preprocessing
method and a word-similarity metric have a considerable impact
on the final result. Shah et al [7] first applied the adversarial
domain adaptation to the problem of duplicate question detection
across different domains and outperformed the best baseline on
StackExchange questions. More recently, Nguyen et al [8]
outperformed previous studies on the SemEval data set by
combining a convolutional neural network and features from
external knowledge to measure the similarity between 2
questions. In addition to these studies on the aforementioned
popular data sets, Wang et al [9] used a method based on the
Coattention-DenseGRU (gated recurrent unit) to match similar
questions on Chinese rice-related questions.

Although many researchers have put efforts into recognizing
general question similarity, their approaches do not generalize
well to domains that require domain expert knowledge, such as
the biomedical domain. First, questions in the biomedical
domain demand much domain-specific knowledge, and a single
word can change the meaning of the question [10]. Second,
there are few publicly available biomedical question–question
similarity data sets, resulting in a limited number of samples
that can be used to train models that can effectively learn those
differences. Given the increasing popularity of RQE-based QA
systems, question similarity in the biomedical domain is
currently an active research area. A growing number of
RQE-based QA systems have been proposed, and an
international challenge was held in 2019 [11].

RQE in Biomedical Domain
A wide range of approaches has been proposed to capture the
semantic relationship between pairs of questions in RQE-based
QA systems. Luo et al [12] calculated similarities between
questions using statistical syntactic features and Unified Medical
Language System annotated semantic features. Ben Abacha and
Demner-Fushman [1] used machine learning models with lexical
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features and semantic features to determine the similarity of
question pairs. More recent studies have gone beyond traditional
feature-based methods and used deep learning models. Wang
and Nyberg [13] used a dual entailment approach with
bidirectional recurrent neural networks and attention
mechanisms to predict question similarity. Ben Abacha and
Demner-Fushman [14] improved their system using
feature-based logistic regression and neural network that passed
the concatenated sentence representations to multiple ReLU
layers to classify question pairs into entailment or no entailment
categories. McCreery et al [10] augmented a general language
model with medical knowledge by using a double fine-tuning
process. A pretrained language model is first fine-tuned with a
large general corpus (eg, Quora question pairs) and then
fine-tuned with a small number of labeled question pairs.

The MEDIQA 2019 challenge [11] included 3 tasks: natural
language interface (NLI), RQE, and QA in the medical domain.
It aimed to further research efforts to improve domain-specific
information retrieval and question-answer systems. In the
challenge, approaches using ensemble methods and transfer
learning of multitask language models outperformed traditional
deep learning models for RQE task [11]. The PANLP team [15]
achieved the best result on RQE task by fine-tuning the
pretrained language models, Bidirectional Encoder
Representations from Transformers (BERT) [16] and
multitask–deep neural network (DNN) [17]. They further
boosted the performance on the RQE task by transfer learning
from the NLI task. The Sieg team [18] ranked second for RQE
tasks and used a multitask learning approach, with shared layers
trained for the NLI on the RQE task. Approaches that used
ensemble methods without multitask language models [19]
ranked third in the competition, and approaches that used
multitask models without ensemble methods [20] ranked fourth.
More recently, Sarrouti et al [21] proposed a multitask transfer
learning method based on data augmentation for RQE. They
outperformed other teams on the RQE test set of the 2019
MEDIQA challenges.

RQE or similarity is part of another more general natural
language processing (NLP) task called semantic textual
similarity (STS). Tasks of STS include comparing 2 sentences,
2 paragraphs, or even 2 documents. RQE is more closely related
to QA and information retrieval systems.

STS in the General Domain
STS is connected to textual entailment (TE) and paraphrasing;
however, it differs in many ways and is more directly applicable
to several NLP tasks. Semantic similarity or STS is a task in
NLP that scores the relationship between texts or documents
using a defined metric. The aim is to identify the likeness or
similarity in the meaning of 2 pieces of text.

STS differs from TE in that it assumes bidirectional graded
equivalence between a pair of textual snippets. In the case of
TE, the equivalence is directional; for example, a car is a
vehicle, but a vehicle is not necessarily a car. STS also differs
from both TE and paraphrasing in that rather than being a binary
yes-or-no decision (eg, a vehicle is not a car), we defined STS
to be a graded similarity notion (eg, a vehicle and a car are more
similar than a wave and a car).

STS in the Biomedical Domain
STS in the clinical domain can empower stakeholders to detect
and eliminate redundant information that may reduce the
cognitive burden and improve the clinical decision-making
process. The description in the study by Wang et al [22]
discusses the details of the task of identifying clinical STS
(ClinicalSTS). The participating systems were asked to return
a numerical score, ranging from 0 to 5, indicating the degree of
semantic similarity between the pair of 2 clinical sentences. The
performance was measured using the Pearson correlation
coefficient between the predicted similarity scores and human
judgments.

1. The winning team submitted 4 systems. The first system
was the random forest model using 63 features including
string similarity features, entity similarity features, number
similarity features, and deep learning features. The second
system used the average score of the first system and dense
neural networks. The third system, which was also the
best-performing system among all submitted systems with
a Pearson correlation of 0.8328, applied a regression model
on 8 trained models including the random forest model, the
Bayesian Ridge regression model, the Lasso regression
model, the linear regression model, the Extra Tree model,
the DNN using the Universal Sentence Encoder, the DNN
using the inferSent encoder, and the Encoder–multilayer
perceptron using the inferSent encoder. The fourth system
used the average score of the first system, and the
Encoder–multilayer perceptron used the inferSent encoder.

2. The team that placed second in this challenge used
attention-based convolutional neural network (ABCNN)
and bidirectional long short-term memory (Bi-LSTM)
networks. One of their submissions used ABCNN with
traditional NLP features. The second is a hybrid model of
ABCNN and Bi-LSTM, with traditional NLP features. The
third run ensembled the previous 2 systems by calculating
the average scores. The ensemble model performed the best
among their submitted systems.

3. The third-placed team proposed a sentence-embedding
method that represents a sentence as a weighted average of
word vectors, followed by a soft projection. They used a
self-regularized identity map named Conceptors to correct
the common component bias in linear sentence embedding.
Majority voting and 2 different support vector regression
models with only word embedding representation features
were explored by the fourth-placed team for their
submissions. The best performance was achieved by the
majority voting method.

Lastra-Díaz and García-Serrano [23] presented an empirical
study on the impact of a number of model design choices on a
BERT-based approach to clinical STS. It was demonstrated that
the proposed hierarchical convolution mechanism outperformed
several alternative conventional pooling methods. Different
parameter fine-tuning strategies with varying degrees of
flexibility were investigated, and the optimal number of trainable
transformer blocks was identified, thereby preventing
overtuning. Finally, the utility of 2 data augmentation methods
(segment reordering and back translation) on clinical STS was
verified.
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Hadj Taieb et al [24] proposed a novel framework based on a
gated network to fuse distributed representation and one-hot
representation of sentence pairs. Some state-of-the-art distributed
representation methods, including convolutional neural network,
Bi-LSTM, and BERT, were used in this framework, and a
system based on this framework was developed for a shared
task regarding clinical STS organized by BioCreative and
OHNLP in 2018.

Elavarasi et al [25] demonstrated transformer-based models
(BERT, XLNet, and RoBERTa) and developed a system that
can use various transformer algorithms for measuring clinical
STS. STS system has two modules: (1) a transformer
model–based feature learning module that learns distributed
sentence-level representations from sentence pairs and (2) a
regression-based similarity score learning module that calculates
similarity score between 0 and 5 according to the distributed
representations derived from the transformers. The authors
explored several methods to combine the distributed
representations from different transformers, including (1) simple
head-to-tail concatenation, (2) pooling, and (3) convolution.
The experiment’s results showed that the RoBERTa model
achieved the best performance compared with other transformer
models.

The work done in the study by Lastra-Díaz et al [26] focuses
on ranking the degree of similarity between clinical texts. The
paper studied the impact of using different preprocessing
methods as well as different feature representation methods
(word embeddings–BioWordVec vs sentence
embeddings–BioSentVec) by proposing a system with a simple
neural network. The study demonstrated that sentence
embeddings provided superior text representation than word
embeddings, better capturing sentence semantics, whereas word
embeddings were not a distant performer. It was observed that
word embeddings benefited from using a more thorough
text-preprocessing pipeline, whereas sentence embeddings
obtained better test results with a basic preprocessing approach.

Data Sets for STS
This subsection briefly describes some of the popular data sets
at the sentence pairs level that are used to evaluate the semantic
similarity algorithms. The performance of various semantic
similarity algorithms is measured by the correlation of the
achieved results with that of the standard measures available in
these data sets. Li et al [27] used a data set comprises 65
sentence pairs that were created using the dictionary definition
of 65 word pairs used in the Rubenstein-Goodenough data set
[28]. A similarity range of 0 to 4 (from the lowest to the highest)
was provided voluntarily by 32 native English speakers. The
mean of the scores given by all the volunteers was taken as the
final score. The SICK data set [29] consists of 10,000 sentence
pairs derived from 2 existing data sets, the ImageFlickr 8 and
MSR-Video descriptions data sets. Each sentence pair is
associated with a relatedness score and a text entailment relation.
The relatedness score ranges from 1 to 5, and the 3 entailment
relations are “NEUTRAL, ENTAILMENT, and
CONTRADICTION.” The annotation was performed using
crowdsourcing techniques. The STS [30-34] data sets were built
by combining sentence pairs from different sources by the

organizers of the SemEVAL shared task. The data set was
annotated using Amazon Mechanical Turk and verified by the
organizers themselves. Various sources such as newswire,
videos, glosses, Workshop on Machine Translation evaluation,
Machine Translation evaluation, newswire headlines, forum
posts, news summary, image descriptions, tweet news pairs,
student answers, QA forum answers, and committed belief were
used to build the STS data set.

The computation of semantic similarity between various types
of text fragments such as words, sentences, or documents plays
a key role in a wide range of NLP tasks such as information
retrieval [35], text summarization [36], text classification [37],
essay evaluation [38], machine translation [39], and QA [40,41].

A wide range of semantic similarity measures has been proposed
and applied in various applications and domains. These measures
vary in performance based on their approaches and application
domains. Detailed comparisons of these measures can be found
in previous work [22,42-47].

Amir et al [42] proposed a semantic similarity algorithm using
kernel functions. They used constituency-based tree kernels
where the sentence is broken down into subject, verb, and object
based on the assumption that most semantic properties of a
sentence are attributed to these components. The input sentences
are parsed using the Stanford Parser to extract various
combinations of subject, verb, and object. The similarity
between the various components of the given sentences is
calculated using a knowledge base, and different averaging
techniques are used to average the similarity values to estimate
the overall similarity, and the best among them is chosen based
on the root mean squared error value for a particular data set.
Benedetti et al [43] proposed a novel knowledge-based
technique, Context Semantic Analysis, for estimating
interdocument similarity. The technique is based on a Semantic
Context Vector, which can be extracted from a knowledge base
and stored as metadata of a document and used to compute
interdocument similarity. The authors also demonstrated how
Context Semantic Analysis can be effectively applied in the
information retrieval domain, even if user queries, typically
composed of a few words, contain a limited number of entities.
Yang et al [44] presented a response prediction model that learns
a sentence encoder from conversations. The encoder learned
from the input-response pairs performs well on sentence-level
STS. The basic conversation model learned from Reddit
conversations is competitive with existing sentence-level
encoders on public STS tasks. A multitask model trained on
Reddit and Stanford NLI classification achieved the
state-of-the-art for sentence encoding–based models on the STS
Benchmark task. An FAQ retrieval system with a method using
query-question similarity and BERT-based query answer
relevance was proposed by Sakata et al [48]. A traditional
unsupervised information retrieval system is used to calculate
the similarity between the query and the question. In contrast,
the relevance between the query and answer, calculated using
BERT model, are learned using QA pairs in an FAQ database.
Minaee and Liu [49] evaluated the proposed approach on two
data sets: (1) localgovFAQ, a data set that is constructed in a
Japanese administrative municipality domain, and (2)
StackExchange data set, which is the public data set in English.
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Uva et al [50] proposed to inject structural relationships in neural
networks by (1) learning a support vector machine model using
tree kernels on relatively few pairs of questions (a few
thousands), as gold standard training data are typically scarce;
(2) predicting labels on a very large corpus of question pairs;
and (3) pretraining neural networks on such a large corpus. The
experiments in the study were performed on the Quora and
SemEval question similarity data sets. A deep learning–based
model for automatic QA was proposed [51] to solve the use
case of customer case service automation. The questions and
answers are embedded using neural probabilistic modeling
(doc2vec), followed by training a deep similarity neural network
to determine the similarity score of a pair of answer and
question. For each question, the best answer is found as the one
with the highest similarity score. Cai et al [51] trained this model
on a large-scale public QA database and then fine-tuned it to
transfer to the customer care chat data.

About Transfer Learning
The advancements of deep learning in NLP in recent years have
improved, accelerated, and automated various functions and
features of text analytics. Deep learning enables models to
understand and learn the meaning of words and phrases in
different language contexts. However, all these utilities demand
large and complex deep learning models that are data hungry.
They require training with thousands or millions of data points
before making a plausible prediction. Training is expensive in
terms of both time and resources. The issue with such models
is that they are performed only on a single task. Future tasks
require a new set of data points and a greater number of
resources. Transfer learning comes into the picture by
transferring knowledge learned from one model to another.

Transfer learning is a machine learning method where a model
trained on one task is repurposed on a second related task as an
optimization that allows rapid progress when modeling the
second task. It can train DNNs with comparatively fewer data.

We subsequently briefly describe a few DNN models
experimented with in this paper that use the transfer learning
approach.

BERT
Google’s BERT [16] has significantly altered the NLP landscape
in recent years. BERT is a contextualized word representation
model based on a masked language model and pretrained using
bidirectional transformers. It is designed to pretrain deep
bidirectional representations from the unlabeled text by jointly
conditioning on both the left and right context. As a result, the
pretrained BERT model can be fine-tuned with only one
additional output layer to create state-of-the-art models for a
wide range of NLP tasks.

BERT is pretrained on a large corpus of unlabeled text, including
the entire Wikipedia (2500 million words) and Book Corpus
(800 million words). BERT is a “deeply bidirectional” model,
meaning that BERT learns information from both the left and
the right side of a token’s context during the training phase.

BERT architecture builds on top of the transformer. all these
transformer layers are encoder-only blocks. BERT is pretrained
on 2 NLP tasks: masked language modeling and next-sentence
prediction. The pretrained BERT has a maximum of 512 input
tokens (position embeddings). The output would be a vector
for each input token. Each vector is composed of 768 float
numbers (hidden units).

Clinical BERT
BERT model is pretrained in general text corpora. A specific
model pretrained on specialty corpora, such as clinical text, is
available in the form of Clinical BERT, a modified BERT
model. Specifically, the representations are learned using
medical notes and further processed for downstream clinical
tasks. Clinical BERT [52] models are pretrained on 2 types of
data: one for generic clinical text and another for discharge
summaries. Similar to BERT, Clinical BERT is a trained
transformer encoder stack. Clinical BERT is also a bidirectional
transformer.

BioBERT
BioBERT [53] is a domain-specific language representation
model that is pretrained on large-scale biomedical corpora.
BioBERT is specifically pretrained on PubMed abstracts
(PubMed) and PubMed Central full-text articles along with
English Wikipedia and Book Corpus data sets as in BERT.

BlueBERT
The success of the General Language Understanding Evaluation,
which was primarily to help the development of pretrained
language models based on performance on generic NLP tasks,
led to the development of Biomedical Language Understanding
Evaluation (BLUE). BLUE is similar to General Language
Understanding Evaluation but is more specific to the biomedical
domain. The benchmark consists of 5 tasks with 10 data sets
covering biomedical and clinical texts with different data set
sizes and difficulties. BlueBERT [54], which was originally
named National Center for Biotechnology Information BERT,
was pretrained on PubMed abstracts and MIMIC-III (Medical
Information Mart for Intensive Care) clinical notes. The work
done by Peng et al [54] focused on experimenting BLUE in
conjunction with Embeddings from Language Model and BERT
models. BlueBERT was found to be the best-performing model
and significantly superior to other models in the clinical domain.

Table 1 summarizes the pretraining details of different BERT
models used in the experiments of this study.
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Table 1. Summary of pretraining details for the various Bidirectional Encoder Representations from Transformers (BERT) models used in our
experiments.

Text sizeCorpusPretrainingVocabularyModel

3.3B words (16 GB)Wikipedia+BooksN/AaWikipedia+BooksBERT

0.5B words (3.7 GB)MIMICb (subset)+MIMIC-IIIContinual pretrainingWikipedia+BooksClinical BERT

4.5B wordsPubMed+PMCcContinual pretrainingWikipedia+BooksBioBERT

4.5B wordsPubMed+MIMIC-IIIContinual pretrainingWikipedia+BooksBlueBERT

aN/A: not applicable.
bMIMIC: Medical Information Mart for Intensive Care.
cPMC: PubMed Central.

Methods

DNN Architecture
Figure 1 describes the working of our proposed FAQ system.
The proposed FAQ system uses 2 major components: a question
repository and a fine-tuned language model. The FAQ
repository, which acted as the source of questions to identify
entailment or no entailment for input queries, was maintained
in the proposed FAQ system. The input query to the fine-tuned

language model was compared against each question in the
question repository to identify and retrieve the most similar
FAQ, if any.

The language model was fine-tuned by using the Quora question
pairs and clinical RQE (C-RQE) data sets. Different
experimental and data split strategies were used to identify the
best-performing model configuration. These data sets and
experimental strategies are explained in detail in the following
subsections.

Figure 1. Architecture diagram for frequently asked questions (FAQ) system. MAD: manually annotated data set; RQE: Recognizing Question
Entailment.

Data Sets
The experiments in this paper were based on these three different
data sets.

1. Quora questions pairs (Quora): The Quora question pairs
data set [55] provides an opportunity to train and test models
of semantic equivalence, based on actual Quora data. Each
line in the data set contains an ID for each question in the
question pair, a unique ID for the question pair, the full text
for each question, and a binary label that indicates whether
the line contains a duplicate question pair. Table 2 presents
a few sample lines of the data set. This data set contains
over 400,000 labeled question pairs. Of the 404,290

question pairs, 255,027 (63.08%) had a negative (0) label
and 149,263 (36.92%) had a positive (1) label, making our
data set unbalanced.

2. C-RQE: The work done in the study by Ben Abacha and
Demner-Fushman [1] describes an automatic method for
constructing training corpora for RQE. The RQE data set
constructed in this paper used the National Library of
Medicine collection of 4655 clinical questions asked by
family physicians. The resulting C-RQE data set had
approximately 8588 question pairs in the form of an XML,
with RQE value labels as true or false.

3. Regulatory RQE—manually annotated data set (MAD):
The subject matter experts, who are part of the
organizational RA team, manually annotated a collection
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of 268 question pairs with entailment and no entailment
labels. Of these 268 question pairs, 127 were entailment
pairs and 141 were no entailment pairs. The records in this

data set were of the following format: (question_pair_ID,
label, question1, question2). Some of the example records
from this data set are presented in Table 3.

Table 2. Samples of Quora question pairs.

Question2Question1Question2 IDQuestion1 IDID

What is a least natural number?What are natural numbers896895447

How many calories does a Domino’s pizza have?Which pizzas are the most popularly ordered
pizzas on Domino's menu?

303830371518

How can one start a bakery business?How do you start a bakery?654365423272

If I had to choose between learning Java and Python,
what should I choose to learn first?

Should I learn python or Java first?672367223362

Table 3. Samples of question pairs in the test set.

Question 2Question 1LabelID

Has the European Medicines Agency authorized Emend?Is Emend approved by the European Medicines Agency?Entailment1

What is the indication of Emend in the European Union
product information?

What is Emend approved indication in the European Union?Entailment2

Does Tisagenlecleucel refused by the European Medicines
Agency?

Does Tisagenlecleucel has gotten an orphan designation
by the European Medicines Agency?

Not_entailment15

Is ELIANA (other IDs: NCT02435849/CCTL019B2202)
a randomized arm trial?

Is ELIANA (other IDs: NCT02435849/CCTL019B2202)
a single arm trial?

Not_entailment16

Preprocessing of Data Sets
Both the Quora and C-RQE data sets were transformed to a
format that was consistent with the MAD data set. The Quora
data set was transformed to this format by removing individual
question IDs and converting “is_duplicate” binary field to
“entailment/no entailment” label field (“is_duplicate=1”
indicates entailment label and vice versa). In contrast, the
C-RQE data set, which is an XML, was converted to the format
consistent with MAD by extracting ID, question1, question2,
and value labels. The “value label=true” was transformed into
an entailment label and vice versa.

Data Split Strategy
Three data sets are commonly used in deep learning model
development: training, validation, and test sets. The model is
trained on the training set, and the validation set is used to
evaluate the model fit unbiasedly during the hyperparameter
tuning stage. The test set is independent from the training and
validation sets and is used to assess the model’s performance.

The experiments designed in this study are built on 2 types of
data set split strategy described as follows:

Strategy 1: Quora and C-RQE data sets were used as training
and validation sets, respectively. With this strategy, we have
404,283 sentence pairs in the training data set, 7143 pairs in the
validation data set, and 150 pairs in the testing data set.

Strategy 2: Quora and C-RQE data sets were combined to
further split them into training and validation sets such that the
training set had approximately 90% of the records, whereas the
remaining 10% were part of the validation set. Therefore, the
training set had 90% of the records from Quora and C-RQE
data sets. The validation set comprised 10% of the records from

Quora and C-RQE data sets, which were not part of the training
set. The validation set also included 50% of MAD, which was
not part of the test set. With this strategy, we have 370,282
sentence pairs in the training data set, 41,279 pairs in the
validation data set, and 150 pairs in the testing data set.

Model Evaluation
The variation of experiments conducted in this study for the
Quora, C-RQE, and MAD data sets were performed on top of
4 types of BERT models: (1) regular BERT [16], (2) Clinical
BERT [52], (3) BioBERT [53], and (4) BlueBERT [54]. The
performance of several types of model configurations was
evaluated for accuracy, F1-score metrics, and the area under the
receiver operating characteristic curve (AUC). The model’s
accuracy was estimated by finding the total number of true
entailment or no entailment predictions out of the total number
of predictions done by the model. F1-score was an error metric
that was calculated from the precision and recall of the test.
F1-score of the model was interpreted as the harmonic mean of
the precision and recall, conveying the balance between the
precision and recall of the model.

F1-score ranges from 0 to 1, with 0 being the worst and 1 being
the best value. The highest value of 1 indicates that the model
has a perfect precision and recall, whereas the lowest value of
0 indicates that either the precision or recall is 0.

AUC is another commonly used statistical metric that evaluates
the performance of classification models and provides a
comprehensive measure of a model’s ability to classify instances
from different classes correctly. The AUC metric has advantages

JMIR AI 2023 | vol. 2 | e43483 | p.524https://ai.jmir.org/2023/1/e43483
(page number not for citation purposes)

Saraswat et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


over accuracy and F1-score in that it is insensitive to data
imbalance and considers the model’s behavior across all possible
classification thresholds. The AUC value lies in the range of 0
to 1, where a higher value indicates a more robust ability for
classification. An AUC of ≤0.5 suggests a model with no
predictive power other than random guessing.

Experimental Design
The experiments performed in this paper used regular BERT,
Clinical BERT, BioBERT, and BlueBERT models, which were
fine-tuned on the Quora, C-RQE, and MAD data sets. Each of
these models was fine-tuned on the 2 data split strategies. For
experimentation of regular BERT, we used bert-base-uncased,
whereas the Clinical BERT model used in this paper was
pretrained on clinical notes. The BlueBERT-Base, Uncased,
PubMed+MIMIC-III variant of the BlueBERT model was
experimented with in this paper.

We used the Hugging face transformers library for model
fine-tuning and text classification. The following set of
hyperparameters was established to be the best set of

hyperparameters and was used for all the experiments conducted

in this paper: epochs=3, learning rate=3 × 10–5, batch size=32,
and maximum sequence length=150.

Ethical Considerations
This study is not human participant research; thus, no ethics
approval was sought.

Results

The experimental design of this paper is described in Table 4.

Table 4 describes the performance of different BERT models
on the datasets discussed in the Data Split Strategy section. As
baseline experiments, we used experiments 1, 4, 7, and 10 to
assess the performance of the models without transferring any
prior knowledge. With comparable accuracy, F1-score, and
AUC, the Clinical BERT and BioBERT models outperformed
the other 2 baseline models, whereas the BlueBERT model
performed the lowest with an accuracy of 48.9%, F1-score of
0.328, and AUC of 0.242.

Table 4. Performance of different Bidirectional Encoder Representations from Transformers (BERT) models on data sets: without augmentation.

AUCaF1-scoreAccuracy (%)Data split strategyModelExperiment

0.3030.32848.9N/AbBERT1

0.9200.808821BERT2

0.9580.90490.662BERT3

0.5840.58658.6N/AClinical BERT4

0.9710.894901Clinical BERT5

0.9610.897902Clinical BERT6

0.6120.51354.1N/ABioBERT7

0.7290.538661BioBERT8

0.5800.51556.662BioBERT9

0.2420.32848.9N/ABlueBERT10

0.9200.807821BlueBERT11

0.9200.84284.662BlueBERT12

aAUC: area under the receiver operating characteristic curve.
bN/A: not applicable.

Regardless of the data split approach, the performance of all
models enhanced after being fine-tuned with domain-specific
data. BERT’s accuracy, F1-score, and AUC improved the most
after being fine-tuned with data split strategy 1. The accuracy
of the model increased from 48.9% to 90.66%. The performance
of BioBERT model showed minimal improvement. The
accuracy of the BioBERT model increased from 54.1% to 66%
after being fine-tuned with our data split strategy 1. Although
the accuracy of BioBERT model improved from 54.1% to
56.66%, the model’s classification capability decreased because
AUC decreased from 0.612 to 0.580.

The best-performing models were BERT (data split strategy 2)
and Clinical BERT (data split strategy 1 and 2) with an accuracy
of 90.66%, 90%, and 90%; F1-score values of 0.904, 0.894, and
0.897; and AUC of 0.958, 0.971, and 0.961, respectively.

Experiments 1 and 2 used the general BERT model to provide
82% and 90.66% accuracy for data split strategy 1 and 2,
respectively. This behavior of data split strategy 2 surpassing
data split strategy 1 was consistent across all BERT models
experimented in Table 4, except for the BioBERT model. The
Clinical BERT model with both data split strategies was among
the top-performing models with an accuracy of approximately
90% and an AUC of >0.96. The BioBERT model did not fare
very well compared with all the other models in Table 4, with
an accuracy of 66% and 56.66% for data split strategy 1 and 2,
respectively. The BlueBERT model performed noticeably better
than BioBERT, with an accuracy of approximately 82% and
84.66% for data split strategy 1 and 2, respectively, which was
still lower than that of the high-performing BERT and Clinical
BERT models.
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Discussion

Principal Findings
In this study, we used computational models to recognize
question entailment in pharmaceutical regulatory domains. As
there is no publicly available labeled data set in this field, we
adopted the idea of transfer learning. We fine-tuned 4 different
versions of pretrained BERT language models on 2 publicly
available data sets (Quora and C-RQE). The best model achieved
90.66% accuracy in RQE on our MAD, which contained 150
question pairs in the regulatory field. To the best of our
knowledge, this study is the first to use state-of-the-art NLP
models to recognize question semantic similarity in the
pharmaceutical regulatory domain. Our study could provide the
foundation for future studies that apply NLP technologies to
text in the pharmaceutical regulatory domain.

As shown in Table 4, the BERT model outperformed the other
BERT variants in terms of its ability to learn domain knowledge
using transfer learning. Although the BERT model performed
poorly on the test data set before fine-tuning, its accuracy
increased in RQE after being fine-tuned using domain-specific
question pairs. This finding was also supported by experiments
2 and 3. The model based on BERT did not perform well with
our data split strategy 1 (experiment 2). However, it reached
the highest accuracy when we fine-tuned the BERT with our
data split strategy 2 (experiment 3). Our data split strategy 1
used only Quora’s general domain question pairs as training
resources. In contrast, strategy 2 includes both general domain
question pairs and clinical questions from C-RQE as part of the
training and validation sets. This indicates that BERT can
perform well in the pharmaceutical regulatory domain text if
we provide sufficient clinical domain background knowledge
to the model and fine-tune it.

We also found that Clinical BERT models outperformed other
BERT variants in this specific domain. Clinical narratives from
general and nonclinical biomedical text have known differences
in linguistic characteristics [52]. All BERT variants used in this
study were initialized from BERT, but they were pretrained on
the corpus from different fields. The Clinical BERT model was
pretrained with clinical notes, the BioBERT model was
pretrained with biomedical corpus, and the BlueBERT model
was pretrained with the combination of biomedical text and
clinical notes. We found that the Clinical BERT and BlueBERT
models performed better than the BioBERT model. In other
words, the models that were pretrained with clinical notes from
MIMIC-III data set have a better performance than the models
pretrained with PubMed articles in our RQE task. A possible
reason is that the nature of questions in the regulatory domain,
shown in Table 3, resonates more closely with the clinical notes
text genre. This finding highlights the importance of pretraining
with the proper text genre in learning the context-dependent
representation [54].

Although DNNs perform well in a variety of NLP tasks, a large
number of data are required to train deep learning models. The
lack of training data has become one of the significant
challenges to training deep learning models in the biomedical
field, which could lead to underfitting models and could reduce

their performance. We do not have a publicly available labeled
data set for the pharmaceutical regulatory domain. Instead, we
fine-tuned pretrained language models on the C-RQE data set
to learn domain-specific knowledge. In our previous
experiments, only 21% of the question pairs in the training
corpus were from the regulatory-related domain. Consequently,
we extended our experiments by expanding our training data
set with data augmentation technologies. We aimed to study
the impact and utility of augmentation techniques on
pharmaceutical domain text using the general BERT and Clinical
BERT models.

Researchers in the field of computer vision commonly use data
augmentation to expand the number and variety of data without
collecting new data. They create new image samples by rotating,
changing the color, cropping, and compressing the images.
Unlike images, the data in NLP are discrete, making it more
challenging to generate high-quality augmented examples
efficiently and effectively in the field of NLP.

With the increasing interest in and demand for data
augmentation in NLP, many text data augmentation technologies
have been proposed. Back translation is the most popular data
augmentation method. The back translation approach involves
translating a sequence into another language and then back to
the original language. Deep learning models, such as Seq2Seq
[56], neural machine translation [57], and transformers [58],
can be used to translate. Various rule-based techniques have
also been used in data augmentation. Wei and Zou [59] proposed
Easy Data Augmentation, including synonym replacement,
random insertion, deletion, and swapping. For paraphrase
identification, Chen et al [60] built a signed graph over the data,
with each sentence as nodes and labels as edges. They used
balance theory and transitivity to induce augmented sentence
pairs based on the graph. Kang et al [61] extended the Easy
Data Augmentation method for biomedical named entity
recognition by incorporating the Unified Medical Language
System knowledge. Another class of techniques uses multiple
samples to generate new pieces, pioneered by MixUp [62],
which interpolates the inputs and labels of ≥2 examples. The
difficult part of using MixUp in NLP is that it requires a
continuous input. This issue was overcome by Chen et al [63],
who mixed embeddings or higher layers. Some other
model-based approaches used the text generation models, such
as GPT-2 [64], to generate candidate examples from the training
data set. Some trade-offs should be considered when choosing
from these methods.

We used 2 data augmentation techniques in this study, entity
replacement and back translation. The entity replacement
technique in this study used the Scispacy [65] named entity
recognition model trained on the BC5CDR corpus to identify
CHEMICAL and DISEASE entities from the question pairs.
The identified CHEMICAL and DISEASE entities were further
replaced by synonyms from the dictionary of concepts and
synonyms created from Observational Medical Outcomes
Partnership (OMOP) Common Data Model. OMOP has
consolidated multiple vocabularies into a common format, and
OMOP’s Standardized Vocabularies contain all the code sets,
terminologies, vocabularies, nomenclatures, lexicons, thesauri,
ontologies, taxonomies, classifications, abstractions, and other
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such data that are required. This saves researchers and
developers from having to understand and handle multiple
formats and conventions of the originating vocabularies. For
back translation, we used Google Translate application
programming interface to do back translation and Chinese as
the middle language. We compared several middle languages
and found that Chinese had the best performance in recognizing
question similarity. The original source text and back-translated
text were compared to find differences, if any, in which case
the back-translated text was used as an augmented record. In
these experiments, we used only BERT and Clinical BERT as
our base language models because these 2 models were found
to have the best performance on the original test data set.

The results of the experiments with the augmented training data
are shown in Table 5. We found that the data augmentation
techniques did not improve the model’s performance.
Experiments with back translation–augmented data samples
performed better than experiments with entity
replacement–augmented data samples. By analyzing the
augmented data samples, we found that although these 2 data
augmentation techniques expanded the number of data samples,
they introduced some noise samples to our training set. This
could be explained by the complexity and specificity of the text
in the regulatory domain.

Table 5. Model performance with augmented training data.

Accuracy (%)Data split strategyModel

Entity replacement+back translationBack translationEntity replacement

79.3377.3379.331BERTa

77.3385.3379.332BERT

82.6686.6688.661Clinical BERT

8889.33842Clinical BERT

aBERT: Bidirectional Encoder Representations from Transformers.

Our study has some limitations. First, we only experimented
with the BERT-based model in this study. Some other
state-of-the-art pretrained language models, such as XLNet, T5,
and GPT-2, also perform well in related NLP tasks. We will try
other state-of-the-art models in our future studies. Second, we
only had 150 pairs of questions in our test data set. If we had
had a greater number of question pairs in our test data set, we
would have better understood the performance of each model.
Third, our manually labeled data set covers only a limited
number and types of concepts in the regulatory domain. We
should further our analysis by expanding the variety of question
pairs.

Conclusions
This study used deep learning models to recognize question
entailment in the pharmaceutical regulatory domain. As no
previous study has used computational models to learn text in
the regulatory domain, our study demonstrates the possibility
of using state-of-the-art artificial intelligence–based NLP models
to understand the regulatory text. We also attempted 2 data
augmentation techniques, back translation and entity
replacement, to increase the number of training samples.
However, these 2 techniques did not improve the model’s
performance in this study.
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Abstract

Background: Innovative tools leveraging artificial intelligence (AI) and machine learning (ML) are rapidly being developed
for medicine, with new applications emerging in prediction, diagnosis, and treatment across a range of illnesses, patient populations,
and clinical procedures. One barrier for successful innovation is the scarcity of research in the current literature seeking and
analyzing the views of AI or ML researchers and physicians to support ethical guidance.

Objective: This study aims to describe, using a qualitative approach, the landscape of ethical issues that AI or ML researchers
and physicians with professional exposure to AI or ML tools observe or anticipate in the development and use of AI and ML in
medicine.

Methods: Semistructured interviews were used to facilitate in-depth, open-ended discussion, and a purposeful sampling technique
was used to identify and recruit participants. We conducted 21 semistructured interviews with a purposeful sample of AI and ML
researchers (n=10) and physicians (n=11). We asked interviewees about their views regarding ethical considerations related to
the adoption of AI and ML in medicine. Interviews were transcribed and deidentified by members of our research team. Data
analysis was guided by the principles of qualitative content analysis. This approach, in which transcribed data is broken down
into descriptive units that are named and sorted based on their content, allows for the inductive emergence of codes directly from
the data set.

Results: Notably, both researchers and physicians articulated concerns regarding how AI and ML innovations are shaped in
their early development (ie, the problem formulation stage). Considerations encompassed the assessment of research priorities
and motivations, clarity and centeredness of clinical needs, professional and demographic diversity of research teams, and
interdisciplinary knowledge generation and collaboration. Phase-1 ethical issues identified by interviewees were notably
interdisciplinary in nature and invited questions regarding how to align priorities and values across disciplines and ensure clinical
value throughout the development and implementation of medical AI and ML. Relatedly, interviewees suggested interdisciplinary
solutions to these issues, for example, more resources to support knowledge generation and collaboration between developers
and physicians, engagement with a broader range of stakeholders, and efforts to increase diversity in research broadly and within
individual teams.

Conclusions: These qualitative findings help elucidate several ethical challenges anticipated or encountered in AI and ML for
health care. Our study is unique in that its use of open-ended questions allowed interviewees to explore their sentiments and
perspectives without overreliance on implicit assumptions about what AI and ML currently are or are not. This analysis, however,
does not include the perspectives of other relevant stakeholder groups, such as patients, ethicists, industry researchers or
representatives, or other health care professionals beyond physicians. Additional qualitative and quantitative research is needed
to reproduce and build on these findings.
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Introduction

Background
Innovation in the field of machine learning (ML) within artificial
intelligence (AI) is accelerating in medicine, with more US
Food and Drug Administration (FDA) approvals for algorithms
and devices in 2022 than in any prior year [1,2]. As algorithm
research, tool development, and clinical implementation proceed,
AI and ML innovations stand to benefit many domains of
medicine, from enhanced classification systems for clinical
diseases and syndromes to highly individualized patient care,
encompassing prediction, diagnosis, and treatment [3,4]. In
parallel, ethics governance has been recognized as a priority
and standard for the advancement of AI and ML in medicine,
with recent guidance emerging from working groups, expert
meetings, and scholarly work [5-8]. There is now a wide
agreement that a failure to anticipate ethical issues threatens to
compromise public trust in medicine and, ultimately, its embrace
of AI and ML and their promise to improve human health [9].

Attention to ethical challenges in medical AI and ML has
increased sharply in recent years in response to evidence
showing that clinical AI and ML tools may offer limited
generalizability and reproducibility [10,11], low rates of
successful clinical adoption [12], and algorithmic bias [13].
Although the accompanying risks may not always be
immediately obvious, past examples teach us that premature
clinical integration of innovative tools can lead to runaway
diffusion of risks to patients in clinical research and routine care,
ranging from reduced benefit of the tools to outright harms,
which rapidly become harder to address as tools become more
widespread and ingrained in clinical processes [8]. Critical and
timely work in clinical ethics has emerged to proactively meet
emerging challenges through the articulation of possible
frameworks and recommendations and with the benefit of
instructive early case studies [6,14-17]. McCradden et al [6],
for example, proposed an oversight procedure for medical AI
to help bridge the AI chasm created by the divergent ethical and
methodological norms of the clinical and computer sciences.

In addition to this foundational work, there is agreement that
predicting and meeting new ethical challenges will require
seeking, analyzing, and incorporating the perspectives of
professionals who work along the full pipeline of AI and ML
innovation (ie, key stakeholders) [18-20]. Seeking the
perspectives of stakeholders and generating knowledge based
on their perspectives serves to test the veracity of the
assumptions made about their views, identify human factors
that could present barriers to implementation, and better
understand clinical needs. Bringing awareness to the areas of
translation where developers’ intentions may not align with the
goals of end users may serve to minimize ethical “strain,” as
noted by Char et al [21]. This work is critical for forming
comprehensive ethical guidance and responding constructively
to differing normative views on AI and ML innovation.

Early stakeholder research regarding medical AI and ML
primarily sought physicians’ and patients’ views regarding AI
and ML tool implementation in clinical practice. It has yielded
insights into concerns such as generalizability, algorithmic
fairness, and clinical fit, as well as a range of ethical concerns
that remain unclarified or unaddressed [22-25]. For instance,
clinicians have reported uncertainty about their ability to
collaborate effectively with AI and ML tools in clinics, given
the numerous time and resource constraints of clinical
ecosystems [25]. Patients expressed reservations about
consenting to share health data for AI and ML research purposes
and resistance to prognostic AI and ML systems that determine
treatment admission without provider-patient dialogue [22].
Other reported considerations include end-users’ perceptions
of algorithms’ utility, the potential for overreliance on
algorithms when performing clinical tasks, users’ lack of
knowledge of the rules governing algorithms, and disruptions
of existing clinical infrastructure, workflows, and configurations
of care teams [15,16,23,26].

A major gap in the current stakeholder literature on ethics in
AI and ML is that it has not frequently sought the perspectives
of other key stakeholders such as AI and ML researchers and
developers [27]. Furthermore, because most of this work has
so far focused on perspectives regarding the implementation
and use of specific clinical tools, few studies have analyzed
stakeholder views on the ethical challenges that they perceive
in other phases of the innovation pipeline, including
conceptualization and development [28,29]. One noteworthy
exception is an interview study of 19 informatics leaders at US
academic medical centers, which found that leaders perceived
efforts to build interdisciplinary consensus and define clinical
needs as necessary before the clinical implementation phase
[30]. Although input seeking from end users to inform upstream
development has been conceived as potentially helpful in closing
the implementation gap, stakeholder research has been
underused as an empirical method for developing comprehensive
ethics guidance [31].

Objectives
Therefore, the purpose of this study was to describe the
landscape of ethical issues that AI and ML researchers and
physicians with professional exposure to AI or ML tools observe
or anticipate in the development and use of AI or ML in
medicine. This report is the first in a series of papers to describe
findings from a larger study in which we conducted open-ended,
in-depth interviews with multiple stakeholder groups, including
AI and ML researchers, physicians, ethicists, and patients. In
this study, we focus on the perspectives of AI and ML
researchers and physicians with professional exposure to AI or
ML. Through an open-ended discussion, we aimed to identify
ethical considerations that may not be as frequently elevated in
the literature, potentially because of a hyperfocus on already
known issues. Given the lack of prior work involving these 2
stakeholder groups, we had no a priori hypotheses about
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common or divergent perspectives. Rather, we sought to
describe the current landscape of ethical considerations.

Methods

Study Design
The purpose of this study, which is part of a broader project
(National Center for Advancing Translational Sciences
R01-TR-003505) studying the influence of AI and ML tools on
clinical decision-making, was to describe the views of AI and
ML researchers and physicians regarding ethical considerations
they have encountered or anticipated in the development,
refinement, and application of AI and ML in medicine [32]. A
qualitative descriptive approach was applied in the design and
completion of this study, as this method aims to describe specific
experiences or perceptions using language directly from the
data and is well suited for topics that have been minimally
studied previously [33,34].

Semistructured interviews, which are a common method of data
collection in qualitative research, were used in this study to
facilitate in-depth, open-ended discussions [35]. The interview
questions were intentionally broad in scope to allow participants
the opportunity to address the topics that they personally found
the most significant, as opposed to responding to topics defined
a priori by our research team. As participants were not
necessarily trained in ethics or familiar with the associated
vocabulary, questions regarding the benefits, risks, and
unintended consequences of AI and ML were included to
encourage them to consider broader challenges related to their
work that could potentially have ethical implications. Interview
guides were tailored for each participant group (eg, physician
and researcher), keeping in mind their professional backgrounds
and contextual information. Ultimately, interview guides did
not vary drastically from group to group (Textbox 1). After the
first few interviews, the questions were slightly revised for
clarity, based on feedback. Relevant follow-up questions were
asked in response to participants’ replies to the primary
questions.

Textbox 1. Open-ended questions asked in interviews.

Asked of researchers

1. How would you describe your work? Can you give specific examples of recent work? What is the value of your work in the field?

2. What are some of your personal observations and experiences regarding the use of machine learning (ML) in medicine? Are there any special
ethical issues you have encountered in the development of algorithms for medicine?

3. Do you have an example from your day-to-day work of algorithmic development that may have ethical implications?

4. Can you think of any unintended consequences in the application of ML algorithms in medicine?

5. Are there any other areas in the field of computer science that you work in that we have not covered yet in our conversation? Are there different
ethical issues in this subfield compared with ML?

6. Do you believe that there are limits to what ML can accomplish in medicine?

7. What are your aspirations (or predictions) for your field? Do you anticipate any ethical issues?

Asked of physicians

1. How would you describe your work? Can you give me an example of what your average day looks like, or describe a few of the recent projects
that you have been working on?

2. Can you describe any first-hand experiences that you have had using machine ML or artificial intelligence (AI) applications within health care?

3. What are your impressions or observations about the use of ML or AI applications in health care? Are there any special ethical issues that you
have encountered or considered when it comes to using ML or AI applications in health care?

4. What do you think are some of the potential benefits of using ML or AI applications in health care? What do you think may be some of the
unintended consequences?

5. What are your hopes or aspirations when it comes to ML or AI applications in health care? Do you anticipate any ethical issues?

6. How do you think the use of ML or AI applications will impact the jobs of doctors? Do you think it will have any impact on the patient-provider
relationship?

7. What recommendations do you have for developers who are interested in creating ML or AI applications for the field of medicine?

Participants and Procedures
A purposeful sampling technique was used to identify and recruit
the participants. Purposeful sampling is common in qualitative
description research and involves identifying and recruiting
specific individuals who are especially knowledgeable about
the topic being studied [36]. For this project, we sought to
interview researchers who had experience in developing AI or
ML tools for use in medicine, and physicians who had

experience developing or using such tools. By consulting the
relevant literature and seeking recommendations from experts
in the fields of AI, ML, medicine, and AI ethics, we identified
61 candidates (33 researchers and 28 physicians) from 10 US
academic institutions that met these criteria.

Recruitment e-mails containing details about our project and
an electronic interest form were sent to these 61 potential
participants. A total of 29 potential participants submitted an
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electronic interest form. Of these, 21 (10 researchers and 11
physicians) scheduled and completed an interview. Interviews
continued until content saturation was reached, that is, when
additional data did not lead to the emergence of new or original
ideas or themes [37-39]. The final cohort of participants was
affiliated with 6 different US academic institutions and
represented a variety of academic departments, including
medicine, biomedical informatics, engineering, computer
science, radiology, psychiatry, and surgery. All participants in
the researcher group held master’s degrees or higher in computer
science or a related field, and all participants in the physician
group held MDs. The complete demographic information of
the participants is available in Table 1.

Web-based interviews were conducted between November 2020
and April 2021 using Zoom (Zoom Video Communications).
A PDF copy of the institutional review board–approved
informed consent form was sent to all potential participants
before their scheduled interview date. On the day of the
interview, the interviewers verbally reviewed the content of the
informed consent form with potential participants and answered
any questions before obtaining verbal consent and beginning
the interview. Interviews were conducted by 1 of our team’s 4
trained interviewers and lasted 52 minutes, 6 seconds on
average, ranging from 29 to 95 minutes (SD 15 min 54 s). The
interviews were audio recorded. The participants were
compensated in the form of an electronic gift card to appreciate
their time and effort.

Table 1. Study population characteristics by the participant groupa.

Overall (N=21)Physician (n=11)Researcher (n=10)Characteristics

Gender, n (%)

12 (57)8 (73)4 (40)Men

9 (43)3 (27)6 (60)Women

Age (y)

41.0 (15.7)48.6 (17.7)31.6 (3.91)Value, mean (SD)

35.5 (27.0-93.0)44.0 (30.0-93.0)31.0 (27.0-37.0)Value, median (IQR)

Race, n (%)

2 (10)1 (9)1 (10)African American or Black

9 (43)5 (45)4 (40)Asian

7 (33)3 (27)4 (40)White

3 (14)2 (18)1 (10)Other

Ethnicity, n (%)

19 (90)9 (82)10 (100)Not Hispanic or Latino

2 (10)2 (18)0 (0)Hispanic or Latino

Degree, n (%)

5 (24)5 (45)0 (0)Doctor of Medicine

5 (24)5 (45)0 (0)Doctor of Medicine or Doctor of Philosophy

6 (29)1 (9)5 (50)Doctor of Philosophy or equivalent

5 (24)0 (0)5 (50)Master’s

aNote: 1 participant did not report age. Ten physician participants were Doctors of Medicine; 1 was a Doctor of Philosophy clinical psychologist.

Data Coding and Analysis
The interviews were transcribed and deidentified by the
members of our research team. Data analysis was guided by the
principles of qualitative content analysis [40]. This approach,
in which transcribed data are broken down into descriptive units,
which are named and sorted based on their content, allows for
the inductive emergence of codes directly from the data set [41].
After the transcription of the interviews, open coding was
performed for each transcript by 2 authors. The authors
independently highlighted the substantive interview content and
suggested descriptive codes for this content. The authors then
met as a group to review and discuss these preliminary codes
and refine their names and definitions. All transcripts were then

rereviewed by the 2 authors and coded using preliminary codes.
The authors compared the coded units, refined the code names
and definitions, and drafted the final version of the codebook,
which contained 30 descriptive codes derived directly from the
content of the interviews.

The transcripts and codebook were uploaded to NVivo 1.0 (QSR
International) for final coding, which was completed by a single
author (KR) and reviewed by the principal investigator (JPK).
The full team contributed to the analysis, which involved
assessing the coded units and developing categories and themes
that described the coded content.
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Ethics Approval
This study obtained approval from the Stanford University
Institutional Review Board before the start of research (approved
protocol # 58118).

Results

Overview
Qualitative content analysis was performed on the full data set,
resulting in the identification of 30 inductive codes that
described participants’ considerations relating to 3 distinct
phases of AI and ML development for medicine: the problem
formulation phase (phase 1), the algorithm development phase
(phase 2), and the clinical implementation phase (phase 3; Figure
1).

Notably, 18 (86%) out of 21 researcher and physician
interviewees addressed considerations related to phase 1. We
describe this phase as the problem formulation phase, but it has
been denoted in other literature as the topic selection, need
identification, or project definition phase. This phase involves
processes such as identifying health care needs that could be
amenable to AI or ML solutions and formulating the scientific
questions relevant to solving those needs.

Of the 30 inductive codes, 7 (23%) were primarily affiliated
with phase 1; from these 7 codes, 5 major themes emerged
(Figure 2). Within these themes, which are described in detail
in this paper, interviewees identified a set of tightly interrelated
phase-1 considerations that they perceived as having influence
on the ethical dimensions of AI and ML research in medicine.
Inductive codes and themes relating to phases 2 and 3 were also
identified; due to the scope of the current paper, the analysis of
these findings will be presented in a subsequent report.

Figure 1. Phases of medical artificial intelligence and machine learning development as described by participants, and related inductive codes.

Figure 2. Inductive codes and themes describing researcher and physician views on phase 1 ethical considerations in medical artificial intelligence
(AI) and machine learning (ML). For purposes of clarity, the codes “Professional motivations” and “Professional standards and responsibilities” were
combined into a single row (“Professional motivations and standards”) for this figure.
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Assessing Priorities and Motivations in the
Development of AI and ML for Medicine
When asked to discuss the ethical tensions they experienced or
expected in medical AI or ML, both researchers and physicians
described the extent to which different priorities between AI
and ML and medicine could introduce ethical tensions as the 2
fields increasingly interact. As one researcher summarized, “the
Silicon Valley ‘move fast, break things’ mantra doesn’t really
work in healthcare” (participant 18, researcher). They drew
clear contrasts between the priorities of AI and ML (ie, rapid
innovation and development) and those of medicine (ie, reducing
suffering and hardship associated with health disorders and
conditions) and felt that value misalignment was especially
likely to undermine innovation in the context of health care:

You’re dealing with a new technology, and you’re
kind of straddling between innovation and patient
care, and often those do not align with each other.
You’re trying to, obviously, innovate to improve
patient care, but at the same time, the innovation part
of it may not necessarily be the best for the patient,
or may not necessarily be the thing that is most
needed at the moment. [Participant 15, physician]

Both physicians and researchers reflected on the nature of their
research communities’ interests in AI and ML innovation, with
some suggesting that they may sometimes be unduly influenced
by factors unrelated to obligations to patient care. As one
physician emphasized:

Everyone wants to think that their innovation is going
to be the one that actually changes health care, but
ultimately you have to be mindful of, “Am I doing this
because I want to innovate or am I doing this because
I really want to prove this one process or take care
of the patient?” [Participant 15, physician]

Another researcher reflected on how the pursuit of innovation
for its own sake can lead to AI and ML solutions that may yield
technical and intellectual insights and a sense of accomplishment
but may not always be grounded in or aligned with clinical
needs:

The “so what?” also becomes part of the problem. I
think a lot of machine learning people, myself
included, have a tendency to think “Oh this is a great
machine learning problem because...it is a really cool
intellectual problem.” But I think it becomes a human
problem once you think about the fact that this model
could be deployed in the hospital. [Participant 10,
researcher]

Several interviewees expressed wariness about the ease with
which researchers and physicians may be motivated by their
beliefs and attitudes regarding the promise and potential of AI
and ML in medicine. One physician commented on how “often,
with technologies like AI that garner a lot of attention and
funding, there is a tendency to be driven by this desire to use
the technology just because it’s a technology that’s interesting”
(participant 15, physician). Another, looking back, saw their
optimism decline somewhat over their research career:

Before I started doing any machine learning research
I felt like machine learning was this sort of holy grail
that was going to solve every research question.
[Participant 22, physician]

Evaluating the Need for AI and ML
Reflecting on the allure of AI and ML as an innovative field,
interviewees expressed concern regarding the potential
overproliferation of AI and ML tools in medicine for needs that
could be better addressed with other technologies or
interventions. Interviewees in both groups elevated the
importance of performing an early assessment of the need for
AI and ML and the value that it may add to specific medical
contexts, that is, “Whether this is something that needs machine
learning in the first place” (participant 22, physician)—as well
considering, “At what cost is the question?” (participant 06,
researcher) and whether a given AI or ML tool is “the right tool
for the job” (participant 20, physician). One interviewee
highlighted the importance of thinking about AI as one of many
other innovative fields that can broadly apply to medicine in
the interests of patients and humanity:

Think of AI as just an enabling technology like
anything else. We don’t do anything for the sake of
using the electronic health record. The electronic
health record is a tool that allows us to take care of
a patient, so AI should be the same thing. You should
never do something for the sake of using AI. It should
always be that we’re trying to solve this problem, we
can’t solve it using existing tools so let's see if AI, if
prediction, could allow us to formulate a better
solution...You always have to ground yourself and
then go back to, “this is just one of many technologies
that I use, but ultimately I have to focus on solving
the problem of taking care of the patient in front of
me.” {Participant 15, physician}

Developing AI and ML Tools That Have Clinical Value
Beyond initial assessments of the general need for AI and ML
solutions, interviewees in both groups emphasized that it was
just as important to evaluate the potential clinical value of the
AI and ML tools under investigation. Several researchers
expressed concerns about the proliferation of AI and ML tools
that are not sufficiently evidence-based, that is, those created
by developers who “[say] that [they]’re going to save time in
the clinic, and then that’s not possible—[They] have no evidence
to show that that’s the case” (participant 09, researcher). A
recommendation to promote more robust AI and ML
development proposed by members of both groups, in the words
of a physician, was to “ground ourselves by being
problem-focused” (participant 15, physician). In particular, they
cautioned against presuming the benefits of AI and ML in a
given problem in medicine, which they felt could reduce the
likelihood of creating tools with clinical value:

We can’t just focus on building these new tools, but
we need to think about the context in which they’re
going to be used. We can’t think only about overall
metrics...We really need to be prioritizing work that
is actually meaningful, grounded in real problems as
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far as how machine learning has been used in
healthcare. {Participant 33, researcher}

Interviewees in both groups referenced institutional and
structural factors in research and academia that they felt could
promote the development of tools that might not ultimately
prove useful in clinical settings. Specifically, they discussed
the impact of academic competition in the medical and AI and
ML research communities, which is important for advancing a
career but may not adequately prioritize the development of
practical tools. Researchers and physicians agreed that “There
is a disconnect because the traditional ways of academic
advancement—publications, grants—reward publication of
algorithms and capabilities, and papers. There are many, many,
many algorithms, but we don’t see many translate into clinical
practice” (participant 23, physician). They stressed their desire
“to see the incentives in academia and elsewhere change so that
people can really invest in solving real problems instead of just
churning out these publishable units.” (participant 33,
researcher).

Several researchers felt that the rapid advancement of AI and
ML in medicine could paradoxically slow progress, with several
mentioning that stepwise approaches to development should be
prioritized (“Sometimes...we do not currently have the ability
to arrive at a satisfactory solution...Sometimes we are aiming
for [step] three or four and we should just start with one”
[participant 13, researcher]). They posited that more fundamental
AI and ML research may yield greater benefits in the field’s
current state (“I tend to believe that the most “boring” work is
the work that pays off the most” [participant 18, researcher]).
Likewise, some observed that more fundamental work is often
overlooked in favor of research topics which follow “the new
trend” (participant 10, researcher). They expressed frustration
that the AI and ML research community appears to prioritize
and reward “trend-hopping” (participant 33, researcher), whereas
the work needed to create benefit for clinical populations may
be neglected or underfunded (“we’re probably not putting our
energy in the right place” [participant 10, researcher]).

Engaging Diverse Stakeholder Perspectives
Interviewees from both groups commented on the ways in which
the composition of the research team—in terms of professional
role (ie, developers, hospital administrators, physicians, and
patients) and demographic characteristics (ie, race, gender, and
ethnicity)—can impact the clinical utility of AI and ML
solutions downstream:

Developers - definitely [work] with clinicians and
communities and patients from the start. Because it's
tempting, not just as a developer but also as a
researcher, to feel like 'I have this really cool idea
and I have this really cool algorithm and I'm just
going to build it and then test it.' But that's a little bit
of a disaster or a little bit of a risk of missing a lot of
issues, or solving a problem that doesn't have to be
solved, or not solving the right problem. {Participant
22, physician}

Interviewees in both groups emphasized the need to involve
diverse collaborators “from the very beginning if we want to
actually build something practically useful” (participant 13,

researcher), with a special emphasis on including individuals
who may have “certain lived experience, [who] are going to be
able to identify some things that others wouldn’t see”
(participant 14, researcher).

Multiple interviewees similarly addressed how the background
and demographic composition of a research team can impact
the types of AI and ML projects that are advanced in medicine,
with one researcher commenting “I think a lot of it, for better
or for worse, is motivated by personal excitement and
motivation, and not direct thinking about what kind of problems
we should be addressing. That reason to me is the most concrete
motivation for why we should have diversity in the field”
(participant 10, researcher). Other researchers emphasized the
importance of considering “Who’s asking the questions?”
(participant 14, researcher), as well as, including those “who
haven’t had the privilege to ask the questions, who haven’t been
empowered to be able to ask the questions” (participant 33,
researcher). Some expressed concerns that a lack of diversity
among investigators and research teams could skew research
directions and minimize the concerns of underrepresented and
marginalized groups:

We see a lot of that in machine learning: It’s not
driven by what’s a real question in the
communities...It’s driven by an idea that somebody
had, an idea in a very homogenous team of people.
{Participant 33, researcher}

Advancing Interdisciplinary Knowledge and Ethical
Alignment
Both developers and physicians commented on the need for
greater collaboration between stakeholders in AI and ML and
medicine, emphasizing that “there’s a big gap in those two
communities in terms of the problems that one wants solved,
the problems that are solved, how the communication happens,
and how that’s all addressed” (participant 12, physicians). This
physician noted that “deep collaborations are fairly rare...It’s
not easy to find them” [12], in agreement with several
researchers who described the current state of research as
interdisciplinary on the surface, but still highly localized. Many
interviewees perceived a need for greater interdisciplinary
knowledge between the 2 fields, emphasizing the desire for
“more people who are dual trained: who really deeply
understand subject matter and who deeply understand
algorithms” (participant 33, researcher), and who can “actually
own a scientific question and try to answer it end-to-end”
(participant 26, researcher). They felt that a greater commitment
to interdisciplinary training and collaboration would lead to the
development of more tools with clinical relevance and utility.

Interviewees highlighted how different approaches to ethical
and professional standards in AI and ML research and medicine
may be sources of conflict when applying AI and ML in
medicine. They tended to agree that although research and
patient care are united by institutionalized ethical commitments
(eg, the Hippocratic Oath, the Belmont Report, and the Common
Rule) and organizational safeguards (eg, institutional review
boards), ethics in the emerging fields of AI and ML lack
institutionalized guidance and typically consist of individual
researchers voluntarily following informal guidelines and
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recommendations. Several researchers expressed the feeling
that “Right now the system relies on people like me doing the
right thing.” (participant 10, researcher) and felt that ethics are
not adequately prioritized in computer science training and
curricula:

We are taught to think, “Here is a thing that your
program should do, and then if it does it then you’re
good.” But you're not really taught to think about,
what are all the other things that it could be doing as
well on the side? We’re just biased towards getting
the one positive result out of our program without
thinking about all the negative consequences that
could happen. {Participant 06, researcher}

Interviewees identified more training in ethics as necessary to
support the translation of AI and ML research into robust clinical
tools. Several researchers related a desire for enhanced ethical
training among developers; one asserted the importance of
“incorporating ethical thinking into every single class that
computer scientists take, so that it is not just the one throwaway
class you have to sit through, but it is like every time you do
something, just think about [ethics] as well. Because the whole
point is you should...think about the ethics and think about the
potential backfiring while you’re designing the technology—not
after you've designed it” (participant 06, researcher).

Interviewees also perceived a need for increased computer
science education in medical training, noting that “there has to
be the kind of literacy about computer science that is not
currently required in the medical curriculum” (participant 10,
researcher). Several physicians expressed similar desires, with
one asserting, “We’re going to have to learn something about
how these algorithms work...We’re going to own AI just as
we've kind of owned other kinds of new technologies that have
been incorporated into our practice” (participant 14, physician).

Discussion

Background
In this report, we sought the perspectives of researchers and
physicians regarding ethical considerations in the translation of
ML technologies into medicine. Existing qualitative literature
pertaining to medical AI and ML has primarily focused on
clinicians’ views on specific uses or implementations of AI and
ML in medicine [12,16,22-24,26]. Our study is unique in that
its use of open-ended questions allowed interviewees to explore
their sentiments and perspectives without overreliance on
implicit assumptions about what AI and ML currently are like.
Because of the open-endedness of the questions, participants
articulated the issues that they resonated with most strongly, as
opposed to responding to prescriptive questions about issues
defined a priori by our research team. To the best of our
knowledge, this study is among the first to describe such
perspectives.

Our findings revealed a range of ethical concerns shared by
both researchers and physicians regarding the initial phase of
research, which we have referred to as the “problem
formulation” phase or “phase 1” (Figure 1). Although our
interview questions did not specifically probe these early issues,

most interviewees discussed them in great detail. Their concerns
revolved around several broad themes (ie, influences on research
directions, clinical needs and utility, stakeholder involvement,
and interdisciplinary knowledge); interviewees viewed themes
as interlinked and deserving of critical consideration before the
beginning of algorithm development.

Establishing Clinical Need and Value: The Significance
of Phase-1 Decision-Making
To date, a small percentage of AI and ML tools developed for
use in medicine have been successfully implemented in clinical
practice, and for those tools that have been implemented, their
acceptability has sometimes been disputed by health care
practitioners and administrators [6,7]. For example, clinicians
have raised concerns regarding the risks of cognitive burden,
overreliance on algorithms, degradation of human clinical
abilities, and patient overtreatment in response to several early
sepsis detection tools [14-16,42]. Interviewees in our study were
aware of this “AI chasm,” and identified processes that take
place during phase 1, such as selecting a research question and
building a research team, that they felt contribute to these
persistent implementation challenges.

Notably, interviewees linked this pattern to a lack of an early
and well-defined clinical need, often because of AI and ML
development occurring without sufficient input seeking from
clinicians, patients, community members, and others. The lack
of appropriate stakeholder involvement or the misalignment of
values between stakeholders were identified as phase-1 failures
that directly contribute to issues in the development and clinical
implementation of AI and ML tools, including reduced clinical
utility and acceptability. Interviewees agreed that research
questions must be sensitive to real-world needs and contextual
factors, such as the clinical environments in which health care
providers and teams work, and emphasized that these
considerations should remain central throughout the full course
of development and implementation. These findings align with
a qualitative study by Watson et al [30], in which leaders of
academic medical centers described identifying a research
question as an essential task that must take place before model
development begins and suggested that consultation with
clinicians and other stakeholders helps greatly in formulating
the question [30].

Aligning Values and Motivations: The Tension
Between Innovation and Patient Care
Although modern medicine is an established field that prioritizes
ethically robust advancement, AI and ML (in their current state)
were described as rapidly evolving, technology-centric fields
that prioritize innovation. Echoing concerns previously raised
in the literature, interviewees described how these divergent
priorities may lead to ethical tensions between the individuals
and institutions that develop these technologies and the
clinicians and patients who ultimately use them [6,21].
Interviewees perceived physicians’ motivations for using
medical AI and ML as related to improving patient outcomes
and lessening clinical burden, whereas the motivations among
developers of medical AI and ML were viewed as more varied
and not necessarily aligned with those of the end users.
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Notably, a number of researchers agreed that basic, stepwise,
or “boring” AI and ML research has benefits that may be
undervalued in today’s research culture, in recognition of the
understanding that innovation for its own sake is likely not
inherently beneficial for the advancement of AI and ML in
medicine. These findings reassuringly suggest that the
physicians and researchers we interviewed distinguish similarly
between the intellectual and moral dimensions of AI and ML
research in the health care context, value cautious and measured
innovation, and are generally aligned in their understanding that
the chief aim of biomedical innovation is to reduce the burden
of health disorders and conditions.

Advancing Interdisciplinary Engagement:
Recommendations for Strengthening Ethical
Innovation in Medicine
Interviewees agreed that medical AI and ML’s success in both
the short and long terms will require sustained efforts to engage
a broad stakeholder base before development efforts and
reimagine interdisciplinary education and training for both
developers and clinicians. The value of increased and earlier
stakeholder involvement has been previously identified [22,29]
and was raised by many interviewees as an actionable strategy
for anticipating and meeting current challenges related to
problem formulation. Although AI and ML developers possess
the technical expertise needed to create algorithms, clinicians
possess the insight and professional experience needed to
determine how best to integrate a potential tool into an existing
clinical space.

As the field of medical AI and ML innovation continues to
expand, participants emphasized that it should increasingly
involve dual-trained individuals with expertise in both AI or
ML and medicine. Expanded opportunities for the dual training
of new clinician researchers are greatly needed, in addition to
more interdisciplinary training for individuals whose expertise

resides in a single field. This is especially relevant in light of
the FDA’s 2022 guidance regarding the 21st Century Cures
Act, where it was indicated that clinical decision support
software is not classified as a medical device when the health
care provider “can independently review the basis for [the]
recommendations” [43]. Consequently, AI and ML tools that
have logic and inputs that can be reviewed will likely not require
the same FDA oversight as other medical devices, shifting the
onus of interpreting and verifying the outputs of these tools to
clinicians who may have varying levels of understanding of AI
and ML technologies. Although there are still many unanswered
questions regarding how the FDA’s guidance will affect hospital
systems and health care providers as the availability of AI- or
ML-enabled clinical tools systems increases, those who have
relevant training in AI and ML will be better prepared to
understand the functionality of these tools and make confident
clinical decisions based on their output [44,45].

Beyond increased technical education, interviewees in this
project specifically underscored the need for systematic ethics
training and resources for tool developers, with both groups
expressing concern regarding the lack of institutionalized ethical
standards in the field of AI and ML. They suggest that the lack
of ethical consensus within AI and ML may represent a limiting
factor for innovation in medicine. This finding indicates that
more empirical work is needed to develop a coherent and
coordinated framework for reasoning through ethical problems
in medical AI and ML, and to develop adequate guidelines,
regulations, and safeguards that ensure medical AI and ML’s
acceptability to care teams and fulfillment of public trust
responsibilities. In working toward greater ethical alignment,
interviewees described a myriad of questions related to phase
1 that they felt were important for medical AI and ML teams
to consider before the start of algorithm design and development
(Table 2).
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Table 2. Questions to consider at the start of medical artificial intelligence (AI) or machine learning (ML) projects, as recommended by interviewees.

Relevant quotesQuestions to considerNeed

What are the motivations for the creation of this tool? Are
any of these in conflict with the goals and ideals of the
field of medicine? What economic or social incentives
may be influencing the motivations?

Assess motivations, priorities,
and incentives

• “Am I doing this because I want to innovate or am I
doing this because I really want to prove this one
process or take care of the patient?” (participant 15,
physician)

Have the perspectives of stakeholders who may be affect-
ed by the development and use of this tool (patients,
family members, clinicians, and hospital staff) been so-
licited and considered? Have the perspectives of diverse
stakeholders been solicited and considered (individuals
of different races, ethnicities, genders, sexualities, ages,

SESa)? Have stakeholders’ concerns been addressed and
their input incorporated?

Involve stakeholders • “Who’s asking the questions?” (participant 14, re-
searcher)

• “Who [hasn’t] had the privilege to ask the questions?
Who hasn’t been empowered to be able to ask the
questions?” (participant 33, ML researcher)

What specific role will this technology fill in medicine?
What is the specific problem in medicine that the tool will
address? How is this problem currently being addressed?
How may it benefit from the use of AI or ML? Has the
input of stakeholders been incorporated when identifying
the problem space?

Identify problem space • “What is the problem we’re trying to solve? Think of
AI as just an enabling technology like anything
else...You should never do something for the sake of
using AI.” (participant 15, physician)

Can this problem be solved without AI or ML? Is AI or
ML the best tool currently available to address this prob-
lem? What are some possible non-AI or non-ML solutions
for this problem? Are these more practical, feasible, af-
fordable, accessible? Has the input of stakeholders been
incorporated when evaluating the necessity of the AI or
ML solution?

Evaluate need • “Does machine learning actually make the application
or the intervention more effective? Do we need to use
machine learning?...When does machine learning ac-
tually improve things, and when should you maybe
not use machine learning or refuse the use of machine
learning if it can actually do more harm than good?”
(participant 22, physician).

Has an interdisciplinary team of collaborators been estab-
lished? Does the team have the expertise in medicine
needed to be able to thoughtfully develop this tool? Will
these collaborations be able to continue as the project
progresses? Do the collaborators include different types
of stakeholders?

Assess collaborations • “[Talk] to different stakeholders to see what things
they find as issues, either in the workplace or with
their profession, that AI could really assist with. That
collaboration...[ensures] that it is something that is
actually useful in the medical and healthcare field.”
(participant 27, physician)

What should interdisciplinary knowledge look like? What
assumptions about interdisciplinary knowledge and col-
laboration should be reexamined or challenged in this
emerging context?

Push boundaries on interdisci-
plinary knowledge

• “I cannot stress enough how important it is to have
more people who are dual trained: who deeply under-
stand the subject matter and who deeply understand
algorithms...Team science is great but in order to do
really transformational work, you need some of both
on some level.” (participant 33, ML researcher)

aSES: socioeconomic status.

Limitations
This study had several limitations. Owing to their qualitative
nature, the results are not representative; however, the ethical
issues raised could be transferable to other similar areas of study
in medicine. In addition, because the semistructured design of
the interviews emphasized open-ended questions, the ability to
compare responses among and between the participant groups
was limited. Furthermore, this analysis did not include the
perspectives of other potential stakeholder groups, such as
patients, ethicists, industry researchers, representatives, or other
health care professionals beyond physicians. Additional
qualitative and quantitative research is required to confirm these
findings. Research involving complementary quantitative
approaches could be useful once ethical concerns are articulated,
refined, and prioritized. Vignette studies such as surveys that
present hypothetical scenarios offer a promising approach to
support reproducibility. Future stakeholder studies may benefit

from focusing on the “problem formulation” phase of research,
as it presents an early opportunity to avoid costly failures during
development and implementation.

Conclusions
In conclusion, this study provides a description of the nuanced
views of researchers and physicians regarding ethical
considerations in the use of AI and ML technologies in
medicine. Considerations related to the earliest processes in a
medical AI or ML project, such as selecting a research question
and forming a research team, were highlighted by interviewees
for their potential to have an outsized impact on the following
phases of development and implementation. The phase-1 ethical
issues identified by interviewees were notably interdisciplinary
in nature and invited questions regarding how to align priorities
and values across disciplines and ensure clinical value
throughout the development and implementation of medical AI
and ML. Relatedly, interviewees suggested interdisciplinary

JMIR AI 2023 | vol. 2 | e47449 | p.541https://ai.jmir.org/2023/1/e47449
(page number not for citation purposes)

Kim et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


solutions to these issues, for example, more resources to support
knowledge generation and collaboration between developers
and physicians, engagement with a broader range of
stakeholders, and efforts to increase diversity in research both
broadly and within individual teams. Although some of the
issues addressed in this paper may be outside the control of any

individual researcher or team, thorough individual- or team-level
assessment of these considerations before the development
phase could aid in maximizing the benefit of new tools for
patients and care teams and ultimately increase the successful
uptake of AI and ML innovations.
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Abstract

Background: In 2021, the European Union reported >270,000 excess deaths, including >16,000 in Portugal. The Portuguese
Directorate-General of Health developed a deep neural network, AUTOCOD, which determines the primary causes of death by
analyzing the free text of physicians’ death certificates (DCs). Although AUTOCOD’s performance has been established, it
remains unclear whether its performance remains consistent over time, particularly during periods of excess mortality.

Objective: This study aims to assess the sensitivity and other performance metrics of AUTOCOD in classifying underlying
causes of death compared with manual coding to identify specific causes of death during periods of excess mortality.

Methods: We included all DCs between 2016 and 2019. AUTOCOD’s performance was evaluated by calculating various
performance metrics, such as sensitivity, specificity, positive predictive value (PPV), and F1-score, using a confusion matrix.
This compared International Statistical Classification of Diseases and Health-Related Problems, 10th Revision (ICD-10),
classifications of DCs by AUTOCOD with those by human coders at the Directorate-General of Health (gold standard).
Subsequently, we compared periods without excess mortality with periods of excess, severe, and extreme excess mortality. We
defined excess mortality as 2 consecutive days with a Z score above the 95% baseline limit, severe excess mortality as 2 consecutive
days with a Z score >4 SDs, and extreme excess mortality as 2 consecutive days with a Z score >6 SDs. Finally, we repeated the
analyses for the 3 most common ICD-10 chapters focusing on block-level classification.

Results: We analyzed a large data set comprising 330,098 DCs classified by both human coders and AUTOCOD. AUTOCOD
demonstrated high sensitivity (≥0.75) for 10 ICD-10 chapters examined, with values surpassing 0.90 for the more prevalent
chapters (chapter II—“Neoplasms,” chapter IX—“Diseases of the circulatory system,” and chapter X—“Diseases of the respiratory
system”), accounting for 67.69% (223,459/330,098) of all human-coded causes of death. No substantial differences were observed
in these high-sensitivity values when comparing periods without excess mortality with periods of excess, severe, and extreme
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excess mortality. The same holds for specificity, which exceeded 0.96 for all chapters examined, and for PPV, which surpassed
0.75 in 9 chapters, including the more prevalent ones. When considering block classification within the 3 most common ICD-10
chapters, AUTOCOD maintained a high performance, demonstrating high sensitivity (≥0.75) for 13 ICD-10 blocks, high PPV
for 9 blocks, and specificity of >0.98 in all blocks, with no significant differences between periods without excess mortality and
those with excess mortality.

Conclusions: Our findings indicate that, during periods of excess and extreme excess mortality, AUTOCOD’s performance
remains unaffected by potential text quality degradation because of pressure on health services. Consequently, AUTOCOD can
be dependably used for real-time cause-specific mortality surveillance even in extreme excess mortality situations.

(JMIR AI 2023;2:e40965)   doi:10.2196/40965

KEYWORDS

artificial intelligence; AI; mortality; deep neural networks; evaluation; machine learning; deep learning; mortality statistics;
underlying cause of death

Introduction

Background
In 2021, over 270,000 excess deaths were registered in the
European Union, with >16,000 attributable to Portugal [1].
Although most of these excess deaths were possibly related to
the COVID-19 pandemic, excess deaths are generally
attributable to preventable causes, making a case for the
importance of real-time cause-specific mortality surveillance
and the subsequent timely and appropriate public health response
and suitable health policies in periods of excess mortality [2].

The Portuguese Directorate-General of Health (DGS) is
responsible for processing data from the Death Certificate
Information System (SICO) and ensuring the epidemiological
surveillance of mortality [3]. SICO all-cause mortality data are
automatically analyzed and can be publicly accessed [4].
However, the analysis of death certificates (DCs) requires
manual coding of the primary causes of death according to the
International Statistical Classification of Diseases and
Health-Related Problems, 10th Revision (ICD-10) [5]. This
manual coding is a resource-intensive task that hinders real-time
cause-specific mortality surveillance.

Excess mortality is defined by the World Health Organization
as mortality above what would be expected. It allows for
assessing the magnitude of a potential public health crisis by
checking the additional deaths compared with a reference period
and subsequently analyzing their causes in depth [6,7].

Excess mortality can be estimated in several ways. In Portugal,
a period of excess mortality is defined as a consecutive period
starting with 2 observed numbers of deaths above the baseline’s
upper 95% confidence limit or with only 1 observed number of
deaths above the upper 99% confidence limit of the baseline.
The period ends with 2 consecutive values below this limit [8].
This methodology is aligned with the practice of the European
mortality monitoring project (EuroMOMO), which allows for
the detection and measurement in real time of periods of excess
mortality from all causes as a result of threats to public health
in Europe [9].

Most excess mortality surveillance systems such as EuroMOMO
or national systems are based on all-cause mortality surveillance
to ensure real-time surveillance. However, in many countries,

information on cause of death is not readily available as it
requires a human step to code the basic cause of death, delaying
the surveillance and monitoring of cause-specific mortality. For
instance, in Portugal, the manual establishment of the primary
causes of death for the previous year is completed by March of
the following year [10,11].

To overcome this problem, Portugal developed a deep neural
network called AUTOCOD [12,13], which allows for
presuggesting primary causes of mortality based on historical
data of DCs (except for neonatal and perinatal mortality),
achieving accuracies of 89% and 81% for ICD-10 chapters and
blocks, respectively. AUTOCOD can also analyze data from
autopsy reports and clinical bulletins (deaths occurring in health
care facilities). Ultimately, the developed algorithm increased
the productivity of coders, sped up the issuance of results and
information, and ensured near–real-time mortality surveillance
[12,13].

To our knowledge, no widespread dissemination of complex
artificial intelligence (AI) algorithms can suggest underlying
causes of death through free-text analysis of DCs in the same
way as AUTOCOD [14].

Objectives
This study aimed to determine the sensitivity and specificity of
AUTOCOD for classifying the underlying cause of death
compared with manual coding to ascertain the specific causes
of death in periods of excess mortality.

AUTOCOD has already proven to have high sensitivity,
specificity, and accuracy in periods without excess mortality.
However, it was still being determined whether this performance
would be maintained in periods of excess mortality, in which
the recording of free text in DCs could change owing to the
pressure felt in health services and the need to respond to more
requests for DCs. A satisfactory performance by AUTOCOD
could pave the way for its implementation as a real-time
surveillance tool to monitor cause-specific mortality even during
periods in which the national health system experiences severe
pressure [14,15].
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Methods

Study Population
In this study, we included all DCs registered in Portugal’s SICO
starting from January 1, 2016, to August 8, 2019. We excluded
DCs referring to neonatal, perinatal, and maternal mortality as
the AUTOCOD algorithm is not trained for these underlying
causes of death [13]. Each DC was manually classified
according to the ICD-10 by human coders at the DGS (gold
standard) or automatically by AUTOCOD.

Study Design and Data Sets
The methods behind the construction of the AUTOCOD
algorithm have been explained in detail in previous publications.
The algorithm was initially trained and tested using a data set
different from the one chosen for this study [12,13]. The manual
codification of causes of death adheres to the World Health
Organization Nomenclature Regulations specified in the ICD-10.
In addition, it uses the ICD-10 rules for selecting the underlying
cause of death as the primary cause of death by international
rules [5].

The DC data set was then linked with 2 dictionaries of the
ICD-10 to translate block and chapter codes into text
descriptions. The DC data set was also linked to the national
surveillance all-cause mortality data set [4], which defines the
baseline for expected deaths according to the EuroMOMO
methodology [16] and the daily count of observed deaths.

Excess Mortality Definition
Using this data set, we defined the periods in which excess
mortality was observed according to the EuroMOMO Z score
for excess mortality and the rules of Westgard [17] (ie, we
considered excess mortality when there were 2 consecutive days
with a Z score above the limit at 95% of the baseline or just 1
day at >99%). The period of excess mortality ended with 2
consecutive days below the limit of 95% of the baseline.
Flowchart of the study population inclusion criteria can be found
in Figure 1.

We also defined 2 metrics for periods of severe and extreme
excess mortality. These were 2 consecutive days with a Z score
above the limit of 4 SDs and 6 SDs, respectively. The Westgard
functions used to classify the different periods can be found in
Multimedia Appendix 1 [17-19].

Figure 1. Flowchart of the study population inclusion criteria. DC: death certificate; DGS: Directorate-General of Health.

Statistical Analysis
To obtain the multiclass confusion matrix, we used the
“confusionMatrix” function of the caret package in RStudio
(version 6.0-90; Posit, PBC) [18,19]. In a multiclass problem
such as classifying ICD-10 chapters and blocks, the

“confusionMatrix” will show a set of “one-versus-all” results.
For example, in a 3-class problem, the sensitivity of the first
class is calculated against all the samples in the second and third
classes (and so on). The resulting confusion matrix summarizes
the prediction results for a classification problem.
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The number of correct and incorrect predictions is summarized
with count values and broken down by each class. The confusion
matrix shows how a classification model such as AUTOCOD
is confused when it makes predictions. These numbers are then
organized into a table or matrix. Each row of the matrix
corresponds to a predicted class (ie, AUTOCOD). Each matrix
column corresponds to an actual class (ie, human coders at the
DGS).

The numbers of correct and incorrect classifications are then
filled into the table. The total number of correct predictions for
a class goes into the expected row for that class value and the
predicted column for that class value. In the same way, the total
number of incorrect predictions for a class goes into the expected
row for that class value and the predicted column for that class
value.

Finally, we performed a sensitivity analysis (also using the R
package caret) to compare the classification results obtained
using the AUTOCOD algorithm (index test) with the
classification made by human coders (gold standard) [20]. This
allowed us to obtain the number of true positives and false
positives as well as additional metrics such as sensitivity (recall),
specificity, accuracy, positive predictive value (PPV), and
F1-score [13]. This step was performed over time, including a
comparison between periods of excess and no excess mortality
and between periods of extreme excess mortality and no excess
mortality both by chapter and block classification levels of the
ICD-10 [13]. We present this comparison as the difference in
absolute values and with the Kullback-Leibler divergence
(KLD), which measures the distribution of a metric and chapter
or block during a specific period of excess or extreme mortality
and periods of no excess mortality. In other words, the KLD
measures the difference between 2 probability distributions.
We used the kullback_leibler_distanc function of the R package
philentropy [21].

The formulas used for all these performance metrics can be
found in Table S1 in Multimedia Appendix 1 [17-19].

To assess the quality of AUTOCOD, we opted to present the
weighted average of performance metrics such as sensitivity,
precision, and F1-scores by taking the mean of all class
performance metrics while considering each class’s number of
actual occurrences in the data set. The “weight” refers to the
proportion of each class’s actual occurrences in the data set
relative to the sum of all occurrences. The full formula for this
calculation of the weighted average is provided in Multimedia
Appendix 1 [17-19]. This choice was made as opposed to
presenting the macroaverage of performance metrics (ie,
macroaverages assign equal importance to each chapter or block,
thus calculating the arithmetic mean of performance metrics)
[13] as the latter methodology would artificially increase the
importance of the average of the rare or infrequent cause of
death chapters and blocks.

In the data set, 1 DC was not adequately codified by
AUTOCOD, so the ICD-10 classifications of that DC from both
AUTOCOD and the DGS were excluded.

All analyses were performed using R statistical software (version
4.1.2; R Foundation for Statistical Computing) [22-25]. The
analyses were checked by 2 researchers.

Ethical Considerations
The DGS is the national entity responsible for data treatment
and data protection of the SICO. The data provided were only
for the purposes strictly necessary for this study within the
competencies of the DGS. Data were previously anonymized.
Patient consent was waived as the data were deidentified and
processed for reasons of public interest in public health. This
research received previous authorization from the DGS
following positive advice from its data protection officer. In
this way, the research complies with the best practices of the
General Data Protection Regulation. This study was exempt
from an ethics review board assessment following the
self-assessment checklist for ethics of the Ethics Committee of
the National School of Public Health [26].

Results

Description of the Data Set
The data set (Table 1) comprised 330,098 DCs, each classified
twice, meaning that we had all DCs classified by human coders
and by AUTOCOD. The 3 most common ICD-10 chapters
classified by human coders were chapter IX—“Diseases of the
circulatory system” (97,420/330,098, 29.51%), chapter
II—“Neoplasms” (85,837/330,098, 26%), and chapter
X—“Diseases of the respiratory system” (40,202/330,098,
12.18%). A more extensive and detailed descriptive analysis of
this data set can be found in Multimedia Appendix 1 [17-19],
including the desegregation of DCs by year, ICD-10 chapter or
block, and period.

As expected, there were fewer DCs for periods of excess
mortality (n=186,834; 93,417/330,098, 28.3% of the total DCs
from each source) than for periods without excess mortality
(n=473,362; 236,681/330,098, 71.7% of the total DCs from
each source). When considering the periods of severe and
extreme excess mortality either for Z scores of >4 SDs
(n=60,220; 30,110/330,098, 9.12% from each source) or Z scores
of >6 SDs (n=12,480; 6240/330,098, 1.89% from each source),
the DCs were even fewer.

Considering only the 3 most common chapters of the data set
(chapters II, IX, and X), we performed the same analysis for
the classification of ICD-10 blocks (Table 2), which accounted
for 67.69% (223,459/330,098) of the total DCs throughout the
period. The 5 most common blocks classified in DCs were
C00-C97 (malignant neoplasms), I60-I69 (cerebrovascular
diseases), I30-I52 (other forms of heart disease), I20-I25
(ischemic heart disease), and J09-J18 (influenza and
pneumonia).
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Table 1. Description of the study population by excess mortality and type of death certificate coding (N=330,098)a.

Total, n/N (%)Extreme excess mortality
(>6 SDs), n/N (%)

Severe excess mortality
(>4 SDs), n/N (%)

Excess mortality, n/N
(%)

No excess mortality, n/N
(%)

Chap-
ter

AUTOCODHumanAU-
TOCOD

HumanAU-
TOCOD

HumanAU-
TOCOD

HumanAUTOCODHuman

6649/

330,098
(2.01)

6156/

330,098
(1.86)

117/

6649 (1.76)

111/

6154 (1.8)

566/

6649 (8.51)

546/

6154 (8.87)

1786/6649
(26.86)

1696/

6156
(27.55)

4863/

6649 (73.14)

4460/

6154 (72.45)
Ib

83,462/

330,098
(25.28)

85,837/

330,098 (26)

1162/

83,462
(1.39)

1166/

85,837
(1.36)

5941/

83,462
(7.12)

6088/

85,837
(7.09)

20,567/

83,462
(24.64)

21,136/

85,837
(24.62)

62,895/

83,462
(75.36)

64,701/

85,837
(75.38)

IIc

1602/

330,098
(0.49)

1334/

330,098
(0.4)

25

/1602
(1.56)

22/

1334 (1.65)

150/

1602 (9.36)

139/

1334
(10.42)

450

/1602
(28.09)

418/

1334
(31.33)

1152/

1602 (71.91)

916/

1334 (68.67)
IIId

19,382/

330,098
(5.87)

16,430/

330,098
(4.98)

374/

19,382
(1.93)

313/

16,430
(1.91)

1880

19,382
(9.7)

1594/

16,430
(9.7)

5655/

19,382
(29.18)

4793/

16,430
(29.17)

13,727/

19,382
(70.82)

11,637/

16,430
(70.83)

IVe

12,172/

330,098
(3.69)

12,742/

330,098
(3.86)

261/

12,172
(2.14)

281/

12,742
(2.21)

1221/

12,172
(10.03)

1264/

12,742
(9.92)

3660/

12,172
(30.07)

3756/

12,742
(29.48)

8512/

12,172
(69.93)

8986/

12,742
(70.52)

Vf

10,997/

330,098
(3.33)

11,810/

330,098
(3.58)

228/

10,997
(2.07)

254/

11,810
(2.15)

1024/

10,997
(9.31)

1097/

11,810
(9.29)

3240/

10,997
(29.46)

3456/

11,810
(29.26)

7757/

10,997
(70.54)

8354/

11,810
(70.74)

VIg

0/330,098
(0)

2/330,098
(0)

—0/2 (0)—0/2 (0)—1/2 (50)—i1/2 (50)VIIh

9/330,098
(0)

30/330,098
(0.01)

0/9 (0)0/30 (0)3/9 (33.33)5/30
(16.67)

3/9 (33.33)8/30
(26.67)

6/9 (66.67)22/30 (73)VIIIj

97,252/

330,098
(29.46)

97,420/

330,098
(29.51)

1937

/97,252
(1.99)

1918/

97,420
(1.97)

9296/

97,252
(9.56)

9287/

97,420
(9.53)

28,402/

97,252
(29.2)

28,399/

97,420
(29.15)

68,850/

97,252
(70.8)

69,021/

97,420
(70.85)

IXk

43,057/

330,098
(13.04)

40,202/

330,098
(12.18)

1050/

43,057
(2.44)

1014/

40,202
(2.52)

4934/

43,057
(11.46)

4734/

40,202
(11.78)

14,144/

43,057
(32.85)

13,466/

40,202
(33.5)

28,913/

43,057
(67.15)

26,736/

40,202
(66.5)

Xl

13,967/

330,098
(4.23)

14,892/

330,098
(4.51)

195/

13,967
(1.4)

217/

14,892
(1.46)

1108/

13,967
(7.93)

1201/

14,892
(8.06)

3585/

13,967
(25.67)

3893/

14,892
(26.14)

10,382/

13,967
(74.33)

10,999/

14,892
(73.86)

XIm

348/330,098
(0.11)

583/330,098
(0.18)

3/348
(0.86)

5/583
(0.86)

28/348
(8.05)

38/583
(6.52)

96/348
(27.59)

153/583
(26.24)

252/348
(72.41)

430/583
(73.76)

XIIn

960/330,098
(0.29)

1397/330,098
(0.42)

18/960
(1.88)

28/1397
(2)

96/960
(10)

130/1397
(9.31)

276/960
(28.75)

406/1397
(29.06)

684/960
(71.25)

991/1397
(70.94)

XIIIo

10,389/

330,098
(3.15)

10,277/

330,098
(3.11)

174/

10,389
(1.67)

179/

10,277
(1.74)

927/

10,389
(8.92)

924/

10,277
(8.99)

2890/

10,389
(27.82)

2851/

10,277
(27.74)

7499/

10,389
(72.18)

7426/

10,277
(72.26)

XIVp

0/330,098
(0)

35/330,098
(0.01)

—1/35 (2.86)—2/35 (5.71)—6/35
(17.14)

—29/35
(82.86)

XVq

3/330,098
(0)

58/330,098
(0.02)

0/3 (0)0/58 (0)0/3 (0)5/58 (8.62)0/3 (0)12/58
(20.69)

3/3 (100)46/58
(79.31)

XVIr

246/330,098
(0.07)

494/330,098
(0.15)

3/246
(1.22)

10/494
(2.02)

17/246
(6.91)

38/494
(7.69)

65/246
(26.42)

137/494
(27.73)

181/246
(73.58)

357/494
(72.27)

XVIIs

17,075/

330,098
(5.17)

16,269/

330,098
(4.93)

454/

17,075
(2.66)

448/

16,269
(2.75)

1879/17,075
(11)

1802/

16,269
(11.08)

5434/

17,075
(31.82)

5197/

16,269
(31.94)

11,641/

17,075
(68.18)

11,072/

16,269
(68.06)

XVIIIt
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Total, n/N (%)Extreme excess mortality
(>6 SDs), n/N (%)

Severe excess mortality
(>4 SDs), n/N (%)

Excess mortality, n/N
(%)

No excess mortality, n/N
(%)

Chap-
ter

AUTOCODHumanAU-
TOCOD

HumanAU-
TOCOD

HumanAU-
TOCOD

HumanAUTOCODHuman

0/330,098
(0)

2/330,098
(0)

—0/2 (0)—2/2 (100)—2/2 (100)—0/2 (0)XIXu

12,527/

330,098
(3.79)

14,128/

330,098
(4.28)

239/

12,527
(1.91)

273/

14,128
(1.93)

1040/

12,527
(8.3)

1214/

14,128
(8.59)

3164/

12,527
(25.26)

3631/

14,128
(25.7)

9363/

12,527
(74.74)

10,497/

14,128
(74.3)

XXv

1/330,098
(0)

0/330,098
(0)

0/1 (0)—0 /1 (0)—0/1 (0)—1/1 (100)——

330,098/

330,098
(100)

330,098/

330,098
(100)

6240/

330,098
(1.89)

6240/

330,098
(1.89)

30,110/

330,098
(9.12)

30,110/

330,098
(9.12)

93,417/

330,098
(28.3)

93,417/

330,098
(28.3)

236,681/

330,098
(71.7)

236,681/

330,098
(71.7)

Total

aPercentage values represent the proportion of death certificates for each period analyzed considering the total of each chapter except for the total
column, which gives the proportion of each chapter for all the death certificates.
bCertain infectious and parasitic diseases.
cNeoplasms.
dDiseases of the blood and blood-forming organs and certain disorders involving the immune system.
eEndocrine, nutritional, and metabolic diseases.
fMental and behavioral disorders.
gDiseases of the nervous system.
hDiseases of the eye and adnexa.
iMissing values.
jDiseases of the ear and mastoid process.
kDiseases of the circulatory system.
lDiseases of the respiratory system.
mDiseases of the digestive system.
nDiseases of the skin and subcutaneous tissue.
oDiseases of the musculoskeletal system and connective tissue.
pDiseases of the genitourinary system.
qPregnancy, childbirth, and the puerperium.
rCertain conditions originating in the perinatal period.
sCongenital malformations, deformations, and chromosomal abnormalities.
tSymptoms, signs, and abnormal clinical and laboratory findings not elsewhere specified.
uInjury, poisoning, and certain other consequences of external causes.
vExternal causes of morbidity and mortality.
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Table 2. Description of the study population for the 3 most common chapters (II, IX, and X) for all the periods analyzed (N=330,098)a.

Total, n/N (%)Extreme excess mortality
(>6 SDs), n/N (%)

Severe excess mortality
(>4 SDs), n/N (%)

Excess mortality, n/N
(%)

No excess mortality, n/N
(%)

Block

AUTOCODHumanAU-
TOCOD

HumanAU-
TOCOD

HumanAU-
TOCOD

HumanAUTOCODHuman

81,919/

223,771
(36.61)

84,031/

223,459
(37.6)

1102/

81,919
(1.35)

1141/

84,031
(1.36)

5695/

81,919
(6.95)

5942/

84,031
(7.07)

20,149/

81,919
(24.6)

20,652/

84,031
(24.58)

61,770/

81,919
(75.4)

63,379/

84,031
(75.42)

C00-

C97b

0/223,771
(0)

9/223,459
(0)

—0/9 (0)—0/9 (0)—1/9 (11.11)—d8/9 (88.89)D00-

D09c

224/223,771
(0.1)

311/223,459
(0.14)

4/224
(1.79)

7/311
(2.25)

14/224
(6.25)

26/311
(8.36)

53/224
(23.66)

87/311
(27.97)

171/224
(76.34)

224/311
(72.03)

D10-

D36e

1319/223,771
(0.59)

1486/223,459
(0.66)

24/1319
(1.82)

18/1486
(1.21)

110/1319
(8.34)

120/1486
(8.08)

365/1319
(27.67)

396/1486
(26.65)

954/1319
(72.33)

1090/1486
(73.35)

D37-

D48f

408/223,771
(0.18)

490/223,459
(0.22)

4/408
(0.98)

3/490
(0.61)

42/408
(10.29)

40/490
(8.16)

107/408
(26.23)

114/490
(23.27)

301/408
(73.77)

376/490
(76.73)

I05-

I09g

8938/223,771
(3.99)

7611/223,459
(3.41)

149/8938
(1.67)

149/7611
(1.96)

796/8938
(8.91)

810/7611
(10.64)

2728/8938
(30.52)

2320/7611
(30.48)

6210/8938
(69.48)

5291/7611
(69.52)

I10-

I15h

20,979/

223,771
(9.38)

21,153/

223,459
(9.47)

441/

20,979
(2.1)

471/

21,153
(2.23)

1925/

20,979
(9.18)

2093/

21,153
(9.89)

6176/

20,979
(29.44)

6295/

21,153
(20.76)

14,803/

20,979
(70.56)

14,858/

21,153
(70.24)

I20-

I25i

2296/223,771
(1.03)

2314/223,459
(1.04)

41/2296
(1.79)

43/2314
(1.86)

197/2296
(8.58)

222/2314
(9.59)

669/2296
(29.14)

699/2314
(30.21)

1627/2296
(70.86)

1615/2314
(69.79)

I26-

I28j

26,565/

223,771
(11.87)

26,016/

223,459
(11.64)

509/

26,565
(1.92)

524/

26,016
(2.01)

2433/

26,565
(9.16)

2490/

26,016
(9.57)

8002/

26,565
(30.12)

7784/

26,016
(29.92)

18,563/

26,565
(69.88)

18,232/

26,016
(70.08)

I30-

I52k

33,625/

223,771
(15.03)

34,595/

223,459
(15.48)

568/

33,625
(1.69)

621/

34,595
(1.8)

2893/

33,625
(8.6)

3162/

4,595
(9.14)

9492

/33,625
(28.23)

9759/

34,595
(28.21)

24,133/

33,625
(71.77)

24,836/

34,595
(71.79)

I60-

I69l

4136/223,771
(1.85)

4794/223,459
(2.15)

79/4136
(1.91)

102/4794
(2.13)

351/4136
(8.49)

431/4794
(8.99)

1135/4136
(27.44)

1300/4794
(27.12)

3001/4136
(72.56)

3494/4794
(72.88)

I70-

I79m

296/223,771
(0.13)

427/223,459
(0.19)

2/296
(0.68)

5/427
(1.17)

23/296
(7.77)

36/427
(8.43)

93/296
(31.42)

124/427
(29.04)

203/296
(68.58)

303/427
(70.96)

I80-

I89n

9/223,771
(0)

20/223,459
(0.01)

0/9 (0)0/20 (0)0/9 (0)3/20 (15)0/9 (0)4/20 (20)9/9 (100)16/20 (80)I95-

I99o

18/223,771
(0.01)

46/223,459
(0.02)

0/18 (0)1/46 (2.17)1/18 (5.56)7/46
(15.22)

4/18
(22.22)

18/46
(39.13)

14/18
(77.78)

28/46
(60.87)

J00-

J06p

18,775/223,771
(8.39)

18,191/223,459
(8.14)

441/18,775
(2.35)

481/18,191
(2.64)

2082/18,775
(11.09)

2248/18,191
(12.36)

6358/18,775
(33.86)

6325/18,191
(34.77)

12,417/18,775
(66.14)

11,866/18,191
(65.23)

J09-

J18q

2067/223,771
(0.92)

2102/223,459
(0.94)

55/2067
(2.66)

61/2102
(2.9)

228/2067
(11.03)

251/2102
(11.94)

673/2067
(32.56)

693/2102
(32.97)

1394/2067
(67.44)

1409/2102
(67.03)

J20-

J22r

40/223,771
(0.02)

53/223,459
(0.02)

0/40 (0)0/53 (0)2/40 (5)6/53
(11.32)

10/40 (25)11/53
(20.75)

30/40 (75)42/53
(79.25)

J30-

J39s

10,234/223,771
(4.57)

8953/223,459
(4.01)

240/10,234
(2.35)

232/8953
(2.59)

1113/10,234
(10.88)

1070/8953
(11.95)

3420/10,234
(33.42)

3024/8953
(33.78)

6814/10,234
(66.58)

5929/8953
(66.22)

J40-

J47t

2345/223,771
(1.05)

2340/223,459
(1.05)

33/2345
(1.41)

42/2340
(1.79)

180/2345
(7.68)

211/2340
(9.02)

653/2345
(27.85)

691/2340
(29.53)

1692/2345
(72.15)

1649/2340
(70.47)

J60-

J70u

1544/223,771
(0.69)

1636/223,459
(0.73)

27/1544
(1.75)

28/1636
(1.71)

131/1544
(8.48)

157/1636
(9.6)

442/1544
(28.63)

468/1636
(28.61)

1102/1544
(71.37)

1168/1636
(71.39)

J80-

J84v
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Total, n/N (%)Extreme excess mortality
(>6 SDs), n/N (%)

Severe excess mortality
(>4 SDs), n/N (%)

Excess mortality, n/N
(%)

No excess mortality, n/N
(%)

Block

AUTOCODHumanAU-
TOCOD

HumanAU-
TOCOD

HumanAU-
TOCOD

HumanAUTOCODHuman

83/223,771
(0.04)

215/223,459
(0.1)

0/83 (0)1/215
(0.47)

2/83 (2.41)16/215
(7.44)

22/83
(26.51)

60/215
(27.91)

61/83
(73.49)

155/215
(72.09)

J85-

J86w

249/223,771
(0.11)

221/223,459
(0.1)

3/249 (1.2)5/221
(2.26)

17/249
(6.83)

22/221
(9.95)

67/249
(26.91)

61/221
(27.6)

182/249
(73.09)

160/221
(72.4)

J90-

J94x

7702

/223,771
(3.44)

6445/

223,459
(2.88)

160/

7702 (2.08)

163/

6445 (2.53)

745/

7702 (9.67)

746/

6445
(11.57)

2495/

7702
(32.39)

2115/

6445
(32.82)

5207/

7702 (67.61)

4330/

6445 (67.18)

J95-

J99y

223,771/

223,771
(100)

223,459/

223,459
(100)

3882/

223,771
(1.73)

4098/

223,459
(1.83)

18,980/

223,771
(8.48)

20,109/

223,459 (9)

63,113/

223,771
(28.2)

63,001/

223,459
(28.19)

160,658/

223,771
(71.8)

160,458/

223,459
(71.81)

Total

aPercentage values represent the proportion of death certificates for each period analyzed considering the total of each block except for the total column,
which gives the proportion of each block for all the death certificates.
bMalignant neoplasms.
cIn situ neoplasms.
dMissing values.
eBenign neoplasms.
fNeoplasms of uncertain or unknown behavior.
gChronic rheumatic heart diseases.
hHypertensive diseases.
iIschemic heart diseases.
jPulmonary heart disease and diseases of pulmonary circulation.
kOther forms of heart disease.
lCerebrovascular diseases.
mDiseases of the arteries, arterioles, and capillaries.
nDiseases of the veins, lymphatic vessels, and lymph nodes not elsewhere classified.
oOther and unspecified disorders of the circulatory system.
pAcute upper respiratory infections.
qInfluenza and pneumonia.
rOther acute lower respiratory infections.
sOther diseases of the upper respiratory tract.
tChronic lower respiratory diseases.
uLung diseases owing to external agents.
vOther respiratory diseases principally affecting the interstitium.
wSuppurative and necrotic conditions of the lower respiratory tract.
xOther diseases of the pleura.
yOther diseases of the respiratory system.

Results for ICD-10 Chapters
The caret package provides the confusion matrix, which
evaluates AUTOCOD’s performance by calculating some
performance metrics. The full performance metrics calculated
for AUTOCOD can be found in Multimedia Appendix 1 [17-19].

As presented in Table S2 in Multimedia Appendix 1 [17-19],
the specificity in all ICD-10 chapters was >0.97 for periods
without excess mortality. The highest values of sensitivity (or
recall) were for chapter II—“Neoplasms” (0.95), chapter
XVIII—“Symptoms, signs, and abnormal clinical and laboratory
findings not elsewhere specified” (0.93), and chapter
IX—“Diseases of the circulatory system” (0.91). Considering
the PPV (or precision), the highest values were for chapter

XVI—“Certain conditions originating in the perinatal period”
(1.00), chapter II—“Neoplasms” (0.98), and chapter
IX—“Diseases of the circulatory system” (0.92). The highest
F1-scores were for chapter II—“Neoplasms” (0.96), chapter
IX—“Diseases of the circulatory system” (0.91), and chapter
XVIII—“Symptoms, signs, and abnormal clinical and laboratory
findings not elsewhere specified” (0.90).

Specificity in all ICD-10 chapters was >0.96 for the excess
mortality periods. The highest values of sensitivity (or recall)
were for chapter II—“Neoplasms” (0.95), chapter
XVIII—“Symptoms, signs, and abnormal clinical and laboratory
findings not elsewhere specified” (0.93), and chapter
IX—“Diseases of the circulatory system” (0.91). Considering
the PPV (or precision), the highest values were for chapter
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II—“Neoplasms” (0.97), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.88). The highest F1-scores were for
chapter II—“Neoplasms” (0.96), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.90).

Specificity in periods with severe excess mortality (>4 SDs)
was >0.96 in all ICD-10 chapters. The highest values of
sensitivity (or recall) were for chapter II—“Neoplasms” (0.94),
chapter XVIII—“Symptoms, signs, and abnormal clinical and
laboratory findings not elsewhere specified” (0.92), and chapter
IX—“Diseases of the circulatory system” (0.91). Considering
the PPV (or precision), the highest values were for chapter
II—“Neoplasms” (0.97), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.88). The highest F1-scores were for
chapter II—“Neoplasms” (0.96), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified (0.90).

For periods with extreme excess mortality (>6 SDs), specificity
in all ICD-10 chapters was >0.96. The highest values of
sensitivity (or recall) were for chapter II—“Neoplasms” (0.95),
chapter IX—“Diseases of the circulatory system” (0.91), and
chapter XVIII—“Symptoms, signs, and abnormal clinical and
laboratory findings not elsewhere specified” (0.90). Considering
the PPV (or precision), the highest values were for chapter
II—“Neoplasms” (0.96), chapter IX—“Diseases of the
circulatory system” (0.90), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.88). The highest F1-scores were for
chapter II—“Neoplasms” (0.96), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.89).

Considering the weighted average of all chapters, the results
we obtained for the performance metrics of AUTOCOD are
presented in Table 3. For sensitivity, PPV, and F1-score, there
was no difference between periods without excess mortality
and those with excess mortality (<0.01). There was a decrease
of 0.01 from periods without excess mortality to periods with
severe excess mortality (>4 SDs). There was a decrease of 0.04
when comparing the weighted average of periods without excess
mortality and periods with extreme excess mortality (>6 SDs).

Table 3. Average performance metrics for different periods for the International Statistical Classification of Diseases and Health-Related Problems,
10th Revision, chapter classification of AUTOCOD.

F1-score (weighted aver-
age)

Positive predictive value (weighted
average)

Specificity (weighted aver-
age)

Sensitivity (weighted aver-
age)

0.880.880.980.88No excess mortality

0.880.880.980.88Excess mortality

0.870.870.980.87Severe excess mortality (>4
SDs)

0.840.840.940.85Extreme excess mortality
(>6 SDs)

It is vital to analyze the differences between periods without
excess mortality and periods of excess mortality, severe excess
mortality, or extreme excess mortality and which chapters
perform better.

According to Table 4, the biggest differences in the sensitivity
values of AUTOCOD between periods without excess mortality
and periods with excess mortality were found in chapter
XVI—“Certain conditions originating in the perinatal period”
(0.07), chapter XVII—“Congenital malformations,
deformations, and chromosomal abnormalities” (0.05), chapter
VIII—“Diseases of the ear and mastoid process” (−0.07), and
chapter XII—“Diseases of the skin and subcutaneous tissue”
(−0.08). For the 3 most common chapters, the differences were
0.00 (chapter II—“Neoplasms”), 0.00 (chapter IX—“Diseases
of the circulatory system”), and 0.01 (chapter X—“Diseases of
the respiratory system”). Regarding the differences in sensitivity
values between periods without excess mortality and periods
of severe excess mortality (Z score of >4 SDs), the biggest
differences were found in chapter VIII—“Diseases of the ear
and mastoid process” (−0.22), chapter XII—“Diseases of the

skin and subcutaneous tissue” (−0.12), chapter XVI—“Certain
conditions originating in the perinatal period” (0.07), and chapter
XVII—“Congenital malformations, deformations, and
chromosomal abnormalities” (0.07). For the 3 most common
chapters, the differences were 0.01 (chapter II—“Neoplasms”),
0.01 (chapter IX—“Diseases of the circulatory system”), and
0.00 (chapter X—“Diseases of the respiratory system”). When
comparing the difference between the sensitivity values of
AUTOCOD for periods without excess mortality and periods
of extreme excess mortality (Z score of >6 SDs), the biggest
differences were found in chapter XVII—“Congenital
malformations, deformations, and chromosomal abnormalities”
(0.19), chapter III—“Diseases of the blood and blood-forming
organs and certain disorders involving the immune system”
(0.17), chapter XIII—“Diseases of the musculoskeletal system
and connective tissue” (0.10), and chapter XII—“Diseases of
the skin and subcutaneous tissue” (0.08). For the 3 most
common chapters, the differences were 0.00 (chapter
II—“Neoplasms”), 0.00 (chapter IX—“Diseases of the
circulatory system”), and 0.00 (chapter X—“Diseases of the
respiratory system”).
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Table 4. Comparison among sensitivity values of AUTOCOD depending on the period (without excess mortality and with excess mortality, severe
excess mortality, or extreme excess mortality) by chapter of the International Statistical Classification of Diseases and Health-Related Problems, 10th
Revision.

KLD (no
excess
mortality
and >6
SDs)

Difference
(>6 SDs–no
excess mor-
tality)

Extreme
excess
mortality
(>6 SDs)

KLD (no
excess
mortality
and >4
SDs)

Difference
(>4 SDs–no
excess mor-
tality)

Severe ex-
cess mortal-
ity (>4
SDs)

KLDa (no
excess
mortality
and excess
mortality)

Difference
(no excess
mortality–ex-
cess mortali-
ty)

Excess
mortality

No excess
mortality

Chapter

0.020.020.650.000.000.670.00<0.010.670.67I

0.000.000.950.010.010.940.000.000.950.95II

0.190.170.410.000.000.580.020.020.550.57III

−0.02−0.020.820.000.000.810.000.000.810.81IV

0.010.010.770.000.000.780.000.000.780.77V

0.010.010.790.000.000.79−0.01−0.010.800.79VI

N/AN/AN/AN/AN/AN/Ab0.000.000.000.00VII

N/AN/AN/A−0.14−0.220.40−0.06−0.070.250.18VIII

0.000.000.910.010.010.910.000.000.910.91IX

0.000.000.890.000.000.900.010.010.890.90X

0.040.040.760.040.040.760.020.020.790.80XI

0.090.080.20−0.10−0.120.40−0.07−0.080.350.28XII

0.110.100.320.000.000.420.000.000.420.42XIII

0.020.020.740.000.000.760.010.010.760.76XIV

0.000.000.000.000.000.000.000.000.000.00XV

N/AN/AN/A0.570.070.000.570.070.000.07XVI

0.260.190.200.080.070.320.060.050.340.39XVII

0.030.030.900.010.010.920.000.000.930.93XVIII

N/AN/AN/AN/AN/A0.00N/AN/A0.00N/AXIX

0.020.020.760.040.040.750.020.020.760.79XX

aKLD: Kullback-Leibler divergence.
bN/A: not applicable.

In addition, Table 4 shows the KLD between periods without
excess mortality and periods of excess mortality. For 9 chapters,
including 2 of the most prevalent (chapter II—“Neoplasms”
and chapter IX—“Diseases of the circulatory system”), the KLD
was 0, indicating that the distribution of values for periods of
excess mortality was similar to that for periods of no excess
mortality. For other chapters, such as chapter X—“Diseases of
the respiratory system,” the KLD was close to 0. In chapter
XVI—“Certain conditions originating in the perinatal period,”
the KLD was particularly high, implying a large difference in
the probability distributions. Regarding the KLD between
periods without excess mortality and periods of extreme excess
mortality (Z score of >4 SDs), the sensitivity had a KLD of 0
for 9 chapters, including chapter X—“Diseases of the respiratory

system.” It also had a KLD close to 0 for chapter
II—“Neoplasms” and chapter IX—“Diseases of the circulatory
system.” When comparing the difference between the KLD for
the sensitivity of AUTOCOD for periods without excess
mortality and periods of extreme excess mortality (Z score of
>6 SDs), sensitivity had a KLD of 0 in the 3 most prevalent
chapters as well as chapter XV—“Pregnancy, childbirth, and
the puerperium.”

The differences in the performance measures of AUTOCOD
between periods without excess mortality and periods of excess
or extreme excess mortality are shown in Figure 2. The absolute
values of the observations for each period analyzed and
additional comparisons of AUTOCOD performance measures
can be found in Multimedia Appendix 1 [17-19].
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Figure 2. Comparison between performance metrics of AUTOCOD during periods of excess mortality, severe excess mortality, and extreme excess
mortality and periods without excess mortality for International Statistical Classification of Diseases and Health-Related Problems, 10th Revision
(ICD-10), chapters. DGS: Directorate-General of Health; SICO: Death Certificate Information System.

Results for ICD-10 Blocks
This section analyzes the ICD-10 classification by blocks for
only the 3 most common chapters (chapter II—“Neoplasms,”
chapter IX—“Diseases of the circulatory system,” and chapter
X—“Diseases of the respiratory system”).

As presented in Table S3 in Multimedia Appendix 1 [17-19],
specificity in all ICD-10 blocks was >0.99 for periods without
excess mortality. The highest values of sensitivity (or recall)
were for blocks C00-C97—malignant neoplasms (0.98),
I60-I69—cerebrovascular diseases (0.94), and
J09-J18—influenza and pneumonia (0.94). Considering the
PPV (or precision), the highest values were for blocks
C00-C97—malignant neoplasms (0.99),
I60-I69—cerebrovascular diseases (0.95), and
I20-I25—ischemic heart disease (0.94). The highest F1-scores
were for blocks C00-C97—malignant neoplasms (0.99),
I60-I69—cerebrovascular diseases (0.95), and
J09-J18—influenza and pneumonia (0.94).

Specificity in all ICD-10 blocks was >0.99 for periods of excess
mortality. The highest values of sensitivity (or recall) were for
blocks C00-C97—malignant neoplasms (0.98),
I60-I69—cerebrovascular diseases (0.94), and
J09-J18—influenza and pneumonia (0.93). Considering the
PPV (or precision), the highest values were for blocks
C00-C97—malignant neoplasms (0.99),
I60-I69—cerebrovascular diseases (0.95), and
J09-J18—influenza and pneumonia (0.94). The highest F1-scores

were for blocks C00-C97—malignant neoplasms (0.98),
I60-I69—cerebrovascular diseases (0.95), and
J09-J18—influenza and pneumonia (0.94).

Regarding the periods of severe excess mortality, with Z scores
of >4 SDs, the specificity in all ICD-10 blocks was >0.98. The
highest values of sensitivity (or recall) were for blocks
C00-C97—malignant neoplasms (0.97),
I60-I69—cerebrovascular diseases (0.93), and
J09-J18—influenza and pneumonia (0.93). Considering the
PPV (or precision), the highest values were for blocks
C00-C97—malignant neoplasms (0.99),
I60-I69—cerebrovascular diseases (0.96), and
I20-I25—ischemic heart disease (0.95). The highest F1-scores
were for blocks C00-C97—malignant neoplasms (0.98),
I60-I69—cerebrovascular diseases (0.95), and
I20-I25—ischemic heart diseases (0.94).

Specificity in all ICD-10 blocks was >0.99 for periods of
extreme excess mortality (z score of >6 SDs). The highest values
of sensitivity (or recall) were for blocks C00-C97—malignant
neoplasms (0.97), I60-I69—cerebrovascular diseases (0.93),
and J09-J18—influenza and pneumonia (0.93). Considering the
PPV (or precision), the highest values were for blocks
D10-D36—benign neoplasms (1.00); I80-I89—diseases of the
veins, lymphatic vessels, and lymph nodes not elsewhere
classified (1.00); and C00-C97—malignant neoplasms (0.99).
The highest F1-scores were for blocks C00-C97—malignant
neoplasms (0.98), I60-I69—cerebrovascular diseases (0.94),
and J09-J18—influenza and pneumonia (0.94).
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Table 5 presents AUTOCOD’s performance metrics for the
weighted average of all the blocks analyzed. For sensitivity,
PPV, and F1-score, there was a decrease of 0.01 from periods
without excess mortality to periods with excess mortality, severe
excess mortality (>4 SDs), and extreme excess mortality (>6
SDs).

Considering the differences between periods of excess mortality
and periods without excess mortality, it is important to analyze
which blocks had the biggest differences.

According to Table 6, the largest differences in the sensitivity
of AUTOCOD between periods without excess mortality and
periods of excess mortality were in block J00-J06—acute upper
respiratory infections (0.34), J30-J39—other diseases of the
upper respiratory tract (0.28), and I95-I99—other and
unspecified disorders of the circulatory system (0.08). Regarding
the difference in sensitivity between periods without excess
mortality and periods of severe excess mortality (>4 SDs), the
largest differences were in block J00-J06—acute upper
respiratory infections (0.41), J85-J86—suppurative and necrotic
conditions of the lower respiratory tract (0.23), J30-J39—other
diseases of the upper respiratory tract (0.20), and
I05-I09—chronic rheumatic heart diseases (−0.22). The largest
differences in the sensitivity of AUTOCOD between periods
without excess mortality and periods of extreme excess mortality
(>6 SDs) were in blocks J00-J06—acute upper respiratory
infections (0.41), J85-J86—suppurative and necrotic conditions
of the lower respiratory tract (0.31), and I05-I09—chronic
rheumatic heart diseases (−0.26).

Table 6 also shows the KLD between periods without excess
mortality and periods of excess mortality. For 7 blocks,

including C00-C97—malignant neoplasms and
I60-I69—cerebrovascular diseases, the KLD was 0. Several
blocks had values of KLD very close to 0, such as
I20-I25—ischemic heart diseases and J09-J18—influenza and
pneumonia. When comparing the difference between the KLD
for the sensitivity of AUTOCOD for periods without excess
mortality and periods of extreme excess mortality (Z score of
>4 SDs), sensitivity had a KLD of 0 in 2 blocks:
D37-D48—neoplasms of uncertain or unknown behavior and
J95-J99—other diseases of the respiratory system. It also showed
a KLD very close to 0 in blocks such as C00-C97—malignant
neoplasms and I60-I69—cerebrovascular diseases. Regarding
the KLD between periods without excess mortality and periods
of extreme excess mortality (Z score of >6 SDs), the sensitivity
had a KLD of 0 for I26-I28—pulmonary heart disease and
diseases of pulmonary circulation and J40-J47—chronic lower
respiratory diseases and a KLD very close to 0 for
C00-C97—malignant neoplasm, I20-I25—ischemic heart
diseases, and J09-J18—influenza and pneumonia. Some blocks,
such as J00-J06—acute upper respiratory infections and
J85-J86—suppurative and necrotic conditions of the lower
respiratory tract, had a particularly high KLD for increasing
mortality periods.

The differences in the performance measures of AUTOCOD
among periods without excess mortality, with excess mortality,
and with extreme excess mortality according to ICD-10 blocks
are shown in Figure 3. Additional AUTOCOD performance
comparisons between periods can be found in Multimedia
Appendix 1 [17-19].

Table 5. Weighted averages of performance metrics for different periods for the International Statistical Classification of Diseases and Health-Related
Problems, 10th Revision, block classification of AUTOCOD.

F1-score (weighted aver-
age)

Positive predictive value (weighted
average)

Specificity (weighted aver-
age)

Sensitivity (weighted aver-
age)

0.940.940.990.94No excess mortality

0.930.930.990.93Excess mortality

0.930.930.990.93Severe excess mortality (>4
SDs)

0.930.930.990.93Extreme excess mortality
(>6 SDs)
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Table 6. Comparison between sensitivity values of AUTOCOD depending on the period (total, excess mortality, or without excess mortality) by
International Statistical Classification of Diseases and Health-Related Problems, 10th Revision, block.

KLD (no
excess
mortality
and >6
SDs)

Difference
(>6 SDs–no
excess mor-
tality)

Extreme
excess
mortality
(>6 SDs)

KLD (no
excess
mortality
and >4
SDs)

Difference
(>4 SDs–no
excess mor-
tality)

Severe ex-
cess mortal-
ity (>4
SDs)

KLDa (no
excess
mortality
and excess
mortality)

Difference
(no excess
mortality–ex-
cess mortali-
ty)

Excess
mortality

No excess
mortality

Block

0.01<0.010.970.01<0.010.970.00<0.010.980.98C00-
C97

N/AN/AN/AN/AN/AN/AN/AN/AN/Ab0.00D00-
D09

−0.09−0.100.80−0.02−0.020.720.010.010.690.70D10-
D36

−0.02−0.020.770.000.000.740.010.010.730.74D37-
D48

−0.20−0.260.67−0.18−0.220.63−0.07−0.080.490.41I05-I09

−0.02−0.020.87−0.02−0.020.870.00−0.010.860.85I10-I15

0.010.010.920.010.010.920.010.010.920.93I20-I25

0.00−<0.010.800.030.030.770.010.010.790.80I26-I28

−0.01−0.010.92−0.01−0.020.92−0.01−0.010.920.91I30-I52

0.020.020.930.010.010.930.00<0.010.940.94I60-I69

−0.02−0.020.84−0.03−0.030.850.00<0.010.820.82I70-I79

0.060.050.50−0.02−0.020.580.020.020.540.55I80-I89

N/AN/AN/A0.690.080.000.690.080.000.08I95-I99

4.380.410.004.380.410.000.720.340.070.41J00-J06

0.010.010.930.010.010.930.010.010.930.94J09-J18

−0.06−0.060.90−0.01−0.010.850.000.000.830.83J20-J22

N/AN/AN/A0.260.200.250.450.280.170.45J30-J39

0.000.000.89−0.01−0.010.900.000.000.890.89J40-J47

0.050.050.820.030.030.840.030.030.840.87J60-J70

−0.05−0.050.880.030.030.790.010.010.810.82J80-J84

4.380.310.000.420.230.08−0.04−0.040.350.31J85-J86

0.190.160.50−0.04−0.040.71−0.02−0.020.690.66J90-J94

0.010.010.910.000.000.920.000.000.920.92J95-J99

aKLD: Kullback-Leibler divergence.
bN/A: not applicable.
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Figure 3. Comparison between performance metrics of AUTOCOD during periods of excess mortality and periods without excess mortality for
International Statistical Classification of Diseases and Health-Related Problems, 10th Revision (ICD-10), blocks. DGS: Directorate-General of Health;
SICO: Death Certificate Information System.

Discussion

Principal Findings
Continuous and systematic mortality data collection is crucial
for monitoring the population’s health and complementing
epidemiological studies. This national study is the first to
demonstrate the robustness of deep neural networks in
classifying primary causes of death even during periods of
excess mortality, enabling cause-specific mortality surveillance,
which is not widely performed worldwide. This study
demonstrated a consistently good performance of AUTOCOD
in different periods regardless of excess mortality rates. The
results demonstrate the potential of AI algorithms to expedite
disease classification and coding, making them a valuable tool
for real-time surveillance, timely assessment of public health
risks, and planification of responses. Proving that these
algorithms can operate effectively despite external factors in
different environments reinforces the case for their
implementation.

AUTOCOD showed high sensitivity (≥0.75) in 10 chapters,
with values of >0.90 for the 3 most common ones (chapter
II—“Neoplasms,” chapter IX—“Diseases of the circulatory
system,” and chapter X—“Diseases of the respiratory system,”
which together account for 223,459/330,098, 67.69% of all
human-codified causes of death). The weighted average of
sensitivity in the ICD-10 chapter analysis showed no difference
between periods without excess mortality and periods of excess
mortality, a difference of 0.01 between periods without excess

mortality and periods of severe excess mortality (>4 SDs), and
a difference of 0.04 between periods without excess mortality
and periods of extreme excess mortality (>6 SDs). Regarding
the ICD-10 block analysis, it showed a difference of 0.01 for
the weighted average of sensitivity between periods without
excess mortality and periods of excess mortality between periods
without excess mortality and periods of severe (at the >4 SD
threshold) and between periods without excess mortality and
periods of extreme excess mortality (at the >6 SD threshold).

In the different periods considered for the ICD-10 chapter
analysis, AUTOCOD showed a consistently good performance,
demonstrating a sensitivity (or recall), a PPV (or precision),
and an F1-score as high as 0.88 for periods without excess
mortality and periods of excess mortality and as low as 0.84 in
periods of extreme excess mortality (>6 SDs). When we
considered only the most common chapters (chapter
II—“Neoplasms,” chapter IX—“Diseases of the circulatory
system,” and chapter X—“Diseases of the respiratory system”),
sensitivity ranged from 0.94 to 0.95 in chapter II, 0.91 in chapter
IX, and 0.89 to 0.90 in chapter X in the different periods
analyzed. The same happened with the PPV, which ranged from
0.96 to 0.98 in chapter II, 0.90 to 0.92 in chapter IX, and 0.83
to 0.86 in chapter X. Regarding the F1-score, the performance
of AUTOCOD was 0.96 in chapter II, 0.91 in chapter IX, and
0.86 to 0.88 in chapter X. When we considered only the most
common blocks—C00-C97 (malignant neoplasms), I60-I69
(cerebrovascular diseases), I30-I52 (other forms of heart
disease), I20-I25 (ischemic heart diseases), and J09-J18
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(influenza and pneumonia)—the sensitivity ranged from 0.91
to 0.98, the PPV ranged from 0.89 to 0.99, and the F1-score
ranged from 0.90 to 0.99.

AUTOCOD presented high specificity and negative predictive
values in all the analyses performed. This was expected as the
number of true negatives was consistently much higher than
that of true positives. This is not a characteristic of AUTOCOD
itself but rather a result of our handling of the sample and our
interpretation of the question as a classification problem with
a one-versus-all solution. This method is widely used for
multiple-output class classification problems. In our case, the
individual ICD-10 chapters or blocks were handled as if they
were in a binary model, thus assessing each class individually
against all the other classes in the model.

It should be noted that chapter XVII (“Symptoms, signs, and
abnormal clinical and laboratory findings not elsewhere
specified”) consistently presented high performance metrics in
AUTOCOD. This does not translate to a correct certification of
the cause of death, but it could imply that, when human coders
have difficulties classifying the cause of death, so does the
AUTOCOD.

These results are aligned with those of previous studies using
AUTOCOD [12,13] and, in general, with the literature on deep
neural networks applied to the automatic classification of DCs
[14,27,28]. Falissard et al [14] developed a deep neural network
for automated coding of the underlying cause of death with a
test accuracy of 0.978 (95% CI 0.977-0.979) and an F-measure
value of 0.952 (95% CI 0.946-0.957) [27]. The proposed
approach by Della Mea et al [28] for automated coding of causes
of death had an accuracy of 0.990 (95% CI 0.990-0.991) and a
macroaveraged accuracy and F1-score of 0.974 and 0.968,
respectively. Similarly to our study, Della Mea et al [28] found
that accuracy was low for chapters with rare causes of death
and, therefore, rare causes of death could be ignored.

However, to the best of our knowledge, this is the first time that
a deep neural network that classifies basic causes of death has
been evaluated while comparing its performance across different
time frames according to their excess mortality rates.

Automatic classification of DCs relies on natural language
processing (NLP) techniques and algorithms. NLP can translate
free text written by the physician who certified the death into
classification codes based on the ICD-10. However, this process
depends on the text quality of the analyzed DCs. By text quality,
we mean how successfully we can automatically classify,
retrieve, or extract information from them [29]. Thus, text
quality does not involve a single aspect but combines numerous
criteria, including spelling, grammar, organization, informative
nature, and page layout [30]. Extracting these attributes can
become problematic in low-quality texts (poor grammar, many
abbreviations, and short sentences). This is a known problem
in medical and clinical texts such as patient records or DCs [30].
The performance of systems that rely on attributes of text
quality, such as NLP, affects the overall performance of the
algorithms—a text of bad quality may result in poor-quality
prediction results. To overcome this limitation, after the
development AUTOCOD, a processing layer has been added

to the neural network that has the ability to always read words
in text fields as the closest word the model knows (eg, for the
word Alzheimer, it currently identifies >25 ways of misspelling
it). Therefore, this processing layer can help minimize text field
errors or abbreviations in periods of excess mortality [31-33].

Our results suggest that, even in periods of excess, severe, and
extreme excess mortality when the volume of deaths and the
pressure on health services might increase, with a consequent
impact on physicians that certify deaths and a potential impact
on the quality of the text in the DC, AUTOCOD’s performance
remains unhindered. It is important to consider analyzing the
linguistic properties of the DC, such as variations in text size
and the number of fields filled in by physicians, in future work.

Limitations
An important limitation of this study is that the human coders
had access to the automatic classification of the DC by
AUTOCOD, meaning that the gold standard we used in this
research might be biased by the same algorithm we were trying
to evaluate. However, this implementation only entered
production on July 26, 2019, meaning that manual classification
was unbiased for most of the data sets used in this study.

In addition, there is the matter of ICD-10 code ambiguity. This
is a known limitation of the ICD-10 for human coders and
automatic algorithms of classification that the sometimes
discrete differences between codes for similar causes of death
can explain. This might explain the difference in sensitivity
between, for example, respiratory blocks such as J00-J06 (acute
upper respiratory infections) and J09-J18 (influenza and
pneumonia), with the latter presenting a less ambiguous cause
of death when compared with the former both for human
classification and automatic classification. These unspecified
codes are not necessarily an error rate but an indicator of the
completeness of clinical information of DCs in which sufficient
clinical information is not known or available to assign a more
specific code. In the case of human coders, it is common that
they look for more clinical information in electronic health
records. However, AUTOCOD is restricted to the information
included in the DC. This stresses the importance of a well-filled
and detailed DC by the physician that certifies the death even
in periods of excess mortality.

Routinely, racial and ethnic or socioeconomic groups are not
collected in the DC. Although other proxies of social
vulnerability can be used, such as the municipality of residence,
the focus of this research was not the study of differences in
subgroups, making this an important next step of investigation.

The human coders that we set as our ground truth were not
mistake free. Current research puts the reliability of human
coders at approximately 70% to 89% (reliability is a measure
for calculating agreement between coders and the consistency
of each coder individually) [34]. These performance scores can
be in part explained by the use of different codes for similar
diseases. Moreover, the DGS has had a range of human coders
that varies in number, typically from 4 to 6, and in experience
in classifying causes of death. This may also affect the reliability
and accuracy of the ground-truth labels we used in this study.
Only 1 human coder classifies each DC, and the DGS regularly
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conducts an in-house auditing process in which 2 human coders
check for internal reliability by classifying a small sample of
DCs.

Another possible limitation, known in the field of AI algorithms,
is the generalization of our results to other countries [35]. This
question of model transferability requires further study.
However, we feel confident that our results can be generalized
to other algorithms that rely on NLP for automatic classification
without a profound impact on the model’s performance even
in periods of excess mortality.

Strengths
In Portugal, Law 15/2012 of April 3, 2012, established the
SICO, a mortality information system based on the electronic
registration of DCs [36]. Since then, SICO has become a
widespread tool used by physicians nationally. Therefore, it is
a well-established source of data and information related to
mortality and an international example of the timeliness of
mortality statistics [3].

AUTOCOD was built based on the already disseminated
existence of DCs in electronic format and has since been
validated as an essential tool for the automatic assignment of
ICD-10 codes for causes of death [13]. However, this validation
never considered differences in periods that might affect the
quality of the DC and, consequently, the performance of
AUTOCOD. The method we used for evaluating the
performance of AUTOCOD during periods of excess mortality,
severe excess mortality, and extreme excess mortality is a known
method for comparison of the performance of a given index test
with a given ground truth or gold standard, making a case for
the importance of evaluating algorithms and models in different
periods and in the ever-changing environment that might affect
the overall performance of the models.

Although the current use of AUTOCOD is limited to supporting
human coders, the research findings suggest a compelling case
for enhancing the algorithms used for the automated
classification of causes of death. In a completed DC,
AUTOCOD can be used to accurately classify basic causes of
death in real time even in periods of excess mortality, attesting
that deep neural networks are robust to eventual changes in the
underlying quality of the text. Furthermore, by defining a
baseline from the past (and Portugal has digital DC data going
back to 2014), we can detect in real time, with high sensitivity,
changes in mortality and periods of excess mortality without
the need to wait for human classification of cause of death,
especially for the more common and less ambiguous causes of
death. Finally, with this algorithm, we can use our data to predict

excess deaths that rely on seasonality, such as influenza and
pneumonia.

Implications of Our Work
Our work makes a case for using AUTOCOD for real-time
mortality surveillance by ICD-10 codes. It can be further
validated by other countries wishing to train their neural
networks for medical and clinical text classification. Our
research also makes a case for auditing, evaluating, and
consistently monitoring AI algorithms to identify potential
barriers, strengths, and opportunities [37].

As the AUTOCOD algorithm is robust, it can be used to classify
the underlying causes of death in periods of excess mortality
with no need to wait for manual coding, which allows for
adequate real-time cause-specific mortality surveillance, timely
assessment of risks to public health, and definition of priorities
and planification of responses in both periods with and without
excess mortality. This cause-specific mortality surveillance in
real time is not carried out widely worldwide and might benefit
from further investigation and real-world intervention. This
investigation is a step forward in Portugal for the widespread
use of the classification of specific causes of death by the
AUTOCOD, with renewed confidence in its results regardless
of the presence of excess mortality, and for the implementation
of targeted public health interventions and practices.

Further investigations should be carried out, such as a
comparison of AUTOCOD with other automated coding systems
and a new evaluation of the behavior of AUTOCOD during
periods of excess mortality caused by the COVID-19 pandemic,
including retraining the algorithm with the new codes for
COVID-19 that were not present in the ICD-10 when
AUTOCOD was built [14,16,28]. To strengthen coding
practices, conducting a reliability study among coders at the
DGS would also be important.

Conclusions
This study makes the case for deep neural networks as powerful
tools for automatically classifying primary causes of death
according to the ICD-10 even during periods of excess mortality.
Our work could potentially further the use of deep neural
networks to facilitate automatic clinical codification, such as
of diseases, medical procedures, or DCs. In addition, it may
serve as a staple for the real-time monitoring and surveillance
of public health threats and problems, allowing for timely action.
More broadly, this study highlights the importance of AI
algorithms as an advisory tool for public health policies and
measures.

 

Acknowledgments
The authors thank the coders working at the Directorate-General of Health (Isabel Veloso, Liliana Bernardo, Lucília Cardoso,
Marina Ramos, and Sofia Pimenta). This study received no specific grants from any funding agency.

Data Availability
Data from the Death Certificate Information System and related analyses are available for research purposes under the conditions
foreseen in Law 15/2012.

JMIR AI 2023 | vol. 2 | e40965 | p.560https://ai.jmir.org/2023/1/e40965
(page number not for citation purposes)

Pita Ferreira et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conflicts of Interest
None declared.

Multimedia Appendix 1
Description of the data set and AUTOCOD’s performance in different periods of excess mortality for both International Statistical
Classification of Diseases and Health-Related Problems, 10th Revision, chapters and blocks.
[PDF File (Adobe PDF File), 2631 KB - ai_v2i1e40965_app1.pdf ]

References
1. Graphs and maps. EuroMOMO. URL: https://www.euromomo.eu/graphs-and-maps/ [accessed 2023-04-13]
2. Vestergaard LS, Nielsen J, Richter L, Schmid D, Bustos N, Braeye T, et al. Excess all-cause mortality during the COVID-19

pandemic in Europe - preliminary pooled estimates from the EuroMOMO network, March to April 2020. Euro Surveill
2020 Jul;25(26):2001214 [FREE Full text] [doi: 10.2807/1560-7917.ES.2020.25.26.2001214] [Medline: 32643601]

3. Pinto CS, Anderson RN, Martins H, Marques C, Maia C, Borralho MC. Mortality Information System in Portugal: transition
to e-death certification. Eurohealth (Lond) 2016;22(2):1-53 [FREE Full text] [Medline: 32336930]

4. SICO - eVM. Vigilância de Mortalidade. URL: https://evm.min-saude.pt/#shiny-tab-info_eVM [accessed 2021-11-08]
5. International Statistical Classification of Diseases and Health-Related Problems, 10th Revision, 5th Edition, 2016. World

Health Organization. 2015. URL: https://apps.who.int/iris/handle/10665/246208 [accessed 2021-11-09]
6. Mazick A, Workshop on mortality monitoring in Europe. Monitoring excess mortality for public health action: potential

for a future European network. Euro Surveill 2007 Jan 04;12(1):E070104.1. [Medline: 17370927]
7. Nogueira PJ, Nobre MA, Nicola PJ, Furtado C, Vaz Carneiro A. Excess mortality estimation during the COVID-19 pandemic:

preliminary data from Portugal. Acta Med Port 2020 Jun 01;33(6):376-383. [doi: 10.20344/amp.13928] [Medline: 32343650]
8. Nogueira PJ, Machado A, Rodrigues E, Nunes B, Sousa L, Jacinto M, et al. The new automated daily mortality surveillance

system in Portugal. Euro Surveill 2010 Apr 01;15(13):19529 [FREE Full text] [Medline: 20394709]
9. Kanieff M, Rago G, Minelli G, Lamagni T, Sadicova O, Selb J, et al. The potential for a concerted system for the rapid

monitoring of excess mortality throughout Europe. Euro Surveill 2010 Oct 28;15(43):19697 [FREE Full text] [doi:
10.2807/ese.15.43.19697-en] [Medline: 21087579]

10. Hardelid P, Andrews N, Pebody R. Excess mortality monitoring in England and Wales during the influenza A(H1N1) 2009
pandemic. Epidemiol Infect 2011 Sep;139(9):1431-1439. [doi: 10.1017/S0950268811000410] [Medline: 21439100]

11. Simonsen L, Clarke MJ, Stroup DF, Williamson GD, Arden NH, Cox NJ. A method for timely assessment of
influenza-associated mortality in the United States. Epidemiology 1997 Jul;8(4):390-395. [doi:
10.1097/00001648-199707000-00007] [Medline: 9209852]

12. Duarte FR. Automated classification of causes of mortality [Thesis]. Instituto Superior Técnico. 2017 Sep. URL: http:/
//C:/Users/HP/Downloads/_Thesis___Automated_Classification_of_Causes_of_Mortality%20(1).pdf [accessed 2021-10-26]

13. Duarte F, Martins B, Pinto CS, Silva MJ. Deep neural models for ICD-10 coding of death certificates and autopsy reports
in free-text. J Biomed Inform 2018 Apr;80:64-77 [FREE Full text] [doi: 10.1016/j.jbi.2018.02.011] [Medline: 29496630]

14. Falissard L, Morgand C, Roussel S, Imbaud C, Ghosn W, Bounebache K, et al. A deep artificial neural network-based
model for prediction of underlying cause of death from death certificates: algorithm development and validation. JMIR
Med Inform 2020 Apr 28;8(4):e17125 [FREE Full text] [doi: 10.2196/17125] [Medline: 32343252]

15. Impact of the Implementation of IRIS software for ICD-10 cause of death coding on mortality statistics, England and Wales.
Office of National Statistics. 2014 Aug 8. URL: https://tinyurl.com/42d6hs9y [accessed 2021-11-16]

16. Gergonne B, Mazick A, O’Donnell J, Oza A, Cox B, Wuillaume F, et al. A European algorithm for a common monitoring
of mortality across Europe. EuroMOMO. URL: https://www.euromomo.eu/uploads/pdf/wp7_report.pdf [accessed 2021-10-11]

17. "Westgard rules" and multirules. Westgard QC. URL: https://www.westgard.com/mltirule.htm [accessed 2022-03-21]
18. Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, et al. caret: classification and regression training. The

Comprehensive R Archive Network. URL: https://CRAN.R-project.org/package=caret [accessed 2022-03-20]
19. Kuhn M. Building predictive models in R using the caret package. J Stat Softw 2008;28(5):1-26. [doi: 10.18637/jss.v028.i05]
20. Nourani V, Sayyah Fard M. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation

process at different climatologic regimes. Adv Eng Softw 2012 May;47(1):127-146. [doi: 10.1016/j.advengsoft.2011.12.014]
21. Drost HG. Philentropy: information theory and distance quantification with R. J Open Source Softw 2018 Jun 11;3(26):765.

[doi: 10.21105/joss.00765]
22. R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. 2017.

URL: https://www.R-project.org/ [accessed 2022-04-05]
23. Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, et al. ggplot2: create elegant data visualisations

using the grammar of graphics. The Comprehensive R Archive Network. URL: https://CRAN.R-project.org/package=ggplot2
[accessed 2022-04-05]

24. Wickham H, Vaughan D, Girlich M, Ushey K. tidyr: tidy messy data. The Comprehensive R Archive Network. URL: https:/
/CRAN.R-project.org/package=tidyr [accessed 2022-04-05]

JMIR AI 2023 | vol. 2 | e40965 | p.561https://ai.jmir.org/2023/1/e40965
(page number not for citation purposes)

Pita Ferreira et alJMIR AI

XSL•FO
RenderX

ai_v2i1e40965_app1.pdf
ai_v2i1e40965_app1.pdf
https://www.euromomo.eu/graphs-and-maps/
http://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.26.2001214
http://dx.doi.org/10.2807/1560-7917.ES.2020.25.26.2001214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32643601&dopt=Abstract
https://europepmc.org/abstract/MED/32336930
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32336930&dopt=Abstract
https://evm.min-saude.pt/#shiny-tab-info_eVM
https://apps.who.int/iris/handle/10665/246208
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17370927&dopt=Abstract
http://dx.doi.org/10.20344/amp.13928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32343650&dopt=Abstract
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19529
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20394709&dopt=Abstract
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19697
http://dx.doi.org/10.2807/ese.15.43.19697-en
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21087579&dopt=Abstract
http://dx.doi.org/10.1017/S0950268811000410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21439100&dopt=Abstract
http://dx.doi.org/10.1097/00001648-199707000-00007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9209852&dopt=Abstract
http:///C:/Users/HP/Downloads/_Thesis___Automated_Classification_of_Causes_of_Mortality%20(1).pdf
http:///C:/Users/HP/Downloads/_Thesis___Automated_Classification_of_Causes_of_Mortality%20(1).pdf
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(18)30030-3
http://dx.doi.org/10.1016/j.jbi.2018.02.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29496630&dopt=Abstract
https://medinform.jmir.org/2020/4/e17125/
http://dx.doi.org/10.2196/17125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32343252&dopt=Abstract
https://tinyurl.com/42d6hs9y
https://www.euromomo.eu/uploads/pdf/wp7_report.pdf
https://www.westgard.com/mltirule.htm
https://CRAN.R-project.org/package=caret
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1016/j.advengsoft.2011.12.014
http://dx.doi.org/10.21105/joss.00765
https://www.R-project.org/
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
http://www.w3.org/Style/XSL
http://www.renderx.com/


25. Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source
Softw 2019;4(43):1686. [doi: 10.21105/joss.01686]

26. Passo 1: check-list de auto-avaliação ética. Escola Nacional de Saúde Pública. 2021. URL: https://www.ensp.unl.pt/
wp-content/uploads/2021/08/passo1-doc1-check-list-de-auto-avaliacao-etica-final-2.pdf [accessed 2023-04-21]

27. Falissard L, Morgand C, Ghosn W, Imbaud C, Bounebache K, Rey G. Neural translation and automated recognition of
ICD-10 medical entities from natural language: model development and performance assessment. JMIR Med Inform 2022
Apr 11;10(4):e26353 [FREE Full text] [doi: 10.2196/26353] [Medline: 35404262]

28. Della Mea V, Popescu MH, Roitero K. Underlying cause of death identification from death certificates using reverse coding
to text and a NLP based deep learning approach. Inform Med Unlocked 2020;21:100456. [doi: 10.1016/j.imu.2020.100456]

29. Sonntag D. Assessing the quality of natural language text data. DaimlerChrysler Research and Technology. URL: https:/
/www.dfki.de/~sonntag/text_quality_short.pdf [accessed 2021-11-16]

30. Louis A. Predicting text quality: metrics for content, organization and reader interest. University of Pennsylvania. 2013.
URL: https://repository.upenn.edu/edissertations/665 [accessed 2022-04-18]

31. Wang W, Kreimeyer K, Woo EJ, Ball R, Foster M, Pandey A, et al. A new algorithmic approach for the extraction of
temporal associations from clinical narratives with an application to medical product safety surveillance reports. J Biomed
Inform 2016 Aug;62:78-89 [FREE Full text] [doi: 10.1016/j.jbi.2016.06.006] [Medline: 27327528]

32. Kiefer C. Quality indicators for text data. In: Proceedings of the Workshop on Big (and Small) Data in Science and
Humanities. 2019 Presented at: BTW '19; March 4-8, 2019; Rostock, Germany URL: https://dl.gi.de/server/api/core/
bitstreams/89cb2dc4-8a1d-424d-9bce-6569b6e4ae8e/content [doi: doi:10.18420/btw2019-ws-15]

33. Zhu Y, Sha Y, Wu H, Li M, Hoffman RA, Wang MD. Proposing causal sequence of death by neural machine translation
in public health informatics. IEEE J Biomed Health Inform 2022 Apr;26(4):1422-1431. [doi: 10.1109/jbhi.2022.3163013]

34. Harteloh P, de Bruin K, Kardaun J. The reliability of cause-of-death coding in The Netherlands. Eur J Epidemiol 2010
Aug;25(8):531-538 [FREE Full text] [doi: 10.1007/s10654-010-9445-5] [Medline: 20309611]

35. Schwaighofer A, Quinonero-Candela J, Sugiyama M, Lawrence ND. Dataset Shift in Machine Learning. New York, NY:
Penguin Random House LLC; 2008.

36. Lei n.º 15/2012. Diário da República. URL: https://dre.pt/web/guest/pesquisa/-/search/554389/details/maximized [accessed
2021-10-26]

37. Oakden-Rayner L, Gale W, Bonham TA, Lungren MP, Carneiro G, Bradley AP, et al. Validation and algorithmic audit of
a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic
accuracy study. Lancet Digit Health 2022 May;4(5):e351-e358. [doi: 10.1016/s2589-7500(22)00004-8]

Abbreviations
AI: artificial intelligence
DC: death certificate
DGS: Directorate-General of Health
EuroMOMO: European mortality monitoring project
ICD-10: International Statistical Classification of Diseases and Health-Related Problems, 10th Revision
KLD: Kullback-Leibler divergence
NLP: natural language processing
PPV: positive predictive value
SICO: Death Certificate Information System

Edited by K El Emam; submitted 11.07.22; peer-reviewed by SJC Soerensen , Z Li, MJ Silva; comments to author 29.01.23; revised
version received 21.04.23; accepted 02.06.23; published 22.11.23.

Please cite as:
Pita Ferreira P, Godinho Simões D, Pinto de Carvalho C, Duarte F, Fernandes E, Casaca Carvalho P, Loff JF, Soares AP, Albuquerque
MJ, Pinto-Leite P, Peralta-Santos A
Real-Time Classification of Causes of Death Using AI: Sensitivity Analysis
JMIR AI 2023;2:e40965
URL: https://ai.jmir.org/2023/1/e40965 
doi:10.2196/40965
PMID:

©Patrícia Pita Ferreira, Diogo Godinho Simões, Constança Pinto de Carvalho, Francisco Duarte, Eugénia Fernandes, Pedro
Casaca Carvalho, José Francisco Loff, Ana Paula Soares, Maria João Albuquerque, Pedro Pinto-Leite, André Peralta-Santos.

JMIR AI 2023 | vol. 2 | e40965 | p.562https://ai.jmir.org/2023/1/e40965
(page number not for citation purposes)

Pita Ferreira et alJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.21105/joss.01686
https://www.ensp.unl.pt/wp-content/uploads/2021/08/passo1-doc1-check-list-de-auto-avaliacao-etica-final-2.pdf
https://www.ensp.unl.pt/wp-content/uploads/2021/08/passo1-doc1-check-list-de-auto-avaliacao-etica-final-2.pdf
https://medinform.jmir.org/2022/4/e26353/
http://dx.doi.org/10.2196/26353
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35404262&dopt=Abstract
http://dx.doi.org/10.1016/j.imu.2020.100456
https://www.dfki.de/~sonntag/text_quality_short.pdf
https://www.dfki.de/~sonntag/text_quality_short.pdf
https://repository.upenn.edu/edissertations/665
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(16)30049-1
http://dx.doi.org/10.1016/j.jbi.2016.06.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27327528&dopt=Abstract
https://dl.gi.de/server/api/core/bitstreams/89cb2dc4-8a1d-424d-9bce-6569b6e4ae8e/content
https://dl.gi.de/server/api/core/bitstreams/89cb2dc4-8a1d-424d-9bce-6569b6e4ae8e/content
http://dx.doi.org/doi:10.18420/btw2019-ws-15
http://dx.doi.org/10.1109/jbhi.2022.3163013
https://core.ac.uk/reader/190353888?utm_source=linkout
http://dx.doi.org/10.1007/s10654-010-9445-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20309611&dopt=Abstract
https://dre.pt/web/guest/pesquisa/-/search/554389/details/maximized
http://dx.doi.org/10.1016/s2589-7500(22)00004-8
https://ai.jmir.org/2023/1/e40965
http://dx.doi.org/10.2196/40965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Originally published in JMIR AI (https://ai.jmir.org), 22.11.2023. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work, first published in JMIR AI, is properly cited. The
complete bibliographic information, a link to the original publication on https://www.ai.jmir.org/, as well as this copyright and
license information must be included.

JMIR AI 2023 | vol. 2 | e40965 | p.563https://ai.jmir.org/2023/1/e40965
(page number not for citation purposes)

Pita Ferreira et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Determinants of Intravenous Infusion Longevity and Infusion
Failure via a Nonlinear Model Analysis of Smart Pump Event Logs:
Retrospective Study

Arash Kia1*, PhD; James Waterson2*, BA, MMedEd, MHEc; Norma Bargary1*, PhD; Stuart Rolt3*, BA; Kevin Burke1*,

PhD; Jeremy Robertson4*, BSc, BEng; Samuel Garcia5*, BHSc; Alessio Benavoli6*, PhD; David Bergström7, PhD
1Department of Mathematics & Statistics, University of Limerick, Limerick, Ireland
2Medical Affairs, Medication Management Solutions, Becton Dickinson, Dubai, United Arab Emirates
3Medical Affairs, International Infusion Solutions, Becton Dickinson, Winnersh, United Kingdom
4Systems Engineering, International Infusion Solutions, Becton Dickinson, Limerick, Ireland
5Medical Affairs, Medication Management Solutions, Becton Dickinson, Seville, Spain
6School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
7Research and Development, Infusion Acute Care, Becton Dickinson, Limerick, Ireland
*these authors contributed equally

Corresponding Author:
James Waterson, BA, MMedEd, MHEc
Medical Affairs
Medication Management Solutions, Becton Dickinson
11F Blue Bay Tower
Business Bay
Dubai, 25229
United Arab Emirates
Phone: 971 566035154
Email: james.waterson@bd.com

Abstract

Background: Infusion failure may have severe consequences for patients receiving critical, short–half-life infusions. Continued
interruptions to infusions can lead to subtherapeutic therapy.

Objective: This study aims to identify and rank determinants of the longevity of continuous infusions administered through
syringe drivers, using nonlinear predictive models. Additionally, this study aims to evaluate key factors influencing infusion
longevity and develop and test a model for predicting the likelihood of achieving successful infusion longevity.

Methods: Data were extracted from the event logs of smart pumps containing information on care profiles, medication types
and concentrations, occlusion alarm settings, and the final infusion cessation cause. These data were then used to fit 5 nonlinear
models and evaluate the best explanatory model.

Results: Random forest was the best-fit predictor, with an F1-score of 80.42, compared to 5 other models (mean F1-score 75.06;
range 67.48-79.63). When applied to infusion data in an individual syringe driver data set, the predictor model found that the
final medication concentration and medication type were of less significance to infusion longevity compared to the rate and care
unit. For low-rate infusions, rates ranging from 2 to 2.8 mL/hr performed best for achieving a balance between infusion longevity
and fluid load per infusion, with an occlusion versus no-occlusion ratio of 0.553. Rates between 0.8 and 1.2 mL/hr exhibited the
poorest performance with a ratio of 1.604. Higher rates, up to 4 mL/hr, performed better in terms of occlusion versus no-occlusion
ratios.

Conclusions: This study provides clinicians with insights into the specific types of infusion that warrant more intense observation
or proactive management of intravenous access; additionally, it can offer valuable information regarding the average duration of
uninterrupted infusions that can be expected in these care areas. Optimizing rate settings to improve infusion longevity for
continuous infusions, achieved through compounding to create customized concentrations for individual patients, may be possible
in light of the study’s outcomes. The study also highlights the potential of machine learning nonlinear models in predicting
outcomes and life spans of specific therapies delivered via medical devices.
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Introduction

Overview
Critical care areas require frequent administration of high-alert,
critical, short–half-life infusions, intravenous nutrition, sedation
and analgesia, as well as other infusions that require rigorous
maintenance for continuous delivery. Outside of the intensive
care unit (ICU), approximately 60% of all patients will receive
an intravenous infusion during their stay [1].

Abrupt and unexpected infusion failure may have severe
consequences for patients if the medications are critical, with
short–half-life infusions [2]. Continued interruptions to infusions
and infusions not running “to time” can also lead to
subtherapeutic management. For example, patients receiving
antibiotics who require therapeutic drug monitoring based on
metrics like area under the concentration-time curve and trough
levels often need blood draws before and after administration.
The documented time of administration and subsequent blood
draws are commonly based on the prescribed regimen and not
on the actual completion of the infusion [3,4]. Infusion
downstream and upstream occlusion alarms, when substantial,
may also contribute to alarm fatigue among clinical staff [5,6].
One extensive study showed that venous access occlusion alarms
are responsible for 55% of all intravenous infusion pump alarms
in neonatal ICUs [2].

The issue of infusion failure and its determinants has not been
comprehensively studied in the literature. Existing in vivo
studies have focused on mechanical causes at the vascular access
device site [7] and incompatibility issues, either between
medications [8] or between medications and administration line
materials [9].

A vascular access device (VAD) is defined by the Infusion
Nurses Society of the United States as a “catheter, tube, or
device inserted into the vascular system, including veins,
arteries, and bone marrow” [10]. Definitions for VAD failure
include situations where the catheter stops working safely before
its intended dwell time or before the traditional 72- to 96-hour
dwell time limit [11,12]. Recent guidelines from the Centers
for Disease Control and Prevention state that peripheral VADs
do not need to be electively resited “more frequently than every
72 to 96 hours” [13]. Using these definitions, the VAD failure
rate has been suggested to be as high as 63%, with mean and
median values of 46% and 43%, respectively, across studies
[14].

The VAD failure rate has a fundamental relationship with the
administration method, with gravity administration having a
VAD failure rate twice that of even simple rate control infusion
devices [15,16]. Modern infusion devices with increased
accuracy for the detection of downstream occlusion issues would
be expected to reduce the VAD failure rate further. The

management of vascular access and infusions also results in a
substantial nursing workload. The Therapeutic Intervention
Scoring System-28 allocates 3 points to “multiple intravenous
medications” (ie, more than 1 medication, “either as single shots
or continuously”), 3 points to any “single vasoactive
medication,” 4 points in the case of “multiple vasoactive
medications, regardless of types and doses,” and 2 points for
the care of a “central venous line.” Therefore, continuous
infusions of critical, short–half-life intravenous medications via
a central VAD could consume 5 to 9 points from a maximum
workload of 46 points that can be undertaken by 1 nurse [17],
equating to 10%-19% of a critical care nurse’s total activity
time. In a study on nursing workload in ICUs with an average
length of stay of 7.7 days, it was found that the mean score
based on the Therapeutic Intervention Scoring System-28 was
23 (range 14-32 points) and that nursing time constituted the
largest economic cost for ICUs [18].

A 2019 study [19] indicated an “excessive nursing workload”
across ICUs that was significantly associated with quality of
care. Reducing the number of interventions nurses need to
undertake to avoid infusion interruption and to increase infusion
longevity would be expected to reduce the baseline of nursing
workload in intensive care, high-dependency units, and
lower-acuity care areas.

In a 2021 study [20] on the impact of infusion alerts and alarms
on nursing workflow, alarms and alerts from both intermittent
and continuous infusions were analyzed. Alerts, such as those
generated by the Dose Error Reduction System due to dose or
rate selection by the clinician outside of the defined limits for
individual medications, do not interrupt infusions. The study
deemed alerts and alarms as “undesirable error states” and
described specific conditions that would interrupt infusions,
such as flow occlusion and air-in-line alarms.

In our study, we developed working definitions for infusion
longevity, and conversely, infusion failure as follows: infusion
longevity may be described as the length of time during which
a continuous infusion runs without an alarm state causing
unexpected and unplanned interruption to the infusion and
comes to an end as a planned cessation. Infusion failure may
be described as an infusion that does not reach a planned
cessation without clinician interventions to manage unexpected
and unplanned interruptions.

Objectives
This study aimed to identify and rank determinants of the
longevity of continuous infusions delivered by syringe drivers
through the use of nonlinear predictive models to evaluate key
factors, and subsequently, develop and test a model for
predicting the likelihood of successful infusion longevity; this
also involves determining the best predictive model for future
use. We expected the analysis to show therapeutic practices and
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pump management processes that may assist with infusion
longevity. Additionally, we aimed to determine which
medications are more likely to cause infusion failure and may
warrant more intense observation or access management. We
also sought to identify critical care units in which infusion
failure is more likely to occur and to assess the likelihood of
uninterrupted infusion that can be expected in these care areas.

Methods

Ethical Considerations
We collected infusion data from smart syringe pumps of type
CareFusion/BD Alaris Plus CC from different hospitals in Spain.
These data are part of a larger data aggregation for the European
region, which is held as a repository as part of the obligation
for medical device manufacturers to maintain vigilant
postmarket surveillance programs for regulatory and quality
purposes.

These data are collected passively as part of the standard
function of infusion pumps, capturing all events including alerts,
alarms, fault conditions, and programming of all infusions. No
patient data are recorded. As these data are retrospective, and

therefore, cannot influence clinician decision-making, do not
record any direct information related to individual patient
therapy, and are detached from any patient or clinician
information, there was no requirement for formal ethics
approval. The Medication Management Solutions Medical
Affairs Department of the pumps’ manufacturer gave clearance
for using these data in this study. The question of any conflict
of interest was also addressed at this stage. None was found, as
the variables studied are universal to “smart” infusion pumps
and are not exclusive to the pumps studied.

Procedure
The data set was obtained from 384 pumps and contained
information about various variables. These variables include
the profile, indicating the hospital care unit or ward; medication
name or type; infusion rate; medication concentration; syringe
brand and syringe size; occlusion setting, indicating the pressure
threshold at which the pump alarms for an occlusion; and a
configured category label for a dependent variable, indicating
if the infusion ended by an unexpected and unplanned occlusion
or as a planned cessation. Table 1 shows the values for each
categorical variable in our data set.

Table 1. Values for different categorical variables in “Hospitals infusion data set: Spain.”

Skewness statisticsVariable

158,620Infusions

423Medications

42Profiles

11Syringe brands

80,764Occlusions

We used 5 nonlinear models to fit the data and evaluated them
with test data to find the best-fit model. These nonlinear models
were the following:

• Random forest: a tree-based ensemble learning method that
combines multiple decision trees to make predictions. It
has been widely used in medical applications due to its
ability to handle complex data sets with high performance
[21,22].

• XGBoost: a gradient boosting algorithm that uses a series
of weak decision trees so that each tree improves the
prediction of the previous one. It is known for its speed and
ability to handle large data sets [23].

• K-nearest neighbor (KNN): a nonlinear model that makes
predictions based on the closest neighbors to the data point.
It is often used for classification and regression problems
[24].

• Naive Bayes: a probabilistic algorithm that makes
predictions based on Bayes’ theorem. It is commonly used
for many applications, including medical data sets. The
algorithm’s naive assumption is that there is independence
among input variables of the model [25].

• Support vector machine (SVM): a kernel-based algorithm
that separates data points by finding the best hyperplane
that maximizes the margin between classes. It is often used
for classification and regression problems [26].

Choosing the best machine learning model to be used in a study
among the hundreds of different available models should be
based on their characteristics and their previous success in the
field. We chose 2 different ensemble models with extreme
gradient boosting along with the random forest model. These
models differ in use, and they allowed us to combine multiple
models to reach a result. These are well-known models that can
be used as delegates of ensemble learning methods. We used
KNN as a delegate for nonparametric instance-based learning
models. SVM was used as the most commonly used
kernel-based learning model. Naive Bayes was tested to check
a Bayesian learning model with an independence assumption
between the predictors. This set of models covered a large area
of different learning natures, and the ideal model selection was
made based on finding a global optimum. Undertaking a
trial-and-error procedure among hundreds of models with
infinite parameter selection was beyond the scope of our
resources, but selecting a starting set of different models that
represented different learning algorithms gave us a diverse and
comprehensive starting point.

SVM’s kernel is a radial basis function with the regularization
parameter set to 1. XGBoost uses 100 estimators with both the
learning rate and maximum depth set to 1. Our random forest
uses 100 decision tree estimators, and it uses the Gini index
function as its criterion to measure the split quality in each tree.
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The nearest neighbor (K) was set to 3 for the KNN model. The
Naive Bayes model used a Gaussian function. The parameters
were tested on a validation set of 20% of the entire data set
before running the final output of sample testing.

We then evaluated the performance of each model using an
F1-score and a 5-fold cross validation. F1-score is a widely used
performance metric in classification tasks that measures the
balance between precision and recall. It is the harmonic mean
of precision and recall, which means that it takes into account
both false positives and false negatives, giving equal weight to
both [27]. The F1-score ranges from 0 to 1, where a score of 1
represents perfect precision and recall, and a score of 0
represents poor performance.

The formula for the F1-score is as follows:

In this formula, precision is the number of true positives divided
by the sum of true positives and false positives, and recall is
the number of true positives divided by the sum of true positives
and false negatives.

The F1-score was introduced by Van Rijsbergen [28] in 1979
as a way to evaluate the effectiveness of information retrieval
systems; since then, it has been widely adopted in various fields,
including natural language processing, machine learning, and

computer vision. F1-score is particularly useful when the data
set has an imbalance, implying a significant difference in the
number of instances for each class; it takes into account both
precision and recall, which can be affected by imbalanced data
sets.

The target variable was binary, with an imbalance ratio (IR) of
1.05. The IR is defined as the ratio of the majority class to the
minority class and is the alternative to skewness in binary
classifiers. As a rule of thumb, all IRs less than 1.5 are
considered to represent balanced data sets [29,30]. As for the
skewness of predictor variables, they can only affect the
performance of the models and not the selection of the F1-score
as an evaluation method, as the F1-score is calculated on the
target variable and encompasses both precision and recall.
Variables such as profile, medication, and syringe brand are
categorical, and variables like infusion rate, concentration dose,
occlusion setting, and syringe size are continuous. Therefore,
we chose to limit ourselves to calculating only the Pearson
skewness ratio statistics for continuous (numerical) variables
(Table 2). The formula used to calculate the skewness ratio is
as follows:

Skewness ratio = (3(mean(x) - median(x))) ⁄ (standard
deviation(x))

The skewness ratios showed that there is no high skewness
present in the predictor variables.

Table 2. Skewness statistics with imbalance ratios for the numerical data. On the target variable, the data set had an imbalance ratio of 1.05.

Skewness statisticsVariable

Skewness ratioMedianMean

1.052.06.28Infusion rate

1.222.013.11Concentration dose

–0.275049.67Syringe size

–0.27200175.86Occlusion setting

In this study, we set a default threshold of 0.5 to transform
predicted probabilities into binary class labels. This approach,
commonly used in similar studies, balances precision and recall.
Although not a parameter within the models, this threshold
selection is an essential postprocessing step that substantially
influences categorizing instances as positive or negative.

The efficacy of our selected 0.5 thresholds is substantiated by
the balanced precision and recall rates observed in our results.
This aligns effectively with our research objectives. We
understand that different applications may require different
thresholds, but we suggest that our choice of 0.5 is appropriate
due to its consistent performance across various models and
data sets. As part of our future endeavors, we are keen to
investigate dynamic threshold selections. We recognize that
this could significantly influence our study’s outcomes.

The best-performing model was chosen as the final analysis
model. We also calculated the F1-score for a model that
consistently resulted in the majority class in the data set, which
is the occlusion class in our data set. We called this model the
“majority voting model.”

In the Results section the selection of random forest as the
best-fit model for our data is explained. These results derive
from the 5-fold cross-validation technique, where we divided
the data set into 5 equal subsets. With each test, 1 subset was
run as the test set while we attempted to fit our model with the
other 4 subsets as the training set. The 5-fold cross-validation
technique is a good modelling practice because it helps to
mitigate the problem of overfitting and provides a more accurate
estimation of model performance. It is a commonly used
approach because it balances the trade-off between the number
of folds and the variance in the estimated performance metrics
[25].

Once we identified random forest as the best-fit model, we used
it to calculate each variable’s importance to infusion longevity
and to identify the most important predictors of unexpected
infusion failure. Variable importance measures the contribution
of each variable to the model’s overall fitness power. Random
forest is a popular machine learning algorithm that combines
multiple decision trees to make more accurate predictions. One
important aspect of random forest is the calculation of feature
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importance, which helps to identify which features have the
most impact on the prediction.

Feature importance is calculated by analyzing the contribution
of each variable in the decision-making process of each
individual tree within the random forest model. The importance
of a feature is determined by calculating the total reduction of
the impurity measure achieved by splitting on that variable
across all trees in the forest [21]. In other words, variables that
are able to create the largest reduction in impurity (eg, Gini
index or entropy) are considered the most important variables.

The importance scores of each variable are then normalized to
ensure that they add up to 1, so they can be compared to one
another. This enables researchers to identify which features are
most relevant for predicting the target variable or model fitness.

In summary, variable importance in random forest is calculated
by measuring the impact of each variable in the decision-making
process of each individual tree and then aggregating these values
across all trees in the forest. The resulting scores can help
researchers to identify the most important features for predicting
the target variable [31].

Results

As noted above, random forest was the best-fit model for the
data set (Table 3).

As random forest outperformed all other models and had the
highest F1-score, it was selected to predict infusion occlusion
in smart syringe infusion pumps of type CC in “Hospitals
infusion data set: Spain.” The results are provided in Figure 1.

Table 3. The F1-score of all the selected models’ fits to the infusion data set. The results show that random forest was the best-fit model for our data.

F1-scoreModel

67.48Majority voting model

79.63Extreme gradient boosting

80.42Random forest

77.42Support vector machine

75.04Naive Bayes

75.73K-nearest neighbor

Figure 1. Variable importance in infusion occlusion prediction for “Hospitals infusion data set: Spain” for CareFusion/BD Alaris Plus syringe pumps.

Figure 2A-I shows the total number of infusions with and
without occlusions for binary variables, which are essentially
bound to the treatment process or location and are beyond the
direct control or manipulation of clinicians. The application of
profiles differs widely among end-user facilities dependent on
their structure, risk strategy, and the services they provide. The

nomenclature is “free text” and is also language dependent. For
example, the term “anesthesia rea” seen here would usually
pertain to resuscitation area usage and the operating room in
several European languages. The profile “HUCA 4.5 6.7
VP+CC” may mean that the hospital has a mix of different pump
types from different manufacturers as particular pumps are
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mentioned in the profile title. Generally, profiles are given care
units, such as neonatal intensive care, adult intensive care,
pediatric oncology, and labor and delivery. Therefore, although
there is a strong degree of harmonization across facilities and
patient types within profiles, as with all multicenter data, there
may be differences in acuity; an ICU in a university-level facility
will likely have far higher patient acuity levels than a general
tertiary care unit. This said, general patient characteristics by
profile, in terms of weight, medication concentrations used, and
other infusion parameters, may reasonably be expected to be
uniform across profiles pertaining to each discipline [2].

Figure 3 illustrates the total number of infusions with and
without occlusions across varying values of important nonbinary
variables, which are within the control of clinicians or clinical
teams.

Figure 4 shows a more detailed breakdown of continuous
low-rate infusions by rate. These low-rate infusions are of
particular interest and importance clinically, as they are
commonly critical short–half-life medication infusions, which
are titrated to effect, and their low-rate infusions can cause a
longer time to alarm, leading to reduced detectability of “no
delivery” states.

Figure 2. Total number of infusions with and without occlusion for binary variables, which are essentially bound to the treatment process or location
and beyond the direct control or manipulation of clinicians. (A) HUCA 4.5 6.7 VP+CC (profile). (B) Insulin 1 IU/mLl (medication). (C) Omeprazole
(medication). (D) Fentanil (medication). (E). UCI Hosp Gral (profile). (F) Anesthesia Rea (profile). (G) Fentanil 1.2 Mg (medication). (H) UCI trauma
(profile). (I) Remifentanil (medication).
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Figure 3. Occlusion versus no occlusion in nonbinary variables of (A) occlusion threshold (mm Hg), (B) infusion rate (mL/hr), and (C) concentration
(units/mL). these variables are within the control of clinicians or clinical teams. Concentration units pertain to several units in the International System
of Units per ml (eg, mg, mcg, ng, and IU). Blue indicates no occlusion (no infusion failure) and orange indicates occlusion (infusion failure).

Figure 4. Low-flow infusion rates versus the number of infusions with occlusion (unexpected infusion interruption) and no occlusion (planned infusion
cessation). Blue indicates no occlusion and orange indicates occlusion.

Discussion

Study Limitations
Data were only collected from hospitals in Spain, though the
investigational method could be applied to other regions as the
software deployed in the smart pumps is available worldwide
and the structure and deployment of the medication library from

which the data were gathered has been found to be very similar
in a previous wide-ranging study of event logs [2].

The study was limited to one type of syringe pump, the
CareFusion/BD Alaris CC pump. Similarly, the investigational
model can be applied to other pumps, as features like profile,
syringe types and brands, medication libraries, and occlusion
alarm pressure settings are considered to be universal across
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syringe pumps. However, one caveat is that the devices in this
study have a fairly unique feature, that of in-line pressure
monitoring, where the vein pressure of the patient at the point
of the VAD is transmitted directly to a dedicated pressure sensor
situated downstream of the syringe and in direct line connection
to the VAD. The occlusion alarm setting in this device can be
set as low as 15 mm Hg above the detected vein pressure, though
commonly, this is set at 30 mm Hg above the vein pressure in
neonatal care, and some units use an “auto-offset” feature for
automatically setting the alarm after 15 minutes of infusion
[32]. Generally, syringe driver infusion pumps without in-line
pressure monitoring transmit these data from the drive head
behind the syringe, which involves added variables of
medication viscosity, syringe friction, and a minimum level of
pressure detection, which is rarely below 85 mm Hg.

The question of the type of vascular access of each patient in
the study was also a limitation, and whether the VAD was
central, peripheral, or umbilical in the case of neonates or a
“long line,” such as peripherally inserted central catheters, could
not be answered given the data available. However, some
inferences could be made from clinically acceptable maximum
concentrations for peripheral administration from facility
protocols. That being said, evidence is accruing that the
concentration of administered individual medications
(concentration was not identified as a substantial determinant
in our study) is not per se as important as the contact time
between medications when multiple infusions pass through a
single VAD, along with the subsequent interactions between
them. [7,8] At low-flow rates, this contact time is extended,
with more time for reactions between medications and
subsequent precipitate production. In-line filtration to protect
the VAD from precipitate occlusion is emerging from the
available evidence as an important factor in determining VAD
longevity beyond that of VAD type and medication
concentration [7,8].

Including more variables to the information directly available
from smart pumps in the analysis, such as direct information
about the VAD type and other infusions running via one VAD,
may provide a more comprehensive understanding of the in
vivo factors that influence infusion longevity.

Principal Findings
The occlusion alarm setting threshold was the most important
variable for infusion longevity, and beyond 2 individual
medications, the infusion rate was the next most important
variable. The data drill-down (Figure 3) and ratio ranking
(Tables 4 and 5) show that lower ratios of occlusion to no
occlusion were associated with higher rates of infusion, with
the rate bracket of >3.6-≤4.0 mL/hr having the best ratio at
0.311. However, the bulk of infusions in the study run at rates
far lower than that, with 60.11% running at below 2.0 mL/hr.
This is understandable given the fluid balance (or more
correctly, the fluid restriction requirements) of medication
infusions in critical care, particularly in neonatology and
pediatrics. Due to maintaining critical care patients’ nutrition
as well as managing renal failure and fluid balance, it is not
uncommon to use higher concentration infusions to deliver
continuous infusion doses with smaller volumes.

Considering the findings of this study and in vitro studies of
infusion startup delay and infusion “no-flow” interruptions [33],
as well as the influence of administration line compliance [34],
filters [35], the interplay between multiple infusions [36], and
resistance from backcheck and antisyphon valves [35], the risks
of protracted and clinically important nondelivery and occlusion
are likely at low rates, particularly below rates of 0.5 mL/hr
[35]. The study’s findings suggest a balance between the need
to restrict fluid delivery to patients and maintaining the integrity
and longevity of infusion might be best achieved with a rate
ranging from >2.0 to ≤2.4 mL/hr (ratio 0.985), although the
next higher rate of >2.4-≤2.8 mL/hr would yield a far better
ratio of 0.553, albeit with some compromise in fluid restriction
control.

Table 4. Ratios of occlusion versus no-occlusion infusions at investigated flow rates (N=131,654).

>4.4-
≤4.8

>4.0-
≤4.4

>3.6-
≤4.0

>3.2-
≤3.6

>2.8-
≤3.2

>2.4-
≤2.8

>2.0-
≤2.4

>1.6-
≤2.0

>1.2-
≤1.6

>0.8-
≤1.2

>0.4-
≤08

0.0-
≤0.4

Rate (mL/hr)

0.3870.5470.3110.4880.6910.5530.9850.7861.1691.6041.2970.859Ratio (occlusion vs no
occlusion)

2423
(72.1)

4452
(64.6)

2189
(76.3)

2340
(67.2)

4887
(59.1)

3909
(64.4)

10,868
(50.4)

4266
(56.0)

7686
(46.1)

10,759
(38.4)

8741
(43.5)

3635
(53.8)

Occlusion, n (%)

938
(27.9)

2437
(35.4)

680
(23.7)

1142
(32.8)

3376
(40.9)

2160
(35.6)

10,708
(49.6)

3352
(44.0)

8986
(53.9)

17,261
(61.6)

11,338
(56.5)

3121
(46.2)

No occlusion, n (%)

3361
(2.55)

6889
(5.23)

2869
(2.18)

3482
(2.64)

8263
(6.28)

6069
(4.61)

21,576
(16.39)

7618
(5.79)

16,672
(12.66)

28,020
(21.28)

20,079
(15.25)

6756
(5.13)

Total infusions studied,
n (%)
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Table 5. Ratios of occlusion versus no-occlusion infusions, ranked by the best-performing rate according to the ratio (N=131,654). The possible optimal
rate ranges are 2.4-2.8 mL/hr (0.553) and 2.0-2.4 mL/hr (0.985).

121110987654321Ranking by ratio

>0.8-
≤1.2

>0.4-
≤08

>1.2-
≤1.6

>2.0-
≤2.4

0.0-
≤0.4

>1.6-
≤2.0

>2.8-
≤3.2

>2.4-
≤2.8

>4.0-
≤4.4

>3.2-
≤3.6

>4.4-
≤4.8

>3.6-
≤4.0

Rate (mL/hr)

1.6041.2971.1690.9850.8590.7860.6910.5530.5470.4880.3870.311Ratio (occlusion vs no
occlusion)

28,020
(21.28)

20,079
(15.25)

16,672
(12.66)

21,576
(16.39)

6756
(5.13)

7618
(5.79)

8263
(6.28)

6069
(4.61)

6889
(5.23)

3482
(2.64)

3361
(2.55)

2869
(2.18)

Total infusions studied,
n (%)

Therefore, we suggest that, when feasible, some relaxation of
fluid restriction and medication concentrations be considered
to deliver infusions at rates between 2.0 and 2.8 mL/hr and
higher, if at all possible, for continuous infusions. The
improvement in the occlusion ratio may be related to the simple
volume of medication moving through the VAD and “flushing”
it more effectively than very low-rate infusions can achieve, or
it could be attributed to the previously mentioned concept of
reduced contact time between medications being administered
through a single VAD at higher rates. It is possible to target this
flow rate range even through wider titration ranges by
manipulation of the final concentration of medications. The
suggested rate range would also assist with the clinical
detectability of nondelivery [33,35].

In Figure 2A-I, binary variables linked to the treatment process
or unit type are identified. These variables are essentially beyond
the direct control or manipulation of clinicians. However, this
information remains valuable as a “high-risk” indicator for
individual medications that may benefit from concentration

manipulation to facilitate higher delivery rates, closer
observation of the infusion, or central VAD delivery and
exclusive-line administration rather than peripheral
administration along with multiple infusions. A multidisciplinary
approach to the management of such high-risk medications is
advocated.

Conclusions
These findings have important implications for health care
professionals who use smart infusion pumps to deliver
medications to patients. The study may assist health care
professionals to make informed decisions regarding the
medication to be administered, concentrations to be used, and
infusion duration or rate, to improve infusion longevity, reduce
the risk of unplanned infusion interruption, and mitigate risks
to the VAD.

The study also highlights the potential of machine learning
nonlinear models to predict infusion occlusions in smart infusion
pumps. The process of selecting the most appropriate model
could be applied to studies involving other medical devices.
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Abstract

Background: Machine learning (ML) can offer greater precision and sensitivity in predicting Medicare patient end of life and
potential need for palliative services compared to provider recommendations alone. However, earlier ML research on older
community dwelling Medicare beneficiaries has provided insufficient exploration of key model feature impacts and the role of
the social determinants of health.

Objective: This study describes the development of a binary classification ML model predicting 1-year mortality among
Medicare Advantage plan members aged ≥65 years (N=318,774) and further examines the top features of the predictive model.

Methods: A light gradient-boosted trees model configuration was selected based on 5-fold cross-validation. The model was
trained with 80% of cases (n=255,020) using randomized feature generation periods, with 20% (n=63,754) reserved as a holdout
for validation. The final algorithm used 907 feature inputs extracted primarily from claims and administrative data capturing
patient diagnoses, service utilization, demographics, and census tract–based social determinants index measures.

Results: The total sample had an actual mortality prevalence of 3.9% in the 2018 outcome period. The final model correctly
predicted 44.2% of patient expirations among the top 1% of highest risk members (AUC=0.84; 95% CI 0.83-0.85) versus 24.0%
predicted by the model iteration using only age, gender, and select high-risk utilization features (AUC=0.74; 95% CI 0.73-0.74).
The most important algorithm features included patient demographics, diagnoses, pharmacy utilization, mean costs, and certain
social determinants of health.

Conclusions: The final ML model better predicts Medicare Advantage member end of life using a variety of routinely collected
data and supports earlier patient identification for palliative care.

(JMIR AI 2023;2:e42253)   doi:10.2196/42253

KEYWORDS

palliative; palliative care; machine learning; social determinants; Medicare Advantage; Medicare; predict; algorithm; mortality;
older adult

Introduction

Background
Approximately 43% of all Medicare beneficiaries are enrolled
in Medicare Advantage plans, totaling 24.4 million Americans
as of July 2020 [1]. As the Medicare Advantage population
lives longer with more chronic conditions, the need for palliative

services and serious illness care management becomes
increasingly important [2]. Palliative services in Medicare
Advantage refer to (nonhospice) primary, specialty, and
supportive care services for individuals with serious advanced
illness and complex chronic conditions that are typically
delivered in the patient’s home or in a clinical outpatient setting.
Palliative care not only may provide patients a better quality of
life but also can reduce costs by enabling avoidance of
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unnecessary hospitalizations, diagnostic and treatment
interventions, and intensive and emergency department care
[3-6].

Although the need for and engagement with palliative care
among older adults and Medicare beneficiaries is growing, these
valuable services are often underutilized [7-9]. One major cause
of lower uptake involves unreliability in provider identification
of patients who are appropriate for palliative care. Research
shows a clinician’s intuition alone is not the most effective
method for recognizing individuals in general practice who
could benefit from palliative services [10-12]. Standardized
screening tools that rely primarily on diagnostic criteria, medical
record information, and patient-reported needs can promote
better reliability in clinician identification of palliative patients
[13-20]. However, providers and health plans are increasingly
leveraging powerful, data-driven machine learning (ML)
techniques to help recognize potential candidates for palliative
care earlier and more objectively.

Machine Learning for Palliative Care Identification
in Medicare
ML is being adopted across hospital and community-based
health care settings as a mechanism to guide early identification
of older adults in need of palliative services. ML algorithms
attain superior predictive performance from using one or more
sources of big data for model training, such as routinely
collected medical service claims, electronic medical records,
and clinical assessment outcomes [21]. The likelihood of patient
mortality within a certain time frame is commonly used as the
predictive outcome for ML models intending to identify
potential palliative service candidates, because patients who are
approaching the end of life are most likely to need and benefit
from palliative care [22]. Using ML to identify patients for
palliative care not only saves clinicians valuable time but may
also improve the efficiency of service delivery to those at highest
risk. Early models such as the Charleston Comorbidities Index
and Elixhauser score incorporated claims and administrative
data to predict mortality of hospitalized older patients [23,24].
Since then, ML models trained using big data from claims and
electronic medical records of Medicare beneficiaries (aged ≥65
years) in nonhospital settings have achieved greater predictive
performance, with the area under the receiver operating
characteristic curve (AUC) values ranging between 0.79 and
0.97 [25-28]. The predictive power of ML for the early
identification of palliative care in nonhospitalized Medicare
patients can surpass that of clinical screening tools developed
for similar purposes [14,16].

Previous research on ML mortality models for earlier palliative
care identification in the Medicare population has mainly
focused on optimizing and comparing the performance of
different model configurations [6,25-29]. That said, evaluating
critical features of ML mortality models is also necessary to
understand performance variation among different model
configurations relative to the patient population, health care
setting, and type of data analyzed. Failing to report on the
important feature inputs gives inadequate transparency about
how the algorithm reached its stated outcomes based on the
sources of training data [30]. ML model feature impact reporting

appears to be more common in studies analyzing hospitalized
Medicare patients [31-33] but has been largely neglected in ML
studies that focus on nonhospitalized Medicare beneficiaries
[25-28]. Moreover, such prior studies have tapped into various
data sources including medical claims, electronic medical
records, patient demographics, and clinical assessment
information for model training and validation [6,25-29]. The
extent to which other, nonmedicalized data are incorporated
into these ML mortality models remains unclear, in part due to
the lack of discussion around feature impacts. For example,
social determinants (eg, socioeconomic status, environmental
conditions) are known to influence the mortality and health
outcomes of older adults [34,35]. However, previous ML studies
in the Medicare population do not clearly indicate if nonmedical
data, like measures of the social determinants of health (SDOH),
were incorporated as algorithm features [6,25-29,31-33,36].

The important individual features of ML mortality models used
to identify palliative care need among nonhospitalized older
Medicare patients remain underreported in the current research
[25-28]. In an aim to fill this knowledge gap, this study describes
the important feature outcomes and performance of a ML
algorithm that was developed and validated to predict 1-year
mortality of older US adults (aged ≥65 years) enrolled in
Medicare Advantage plans. Our predictive binary classification
model was routinely supplied with data extracted from medical
claims as well as electronic health records (EHRs), patient
demographic information, and location-specific index measures
of SDOH for purposes of identifying Medicare Advantage plan
members who may need to connect to palliative resources.
Through this study, we investigated the following objectives:

• To what extent is the performance of a baseline ML model
(demographics-based with high-risk indicators) predicting
1-year mortality of Medicare Advantage plan members
(aged ≥65 years) improved by adding features capturing
patient service utilization, diagnoses, and SDOH?

• What individual features are of top importance in the final
ML model iteration?

Methods

Model Development
An ML algorithm predicting 1-year mortality among Medicare
Advantage plan members was developed by the team at Cigna,
a large US commercial health benefits company. The aim was
to create a prognostic ML model of mortality risk that could
enhance the process of identifying patients for palliative care,
with the long-term goal of increasing engagement with
community-based, nonhospice palliative services among adults
(aged ≥65 years) in Medicare Advantage plans for whom it
would be appropriate. Increasing utilization of palliative services
can reduce unnecessary high-cost hospital care and improve
patient quality of life. An overview of the health plan’s process
for identifying and connecting with potential palliative care
patients is outlined in Multimedia Appendix 1.

The retrospective data used in the analysis were internally
sourced from Cigna’s proprietary administrative records and
claims database. These standard data elements are routinely
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collected to fulfill the operational purposes of the health benefits
company; claims and administrative data were only extracted
for the purposes of developing the ML algorithm post facto.
Security measures for personal health information require all
data be completely de-identified by a separate internal team
prior to any secondary data analysis to protect member
confidentiality. Due to the sensitivity and proprietary nature of
the information, data cannot be shared externally.

Ethical Considerations
Our study methods were in accordance with the ethical
guidelines of the 1975 Declaration of Helsinki, and our reporting
conforms to the Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical Research
[37]. The data used in the analysis were retrospective,
deidentified, and not originally collected for research nor model
development purposes; data were only extracted to develop the
ML algorithm after the fact. An internal ethics committee
approved and regularly reviewed the project protocol throughout
the model development process.

Sample Inclusion Criteria
Medicare Advantage plan members eligible for inclusion in
analysis were all those with continuous health benefits coverage
enrollment as of July 1, 2016, through the feature generation
period of December 31, 2017, who also had at least one inpatient
or outpatient service encounter in their randomly assigned
feature generation time frame. Additionally, to be included in
the analyzed sample, during the outcomes period (January 1,
2018, through December 31, 2018), patients must have either
(1) had continuous enrollment for the 2018 calendar year or (2)
became deceased during 2018. This requirement ensured any
beneficiaries who disenrolled from their Medicare Advantage
plan in 2018 but were not deceased were not counted as patient
expirations.

Machine Learning Method and Training Protocol
Various binary classification ML models were considered.
Performance was compared using 5-fold cross-validation. A
light gradient-boosted tree model (LightGBM) performed best
and was selected based on cross-validation log loss (or
cross-entropy loss). The protocol analyzed data from a total
sample of 318,774 Medicare Advantage plan members. Features
were generated using a training cohort (255,020/318,774, 80%
of the sample) with a randomized outcomes time period. Models
were further applied to a holdout data set (63,754/318,774, 20%
of the sample) to validate and assess generalization to new cases.
Data were computed using an instance of DataRobot v6.1.2
(Python 3, custom lightgbm model) running on an on-premise
Red Hat Enterprise Linux 7.9 (Maipo) server and with variable
resources dedicated via Docker containers (4-8 CPUs each with
32-64 GB RAM).

Target Outcome
The model’s predicted outcome was defined as any member
who expired between January 1, 2018, and December 31, 2018
(1 year). Patients were determined to be deceased based on
corresponding plan enrollment data and validation through
reporting to the Centers for Medicare and Medicaid Services
[38].

Data Sources and Feature Generation

Feature Generation
A SQL script aggregated data to generate predictive features.
To determine the date range for model input generation, a
randomized cutoff date was assigned to negative and positive
cases. We randomized the actual feature generation dates used
per customer, so the distribution of start dates was the same for
deceased and alive customers. The random date ensured the ML
process did not suffer from seasonality and selection bias.
Features were built from the 1-year look-back period (ending
December 31, 2017) and included 907 unique inputs based on
routinely collected data. Data used in model development were
information sourced from claims, EHRs, and administrative
member records.

Claims
Data from claims were primarily used to generate features
representing patient service utilization. Diagnosis information
was also extracted from claims. Types of claims data included
medical service claims, pharmacy claims, and laboratory
encounters. Laboratory encounters were based on medical claims
for lab-related Current Procedural Terminology (CPT) codes.
The actual clinical outcomes (results) of laboratory tests are not
part of claims data and were thus not incorporated into the
model.

Electronic Health Records
Medical data were extracted from EHRs to supplement claims
in generating 5 features of high-risk service utilization used in
the first iteration of the model (ie, occurrence counts of
electrocardiograms, kidney disease, sepsis, ventilator usage,
and surgeries). Data from EHRs are aggregated through a
third-party vendor partner and are used by the health plan for
internal care management and care coordination activities. Not
all patients had EHR data on record.

Administrative Member Records
Demographic data, as well as information used to calculate
measures of SDOH, were extracted from internal administrative
member records. Demographic features were patient age
(continuous, in years) and gender (male/female). Social
determinants index (SDI) scores are a suite of measures in the
administrative member record that were developed for internal
use. SDI scores are composite measures representing 6 domains
of the SDOH: economy, education, language, health,
infrastructure, and food access. SDI scores are determined by
the member’s census tract, which corresponds to the member’s
residential address and zip code [39]. The data associated with
the measures in each domain are sourced from public use data
such as the US Census and US Department of Agriculture (see
Multimedia Appendix 2). Total overall weighted and unweighted
SDI scores were also included as features in the model.

Data Preprocessing
Sample members must have had at least one countable service
utilization claim in the randomized feature generation period.
No feature observations were removed due to missing data. The
data had some categorical fields, such as gender or a categorical
indicator of utilization status, but most features were continuous
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and numeric. Numeric data were not transformed (apart from
missing value imputation). Most instances of missing numeric
data indicated an individual did not experience a particular type
of claim, diagnosis, or event (not due to data quality); such
instances were manually coded as 0 to avoid missing values
and to represent the patient did not experience the event. Beyond
this, DataRobot handles the missing value imputation strategy
automatically based on the specified type of imputation
algorithm. For the selected model configuration (LightGBM),
both continuous/numeric and categorical data had imputed
values to represent “missing” data. The final model used ordinal
encoding for categorical variables that included a separate
category for “missing.” The most common type of missing data
was SDI scores, which occurred for 4.9% (15,655/318,774) of
the sample population. Age (541/318,774) and gender
(647/318,774) data were each missing for 0.2% of the sample.

Model Training and Validation
Data were split 80/20 into training and holdout partitions,
respectively. Within the training partition, additional
subdivisions were made to tune parameters and apply early
stopping. In a LightGBM tree-based algorithm, early stopping
refers to stopping the training process if the model performance
does not improve after some consecutive iterations. First, the
training data were split (training split 1) to keep 90% for train
and 10% for test; this set was used for early stopping. Next, the
data were split yet again to create training split 2; using only
the training portion of training split 1, we assigned 70% for
training and 30% for testing. Training split 2 was used to tune
model parameters (ie, num_leaves). After these parameters were
tuned, we returned to training split 1 to tune the number of
estimators (n_estimators) using early stopping (early_stopping).
Key parameters included learning_rate (0.05), n_estimators
(550), num_leaves (16), max_depth (no limit),
min_child_samples (10), and early_stopping_rounds (200).
Both the training and holdout partitions had similar mortality
rates of 4% in 2018, indicating the mortality outcome was not
biased nor skewed in either the training or validation step.

Evaluation Measures
Model performance was assessed using AUC, positive predictive
value, negative predictive value, true positive rate, true negative
rate, average precision, and lift charts focusing on true positives
in the top 10% of predictions for the holdout cohort. Based on
the data, DataRobot software selected a threshold of 0.16 for
comparing the performance metric matrices of the different
model iterations. We performed 1-tailed and 2-tailed z tests to
evaluate significant differences between model iterations with
the addition of features. Model performance outcomes for the
training data set (255,020/318,774, 80% of the sample) are
located in Multimedia Appendix 3. Performance outcomes for
the holdout data set (63,754/318,774, 20% of the sample) are
presented herein to validate the model and assess generalization
to new cases. We report the ranked order importance and
absolute (unnormalized) importance values of the top 20 model
input features based on Shapley Additive Explanations (SHAP)
values [30,40].

Results

Of the 318,774 patients included in the total sample, 96.1%
(306,227/318,774) were determined to be alive, and 3.9%
(12,547/318,774) were determined to be deceased during the
2018 outcomes period (see Table 1). Compared with alive
patients, deceased patients were older, had higher rates of
chronic health conditions (cancer, dementia, stroke, heart failure,
and chronic respiratory disease), and had greater average service
utilization including emergency room, pharmacy, and laboratory
encounters. Deceased patients also had lower SDI scores on
average (weighted and unweighted) compared with alive
patients.

Table 2 summarizes the ML model development and
performance outcomes for the holdout cohort (63,754/318,774,
20% of the sample). The baseline model, Model 1 (M1),
included 2 demographic features (age and gender) and 5 features
capturing elements of high-risk utilization. Model 1 achieved
an AUC value of 0.736 (95% CI 0.728-0.744), which was
significantly better than mortality prediction based on random
chance alone (z=56.4, P<.001). In the next stage of development,
Model 2 (M2) was created by adding 894 more input features
using service claims that captured patient clinical diagnoses as
well as individual medical, laboratory, and pharmacy utilization.
The M2 iteration had an AUC value of 0.834 (95% CI
0.828-0.840), which was a significant performance improvement
compared with M1 (z=19.1, P<.001). Model 3 (M3), the final
model, added 8 features representing SDOH (SDI scores). M3
had the best performance of all the model iterations, with an
AUC value of 0.839 (95% CI 0.833-0.845), showing significant
improvement over that of M1 (z=20.2, P<.001). The final model
(M3) also has a high degree of specificity in that it accurately
predicted patients who were not deceased (negative predictive
value=0.971), with the model’s average precision improving
with each iteration (from 0.12 to 0.24). Adding the SDI score
features to the final model (M3) did not improve the
performance of the previous model (M2) to a statistically
significant degree (z=1.2, P=.19); however, there was a
significant performance improvement between M2 and M3 in
the training cohort outcomes (z=0.02, P=.02; see Multimedia
Appendix 3). Other model performance outcomes of M1, M2,
and M3 for the holdout cohort were similar to those of the
training cohort (Multimedia Appendix 3), which cross-validates
the algorithm. The receiver operating characteristic curves and
precision recall curves of the 3 model iterations are charted for
comparison in Figure 1. Figure 2 compares the predicted
outcomes of M1, M2, and M3 against the actual 2018 mortality
rate for those patients in the top decile of predicted mortality
likelihood. As features were added with each model iteration,
classification of the highest risk members improved. The final
model (M3) was superior to both M1 and M2, predicting that
those in the top 1% of highest risk would have a mortality rate
of 47.4% in 2018 (versus an actual mortality rate of 44.2%).

Table 3 reports the top 20 features and their rank among the
907 total inputs of M3. To aid interpretation, features are
categorized by demographics, diagnoses, medical utilization,
pharmacy utilization, laboratory utilization, and SDOH. The
absolute (unnormalized) impact values of the top 20 features
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are shown in Figure 3. Patient demographics (age and gender)
were 2 of the inputs comprising M1, and these were also the
most important features contributing to the M3 mortality model.
Notably, 3 of the top 20 model features quantify patient
information from the total claims data set (total claims, average
cost of claim, total diagnoses), and 1 feature was strictly
temporal (time since last outpatient visit). Among the top
features in M3, 4 inputs captured patient diagnoses, with chronic
respiratory disease and kidney disease having the greatest ranked
importance (#3 and #8, respectively). Aside from age and
gender, kidney disease occurrence was the only other input from
M1 to rank in the top 20 features of M3. Additionally, 4 of the
265 medical utilization features were also among the top 20,
with total patient claims ranking as the most important in the
category (#4) followed by the patient's average cost of claim

(#11). Of the 198 pharmacy utilization inputs, 7 ranked in the
top 20 features of M3; 3 of these were among the top 10 most
important features in the final ML model. These were
antihyperlipidemics (#5), furosemide (#7), and
anti-inflammatory analgesics (#9). Although there were 201
laboratory utilization inputs, only 1 was among the top 20 most
important features in M3 (lipid panel test, #6). The laboratory
features were extracted from claims data and only measure
utilization; actual results of patient laboratory tests were not a
part of the data used to develop the ML model. Finally, 2 of the
8 patient SDI score features ranked among the top 20 features
of M3. The important SDOH features predicting mortality in
M3 were food access score (#10) and local economy score (#12)
based on the plan member's census tract.

Table 1. Sample member characteristics.

Deceased (n=12,547, 3.9%)Alive (n=306,227, 96.1%)Total sample (n=318,774)Characteristic

Gender, n (%)

6518 (51.9)174,640 (57.0)181,158 (56.8)Female

6029 (48.1)130,941 (42.8)136,970 (43.0)Male

0 (0)646 (0.2)646 (0.2)Missing/not available

77.2 (9.7)70.4 (11.5)70.7 (11.5)Age (years), mean (SD)

Medical diagnoses, n (%)

4551 (14.0)52,183 (10.2)56,734 (10.4)Chronic respiratory disease

4448 (13.7)50,254 (9.8)54,702 (10.1)Heart failure

3160 (9.7)40,985 (8.0)44,145 (8.1)Cancer

2011 (6.2)19,327 (3.8)21,338 (3.9)Stroke

2608 (8.0)13,018 (2.5)15,626 (2.9)Dementia or Alzheimer disease

9370 (28.8)195,035 (38.2)204,405 (37.6)Hypertension

6395 (19.7)139,999 (27.4)146,394 (26.9)Diabetes

Medical service utilization, mean (SD)

36.7 (60.9)20.2 (38.2)20.8 (39.5)Total care visits per yeara

0.9 (1.7)0.4 (1.1)0.4 (1.1)Emergency room visits per year

Pharmacy utilization, mean (SD)

11.7 (8.3)8.9 (7.3)9.04 (7.4)Total unique medications prescribed

9.8 (9.9)8.0 (12.1)8.11 (12.0)Number of prescribed medications per day

Laboratory utilization, mean (SD)

11.7 (11.0)8.6 (8.2)8.7 (8.4)Total unique lab-related CPTb codes

Social determinants index (SDI)c, mean (SD)

58.09 (8.08)58.43 (8.67)58.41 (8.65)Weighted SDI scored

55.91 (9.63)56.98 (10.13)56.94 (10.12)Unweighted SDI scored

aIncludes all inpatient and outpatient visits.
bCPT: Current Procedural Terminology.
cHigher is better.
d100 points maximum.
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Table 2. Model summary and performance comparison (holdout cohort).

Model 3 (M3; final)Model 2 (M2)Model 1 (M1; baseline)Measure

9078997Total model features, n

Demographicsa; High-risk utiliza-

tion indicatorsb,c; Medical, lab,

and pharmacy utilizationc; SDId

scoresa

Demographicsa; High-risk utiliza-

tion indicatorsb,c; Medical, lab,

and pharmacy utilizationc

Demographicsa, High-risk utiliza-

tion indicatorsb,c

Model input summary

Model performance (holdout cohort)

0.839 (0.833-0.845)0.834 (0.828-0.840)0.736 (0.728-0.744)AUCe (95% CI)

0.29930.3200.105True positive ratef

0.29910.2640.212PPVf,g

0.0290.0370.016False positive ratef

0.971260.9630.984True negative ratef

0.971290.9720.964NPVf,h

0.7010.6790.890False negative ratef

0.2430.2330.122APi

Performance comparison (holdout cohort)

AUCM3 – AUCM2 = 0.0AUCM2 – AUCM1 = 0.0AUCM1 = 0.5Null hypothesis

1.219.156.4z statistic

.19<.001<.001P value

aSource: internal administrative member records.
bSource: electronic health record (EHR) data.
cSource: claims data.
dSDI: social determinants index.
eAUC: area under the curve.
fValues based on a defined threshold of 0.16.
gPPV: positive predictive value.
hNPV: negative predictive value.
iAP: average precision.
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Figure 1. Comparison of Model 1 (M1), Model 2 (M2), and Model 3 (M3) using (A) receiver operating characteristic curves and (B) precision recall
curves. AP: average precision; AUC: area under the receiver operating characteristic curve.

Figure 2. Model mortality outcomes for patients in the top decile of the highest predicted risk. M1: Model 1; M2: Model 2; M3: Model 3.
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Table 3. Ranked importance of top features in the final model (M3; 907 total inputs).

M3 ranked importanceaFeature category and M3 features

Demographics (2 inputs)

1Ageb

2Genderb 

Diagnoses (233 inputs)

3Chronic respiratory disease

8Kidney diseaseb 

17Total patient diagnoses 

18Dementia 

Medical utilization (265 inputs)

4Total patient claims

11Average cost of claim 

13Total CTc scans 

15Time since last outpatient visit 

Pharmacy utilization (198 inputs)

5Antihyperlipidemics

7Furosemide 

9Anti-inflammatory analgesics 

14Beta blockers 

16Antidepressants 

19Diuretics 

Laboratory utilization (201 inputs) 

20Systemic and topical nasal agents

6Lipid panel lab test

Social determinants index (SDI) score (8 inputs)

10Food access

12Economy

aRanked importance based on positive Shapley Additive Explanations value of features.
bM1 feature.
cCT: computed tomography.
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Figure 3. Absolute feature importance in Model 3 (M3). CT: computed tomography; DEM: demographics; DNX: diagnoses; LAB: laboratory utilization;
MED: medical utilization; PHA: pharmacy utilization; SDI: social determinants index.

Discussion

Principal Findings
In the past, provider groups and physicians have relied on
manual checking of patient records to prescribe palliative care
for patients. Today, palliative care teams are increasingly using
enhanced decision tools, such as ML approaches, for expedient
care delivery. Our palliative care ML model aims to provide a
more objective, automated way to identify patients in Medicare
Advantage who could most benefit from palliative services,
ensuring appropriate clinical resource allocation to the patients
with the highest need. The health plan’s goal is to optimize the
patient’s quality of life outcomes and incorporate all aspects of
palliative care, including care coordination, polypharmacy,
symptom management, advanced care plans, as well as spiritual
and psychosocial assessments. In this sense, identifying patients
who can benefit from a palliative care intervention takes a
whole-person health approach to chronic health management
and end of life care; the focus is not solely on a transition to
hospice. In practice, the model could be deployed within case
management, home health, or direct-to-provider programs.

Earlier ML studies of community-dwelling older Medicare
beneficiaries have attempted to refine the predictive capabilities
of various ML model configurations. However, few have
reported outcomes of their specific model feature inputs [25-29].
Understanding important features contributing to mortality
prediction algorithms can highlight differences in outcomes
between models based on the population studied, ML model
approach, and type of data analyzed. Increased transparency in
reporting model feature outcomes may also help inform the
criterion validity of existing clinical assessment tools used to
evaluate patients for palliative care needs. Furthermore, features

capturing the SDOH have also been largely neglected from ML
models in previous literature [6,25-29,31-33,36,41]. Our feature
impact outcomes show that SDOH (ie, food access and local
economy) not only are relevant to the prediction of end of life
in the community-dwelling Medicare Advantage population
but also may be more influential on the outcome than some
archetypal high-risk diagnostic and service utilization indicators
of palliative care need that are perhaps more commonly observed
in hospital settings (eg, ventilator use, sepsis).

The performance of our baseline gradient-boosted machine
model predicting 1-year mortality in Medicare Advantage plan
members (aged ≥65 years) improved with the incorporation of
patient service utilization, diagnoses, and SDOH features.
Having access to and adding the full medical, laboratory, and
pharmacy claims data and SDI measures enhanced our ML
approach. The performance of our model is comparable to that
of previous ML studies of older community-dwelling Medicare
beneficiaries using claims data (see Multimedia Appendix 4).
Some of these models have achieved greater accuracy than that
in this study, particularly those models using deep learning
configurations. For example, the long short-term memory and
deep neural network models developed by Guo et al [25]
outperformed their random forest model for predicting mortality
in outpatients. Although these types of ML models may achieve
greater accuracy, the enhanced model complexity and types of
data analyzed by deep learning configurations may not be
available or necessary in some cases. Patient medical claims
are a common and plentiful source of data that can be used to
train binary classification ML algorithms for predicting mortality
and other health outcomes. In contrast to inputs already defined
within discrete data sets, model inputs generated from raw text
might also produce more ambiguous feature definitions that
could create challenges for feature impact reporting.
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Classification models using routine, standard data (ie, claims,
administrative records) may be a more attractive option for
health plans and other organizations that already collect such
data with predefined discrete variables to fulfill their business
purposes.

Limitations
Age and gender were the most influential features in our final
model. Although these demographic features had substantial
impact on the mortality risk outcome, it is unsurprising that age
is the most important model feature, as the probability of death
increases with age in older individuals. There is also evidence
that, for various reasons, men may be likelier to die earlier than
women [42]. The importance of age as a predictive variable is
documented in the feature reporting of studies on ML mortality
models for hospitalized patients [43]. For community-dwelling
Medicare Advantage members over 65 years of age, omitting
the age or gender inputs may influence the prediction of
mortality risk in cases for which the outcome could be better
explained by these demographic variables. Race and ethnicity
were purposefully excluded from the model. Race and ethnicity
are related to certain disease outcomes, but the literature
suggests that social determinants may mediate or modify
observed racial or ethnic health differences [44]. When
predicting mortality, we believe the composite SDI scores
provide more information on the regional variation in individual
levels of SDOH and potentially less measurement bias compared
with patient race or ethnicity [33].

Our model was developed using only data from a nationwide
population sample of community-dwelling Medicare Advantage

plan members aged 65 years or older, which could constrain
the generalizability of study results to other kinds of patient
groups and health settings. Although our model was trained
based just on the Medicare Advantage population, bidirectional
data sharing between US commercial and other government
products would allow for other types of health care consumers
to benefit from ML tools for early identification of patients for
palliative care. Additionally, our ML model was built to be
generic and disease-agnostic. The mortality outcome for the
year 2018 encompassed all causes of death, and the feature
generation period was also randomized with the span of 1 year.
Although the model’s applicability to different patient
populations and care settings is still unknown, the generic model
can be applied to the plan’s Medicare Advantage members
across different years.

Conclusion
ML offers greater precision and sensitivity in predicting patient
end of life and potential need for palliative services among
community-dwelling older Medicare beneficiaries. In response
to a lack of feature reporting in relevant previous research, this
study explored the development of a binary classification ML
algorithm predicting 1-year mortality among a sample of
Medicare Advantage plan members and investigated the
mortality model’s features of top importance. We found the
most important features included demographics, diagnoses,
pharmacy utilization, mean costs, and certain SDOH. The final
ML model predicts mortality among Medicare Advantage plan
members with a high degree of accuracy and precision using a
variety of routinely collected data and can support earlier patient
identification for palliative care.
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Abstract

Background: Pancreatic cystic lesions (PCLs) are frequent and underreported incidental findings on computed tomography
(CT) scans and can evolve to pancreatic cancer—the most lethal cancer, with less than 5 months of life expectancy.

Objective: The aim of this study was to develop and validate an artificial deep neural network (attention gate U-Net, also named
“AGNet”) for automated detection of PCLs. This kind of technology can help radiologists to cope with an increasing demand of
cross-sectional imaging tests and increase the number of PCLs incidentally detected, thus increasing the early detection of
pancreatic cancer.

Methods: We adapted and evaluated an algorithm based on an attention gate U-Net architecture for automated detection of
PCL on CTs. A total of 335 abdominal CTs with PCLs and control cases were manually segmented in 3D by 2 radiologists with
over 10 years of experience in consensus with a board-certified radiologist specialized in abdominal radiology. This information
was used to train a neural network for segmentation followed by a postprocessing pipeline that filtered the results of the network
and applied some physical constraints, such as the expected position of the pancreas, to minimize the number of false positives.

Results: Of 335 studies included in this study, 297 had a PCL, including serous cystadenoma, intraductal pseudopapillary
mucinous neoplasia, mucinous cystic neoplasm, and pseudocysts . The Shannon Index of the chosen data set was 0.991 with an
evenness of 0.902. The mean sensitivity obtained in the detection of these lesions was 93.1% (SD 0.1%), and the specificity was
81.8% (SD 0.1%).

Conclusions: This study shows a good performance of an automated artificial deep neural network in the detection of PCL on
both noncontrast- and contrast-enhanced abdominal CT scans.

(JMIR AI 2023;2:e40702)   doi:10.2196/40702

KEYWORDS

deep learning; pancreatic cystic lesion; neural networks; precursor lesions; pancreatic cancer; computed tomography; magnetic
resonance; cancer; radiologist; technology

Introduction

Pancreatic cancer is one of the most frequent and aggressive
cancers in the digestive tract, being the fourth leading cause of
death by cancer in Europe [1,2]. Due to its lack of specific
symptoms and signs, most patients are detected in an advanced

stage. The current average 5-year survival rate is 9%, and it
depends critically on when the cancer is detected. Indeed, this
5-year survival rate varies by more than 30% when the cancer
is detected in a phase where it can still be surgically removed
and when the cancer has already spread to other tissues in the
body [3].
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This type of cancer can originate from precursor cystic lesions
[4]. Pancreatic cystic lesions (PCL) are increasingly common
incidental findings on abdominal imaging tests. Studies have
shown that up to 70% of PCLs are diagnosed incidentally on
computed tomography (CT) scans due to unrelated symptoms,
making CT scans the first accessible source of information.
These previously undetected cystic lesions are found on 3% of
abdominal CT examinations [5,6] and 13%-21% of abdominal
magnetic resonance imaging studies [7,8]. However, autopsy
studies have evidenced a much higher prevalence, revealing
that up to 50% of the older population may present at least one
pancreatic cyst [6].

PCLs have a wide diversity, and their differential diagnosis
includes nonneoplastic cysts (pseudocysts) and neoplastic ones.
Neoplastic lesions encompass benign lesions, such as serous
cystadenomas (SCA), to mucinous lesions, such as mucinous
cystic neoplasms (MCN), and intraductal papillary mucinous
neoplasm (IPMN), which may progress to PC. Therefore,
identifying precancerous mucin–producing cysts offers a unique
opportunity for early detection and prevention of PC. Once a
PCL is found, patients are recommended to follow up a lifelong
surveillance program with imaging modalities (magnetic
resonance imaging or CT) to identify early-stage cancer or
high-grade dysplasia [9,10]. Consequently, correct management
of PCL may prevent progression to pancreatic cancer, while
reducing the need for lifelong screening and related costs.

In this complex scenario, automated detection of pancreatic
precursor lesions could increase the detection of this
underreported entity and help with a proper surveillance of these
patients. A limited number of publications regarding this topic
have been released in recent years, most of them in an
experimental offline setting and applying different
methodologies [11]. Additionally, although existing methods
of automated analysis have shown to be accurate for images of
individual organs, they still struggle to deal with the variability
of structures, shape, and location of abdominal organs [12].
Artificial intelligence (AI)–based algorithms have shown
promising results in the detection of preneoplastic lesions in
the pancreas [13,14], but they are still far from implementation
in the clinical practice.

The aim of this study was to develop and test an artificial deep
neural network (AGNet) [15] for automated detection of PCLs.
This kind of technology can help radiologists to cope with an
increasing demand of cross-sectional imaging tests and increase
the number of PCLs incidentally detected, thus increasing the
early detection of pancreatic cancer.

Methods

Ethical Considerations
Our research adhered to the ethical principles outlined in the
1975 Declaration of Helsinki. The data used in this study were

retrospective and anonymized. The study was approved by the
hospital Institutional Ethical Review Board under code 90/20
as an observational retrospective single-center study, and the
requirement for informed consent was waived.

Study Population
A total of 297 abdominal, thoracoabdominal, or pelvic CT scans
acquired at Hospital de Mataró between 2010 and 2021 and
diagnosed with a PCL as well as 38 CT scans as controls were
selected for the study. All CT scan images were subjectively
checked for quality and absence of relevant respiratory artifacts,
which could cause misdiagnosis in the abdominal region. The
exclusion criteria were underaged patients, artifacts or bad
quality in the CT scan image, and patients having undergone
surgery in the past to treat the PCL and having a prothesis in
the pancreas that affects the image. Importantly, patients
diagnosed with pancreatic adenocarcinoma or any kind of tumor
in the pancreas were also excluded from the study.

Of note, a CT image is considered “bad quality” if there is
movement or blurriness in it (mostly in the abdominal area,
where the pancreas is located). Studies that included these types
of images were excluded from the training and testing set
because they would impact the learning process of the network
or the testing in a negative way, which could then lead to false
negatives or false positives.

The final study population consisted of 136 patients: 73 male
(178 studies; mean age 67.75, SD 10.74 years) and 63 female
(157 studies; mean age 73.52, SD 10.67 years). A mean of 2
(SD 1.4) CT studies and a median of 2.4 studies were available
per patient.

Patients’ Characteristics
From the whole cohort of 136 patients, 9 (6.5%) of them had a
confirmed diagnosis through endoscopic ultrasound–guided
fine needle aspiration or surgical resection of the lesion. In the
other 16 patients, no material or insufficient yield was extracted
to evaluate the specimen. The rest of the patients were diagnosed
by a minimum of 2 experienced radiologists, taking into
consideration the complete clinical record and the evolution of
the patient.

Patients with the following PCLs were included in the study:
IPMN, MCN, SCA, and pseudocysts. A total of 14 (4.2%) of
the lesions were not classified in the above classification due
to unspecified imaging characteristics and were categorized as
cyst (Table 1). The number of studies (CT scans) with PCLs
distributed by age and sex is shown in Figure 1.

Data sets were further divided between the training set (a subset
to train the model) and the testing set (a subset to test the trained
model). The final training data set comprised 93 patients,
representing a total of 241 CT scans, and the final testing data
set comprised 43 patients, representing a total of 94 CT scans.
PCLs were distributed proportionally in both data sets.
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Table 1. Diagnostic distribution per the study.

Values, n (%)Diagnosis

42 (12.5)Serous cystadenoma

154 (46)Intraductal papillary mucinous neoplasm

5 (1.5)Mucinous cystic neoplasms

82 (24.5)Pseudocyst

14 (4.2)Cyst

38 (11.3)No cyst

Figure 1. Number of studies (CT scans) with pancreatic cystic lesion distributed by age and sex (x-axis).

CT Protocols
CT examinations were performed with a GE BrightSpeed 16
slice CT scanner (GE Healthcare). Slice thickness was between
1.25 mm and 5 mm. Mean tube current was 440 mA, and the
mean peak kilovoltage was 340 (SD 40) kVp. Contrast agent
was administered with injection rates ranging from 2.5 to 3
mL/s, using Omnipaque or iomeron (both 300 mg iodine per
mL).

The protocols included in this research had the following
characteristics:

• From lung bases to pubic symphysis, 2 helixes are made at
30 and 65 seconds after the injection of 100 mL of the
solution (30 mL of iodine), preceded and followed by 20
mL of physiological solution.

• Two helixes are made from the base of the neck to the lower
edge of the liver and from the pulmonary bases to the pubic
symphysis after the injection of the exposure value contrast.
In this case, 120 mL of solution is injected.

• From lung bases to pubic symphysis, 1 helix is made at 65
seconds after the injection of 100 mL of the solution (30
mL of iodine), preceded and followed by 20 mL of
physiological solution.

Image Analysis
CT scan images were exported anonymously in Digital Imaging
and Communication on Medicine format from the picture

archiving and communication system of the hospital. Digital
Imaging and Communication on Medicine files were converted
to Neuroimaging Informatics Technology Initiative files (using
dicom2nii software; version from August 4, 2014; University
of South Carolina). Two radiologists (NTF and MMD) with 11
and 20 years of experience manually drew, slice by slice, the
region of interest, delimiting the pancreatic cysts found in the
image using the open-source software 3D Slicer (version 4.11)
[16]. Each radiologist segmented all cases used in the study and
checked the segmentation performed by the other radiologist.
Any discrepancies between the authors were resolved through
discussion with the presence of a third reviewer (MTFP), until
consensus was reached.

The preprocessing steps included the application of filters and
registration to improve and harmonize image quality across CT
scans.

First, a soft-tissue normalization [17] was applied. After
studying the pixel distribution of 100 CTs of the data set, it was
observed and confirmed by the state of the art that the
Hounsfield unit (HU) of the pancreas is centered around 50,
and most of the cystic lesions were close to this value as well.
Hence, to eliminate the irrelevant parts of the abdomen and
highlight the main features for the study, the soft-tissue
normalization was centered in 50 HU, and a windowing length
of ±100 around 50 HU was applied.
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Afterwards, a central cropping of the CTs was performed, only
keeping the center of the abdomen, where the pancreas is
supposed to be. The cropping was not too harsh to avoid the

possibility of eliminating the pancreas from the CT image being
used for the following semantic segmentation study. The image
analysis pipeline is depicted in Figure 2.

Figure 2. Diagram of the steps implemented in the pipeline. (A) Preprocessing. (B) Logits. (C) Postprocessing. (D) Output.

Model Training
The neural network used for this study was the AGNet [15].
The main structure was a basic UNet [18] with skip connections
and additive attention gates (AGs). The input image was
downsampled, using max-pooling, by factor 2 at each scale in
the encoding part and trilinearly upsampled by the same factor
in the decoding part. In each stage of the encoding-decoding
architecture, a skip connection from the corresponding encoding
stage to the corresponding decoding stage was added. This skip
connection enters to the AG together with the output of the
previous decoding stage. Thanks to this skip connections using
coarser information, we are able to model the location and the
relationship between tissues at a global scale. The architecture
of the AG is shown in Figure 3.

The output of these AGs was the element-wise multiplication
of the attention coefficients (α) and the intput feature maps
came from the previous stage of the decoding part (x; Figure
4). Attention coefficients were used to identify salient regions
and preserve only activations that are relevant. There is one

attention coefficient computed for each pixel vector , where

Fl corresponds to the feature maps in layer . In the case of this
study, there are multidimensional attention coefficients, each
dimension corresponding to one class. The other input of the

AG was a gating vector , which contained contextual
information to determine focus regions. The AGs used were
additive since addition between the gating signal and the feature
maps were used to obtain the attention coefficients.

The network was trained for 700 epochs and had a batch size
of 4. The training was performed with over 430 3D CT studies.
The algorithm of optimization used was Adam [19]. The Adam
algorithm is an adaptive gradient algorithm that adapts the value
of the learning rate if the network does not improve the
performance during training. We set the threshold of learning
rate modification after 30 epochs, and it decayed 1e-6. The
initial learning rate was set to 1e-4.

The initialization weights’algorithm used was Kaiming [19,20],
and the loss function used was the dice coefficient for multiclass
segmentation.
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Figure 3. Illustration of the additive attention gate [15]. Reproduced from the cited source which is published under Creative Commons Attribution
4.0 International License [21].

Figure 4. Scheme of the deep neural network architecture [15]. Fl: Feature map in the layer l; H: height; W: width; D: dimension; Conv 3x3: convolution
operation with a 3x3 kernel; ReLu: rectified linear unit operation. Reproduced from the cited source which is published under Creative Commons
Attribution 4.0 International License [21].

Results

The goal of this work was to implement a pipeline for PCLs
detection on CT scan images as well as the pancreas. This was
performed with a two-step pipeline formed by a first
preprocessing that consisted of a normalization of all the data
sets with a soft tissue normalization technique centered at an
HU of 50. This value was selected since it is the state-of-the-art
value assigned to the organs and it matches with the mean HU
of the pancreas calculated for all the studies in our data set.
Afterwards a central crop of the CT was applied; from a slice
size of 512×512 to 240×240 after the central cropping to just
focus on the center of the abdomen (anatomic location of the
pancreas). Finally, the network was trained with random patches
of 160×160 of this central crop, and therefore, the inference
consisted of iterating around this central crop of multiple
inferences of patches of 160×160.

During the inference, the test-time augmentation (TTA)
technique was applied. For every CT, 4 geometrical
transformations were used. Multiple options were considered
in which way the TTA should be applied; however, we
concluded that translation and rotation transformations were
the most accurate since, for example, flipping would just confuse
the network. Hence, after studying multiple options, a positive
rotation of 7 degrees and a negative rotation of 11 degrees as

well as 2 positive translations of 5 and 10 pixels were
considered. Positive and negative rotations were considered
since in CT scans the abdomen can be tilted one way and the
other, but higher values for both rotation and translation would
just result in bad predictions. Using more TTA transformations
were ruled out due to the latency that this adds to the final
pipeline. The final result is a merging of this 4 TTA
transformations inferred and the original CT without any
transformation. We averaged the probability of each class, and
after having them merged, a softmax function was applied for
obtaining the final binarized image [22].

Finally, a postprocessing pipeline was implemented to improve
the segmentation results performed by the network and minimize
the number of false positive detections. First, a mask of the
abdomen was generated and eroded to eliminate wrong
predictions in the edges of the abdomen, where the pancreas
anatomically is not found. Secondly, all segmented cysts that
were not in touch with the pancreas were also removed. Finally,
we established a minimum of 10 voxels to consider a predicted
cyst as true positive. Therefore, if there were some randomly
segmented pixels considered as cysts that were not previously
filtered, they were ignored. Images with qualitative results of
this method are shown in Figure 5.

The fully automated segmentation was performed on a modern
computer with an NVIDIA GPU T4 to automatically detect
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PCLs in abdominal CT scans. The programming language used
was Python and the framework for the model development was
PyTorch. The sensitivity for all cases was 93.1% (SD 0.1%),
and the specificity was 81.8% (SD 0.1%).

Additionally, due to the small amount of some subtypes of
pancreatic cysts in the training database (Figure 6), we
considered it reasonable to divide the whole cohort of patients
into 2 big groups: on the one hand, the most dangerous cyst
types, bearing malignant potential (IPMN and MCN), and on
the other hand, the ones with malignant potential close to 0
(PCYST and SCA). If we consider this classification, the global
specificity and sensitivity for the detection of the most dangerous
group were 81.8% and 97.0%, respectively, while for the least
dangerous ones, they were 81.8% and 89.0%, respectively.

One of the main metrics used to evaluate the effectiveness of
this method was the sensitivity or true positive rate. This is
something to highlight since it is better to have a false positive
than a false negative in this study due to the consequences of
obtaining each one: for a false positive, a review of the detection
would be needed, but for a false negative, the consequences are
much worse because a PCL can exist and not be detected. If we
compare the most dangerous group and the least dangerous
group, meaning the one that can easily evolve to pancreatic
cancer versus the one that cannot evolve to pancreatic cancer
as easily, it is a remarkable fact that the sensitivity is almost
10% higher for the dangerous group, which makes the network
even more efficient. Having a better true positive rate for the
most dangerous group rather than for the least dangerous group
is a highlight of this study.

Figure 5. Illustration of the qualitative results obtained. Each pair of images belongs to a patient with a pancreatic cystic lesion. The left image of the
pair is the ground truth, while the right one is the outcome of this method. The pixels that belong to the pancreas are painted in green and the ones for
the pancreatic cystic lesion in red.
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Figure 6. Example of the types of pancreatic cysts included in this research. (1) Serous cystadenoma, marked in yellow. (2) Mucinous cystic neoplasm,
marked in red. (3) Intraductal papillary mucinous neoplasm, marked in yellow. (4) Pseudocyst, marked in red). Pancreas is depicted in green.

Discussion

Principal Findings
In this study, we applied and validated an AGNet deep neural
network to detect PCLs. The aim was to assist imaging
specialists for a better diagnosis, and therefore, achieve better
determining of treatment plans. First, a pancreatic CT image
database with different types of cyst present was created based
on the diagnosis of anatomical pathology or an imaging
specialist. From this database, we established an AI system for
the automatic detection of pancreatic cysts (with further
classification) and then validated it in a test experiment.

In our study, the sensitivity for the detection of PCL was 93.1%
(SD 0.1%), and the specificity was 81.8% (SD 0.1%),
demonstrating that PCLs can be automatically detected by AI
with a diagnostic performance comparable to radiologists.

This is significant because even though AI has shown excellent
performance for segmentation of organs with sharp borders, in
organs with vague delineation like the pancreas (eg, caused by
fat interdigitations), the detection of lesions remains a difficult
task for algorithms [23].

In a previous work (Abel et al [14]), an overall sensitivity of
78.8% for the detection of pancreatic cysts was obtained. The
maximum sensitivity was seen in big lesions, ranging from
87.8% for cysts under 220 mm3 to 96.2% for tumors in the
distal pancreas. Importantly, in this work, they analyzed the
size of the lesion by volume, and in our study, we analyzed it
with the diameter of the biggest slice of the lesion. Another
difference between this work and ours is the deep learning
architecture they used. They used an nnUNet pretrained, and
we used an attention gate U-Net without pretraining.

Overall, these results demonstrate that an automated detection
of PCL on CT scans is feasible.

Nevertheless, limitations to our research are still present.
Although the results obtained indicate that the diagnostic
accuracy is comparable to that of radiologists, it is important
to bear in mind that this research intents to develop an assistive
tool, not to be in any case a substitute for doctors. Moreover,
this is a retrospective single-center analysis study. To further
evaluate and validate the clinical applicability, next steps would
include a prospective study on multicenter clinical data.

Importantly, the possibility for malignancy varies across various
forms of PCLs. Therefore, precise cyst characterization is crucial
for proper care. The most clinically significant distinction is
separating nonmucinous cystic lesions from mucinous cystic
lesions, which have malignant potential and may benefit from
surgical removal. However, distinction between cyst types is
difficult in a clinical setting.

Due to the lack of data for each specific subtype of PCL, this
study only aimed at detecting but not classifying PCLs. Next
steps would include increasing the final data set size to further
assess and validate the classification performance of a deep
neural network, which would have a significant effect in clinical
practice.

Limitations
PCL detection algorithm was trained and tested on data from a
single hospital, which limited the available amount of data and
hindered the possibility to perform an external validation.

As previously mentioned, the data in the training database were
divided into 2 big groups (IPMN and MCN vs pseudocysts and
SCA) due to the lack of data for each specific subtype of
pancreatic cysts. For further validation, not only detection but
also classification, more data are needed for the training database
for each of the cyst subtypes that we are willing to differentiate.

Next steps will be to obtain images from other hardware
manufacturers and improve our database. This will need to be
studied thoroughly to make the images from different hospitals
compatible to each other. Another approach to improve the data
set is to widen the samples of each type of cyst to make it more
heterogeneous.

Conclusions
This study presents a clinical validation for automated detection
of PCLs using an AGNet deep neural network. Based on the
validation of an artificial deep neural network [15], results
indicate that AI can be a feasible tool to help radiologist to cope
with the increasing demand of cross-sectional imaging tests.
The proposed method shows ability to obtain an accurate
diagnosis. This artificial network, working together with
specialists, proves to be a potential and effective way to tackle
the early detection of pancreatic cancer.
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Abstract

Background: In health care, diagnosis codes in claims data and electronic health records (EHRs) play an important role in
data-driven decision making. Any analysis that uses a patient’s diagnosis codes to predict future outcomes or describe morbidity
requires a numerical representation of this diagnosis profile made up of string-based diagnosis codes. These numerical
representations are especially important for machine learning models. Most commonly, binary-encoded representations have
been used, usually for a subset of diagnoses. In real-world health care applications, several issues arise: patient profiles show
high variability even when the underlying diseases are the same, they may have gaps and not contain all available information,
and a large number of appropriate diagnoses must be considered.

Objective: We herein present Pat2Vec, a self-supervised machine learning framework inspired by neural network–based natural
language processing that embeds complete diagnosis profiles into a small real-valued numerical vector.

Methods: Based on German outpatient claims data with diagnosis codes according to the International Statistical Classification
of Diseases and Related Health Problems, 10th Revision (ICD-10), we discovered an optimal vectorization embedding model
for patient diagnosis profiles with Bayesian optimization for the hyperparameters. The calibration process ensured a robust
embedding model for health care–relevant tasks by aggregating the metrics of different regression and classification tasks using
different machine learning algorithms (linear and logistic regression as well as gradient-boosted trees). The models were tested
against a baseline model that binary encodes the most common diagnoses. The study used diagnosis profiles and supplementary
data from more than 10 million patients from 2016 to 2019 and was based on the largest German ambulatory claims data set. To
describe subpopulations in health care, we identified clusters (via density-based clustering) and visualized patient vectors in 2D
(via dimensionality reduction with uniform manifold approximation). Furthermore, we applied our vectorization model to predict
prospective drug prescription costs based on patients’ diagnoses.

Results: Our final models outperform the baseline model (binary encoding) with equal dimensions. They are more robust to
missing data and show large performance gains, particularly in lower dimensions, demonstrating the embedding model’s
compression of nonlinear information. In the future, other sources of health care data can be integrated into the current
diagnosis-based framework. Other researchers can apply our publicly shared embedding model to their own diagnosis data.

Conclusions: We envision a wide range of applications for Pat2Vec that will improve health care quality, including personalized
prevention and signal detection in patient surveillance as well as health care resource planning based on subcohorts identified by
our data-driven machine learning framework.

(JMIR AI 2023;2:e40755)   doi:10.2196/40755
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Introduction

Public health surveillance and health care research in many
countries depend on electronic health records (EHRs), including
claims data [1-4]. In these records, patients’ medical diagnoses
are often coded according to a string-based disease classification
convention, for example, the International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision (ICD-10) [5]. Their sequence of ICD codes
characterizes the medical history of every patient.

Common tasks in clinical, epidemiological, or health care
research on claims data expect numerical input (eg, regression
and classification tasks such as linear or logistic regression or
advanced machine learning tools such as gradient-boosted trees
and deep learning). These methods are often used to predict
specific health outcomes [6-17] or the utilization of health care
institutions [18-22].

To derive numerical input for these methods from the
string-based diagnosis profiles, a procedure called binary
encoding (or binarization, one-hot encoding) is most often used
[6-11,15-17,20-24]. Using binary encoding, diagnoses are
represented numerically by either 1 or 0, if the patient had or
did not have the chosen diagnosis, respectively. As the pool of
possible diagnostic codes is vast, binary encoding usually relies
on a selected subset of diagnoses chosen by either field experts
[6,16] or data-driven feature selection [10,15,17]. Diagnoses
can also be represented by the number of times they appear
[9,12,25,26]. Most often, they are pooled into clinical groups
before further analysis [18-22,24,27-29].

Ideally, a disease classification such as ICD-10 would only
cover clearly distinguishable medical conditions and concepts,
but in reality, we have to deal with overlaps and uncertainties.
Therefore, a faithful numerical representation of the patient’s
medical history needs to take into account that different ICD
codes may represent similar or even identical underlying issues.
Frequently, computational and methodological constraints limit
the number of diagnoses and interaction effects that can be
considered. Binary encoding suffers in this regard, as it considers
medical diagnoses as distinctive and unrelated features. As such,
it limits the methodical progress of prediction tasks on claims
data, especially the application of advanced machine learning
methods. Thus, other methods of numerical representation of
ICD diagnosis codes should be investigated to enable better
individual health care and more precise prediction of health care
demand.

We investigate herein how a real-valued numerical
representation (or vectorization, embedding) (see Chapter 15
in [30]) of patients’ medical diagnosis profiles that uses their
whole diagnostic ICD profiles can be derived. This embedding
should compress the information from up to 14,877 possible
5-digit International Statistical Classification of Diseases and
Related Health Problems, 10th revision, German Modification
(ICD-10-GM) 2019 [31] codes, improve the performance of
common health care prediction tasks, and let advanced
(nonlinear) machine learning methods reach their full potential
when used on claims data.

To find such an embedding, we employ a self-supervised
machine learning algorithm inspired by natural language
processing (NLP), namely, Doc2Vec [32], which itself is an
extension of Word2Vec [33,34]. It has been applied to
nonlanguage-specific tasks before [35-37]. Many studies
[14,29,38-42] have investigated embeddings of the ICD codes
themselves, whereas some [14,25,42] arrived at patient-level
embeddings for specific prediction tasks (Supplementary Table
S1 in Multimedia Appendix 1). Here, we want to broaden the
scope of the possible applications to general health care–related
questions. It has been shown that hyperparameter tuning for
Word2Vec and Doc2Vec can lead to considerably better results,
especially on nonlanguage-related tasks [35,37]. As such, we
employ a Bayesian search on a hyperparameter grid to identify
an optimal model for the vector embedding procedure. We
evaluate our embedding model on broad health care prediction
tasks with standard (linear and logistic regression) and advanced
machine learning techniques (gradient-boosted trees). We also
test how well the vectorization works with smaller data sets and
how well it handles missing data with random data dropout
sampling. In addition, we inspect the results visually in a 2D
projected space along with a clustering of the embedded patient
profiles to reveal the properties of our cohort. Finally, we
evaluate the resulting vectorization model for the health
care–relevant task of predicting drug spending at the patient
level.

Our method gave better results than binary encoding, but only
after tuning the hyperparameters and on large enough data sets.
The compression of the information of thousands of ICD-10
codes into a vector space of no more than 100 dimensions was
achieved. We observed large performance gains using
gradient-boosted trees with the vector embedding over classic
linear or logistic regression with binary-encoded data. In
addition, the vectorization models are more robust to missing
data than baseline binary encoding. The final model learned on
our extensive data can be shared and used by other stakeholders
on much smaller data sets (eg, for supervised machine learning
methods that predict clinical or other health care outcomes).

Methods

Data
The diagnosis data are based on comprehensive nationwide
outpatient claims data from 2016 to 2019 of all patients with
statutory health insurance (SHI) in Germany. According to the
Federal Statistical Office [43], there were 73,009,237 persons
eligible for the SHI (87.8% of the population) in 2019. The
pseudonymous data include diagnoses for all people in Germany
with SHI who visited an outpatient physician in 2016 or later.
Among others, the data include demographic characteristics
such as age and gender, as well as diagnoses with markers of
certainty and other billing-relevant information. These data do
not contain information on inpatient treatment in hospitals.
Diagnoses are coded according to the ICD-10-GM [31]. In
addition to the diagnosis data, we extracted individual
information on prescribed and dispensed medications from the
pseudonymous data of nationwide outpatient drug prescriptions.
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The claims data and the prescription data are linked by patient
information (compare [44]).

We chose N=11,200,000 patients at random from the full
population of people with SHI because technical limitations
make it impossible to use the full data. To achieve this study
sample size, we shuffled all patients in the claims database
randomly and selected the top N records for the sample. All
patients with at least one data entry after 2016 were eligible.
The sample is divided into 4 data sets by random subsampling
from the study population (Textbox 1).

These samples were filtered for patients with consistent
information regarding gender and age during the years
considered for analysis (2016 to 2019). The training data in (1)
for the vectorization model were restricted to ICD-10 codes
(5-digit notation) from 2016 to 2018, whereas the calibration,
validation, and test sets in (2)-(4) were restricted to codes from
2018. Only patients with at least one confirmed diagnosis during
the period in question were kept. This left us with sample sizes
of 8,941,773 (vectorization training), 830,285 (calibration
training), 82,924 (validation), and 82,937 (test), see Figure 1.

Figure 1. Flowchart of data sampling and algorithmic schematic. Patient data flows are represented by solid, straight lines, while machine learning
models and other meta-information flows are represented by dashed, curved lines. Rectangles are patient data, while hexagons are algorithms or analysis
methods. AUROC: area under the receiver operating characteristic curve; ML: machine learning; SHI: statutory health insurance.

Because of the regulations of the German health care system
(see “The German Health Care System” in [45], or a more
detailed description of the German system in [46]), diagnoses
are available on a quarterly basis (but without temporal order
within a quarter), with reference to cases and places of treatment.
As such, we generated a sequence of codes for each patient with
a certain temporal order: confirmed diagnoses are grouped by
case and place of treatment, and these groups are ordered by
temporal succession of quarters, but if more than 1 group
appears within one-quarter, these groups are shuffled randomly
within the quarter (as well as diagnoses within a group).

Furthermore, when training the model (see below), only
diagnoses that were seen at least 100 times in the training data
were taken into account.

As health care–relevant outcomes in (2)-(4), we used 4 different
quantities for calibration: the number of cases (a proxy indicator
for the number of medical consultations), (ambulatory)
emergency health care utilization, age, and gender. The number
of cases in 2019 is approximate due to data limitations: a case
is defined as the unique combination of a quarter, a patient, a
treating medical facility, the billing association of SHI
physicians, and the time stamp of data processing. The binary
outcome of emergency health care utilization is 1 if at least one
case in 2019 of the respective patient was billed as an
emergency, and 0 otherwise. The sociodemographic variables
age (in years) and gender (binary-encoded) were also extracted
from the data.
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As data for robustness analysis against diagnosis dropout, we
randomly dropped 10%, 25%, or 50% of diagnosis codes for
each patient (rounded to nearest number, but kept at least one
code).

As data for robustness analysis against varying training data set
sizes, we used different percentages of the original vectorization

training data (reducing the vectorization data from 10 million
patients to 10,000 patients).

For a further analysis, we extracted the drug prescription costs
from the ambulatory drug prescription data of residents in
Germany with SHI. These costs are the total (in euros) of all
billed prescribed drugs for the respective patient in 2019 (if any,
otherwise 0).

Textbox 1. Data sets obtained by random subsampling from the study population.

1. Vectorization

A total of 10,000,000 patients as a vectorization training set for self-supervised machine learning to learn a model for numerical representation
(embedding) of patients’ profiles.

2. Calibration

A total of 1,000,000 patients with embeddings based on a model from (1) serving as a calibration training set for supervised machine learning
on prediction tasks.

3. Validation

A total of 100,000 patients with embeddings based on a model from (1) serving as a validation set for the calibration prediction models learned
in (2) and, in turn, hyperparameter tuning of vectorization in (1).

4. Test

A total of 100,000 patients as a test set for final analysis and presentation of the results.

Ethical Considerations
The use of claims data for this analysis is governed by the
German Code of Social Law (SGB X 80 in conjunction with
SGB V 68c): our study aims to improve health care quality by
exploring diagnoses profiles and predicting health care–relevant
outcomes. While approval and consent of individual human
patients within the cohort are operationally impossible to
acquire, they are also not required by the German Code of Social
Law as we used deidentified, routinely collected data in a
retrospective study. In addition, we argue that the conclusions
we can draw from our analyses are in the best interest of patients
and will improve future public health services.

Binary Encoding and Baseline Model
Binary encoding creates a data matrix with rows for patients
and columns for variables. Each variable represents one of the
diagnoses being looked at (out of a chosen subset of all available
diagnoses) and is given a 1 in the corresponding row and column
if the patient had that diagnosis and a 0 if they did not.

Here, we employ such a binary encoding approach as a baseline
model: First, we sorted all confirmed unique ICD-10 diagnosis
codes from 2019 by the number of patients with this diagnosis
in the data. Second, for a given number M of top diagnoses and
the sample patients from above, we formed the appropriate data
matrix with M columns corresponding to the top M diagnoses
and each row representing a patient, using binary encoding like
described above. This is the baseline model for numerization
of the diagnosis codes and will be compared with the real-valued
patient-level embedding described in the next section.

ICD2Vec and Pat2Vec
Similar to [14], we used an advanced approach to a real-valued
embedding of diagnosis codes, applying a method from NLP
called Word2Vec and its extension Doc2Vec [32-34]. Trained

on a corpus of text data, Word2Vec vectorizes individual words
and keeps their semantic meaning by mapping similar or related
words to similar vectors (according to multidimensional distance
measures in a Euclidean space) and antagonistic words to
diverging vectors. As an extension to Word2Vec, the Doc2Vec
algorithm also learns vectors for each document. Similar
documents are represented by vectors that are similar to those
of the similar documents.

Word2Vec is in fact a (shallow) neural network in the sense
that individual words are represented by vectors (embeddings)
of a fixed size, and the entries of these vectors are used directly
to predict the vectors of other words in a single-layer neural
network; that is, the embeddings are themselves the parameters
of the single hidden layer. Word2Vec goes over every word in
each document step-by-step and repeatedly during training and
updates the neural network’s parameters (or rather, the
embeddings) by either predicting from the current word the
neighboring or context words as targets (skip-gram) or
predicting a target word from the neighboring or context words
(continuous bag of words) [33]. In both cases, the update to the
network’s parameters after training on a single word would
include updating all parameters for all words that are not in the
context. For computational efficiency (because of large
vocabularies), this is circumvented by either updating only some
negative examples of words that are not in the context of the
word under consideration [34] or by applying a hierarchical
softmax to the network update [33]. In fact, it is also possible
to apply both techniques at the same time.

Doc2Vec is an extension to the Word2Vec algorithm in the
sense that it is applied in parallel to Word2Vec. Additionally,
while learning the vector embeddings of every word in the
corpus, the vector embeddings of the documents that form the
corpus are learned in the same manner. Doc2Vec can be trained
in 2 different ways [32]: either with “distributed memory” (DM;
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similar to Word2Vec’s continuous bag of words), where each
target word from the document is predicted using both the
context words and the document’s embedding, or with
“distributed bag of words” (DBOW; similar to Word2Vec’s
skip-gram), where target words from the document are predicted
using the document itself and separately updating the context
words.

For more background on neural networks and how they are
applied to NLP tasks, see [47] and [48].

In our framework, we treat every ICD-10 diagnosis code as a
word and the sequence of diagnosis codes for a patient as a
document. These documents are our corpus data for training
ICD2Vec (by applying Word2Vec to ICD-10 codes) and
Pat2Vec (by applying Doc2Vec to patients’ sequences of
diagnosis codes).

For training the 2Vec algorithms, we have to choose a vector
size of M (among other parameters; see below). Pat2Vec is
trained on the patients’ sample data and then gives us a data

matrix with M columns, where each row or patient is a vector
of length M (the embedding of the corresponding patient),
encoding all of their diagnoses. Additionally, we obtain in
parallel a vectorization of the ICD-10 codes themselves
(Word2Vec/ICD2Vec), where each code is represented by a
vector.

Hyperparameter Tuning
The 2Vec algorithms need several parameters as input for the
training of the vectorization model. These are referred to as
hyperparameters and have different considered ranges (Textbox
2).

Following previous research [35,37], we tuned the
hyperparameters for the vectorization model using a Bayesian
hyperparameter optimization [49] over the ranges given above.
We calibrated and validated the resulting vectorization models
with supervised machine learning (see the next section) using
the holdout calibration and validation data on the 4 calibration
outcomes.

Textbox 2. Hyperparameters and their ranges.

1. Vector size (100)

Length of the vector assigned to each patient. We hold this fixed while tuning the hyperparameters, but we will vary this value afterward for
comparisons.

2. Minimal count (100)

Only diagnoses that appear at least 100 times in the data are considered for anonymization purposes because of rare diseases. We will not optimize
this parameter.

3. Window size (1-10)

Describes how many of the neighboring codes will be considered in each training step within the 2Vec algorithm and a given sequence of codes.

4. Downsampling

Smaller values of the downsampling parameter mean that more of the most common words will be randomly excluded from the training data
(default 0.001). After preliminary analysis, we observed that downsampling is always detrimental to our task, so we did not downsample our
data.

5. Epochs (1-20)

The number of training epochs describes how many times each patient’s code sequence will be looked at to update the vectorization model.

6. Negative sampling (0-20)

For each update of a word and its neighboring words (within the window size range), this gives the number of random words not within the
window that will be updated as negative examples; 0 for no negative sampling.

7. Negative sampling exponent (–5 to 5)

Smoothing exponent for the updates of the negative samples.

8. Hierarchical softmax (Boolean)

This parameter describes how the network parameters will be updated at the end of each training step; true for hierarchical softmax and false for
no hierarchical softmax.

9. Distributed memory or distributed bag of words (Boolean)

Training of document vectors in either distributed memory (DM) or distributed bag of words (DBOW) fashion (see above); true for DM and
false for DBOW.

10. Alpha (0.001-0.1)

Learning rate of the neural network updates.
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Regression and Classification Methods

Overview
The data matrices generated by binary encoding or Pat2Vec
served as input data for prediction algorithms on the 4
calibration outcomes (number of cases, emergency health care
utilization, age, and gender). The employed algorithms are
described below, where LightGBM refers to the light
gradient-boosted machine algorithm [50].

Regression
For the real-valued count outcomes of age and number of cases,
we employed 2 different regression techniques: linear regression
and an ensemble decision tree–based regression algorithm with
gradient boosting (LightGBM Regressor) [50-52]. We chose
LightGBM over other gradient-boosted tree methods because
of its performance and fast training time [50,53,54]. Linear
regression does not have additional input parameters; LightGBM
was used out of the box without parameter optimization. The

goodness of fit was measured by the R2 and 1 minus the relative
mean absolute error (also known as Cumming predictive
measure [CPM]) [55].

Classification
For the binary outcomes of gender and emergency usage, we
employed 2 different classification techniques: logistic
regression and an ensemble decision tree–based classification
algorithm with gradient boosting (LightGBM Classifier)
[50,52,56]. Logistic regression does not have additional input
parameters; LightGBM was used out of the box without
parameter optimization. The goodness of fit was measured by
the area under the receiver operating characteristic curve and
the area under the precision-recall curve.

Final Model
The final model was chosen with Bayesian optimization of the
hyperparameters by aggregating the 16 performance measures:
2 approaches with linear/logistic regression and gradient-boosted

trees, and 2 measures for each of the 4 outcomes (R2 and CPM
for regression, receiver operating characteristic curve and area
under the precision-recall curve for classification). All of these
measures are in the range of 0 and 1, with higher values
indicating better performance but varying in size and range
between the 4 different outcomes and measures. As such, we
took the performance measure values of the top 100 diagnoses
baseline model as reference values. For each trial in the Bayesian
optimization and its respective vectorization model, we
calculated the 16 performance measures and divided them by
the respective reference value from the top 100 diagnoses
baseline model. We then aggregated these rates by calculating
their arithmetic mean as a total score (ie, this gives a reference
score of 1 for the top 100 diagnoses baseline model). The final
model was chosen based on the best total score after this
aggregation (Figure 1).

We then trained embedding models with the same
hyperparameter configuration as the final model, but with
different vector sizes M. Likewise, we derived the binary
encoding matrices of the top M diagnoses for varying sizes of
M. These embedding and binarization models were compared

on the same prediction tasks described above on the holdout
test data. The same procedures were replicated on the different
data sets for robustness analysis (diagnosis dropout and reduced
training data size, respectively).

Additionally, we conducted an exploratory and visual analysis
of the vector embeddings from the Pat2Vec vectorization on
the test data. To this end, we projected the 100D patient vector
embeddings into 2 dimensions using the uniform manifold
approximation and projection (UMAP) algorithm [57]. In
addition, these projections were clustered using hierarchical
density–based clustering (hierarchical density–based spatial
clustering of applications with noise [HDBSCAN]) [58]. We
assessed the general demographic and health care properties of
the clusters and identified overexpressed ICD-10 codes within
each cluster as the codes that have the largest positive difference
in their share within the respective cluster compared with their
share in the general population. As an explainability analysis,
we analyzed how ICD-10 diagnosis codes are associated with
specific dimensions of the vector embedding of size 100. To
this end, we calculated correlations over all patients in the test
data between a subset of 60 relevant ICD-10 diagnosis codes,
binary encoded per patient, and the 100 vector dimensions.

Furthermore, we predicted drug spending costs using the final
embedding model with a vector size of 100 and the baseline

model. We compared the performance (R2, mean absolute error,
and CPM), again with linear regression and the gradient-boosted
trees algorithm for regression (LightGBM Regressor). We also
added age and gender as additional predictors to these models.
Here, we tuned the hyperparameters of the LightGBM method
using Bayesian optimization to achieve its full potential.

Software
Analysis was conducted primarily in the Python programming
language (Python Software Foundation) [59], with additional
analyses in the R statistical programming language (The R
Foundation) [60]. Pat2Vec was implemented using the Gensim
package [61] for Python with hyperparameter tuning via the
Optuna package [62]. Machine learning prediction tasks were
conducted with scikit-learn (linear and logistic regression, [63])
and the LightGBM Python package [50], while 2D projection
and clustering were based on the UMAP package [57] and the
HDBSCAN package [58], respectively. Final visualizations
were prepared in R with the ggplot2 package [64].

Results

Sample Characteristics
After filtering the original sample of 11,200,000 patients, the
data were limited to 9,937,919 patients. The average age of the
patients was 45.2 years; 54.60% (5,426,481/9,937,919) of the
cohort were female. The average number of cases per patient
in 2019 was 8.4. About 18.32% (1,820,736/9,937,919) of the
cohort had at least one emergency in 2019. The average drug
spending in 2019 was €632.1 (US $683.4). The average number
of diagnosis codes from 2016 to 2018 (relevant for the training
data) was 67.6, whereas the average number of codes in 2018
only (relevant for prediction tasks) was 34.6. Variance was very
high on the variable drug spending, with an SD of 4383.9 (Table
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1). Furthermore, we observed a high number of patients with a
0 value in drug spending in 2019 (2,132,938/9,937,919, 21.46%,

patients).

Table 1. Patients’ data characteristics.

ValuesCharacteristics

45.2 (24.1)Age (years), mean (SD)

5,426,481/9,937,919 (54.60)Female gender, n/N (%)

8.4 (6.7)Number of cases, mean (SD)

1,820,736/9,937,919 (18.32)Emergency in 2019, n/N (%)

632.1 (4383.9)Drug cost (€a), mean (SD)

67.6 (92.4)Number of codes from 2016-2018, mean (SD)

34.6 (45.5)Number of codes in 2018, mean (SD)

a€1=US $1.08 (as of March 27, 2023).

Top M Diagnosis Codes
The baseline model was constructed from a binary encoding of
the top M diagnosis codes, for varying numbers of M. The most
prevalent diagnosis code was I10.90 (hypertension;
2,591,336/9,937,919, 26.08%, patients), followed by J06.9
(unspecified acute upper respiratory infection) and Z12.9
(unspecified special screening for neoplasms used in the various
German cancer screening programs [65]). Many patients have
at least one of the top diagnoses (eg, 8,947,182/9,937,919,
90.03%, patients) have at least one of the most prevalent
diagnoses). By contrast, over 2000 unique diagnosis codes make
up the bulk of the diagnoses, with a share of over 90% of all
diagnosis codes (317,316,756/343,751,225, 92.31%) in the data
(Supplementary Table S2 in Multimedia Appendix 1).

Hyperparameter Tuning Results
The Bayesian optimization search for the best hyperparameter
configuration revealed that the default parameters are not
sufficient and can be greatly improved upon (Figure 2). The

performance of the default parameter configuration did not
exceed that of the top M diagnoses baseline model.

The most important hyperparameters (Supplementary Figure
S1 in Multimedia Appendix 1) were (in order): the choice of
DBOW over DM, the number of epochs (choosing 3), the
negative sampling exponent (choosing approximately –2.3,
compared with the default [0.75]), and the learning rate alpha
(choosing approximately 0.0014, compared with the default
[0.025]).

When compared with the top M diagnoses approach with
M=100, the final set of parameters with a vector size of 100
resulted in a 9 percent point increase on our aggregated
performance metric. All final models with a vector size of 10
or larger increased performance over this baseline model of the
top 100 diagnoses. For smaller vector sizes, the gains in
performance compared with the baseline models of equal size
were larger (Figure 2). After a vector size of about 50, the
performance of the vectorization increased by lesser amounts.

Figure 2. A comparison of the default vectorization model, the baseline model (the top M diagnoses), and the final model after hyperparameter tuning
based on the total score of how well they did on prediction tasks.

Linear/Logistic Regression Versus Gradient-Boosted
Trees
The ensemble-based machine learning with LightGBM
Regressor/Classifier on the final vectorization model performed
better than the linear and logistic regression counterparts on the
vectorization data as well as the top M diagnoses data
(Supplementary Figure S2 in Multimedia Appendix 1).

Additionally, we observed a bigger increase in performance by
switching from top M diagnoses data to Pat2Vec-derived vectors
on smaller vector sizes, which stresses that information is
compressed well by the vectorization. Furthermore, up to a
vector size of about 100, the vectorization data with
linear/logistic regression or LightGBM outperformed even the
LightGBM approach on the binary-encoded data, which
indicates that nonlinear properties of the patient profiles were
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encoded in the vector embeddings. In summary, using
gradient-boosted trees or vector embeddings is always
beneficial, and the combination of the 2 yields the best results.

Robustness Analysis

Diagnosis Dropout
As a sensitivity or robustness analysis of the vector embedding
(and the baseline binary encoding), we calculated total scores
on the reduced dropout data (with 10%, 25%, and 50% of
diagnosis codes missing, respectively). We observed a steeper
decrease for the binary-encoded top 100 diagnoses data, while
the performance of the vectorization suffers mildly even with
a 50% drop out of the diagnosis data (Supplementary Figure
S3 in Multimedia Appendix 1).

Vectorization Training Data Sample Size
As an additional robustness analysis of the vector embedding
with regard to necessary training data size, we calculated total
scores on reduced vectorization training data, from 100% (the
original 10 million patients’ training data) to 0.1% of the original
training data, or 10,000 patients. We observed a total score
above 1 (thus, above the performance of the binary-encoded
baseline model) for sample sizes as low as 0.5% of the original
data, or 50,000 patients (Supplementary Figure S4 in Multimedia
Appendix 1), while sample sizes of at least 1 million patients
are needed to achieve total scores close to the total score on the
original data.

Analysis of Patient Embedding
For visualization purposes, we projected the final vectorization
model with a vector size of 100 into 2 dimensions using the
UMAP algorithm. This way we were able to illustrate the
high-dimensional vectorization and patterns within the patients’
cohort (Figures 3 and 4).

We observed a triangular shape in the vector space of the
embedded patient profiles, with multiple regions of higher
density. The 3 corner areas are (1) young patients of both
genders with a low number of cases and low prescription costs;
(2) women with an average age below the average age of the
cohort and with low prescription costs and a medium number
of cases; and (3) elderly patients of both genders with a high
number of cases and high prescription costs (Figure 3). The

HDBSCAN clustering identified 14 clusters but showed that
many patients are not easily mapped to a cluster (50.67%,
42,024/82,937, of test data; Figure 4).

A closer inspection of the clusters revealed interesting patterns
in the subcohorts (Figure 4 and Table 2; also see Multimedia
Appendix 2 for further details). The clusters 5, 13, and 14 all
have a mean age of almost 70 years or older, but differ in the
share of females, mean number of cases, rate of emergency
cases, and drug spending costs. Among these clusters, cluster
13 is the oldest with distinctive ICD-10 diagnoses of F03
(dementia) and R32 (urinary incontinence), along with a large
number of patients who do not appear in 2019’s data, which
indicates a high mortality within cluster 13. Clusters 5 and 6
have the most distinctive diagnosis codes in the H52 section
(refractive errors/eyesight), but differ in their average age.
Clusters 1 and 2 are almost exclusively female and of around
the same mean age, but cluster 1 has a higher share of
emergencies, and overexpressed ICD code Z34 (supervision of
normal pregnancy) and section O09 (duration of pregnancy)
point to pregnancy. Clusters 11 and 8 are the 2 youngest clusters,
where cluster 11 is mostly characterized by routine examinations
and vaccinations (Z00.1: routine child health examination; Z23.8
and Z27.8: immunizations), whereas cluster 8 is characterized
by developmental disorders of speech and language (F80.9 and
F80.0). Patients in cluster 12 have the most common acute
ambulatory diseases (J06.9: acute upper respiratory infection;
A09.9: gastroenteritis/colitis; and R51: headache). The
remaining clusters show the other most prominent public health
concerns in the German ambulatory health care system: cluster
3 (hay fever/asthma), cluster 4 (hypothyroidism), cluster 7
(depressive disorders), cluster 9 (pinched nerve/back pain/disc
disorders), and cluster 10 (diabetes type 2).

Regarding the explainability or backward interpretation of our
embedding, we analyzed how specific ICD-10 diagnosis codes
map onto the patient vector dimensions. A heatmap of the
correlations between a subset of 60 diagnosis codes and the
100D embedding showed that similar disease concepts were
mapped to the same vector dimensions in a blockwise manner
(Supplementary Figure S5 in Multimedia Appendix 1). It also
showed that disease information was spread out over multiple
dimensions instead of being mapped to only 1 dimension as in
binary encoding.
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Figure 3. UMAP embedding of Pat2Vec, colored by age/gender/number of cases in 2019/emergency treatment in 2019/last available year in claims
data/drug prescription costs in 2019. f: female; m: male; UMAP: uniform manifold approximation and projection.

Figure 4. UMAP embedding of Pat2Vec, numbers 1-14 indicate clusters found by HDBSCAN (hierarchical density–based spatial clustering of
applications with noise). UMAP: uniform manifold approximation and projection.
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Table 2. Properties of clustered patients’ cohorts.

Distinctive ICD-10b

codes

Mean drug

spending (€a)Emergency, %
Mean number
of casesFemale, %

Mean age
(years)

Percentage of
cohortCluster

Z00.1, Z23.8, Z27.869.2635.24.850.44.13.811

F80.9, F80.0, Z00.1198.0127.15.735.99.41.58

H52.2, H52.0, H52.162.7721.85.349.021.71.16

J06.9, A09.9, R51175.7719.84.631.327.66.712

Z34, N89.8, O09.3230.4728.48.499.932.01.71

J30.1, J45.9, J45.0323.3019.17.138.133.34.03

N89.8, Z30.9, Z12.9130.0018.78.699.733.79.32

F32.9, F32.1, F33.1431.0119.09.957.144.52.67

E03.9, E06.3, Z12.9191.2613.99.986.748.62.44

M54.1, M51.2, M54.5592.9815.710.447.057.66.69

I10.9, I10.90, E11.9480.1111.58.437.359.33.710

H52.2, H52.4, H52.0809.1612.910.959.669.92.15

I10.9, I10.90, I25.11587.9816.011.937.474.42.614

F03, R32, I10.91248.6426.68.262.980.71.313

N/Ac908.8917.99.451.050.250.7None

N/A654.1718.78.754.545.6100.0All

a€1=US $1.08 (as of March 27, 2023).
bICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision.
cN/A: not applicable.

Prediction of Drug Spending Costs
Predicting prospective individual drug spending from diagnosis
data is an especially hard task [66]. We predicted 2019’s
patient-level drug spending based on patients’ diagnosis codes
from 2018. We used and compared the binary-encoded top 100
diagnoses and our vectorization of dimension 100 (Pat2Vec).
In addition, we extended the data by age and gender of patients.
Table 3 shows the results using linear regression as well as
gradient-boosted trees. We observed an overall high relative

increase in performance by using the vectorization over the

baseline model, while in general the R2 values were low. The
linear regression shows diverging results between the top 100
and vectorization data with regard to absolute errors and squared

errors (CPM and R2). The gradient-boosted trees approach to
regression performed similarly to the linear regression on the
baseline model of binary-encoded top 100 diagnoses, while the
combination of Pat2Vec and gradient-boosted trees performed
best. Adding age and gender as additional variables led only to
small increases in performance.

Table 3. R2, mean absolute error, and Cumming prediction measure of predicting drug spending costs using linear regression and LightGBM Regressor.

LightGBM RegressorLinear regressionMeasure

Cumming prediction
measure, %Mean absolute error (€)R2, %

Cumming prediction
measure, %Mean absolute error (€a)R2, %

9.4801.091.17.4818.441.0Age + gender

14.5755.762.114.0760.552.0Top 100

14.9752.782.414.4757.132.0Top 100 + age + gender

20.4704.0112.94.3845.997.7Pat2Vec

21.9690.7013.74.3845.987.7Pat2Vec + age + gender

a€1=US $1.08 (as of March 27, 2023).
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Discussion

Principal Findings
We found that the NLP-based vector embeddings of claims data
led to large improvements on health care–related prediction
tasks compared with standard approaches (represented by binary
encoding). Hyperparameter tuning is necessary for these
improvements. On health care prediction tasks, gradient-boosted
tree algorithms outperform standard statistical methods (linear
or logistic regression). Gradient-boosted trees benefit more from
vectorization. Additionally, the performance of the vectorization
is more robust against incomplete data, but at least 1 million
patients are needed to train the vectorization model.
Furthermore, our cohort analysis shows that most patients’
diagnosis profiles lie on a spectrum of morbidity and cannot be
easily mapped to distinct patient clusters. Overall, the results
suggest we achieved the intended compression of the complete
patient profiles while keeping the relevant amount of available
information for prediction tasks.

Comparison With Previous Research
Embeddings of diagnosis codes have been studied extensively
before [14,29,38-42]. Patient-level embeddings have been
derived rarely [14,25,42]. To the best of our knowledge, there
is no ICD-10–based patient vectorization model trained and
optimized for application in generalized health care tasks.

Choi et al [39] trained ICD-9 code representations using another
similar NLP approach, and at the same time they learned “visit
representations” (vectors) based on a binary encoding of the
diagnosis codes for individual visits. Using logistic regression
and these representations of visits, they were able to predict
future disease codes from 1 visit to the next and clinical risk
groups [27]. In a similar way, Pham et al [41] trained diagnosis
code representations and combined them into variable-size
“admission representations” as input for a long short-term
memory (LSTM) to predict individual health prognoses after a
health care intervention.

Miotto et al [25] derived a patient-level embedding (Deep
Patient) using autoencoders based on ICD-9 diagnosis codes in
conjunction with medications, procedures, laboratory tests,
clinical notes (free-text), and demographic variables. They used
random forests and patient embeddings to predict future
diseases, but they did not tune their embedding algorithm or
prepare it for more general tasks.

Nguyen et al [42] found diagnosis code embeddings using
Word2Vec. Subsequently, given an outcome, they trained a
convolutional neural network to find predictive motifs for a
classifier. They arrived at a patient-level embedding after the
convolutional neural network step, but these embeddings are
dependent on the classification task (they predicted unplanned
readmissions in a hospital setting).

Almog et al [14] applied a similar approach (Crystal Bone) to
the special problem of predicting bone fracture incidents. For
the prediction of this specific task, they trained their
vectorization models on data filtered for bone incidents. They
described 2 approaches: gradient-boosted trees (using XGBoost
[67]) on patients’ vector embeddings as well as an LSTM [68]

neural network on the individual sequences of patients’
diagnosis code embeddings. They observed better performance
with the LSTM approach.

Li et al [29] derived an embedding for disease codes and a
framework to predict diseases and even generalized outcomes
(BEHRT). They did not set up a patient-level embedding with
a fixed size, and their embedding framework needs to be
retrained for new prediction tasks.

We were more interested in a general compression and
embedding of patients themselves for general health care–related
tasks (such as the prediction of different outcomes and an overall
visualization) and not just the optimization of 1 prediction task
only, thus we trained on the data of all patients, not filtered for
specific diagnoses, and restricted ourselves to the analysis of
the patients’ vector embeddings. In addition, our embedding is
based solely on the ICD-10 diagnosis data and does not need
additional data sources that might not be readily available in a
claims data setting. It would be helpful to look into how well
other advanced machine learning algorithms such as LSTM or
convolutional neural networks work on the ICD or patient vector
embeddings for health care prediction tasks, but this is outside
the scope of this paper.

Adkins [69] discussed the implications of a widespread adoption
of machine learning on EHR data in clinical prediction contexts.
While arguing that more complex machine learning models
(such as the one presented in this work, combining vectorization
and ensemble trees) on growing bodies of data will yield more
precise predictions at the price of interpretability (as well as
unforeseen ethical and legal issues), they pointed out the
limitations of considering a limited amount of ICD codes, a
problem that we could address to a large extent in our work.
Interpreting the dimensions of the vectorizations and other steps
to “explainable machine learning/artificial intelligence” are still
ongoing (eg, building on the Shapley additive explanations
values for tree methods [70,71]). Here, we employed a simple
approach using correlations between vector embeddings and
binary encoding to allow interpretation of vector dimensions
with regard to specific ICD-10 codes.

Limitations and Strengths
It has been discussed that a fusion of EHR data
(clinical/diagnosis data and laboratory quantitative
measurements) and other data sources (eg, medical images and
laboratory measurements) would lead to further advancements
in health care prediction tasks [72,73], where the problems of
these mixed data types need to be properly addressed.
Unfortunately, the claims data of the presented analysis do not
contain these additional data sources, and thus the current
implementation cannot acknowledge this.

We set up access to a pretrained model of our vectorization with
10 dimensions so that other researchers in the field can evaluate
our methods and use the model on their own health care data
[74].

Future Research
The next step will be to use the provided vectorization for
relevant tasks to improve health care. We will investigate
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whether our approach will benefit tasks such as disease
prediction with a long genesis time and prevention in cases of
early detection, such as dementia and mild cognitive impairment.
Furthermore, we will compare the benefits of data-driven
vectorization with common EHR-based procedures such as the
Elixhauser score [18] or clinical risk groups [27] in terms of
describing patient cohorts or predicting health care outcomes.
We think that patient clustering based on robust vectorization
has the potential to identify patients who would benefit from
early screening, which would lead to more personalized
screening measures.

Conclusions
Health care–related prediction tasks that rely on large samples
of data should make use of vectorization instead of binary
encoding. Our fully pretrained and validated model can be used
on new and possibly small data sets as well. Advanced machine
learning techniques profit more from our vectorization. We
enable more precise prediction models for decisions on future
public health policies as well as more accurate health care
services for individual patients.
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CPM: Cumming predictive measure
DBOW: distributed bag of words
DM: distributed memory
EHR: electronic health record
GDPR: General Data Protection Regulation
HDBSCAN: hierarchical density–based spatial clustering of applications with noise
ICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision
ICD-10-GM: International Statistical Classification of Diseases and Related Health Problems, 10th revision,
German Modification
LightGBM: light gradient-boosted machine
LSTM: long short-term memory
NLP: natural language processing
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UMAP: uniform manifold approximation and projection
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Abstract

Background: Chronic stress is highly prevalent in the German population. It has known adverse effects on mental health, such
as burnout and depression. Known long-term effects of chronic stress are cardiovascular disease, diabetes, and cancer.

Objective: This study aims to derive an interpretable multiclass machine learning model for predicting chronic stress levels
and factors protecting against chronic stress based on representative nationwide data from the German Health Interview and
Examination Survey for Adults, which is part of the national health monitoring program.

Methods: A data set from the German Health Interview and Examination Survey for Adults study including demographic,
clinical, and laboratory data from 5801 participants was analyzed. A multiclass eXtreme Gradient Boosting (XGBoost) model
was constructed to classify participants into 3 categories including low, middle, and high chronic stress levels. The model’s
performance was evaluated using the area under the receiver operating characteristic curve, precision, recall, specificity, and the
F1-score. Additionally, SHapley Additive exPlanations was used to interpret the prediction XGBoost model and to identify factors
protecting against chronic stress.

Results: The multiclass XGBoost model exhibited the macroaverage scores, with an area under the receiver operating characteristic
curve of 81%, precision of 63%, recall of 52%, specificity of 78%, and F1-score of 54%. The most important features for low-level
chronic stress were male gender, very good general health, high satisfaction with living space, and strong social support.

Conclusions: This study presents a multiclass interpretable prediction model for chronic stress in adults in Germany. The
explainable artificial intelligence technique SHapley Additive exPlanations identified relevant protective factors for chronic
stress, which need to be considered when developing interventions to reduce chronic stress.

(JMIR AI 2023;2:e41868)   doi:10.2196/41868

KEYWORDS

artificial intelligence; machine learning; prognostic; model; chronic stress; resilience factors; interpretable model; explainability;
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Introduction

Chronic stress has many negative effects, primarily on mental
health, for example burnout and depression [1]. Long-term
chronic stress is associated with various illnesses including
cardiovascular disease, diabetes, cancer, and asthma [2-5]. High

chronic stress is prevalent with multiple mental health problems
in the German population, and this value has increased to 61.1%
[6]. However, the vast majority of the population does not
develop high chronic stress. While most research has focused
on the development of pathology and risk factors, it is paramount
to better understand protective factors that prevent chronic stress.
In our prior study [7] with 764 participants including general
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practitioners (GPs) and practice assistants (PrAs) from
136 German general practices, we analyzed the level of strain
due to stress stratified for personal, practice, and regional
characteristics. We showed that GPs and PrAs, who individually
applied more than 5 measures regularly to compensate for stress,
had markedly lower stress levels as measured by the Screening
Scale of the Trier Inventory for the Assessment of Chronic
Stress (TICS-SSCS) instrument [8].

The psychological construct of resilience, developed over the
last decades, addresses this perspective. The American
Psychological Association (in 2014) defines resilience as “the
process of adapting well in the face of adversity, trauma,
tragedy, threats or even significant sources of stress” [9].
Resilience in the context of chronic stress has been characterized
by the ability to “bounce back from negative emotional
experiences and by flexible adaptation to the changing demands
of stressful experiences” [10]. It involves the ability to maintain
healthy functioning in different domains of life, such as work
and family. Holz et al [11] provided an overview of the current
literature investigating the neural mechanisms of resilience
focusing on social background. They discussed possible
prevention and early intervention approaches targeting the
individual and the social environment to lower the risk of
psychiatric disorders and to foster resilience [11]. Schetter et al
[12] reviewed the traditions of research and definitions of
resilience to chronic stress in adults and gained an understanding
of resilience in general. They developed a taxonomy of
resilience resources to guide future research [12]. Other studies
focused on neurobiological cascades involving, for example,
enkephalins and associated opioid receptors, μ-opioid peptide
receptor, and δ-opioid peptide receptor, to better understand the
biological mechanisms of natural adaptation. Prospectively, this
bares the potential for effective preventive or therapeutic
strategies [13].

To better understand the chronic stress in epidemiological
studies, machine learning (ML) offers new approaches to
evaluate and model complex relationships in data [14,15]. ML
strategies are based on algorithms, which describe the
relationships between variables. Two areas in medicine that
benefit from ML techniques are diagnosis and outcome
prediction [16,17]. Focusing on chronic stress prediction, our
prior study [18] compared 4 supervised ML classifiers and 1
standard approach based on data of 550 PrAs from 136 German
general practices. We showed that all 4 ML approaches,
especially random forest, provided more accurate models for
predicting chronic stress than standard regression analysis [18].

Aiming at an interpretable multiclass ML model for predicting
chronic stress, we developed an eXtreme Gradient Boosting
(XGBoost) model based on nationally representative German
Health Interview and Examination Survey for Adults (DEGS1)
data. The unified framework SHAP (SHapley Additive
exPlanations) is used to interpret the prediction model and to
identify factors protecting against chronic stress.

Methods

Overview
This study used nationally representative data from the DEGS1
study, which is a part of the health monitoring program of the
Robert Koch Institute, Berlin, Germany. It was conducted from
2008 to 2011 by means of interviews, examinations, and tests
among the German population aged 18-79 years (n=8151). The
DEGS1 data set, which is available for public use on request,
included measurements for chronic stress among 5801
respondents aged 18 to 64 years [6,19].

Primary Outcome
Chronic stress was assessed using the 12-item German short
version of TICS-SSCS (n=5850) [6]. It was developed by
Schultz et al [8] based on the systemic-requirement-resource
model of health [8,20]. The 12-item scale addresses 5 stress
areas: chronic worrying, work overload, social overload,
excessive demands of work, and lack of social recognition. Its
internal consistency showed a Cronbach α of .91 and a good to
very good reliability with values ranging from .84 to .91 (mean
α=.87) [8]. All 12 questionnaire items use a 5-point Likert scale
answer format (0=“never” to 4=“very often”) to measure chronic
stress in the past 3 months [21,22]. A sum score (scale 0-48)
was calculated for each participant, which is categorized in 3
classes based on a reference population with the TICS-SSCS:
1-11 (≤median)=low stress, 12-22=middle stress, and >22=high
stress (≥90th percentile). This multiclass outcome is the
recommended DEGS1 approach [6].

Predictors
In addition, the DEGS1 data set included variables on
sociodemographic characteristics, chronic diseases (eg, coronary
heart disease, stroke, diabetes mellitus, depression, and anxiety
disorder), living conditions, health-related behavior, preventive
measures, and general health. Based on a literature review and
using the Powershap feature selection method, 34 features were
included in this analysis. Table 1 depicts descriptive information
about the variables used.

JMIR AI 2023 | vol. 2 | e41868 | p.614https://ai.jmir.org/2023/1/e41868
(page number not for citation purposes)

Bozorgmehr & WeltermannJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Demographic, clinical, and workplace characteristics of the German Health Interview and Examination Survey for Adults study participants
(N=5801).

ValuesDemographic characteristics

Continuous variables, mean (SD; range)

42 (13.11; 18-64)Age (years)

3 (1.34; 1-11)Number of persons in the household

7 (1.19; 2-12)Sleep hours per night in the past 4 weeks

1 (5.30; 0-150)Number of hospital nights in the past 12 months

13 (38.01; 0-365)Number of sick days in the past 12 months

Categorical variables

3081 (49.6)Gender (female), n (%)

Marital status, n (%)

3697 (59.5)Married living with partner or separately from partner

1957 (31.5)Single

376 (6.1)Divorced

136 (2.2)Widowed

379 (6.1)Provides care to someone in need or seriously ill, n (%)

Renting or living in own apartment/house, n (%)

2689 (43.3)Rented apartment or house

3268 (52.6)Own apartment or house

Satisfaction with living space, n (%)

5269 (84.8)Very satisfied or satisfied

608 (9.8)Neither satisfied nor dissatisfied

295 (4.8)Dissatisfied or very dissatisfied

Residential area satisfaction, n (%)

5091 (81.9)Very satisfied or satisfied

727 (11.7)Neither satisfied nor dissatisfied

320 (5.2)Dissatisfied or very dissatisfied

General state of health, n (%)

4942 (79.5)Very good or good

1134 (18.3)Average

116 (1.8)Poor or very poor

Intake of sleeping pills in the past 4 weeks, n (%)

5919 (95.3)Never

100 (1.6)Less than 1 time

73 (1.2)1 time or 2 times

86 (1.4)3 times or more

Social support, n (%)

653 (10.5)Low support

3082 (49.6)Average support

2451 (39.5)Strong support

1873 (30.4)Health behavior consultation in the past 12 months, n (%)

5497 (88.5)Has general practitioner

4870 (78.4)Visited to general practitioner in the past 12 months
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ValuesDemographic characteristics

463 (7.5)Visited to neurologist in the past 12 months

Frequency of alcohol consumption, n (%)

744 (12.0)Never

1186 (19.1)1 time per month or less

1998 (32.2)2-4 times per month

1453 (23.4)2-3 times per week

811 (13.1)4 times per week or more

Tobacco use, n (%)

1701 (27.4)Yes, daily

433 (7)Yes, occasionally

1664 (26.8)Not anymore

2400 (38.7)Never smoked

Comorbidities, n (%)

1625 (26.2)Has hypertension

271 (4.4)Has diabetes

712 (11.5)Has migraine

682 (11)Has depression

327 (5.3)Has anxiety disorder

292 (4.7)Has burnout syndrome

1418 (22.8)Has one or more long-term chronic diseases

Prevention programs or sport activities, n (%)

988 (15.9)Participated in prevention program in the past 12 months

188 (3)Participated in relaxation or stress management program

832 (13.4)Participated in gymnastics, fitness, or balance sports program

7 (0.1)Participated in alcohol cessation program

17 (0.3)Participated in smoking cessation program

167 (2.7)Participated in weight reduction or a healthy diet program

Sports activities per week (in the past 3 months), n (%)

1954 (31.5)No sports activity

2584 (41.6)Up to 2 hours per week

990 (15.9)Regularly, 2-4 hours per week

645 (10.4)Regularly, more than 4 hours per week

Data Preprocessing

Data Normalization
The DEGS1 study features include both discrete and continuous
values. When these features are combined, the range of the
values differs. Therefore, the training data set was normalized
using the min-max normalization method. This normalization
technique accurately preserves all relationships in the data,
thereby avoiding the introduction of bias [23].

Handling of Missing Data
For single features, missing values were low (<2%), yielding
an overall missing rate of 13.91% in our data set. We used the

K-Nearest Neighbors (KNN) approach to impute the missing
variables. This method identifies the KNNs on the Euclidean
distance. Missing values were replaced using a majority vote
for discrete variables and weighted means for continuous
features. All features are imputed simultaneously without the
need to treat features individually [24].

Addressing the Imbalanced Data Set
For chronic stress, the distribution of classes was unequal
(class 0: 52%, class 1: 38%, and class 2: 11%). This imbalanced
multiclass classification was addressed using the Synthetic
Minority Oversampling TEchnique to increase the frequency
of near-miss data points within the training data set. This
oversampling method randomly generated new instances of
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minority class to balance the number of classes without any
additional information to the model [25].

Feature Selection
We used Powershap as a wrapper-based Shaply feature selection
method. This technique is based on the core assumption that an
informative feature will have a larger impact on the prediction
compared to a known random feature [26].

Machine Learning Approach: XGBoost

Overview
To predict chronic stress levels and detect factors protecting
against chronic stress, we applied the decision tree–based
ensemble ML technique, XGBoost [27,28]. XGBoost is a
scalable and accurate implementation gradient boosting machine
developed by the Distributed Machine Learning Community in
the form of open-source libraries. It combines a recursive
gradient boosting method called Newton boosting. Based on a
decision tree model, it efficiently provides accurate predictions
because each tree is boosted recursively and in parallel.

The ML technique generally aims to identify a relationship
between the input X={x1, x2, … xn} and the output Y. For a
given data set with n samples and m features, K additive
functions are used in the XGBoost model to predict the output
through the following estimation (equation 1) [27]:

where fk   {f(x) = ωq} (q: Rm → T, ω  RT) is the regression
tree’s space, and q denotes the independent structure of each
tree with T leaves. Each fk corresponds to an independent tree
structure q and leaf weights ω. The following regularized
objective is minimized to learn the set of functions (equation
2).

where Ω (f) = γT + ½ λ ||ω||2, I represents the model loss
function, and Ω denotes the regularized term.

Hyperparameter Tuning
In this study, a grid-search approach from scikit-learn class
“GridSearchCV” was applied toward the optimal tuning of
XGBoost hyperparameters. The number of estimators was set
to 1000 to represent the maximum number of trees created
during the training phase. The Softmax function is used to
convert logits of the XGBoost classifier into a probability
distribution. Each element of the output lies in the interval (0,1)
and the output elements sum up to 1. Table 2 summarizes the
hyperparameters´ values used to the XGBoost model (see
Multimedia Appendix 1).

Table 2. Main hyperparameters for the Extreme Gradient Boosting model.

ValueHyperparameter

0.3learning rate

1000Estimators, n

5max_depth

0.8Subsample

3min_child_weight

2L2 regularization term (Lambda)

0.7colsample-bytree

multi:softmaxObjective

K-Fold Cross-Validation
After preprocessing, the 34 features were fed into ML classifiers
to train the model for classification. The data set was split into
a “training” and a “validation” data set. We used the repeated
K-fold cross-validation approach, repeating the mean
performance across all folds and all repeats to reduce the bias
in the model's estimated performance with K=10. K=10 was
chosen as the optimal number of folds, which optimizes the
time to complete the test while minimizing the bias and variance
associated with the validation process.

Model Performance Evaluation
To evaluate the method proposed in this study, we used the
following most promising multiclass evaluation metrics: the
area under the receiver operating characteristic curve (AUC),
precision, recall, and F1-score. Multiclass classification works
on data sets in which all classes are mutually exclusive. In a

multiclass classifier, the evaluation measures of individual
classes are averaged out to determine the performance on overall
system across the data. We applied the macroaverage approach
[29].

The receiver operating characteristic (ROC) curve was used to
evaluate the performance of the classifier. For different
classification thresholds, the macro true-positive rate (equation
3) is plotted against the macro false-positive rate (equation 4).
The AUC indicates the classifier’s ability to distinguish between
classes. The value of the AUC is in the range (0,1), in which 1
is for a perfect classifier. In this study, the ROC curve is plotted
for each class broken down into a series of binary problems
using the One-vs-Rest approach. The macroaverage is computed
by summing the individual values for true positive, true negative,
false positive, and false negative. Then, macroaverage scores
of true positive instances (precision; equation 5), true positive
rate (recall; equation 6), true negative rate (specificity; equation
7), and the harmonic mean of the precision and recall computed
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on each class (F1-score; equation 8) were computed.
Mathematically, they are defined as follows:

We used Python 3.7 (Python Software Foundation) to implement
our ML framework. In addition, several libraries from the python
data science ecosystem were used to execute the experiments
and the integrated development environment PyCharm. To
implement the Powershap feature selection method, we used
the Powershap Python library. The scikit-learn package
(version 1.0.2) was used to train and evaluate the ML classifier.
SHAP tool (version 0.40.0) was used to assess the explainability
the model; that is, to identify factors protecting against chronic
stress.

In addition to the performance evaluation, this study maximizes
the interpretability of the underlying models. It focuses
particularly on the explainability of the model, which can serve
as an indispensable tool in the era of precision medicine.

Model Interpretation: SHAP
Per our understanding, the interpretation of the prediction
models is as crucial as the prediction accuracy because it extracts
information that significantly affects outcomes and identifies
the factors protecting against chronic stress from subjects with
lower chronic stress. However, the ensemble learning method
XGBoost represents a black-box model. To overcome this
problem, Lundberg [30,31] proposes the SHAP approach for
interpreting predictions of complex models created by different
techniques; for example, NGBoost, CatBoost, XGBoost,
LightGBM, and scikit-learn tree models. SHAP was initially
developed by Shapley in 1953 and is based on the game theory
[32]. It explains the prediction of a specific input (X) by
calculating the impact of each feature on the prediction. The
estimated Shapley values are calculated as follows (equation
9):

where is the prediction for x, but with a random number of
feature values. TreeSHAP is used for gradient boosting models
including XGBoost. It offers a rich visualization of each feature
attribution and allows for partial dependence plots.

The TreeSHAP interaction values estimates as follows (equation
10):

where i ≠ j, δij(S) = fx(S ∪ {I,j} – fx(S ∪ {i} – fx(S ∪ {j} + fx(S),
M is the number of features, and S denotes all feature subsets.
SHAP values advance the understanding of tree models by
including feature importance, feature dependence plots, local
explanations, and summary plots [30].

Ethical Considerations
Ethics approval for the DEGS1 survey was obtained from the
Charité – Universitätsmedizin Berlin Ethics Committee
(EA2/047/08). All participants received written information
and provided informed consent before the interview and
examination. The analysis described here builds on a data set
from the DEGS1 study, which was kindly provided by the
Robert Koch Institute. This secondary analysis of anonymized
data does not require a separate ethics vote.

Results

Characteristics of the DEGS1 Study Population
The mean age of the 5801 DEGS1 study participants was
44 years, with more than half of the population being female
(n=3080, 53.1%). The mean stress level of the total population
was 12.00 (95% CI 11.79-12.20): 11% (n=625) of the
participants had “high chronic stress” (category 2), while 38%
(n=2188) had “middle” (category 1), and 52% (n=2988) of them
had “low chronic stress” (category 0). Most participants reported
their general state of health as very good or good (79.3%,
n=4599). Table 1 shows the weighted demographic, clinical,
and laboratory characteristics of the participants.

Results of the Machine Learning Analysis
The evaluation metrics of the XGBoost model’s performance
are presented in Table 3 differentiated by chronic stress classes.
We see that the XGBoost model achieved the highest AUC
score for class 2 with 0.89% and a good macroaverage AUC
score of 81% for the overall model. The metrics for the 3 stress
classes and the average results are reported in Table 3. The ROC
curves for the multiclass chronic stress prediction of the
XGBoost model are shown in Figure 1.
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Table 3. Classification metrics: area under the receiver operating characteristic curve (AUC), precision, recall, specificity, and F1-score for XGBoost.

XGBoostMeasure

MacroaverageClass 2Class 1Class 0

0.810.890.710.83AUC

0.630.580.560.73Precision

0.520.370.550.80Recall

0.780.260.380.90Specificity

0.540.450.600.76F1-score

Figure 1. ROC curves for 3 classes using the XGBoost multiclass classifier. AUC: area under the receiver operating characteristic curve; ROC: receiver
operating characteristic curve.

Explanation of the Behavior of Individual Features
The result of the SHAP analysis is displayed in Figure 2. In this
plot, the impact of a feature on the respective classes (stress
classes 0-2) is stacked to illustrate the feature importance. This
means that the features with large absolute Shapley values are
more important than those with lower values. The plot shows
that class 0 (low level of chronic stress) hardly uses the features
gender, general state of health, satisfaction with living space,
and social support. Class 2 as the high level of chronic stress
uses the features number of sick days in the past 12 months,
social support, sleeping hours per night in the past 4 weeks,
gender, and general state of health. Interestingly, classes 0 and 2
use many identical features.

While the SHAP feature plot provides an overview of the role
of each variable irrespective of the direction of these effects,
the SHAP summary plot provides such additional information
for classes. The impact distribution of each feature on the model
output for classes with low and high levels of chronic stress is
shown in Figures 3 and 4. Each row in this plot represents a
single feature in order of their mean absolute SHAP values. It
can be a negative or positive value and represents the importance

of each feature. Each dot is a Shapley value for a particular
feature and reflects its impact on a specific class for a given
instance, and dots stack up to show density. It is color-coded
in accordance with the magnitude to which the value contributes
to the model impact (red=high and blue=low). The color is the
actual feature value in the data set. For example, the red values
for age as a continuous feature represent older people, while
blue values represent younger people, and blue values for gender
as a categorical feature (low value=1) represent males and red
values (high value= 2) represent females. Overlapping points
are jittered toward the y-axis, giving a sense of the distribution
of the Shapley values per feature.

According to the SHAP summary plot result, gender is the most
significant feature for class 0, and the number of sick days in
the past 12 months has the highest impact on class 2. We note
that the general state of health (shown in red) with high values
has negative SHAP values and a relatively negative effect on
the model for the low level of chronic stress and a positive
impact (positive SHAP values) for class 2. Higher values on
the social support scale have a positive impact on class 0 and
negative effects on class 2, which means that chronic stress is
less likely with strong social support.
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Figure 2. SHAP feature plot of the 20 most important features: relative importance of each feature based on the average absolute value of the SHAP
values. SHAP: SHapley Additive exPlanations; XGBoost: Extreme Gradient Boosting. *In the past 12 months; **per week.

Figure 3. SHAP summary plot. Importance of the representative chronic stress features (top 20) in class 0: each dot is a Shapley value for a particular
feature and reflects its impact on a specific class for a given instance, and dots stack up to show density. It is color-coded in accordance with the
magnitude to which the value contributes to the model impact (red=high and blue=low). GP: general practitioner; SHAP: SHapley Additive exPlanations.
*In the past 12 months; **per week.
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Figure 4. SHAP summary plot. Importance of the representative chronic stress features (top 20) in class 2: each dot is a Shapley value for a particular
feature and reflects its impact on a specific class for a given instance, and dots stack up to show density. It is color-coded in accordance with the
magnitude to which the value contributes to the model impact (red=high and blue=low). SHAP: SHapley Additive exPlanations. *In the past 12 months.

Discussion

Principal Findings
To our knowledge, this is the first study to select the XGBoost
algorithm as an ML multiclass classifier in the prediction of
chronic stress as well as the SHAP method to interpret the
model’s prediction. Based on nationally representative German
data, chronic stress was predicted using 34 characteristics of
adult participants. We identified male gender, a very good
general state of health, high satisfaction with living space, strong
social support, enough sleep, and more than 4 hours of sports
activities per week as protective factors against chronic stress.
These results are in line with those of other studies, which
showed that resilience against chronic stress is promoted by
social support, family connectedness, and friendship networks
in the community [33-36]. For example, with a sample of 24,347
participants from the Canadian General Social Survey, Van der
Horst et al [36] determined that good friendship networks are
positively associated with less stress, better health, and more
social support. A cross-sectional study of 538 nursing students
from an Australian university showed that social support
positively affect the psychological well-being [37].

Our ML approach allowed for the inclusion of a broad spectrum
of individual characteristics, which comprised medical, lifestyle,
living space, and social information, while other studies on
chronic stress used multivariate models with fewer parameters
only. For example, a large cross-sectional study with 34,129
participants from China, Ghana, India, Mexico, Russia, and
South Africa showed positive associations of multimorbidity,
stroke, depression, and hearing problems with perceived stress

without assessing potential protective factors such as living
space and social support [38]. A US cross-sectional telephone
survey with 340,847 participants aged between 18 and 85 years
documented that psychological well-being, especially stress,
improved, but integrated only 5 parameters such as gender,
employment status, partnership, and underage children in the
household in their model analyzed [39]. In a study with 12,110
working adults from Minnesota, United States, a high level of
perceived stress was associated with a higher-fat diet, less
exercising, and being a smoker using a multivariate model with
6 variable topics but did not include medical and living
circumstances [40].

Strengths and Limitations
This study used the population-based, representative DEGS1
data set, which implies a low risk of selection bias; yet, the
results may not be transferrable to other settings. The DEGS1
data, which were collected from 2008 to 2011, may not fully
describe current living conditions in Germany, especially the
potential effects of the pandemic, which were shown in other
studies, were not measured [41]. In our study, the SHAP
methodology allowed for a detailed visualization of single
feature attributions, which improved the understanding of the
ML model.

Conclusions
In this study, we developed an XGBoost ML model to predict
chronic stress in adults. The SHAP methodology identified
various relevant factors protecting against chronic stress, which
need to be considered when developing interventions for stress
reduction and improving resilience.
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