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Abstract

Background: Artificial intelligence (AI) applications based on advanced deep learning methods in image recognition tasks can
increase efficiency in the monitoring of medication adherence through automation. AI has sparsely been evaluated for the
monitoring of medication adherence in clinical settings. However, AI has the potential to transform the way health care is delivered
even in limited-resource settings such as Africa.

Objective: We aimed to pilot the development of a deep learning model for simple binary classification and confirmation of
proper medication adherence to enhance efficiency in the use of video monitoring of patients in tuberculosis treatment.

Methods: We used a secondary data set of 861 video images of medication intake that were collected from consenting adult
patients with tuberculosis in an institutional review board–approved study evaluating video-observed therapy in Uganda. The
video images were processed through a series of steps to prepare them for use in a training model. First, we annotated videos
using a specific protocol to eliminate those with poor quality. After the initial annotation step, 497 videos had sufficient quality
for training the models. Among them, 405 were positive samples, whereas 92 were negative samples. With some preprocessing
techniques, we obtained 160 frames with a size of 224 × 224 in each video. We used a deep learning framework that leveraged
4 convolutional neural networks models to extract visual features from the video frames and automatically perform binary
classification of adherence or nonadherence. We evaluated the diagnostic properties of the different models using sensitivity,
specificity, F1-score, and precision. The area under the curve (AUC) was used to assess the discriminative performance and the
speed per video review as a metric for model efficiency. We conducted a 5-fold internal cross-validation to determine the diagnostic
and discriminative performance of the models. We did not conduct external validation due to a lack of publicly available data
sets with specific medication intake video frames.

Results: Diagnostic properties and discriminative performance from internal cross-validation were moderate to high in the
binary classification tasks with 4 selected automated deep learning models. The sensitivity ranged from 92.8 to 95.8%, specificity
from 43.5 to 55.4%, F1-score from 0.91 to 0.92, precision from 88% to 90.1%, and AUC from 0.78 to 0.85. The 3D ResNet model
had the highest precision, AUC, and speed.
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Conclusions: All 4 deep learning models showed comparable diagnostic properties and discriminative performance. The findings
serve as a reasonable proof of concept to support the potential application of AI in the binary classification of video frames to
predict medication adherence.

(JMIR AI 2023;2:e40167) doi: 10.2196/40167
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Introduction

Tuberculosis (TB) is a leading cause of death worldwide, with
an estimated 10.6 million new cases of the disease and 1.7
million patients dying in 2021 [1]. The global End TB strategy
set goals to eliminate disease, deaths, and burden by 2030 [2],
but these could be out of reach if critical gaps in diagnosis,
treatment, and care are not addressed. Medication adherence,
defined as the extent to which a person’s behavior regarding
medication corresponds with agreed recommendations from a
health care provider, is one of the barriers to TB control [3]. It
is estimated that 33% to 50% of patients who start treatment
become nonadherent to their prescribed medication regimens
[4,5]. Nonadherence is associated with the emergence of drug
resistance, prolonged infectiousness, treatment failure, and
death, especially in the context of TB and HIV coinfection [6,7].
The existing interventions to mitigate poor medication adherence
have limited effectiveness for a variety of reasons [5]. In Africa,
a high patient load coupled with a severe shortage of health
workers hampers proper monitoring and support of patients on
TB treatment [8]. Digital adherence technologies have rapidly
emerged as tools for improving the delivery of care in a variety
of health care settings [2,9]. In 2017, the World Health
Organization endorsed the use of video-based directly observed
therapy (VDOT) as a suitable alternative to directly observed
therapy for monitoring TB treatment and published guidance
on its implementation [10]. VDOT overcomes geographic
barriers because it enables the health providers to view patients’
medication intake activity remotely, especially in the
hard-to-reach populations [11-13]. It also enhances autonomy
since patients can choose when and where they take their TB
medications [14-16]. The limitation with asynchronous VDOT
is the repetitive manual task of reviewing videos and confirming
daily adherence [17]. Moreover, such classification tasks are
accomplished by following a prespecified protocol [18]. In the
face of high patient workloads, repetitive manual tasks could
lead to inaccurate assessment and human fatigue. High workload
is a recognized occupational stressor that has implications for
the quality of care and patient outcomes [19]. The automation
of routine processes is a well-known solution to increase
efficiency in daily workflows. Therefore, more advanced tools
such as artificial intelligence (AI) can be integrated with digital
adherence technologies to accelerate widespread adoption and
impact [20,21].

AI applications have the potential to transform health care in
several clinical practice areas, primarily medical imaging [22].
First, AI tools can increase productivity and the efficiency of
care delivery by streamlining workflows in the health care

systems [23]. Second, AI can help improve the experience of
health care workers, enabling them to spend more time in direct
patient care and reducing stress-related burnout [19]. Third, AI
can support the faster delivery of care, by enhancing clinical
decision-making, helping health care systems manage population
health more proactively, and allocating resources to where they
can have the largest impact [24]. Modern computer vision
techniques powered by deep learning convolutional neural
networks (DCNNs) can be applied to medical imaging, medical
videos, and clinical deployment [25]. Deep learning techniques
that process raw data to perform classification or detection tasks
can make digital adherence monitoring in TB control more
effective and efficient. DCNNs are state-of-the-art machine
learning algorithms that have the ability to learn from input data
to recognize intricate activities and patterns [26]. These
characteristics make DCNNs powerful tools for recognition,
classification, and prediction. Moreover, the features discovered
by the models are not predetermined by human experts but
rather by the patterns they learn from input data [27,28]. This
concept can be applied to patterns in the videos of medication
intake. However, the development and implementation of deep
learning methods in health care remain largely limited because
of a lack of access to large, well-curated, and labeled data sets.
Additionally, specific technical knowledge, skills, and expertise
required to develop deep learning models are often uncommon
among health care professionals [27]. The goal of our pilot was
to conduct a proof of concept for the development of an AI
system that can perform routine classification tasks applicable
to medication adherence. We expect that this initial step will
be the basis for further development and validation of AI tools
that will be used across treatments in chronic diseases in a
variety of clinical settings.

Methods

Study Design, Population, and Data Sources
In this pilot study, a multidisciplinary team consisting of a
physician scientist with expertise in TB medication adherence;
2 computer scientists with expertise in machine learning,
computer vision, and deep learning models; and 3 graduate
students in computer science evaluated the technical feasibility
of applying AI to analyze a raw data set of videos from patients
with TB taking medications. We used a secondary data set of
861 self-recorded medication intake videos collected as part of
a pilot VDOT study of 51 patients with TB. The pilot study was
conducted in Uganda.
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Ethical Approval
The study was approved by the Institutional Review Board
Office of Research, University of Georgia (number
PROJECT00002406) and the Makerere University Higher
Degrees, Research and Ethics Committee in Uganda (number
756).

Patient Recruitment and Enrollment
A cohort of adult male and female patients aged 18-65 years
with a confirmed diagnosis of TB attending public clinics in
Kampala, Uganda, were enrolled in VDOT pilot studies from
July 2018 to December 2020. The study evaluated the
effectiveness of VDOT in monitoring adherence where daily
medication intake videos were collected with the patients’
written consent. Further details on the eligibility criteria and
sociodemographic characteristics of the patients contributing
to the video data sets are published elsewhere [16].

Process of Annotation and Labeling of Medication
Videos
First, a team of 3 trained video annotators with a computer
science background evaluated the videos in the primary
medication intake data set to create a new medication intake
video data set. Using a systematic iterative process of review
and discussions, the research team developed a protocol for
video annotation de novo, since no specific protocols existed
for medication videos. The team included the 3 trained student
annotators, a senior computer scientist, and a physician with
expertise in medication adherence. The protocol was
summarized into 3 basic rules that guided labeling videos as

positive—actual medication ingestion activity, negative—no
medication intake activities, or ambiguous—if no pills were
seen but there was a blurry image of a face, as described in
Table 1. We used the de novo standardized protocol for labeling
videos. To control the quality of the annotation, we only
considered videos where there was complete agreement of the
classification across the 3 annotators to create the final video
data set for model training and evaluation. After the annotation
process, out of 861 videos, we kept 497 videos, which consisted
of 405 (47%) positive videos and 92 (10%) negative videos.
The sex and class distribution of videos that were kept in the
final data set was as follows: of the 405 positive videos from
51 patients, 248 (61.2%) were from 28 male patients and 157
(38.7%) videos were from 23 female patients. Only 36 patients
produced 92 negative videos; 48 (52%) were from 19 male
patients, and 44 (48%) were from 17 female patients. The
average distribution was 8 positive videos and 2 negative videos
per patient. The outcome of this process resulted in the
medication intake video data set that was used as a training data
set for the deep learning model. Second, we divided the data
set into training and validation subsets to assess the performance
of our deep learning framework and baselines on medication
adherence recognition. Furthermore, we analyzed the influence
of different deep learning architectures in our framework on
medication adherence recognition, classification, and prediction.
It is important to note that the video annotation process is only
required to construct the data set for model training and
evaluation of this study. Once the deep learning model is trained,
we do not need manual annotations anymore for the new videos,
when using the proposed methods in practice.

Table 1. The rules for video annotation, labeling, and outcome of the video data set.

Videos (N=861), n (%)DescriptionLabels

405 (47)Positive: actual medication ingestion activi-
ties=adherence

• Videos show clear visibility of the face, pill, and water bottle
• Patient exhibits clear action of taking pills and drinking water
• Good illumination

92 (10)Negative: no actual medication ingestion activ-
ities=nonadherence

• Face of patient seen
• No pills are detected
• Patient does not put the pills into his or her mouth or there is no action

of drinking water
• Good illumination

364 (42.3)—aExcluded videos

157 (18.2)Ambiguous or uncertain videos • Pills not seen
• Blurry faces and hands

152 (17.7)Poor quality videos • Poor illumination
• Face of patient not seen

55 (6)Not reviewedDamaged videos

aNot applicable.

Preprocessing of the Annotated Medication Intake
Videos
Before we used AI tools to analyze the medication adherence
of the patients, some techniques were implemented to preprocess
the videos. The video-preprocessing stage was divided into 3

parts. In the first part, each video was converted to the mp4
format since the mp4 format is more convenient to process than
the original format of the raw videos. Next, we adopted FFmpeg,
a leading multimedia framework, to extract the video frames
from each video with the mp4 format. Nevertheless, not all the
video frames were relevant to the medication adherence, and
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the number of the video frames for each video was quite
different, which also posed a problem in our study. In the end,
we manually extracted the same number of key video frames
that were the most relevant to medication adherence. These
video frames constituted the final data set for our AI
experiments.

Model Development: Deep Learning Framework
Our deep learning framework for recognizing medication intake
activities consisted of 2 parts: first, convolutional neural
networks (CNNs) were used to extract visual features from
medication intake videos; and second, support vector machine
(SVM) [29] was adopted as a classifier to generate prediction
scores for videos as shown in Figure 1. In particular, inspired
by the huge success of deep learning models in image and video
analysis, we used 2D CNN and 3D CNN models to extract the
high-dimensional, spatiotemporal features from input videos.
These models were pretrained on large-scale, labeled image or
video data sets. Then, the SVM, an effective classifier, was
trained to classify the extracted high-dimensional features. Our
framework consisted of DCNNs pretrained with external data
sets: Inception-v4 [30]; 3D ResNet, designed for lower
complexity structure with so-called skip residual connections
[31]; 3D ResNext [32]; and Inflated 3D [33]. These DCNNs
are extensively used by the computer science community for
extracting features from images and videos [34]. Specifically,
Inception-v4 is pretrained on the ImageNet data set [35]. 3D
ResNet, 3D ResNext, and Inflated 3D are pretrained on the
Kinetics data set [36,37]. Besides, the sizes of the feature vectors
from each model are different. For instance, the length of the

feature vector generated from Inception-v4 is 1536, whereas
the length of the feature vector is 2048 from 3D ResNet and 3D
ResNext. The details of the feature length are illustrated in Table
2. In the training stage, we trained the SVM with features
extracted by the pretrained DCNNs from the training data set.
In the testing stage, our trained model, which consists of a
DCNN and SVM, generated prediction scores for videos from
the testing data set to recognize the medication adherence. The
generated prediction score is a decimal number between 0 and
1, which can be interpreted as the probability that the video
represents a patient correctly ingesting their medication.

These DCNN models are designed primarily to extract the
feature from images, but they cannot deal with videos directly,
due to the 3D structure of video data. To tackle this problem,
various 3D CNN models have been developed, in which the 2D
convolution operation is extended to 3D convolution operation.
The 3D ResNet and 3D ResNext used in our study are built on
the 2D CNN model ResNet [31] that introduces the idea of
residual connections. Figure 2 illustrates the building blocks of
the ResNet, 3D ResNet, and 3D ResNext. All 3 blocks consist
of 3 convolution layers followed by batch normalization [32],
rectified linear unit [33], and identity mapping [31]. The major
difference is that the 2D convolution kernels (1 × 1 and 3 × 3)
in ResNet are modified to 3D convolution kernels (1 × 1 × 1
and 3 × 3 × 3) in 3D ResNet and 3D ResNext. Compared to 3D
ResNet, 3D ResNext introduces the group convolutions in the
second layer of the block, which divides the feature maps into
small groups. In practice, 3D ResNet and 3D ResNext are
typically composed of multiple layers [30,31].

Figure 1. Illustration of deep learning framework with feature extractor CNNs and classifier SVM. Different grey colors represent labeled videos, and
black color denotes unlabeled videos. CNN: convolution neural network; SVM: support vector machine.

Table 2. The number of the features with its corresponding model.

Features, nModel

16,740HOGa

1536Inception-v4

20483D ResNet

20483D ResNext

1024Inflated 3D

aHOG: histogram of oriented gradient.
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Figure 2. Illustration of the building block of (a) ResNet, (b) 3D ResNet, and (c) 3D ResNext. BN: batch normalization; conv: convolution; F: number
of feature channels; ReLu: rectified linear unit .

Apart from 3D ResNet and 3D ResNext, we also used
Inception-v4 and Inflated 3D as our feature extractors. As a 2D
CNN model, Inception-v4 is the fourth version of the Inception
architecture network family. Compared to previous versions of
the Inception family, Inception-v4 not only has a more uniformly
simplified architecture and more inception modules but also
absorbs the idea of residual connections from ResNet to form
the new Inception block called residual inception blocks. Inflated
3D is another 3D CNN, which is built upon a 2D CNN from
the Inception family. In our study, we compared the performance
of one 2D CNN (Inception-v4) and three 3D CNNs (ie, 3D
ResNet, 3D ResNext, and Inflated 3D). The 2D CNN treated
each video as a set of video frames and generated a feature
vector for each video frame, whereas 3D CNNs took video as
a whole and generated a unified feature vector.

To better illustrate the effectiveness of deep learning models
for medication adherence recognition, we used a traditional
visual feature descriptor, histogram of oriented gradient (HOG)
[38], as the replacement of the features extracted by DCNNs.
HOG is a traditional descriptor that can generate handcrafted
features directly from the images. The handcrafted feature was
fed into the SVM for classification. In our pilot study, the SVM
with HOG features was used as a baseline. Besides, we also
investigated the average time of each method to extract features
from the video frames, since efficiency is also an important
indicator to evaluate the methods in practice.

Statistical Analysis
We adopted a 5-fold cross-validation strategy to evaluate the
performance of our deep learning framework with different
DCNNs as it is the recommended best practice for model
validation [39]. We chose 5-fold cross-validation since it offers
a good trade-off between efficiency and reliability, compared
with alternative strategies such as leave-one-out cross-validation

or random splits. In the experiments, we evaluated the
performance of our framework from different aspects by using
5 metrics: the area under the receiver operating characteristic
(ROC) curve (AUC) and F1-score, which are primary evaluation
metrics, and sensitivity (recall), specificity, and precision
(positive predictive value), which are supplementary. The
F1-score can be interpreted as the harmonic mean of precision
and recall. We empirically set the threshold to 0.6 to neutralize
the adverse effect of the imbalanced distribution of the data.
For each given DCNN in our framework, we randomly split the
data set into 5 subsets: 4 out of 5 subsets were used as the
training data set, and the rest were adopted as the testing data
set. We ran the 5-fold cross-validation 5 times. Each time, we
randomly shuffled the order of the data before feeding the data
into the model and reporting the mean values and SDs for each
metric. Furthermore, another comparison experiment was
implemented to show that our framework does not suffer from
an overfitting problem with the high-dimensional features.
Besides, we also drew the ROC curves to demonstrate the
performance of different CNNs. We also evaluated the efficiency
using speed in seconds as a metric defining the time required
to extract features from the videos relevant to medications
adherence. In addition, we noticed that metrics such as precision
still have some limitations in the presence of class imbalance.
This problem can be mitigated by adjusting the classification
threshold.

Results

Performance in the Monitoring of Medication
Adherence
3D ResNet achieved the best performance in the task of
monitoring patient medication adherence activities as shown in
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Table 3. The performance of 3D ResNext was very close to that
of 3D ResNet since they both have similar structure. Besides,
the results also reveal that 3D CNN models had better
performance than the 2D CNN model and traditional feature
descriptor method. Specifically, the HOG method obtained the
lowest values on all metrics. It is noted that 3D ResNet, 3D
ResNext, and Inflated 3D are specifically designed for video

feature extraction, whereas Inception-v4 is designed for image
feature extraction. Overall, the performances of the 3D ResNet
and 3D ResNext were very comparable in all the metrics. The
3D ResNet obtained the best results on the AUC, highlighting
its advantage in the prediction of the medication adherence
activity.

Table 3. Performance of the proposed deep learning framework under different convolution neural networks and histogram of oriented gradient (HOG).

AUCa, mean (SD)F1-score, mean (SD)Precision, mean (SD)Specificity, mean (SD)Sensitivity, mean (SD)Feature extractor

0.65 (0.06)87.77 (1.41)85.03 (1.86)27.35 (8.98)90.77 (2.62)HOG

0.80 (0.05)90.12 (1.90)87.91 (1.95)43.70 (8.64)92.54 (3.53)Inception-v4

0.87 (0.04)92.30 (1.44)90.20 (1.81)54.57 (6.46)94.57b (2.61)3D ResNet

0.85 (0.05)91.81 (1.82)89.62 (2.21)51.74 (7.33)94.17 (2.67)3D ResNext

0.82 (0.06)90.94 (2.24)89.08 (1.85)49.78 (8.00)92.94 (3.47)Inflated 3D

aAUC: area under the curve.
bItalicized numbers represent the best result under each metric.

Assessing Overfitting of the Model
AI models usually suffer from the overfitting problem with
high-dimensional features and limited number of training data.
To further investigate whether high-dimensional features would
cause the overfitting problem or not, we conducted additional
experiments to give a better illustration. In this experiment, we
used the pretrained 3D ResNet as the feature extractor and
reduced the original feature dimension from 2048 to 256 with
the principal component analysis method. The results are shown
in Table 4. We observed that both of dimensions achieved
similar performance, which confirmed that our framework was
not affected much by the overfitting problem.

The ROC curves in Figure 3 were generated by plotting the true
positive rate (sensitivity) against the false positive rate
(specificity) at different threshold settings. The diagonal straight
dashed line from (0,0) to (1,1) represents the performance of
the random classifier. Ideally, all the ROC curves should lie
above the straight dashed line. The further the curve deviates
from the diagonal line, the better the classifier is. The curves
in Figure 3 can be divided into 3 groups. The first group
representing 3D ResNet and 3D ResNext show that the 2 curves
were the closest to the y-axis with the highest AUC. The second
group consists of Inception-v4 and Inflated 3D, with AUCs of
0.78 and 0.80. The worst performing classifier was the
traditional model HOG, which is very close to the diagonal line,
and its AUC is only 0.60.

We also investigated the time efficiency of each method in our
study and the results are illustrated in Table 5. The machine

that ran the code consisted of 2 Intel E4208 CPUs and 1 P100
Tesla GPU. We evaluated the average time spent per video by
each method to generate the relevant features. 3D ResNet was
the fastest and took only 0.54 seconds to generate the features
for each video, whereas HOG was the slowest, spending on
average 4.53 seconds—8 times longer to generate the
handcrafted features from a single video, signifying its
inferiority in efficiency. The speeds of 3D ResNext and Inflated
3D were relatively comparable, whereas Inception-v4 was
slower than the other DCNNs. Overall, considering both the
model’s accuracy and efficiency, 3D ResNet might be the better
model because it has both high accuracy and efficiency of
processing videos.

The class imbalance between positive and negative videos was
pronounced in our data at a ratio of 405:92, respectively. To
remedy the potential detrimental effect of the class imbalance
in our data, we used a simple but effective method of adjusting
the classification threshold [40]. We conducted experiments to
illustrate how different threshold values affected the
performance of our model. In the experiment, we used 3D
ResNet as the feature extractor and chose 3 threshold values:
0.5, 0.6, and 0.7. Five-fold cross-validation with fixed splits
was adopted as shown in Table 6. We see that higher threshold
values would lead to higher specificity and precision values but
slightly lower sensitivity and F1-score values. Adjusting the
classification threshold helped to balance the sensitivity and
specificity.

Table 4. Performance of the proposed deep learning framework with different dimensions of features. 3D ResNet was adopted as the feature extractor.

AUCaF1-scorePrecisionSpecificitySensitivityNumber of dimensions

0.8391.1289.3951.0993.09256

0.8692.2690.1754.3594.572048

aAUC: area under the curve.
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Figure 3. Receiver operator curves for monitoring the medication adherence from models in our framework. AUC: area under the curve; HOG: histogram
of oriented gradient.

Table 5. The average time spent per video by each model.

Time (seconds)Method

4.53HOGa

2.38Inception-v4

0.98Inflated 3D

0.63D ResNext

0.543D ResNet

aHOG: histogram of oriented gradient.

Table 6. Performance of the proposed deep learning framework with different classification thresholds. 3D ResNet was adopted as the feature extractor.

F1-scorePrecisionSpecificitySensitivityThreshold

92.3488.3443.4896.790.5

92.2690.1754.3594.570.6

90.3792.3167.3988.640.7

Discussion

Principal Finding
In this pilot project, we demonstrated a reasonable proof of
concept that deep learning and AI techniques could be applied
to advance support medication adherence monitoring. We tested
4 deep learning models and found that 3D ResNet performed
best at an AUC of 0.84 and a speed of 0.54 seconds per video
review. The level of discriminatory accuracy obtained is
comparable to other machine learning algorithms that have been
shown to achieve a diagnostic accuracy ranging from 72.5% to
77.3% in clinical settings. This level is similar to or higher than

the expert clinical accuracy of doctors [41]. Spatiotemporal
models for action classification used in nonmedical fields have
shown even better performance with an average accuracy of
90% [42]. A systematic review and meta-analysis of 69 studies
comparing deep learning models against health care
professionals concluded that both approaches were equivalent
in diagnostic accuracy [43]. To our knowledge, this is the first
pilot study to evaluate deep learning models for specific
application to digital technologies and medication adherence
in Africa.

Our model results could be limited by the relatively pronounced
class imbalance between positive and negative samples in the
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data. To address the class imbalance problem, we adjusted the
classification thresholds for the 3D ResNet model to better
balance the sensitivity and specificity. Specifically, we varied
the thresholds at 0.5, 0.6, and 0.7 and found that across the
range, sensitivity decreased slightly by 8% whereas specificity
increased by 55%, thus improving the performance of the model.
This means that by adjusting the classification threshold to 0.7,
the model’s ability to correctly identify persons who are not
taking medications could be achieved. The relatively high
performance of the deep learning models signifies the power
of AI tools that can be harnessed for medication monitoring in
routine clinical care or drug efficacy trials. We also acknowledge
that our current experimental settings may lead to issues such
as overfitting and data leakage, which are possible limitations
to our findings. This could be due to the high dimensionality
of features extracted by deep learning models and the small set
of patients used in our study. In addition, the stratification is
performed at the video level, and thus, it is possible that the
videos from the same patient may appear in both training and
test phases during cross-validation. Ideally, there is need to
perform evaluations with stratification at the patient level; this
step will be a priority in our future work. This pilot study is a
valuable initial step for building more robust models that have
relevant applications suitable for the local African context where
the medication intake videos were collected. In the era of
COVID-19 pandemic, the use of synchronous telehealth visits
proved to be an extremely valuable care delivery approach when
in-person provider-patient interactions were not possible [44,45].
Our proof-of-concept study explores the use of AI to bolster
the utility of asynchronous remote provider-provider
interactions. The evolving capacity of digital technologies to
store and analyze various types of data will continue to
revolutionize health care delivery in both resource-limited and
resource-rich countries.

There are some strengths of this pilot study. For example, this
is the first study that attempted to build and evaluate deep
learning models using video images of TB medication intake
from Uganda and the rest of Africa. We also developed a
preliminary protocol for the annotation of medication video that
can be refined further for use in low-income countries. This
protocol was generated through a systematic iterative process
of reviewing, discussing, and refining among a team of 3 trained
video annotators who were computer science graduate students
supervised by an expert in the field. Our pilot work builds on
the existing literature and aspiration to expand the use of AI in
routine health care [43] and, specifically, medication adherence
monitoring [3]. By examining the utility of AI-based models,
we are taking steps toward accelerating the future scale-up of
digital adherence technologies in remote medication monitoring
in TB, HIV/AIDS, and other chronic health conditions. The
study was limited to the evaluation of the technical feasibility
of developing a deep learning model. We did not incorporate
all the recommended methodological features for the clinical
validation of AI performance in real-world practice [46]. Indeed,
we acknowledge that comprehensive validation is a critical next
step for this work.

We also plan to develop new methods and evaluation protocols
for the class-imbalanced settings in our future work.

It is worth noting that the same patient had multiple videos,
which may introduce dependencies between images of the same
patient and make the cross-validation less trustworthy. However,
we clearly observed that the videos from the same patient had
substantial differences in visual appearance. For example, some
videos were recorded indoors whereas others were recorded
outdoors, the same patient wore different clothes in different
videos, and the viewpoints of video recording were also
different. Furthermore, our method aimed to detect and
understand the human medication adherence activities under a
series of video frames. For instance, our model had to focus on
specific key actions, for example, putting the pills into the mouth
and drinking water, while trying to ignore the influence of the
environment in the video frames. Although we used the video
level to conduct the 5-fold cross-validation, the variance of the
environment for videos from the same patient could present a
challenge for our model to identify whether the patient has taken
the pill or not.

Future Implications and Recommendations
Future work should be focused on improving the classification
accuracy of deep learning models in medication adherence.
First, there is a need for open-sourcing of large, labeled data
sets with which to train the algorithms, especially in the African
context. Second, additional techniques are needed to address
class imbalance to improve the classification performance of
deep learning models. Lastly, we propose to apply
self-supervised learning methods, which provide a new way to
pretrain DCNNs by exploiting pseudo-training labels that
eliminates the time-consuming tasks of manual annotation. In
our current deep learning framework, models are pretrained
with external data sets, which may not be suitable for the
extraction of visual features to classify medication adherence
and nonadherence activities. All the neural network models
showed comparable discriminative performance and diagnostic
properties to state-of-the-art–performing deep learning
algorithms. The findings serve as a reasonable proof of concept
to support the potential utility of deep learning models in the
binary classification of medication video frames to predict
adherence. The success and widespread use of AI technologies
will depend on data storage capacity, processing power, and
other infrastructure capacities within health care systems [3].
Research is needed to evaluate the effectiveness of AI solutions
in different patient groups and establish the barriers to
widespread adoption of digital health technologies.

Conclusions
Our findings in this pilot study show the potential application
of pretrained deep learning models and AI for the classification
of medication adherence based on a unique video data set drawn
in the African setting. The 3D ResNet model showed the best
performance in relation to speed and discriminatory
performance. Further development of AI tools to improve the
monitoring of medication adherence could advance this field
in public health, especially in low-resource settings.
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