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Abstract

Background: Pancreatic cystic lesions (PCLs) are frequent and underreported incidental findings on computed tomography
(CT) scans and can evolve to pancreatic cancer—the most lethal cancer, with less than 5 months of life expectancy.

Objective: The aim of this study was to develop and validate an artificial deep neural network (attention gate U-Net, also named
“AGNet”) for automated detection of PCLs. This kind of technology can help radiologists to cope with an increasing demand of
cross-sectional imaging tests and increase the number of PCLs incidentally detected, thus increasing the early detection of
pancreatic cancer.

Methods: We adapted and evaluated an algorithm based on an attention gate U-Net architecture for automated detection of
PCL on CTs. A total of 335 abdominal CTs with PCLs and control cases were manually segmented in 3D by 2 radiologists with
over 10 years of experience in consensus with a board-certified radiologist specialized in abdominal radiology. This information
was used to train a neural network for segmentation followed by a postprocessing pipeline that filtered the results of the network
and applied some physical constraints, such as the expected position of the pancreas, to minimize the number of false positives.

Results: Of 335 studies included in this study, 297 had a PCL, including serous cystadenoma, intraductal pseudopapillary
mucinous neoplasia, mucinous cystic neoplasm, and pseudocysts . The Shannon Index of the chosen data set was 0.991 with an
evenness of 0.902. The mean sensitivity obtained in the detection of these lesions was 93.1% (SD 0.1%), and the specificity was
81.8% (SD 0.1%).

Conclusions: This study shows a good performance of an automated artificial deep neural network in the detection of PCL on
both noncontrast- and contrast-enhanced abdominal CT scans.
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Introduction

Pancreatic cancer is one of the most frequent and aggressive
cancers in the digestive tract, being the fourth leading cause of
death by cancer in Europe [1,2]. Due to its lack of specific
symptoms and signs, most patients are detected in an advanced

stage. The current average 5-year survival rate is 9%, and it
depends critically on when the cancer is detected. Indeed, this
5-year survival rate varies by more than 30% when the cancer
is detected in a phase where it can still be surgically removed
and when the cancer has already spread to other tissues in the
body [3].
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This type of cancer can originate from precursor cystic lesions
[4]. Pancreatic cystic lesions (PCL) are increasingly common
incidental findings on abdominal imaging tests. Studies have
shown that up to 70% of PCLs are diagnosed incidentally on
computed tomography (CT) scans due to unrelated symptoms,
making CT scans the first accessible source of information.
These previously undetected cystic lesions are found on 3% of
abdominal CT examinations [5,6] and 13%-21% of abdominal
magnetic resonance imaging studies [7,8]. However, autopsy
studies have evidenced a much higher prevalence, revealing
that up to 50% of the older population may present at least one
pancreatic cyst [6].

PCLs have a wide diversity, and their differential diagnosis
includes nonneoplastic cysts (pseudocysts) and neoplastic ones.
Neoplastic lesions encompass benign lesions, such as serous
cystadenomas (SCA), to mucinous lesions, such as mucinous
cystic neoplasms (MCN), and intraductal papillary mucinous
neoplasm (IPMN), which may progress to PC. Therefore,
identifying precancerous mucin–producing cysts offers a unique
opportunity for early detection and prevention of PC. Once a
PCL is found, patients are recommended to follow up a lifelong
surveillance program with imaging modalities (magnetic
resonance imaging or CT) to identify early-stage cancer or
high-grade dysplasia [9,10]. Consequently, correct management
of PCL may prevent progression to pancreatic cancer, while
reducing the need for lifelong screening and related costs.

In this complex scenario, automated detection of pancreatic
precursor lesions could increase the detection of this
underreported entity and help with a proper surveillance of these
patients. A limited number of publications regarding this topic
have been released in recent years, most of them in an
experimental offline setting and applying different
methodologies [11]. Additionally, although existing methods
of automated analysis have shown to be accurate for images of
individual organs, they still struggle to deal with the variability
of structures, shape, and location of abdominal organs [12].
Artificial intelligence (AI)–based algorithms have shown
promising results in the detection of preneoplastic lesions in
the pancreas [13,14], but they are still far from implementation
in the clinical practice.

The aim of this study was to develop and test an artificial deep
neural network (AGNet) [15] for automated detection of PCLs.
This kind of technology can help radiologists to cope with an
increasing demand of cross-sectional imaging tests and increase
the number of PCLs incidentally detected, thus increasing the
early detection of pancreatic cancer.

Methods

Ethical Considerations
Our research adhered to the ethical principles outlined in the
1975 Declaration of Helsinki. The data used in this study were

retrospective and anonymized. The study was approved by the
hospital Institutional Ethical Review Board under code 90/20
as an observational retrospective single-center study, and the
requirement for informed consent was waived.

Study Population
A total of 297 abdominal, thoracoabdominal, or pelvic CT scans
acquired at Hospital de Mataró between 2010 and 2021 and
diagnosed with a PCL as well as 38 CT scans as controls were
selected for the study. All CT scan images were subjectively
checked for quality and absence of relevant respiratory artifacts,
which could cause misdiagnosis in the abdominal region. The
exclusion criteria were underaged patients, artifacts or bad
quality in the CT scan image, and patients having undergone
surgery in the past to treat the PCL and having a prothesis in
the pancreas that affects the image. Importantly, patients
diagnosed with pancreatic adenocarcinoma or any kind of tumor
in the pancreas were also excluded from the study.

Of note, a CT image is considered “bad quality” if there is
movement or blurriness in it (mostly in the abdominal area,
where the pancreas is located). Studies that included these types
of images were excluded from the training and testing set
because they would impact the learning process of the network
or the testing in a negative way, which could then lead to false
negatives or false positives.

The final study population consisted of 136 patients: 73 male
(178 studies; mean age 67.75, SD 10.74 years) and 63 female
(157 studies; mean age 73.52, SD 10.67 years). A mean of 2
(SD 1.4) CT studies and a median of 2.4 studies were available
per patient.

Patients’ Characteristics
From the whole cohort of 136 patients, 9 (6.5%) of them had a
confirmed diagnosis through endoscopic ultrasound–guided
fine needle aspiration or surgical resection of the lesion. In the
other 16 patients, no material or insufficient yield was extracted
to evaluate the specimen. The rest of the patients were diagnosed
by a minimum of 2 experienced radiologists, taking into
consideration the complete clinical record and the evolution of
the patient.

Patients with the following PCLs were included in the study:
IPMN, MCN, SCA, and pseudocysts. A total of 14 (4.2%) of
the lesions were not classified in the above classification due
to unspecified imaging characteristics and were categorized as
cyst (Table 1). The number of studies (CT scans) with PCLs
distributed by age and sex is shown in Figure 1.

Data sets were further divided between the training set (a subset
to train the model) and the testing set (a subset to test the trained
model). The final training data set comprised 93 patients,
representing a total of 241 CT scans, and the final testing data
set comprised 43 patients, representing a total of 94 CT scans.
PCLs were distributed proportionally in both data sets.
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Table 1. Diagnostic distribution per the study.

Values, n (%)Diagnosis

42 (12.5)Serous cystadenoma

154 (46)Intraductal papillary mucinous neoplasm

5 (1.5)Mucinous cystic neoplasms

82 (24.5)Pseudocyst

14 (4.2)Cyst

38 (11.3)No cyst

Figure 1. Number of studies (CT scans) with pancreatic cystic lesion distributed by age and sex (x-axis).

CT Protocols
CT examinations were performed with a GE BrightSpeed 16
slice CT scanner (GE Healthcare). Slice thickness was between
1.25 mm and 5 mm. Mean tube current was 440 mA, and the
mean peak kilovoltage was 340 (SD 40) kVp. Contrast agent
was administered with injection rates ranging from 2.5 to 3
mL/s, using Omnipaque or iomeron (both 300 mg iodine per
mL).

The protocols included in this research had the following
characteristics:

• From lung bases to pubic symphysis, 2 helixes are made at
30 and 65 seconds after the injection of 100 mL of the
solution (30 mL of iodine), preceded and followed by 20
mL of physiological solution.

• Two helixes are made from the base of the neck to the lower
edge of the liver and from the pulmonary bases to the pubic
symphysis after the injection of the exposure value contrast.
In this case, 120 mL of solution is injected.

• From lung bases to pubic symphysis, 1 helix is made at 65
seconds after the injection of 100 mL of the solution (30
mL of iodine), preceded and followed by 20 mL of
physiological solution.

Image Analysis
CT scan images were exported anonymously in Digital Imaging
and Communication on Medicine format from the picture

archiving and communication system of the hospital. Digital
Imaging and Communication on Medicine files were converted
to Neuroimaging Informatics Technology Initiative files (using
dicom2nii software; version from August 4, 2014; University
of South Carolina). Two radiologists (NTF and MMD) with 11
and 20 years of experience manually drew, slice by slice, the
region of interest, delimiting the pancreatic cysts found in the
image using the open-source software 3D Slicer (version 4.11)
[16]. Each radiologist segmented all cases used in the study and
checked the segmentation performed by the other radiologist.
Any discrepancies between the authors were resolved through
discussion with the presence of a third reviewer (MTFP), until
consensus was reached.

The preprocessing steps included the application of filters and
registration to improve and harmonize image quality across CT
scans.

First, a soft-tissue normalization [17] was applied. After
studying the pixel distribution of 100 CTs of the data set, it was
observed and confirmed by the state of the art that the
Hounsfield unit (HU) of the pancreas is centered around 50,
and most of the cystic lesions were close to this value as well.
Hence, to eliminate the irrelevant parts of the abdomen and
highlight the main features for the study, the soft-tissue
normalization was centered in 50 HU, and a windowing length
of ±100 around 50 HU was applied.

Afterwards, a central cropping of the CTs was performed, only
keeping the center of the abdomen, where the pancreas is
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supposed to be. The cropping was not too harsh to avoid the
possibility of eliminating the pancreas from the CT image being

used for the following semantic segmentation study. The image
analysis pipeline is depicted in Figure 2.

Figure 2. Diagram of the steps implemented in the pipeline. (A) Preprocessing. (B) Logits. (C) Postprocessing. (D) Output.

Model Training
The neural network used for this study was the AGNet [15].
The main structure was a basic UNet [18] with skip connections
and additive attention gates (AGs). The input image was
downsampled, using max-pooling, by factor 2 at each scale in
the encoding part and trilinearly upsampled by the same factor
in the decoding part. In each stage of the encoding-decoding
architecture, a skip connection from the corresponding encoding
stage to the corresponding decoding stage was added. This skip
connection enters to the AG together with the output of the
previous decoding stage. Thanks to this skip connections using
coarser information, we are able to model the location and the
relationship between tissues at a global scale. The architecture
of the AG is shown in Figure 3.

The output of these AGs was the element-wise multiplication
of the attention coefficients (α) and the intput feature maps
came from the previous stage of the decoding part (x; Figure
4). Attention coefficients were used to identify salient regions
and preserve only activations that are relevant. There is one

attention coefficient computed for each pixel vector ,

where Fl corresponds to the feature maps in layer . In the case
of this study, there are multidimensional attention coefficients,
each dimension corresponding to one class. The other input of

the AG was a gating vector , which contained
contextual information to determine focus regions. The AGs
used were additive since addition between the gating signal and
the feature maps were used to obtain the attention coefficients.

The network was trained for 700 epochs and had a batch size
of 4. The training was performed with over 430 3D CT studies.
The algorithm of optimization used was Adam [19]. The Adam
algorithm is an adaptive gradient algorithm that adapts the value
of the learning rate if the network does not improve the
performance during training. We set the threshold of learning
rate modification after 30 epochs, and it decayed 1e-6. The
initial learning rate was set to 1e-4.

The initialization weights’algorithm used was Kaiming [19,20],
and the loss function used was the dice coefficient for multiclass
segmentation.
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Figure 3. Illustration of the additive attention gate [15]. Reproduced from the cited source which is published under Creative Commons Attribution
4.0 International License [21].

Figure 4. Scheme of the deep neural network architecture [15]. Fl: Feature map in the layer l; H: height; W: width; D: dimension; Conv 3x3: convolution
operation with a 3x3 kernel; ReLu: rectified linear unit operation. Reproduced from the cited source which is published under Creative Commons
Attribution 4.0 International License [21].

Results

The goal of this work was to implement a pipeline for PCLs
detection on CT scan images as well as the pancreas. This was
performed with a two-step pipeline formed by a first
preprocessing that consisted of a normalization of all the data
sets with a soft tissue normalization technique centered at an
HU of 50. This value was selected since it is the state-of-the-art
value assigned to the organs and it matches with the mean HU
of the pancreas calculated for all the studies in our data set.
Afterwards a central crop of the CT was applied; from a slice
size of 512×512 to 240×240 after the central cropping to just
focus on the center of the abdomen (anatomic location of the
pancreas). Finally, the network was trained with random patches
of 160×160 of this central crop, and therefore, the inference
consisted of iterating around this central crop of multiple
inferences of patches of 160×160.

During the inference, the test-time augmentation (TTA)
technique was applied. For every CT, 4 geometrical
transformations were used. Multiple options were considered
in which way the TTA should be applied; however, we
concluded that translation and rotation transformations were
the most accurate since, for example, flipping would just confuse
the network. Hence, after studying multiple options, a positive
rotation of 7 degrees and a negative rotation of 11 degrees as

well as 2 positive translations of 5 and 10 pixels were
considered. Positive and negative rotations were considered
since in CT scans the abdomen can be tilted one way and the
other, but higher values for both rotation and translation would
just result in bad predictions. Using more TTA transformations
were ruled out due to the latency that this adds to the final
pipeline. The final result is a merging of this 4 TTA
transformations inferred and the original CT without any
transformation. We averaged the probability of each class, and
after having them merged, a softmax function was applied for
obtaining the final binarized image [22].

Finally, a postprocessing pipeline was implemented to improve
the segmentation results performed by the network and minimize
the number of false positive detections. First, a mask of the
abdomen was generated and eroded to eliminate wrong
predictions in the edges of the abdomen, where the pancreas
anatomically is not found. Secondly, all segmented cysts that
were not in touch with the pancreas were also removed. Finally,
we established a minimum of 10 voxels to consider a predicted
cyst as true positive. Therefore, if there were some randomly
segmented pixels considered as cysts that were not previously
filtered, they were ignored. Images with qualitative results of
this method are shown in Figure 5.

The fully automated segmentation was performed on a modern
computer with an NVIDIA GPU T4 to automatically detect
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PCLs in abdominal CT scans. The programming language used
was Python and the framework for the model development was
PyTorch. The sensitivity for all cases was 93.1% (SD 0.1%),
and the specificity was 81.8% (SD 0.1%).

Additionally, due to the small amount of some subtypes of
pancreatic cysts in the training database (Figure 6), we
considered it reasonable to divide the whole cohort of patients
into 2 big groups: on the one hand, the most dangerous cyst
types, bearing malignant potential (IPMN and MCN), and on
the other hand, the ones with malignant potential close to 0
(PCYST and SCA). If we consider this classification, the global
specificity and sensitivity for the detection of the most dangerous
group were 81.8% and 97.0%, respectively, while for the least
dangerous ones, they were 81.8% and 89.0%, respectively.

One of the main metrics used to evaluate the effectiveness of
this method was the sensitivity or true positive rate. This is
something to highlight since it is better to have a false positive
than a false negative in this study due to the consequences of
obtaining each one: for a false positive, a review of the detection
would be needed, but for a false negative, the consequences are
much worse because a PCL can exist and not be detected. If we
compare the most dangerous group and the least dangerous
group, meaning the one that can easily evolve to pancreatic
cancer versus the one that cannot evolve to pancreatic cancer
as easily, it is a remarkable fact that the sensitivity is almost
10% higher for the dangerous group, which makes the network
even more efficient. Having a better true positive rate for the
most dangerous group rather than for the least dangerous group
is a highlight of this study.

Figure 5. Illustration of the qualitative results obtained. Each pair of images belongs to a patient with a pancreatic cystic lesion. The left image of the
pair is the ground truth, while the right one is the outcome of this method. The pixels that belong to the pancreas are painted in green and the ones for
the pancreatic cystic lesion in red.
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Figure 6. Example of the types of pancreatic cysts included in this research. (1) Serous cystadenoma, marked in yellow. (2) Mucinous cystic neoplasm,
marked in red. (3) Intraductal papillary mucinous neoplasm, marked in yellow. (4) Pseudocyst, marked in red). Pancreas is depicted in green.

Discussion

Principal Findings
In this study, we applied and validated an AGNet deep neural
network to detect PCLs. The aim was to assist imaging
specialists for a better diagnosis, and therefore, achieve better
determining of treatment plans. First, a pancreatic CT image
database with different types of cyst present was created based
on the diagnosis of anatomical pathology or an imaging
specialist. From this database, we established an AI system for
the automatic detection of pancreatic cysts (with further
classification) and then validated it in a test experiment.

In our study, the sensitivity for the detection of PCL was 93.1%
(SD 0.1%), and the specificity was 81.8% (SD 0.1%),
demonstrating that PCLs can be automatically detected by AI
with a diagnostic performance comparable to radiologists.

This is significant because even though AI has shown excellent
performance for segmentation of organs with sharp borders, in
organs with vague delineation like the pancreas (eg, caused by
fat interdigitations), the detection of lesions remains a difficult
task for algorithms [23].

In a previous work (Abel et al [14]), an overall sensitivity of
78.8% for the detection of pancreatic cysts was obtained. The
maximum sensitivity was seen in big lesions, ranging from
87.8% for cysts under 220 mm3 to 96.2% for tumors in the
distal pancreas. Importantly, in this work, they analyzed the
size of the lesion by volume, and in our study, we analyzed it
with the diameter of the biggest slice of the lesion. Another
difference between this work and ours is the deep learning
architecture they used. They used an nnUNet pretrained, and
we used an attention gate U-Net without pretraining.

Overall, these results demonstrate that an automated detection
of PCL on CT scans is feasible.

Nevertheless, limitations to our research are still present.
Although the results obtained indicate that the diagnostic
accuracy is comparable to that of radiologists, it is important
to bear in mind that this research intents to develop an assistive
tool, not to be in any case a substitute for doctors. Moreover,
this is a retrospective single-center analysis study. To further
evaluate and validate the clinical applicability, next steps would
include a prospective study on multicenter clinical data.

Importantly, the possibility for malignancy varies across various
forms of PCLs. Therefore, precise cyst characterization is crucial
for proper care. The most clinically significant distinction is
separating nonmucinous cystic lesions from mucinous cystic
lesions, which have malignant potential and may benefit from
surgical removal. However, distinction between cyst types is
difficult in a clinical setting.

Due to the lack of data for each specific subtype of PCL, this
study only aimed at detecting but not classifying PCLs. Next
steps would include increasing the final data set size to further
assess and validate the classification performance of a deep
neural network, which would have a significant effect in clinical
practice.

Limitations
PCL detection algorithm was trained and tested on data from a
single hospital, which limited the available amount of data and
hindered the possibility to perform an external validation.

As previously mentioned, the data in the training database were
divided into 2 big groups (IPMN and MCN vs pseudocysts and
SCA) due to the lack of data for each specific subtype of
pancreatic cysts. For further validation, not only detection but
also classification, more data are needed for the training database
for each of the cyst subtypes that we are willing to differentiate.

Next steps will be to obtain images from other hardware
manufacturers and improve our database. This will need to be
studied thoroughly to make the images from different hospitals
compatible to each other. Another approach to improve the data
set is to widen the samples of each type of cyst to make it more
heterogeneous.

Conclusions
This study presents a clinical validation for automated detection
of PCLs using an AGNet deep neural network. Based on the
validation of an artificial deep neural network [15], results
indicate that AI can be a feasible tool to help radiologist to cope
with the increasing demand of cross-sectional imaging tests.
The proposed method shows ability to obtain an accurate
diagnosis. This artificial network, working together with
specialists, proves to be a potential and effective way to tackle
the early detection of pancreatic cancer.
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