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Abstract

Background: In health care, diagnosis codes in claims data and electronic health records (EHRs) play an important role in
data-driven decision making. Any analysis that uses a patient’s diagnosis codes to predict future outcomes or describe morbidity
requires a numerical representation of this diagnosis profile made up of string-based diagnosis codes. These numerical
representations are especially important for machine learning models. Most commonly, binary-encoded representations have
been used, usually for a subset of diagnoses. In real-world health care applications, several issues arise: patient profiles show
high variability even when the underlying diseases are the same, they may have gaps and not contain all available information,
and a large number of appropriate diagnoses must be considered.

Objective: We herein present Pat2Vec, a self-supervised machine learning framework inspired by neural network–based natural
language processing that embeds complete diagnosis profiles into a small real-valued numerical vector.

Methods: Based on German outpatient claims data with diagnosis codes according to the International Statistical Classification
of Diseases and Related Health Problems, 10th Revision (ICD-10), we discovered an optimal vectorization embedding model
for patient diagnosis profiles with Bayesian optimization for the hyperparameters. The calibration process ensured a robust
embedding model for health care–relevant tasks by aggregating the metrics of different regression and classification tasks using
different machine learning algorithms (linear and logistic regression as well as gradient-boosted trees). The models were tested
against a baseline model that binary encodes the most common diagnoses. The study used diagnosis profiles and supplementary
data from more than 10 million patients from 2016 to 2019 and was based on the largest German ambulatory claims data set. To
describe subpopulations in health care, we identified clusters (via density-based clustering) and visualized patient vectors in 2D
(via dimensionality reduction with uniform manifold approximation). Furthermore, we applied our vectorization model to predict
prospective drug prescription costs based on patients’ diagnoses.

Results: Our final models outperform the baseline model (binary encoding) with equal dimensions. They are more robust to
missing data and show large performance gains, particularly in lower dimensions, demonstrating the embedding model’s
compression of nonlinear information. In the future, other sources of health care data can be integrated into the current
diagnosis-based framework. Other researchers can apply our publicly shared embedding model to their own diagnosis data.

Conclusions: We envision a wide range of applications for Pat2Vec that will improve health care quality, including personalized
prevention and signal detection in patient surveillance as well as health care resource planning based on subcohorts identified by
our data-driven machine learning framework.
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Introduction

Public health surveillance and health care research in many
countries depend on electronic health records (EHRs), including
claims data [1-4]. In these records, patients’ medical diagnoses
are often coded according to a string-based disease classification
convention, for example, the International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision (ICD-10) [5]. Their sequence of ICD codes
characterizes the medical history of every patient.

Common tasks in clinical, epidemiological, or health care
research on claims data expect numerical input (eg, regression
and classification tasks such as linear or logistic regression or
advanced machine learning tools such as gradient-boosted trees
and deep learning). These methods are often used to predict
specific health outcomes [6-17] or the utilization of health care
institutions [18-22].

To derive numerical input for these methods from the
string-based diagnosis profiles, a procedure called binary
encoding (or binarization, one-hot encoding) is most often used
[6-11,15-17,20-24]. Using binary encoding, diagnoses are
represented numerically by either 1 or 0, if the patient had or
did not have the chosen diagnosis, respectively. As the pool of
possible diagnostic codes is vast, binary encoding usually relies
on a selected subset of diagnoses chosen by either field experts
[6,16] or data-driven feature selection [10,15,17]. Diagnoses
can also be represented by the number of times they appear
[9,12,25,26]. Most often, they are pooled into clinical groups
before further analysis [18-22,24,27-29].

Ideally, a disease classification such as ICD-10 would only
cover clearly distinguishable medical conditions and concepts,
but in reality, we have to deal with overlaps and uncertainties.
Therefore, a faithful numerical representation of the patient’s
medical history needs to take into account that different ICD
codes may represent similar or even identical underlying issues.
Frequently, computational and methodological constraints limit
the number of diagnoses and interaction effects that can be
considered. Binary encoding suffers in this regard, as it considers
medical diagnoses as distinctive and unrelated features. As such,
it limits the methodical progress of prediction tasks on claims
data, especially the application of advanced machine learning
methods. Thus, other methods of numerical representation of
ICD diagnosis codes should be investigated to enable better
individual health care and more precise prediction of health care
demand.

We investigate herein how a real-valued numerical
representation (or vectorization, embedding) (see Chapter 15
in [30]) of patients’ medical diagnosis profiles that uses their
whole diagnostic ICD profiles can be derived. This embedding
should compress the information from up to 14,877 possible
5-digit International Statistical Classification of Diseases and
Related Health Problems, 10th revision, German Modification
(ICD-10-GM) 2019 [31] codes, improve the performance of
common health care prediction tasks, and let advanced
(nonlinear) machine learning methods reach their full potential
when used on claims data.

To find such an embedding, we employ a self-supervised
machine learning algorithm inspired by natural language
processing (NLP), namely, Doc2Vec [32], which itself is an
extension of Word2Vec [33,34]. It has been applied to
nonlanguage-specific tasks before [35-37]. Many studies
[14,29,38-42] have investigated embeddings of the ICD codes
themselves, whereas some [14,25,42] arrived at patient-level
embeddings for specific prediction tasks (Supplementary Table
S1 in Multimedia Appendix 1). Here, we want to broaden the
scope of the possible applications to general health care–related
questions. It has been shown that hyperparameter tuning for
Word2Vec and Doc2Vec can lead to considerably better results,
especially on nonlanguage-related tasks [35,37]. As such, we
employ a Bayesian search on a hyperparameter grid to identify
an optimal model for the vector embedding procedure. We
evaluate our embedding model on broad health care prediction
tasks with standard (linear and logistic regression) and advanced
machine learning techniques (gradient-boosted trees). We also
test how well the vectorization works with smaller data sets and
how well it handles missing data with random data dropout
sampling. In addition, we inspect the results visually in a 2D
projected space along with a clustering of the embedded patient
profiles to reveal the properties of our cohort. Finally, we
evaluate the resulting vectorization model for the health
care–relevant task of predicting drug spending at the patient
level.

Our method gave better results than binary encoding, but only
after tuning the hyperparameters and on large enough data sets.
The compression of the information of thousands of ICD-10
codes into a vector space of no more than 100 dimensions was
achieved. We observed large performance gains using
gradient-boosted trees with the vector embedding over classic
linear or logistic regression with binary-encoded data. In
addition, the vectorization models are more robust to missing
data than baseline binary encoding. The final model learned on
our extensive data can be shared and used by other stakeholders
on much smaller data sets (eg, for supervised machine learning
methods that predict clinical or other health care outcomes).

Methods

Data
The diagnosis data are based on comprehensive nationwide
outpatient claims data from 2016 to 2019 of all patients with
statutory health insurance (SHI) in Germany. According to the
Federal Statistical Office [43], there were 73,009,237 persons
eligible for the SHI (87.8% of the population) in 2019. The
pseudonymous data include diagnoses for all people in Germany
with SHI who visited an outpatient physician in 2016 or later.
Among others, the data include demographic characteristics
such as age and gender, as well as diagnoses with markers of
certainty and other billing-relevant information. These data do
not contain information on inpatient treatment in hospitals.
Diagnoses are coded according to the ICD-10-GM [31]. In
addition to the diagnosis data, we extracted individual
information on prescribed and dispensed medications from the
pseudonymous data of nationwide outpatient drug prescriptions.
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The claims data and the prescription data are linked by patient
information (compare [44]).

We chose N=11,200,000 patients at random from the full
population of people with SHI because technical limitations
make it impossible to use the full data. To achieve this study
sample size, we shuffled all patients in the claims database
randomly and selected the top N records for the sample. All
patients with at least one data entry after 2016 were eligible.
The sample is divided into 4 data sets by random subsampling
from the study population (Textbox 1).

These samples were filtered for patients with consistent
information regarding gender and age during the years
considered for analysis (2016 to 2019). The training data in (1)
for the vectorization model were restricted to ICD-10 codes
(5-digit notation) from 2016 to 2018, whereas the calibration,
validation, and test sets in (2)-(4) were restricted to codes from
2018. Only patients with at least one confirmed diagnosis during
the period in question were kept. This left us with sample sizes
of 8,941,773 (vectorization training), 830,285 (calibration
training), 82,924 (validation), and 82,937 (test), see Figure 1.

Figure 1. Flowchart of data sampling and algorithmic schematic. Patient data flows are represented by solid, straight lines, while machine learning
models and other meta-information flows are represented by dashed, curved lines. Rectangles are patient data, while hexagons are algorithms or analysis
methods. AUROC: area under the receiver operating characteristic curve; ML: machine learning; SHI: statutory health insurance.

Because of the regulations of the German health care system
(see “The German Health Care System” in [45], or a more
detailed description of the German system in [46]), diagnoses
are available on a quarterly basis (but without temporal order
within a quarter), with reference to cases and places of treatment.
As such, we generated a sequence of codes for each patient with
a certain temporal order: confirmed diagnoses are grouped by
case and place of treatment, and these groups are ordered by
temporal succession of quarters, but if more than 1 group
appears within one-quarter, these groups are shuffled randomly
within the quarter (as well as diagnoses within a group).

Furthermore, when training the model (see below), only
diagnoses that were seen at least 100 times in the training data
were taken into account.

As health care–relevant outcomes in (2)-(4), we used 4 different
quantities for calibration: the number of cases (a proxy indicator
for the number of medical consultations), (ambulatory)
emergency health care utilization, age, and gender. The number
of cases in 2019 is approximate due to data limitations: a case
is defined as the unique combination of a quarter, a patient, a
treating medical facility, the billing association of SHI
physicians, and the time stamp of data processing. The binary
outcome of emergency health care utilization is 1 if at least one
case in 2019 of the respective patient was billed as an
emergency, and 0 otherwise. The sociodemographic variables
age (in years) and gender (binary-encoded) were also extracted
from the data.
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As data for robustness analysis against diagnosis dropout, we
randomly dropped 10%, 25%, or 50% of diagnosis codes for
each patient (rounded to nearest number, but kept at least one
code).

As data for robustness analysis against varying training data set
sizes, we used different percentages of the original vectorization

training data (reducing the vectorization data from 10 million
patients to 10,000 patients).

For a further analysis, we extracted the drug prescription costs
from the ambulatory drug prescription data of residents in
Germany with SHI. These costs are the total (in euros) of all
billed prescribed drugs for the respective patient in 2019 (if any,
otherwise 0).

Textbox 1. Data sets obtained by random subsampling from the study population.

1. Vectorization

A total of 10,000,000 patients as a vectorization training set for self-supervised machine learning to learn a model for numerical representation
(embedding) of patients’ profiles.

2. Calibration

A total of 1,000,000 patients with embeddings based on a model from (1) serving as a calibration training set for supervised machine learning
on prediction tasks.

3. Validation

A total of 100,000 patients with embeddings based on a model from (1) serving as a validation set for the calibration prediction models learned
in (2) and, in turn, hyperparameter tuning of vectorization in (1).

4. Test

A total of 100,000 patients as a test set for final analysis and presentation of the results.

Ethical Considerations
The use of claims data for this analysis is governed by the
German Code of Social Law (SGB X 80 in conjunction with
SGB V 68c): our study aims to improve health care quality by
exploring diagnoses profiles and predicting health care–relevant
outcomes. While approval and consent of individual human
patients within the cohort are operationally impossible to
acquire, they are also not required by the German Code of Social
Law as we used deidentified, routinely collected data in a
retrospective study. In addition, we argue that the conclusions
we can draw from our analyses are in the best interest of patients
and will improve future public health services.

Binary Encoding and Baseline Model
Binary encoding creates a data matrix with rows for patients
and columns for variables. Each variable represents one of the
diagnoses being looked at (out of a chosen subset of all available
diagnoses) and is given a 1 in the corresponding row and column
if the patient had that diagnosis and a 0 if they did not.

Here, we employ such a binary encoding approach as a baseline
model: First, we sorted all confirmed unique ICD-10 diagnosis
codes from 2019 by the number of patients with this diagnosis
in the data. Second, for a given number M of top diagnoses and
the sample patients from above, we formed the appropriate data
matrix with M columns corresponding to the top M diagnoses
and each row representing a patient, using binary encoding like
described above. This is the baseline model for numerization
of the diagnosis codes and will be compared with the real-valued
patient-level embedding described in the next section.

ICD2Vec and Pat2Vec
Similar to [14], we used an advanced approach to a real-valued
embedding of diagnosis codes, applying a method from NLP
called Word2Vec and its extension Doc2Vec [32-34]. Trained

on a corpus of text data, Word2Vec vectorizes individual words
and keeps their semantic meaning by mapping similar or related
words to similar vectors (according to multidimensional distance
measures in a Euclidean space) and antagonistic words to
diverging vectors. As an extension to Word2Vec, the Doc2Vec
algorithm also learns vectors for each document. Similar
documents are represented by vectors that are similar to those
of the similar documents.

Word2Vec is in fact a (shallow) neural network in the sense
that individual words are represented by vectors (embeddings)
of a fixed size, and the entries of these vectors are used directly
to predict the vectors of other words in a single-layer neural
network; that is, the embeddings are themselves the parameters
of the single hidden layer. Word2Vec goes over every word in
each document step-by-step and repeatedly during training and
updates the neural network’s parameters (or rather, the
embeddings) by either predicting from the current word the
neighboring or context words as targets (skip-gram) or
predicting a target word from the neighboring or context words
(continuous bag of words) [33]. In both cases, the update to the
network’s parameters after training on a single word would
include updating all parameters for all words that are not in the
context. For computational efficiency (because of large
vocabularies), this is circumvented by either updating only some
negative examples of words that are not in the context of the
word under consideration [34] or by applying a hierarchical
softmax to the network update [33]. In fact, it is also possible
to apply both techniques at the same time.

Doc2Vec is an extension to the Word2Vec algorithm in the
sense that it is applied in parallel to Word2Vec. Additionally,
while learning the vector embeddings of every word in the
corpus, the vector embeddings of the documents that form the
corpus are learned in the same manner. Doc2Vec can be trained
in 2 different ways [32]: either with “distributed memory” (DM;
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similar to Word2Vec’s continuous bag of words), where each
target word from the document is predicted using both the
context words and the document’s embedding, or with
“distributed bag of words” (DBOW; similar to Word2Vec’s
skip-gram), where target words from the document are predicted
using the document itself and separately updating the context
words.

For more background on neural networks and how they are
applied to NLP tasks, see [47] and [48].

In our framework, we treat every ICD-10 diagnosis code as a
word and the sequence of diagnosis codes for a patient as a
document. These documents are our corpus data for training
ICD2Vec (by applying Word2Vec to ICD-10 codes) and
Pat2Vec (by applying Doc2Vec to patients’ sequences of
diagnosis codes).

For training the 2Vec algorithms, we have to choose a vector
size of M (among other parameters; see below). Pat2Vec is
trained on the patients’ sample data and then gives us a data

matrix with M columns, where each row or patient is a vector
of length M (the embedding of the corresponding patient),
encoding all of their diagnoses. Additionally, we obtain in
parallel a vectorization of the ICD-10 codes themselves
(Word2Vec/ICD2Vec), where each code is represented by a
vector.

Hyperparameter Tuning
The 2Vec algorithms need several parameters as input for the
training of the vectorization model. These are referred to as
hyperparameters and have different considered ranges (Textbox
2).

Following previous research [35,37], we tuned the
hyperparameters for the vectorization model using a Bayesian
hyperparameter optimization [49] over the ranges given above.
We calibrated and validated the resulting vectorization models
with supervised machine learning (see the next section) using
the holdout calibration and validation data on the 4 calibration
outcomes.

Textbox 2. Hyperparameters and their ranges.

1. Vector size (100)

Length of the vector assigned to each patient. We hold this fixed while tuning the hyperparameters, but we will vary this value afterward for
comparisons.

2. Minimal count (100)

Only diagnoses that appear at least 100 times in the data are considered for anonymization purposes because of rare diseases. We will not optimize
this parameter.

3. Window size (1-10)

Describes how many of the neighboring codes will be considered in each training step within the 2Vec algorithm and a given sequence of codes.

4. Downsampling

Smaller values of the downsampling parameter mean that more of the most common words will be randomly excluded from the training data
(default 0.001). After preliminary analysis, we observed that downsampling is always detrimental to our task, so we did not downsample our
data.

5. Epochs (1-20)

The number of training epochs describes how many times each patient’s code sequence will be looked at to update the vectorization model.

6. Negative sampling (0-20)

For each update of a word and its neighboring words (within the window size range), this gives the number of random words not within the
window that will be updated as negative examples; 0 for no negative sampling.

7. Negative sampling exponent (–5 to 5)

Smoothing exponent for the updates of the negative samples.

8. Hierarchical softmax (Boolean)

This parameter describes how the network parameters will be updated at the end of each training step; true for hierarchical softmax and false for
no hierarchical softmax.

9. Distributed memory or distributed bag of words (Boolean)

Training of document vectors in either distributed memory (DM) or distributed bag of words (DBOW) fashion (see above); true for DM and
false for DBOW.

10. Alpha (0.001-0.1)

Learning rate of the neural network updates.
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Regression and Classification Methods

Overview
The data matrices generated by binary encoding or Pat2Vec
served as input data for prediction algorithms on the 4
calibration outcomes (number of cases, emergency health care
utilization, age, and gender). The employed algorithms are
described below, where LightGBM refers to the light
gradient-boosted machine algorithm [50].

Regression
For the real-valued count outcomes of age and number of cases,
we employed 2 different regression techniques: linear regression
and an ensemble decision tree–based regression algorithm with
gradient boosting (LightGBM Regressor) [50-52]. We chose
LightGBM over other gradient-boosted tree methods because
of its performance and fast training time [50,53,54]. Linear
regression does not have additional input parameters; LightGBM
was used out of the box without parameter optimization. The

goodness of fit was measured by the R2 and 1 minus the relative
mean absolute error (also known as Cumming predictive
measure [CPM]) [55].

Classification
For the binary outcomes of gender and emergency usage, we
employed 2 different classification techniques: logistic
regression and an ensemble decision tree–based classification
algorithm with gradient boosting (LightGBM Classifier)
[50,52,56]. Logistic regression does not have additional input
parameters; LightGBM was used out of the box without
parameter optimization. The goodness of fit was measured by
the area under the receiver operating characteristic curve and
the area under the precision-recall curve.

Final Model
The final model was chosen with Bayesian optimization of the
hyperparameters by aggregating the 16 performance measures:
2 approaches with linear/logistic regression and gradient-boosted

trees, and 2 measures for each of the 4 outcomes (R2 and CPM
for regression, receiver operating characteristic curve and area
under the precision-recall curve for classification). All of these
measures are in the range of 0 and 1, with higher values
indicating better performance but varying in size and range
between the 4 different outcomes and measures. As such, we
took the performance measure values of the top 100 diagnoses
baseline model as reference values. For each trial in the Bayesian
optimization and its respective vectorization model, we
calculated the 16 performance measures and divided them by
the respective reference value from the top 100 diagnoses
baseline model. We then aggregated these rates by calculating
their arithmetic mean as a total score (ie, this gives a reference
score of 1 for the top 100 diagnoses baseline model). The final
model was chosen based on the best total score after this
aggregation (Figure 1).

We then trained embedding models with the same
hyperparameter configuration as the final model, but with
different vector sizes M. Likewise, we derived the binary
encoding matrices of the top M diagnoses for varying sizes of
M. These embedding and binarization models were compared

on the same prediction tasks described above on the holdout
test data. The same procedures were replicated on the different
data sets for robustness analysis (diagnosis dropout and reduced
training data size, respectively).

Additionally, we conducted an exploratory and visual analysis
of the vector embeddings from the Pat2Vec vectorization on
the test data. To this end, we projected the 100D patient vector
embeddings into 2 dimensions using the uniform manifold
approximation and projection (UMAP) algorithm [57]. In
addition, these projections were clustered using hierarchical
density–based clustering (hierarchical density–based spatial
clustering of applications with noise [HDBSCAN]) [58]. We
assessed the general demographic and health care properties of
the clusters and identified overexpressed ICD-10 codes within
each cluster as the codes that have the largest positive difference
in their share within the respective cluster compared with their
share in the general population. As an explainability analysis,
we analyzed how ICD-10 diagnosis codes are associated with
specific dimensions of the vector embedding of size 100. To
this end, we calculated correlations over all patients in the test
data between a subset of 60 relevant ICD-10 diagnosis codes,
binary encoded per patient, and the 100 vector dimensions.

Furthermore, we predicted drug spending costs using the final
embedding model with a vector size of 100 and the baseline

model. We compared the performance (R2, mean absolute error,
and CPM), again with linear regression and the gradient-boosted
trees algorithm for regression (LightGBM Regressor). We also
added age and gender as additional predictors to these models.
Here, we tuned the hyperparameters of the LightGBM method
using Bayesian optimization to achieve its full potential.

Software
Analysis was conducted primarily in the Python programming
language (Python Software Foundation) [59], with additional
analyses in the R statistical programming language (The R
Foundation) [60]. Pat2Vec was implemented using the Gensim
package [61] for Python with hyperparameter tuning via the
Optuna package [62]. Machine learning prediction tasks were
conducted with scikit-learn (linear and logistic regression, [63])
and the LightGBM Python package [50], while 2D projection
and clustering were based on the UMAP package [57] and the
HDBSCAN package [58], respectively. Final visualizations
were prepared in R with the ggplot2 package [64].

Results

Sample Characteristics
After filtering the original sample of 11,200,000 patients, the
data were limited to 9,937,919 patients. The average age of the
patients was 45.2 years; 54.60% (5,426,481/9,937,919) of the
cohort were female. The average number of cases per patient
in 2019 was 8.4. About 18.32% (1,820,736/9,937,919) of the
cohort had at least one emergency in 2019. The average drug
spending in 2019 was €632.1 (US $683.4). The average number
of diagnosis codes from 2016 to 2018 (relevant for the training
data) was 67.6, whereas the average number of codes in 2018
only (relevant for prediction tasks) was 34.6. Variance was very
high on the variable drug spending, with an SD of 4383.9 (Table
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1). Furthermore, we observed a high number of patients with a
0 value in drug spending in 2019 (2,132,938/9,937,919, 21.46%,

patients).

Table 1. Patients’ data characteristics.

ValuesCharacteristics

45.2 (24.1)Age (years), mean (SD)

5,426,481/9,937,919 (54.60)Female gender, n/N (%)

8.4 (6.7)Number of cases, mean (SD)

1,820,736/9,937,919 (18.32)Emergency in 2019, n/N (%)

632.1 (4383.9)Drug cost (€a), mean (SD)

67.6 (92.4)Number of codes from 2016-2018, mean (SD)

34.6 (45.5)Number of codes in 2018, mean (SD)

a€1=US $1.08 (as of March 27, 2023).

Top M Diagnosis Codes
The baseline model was constructed from a binary encoding of
the top M diagnosis codes, for varying numbers of M. The most
prevalent diagnosis code was I10.90 (hypertension;
2,591,336/9,937,919, 26.08%, patients), followed by J06.9
(unspecified acute upper respiratory infection) and Z12.9
(unspecified special screening for neoplasms used in the various
German cancer screening programs [65]). Many patients have
at least one of the top diagnoses (eg, 8,947,182/9,937,919,
90.03%, patients) have at least one of the most prevalent
diagnoses). By contrast, over 2000 unique diagnosis codes make
up the bulk of the diagnoses, with a share of over 90% of all
diagnosis codes (317,316,756/343,751,225, 92.31%) in the data
(Supplementary Table S2 in Multimedia Appendix 1).

Hyperparameter Tuning Results
The Bayesian optimization search for the best hyperparameter
configuration revealed that the default parameters are not
sufficient and can be greatly improved upon (Figure 2). The

performance of the default parameter configuration did not
exceed that of the top M diagnoses baseline model.

The most important hyperparameters (Supplementary Figure
S1 in Multimedia Appendix 1) were (in order): the choice of
DBOW over DM, the number of epochs (choosing 3), the
negative sampling exponent (choosing approximately –2.3,
compared with the default [0.75]), and the learning rate alpha
(choosing approximately 0.0014, compared with the default
[0.025]).

When compared with the top M diagnoses approach with
M=100, the final set of parameters with a vector size of 100
resulted in a 9 percent point increase on our aggregated
performance metric. All final models with a vector size of 10
or larger increased performance over this baseline model of the
top 100 diagnoses. For smaller vector sizes, the gains in
performance compared with the baseline models of equal size
were larger (Figure 2). After a vector size of about 50, the
performance of the vectorization increased by lesser amounts.

Figure 2. A comparison of the default vectorization model, the baseline model (the top M diagnoses), and the final model after hyperparameter tuning
based on the total score of how well they did on prediction tasks.

Linear/Logistic Regression Versus Gradient-Boosted
Trees
The ensemble-based machine learning with LightGBM
Regressor/Classifier on the final vectorization model performed
better than the linear and logistic regression counterparts on the
vectorization data as well as the top M diagnoses data

(Supplementary Figure S2 in Multimedia Appendix 1).
Additionally, we observed a bigger increase in performance by
switching from top M diagnoses data to Pat2Vec-derived vectors
on smaller vector sizes, which stresses that information is
compressed well by the vectorization. Furthermore, up to a
vector size of about 100, the vectorization data with
linear/logistic regression or LightGBM outperformed even the
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LightGBM approach on the binary-encoded data, which
indicates that nonlinear properties of the patient profiles were
encoded in the vector embeddings. In summary, using
gradient-boosted trees or vector embeddings is always
beneficial, and the combination of the 2 yields the best results.

Robustness Analysis

Diagnosis Dropout
As a sensitivity or robustness analysis of the vector embedding
(and the baseline binary encoding), we calculated total scores
on the reduced dropout data (with 10%, 25%, and 50% of
diagnosis codes missing, respectively). We observed a steeper
decrease for the binary-encoded top 100 diagnoses data, while
the performance of the vectorization suffers mildly even with
a 50% drop out of the diagnosis data (Supplementary Figure
S3 in Multimedia Appendix 1).

Vectorization Training Data Sample Size
As an additional robustness analysis of the vector embedding
with regard to necessary training data size, we calculated total
scores on reduced vectorization training data, from 100% (the
original 10 million patients’ training data) to 0.1% of the original
training data, or 10,000 patients. We observed a total score
above 1 (thus, above the performance of the binary-encoded
baseline model) for sample sizes as low as 0.5% of the original
data, or 50,000 patients (Supplementary Figure S4 in Multimedia
Appendix 1), while sample sizes of at least 1 million patients
are needed to achieve total scores close to the total score on the
original data.

Analysis of Patient Embedding
For visualization purposes, we projected the final vectorization
model with a vector size of 100 into 2 dimensions using the
UMAP algorithm. This way we were able to illustrate the
high-dimensional vectorization and patterns within the patients’
cohort (Figures 3 and 4).

We observed a triangular shape in the vector space of the
embedded patient profiles, with multiple regions of higher
density. The 3 corner areas are (1) young patients of both
genders with a low number of cases and low prescription costs;
(2) women with an average age below the average age of the
cohort and with low prescription costs and a medium number
of cases; and (3) elderly patients of both genders with a high

number of cases and high prescription costs (Figure 3). The
HDBSCAN clustering identified 14 clusters but showed that
many patients are not easily mapped to a cluster (50.67%,
42,024/82,937, of test data; Figure 4).

A closer inspection of the clusters revealed interesting patterns
in the subcohorts (Figure 4 and Table 2; also see Multimedia
Appendix 2 for further details). The clusters 5, 13, and 14 all
have a mean age of almost 70 years or older, but differ in the
share of females, mean number of cases, rate of emergency
cases, and drug spending costs. Among these clusters, cluster
13 is the oldest with distinctive ICD-10 diagnoses of F03
(dementia) and R32 (urinary incontinence), along with a large
number of patients who do not appear in 2019’s data, which
indicates a high mortality within cluster 13. Clusters 5 and 6
have the most distinctive diagnosis codes in the H52 section
(refractive errors/eyesight), but differ in their average age.
Clusters 1 and 2 are almost exclusively female and of around
the same mean age, but cluster 1 has a higher share of
emergencies, and overexpressed ICD code Z34 (supervision of
normal pregnancy) and section O09 (duration of pregnancy)
point to pregnancy. Clusters 11 and 8 are the 2 youngest clusters,
where cluster 11 is mostly characterized by routine examinations
and vaccinations (Z00.1: routine child health examination; Z23.8
and Z27.8: immunizations), whereas cluster 8 is characterized
by developmental disorders of speech and language (F80.9 and
F80.0). Patients in cluster 12 have the most common acute
ambulatory diseases (J06.9: acute upper respiratory infection;
A09.9: gastroenteritis/colitis; and R51: headache). The
remaining clusters show the other most prominent public health
concerns in the German ambulatory health care system: cluster
3 (hay fever/asthma), cluster 4 (hypothyroidism), cluster 7
(depressive disorders), cluster 9 (pinched nerve/back pain/disc
disorders), and cluster 10 (diabetes type 2).

Regarding the explainability or backward interpretation of our
embedding, we analyzed how specific ICD-10 diagnosis codes
map onto the patient vector dimensions. A heatmap of the
correlations between a subset of 60 diagnosis codes and the
100D embedding showed that similar disease concepts were
mapped to the same vector dimensions in a blockwise manner
(Supplementary Figure S5 in Multimedia Appendix 1). It also
showed that disease information was spread out over multiple
dimensions instead of being mapped to only 1 dimension as in
binary encoding.
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Figure 3. UMAP embedding of Pat2Vec, colored by age/gender/number of cases in 2019/emergency treatment in 2019/last available year in claims
data/drug prescription costs in 2019. f: female; m: male; UMAP: uniform manifold approximation and projection.

Figure 4. UMAP embedding of Pat2Vec, numbers 1-14 indicate clusters found by HDBSCAN (hierarchical density–based spatial clustering of
applications with noise). UMAP: uniform manifold approximation and projection.
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Table 2. Properties of clustered patients’ cohorts.

Distinctive ICD-10b

codes

Mean drug

spending (€a)Emergency, %
Mean number
of casesFemale, %

Mean age
(years)

Percentage of
cohortCluster

Z00.1, Z23.8, Z27.869.2635.24.850.44.13.811

F80.9, F80.0, Z00.1198.0127.15.735.99.41.58

H52.2, H52.0, H52.162.7721.85.349.021.71.16

J06.9, A09.9, R51175.7719.84.631.327.66.712

Z34, N89.8, O09.3230.4728.48.499.932.01.71

J30.1, J45.9, J45.0323.3019.17.138.133.34.03

N89.8, Z30.9, Z12.9130.0018.78.699.733.79.32

F32.9, F32.1, F33.1431.0119.09.957.144.52.67

E03.9, E06.3, Z12.9191.2613.99.986.748.62.44

M54.1, M51.2, M54.5592.9815.710.447.057.66.69

I10.9, I10.90, E11.9480.1111.58.437.359.33.710

H52.2, H52.4, H52.0809.1612.910.959.669.92.15

I10.9, I10.90, I25.11587.9816.011.937.474.42.614

F03, R32, I10.91248.6426.68.262.980.71.313

N/Ac908.8917.99.451.050.250.7None

N/A654.1718.78.754.545.6100.0All

a€1=US $1.08 (as of March 27, 2023).
bICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision.
cN/A: not applicable.

Prediction of Drug Spending Costs
Predicting prospective individual drug spending from diagnosis
data is an especially hard task [66]. We predicted 2019’s
patient-level drug spending based on patients’ diagnosis codes
from 2018. We used and compared the binary-encoded top 100
diagnoses and our vectorization of dimension 100 (Pat2Vec).
In addition, we extended the data by age and gender of patients.
Table 3 shows the results using linear regression as well as
gradient-boosted trees. We observed an overall high relative

increase in performance by using the vectorization over the

baseline model, while in general the R2 values were low. The
linear regression shows diverging results between the top 100
and vectorization data with regard to absolute errors and squared

errors (CPM and R2). The gradient-boosted trees approach to
regression performed similarly to the linear regression on the
baseline model of binary-encoded top 100 diagnoses, while the
combination of Pat2Vec and gradient-boosted trees performed
best. Adding age and gender as additional variables led only to
small increases in performance.

Table 3. R2, mean absolute error, and Cumming prediction measure of predicting drug spending costs using linear regression and LightGBM Regressor.

LightGBM RegressorLinear regressionMeasure

Cumming prediction
measure, %Mean absolute error (€)R2, %

Cumming prediction
measure, %Mean absolute error (€a)R2, %

9.4801.091.17.4818.441.0Age + gender

14.5755.762.114.0760.552.0Top 100

14.9752.782.414.4757.132.0Top 100 + age + gender

20.4704.0112.94.3845.997.7Pat2Vec

21.9690.7013.74.3845.987.7Pat2Vec + age + gender

a€1=US $1.08 (as of March 27, 2023).
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Discussion

Principal Findings
We found that the NLP-based vector embeddings of claims data
led to large improvements on health care–related prediction
tasks compared with standard approaches (represented by binary
encoding). Hyperparameter tuning is necessary for these
improvements. On health care prediction tasks, gradient-boosted
tree algorithms outperform standard statistical methods (linear
or logistic regression). Gradient-boosted trees benefit more from
vectorization. Additionally, the performance of the vectorization
is more robust against incomplete data, but at least 1 million
patients are needed to train the vectorization model.
Furthermore, our cohort analysis shows that most patients’
diagnosis profiles lie on a spectrum of morbidity and cannot be
easily mapped to distinct patient clusters. Overall, the results
suggest we achieved the intended compression of the complete
patient profiles while keeping the relevant amount of available
information for prediction tasks.

Comparison With Previous Research
Embeddings of diagnosis codes have been studied extensively
before [14,29,38-42]. Patient-level embeddings have been
derived rarely [14,25,42]. To the best of our knowledge, there
is no ICD-10–based patient vectorization model trained and
optimized for application in generalized health care tasks.

Choi et al [39] trained ICD-9 code representations using another
similar NLP approach, and at the same time they learned “visit
representations” (vectors) based on a binary encoding of the
diagnosis codes for individual visits. Using logistic regression
and these representations of visits, they were able to predict
future disease codes from 1 visit to the next and clinical risk
groups [27]. In a similar way, Pham et al [41] trained diagnosis
code representations and combined them into variable-size
“admission representations” as input for a long short-term
memory (LSTM) to predict individual health prognoses after a
health care intervention.

Miotto et al [25] derived a patient-level embedding (Deep
Patient) using autoencoders based on ICD-9 diagnosis codes in
conjunction with medications, procedures, laboratory tests,
clinical notes (free-text), and demographic variables. They used
random forests and patient embeddings to predict future
diseases, but they did not tune their embedding algorithm or
prepare it for more general tasks.

Nguyen et al [42] found diagnosis code embeddings using
Word2Vec. Subsequently, given an outcome, they trained a
convolutional neural network to find predictive motifs for a
classifier. They arrived at a patient-level embedding after the
convolutional neural network step, but these embeddings are
dependent on the classification task (they predicted unplanned
readmissions in a hospital setting).

Almog et al [14] applied a similar approach (Crystal Bone) to
the special problem of predicting bone fracture incidents. For
the prediction of this specific task, they trained their
vectorization models on data filtered for bone incidents. They
described 2 approaches: gradient-boosted trees (using XGBoost
[67]) on patients’ vector embeddings as well as an LSTM [68]

neural network on the individual sequences of patients’
diagnosis code embeddings. They observed better performance
with the LSTM approach.

Li et al [29] derived an embedding for disease codes and a
framework to predict diseases and even generalized outcomes
(BEHRT). They did not set up a patient-level embedding with
a fixed size, and their embedding framework needs to be
retrained for new prediction tasks.

We were more interested in a general compression and
embedding of patients themselves for general health care–related
tasks (such as the prediction of different outcomes and an overall
visualization) and not just the optimization of 1 prediction task
only, thus we trained on the data of all patients, not filtered for
specific diagnoses, and restricted ourselves to the analysis of
the patients’ vector embeddings. In addition, our embedding is
based solely on the ICD-10 diagnosis data and does not need
additional data sources that might not be readily available in a
claims data setting. It would be helpful to look into how well
other advanced machine learning algorithms such as LSTM or
convolutional neural networks work on the ICD or patient vector
embeddings for health care prediction tasks, but this is outside
the scope of this paper.

Adkins [69] discussed the implications of a widespread adoption
of machine learning on EHR data in clinical prediction contexts.
While arguing that more complex machine learning models
(such as the one presented in this work, combining vectorization
and ensemble trees) on growing bodies of data will yield more
precise predictions at the price of interpretability (as well as
unforeseen ethical and legal issues), they pointed out the
limitations of considering a limited amount of ICD codes, a
problem that we could address to a large extent in our work.
Interpreting the dimensions of the vectorizations and other steps
to “explainable machine learning/artificial intelligence” are still
ongoing (eg, building on the Shapley additive explanations
values for tree methods [70,71]). Here, we employed a simple
approach using correlations between vector embeddings and
binary encoding to allow interpretation of vector dimensions
with regard to specific ICD-10 codes.

Limitations and Strengths
It has been discussed that a fusion of EHR data
(clinical/diagnosis data and laboratory quantitative
measurements) and other data sources (eg, medical images and
laboratory measurements) would lead to further advancements
in health care prediction tasks [72,73], where the problems of
these mixed data types need to be properly addressed.
Unfortunately, the claims data of the presented analysis do not
contain these additional data sources, and thus the current
implementation cannot acknowledge this.

We set up access to a pretrained model of our vectorization with
10 dimensions so that other researchers in the field can evaluate
our methods and use the model on their own health care data
[74].

Future Research
The next step will be to use the provided vectorization for
relevant tasks to improve health care. We will investigate
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whether our approach will benefit tasks such as disease
prediction with a long genesis time and prevention in cases of
early detection, such as dementia and mild cognitive impairment.
Furthermore, we will compare the benefits of data-driven
vectorization with common EHR-based procedures such as the
Elixhauser score [18] or clinical risk groups [27] in terms of
describing patient cohorts or predicting health care outcomes.
We think that patient clustering based on robust vectorization
has the potential to identify patients who would benefit from
early screening, which would lead to more personalized
screening measures.

Conclusions
Health care–related prediction tasks that rely on large samples
of data should make use of vectorization instead of binary
encoding. Our fully pretrained and validated model can be used
on new and possibly small data sets as well. Advanced machine
learning techniques profit more from our vectorization. We
enable more precise prediction models for decisions on future
public health policies as well as more accurate health care
services for individual patients.
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DBOW: distributed bag of words
DM: distributed memory
EHR: electronic health record
GDPR: General Data Protection Regulation
HDBSCAN: hierarchical density–based spatial clustering of applications with noise
ICD-10: International Statistical Classification of Diseases and Related Health Problems, 10th Revision
ICD-10-GM: International Statistical Classification of Diseases and Related Health Problems, 10th revision,
German Modification
LightGBM: light gradient-boosted machine
LSTM: long short-term memory
NLP: natural language processing
SHI: statutory health insurance
UMAP: uniform manifold approximation and projection
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