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Abstract

Background: In 2021, the European Union reported >270,000 excess deaths, including >16,000 in Portugal. The Portuguese
Directorate-General of Health developed a deep neural network, AUTOCOD, which determines the primary causes of death by
analyzing the free text of physicians’ death certificates (DCs). Although AUTOCOD’s performance has been established, it
remains unclear whether its performance remains consistent over time, particularly during periods of excess mortality.

Objective: This study aims to assess the sensitivity and other performance metrics of AUTOCOD in classifying underlying
causes of death compared with manual coding to identify specific causes of death during periods of excess mortality.

Methods: We included all DCs between 2016 and 2019. AUTOCOD’s performance was evaluated by calculating various
performance metrics, such as sensitivity, specificity, positive predictive value (PPV), and F1-score, using a confusion matrix.
This compared International Statistical Classification of Diseases and Health-Related Problems, 10th Revision (ICD-10),
classifications of DCs by AUTOCOD with those by human coders at the Directorate-General of Health (gold standard).
Subsequently, we compared periods without excess mortality with periods of excess, severe, and extreme excess mortality. We
defined excess mortality as 2 consecutive days with a Z score above the 95% baseline limit, severe excess mortality as 2 consecutive
days with a Z score >4 SDs, and extreme excess mortality as 2 consecutive days with a Z score >6 SDs. Finally, we repeated the
analyses for the 3 most common ICD-10 chapters focusing on block-level classification.

Results: We analyzed a large data set comprising 330,098 DCs classified by both human coders and AUTOCOD. AUTOCOD
demonstrated high sensitivity (≥0.75) for 10 ICD-10 chapters examined, with values surpassing 0.90 for the more prevalent
chapters (chapter II—“Neoplasms,” chapter IX—“Diseases of the circulatory system,” and chapter X—“Diseases of the respiratory
system”), accounting for 67.69% (223,459/330,098) of all human-coded causes of death. No substantial differences were observed
in these high-sensitivity values when comparing periods without excess mortality with periods of excess, severe, and extreme

JMIR AI 2023 | vol. 2 | e40965 | p. 1https://ai.jmir.org/2023/1/e40965
(page number not for citation purposes)

Pita Ferreira et alJMIR AI

XSL•FO
RenderX

mailto:ppita.ferreira@gmail.com
http://www.w3.org/Style/XSL
http://www.renderx.com/


excess mortality. The same holds for specificity, which exceeded 0.96 for all chapters examined, and for PPV, which surpassed
0.75 in 9 chapters, including the more prevalent ones. When considering block classification within the 3 most common ICD-10
chapters, AUTOCOD maintained a high performance, demonstrating high sensitivity (≥0.75) for 13 ICD-10 blocks, high PPV
for 9 blocks, and specificity of >0.98 in all blocks, with no significant differences between periods without excess mortality and
those with excess mortality.

Conclusions: Our findings indicate that, during periods of excess and extreme excess mortality, AUTOCOD’s performance
remains unaffected by potential text quality degradation because of pressure on health services. Consequently, AUTOCOD can
be dependably used for real-time cause-specific mortality surveillance even in extreme excess mortality situations.

(JMIR AI 2023;2:e40965) doi: 10.2196/40965
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Introduction

Background
In 2021, over 270,000 excess deaths were registered in the
European Union, with >16,000 attributable to Portugal [1].
Although most of these excess deaths were possibly related to
the COVID-19 pandemic, excess deaths are generally
attributable to preventable causes, making a case for the
importance of real-time cause-specific mortality surveillance
and the subsequent timely and appropriate public health response
and suitable health policies in periods of excess mortality [2].

The Portuguese Directorate-General of Health (DGS) is
responsible for processing data from the Death Certificate
Information System (SICO) and ensuring the epidemiological
surveillance of mortality [3]. SICO all-cause mortality data are
automatically analyzed and can be publicly accessed [4].
However, the analysis of death certificates (DCs) requires
manual coding of the primary causes of death according to the
International Statistical Classification of Diseases and
Health-Related Problems, 10th Revision (ICD-10) [5]. This
manual coding is a resource-intensive task that hinders real-time
cause-specific mortality surveillance.

Excess mortality is defined by the World Health Organization
as mortality above what would be expected. It allows for
assessing the magnitude of a potential public health crisis by
checking the additional deaths compared with a reference period
and subsequently analyzing their causes in depth [6,7].

Excess mortality can be estimated in several ways. In Portugal,
a period of excess mortality is defined as a consecutive period
starting with 2 observed numbers of deaths above the baseline’s
upper 95% confidence limit or with only 1 observed number of
deaths above the upper 99% confidence limit of the baseline.
The period ends with 2 consecutive values below this limit [8].
This methodology is aligned with the practice of the European
mortality monitoring project (EuroMOMO), which allows for
the detection and measurement in real time of periods of excess
mortality from all causes as a result of threats to public health
in Europe [9].

Most excess mortality surveillance systems such as EuroMOMO
or national systems are based on all-cause mortality surveillance
to ensure real-time surveillance. However, in many countries,

information on cause of death is not readily available as it
requires a human step to code the basic cause of death, delaying
the surveillance and monitoring of cause-specific mortality. For
instance, in Portugal, the manual establishment of the primary
causes of death for the previous year is completed by March of
the following year [10,11].

To overcome this problem, Portugal developed a deep neural
network called AUTOCOD [12,13], which allows for
presuggesting primary causes of mortality based on historical
data of DCs (except for neonatal and perinatal mortality),
achieving accuracies of 89% and 81% for ICD-10 chapters and
blocks, respectively. AUTOCOD can also analyze data from
autopsy reports and clinical bulletins (deaths occurring in health
care facilities). Ultimately, the developed algorithm increased
the productivity of coders, sped up the issuance of results and
information, and ensured near–real-time mortality surveillance
[12,13].

To our knowledge, no widespread dissemination of complex
artificial intelligence (AI) algorithms can suggest underlying
causes of death through free-text analysis of DCs in the same
way as AUTOCOD [14].

Objectives
This study aimed to determine the sensitivity and specificity of
AUTOCOD for classifying the underlying cause of death
compared with manual coding to ascertain the specific causes
of death in periods of excess mortality.

AUTOCOD has already proven to have high sensitivity,
specificity, and accuracy in periods without excess mortality.
However, it was still being determined whether this performance
would be maintained in periods of excess mortality, in which
the recording of free text in DCs could change owing to the
pressure felt in health services and the need to respond to more
requests for DCs. A satisfactory performance by AUTOCOD
could pave the way for its implementation as a real-time
surveillance tool to monitor cause-specific mortality even during
periods in which the national health system experiences severe
pressure [14,15].
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Methods

Study Population
In this study, we included all DCs registered in Portugal’s SICO
starting from January 1, 2016, to August 8, 2019. We excluded
DCs referring to neonatal, perinatal, and maternal mortality as
the AUTOCOD algorithm is not trained for these underlying
causes of death [13]. Each DC was manually classified
according to the ICD-10 by human coders at the DGS (gold
standard) or automatically by AUTOCOD.

Study Design and Data Sets
The methods behind the construction of the AUTOCOD
algorithm have been explained in detail in previous publications.
The algorithm was initially trained and tested using a data set
different from the one chosen for this study [12,13]. The manual
codification of causes of death adheres to the World Health
Organization Nomenclature Regulations specified in the ICD-10.
In addition, it uses the ICD-10 rules for selecting the underlying
cause of death as the primary cause of death by international
rules [5].

The DC data set was then linked with 2 dictionaries of the
ICD-10 to translate block and chapter codes into text
descriptions. The DC data set was also linked to the national
surveillance all-cause mortality data set [4], which defines the
baseline for expected deaths according to the EuroMOMO
methodology [16] and the daily count of observed deaths.

Excess Mortality Definition
Using this data set, we defined the periods in which excess
mortality was observed according to the EuroMOMO Z score
for excess mortality and the rules of Westgard [17] (ie, we
considered excess mortality when there were 2 consecutive days
with a Z score above the limit at 95% of the baseline or just 1
day at >99%). The period of excess mortality ended with 2
consecutive days below the limit of 95% of the baseline.
Flowchart of the study population inclusion criteria can be found
in Figure 1.

We also defined 2 metrics for periods of severe and extreme
excess mortality. These were 2 consecutive days with a Z score
above the limit of 4 SDs and 6 SDs, respectively. The Westgard
functions used to classify the different periods can be found in
Multimedia Appendix 1 [17-19].

Figure 1. Flowchart of the study population inclusion criteria. DC: death certificate; DGS: Directorate-General of Health.

Statistical Analysis
To obtain the multiclass confusion matrix, we used the
“confusionMatrix” function of the caret package in RStudio
(version 6.0-90; Posit, PBC) [18,19]. In a multiclass problem
such as classifying ICD-10 chapters and blocks, the

“confusionMatrix” will show a set of “one-versus-all” results.
For example, in a 3-class problem, the sensitivity of the first
class is calculated against all the samples in the second and third
classes (and so on). The resulting confusion matrix summarizes
the prediction results for a classification problem.
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The number of correct and incorrect predictions is summarized
with count values and broken down by each class. The confusion
matrix shows how a classification model such as AUTOCOD
is confused when it makes predictions. These numbers are then
organized into a table or matrix. Each row of the matrix
corresponds to a predicted class (ie, AUTOCOD). Each matrix
column corresponds to an actual class (ie, human coders at the
DGS).

The numbers of correct and incorrect classifications are then
filled into the table. The total number of correct predictions for
a class goes into the expected row for that class value and the
predicted column for that class value. In the same way, the total
number of incorrect predictions for a class goes into the expected
row for that class value and the predicted column for that class
value.

Finally, we performed a sensitivity analysis (also using the R
package caret) to compare the classification results obtained
using the AUTOCOD algorithm (index test) with the
classification made by human coders (gold standard) [20]. This
allowed us to obtain the number of true positives and false
positives as well as additional metrics such as sensitivity (recall),
specificity, accuracy, positive predictive value (PPV), and
F1-score [13]. This step was performed over time, including a
comparison between periods of excess and no excess mortality
and between periods of extreme excess mortality and no excess
mortality both by chapter and block classification levels of the
ICD-10 [13]. We present this comparison as the difference in
absolute values and with the Kullback-Leibler divergence
(KLD), which measures the distribution of a metric and chapter
or block during a specific period of excess or extreme mortality
and periods of no excess mortality. In other words, the KLD
measures the difference between 2 probability distributions.
We used the kullback_leibler_distanc function of the R package
philentropy [21].

The formulas used for all these performance metrics can be
found in Table S1 in Multimedia Appendix 1 [17-19].

To assess the quality of AUTOCOD, we opted to present the
weighted average of performance metrics such as sensitivity,
precision, and F1-scores by taking the mean of all class
performance metrics while considering each class’s number of
actual occurrences in the data set. The “weight” refers to the
proportion of each class’s actual occurrences in the data set
relative to the sum of all occurrences. The full formula for this
calculation of the weighted average is provided in Multimedia
Appendix 1 [17-19]. This choice was made as opposed to
presenting the macroaverage of performance metrics (ie,
macroaverages assign equal importance to each chapter or block,
thus calculating the arithmetic mean of performance metrics)
[13] as the latter methodology would artificially increase the
importance of the average of the rare or infrequent cause of
death chapters and blocks.

In the data set, 1 DC was not adequately codified by
AUTOCOD, so the ICD-10 classifications of that DC from both
AUTOCOD and the DGS were excluded.

All analyses were performed using R statistical software (version
4.1.2; R Foundation for Statistical Computing) [22-25]. The
analyses were checked by 2 researchers.

Ethical Considerations
The DGS is the national entity responsible for data treatment
and data protection of the SICO. The data provided were only
for the purposes strictly necessary for this study within the
competencies of the DGS. Data were previously anonymized.
Patient consent was waived as the data were deidentified and
processed for reasons of public interest in public health. This
research received previous authorization from the DGS
following positive advice from its data protection officer. In
this way, the research complies with the best practices of the
General Data Protection Regulation. This study was exempt
from an ethics review board assessment following the
self-assessment checklist for ethics of the Ethics Committee of
the National School of Public Health [26].

Results

Description of the Data Set
The data set (Table 1) comprised 330,098 DCs, each classified
twice, meaning that we had all DCs classified by human coders
and by AUTOCOD. The 3 most common ICD-10 chapters
classified by human coders were chapter IX—“Diseases of the
circulatory system” (97,420/330,098, 29.51%), chapter
II—“Neoplasms” (85,837/330,098, 26%), and chapter
X—“Diseases of the respiratory system” (40,202/330,098,
12.18%). A more extensive and detailed descriptive analysis of
this data set can be found in Multimedia Appendix 1 [17-19],
including the desegregation of DCs by year, ICD-10 chapter or
block, and period.

As expected, there were fewer DCs for periods of excess
mortality (n=186,834; 93,417/330,098, 28.3% of the total DCs
from each source) than for periods without excess mortality
(n=473,362; 236,681/330,098, 71.7% of the total DCs from
each source). When considering the periods of severe and
extreme excess mortality either for Z scores of >4 SDs
(n=60,220; 30,110/330,098, 9.12% from each source) or Z scores
of >6 SDs (n=12,480; 6240/330,098, 1.89% from each source),
the DCs were even fewer.

Considering only the 3 most common chapters of the data set
(chapters II, IX, and X), we performed the same analysis for
the classification of ICD-10 blocks (Table 2), which accounted
for 67.69% (223,459/330,098) of the total DCs throughout the
period. The 5 most common blocks classified in DCs were
C00-C97 (malignant neoplasms), I60-I69 (cerebrovascular
diseases), I30-I52 (other forms of heart disease), I20-I25
(ischemic heart disease), and J09-J18 (influenza and
pneumonia).
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Table 1. Description of the study population by excess mortality and type of death certificate coding (N=330,098)a.

Total, n/N (%)Extreme excess mortality
(>6 SDs), n/N (%)

Severe excess mortality
(>4 SDs), n/N (%)

Excess mortality, n/N
(%)

No excess mortality, n/N
(%)

Chap-
ter

AUTOCODHumanAU-
TOCOD

HumanAU-
TOCOD

HumanAU-
TOCOD

HumanAUTOCODHuman

6649/

330,098
(2.01)

6156/

330,098
(1.86)

117/

6649 (1.76)

111/

6154 (1.8)

566/

6649 (8.51)

546/

6154 (8.87)

1786/6649
(26.86)

1696/

6156
(27.55)

4863/

6649 (73.14)

4460/

6154 (72.45)
Ib

83,462/

330,098
(25.28)

85,837/

330,098 (26)

1162/

83,462
(1.39)

1166/

85,837
(1.36)

5941/

83,462
(7.12)

6088/

85,837
(7.09)

20,567/

83,462
(24.64)

21,136/

85,837
(24.62)

62,895/

83,462
(75.36)

64,701/

85,837
(75.38)

IIc

1602/

330,098
(0.49)

1334/

330,098
(0.4)

25

/1602
(1.56)

22/

1334 (1.65)

150/

1602 (9.36)

139/

1334
(10.42)

450

/1602
(28.09)

418/

1334
(31.33)

1152/

1602 (71.91)

916/

1334 (68.67)
IIId

19,382/

330,098
(5.87)

16,430/

330,098
(4.98)

374/

19,382
(1.93)

313/

16,430
(1.91)

1880

19,382
(9.7)

1594/

16,430
(9.7)

5655/

19,382
(29.18)

4793/

16,430
(29.17)

13,727/

19,382
(70.82)

11,637/

16,430
(70.83)

IVe

12,172/

330,098
(3.69)

12,742/

330,098
(3.86)

261/

12,172
(2.14)

281/

12,742
(2.21)

1221/

12,172
(10.03)

1264/

12,742
(9.92)

3660/

12,172
(30.07)

3756/

12,742
(29.48)

8512/

12,172
(69.93)

8986/

12,742
(70.52)

Vf

10,997/

330,098
(3.33)

11,810/

330,098
(3.58)

228/

10,997
(2.07)

254/

11,810
(2.15)

1024/

10,997
(9.31)

1097/

11,810
(9.29)

3240/

10,997
(29.46)

3456/

11,810
(29.26)

7757/

10,997
(70.54)

8354/

11,810
(70.74)

VIg

0/330,098
(0)

2/330,098
(0)

—0/2 (0)—0/2 (0)—1/2 (50)—i1/2 (50)VIIh

9/330,098
(0)

30/330,098
(0.01)

0/9 (0)0/30 (0)3/9 (33.33)5/30
(16.67)

3/9 (33.33)8/30
(26.67)

6/9 (66.67)22/30 (73)VIIIj

97,252/

330,098
(29.46)

97,420/

330,098
(29.51)

1937

/97,252
(1.99)

1918/

97,420
(1.97)

9296/

97,252
(9.56)

9287/

97,420
(9.53)

28,402/

97,252
(29.2)

28,399/

97,420
(29.15)

68,850/

97,252
(70.8)

69,021/

97,420
(70.85)

IXk

43,057/

330,098
(13.04)

40,202/

330,098
(12.18)

1050/

43,057
(2.44)

1014/

40,202
(2.52)

4934/

43,057
(11.46)

4734/

40,202
(11.78)

14,144/

43,057
(32.85)

13,466/

40,202
(33.5)

28,913/

43,057
(67.15)

26,736/

40,202
(66.5)

Xl

13,967/

330,098
(4.23)

14,892/

330,098
(4.51)

195/

13,967
(1.4)

217/

14,892
(1.46)

1108/

13,967
(7.93)

1201/

14,892
(8.06)

3585/

13,967
(25.67)

3893/

14,892
(26.14)

10,382/

13,967
(74.33)

10,999/

14,892
(73.86)

XIm

348/330,098
(0.11)

583/330,098
(0.18)

3/348
(0.86)

5/583
(0.86)

28/348
(8.05)

38/583
(6.52)

96/348
(27.59)

153/583
(26.24)

252/348
(72.41)

430/583
(73.76)

XIIn

960/330,098
(0.29)

1397/330,098
(0.42)

18/960
(1.88)

28/1397
(2)

96/960
(10)

130/1397
(9.31)

276/960
(28.75)

406/1397
(29.06)

684/960
(71.25)

991/1397
(70.94)

XIIIo

10,389/

330,098
(3.15)

10,277/

330,098
(3.11)

174/

10,389
(1.67)

179/

10,277
(1.74)

927/

10,389
(8.92)

924/

10,277
(8.99)

2890/

10,389
(27.82)

2851/

10,277
(27.74)

7499/

10,389
(72.18)

7426/

10,277
(72.26)

XIVp

0/330,098
(0)

35/330,098
(0.01)

—1/35 (2.86)—2/35 (5.71)—6/35
(17.14)

—29/35
(82.86)

XVq

3/330,098
(0)

58/330,098
(0.02)

0/3 (0)0/58 (0)0/3 (0)5/58 (8.62)0/3 (0)12/58
(20.69)

3/3 (100)46/58
(79.31)

XVIr

246/330,098
(0.07)

494/330,098
(0.15)

3/246
(1.22)

10/494
(2.02)

17/246
(6.91)

38/494
(7.69)

65/246
(26.42)

137/494
(27.73)

181/246
(73.58)

357/494
(72.27)

XVIIs

17,075/

330,098
(5.17)

16,269/

330,098
(4.93)

454/

17,075
(2.66)

448/

16,269
(2.75)

1879/17,075
(11)

1802/

16,269
(11.08)

5434/

17,075
(31.82)

5197/

16,269
(31.94)

11,641/

17,075
(68.18)

11,072/

16,269
(68.06)

XVIIIt
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Total, n/N (%)Extreme excess mortality
(>6 SDs), n/N (%)

Severe excess mortality
(>4 SDs), n/N (%)

Excess mortality, n/N
(%)

No excess mortality, n/N
(%)

Chap-
ter

AUTOCODHumanAU-
TOCOD

HumanAU-
TOCOD

HumanAU-
TOCOD

HumanAUTOCODHuman

0/330,098
(0)

2/330,098
(0)

—0/2 (0)—2/2 (100)—2/2 (100)—0/2 (0)XIXu

12,527/

330,098
(3.79)

14,128/

330,098
(4.28)

239/

12,527
(1.91)

273/

14,128
(1.93)

1040/

12,527
(8.3)

1214/

14,128
(8.59)

3164/

12,527
(25.26)

3631/

14,128
(25.7)

9363/

12,527
(74.74)

10,497/

14,128
(74.3)

XXv

1/330,098
(0)

0/330,098
(0)

0/1 (0)—0 /1 (0)—0/1 (0)—1/1 (100)——

330,098/

330,098
(100)

330,098/

330,098
(100)

6240/

330,098
(1.89)

6240/

330,098
(1.89)

30,110/

330,098
(9.12)

30,110/

330,098
(9.12)

93,417/

330,098
(28.3)

93,417/

330,098
(28.3)

236,681/

330,098
(71.7)

236,681/

330,098
(71.7)

Total

aPercentage values represent the proportion of death certificates for each period analyzed considering the total of each chapter except for the total
column, which gives the proportion of each chapter for all the death certificates.
bCertain infectious and parasitic diseases.
cNeoplasms.
dDiseases of the blood and blood-forming organs and certain disorders involving the immune system.
eEndocrine, nutritional, and metabolic diseases.
fMental and behavioral disorders.
gDiseases of the nervous system.
hDiseases of the eye and adnexa.
iMissing values.
jDiseases of the ear and mastoid process.
kDiseases of the circulatory system.
lDiseases of the respiratory system.
mDiseases of the digestive system.
nDiseases of the skin and subcutaneous tissue.
oDiseases of the musculoskeletal system and connective tissue.
pDiseases of the genitourinary system.
qPregnancy, childbirth, and the puerperium.
rCertain conditions originating in the perinatal period.
sCongenital malformations, deformations, and chromosomal abnormalities.
tSymptoms, signs, and abnormal clinical and laboratory findings not elsewhere specified.
uInjury, poisoning, and certain other consequences of external causes.
vExternal causes of morbidity and mortality.
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Table 2. Description of the study population for the 3 most common chapters (II, IX, and X) for all the periods analyzed (N=330,098)a.

Total, n/N (%)Extreme excess mortality
(>6 SDs), n/N (%)

Severe excess mortality
(>4 SDs), n/N (%)

Excess mortality, n/N
(%)

No excess mortality, n/N
(%)

Block

AUTOCODHumanAU-
TOCOD

HumanAU-
TOCOD

HumanAU-
TOCOD

HumanAUTOCODHuman

81,919/

223,771
(36.61)

84,031/

223,459
(37.6)

1102/

81,919
(1.35)

1141/

84,031
(1.36)

5695/

81,919
(6.95)

5942/

84,031
(7.07)

20,149/

81,919
(24.6)

20,652/

84,031
(24.58)

61,770/

81,919
(75.4)

63,379/

84,031
(75.42)

C00-

C97b

0/223,771
(0)

9/223,459
(0)

—0/9 (0)—0/9 (0)—1/9 (11.11)—d8/9 (88.89)D00-

D09c

224/223,771
(0.1)

311/223,459
(0.14)

4/224
(1.79)

7/311
(2.25)

14/224
(6.25)

26/311
(8.36)

53/224
(23.66)

87/311
(27.97)

171/224
(76.34)

224/311
(72.03)

D10-

D36e

1319/223,771
(0.59)

1486/223,459
(0.66)

24/1319
(1.82)

18/1486
(1.21)

110/1319
(8.34)

120/1486
(8.08)

365/1319
(27.67)

396/1486
(26.65)

954/1319
(72.33)

1090/1486
(73.35)

D37-

D48f

408/223,771
(0.18)

490/223,459
(0.22)

4/408
(0.98)

3/490
(0.61)

42/408
(10.29)

40/490
(8.16)

107/408
(26.23)

114/490
(23.27)

301/408
(73.77)

376/490
(76.73)

I05-

I09g

8938/223,771
(3.99)

7611/223,459
(3.41)

149/8938
(1.67)

149/7611
(1.96)

796/8938
(8.91)

810/7611
(10.64)

2728/8938
(30.52)

2320/7611
(30.48)

6210/8938
(69.48)

5291/7611
(69.52)

I10-

I15h

20,979/

223,771
(9.38)

21,153/

223,459
(9.47)

441/

20,979
(2.1)

471/

21,153
(2.23)

1925/

20,979
(9.18)

2093/

21,153
(9.89)

6176/

20,979
(29.44)

6295/

21,153
(20.76)

14,803/

20,979
(70.56)

14,858/

21,153
(70.24)

I20-

I25i

2296/223,771
(1.03)

2314/223,459
(1.04)

41/2296
(1.79)

43/2314
(1.86)

197/2296
(8.58)

222/2314
(9.59)

669/2296
(29.14)

699/2314
(30.21)

1627/2296
(70.86)

1615/2314
(69.79)

I26-

I28j

26,565/

223,771
(11.87)

26,016/

223,459
(11.64)

509/

26,565
(1.92)

524/

26,016
(2.01)

2433/

26,565
(9.16)

2490/

26,016
(9.57)

8002/

26,565
(30.12)

7784/

26,016
(29.92)

18,563/

26,565
(69.88)

18,232/

26,016
(70.08)

I30-

I52k

33,625/

223,771
(15.03)

34,595/

223,459
(15.48)

568/

33,625
(1.69)

621/

34,595
(1.8)

2893/

33,625
(8.6)

3162/

4,595
(9.14)

9492

/33,625
(28.23)

9759/

34,595
(28.21)

24,133/

33,625
(71.77)

24,836/

34,595
(71.79)

I60-

I69l

4136/223,771
(1.85)

4794/223,459
(2.15)

79/4136
(1.91)

102/4794
(2.13)

351/4136
(8.49)

431/4794
(8.99)

1135/4136
(27.44)

1300/4794
(27.12)

3001/4136
(72.56)

3494/4794
(72.88)

I70-

I79m

296/223,771
(0.13)

427/223,459
(0.19)

2/296
(0.68)

5/427
(1.17)

23/296
(7.77)

36/427
(8.43)

93/296
(31.42)

124/427
(29.04)

203/296
(68.58)

303/427
(70.96)

I80-

I89n

9/223,771
(0)

20/223,459
(0.01)

0/9 (0)0/20 (0)0/9 (0)3/20 (15)0/9 (0)4/20 (20)9/9 (100)16/20 (80)I95-

I99o

18/223,771
(0.01)

46/223,459
(0.02)

0/18 (0)1/46 (2.17)1/18 (5.56)7/46
(15.22)

4/18
(22.22)

18/46
(39.13)

14/18
(77.78)

28/46
(60.87)

J00-

J06p

18,775/223,771
(8.39)

18,191/223,459
(8.14)

441/18,775
(2.35)

481/18,191
(2.64)

2082/18,775
(11.09)

2248/18,191
(12.36)

6358/18,775
(33.86)

6325/18,191
(34.77)

12,417/18,775
(66.14)

11,866/18,191
(65.23)

J09-

J18q

2067/223,771
(0.92)

2102/223,459
(0.94)

55/2067
(2.66)

61/2102
(2.9)

228/2067
(11.03)

251/2102
(11.94)

673/2067
(32.56)

693/2102
(32.97)

1394/2067
(67.44)

1409/2102
(67.03)

J20-

J22r

40/223,771
(0.02)

53/223,459
(0.02)

0/40 (0)0/53 (0)2/40 (5)6/53
(11.32)

10/40 (25)11/53
(20.75)

30/40 (75)42/53
(79.25)

J30-

J39s

10,234/223,771
(4.57)

8953/223,459
(4.01)

240/10,234
(2.35)

232/8953
(2.59)

1113/10,234
(10.88)

1070/8953
(11.95)

3420/10,234
(33.42)

3024/8953
(33.78)

6814/10,234
(66.58)

5929/8953
(66.22)

J40-

J47t

2345/223,771
(1.05)

2340/223,459
(1.05)

33/2345
(1.41)

42/2340
(1.79)

180/2345
(7.68)

211/2340
(9.02)

653/2345
(27.85)

691/2340
(29.53)

1692/2345
(72.15)

1649/2340
(70.47)

J60-

J70u

1544/223,771
(0.69)

1636/223,459
(0.73)

27/1544
(1.75)

28/1636
(1.71)

131/1544
(8.48)

157/1636
(9.6)

442/1544
(28.63)

468/1636
(28.61)

1102/1544
(71.37)

1168/1636
(71.39)

J80-

J84v
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Total, n/N (%)Extreme excess mortality
(>6 SDs), n/N (%)

Severe excess mortality
(>4 SDs), n/N (%)

Excess mortality, n/N
(%)

No excess mortality, n/N
(%)

Block

AUTOCODHumanAU-
TOCOD

HumanAU-
TOCOD

HumanAU-
TOCOD

HumanAUTOCODHuman

83/223,771
(0.04)

215/223,459
(0.1)

0/83 (0)1/215
(0.47)

2/83 (2.41)16/215
(7.44)

22/83
(26.51)

60/215
(27.91)

61/83
(73.49)

155/215
(72.09)

J85-

J86w

249/223,771
(0.11)

221/223,459
(0.1)

3/249 (1.2)5/221
(2.26)

17/249
(6.83)

22/221
(9.95)

67/249
(26.91)

61/221
(27.6)

182/249
(73.09)

160/221
(72.4)

J90-

J94x

7702

/223,771
(3.44)

6445/

223,459
(2.88)

160/

7702 (2.08)

163/

6445 (2.53)

745/

7702 (9.67)

746/

6445
(11.57)

2495/

7702
(32.39)

2115/

6445
(32.82)

5207/

7702 (67.61)

4330/

6445 (67.18)

J95-

J99y

223,771/

223,771
(100)

223,459/

223,459
(100)

3882/

223,771
(1.73)

4098/

223,459
(1.83)

18,980/

223,771
(8.48)

20,109/

223,459 (9)

63,113/

223,771
(28.2)

63,001/

223,459
(28.19)

160,658/

223,771
(71.8)

160,458/

223,459
(71.81)

Total

aPercentage values represent the proportion of death certificates for each period analyzed considering the total of each block except for the total column,
which gives the proportion of each block for all the death certificates.
bMalignant neoplasms.
cIn situ neoplasms.
dMissing values.
eBenign neoplasms.
fNeoplasms of uncertain or unknown behavior.
gChronic rheumatic heart diseases.
hHypertensive diseases.
iIschemic heart diseases.
jPulmonary heart disease and diseases of pulmonary circulation.
kOther forms of heart disease.
lCerebrovascular diseases.
mDiseases of the arteries, arterioles, and capillaries.
nDiseases of the veins, lymphatic vessels, and lymph nodes not elsewhere classified.
oOther and unspecified disorders of the circulatory system.
pAcute upper respiratory infections.
qInfluenza and pneumonia.
rOther acute lower respiratory infections.
sOther diseases of the upper respiratory tract.
tChronic lower respiratory diseases.
uLung diseases owing to external agents.
vOther respiratory diseases principally affecting the interstitium.
wSuppurative and necrotic conditions of the lower respiratory tract.
xOther diseases of the pleura.
yOther diseases of the respiratory system.

Results for ICD-10 Chapters
The caret package provides the confusion matrix, which
evaluates AUTOCOD’s performance by calculating some
performance metrics. The full performance metrics calculated
for AUTOCOD can be found in Multimedia Appendix 1 [17-19].

As presented in Table S2 in Multimedia Appendix 1 [17-19],
the specificity in all ICD-10 chapters was >0.97 for periods
without excess mortality. The highest values of sensitivity (or
recall) were for chapter II—“Neoplasms” (0.95), chapter
XVIII—“Symptoms, signs, and abnormal clinical and laboratory
findings not elsewhere specified” (0.93), and chapter
IX—“Diseases of the circulatory system” (0.91). Considering
the PPV (or precision), the highest values were for chapter

XVI—“Certain conditions originating in the perinatal period”
(1.00), chapter II—“Neoplasms” (0.98), and chapter
IX—“Diseases of the circulatory system” (0.92). The highest
F1-scores were for chapter II—“Neoplasms” (0.96), chapter
IX—“Diseases of the circulatory system” (0.91), and chapter
XVIII—“Symptoms, signs, and abnormal clinical and laboratory
findings not elsewhere specified” (0.90).

Specificity in all ICD-10 chapters was >0.96 for the excess
mortality periods. The highest values of sensitivity (or recall)
were for chapter II—“Neoplasms” (0.95), chapter
XVIII—“Symptoms, signs, and abnormal clinical and laboratory
findings not elsewhere specified” (0.93), and chapter
IX—“Diseases of the circulatory system” (0.91). Considering
the PPV (or precision), the highest values were for chapter
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II—“Neoplasms” (0.97), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.88). The highest F1-scores were for
chapter II—“Neoplasms” (0.96), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.90).

Specificity in periods with severe excess mortality (>4 SDs)
was >0.96 in all ICD-10 chapters. The highest values of
sensitivity (or recall) were for chapter II—“Neoplasms” (0.94),
chapter XVIII—“Symptoms, signs, and abnormal clinical and
laboratory findings not elsewhere specified” (0.92), and chapter
IX—“Diseases of the circulatory system” (0.91). Considering
the PPV (or precision), the highest values were for chapter
II—“Neoplasms” (0.97), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.88). The highest F1-scores were for
chapter II—“Neoplasms” (0.96), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified (0.90).

For periods with extreme excess mortality (>6 SDs), specificity
in all ICD-10 chapters was >0.96. The highest values of
sensitivity (or recall) were for chapter II—“Neoplasms” (0.95),
chapter IX—“Diseases of the circulatory system” (0.91), and
chapter XVIII—“Symptoms, signs, and abnormal clinical and
laboratory findings not elsewhere specified” (0.90). Considering
the PPV (or precision), the highest values were for chapter
II—“Neoplasms” (0.96), chapter IX—“Diseases of the
circulatory system” (0.90), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.88). The highest F1-scores were for
chapter II—“Neoplasms” (0.96), chapter IX—“Diseases of the
circulatory system” (0.91), and chapter XVIII—“Symptoms,
signs, and abnormal clinical and laboratory findings not
elsewhere specified” (0.89).

Considering the weighted average of all chapters, the results
we obtained for the performance metrics of AUTOCOD are
presented in Table 3. For sensitivity, PPV, and F1-score, there
was no difference between periods without excess mortality
and those with excess mortality (<0.01). There was a decrease
of 0.01 from periods without excess mortality to periods with
severe excess mortality (>4 SDs). There was a decrease of 0.04
when comparing the weighted average of periods without excess
mortality and periods with extreme excess mortality (>6 SDs).

Table 3. Average performance metrics for different periods for the International Statistical Classification of Diseases and Health-Related Problems,
10th Revision, chapter classification of AUTOCOD.

F1-score (weighted aver-
age)

Positive predictive value (weighted
average)

Specificity (weighted aver-
age)

Sensitivity (weighted aver-
age)

0.880.880.980.88No excess mortality

0.880.880.980.88Excess mortality

0.870.870.980.87Severe excess mortality (>4
SDs)

0.840.840.940.85Extreme excess mortality
(>6 SDs)

It is vital to analyze the differences between periods without
excess mortality and periods of excess mortality, severe excess
mortality, or extreme excess mortality and which chapters
perform better.

According to Table 4, the biggest differences in the sensitivity
values of AUTOCOD between periods without excess mortality
and periods with excess mortality were found in chapter
XVI—“Certain conditions originating in the perinatal period”
(0.07), chapter XVII—“Congenital malformations,
deformations, and chromosomal abnormalities” (0.05), chapter
VIII—“Diseases of the ear and mastoid process” (−0.07), and
chapter XII—“Diseases of the skin and subcutaneous tissue”
(−0.08). For the 3 most common chapters, the differences were
0.00 (chapter II—“Neoplasms”), 0.00 (chapter IX—“Diseases
of the circulatory system”), and 0.01 (chapter X—“Diseases of
the respiratory system”). Regarding the differences in sensitivity
values between periods without excess mortality and periods
of severe excess mortality (Z score of >4 SDs), the biggest
differences were found in chapter VIII—“Diseases of the ear
and mastoid process” (−0.22), chapter XII—“Diseases of the

skin and subcutaneous tissue” (−0.12), chapter XVI—“Certain
conditions originating in the perinatal period” (0.07), and chapter
XVII—“Congenital malformations, deformations, and
chromosomal abnormalities” (0.07). For the 3 most common
chapters, the differences were 0.01 (chapter II—“Neoplasms”),
0.01 (chapter IX—“Diseases of the circulatory system”), and
0.00 (chapter X—“Diseases of the respiratory system”). When
comparing the difference between the sensitivity values of
AUTOCOD for periods without excess mortality and periods
of extreme excess mortality (Z score of >6 SDs), the biggest
differences were found in chapter XVII—“Congenital
malformations, deformations, and chromosomal abnormalities”
(0.19), chapter III—“Diseases of the blood and blood-forming
organs and certain disorders involving the immune system”
(0.17), chapter XIII—“Diseases of the musculoskeletal system
and connective tissue” (0.10), and chapter XII—“Diseases of
the skin and subcutaneous tissue” (0.08). For the 3 most
common chapters, the differences were 0.00 (chapter
II—“Neoplasms”), 0.00 (chapter IX—“Diseases of the
circulatory system”), and 0.00 (chapter X—“Diseases of the
respiratory system”).
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Table 4. Comparison among sensitivity values of AUTOCOD depending on the period (without excess mortality and with excess mortality, severe
excess mortality, or extreme excess mortality) by chapter of the International Statistical Classification of Diseases and Health-Related Problems, 10th
Revision.

KLD (no
excess
mortality
and >6
SDs)

Difference
(>6 SDs–no
excess mor-
tality)

Extreme
excess
mortality
(>6 SDs)

KLD (no
excess
mortality
and >4
SDs)

Difference
(>4 SDs–no
excess mor-
tality)

Severe ex-
cess mortal-
ity (>4
SDs)

KLDa (no
excess
mortality
and excess
mortality)

Difference
(no excess
mortality–ex-
cess mortali-
ty)

Excess
mortality

No excess
mortality

Chapter

0.020.020.650.000.000.670.00<0.010.670.67I

0.000.000.950.010.010.940.000.000.950.95II

0.190.170.410.000.000.580.020.020.550.57III

−0.02−0.020.820.000.000.810.000.000.810.81IV

0.010.010.770.000.000.780.000.000.780.77V

0.010.010.790.000.000.79−0.01−0.010.800.79VI

N/AN/AN/AN/AN/AN/Ab0.000.000.000.00VII

N/AN/AN/A−0.14−0.220.40−0.06−0.070.250.18VIII

0.000.000.910.010.010.910.000.000.910.91IX

0.000.000.890.000.000.900.010.010.890.90X

0.040.040.760.040.040.760.020.020.790.80XI

0.090.080.20−0.10−0.120.40−0.07−0.080.350.28XII

0.110.100.320.000.000.420.000.000.420.42XIII

0.020.020.740.000.000.760.010.010.760.76XIV

0.000.000.000.000.000.000.000.000.000.00XV

N/AN/AN/A0.570.070.000.570.070.000.07XVI

0.260.190.200.080.070.320.060.050.340.39XVII

0.030.030.900.010.010.920.000.000.930.93XVIII

N/AN/AN/AN/AN/A0.00N/AN/A0.00N/AXIX

0.020.020.760.040.040.750.020.020.760.79XX

aKLD: Kullback-Leibler divergence.
bN/A: not applicable.

In addition, Table 4 shows the KLD between periods without
excess mortality and periods of excess mortality. For 9 chapters,
including 2 of the most prevalent (chapter II—“Neoplasms”
and chapter IX—“Diseases of the circulatory system”), the KLD
was 0, indicating that the distribution of values for periods of
excess mortality was similar to that for periods of no excess
mortality. For other chapters, such as chapter X—“Diseases of
the respiratory system,” the KLD was close to 0. In chapter
XVI—“Certain conditions originating in the perinatal period,”
the KLD was particularly high, implying a large difference in
the probability distributions. Regarding the KLD between
periods without excess mortality and periods of extreme excess
mortality (Z score of >4 SDs), the sensitivity had a KLD of 0
for 9 chapters, including chapter X—“Diseases of the respiratory

system.” It also had a KLD close to 0 for chapter
II—“Neoplasms” and chapter IX—“Diseases of the circulatory
system.” When comparing the difference between the KLD for
the sensitivity of AUTOCOD for periods without excess
mortality and periods of extreme excess mortality (Z score of
>6 SDs), sensitivity had a KLD of 0 in the 3 most prevalent
chapters as well as chapter XV—“Pregnancy, childbirth, and
the puerperium.”

The differences in the performance measures of AUTOCOD
between periods without excess mortality and periods of excess
or extreme excess mortality are shown in Figure 2. The absolute
values of the observations for each period analyzed and
additional comparisons of AUTOCOD performance measures
can be found in Multimedia Appendix 1 [17-19].
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Figure 2. Comparison between performance metrics of AUTOCOD during periods of excess mortality, severe excess mortality, and extreme excess
mortality and periods without excess mortality for International Statistical Classification of Diseases and Health-Related Problems, 10th Revision
(ICD-10), chapters. DGS: Directorate-General of Health; SICO: Death Certificate Information System.

Results for ICD-10 Blocks
This section analyzes the ICD-10 classification by blocks for
only the 3 most common chapters (chapter II—“Neoplasms,”
chapter IX—“Diseases of the circulatory system,” and chapter
X—“Diseases of the respiratory system”).

As presented in Table S3 in Multimedia Appendix 1 [17-19],
specificity in all ICD-10 blocks was >0.99 for periods without
excess mortality. The highest values of sensitivity (or recall)
were for blocks C00-C97—malignant neoplasms (0.98),
I60-I69—cerebrovascular diseases (0.94), and
J09-J18—influenza and pneumonia (0.94). Considering the
PPV (or precision), the highest values were for blocks
C00-C97—malignant neoplasms (0.99),
I60-I69—cerebrovascular diseases (0.95), and
I20-I25—ischemic heart disease (0.94). The highest F1-scores
were for blocks C00-C97—malignant neoplasms (0.99),
I60-I69—cerebrovascular diseases (0.95), and
J09-J18—influenza and pneumonia (0.94).

Specificity in all ICD-10 blocks was >0.99 for periods of excess
mortality. The highest values of sensitivity (or recall) were for
blocks C00-C97—malignant neoplasms (0.98),
I60-I69—cerebrovascular diseases (0.94), and
J09-J18—influenza and pneumonia (0.93). Considering the
PPV (or precision), the highest values were for blocks
C00-C97—malignant neoplasms (0.99),
I60-I69—cerebrovascular diseases (0.95), and
J09-J18—influenza and pneumonia (0.94). The highest F1-scores

were for blocks C00-C97—malignant neoplasms (0.98),
I60-I69—cerebrovascular diseases (0.95), and
J09-J18—influenza and pneumonia (0.94).

Regarding the periods of severe excess mortality, with Z scores
of >4 SDs, the specificity in all ICD-10 blocks was >0.98. The
highest values of sensitivity (or recall) were for blocks
C00-C97—malignant neoplasms (0.97),
I60-I69—cerebrovascular diseases (0.93), and
J09-J18—influenza and pneumonia (0.93). Considering the
PPV (or precision), the highest values were for blocks
C00-C97—malignant neoplasms (0.99),
I60-I69—cerebrovascular diseases (0.96), and
I20-I25—ischemic heart disease (0.95). The highest F1-scores
were for blocks C00-C97—malignant neoplasms (0.98),
I60-I69—cerebrovascular diseases (0.95), and
I20-I25—ischemic heart diseases (0.94).

Specificity in all ICD-10 blocks was >0.99 for periods of
extreme excess mortality (z score of >6 SDs). The highest values
of sensitivity (or recall) were for blocks C00-C97—malignant
neoplasms (0.97), I60-I69—cerebrovascular diseases (0.93),
and J09-J18—influenza and pneumonia (0.93). Considering the
PPV (or precision), the highest values were for blocks
D10-D36—benign neoplasms (1.00); I80-I89—diseases of the
veins, lymphatic vessels, and lymph nodes not elsewhere
classified (1.00); and C00-C97—malignant neoplasms (0.99).
The highest F1-scores were for blocks C00-C97—malignant
neoplasms (0.98), I60-I69—cerebrovascular diseases (0.94),
and J09-J18—influenza and pneumonia (0.94).
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Table 5 presents AUTOCOD’s performance metrics for the
weighted average of all the blocks analyzed. For sensitivity,
PPV, and F1-score, there was a decrease of 0.01 from periods
without excess mortality to periods with excess mortality, severe
excess mortality (>4 SDs), and extreme excess mortality (>6
SDs).

Considering the differences between periods of excess mortality
and periods without excess mortality, it is important to analyze
which blocks had the biggest differences.

According to Table 6, the largest differences in the sensitivity
of AUTOCOD between periods without excess mortality and
periods of excess mortality were in block J00-J06—acute upper
respiratory infections (0.34), J30-J39—other diseases of the
upper respiratory tract (0.28), and I95-I99—other and
unspecified disorders of the circulatory system (0.08). Regarding
the difference in sensitivity between periods without excess
mortality and periods of severe excess mortality (>4 SDs), the
largest differences were in block J00-J06—acute upper
respiratory infections (0.41), J85-J86—suppurative and necrotic
conditions of the lower respiratory tract (0.23), J30-J39—other
diseases of the upper respiratory tract (0.20), and
I05-I09—chronic rheumatic heart diseases (−0.22). The largest
differences in the sensitivity of AUTOCOD between periods
without excess mortality and periods of extreme excess mortality
(>6 SDs) were in blocks J00-J06—acute upper respiratory
infections (0.41), J85-J86—suppurative and necrotic conditions
of the lower respiratory tract (0.31), and I05-I09—chronic
rheumatic heart diseases (−0.26).

Table 6 also shows the KLD between periods without excess
mortality and periods of excess mortality. For 7 blocks,

including C00-C97—malignant neoplasms and
I60-I69—cerebrovascular diseases, the KLD was 0. Several
blocks had values of KLD very close to 0, such as
I20-I25—ischemic heart diseases and J09-J18—influenza and
pneumonia. When comparing the difference between the KLD
for the sensitivity of AUTOCOD for periods without excess
mortality and periods of extreme excess mortality (Z score of
>4 SDs), sensitivity had a KLD of 0 in 2 blocks:
D37-D48—neoplasms of uncertain or unknown behavior and
J95-J99—other diseases of the respiratory system. It also showed
a KLD very close to 0 in blocks such as C00-C97—malignant
neoplasms and I60-I69—cerebrovascular diseases. Regarding
the KLD between periods without excess mortality and periods
of extreme excess mortality (Z score of >6 SDs), the sensitivity
had a KLD of 0 for I26-I28—pulmonary heart disease and
diseases of pulmonary circulation and J40-J47—chronic lower
respiratory diseases and a KLD very close to 0 for
C00-C97—malignant neoplasm, I20-I25—ischemic heart
diseases, and J09-J18—influenza and pneumonia. Some blocks,
such as J00-J06—acute upper respiratory infections and
J85-J86—suppurative and necrotic conditions of the lower
respiratory tract, had a particularly high KLD for increasing
mortality periods.

The differences in the performance measures of AUTOCOD
among periods without excess mortality, with excess mortality,
and with extreme excess mortality according to ICD-10 blocks
are shown in Figure 3. Additional AUTOCOD performance
comparisons between periods can be found in Multimedia
Appendix 1 [17-19].

Table 5. Weighted averages of performance metrics for different periods for the International Statistical Classification of Diseases and Health-Related
Problems, 10th Revision, block classification of AUTOCOD.

F1-score (weighted aver-
age)

Positive predictive value (weighted
average)

Specificity (weighted aver-
age)

Sensitivity (weighted aver-
age)

0.940.940.990.94No excess mortality

0.930.930.990.93Excess mortality

0.930.930.990.93Severe excess mortality (>4
SDs)

0.930.930.990.93Extreme excess mortality
(>6 SDs)
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Table 6. Comparison between sensitivity values of AUTOCOD depending on the period (total, excess mortality, or without excess mortality) by
International Statistical Classification of Diseases and Health-Related Problems, 10th Revision, block.

KLD (no
excess
mortality
and >6
SDs)

Difference
(>6 SDs–no
excess mor-
tality)

Extreme
excess
mortality
(>6 SDs)

KLD (no
excess
mortality
and >4
SDs)

Difference
(>4 SDs–no
excess mor-
tality)

Severe ex-
cess mortal-
ity (>4
SDs)

KLDa (no
excess
mortality
and excess
mortality)

Difference
(no excess
mortality–ex-
cess mortali-
ty)

Excess
mortality

No excess
mortality

Block

0.01<0.010.970.01<0.010.970.00<0.010.980.98C00-
C97

N/AN/AN/AN/AN/AN/AN/AN/AN/Ab0.00D00-
D09

−0.09−0.100.80−0.02−0.020.720.010.010.690.70D10-
D36

−0.02−0.020.770.000.000.740.010.010.730.74D37-
D48

−0.20−0.260.67−0.18−0.220.63−0.07−0.080.490.41I05-I09

−0.02−0.020.87−0.02−0.020.870.00−0.010.860.85I10-I15

0.010.010.920.010.010.920.010.010.920.93I20-I25

0.00−<0.010.800.030.030.770.010.010.790.80I26-I28

−0.01−0.010.92−0.01−0.020.92−0.01−0.010.920.91I30-I52

0.020.020.930.010.010.930.00<0.010.940.94I60-I69

−0.02−0.020.84−0.03−0.030.850.00<0.010.820.82I70-I79

0.060.050.50−0.02−0.020.580.020.020.540.55I80-I89

N/AN/AN/A0.690.080.000.690.080.000.08I95-I99

4.380.410.004.380.410.000.720.340.070.41J00-J06

0.010.010.930.010.010.930.010.010.930.94J09-J18

−0.06−0.060.90−0.01−0.010.850.000.000.830.83J20-J22

N/AN/AN/A0.260.200.250.450.280.170.45J30-J39

0.000.000.89−0.01−0.010.900.000.000.890.89J40-J47

0.050.050.820.030.030.840.030.030.840.87J60-J70

−0.05−0.050.880.030.030.790.010.010.810.82J80-J84

4.380.310.000.420.230.08−0.04−0.040.350.31J85-J86

0.190.160.50−0.04−0.040.71−0.02−0.020.690.66J90-J94

0.010.010.910.000.000.920.000.000.920.92J95-J99

aKLD: Kullback-Leibler divergence.
bN/A: not applicable.
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Figure 3. Comparison between performance metrics of AUTOCOD during periods of excess mortality and periods without excess mortality for
International Statistical Classification of Diseases and Health-Related Problems, 10th Revision (ICD-10), blocks. DGS: Directorate-General of Health;
SICO: Death Certificate Information System.

Discussion

Principal Findings
Continuous and systematic mortality data collection is crucial
for monitoring the population’s health and complementing
epidemiological studies. This national study is the first to
demonstrate the robustness of deep neural networks in
classifying primary causes of death even during periods of
excess mortality, enabling cause-specific mortality surveillance,
which is not widely performed worldwide. This study
demonstrated a consistently good performance of AUTOCOD
in different periods regardless of excess mortality rates. The
results demonstrate the potential of AI algorithms to expedite
disease classification and coding, making them a valuable tool
for real-time surveillance, timely assessment of public health
risks, and planification of responses. Proving that these
algorithms can operate effectively despite external factors in
different environments reinforces the case for their
implementation.

AUTOCOD showed high sensitivity (≥0.75) in 10 chapters,
with values of >0.90 for the 3 most common ones (chapter
II—“Neoplasms,” chapter IX—“Diseases of the circulatory
system,” and chapter X—“Diseases of the respiratory system,”
which together account for 223,459/330,098, 67.69% of all
human-codified causes of death). The weighted average of
sensitivity in the ICD-10 chapter analysis showed no difference
between periods without excess mortality and periods of excess
mortality, a difference of 0.01 between periods without excess

mortality and periods of severe excess mortality (>4 SDs), and
a difference of 0.04 between periods without excess mortality
and periods of extreme excess mortality (>6 SDs). Regarding
the ICD-10 block analysis, it showed a difference of 0.01 for
the weighted average of sensitivity between periods without
excess mortality and periods of excess mortality between periods
without excess mortality and periods of severe (at the >4 SD
threshold) and between periods without excess mortality and
periods of extreme excess mortality (at the >6 SD threshold).

In the different periods considered for the ICD-10 chapter
analysis, AUTOCOD showed a consistently good performance,
demonstrating a sensitivity (or recall), a PPV (or precision),
and an F1-score as high as 0.88 for periods without excess
mortality and periods of excess mortality and as low as 0.84 in
periods of extreme excess mortality (>6 SDs). When we
considered only the most common chapters (chapter
II—“Neoplasms,” chapter IX—“Diseases of the circulatory
system,” and chapter X—“Diseases of the respiratory system”),
sensitivity ranged from 0.94 to 0.95 in chapter II, 0.91 in chapter
IX, and 0.89 to 0.90 in chapter X in the different periods
analyzed. The same happened with the PPV, which ranged from
0.96 to 0.98 in chapter II, 0.90 to 0.92 in chapter IX, and 0.83
to 0.86 in chapter X. Regarding the F1-score, the performance
of AUTOCOD was 0.96 in chapter II, 0.91 in chapter IX, and
0.86 to 0.88 in chapter X. When we considered only the most
common blocks—C00-C97 (malignant neoplasms), I60-I69
(cerebrovascular diseases), I30-I52 (other forms of heart
disease), I20-I25 (ischemic heart diseases), and J09-J18
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(influenza and pneumonia)—the sensitivity ranged from 0.91
to 0.98, the PPV ranged from 0.89 to 0.99, and the F1-score
ranged from 0.90 to 0.99.

AUTOCOD presented high specificity and negative predictive
values in all the analyses performed. This was expected as the
number of true negatives was consistently much higher than
that of true positives. This is not a characteristic of AUTOCOD
itself but rather a result of our handling of the sample and our
interpretation of the question as a classification problem with
a one-versus-all solution. This method is widely used for
multiple-output class classification problems. In our case, the
individual ICD-10 chapters or blocks were handled as if they
were in a binary model, thus assessing each class individually
against all the other classes in the model.

It should be noted that chapter XVII (“Symptoms, signs, and
abnormal clinical and laboratory findings not elsewhere
specified”) consistently presented high performance metrics in
AUTOCOD. This does not translate to a correct certification of
the cause of death, but it could imply that, when human coders
have difficulties classifying the cause of death, so does the
AUTOCOD.

These results are aligned with those of previous studies using
AUTOCOD [12,13] and, in general, with the literature on deep
neural networks applied to the automatic classification of DCs
[14,27,28]. Falissard et al [14] developed a deep neural network
for automated coding of the underlying cause of death with a
test accuracy of 0.978 (95% CI 0.977-0.979) and an F-measure
value of 0.952 (95% CI 0.946-0.957) [27]. The proposed
approach by Della Mea et al [28] for automated coding of causes
of death had an accuracy of 0.990 (95% CI 0.990-0.991) and a
macroaveraged accuracy and F1-score of 0.974 and 0.968,
respectively. Similarly to our study, Della Mea et al [28] found
that accuracy was low for chapters with rare causes of death
and, therefore, rare causes of death could be ignored.

However, to the best of our knowledge, this is the first time that
a deep neural network that classifies basic causes of death has
been evaluated while comparing its performance across different
time frames according to their excess mortality rates.

Automatic classification of DCs relies on natural language
processing (NLP) techniques and algorithms. NLP can translate
free text written by the physician who certified the death into
classification codes based on the ICD-10. However, this process
depends on the text quality of the analyzed DCs. By text quality,
we mean how successfully we can automatically classify,
retrieve, or extract information from them [29]. Thus, text
quality does not involve a single aspect but combines numerous
criteria, including spelling, grammar, organization, informative
nature, and page layout [30]. Extracting these attributes can
become problematic in low-quality texts (poor grammar, many
abbreviations, and short sentences). This is a known problem
in medical and clinical texts such as patient records or DCs [30].
The performance of systems that rely on attributes of text
quality, such as NLP, affects the overall performance of the
algorithms—a text of bad quality may result in poor-quality
prediction results. To overcome this limitation, after the
development AUTOCOD, a processing layer has been added

to the neural network that has the ability to always read words
in text fields as the closest word the model knows (eg, for the
word Alzheimer, it currently identifies >25 ways of misspelling
it). Therefore, this processing layer can help minimize text field
errors or abbreviations in periods of excess mortality [31-33].

Our results suggest that, even in periods of excess, severe, and
extreme excess mortality when the volume of deaths and the
pressure on health services might increase, with a consequent
impact on physicians that certify deaths and a potential impact
on the quality of the text in the DC, AUTOCOD’s performance
remains unhindered. It is important to consider analyzing the
linguistic properties of the DC, such as variations in text size
and the number of fields filled in by physicians, in future work.

Limitations
An important limitation of this study is that the human coders
had access to the automatic classification of the DC by
AUTOCOD, meaning that the gold standard we used in this
research might be biased by the same algorithm we were trying
to evaluate. However, this implementation only entered
production on July 26, 2019, meaning that manual classification
was unbiased for most of the data sets used in this study.

In addition, there is the matter of ICD-10 code ambiguity. This
is a known limitation of the ICD-10 for human coders and
automatic algorithms of classification that the sometimes
discrete differences between codes for similar causes of death
can explain. This might explain the difference in sensitivity
between, for example, respiratory blocks such as J00-J06 (acute
upper respiratory infections) and J09-J18 (influenza and
pneumonia), with the latter presenting a less ambiguous cause
of death when compared with the former both for human
classification and automatic classification. These unspecified
codes are not necessarily an error rate but an indicator of the
completeness of clinical information of DCs in which sufficient
clinical information is not known or available to assign a more
specific code. In the case of human coders, it is common that
they look for more clinical information in electronic health
records. However, AUTOCOD is restricted to the information
included in the DC. This stresses the importance of a well-filled
and detailed DC by the physician that certifies the death even
in periods of excess mortality.

Routinely, racial and ethnic or socioeconomic groups are not
collected in the DC. Although other proxies of social
vulnerability can be used, such as the municipality of residence,
the focus of this research was not the study of differences in
subgroups, making this an important next step of investigation.

The human coders that we set as our ground truth were not
mistake free. Current research puts the reliability of human
coders at approximately 70% to 89% (reliability is a measure
for calculating agreement between coders and the consistency
of each coder individually) [34]. These performance scores can
be in part explained by the use of different codes for similar
diseases. Moreover, the DGS has had a range of human coders
that varies in number, typically from 4 to 6, and in experience
in classifying causes of death. This may also affect the reliability
and accuracy of the ground-truth labels we used in this study.
Only 1 human coder classifies each DC, and the DGS regularly
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conducts an in-house auditing process in which 2 human coders
check for internal reliability by classifying a small sample of
DCs.

Another possible limitation, known in the field of AI algorithms,
is the generalization of our results to other countries [35]. This
question of model transferability requires further study.
However, we feel confident that our results can be generalized
to other algorithms that rely on NLP for automatic classification
without a profound impact on the model’s performance even
in periods of excess mortality.

Strengths
In Portugal, Law 15/2012 of April 3, 2012, established the
SICO, a mortality information system based on the electronic
registration of DCs [36]. Since then, SICO has become a
widespread tool used by physicians nationally. Therefore, it is
a well-established source of data and information related to
mortality and an international example of the timeliness of
mortality statistics [3].

AUTOCOD was built based on the already disseminated
existence of DCs in electronic format and has since been
validated as an essential tool for the automatic assignment of
ICD-10 codes for causes of death [13]. However, this validation
never considered differences in periods that might affect the
quality of the DC and, consequently, the performance of
AUTOCOD. The method we used for evaluating the
performance of AUTOCOD during periods of excess mortality,
severe excess mortality, and extreme excess mortality is a known
method for comparison of the performance of a given index test
with a given ground truth or gold standard, making a case for
the importance of evaluating algorithms and models in different
periods and in the ever-changing environment that might affect
the overall performance of the models.

Although the current use of AUTOCOD is limited to supporting
human coders, the research findings suggest a compelling case
for enhancing the algorithms used for the automated
classification of causes of death. In a completed DC,
AUTOCOD can be used to accurately classify basic causes of
death in real time even in periods of excess mortality, attesting
that deep neural networks are robust to eventual changes in the
underlying quality of the text. Furthermore, by defining a
baseline from the past (and Portugal has digital DC data going
back to 2014), we can detect in real time, with high sensitivity,
changes in mortality and periods of excess mortality without
the need to wait for human classification of cause of death,
especially for the more common and less ambiguous causes of
death. Finally, with this algorithm, we can use our data to predict

excess deaths that rely on seasonality, such as influenza and
pneumonia.

Implications of Our Work
Our work makes a case for using AUTOCOD for real-time
mortality surveillance by ICD-10 codes. It can be further
validated by other countries wishing to train their neural
networks for medical and clinical text classification. Our
research also makes a case for auditing, evaluating, and
consistently monitoring AI algorithms to identify potential
barriers, strengths, and opportunities [37].

As the AUTOCOD algorithm is robust, it can be used to classify
the underlying causes of death in periods of excess mortality
with no need to wait for manual coding, which allows for
adequate real-time cause-specific mortality surveillance, timely
assessment of risks to public health, and definition of priorities
and planification of responses in both periods with and without
excess mortality. This cause-specific mortality surveillance in
real time is not carried out widely worldwide and might benefit
from further investigation and real-world intervention. This
investigation is a step forward in Portugal for the widespread
use of the classification of specific causes of death by the
AUTOCOD, with renewed confidence in its results regardless
of the presence of excess mortality, and for the implementation
of targeted public health interventions and practices.

Further investigations should be carried out, such as a
comparison of AUTOCOD with other automated coding systems
and a new evaluation of the behavior of AUTOCOD during
periods of excess mortality caused by the COVID-19 pandemic,
including retraining the algorithm with the new codes for
COVID-19 that were not present in the ICD-10 when
AUTOCOD was built [14,16,28]. To strengthen coding
practices, conducting a reliability study among coders at the
DGS would also be important.

Conclusions
This study makes the case for deep neural networks as powerful
tools for automatically classifying primary causes of death
according to the ICD-10 even during periods of excess mortality.
Our work could potentially further the use of deep neural
networks to facilitate automatic clinical codification, such as
of diseases, medical procedures, or DCs. In addition, it may
serve as a staple for the real-time monitoring and surveillance
of public health threats and problems, allowing for timely action.
More broadly, this study highlights the importance of AI
algorithms as an advisory tool for public health policies and
measures.
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