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Abstract

Background: Surveillance of hospital-acquired pressure injuries (HAPI) is often suboptimal when relying on administrative
health data, as International Classification of Diseases (ICD) codes are known to have long delays and are undercoded. We
leveraged natural language processing (NLP) applications on free-text notes, particularly the inpatient nursing notes, from
electronic medical records (EMRs), to more accurately and timely identify HAPIs.

Objective: This study aimed to show that EMR-based phenotyping algorithms are more fitted to detect HAPIs than ICD-10-CA
algorithms alone, while the clinical logs are recorded with higher accuracy via NLP using nursing notes.

Methods: Patients with HAPIs were identified from head-to-toe skin assessments in a local tertiary acute care hospital during
a clinical trial that took place from 2015 to 2018 in Calgary, Alberta, Canada. Clinical notes documented during the trial were
extracted from the EMR database after the linkage with the discharge abstract database. Different combinations of several types
of clinical notes were processed by sequential forward selection during the model development. Text classification algorithms
for HAPI detection were developed using random forest (RF), extreme gradient boosting (XGBoost), and deep learning models.
The classification threshold was tuned to enable the model to achieve similar specificity to an ICD-based phenotyping study.
Each model’s performance was assessed, and comparisons were made between the metrics, including sensitivity, positive predictive
value, negative predictive value, and F1-score.

Results: Data from 280 eligible patients were used in this study, among whom 97 patients had HAPIs during the trial. RF was
the optimal performing model with a sensitivity of 0.464 (95% CI 0.365-0.563), specificity of 0.984 (95% CI 0.965-1.000), and
F1-score of 0.612 (95% CI of 0.473-0.751). The machine learning (ML) model reached higher sensitivity without sacrificing
much specificity compared to the previously reported performance of ICD-based algorithms.
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Conclusions: The EMR-based NLP phenotyping algorithms demonstrated improved performance in HAPI case detection over
ICD-10-CA codes alone. Daily generated nursing notes in EMRs are a valuable data resource for ML models to accurately detect
adverse events. The study contributes to enhancing automated health care quality and safety surveillance.

(JMIR AI 2023;2:e41264) doi: 10.2196/41264
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Introduction

Pressure injury (PI), also known as a pressure ulcer, is an injury
of the skin and deep tissues caused by external pressures.
Annually, PIs affect approximately 250,000 to 500,000
Canadians, with an estimated prevalence of 26.0% in health
care institutions [1,2]. Hospital-acquired pressure injuries
(HAPIs) are PIs developed during an inpatient hospital stay.
HAPIs can significantly extend a patient’s hospitalization length
of stay and cause severe secondary complications, such as
muscle and profound tissue impairment [3]. HAPI is considered
mostly preventable, and its prevalence has been reckoned as an
acceptable indicator of the quality of care [4,5]. Collecting HAPI
status using chart review is time and labor-intensive, thereby
not suitable for large-scale population-based applications.
Considering all the factors, there is a need for automated ways
to accurately and timely identify HAPIs for analyzing large
cohort studies that support quality improvement efforts and
assisting unit managers with developing reliable patient safety
programs. The International Classification of Diseases, 10th
Revision, adapted to the Canadian health system (ICD-10-CA),
can be used to estimate the prevalence of adverse events from
administrative data. However, the coded administrative data are
prone to miss positive cases: previous research demonstrated
that the sensitivity of the ICD algorithm for identifying HAPI
cases is around 30% compared to chart review [1]. In addition
to the sensitivity issue, ICD codes are not generally assigned
with a specific time when diseases occur. Therefore, they are
unsuitable for reporting the time when HAPIs occur [6]. Thus,
there is a need for more accurate HAPI detection.

Electronic medical records (EMRs) are used to track and
organize patient information for efficient treatment of medical
conditions in a secure system [7]. Free-text clinical notes in
EMRs consist of detailed descriptions of patients' conditions
and treatment. Additionally, clinical notes are typically written
in a continuous manner across patients' interactions with health
care systems, making clinical notes more real-time compared
to diagnosis codes. Despite the rich information the clinical
record may have, coders often cannot read every entry, given
their limited time per chart and many patients have prolonged
hospital stays. Recent studies suggest that using free-text in
EMRs alone, or incorporating EMR data elements, can
significantly improve the accuracy of case identification of
specific comorbidities [8-16]. Xu et al compared the ICD
algorithm with algorithms based on EMR keyword search,
which achieved a high sensitivity of 0.655 (95% CI 0.601-0.710)
[8]. The Canadian health system operates as a publicly funded
single-payer insurance system by the federal, provincial, and

territorial governments [17]. Additional crown institutions at
the provincial and federal-level monitor adverse events such as
HAPI. For example, in Alberta, Canadian Institute for Health
Information, the federal crown corporation, works with Alberta
Health Services (provincial health care agency) to monitor PIs
[18,19]. To date, there is no mandatory collection of PIs within
Canadian acute-care facilities. Real-time PI evaluation and
auditing using ICD codes are not possible as Canadian health
data systems are set up such that ICD codes are assigned outside
of providing care and have a few months lag in data extraction,
transfer, and load [20]. Consequently, these agencies aim to
monitor but are unable to conduct real-time auditing of PIs in
Canada. Therefore, there is a need to develop EMR data-specific
algorithm for identifying PIs for monitoring and auditing within
Canadian acute-care facilities. Our objective was to create EMR
data-specific algorithms for HAPIs. Availability and
implementation of PI-specific algorithms within a clinical
information system would allow the abovementioned federal
and provincial agencies to conduct real-time surveillance of
HAPIs, improving patient safety, enhancing the quality of care,
and reducing the burden of costs associated with adverse events.
The EMR phenotype case detection is evaluated via comparison
with confirmed HAPIs status acquired in a clinical trial [21].

Methods

Study Design
This is an EMR phenotyping study for enhancing HAPI
identification using free-text notes. Obtained clinical trial data
were linked to administrative and EMR data for model
development and validation. The natural language processing
(NLP) method’s performance was compared with results from
the ICD validation study conducted in Alberta, Canada, by
Wong et al [21]. Detailed information for HAPIs identification
can be found in their study.

Clinical Trial Data
Previously completed randomized controlled trial (RCT) data
of 678 eligible consenting inpatients were obtained from an
affiliated research team and were used as the reference standard
[21]. The trial evaluated the efficacy of a pressure-sensing
mattress in preventing interface pressure. A research nurse
performed a clinical head-to-toe skin assessment for PI
formation, and suspected deep tissue injuries were monitored
throughout 3 days of enrollment [21]. Assessments were
conducted within 24 hours of admission, on the day of trial
enrollment, and the third day after enrollment, and documented
in Allscripts Sunrise Clinical Manager (SCM) EMR (Figure 1).
Three days were chosen as a length of time for the research
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nurse to perform data collection and risk assessment for 3
reasons. First, this is the average length of stay in the local
inpatient units, and a longer trial period may include varying
nursing practice due to hospital discharge with a shorter length
of stay, unit changes, and more nursing shift changes. Second,
the dedicated investigation team deemed 3 days sufficient for
pressure-related skin and soft tissue changes to develop. Lastly,
as a continuous collection of interface pressure throughout the
enrollment period leads to a large volume of data, 3 days
allowed for optimal data collection while maintaining participant
enrollment.

The research nurse, who measured pressure-related skin
ulcerations, was trained as a wound care specialist in the
provision of pressure ulcers, ostomy, and continence care [21].
The patients’ PI status check on admission was determined
based on when the patient was admitted. The clinical trial team
relied on the medical record if the patient had been admitted
long before the study and consented to the study. If the patient

agreed to participate in the trial right after being admitted to the
hospital, the research nurse noted the PI status on admission.

The following data elements were abstracted from the clinical
trial data: record ID, medical unit, sex, first-skin assessment
date, second-skin assessment date, presence of PIs, and other
possible related conditions (cerebrovascular disease, diabetes
mellitus, etc). The clinical trial measured and classified PIs into
6 stages: stage 1, stage 2, stage 3, stage 4, suspected deep tissue
injury, and unstageable PIs [22]. Stages of PIs were identified
according to the National Pressure Ulcer Advisory Panel’s
pressure ulcer staging system [23]. Stage 1 PIs include sores.
Stage 2 captures open wounds on the surface of the skin. Stage
3 PIs represent wounds extending beneath the skin and affecting
fat tissue. At stage 4, PIs are deep and reach into muscles, bones,
and tendons. The trial is registered at clinicaltrials.gov
(NCT02325388). Additional details surrounding the clinical
trial data were published by Wong et al [21].

Figure 1. Illustration of the clinical trial for assessment of PI status in the enrolled patient cohort (n=678) and the data input used for the development
of classification models. PI: pressure injury.

Study Cohort

Inclusion and Exclusion Criteria
During the RCT, eligible patients were at least 18 years old,
were expected to have a length of stay of at least 3 days, and
did not receive near-end-of-life care within 3 days of trial
enrollment [21]. Participants were recruited from nursing units
with a high risk for PI development including acute medical,
neurosurgery, neurology, and intensive care [21]. For this study,

patients were excluded if their data did not link to EMR data,
had incomplete skin assessments, or included erroneous
assessment or discharge dates. Patients with PIs on the day of
admission were also excluded in order to track only PIs
developed during hospitalization. Furthermore, intensive care
unit (ICU) patients were excluded since their data were stored
in another data warehouse with distinct data elements from
those found in SCM and required restricted access. After careful
selection, the final cohort of eligible patients was 280 (Figure
2).
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Figure 2. Flowchart of inclusion and exclusion criteria for the patient cohort based on trial completeness, PI status, and age (minimum age of 18 years
old) for all controls in the panel. ICU: intensive care unit; PI: pressure injury; SCM: Sunrise Clinical Management.

Data Linkage to Discharge Abstract Database and
SCM EMR
Deterministic data linkage was performed between the RCT
data, administrative data from the discharge abstract database
(DAD), and SCM EMR data [24]. SCM was the EMR system
employed in Calgary hospitals at the time of the study. Data
linkage steps followed a previously established methodology
[25]. First, the PI RCT data were linked to the DAD using the
provincial health number and admission date. Then, DAD
variables were used to connect these data with SCM.

Document Types and Sequential Forward Type
Feature Selection
In total, 37 types of documents were noted for the included
patients during the clinical trial. Nursing notes were the primary
source of suitable HAPI information and constituted the largest
proportion of the documents. Among the nursing notes, “Patient
Assessment” contained the assessment of skin and wounds
under the Integument section. The Integument section described
skin integrity, bruises, wound formation, and exposure to air.
The “Patient Assessment Neuro” document included the patient's
neurological state, where the main components related to PIs
were level of consciousness, communication, and sensory
deficit. The “Patient Care” document included patients' hygiene,
activity, exercise, and nutrition, such as mobility, positioning,

and assistance with a meal. The remaining document types
contained daily intake and output, physiological indicators, pain
scale, and other related data. Discharge summaries, unit transfer
notes, and inpatient triage reports were not written for most
patients during the clinical trial because the trial was primarily
conducted in the middle of the hospital stay.

Forward feature selection was used to determine the best
combination of documents with 2 machine learning (ML)
models: extreme gradient boosting (XGBoost) and random
forest (RF) [26,27]. Forward feature selection is an iterative
way to obtain the best subset of features [28]. The analyses
began with no feature in the input of models. Then, in each
iteration, new features were added and observed for
improvements (Figure 3). The experiments were run with each
feature from the list of all possible features, where the best
predictor was then added to our feature set. This iteration ended
when introducing a new feature did not significantly improve
the targeted metric. In our experiments, the forward feature
selection was performed for every document type. Instead of
adding 1 feature in each iteration, all documents belonging to
1 type were added to the input of models. This feature selection
stopped when adding a new document type did not increase the
target metric. Due to the long convergence time, the forward
feature selection was not conducted during the development of
the deep learning model. Rather, the same optimal document
set determined by ML models was used.
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Figure 3. A visual illustration of the sequential forward selection process for identifying feature subsets that maximize the performance of the ML
pipeline. The candidate feature subsets were evaluated by using 5-fold cross-validation. For each subset of document types, 40 experiments were
conducted with all possible combinations of 5 folds, 2 vectorizers, and 4 ML models. FPR: false positive rate. ML: machine learning; TF-IDF: term
frequency-inverse document frequency; TPR: true positive rate.

Natural Language Processing

Bag of Words Preprocessing and ML
All nursing notes of selected document types were merged into
1 text and converted into a bag-of-words (BOW) vector with
the count of words or term frequency-inverse document
frequency (TF-IDF) vectorizer by using a Python scikit-learn
ML library [29-31].

A binary classification model was developed to identify HAPI
cases by considering all patients who developed any stage of
PI during a hospital stay as positive cases and patients without
PIs as the negative cohort. The BOW matrices were used as the
independent input for the models. RF and XGBoost
classification models were trained to perform classification.
These 2 models were chosen because they were representative
of ensemble models: RF for bagging and XGboost for boosting.
Ensemble models have been shown to display superior
performance than a single classifier [32]. Two sets of
hyperparameters were tried for each model. The 5-fold
cross-validation was conducted to determine the most useful
document types, high-performing ML model, and its
hyperparameters.

Deep Learning Model
A hierarchical attention network (HAN) structure with
bidirectional encoder representations from transformers (BERT)
was used to classify the text in the EMR clinical notes [33,34].
BERT is a contextualized word representation model that uses
a masked language model that predicts randomly masked words

in a context sequence. Publicly released BERT parameters are
trained on corpora such as Wikipedia, which is formatted
differently from clinical text. As such, ClinicalBERT, a language
model specifically pretrained using clinical notes, was used for
the text evaluation [35]. Medical language has been
demonstrated to contain vast amounts of discipline-specific
jargon, abbreviations, and acronyms while being a
domain-specific and technical language [36]. Multiple studies
have demonstrated that ClinicalBERT performs better than
BERT [37,38]. Therefore, the decision to proceed with
ClinicalBERT for our study was made. The ClinicalBERT
embedding was not fine-tuned with clinical notes data due to a
moderate sample size. Rather, the ClinicalBERT was
downloaded and tested from a GitHub repo found in the study
where Alzentzer et al observed performance improvements on
three common clinical NLP tasks after training BERT models
on clinical notes and discharge summaries [38,39]. The
document embedding layer weights were not taken from
ClinicalBERT. As the maximum sequence length of BERT
limits it from handling text with more than 512 tokens, sentence
embeddings generated by ClinicalBERT are fed to another
transformer to obtain the “document embedding,” a highly
abstracted vector capturing global information about the whole
document [35,38]. HAPI status was classified based on this
document embedding (Figure 4). The project-specific document
embedding transformer was trained from the ground up through
random initialization. Details of implementation and training
of our HAN-BERT models are described in Figure S1 in
Multimedia Appendix 1 [40,41].
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Figure 4. Composition of input sequence representations for text classification using BERT. The meaning of one sentence is summarized into the
vector of [CLS] (classifier), an artifact token concatenated at the beginning of each sentence to become the sentence embedding. The sentence embedding
is then fed to another transformer to generate the document embedding. An output layer with SoftMax activation provides the probability of text
classification. BERT: bidirectional encoder representations from transformers.

Model Evaluation
We used 5-fold stratified cross-validation to split the 97 positive
cases and 183 patient controls into 5 groups. Due to the fact
both numbers were not divisible by 5, there was a minor
difference in the distribution of cases and controls between
groups, although the effort was placed to retain the most similar
distribution between the 5 groups. Each time we selected 4
groups as a training set, the remaining group was used as a test
set. The splitting was the same for ML and deep learning
experiments. A comparison of different document type subsets
was executed with the best model to determine which document
type subset would yield the best performance of PI detection.
To fairly compare our method with ICD-based PI identification
algorithms, the classification threshold was tuned to achieve
similarly estimated specificities (0.988 and 0.959) of 2
ICD-based algorithms developed and validated in a previous
study by Ho et al [1]. The first case definition is more specific
and yields greater detection precision. The second definition is
more inclusive of nonspecific codes for wounds and is likely
to capture a larger number of cases. Sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), and F1-scores were calculated as target metrics.
Additionally, PPV, NPV, sensitivity, and specificity of the 4
algorithms and 2 ICD algorithms were calculated with changing
thresholds ranging from 0.05 to 0.95. F1-score is a measure of
accuracy through a combination of sensitivity and PPV. F1 has

a maximum score of 1 when both sensitivity and PPV are 1,
and a minimum of 0 when either sensitivity or PPV is 0. We
calculated the binomial proportion CIs for sensitivity, specificity,
PPV, and NPV using the Statsmodels package in Python (Python
Software Foundation) [42]. The CIs of the F1-score were from
5-fold cross-validation.

Ethics Approval
The study was approved by the Conjoint Health Research Ethics
Board at the University of Calgary, Calgary, Alberta
(REB13-0794).

Results

Characteristics of Study Cohort
The study included 280 eligible participants (Figure 2). Among
the 280 patients, a research nurse identified 183 patients with
no HAPIs, and 97 patients were found to have HAPIs. Table 1
provides demographic details of the patient cohort. The P values
were calculated with MedCalc’s statistical calculators [43,44].
The median age was 68 (IQR 55-79) years. The cohort consisted
of 127 (45.36%) females, and the median length of stay was 46
(IQR-79) days. A more detailed review of input data and
linguistic inquiry and word count analysis for the number of
words, sentences, and patients based on document types can be
found in Table S1 in Multimedia Appendix 2.
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Table 1. Descriptive statistics of patients (N=280).

P valuePatients without pressure injury
(n=183)

Patients with pressure injury
(n=97)

AllCharacteristics

.6285 (46.45)42 (43.30)127 (45.36)Female, n (%)

.1067 (53-79)68 (59-80)68 (55-79)Age (years), median (IQR)

.3746 (19-109)48 (28-96)46 (22-104)Length of stay (days), median (IQR)

.5287 (47.54)50 (51.55)137 (48.93)Cerebrovascular disease, n (%)

.0228 (15.30)26 (26.80)54 (19.29)Chronic obstructive pulmonary disease, n (%)

.0436 (19.67)30 (30.93)66 (23.57)Congestive heart failure, n (%)

.3424 (13.11)9 (9.28)33 (11.79)Myocardial infarction, n (%)

.7917 (9.29)10 (10.31)27 (9.64)Dementia, n (%)

.2830 (16.39)21 (21.65)51 (18.21)Peripheral vascular disease, n (%)

.5780 (43.72)39 (40.21)119 (42.50)Hemiplegia or paraplegia, n (%)

.621 (0.55)1 (1.03)2 (0.71)Leukemia, n (%)

.502 (1.09)2 (2.06)4 (1.43)Lymphoma, n (%)

.0220 (10.93)21 (21.65)41 (14.64)Peptic ulcer disease, n (%)

.00527 (14.75)28 (28.87)55 (19.64)Moderate or severe renal disease, n (%)

.9915 (8.20)8 (8.25)23 (8.21)Liver disease, n (%)

.04552 (28.42)39 (40.21)91 (32.50)Diabetes mellitus, n (%)

.5831 (16.94)19 (19.59)50 (17.86)Solid tumor, n (%)

.0427 (14.75)24 (24.74)51 (18.21)Connective tissue, n (%) disease

.3073 (39.89)45 (46.39)118 (42.14)History of smoking, n (%)

.5026 (14.21)11 (11.34)37 (13.21)Currently smoking, n (%)

.328 (4.37)7 (7.22)15 (5.36)History of illicit drug use, n (%)

.855 (2.73)3 (3.09)8 (2.86)Currently use illicit drugs, n (%)

Data Linkage and Extraction
Table 2 shows the patient and document count and document
word count for the patients eligible for this study. Most
PI-positive patients had “Patient assessment” document type

(60 (61.86%) patients with HAPI versus 82 (44.81%) patients
without HAPI), and patients in the negative groups
predominantly had “Patient assessment Neuro.” However,
patients from both groups had a similar amount of “Patient care”
during the trial (Table 2).
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Table 2. Characteristics of extracted documents, different components of nursing notes, and the average number of documents written by nurses.

Patients without HAPI (n=183)Patients with HAPI (n=97)All (N=280)Document type

Patient assessment

82 (44.81)60 (61.86)142 (50.71)Number of patients with this type of document, n
(%)

0.00 (0.00-16.00)12.00 (0.00-18.00)1.00 (0.00-17.00)Number of notes per patient, median (IQR)

370.00 (303.00-421.00)385.00 (311.00-441.00)376.00 (306.00-430.00)Word count per note, median (IQR)

Patient assessment neuro

102 (55.74)39 (40.21)141 (50.36)Number of patients with this type of document, n
(%)

8.00 (0.00-13.00)0.00 (0.00-13.00)2.50 (0.00-13.00)Number of notes per patient, median (IQR)

430.00 (346.00-499.00)424.00 (324.00-493.50)428.00 (343.0-498.0)Word count per note, median (IQR)

Patient care

183(100)97 (100)280 (100)Number of patients with this type of document, n
(%)

16.00 (13.00-23.50)16.00 (13.00-19.00)16.00 (13.00-21.20)Number of notes per patient, median (IQR)

133.00 (66.00-176.00)147.00 (91.00-185.00)138.00 (72.00-179.00)Word count per note, median (IQR)

Document Subset and Classification Models
Across a subset of document types and all tested classification
techniques, the combination of Patient Assessment, Patient
Assessment Neuro, and Patient Care yielded the highest outputs
in terms of target metrics.

The TF-IDF vectorizer with RF classifier demonstrated the best
performance in terms of sensitivity, PPV, and NPV when fixed
at the specificity of 0.988 and 0.959 thresholds. The performance
results are reported in Table 3.

For a specificity of 0.988, the sensitivity of the (TF-IDF+RF)
EMR-based model was 0.464 (95% CI 0.365-0.563), which
surpassed the sensitivity 0.277 (95% CI 0.174-0.380) achieved
by the ICD-based algorithm [1]. The PPV of our model had a
mean of 0.938 (95% CI 0.869-1.000), which is higher than the
reported 0.917 (95 % CI 0.854-0.980) of the ICD algorithm.
The NPV was 0.776 (95% CI 0.722-0.830), which is also higher
than the 0.739 (95% CI 0.638-0.840) reported in the ICD
validation [1]. For a specificity of 0.959 achieved by the loose
ICD-based algorithm, the EMR model sensitivity reached 0.546
(95% CI 0.447-0.645) compared to 0.328 (95% CI 0.220-0.436)
found in ICD reporting [1]. Both PPV and NPV of EMR model

were also higher (0.855 (95% CI 0.767-0.943) vs 0.793 (95%
CI 0.700-0.886) and 0.798 (95% CI 0.745-0.851 vs 0.746 (95%
CI 0.646-0.846) than those detected by ICD algorithm
respectively. The deep learning model underperformed with the
area under the receiver operating characteristic curve
(AUC-ROC) score of 0.68 (SD 0.04), compared to the RF with
the highest area under the curve (AUC) score of 0.80 (SD 0.08),
followed by XGBoost with the AUC score of 0.75 (SD 0.07;
Figure 5). Considering the prevalence of 34.6% in our study,
the baseline area under the precision-recall curve (AU-PRC) is
0.346. Figure 6 shows that an AU-PRC of 0.77 (SD 0.06) was
achieved for the RF models using TF-IDF tokenization, 0.74
(SD 0.08) was achieved for the RF models using count
tokenization, 0.67 (SD 0.04) was achieved for the XGBoost
models, and 0.60 (SD 0.06) for the deep learning models. These
results are greater than 0.346, and we conclude that these
classifiers do not discriminate by random chance and perform
well in finding positive HAPI cases without accidentally
marking negative patients as positive. Figure S1 in Multimedia
Appendix 3 shows the PPV, NPV, sensitivity, and specificity
of the 4 algorithms and 2 ICD algorithms, with changing
thresholds ranging between 0.05 and 0.95.
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Table 3. The performance of NLPa methods on free-text electronic medical record documents at varying thresholds for the probability of pressure

injury detection. The model was compared to ICDb algorithms such that the model was trained to mimic its specificity.

F1-score %

(95% CI)

NPVd %

(95% CI)

PPVc %

(95% CI)

Specificity %

(95% CI)

Sensitivity %

(95% CI)

Model

Specificity near 0.988

0.425 (0.312-0.538)0.739 (0.638-0.840)0.917 (0.854-0.980)0.988 (0.963-1.013)0.277 (0.174-0.380)ICD (Ho et al [1])

0.612 (0.473-0.751)0.776 (0.722-0.830)0.938 (0.869-1.000)0.984 (0.965-1.000)0.464 (0.365-0.563)TF-IDFe+random forestf

0.550 (0.361-0.739)0.758 (0.704-0.813)0.909 (0.824-0.994)0.978 (0.957-0.999)0.412 (0.314-0.510)Count+random forest

0.450 (0.340-0.559)0.727 (0.671-0.782)0.857 (0.741-0.973)0.973 (0.949-0.996)0.309 (0.217-0.401)TF-IDF+XGBoostg

0.394 (0.207-0.580)0.716 (0.660-0.772)0.867 (0.745-0.988)0.978 (0.957-0.999)0.268 (0.180-0.356)Word Embedding+BERTh

Specificity near 0.959

0.464 (0.350-0.578)0.746 (0.646-0.846)0.793 (0.700-0.886)0.959 (0.913-0.100)0.328 (0.220-0.436)ICD (Ho et al [1])

0.665 (0.577-0.753)0.798 (0.745-0.851)0.855 (0.767-0.943)0.951 (0.919-0.982)0.546 (0.447-0.645)TF-IDF+random forest

0.546 (0.359-0.733)0.758 (0.702-0.813)0.837 (0.733-0.940)0.956 (0.927 -0.986)0.423 (0.324-0.521)Count+random forest

0.552 (0.404-0.699)0.758 (0.702-0.813)0.837 (0.733-0.940)0.956 (0.927-0.986)0.423 (0.324-0.521)TF-IDF+XGBoost

0.420 (0.280-0.560)0.720 (0.663-0.776)0.824 (0.695-0.952)0.967 (0.941-0.993)0.289 (0.198-0.379)Word embedding+BERT

aNLP: natural language processing.
bICD: International Classification of Diseases.
cPPV: positive predictive value.
dNPV: negative predictive value.
eTF-IDF: term frequency-inverse document frequency.
fThe best model.
gXGBoost: extreme gradient boosting.
hBERT: bidirectional encoder representations from transformers.
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Figure 5. The ROC curves derived from the random forest with TF-IDF and word count, XGBoost, and deep learning models. AUC: area under the
curve; ROC: receiver operating characteristic; TF-IDF: term frequency-inverse document frequency; XGBoost: eXtreme gradient boosting.

Figure 6. The area under the precision-recall curve (AU-PRC) performance of 4 models: random forest with TF-IDF and word count, XGBoost, deep
learning model. AUC: area under the curve; PRC: precision-recall curve; TF-IDF: term frequency-inverse document frequency; XGBoost: eXtreme
gradient boosting;
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Discussion

Principal Findings
Multiple methods were applied, and different combinations of
clinical text were analyzed to determine the efficiency of NLP
models in detecting HAPIs from nursing notes. The results of
NLP models were compared with the ICD-based algorithm
reported in the previous study [1]. An AUC of 0.80 (SD 0.07)
of the ML model indicates fair accuracy in terms of produced
sensitivity and specificity. The results demonstrate that different
combinations of EMR data leverage NLP models to improve
upon ICD-10–based HAPI case definitions. The TF-IDF with
RF produced higher sensitivity at a strict specificity level. The
satisfactory performance of ML models indicates that the
free-text documented during hospitalization contains valuable
information for HAPI detection. Developing algorithms using
EMR data will facilitate the timely and accurate capture of HAPI
incidences and measure the quality of nursing practice during
patient hospitalization.

From the forward document type selection, we found that apart
from the notes that directly document skin conditions in the
patient assessment, the entries noting the patient’s
consciousness, nutrition, and mobility were helpful in indicating
HAPI. This makes clinical sense because the reduced level of
consciousness, nutrition, and mobility are factors that may
contribute to HAPI [45]. In addition, our findings align with
several risk factors of the Braden Scale [46]. Given that many
factors of the Braden Scale are documented in nursing notes
daily, it may be promising to use NLP to automatically extract
the Braden Scale’s factors and achieve better PI detection or
prediction upon the automatically rated Braden Scale [46].

The results showed that the XGBoost and RF methods perform
better than the advanced deep learning models by a large margin.
The joint effort of the TF-IDF vectorizer and tree-based
classifier enabled the pipeline to stay robust to irrelevant
vocabularies, even when the sample size was smaller than the
feature size. The feature selection played a role in this task
because a great part of the text in clinical documents was not
relevant to HAPIs and only contributed noise for the
classification task. On the other hand, deep learning models
allowed every input word to contribute to the document
embedding upon which the model judged the presence of HAPIs.
The suboptimal performance of the deep learning model may
have been avoided if the transformers' attention mechanisms
had more training samples to converge. The noisy data and not
a very large sample size were possibly the main factors that
made the deep learning models perform poorly. However, this
hypothesis needs further examination.

Compared to these previous studies that used EMR to automate
phenotyping, our model achieved higher sensitivity while
reporting comparable values for performance metrics such as
PPV and NPV. Furthermore, our model can identify HAPIs
with high specificity and improved sensitivity during the first
three days in routine clinical practice settings. Melton et al [47]
found NLP to be reliable and effective in detecting 16 out of
65 adverse events in 1000 manually reviewed charts. The model
by Melton et al [47] then processed all inpatient cases with EMR

discharge summaries, achieving high specificity (0.9996) and
low sensitivity (0.28). Our model results are in line with other
studies that used free-text clinical notes to predict incidences
of distinct adverse events [48-51].

Limitations
The study is not without limitations. First, the exclusion of ICU
patients due to data elements being distinct from SCM led to a
smaller sample size and a narrower clinical cohort. Nevertheless,
the remaining data from the clinical trial represented a
population at risk for HAPIs. Second, both the patient and nurse
knew at the admission of a clinical trial measuring PI would be
the trial goal, which may have impacted the data entry quality
of PI and frequency of patients to report PI-related discomfort.
Third, the model produced relatively modest sensitivity.
However, this sensitivity is deemed valuable, given that the
specificity was set to a high threshold, and the input was
restricted to the first 72 hours after enrollment [16]. The
sensitivity reported in similar studies used the whole or more
extended hospitalization stay and more data elements [50-52].
In addition, the sensitivity of our study was obtained through a
comparison to a clinical trial instead of chart review data. Chart
review does not always capture all positive cases due to possible
errors in the review process [53,54]. Fourth, the comparison
with deep learning is not likely to be very fair because
BERT-based models are usually applied to larger cohorts.
Nevertheless, our result can be served as a reference for model
selection for researchers working with similar sample sizes.
Prabhakar et al applied ClinicalBERT to phenotype 10 diseases
on a cohort consisting of 1610 discharge summaries [41]. When
only using ClinicalBERT, they obtained a very similar F1-score
(0.46) compared to our result [41]. The suboptimal performances
of the advanced deep learning model may suggest that study
needs to be more evolved before applying deep learning to
free-text-based clinical phenotyping. Tree-based ML models
are recommended for detecting adverse event conditions from
noisy, moderately sized text samples.

Future Directions
The present work focused on demonstrating ML models on
cross-sectional EMR data can outperform the ICD-based PI
identification algorithm. Future directions could include (1)
leveraging cost-sensitive learning to assign various weights to
assess the impact of misclassifying the patients with a PI, (2)
identification of the potential risk features or predictors that
may be associated with PI, (3) comparison of HAN-BERT
against other novel NN structures, and (4) detailed ablation
studies for assessing the performance of components on the
designed models that will hopefully be integrated into a clinical
decision-support system. These studies will require larger
sample sizes than our current pilot study, but our current work
can be used to create such a cohort.

Conclusions
Our study revealed the feasibility of using inpatient clinical
notes documented for 3 days to detect HAPIs with increased
accuracy over ICD methods. NLP and ML application on
inpatient clinical notes allowed better and more timely use of
the clinical narratives compared to summarizing them into ICD

JMIR AI 2023 | vol. 2 | e41264 | p. 11https://ai.jmir.org/2023/1/e41264
(page number not for citation purposes)

Nurmambetova et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


codes and DAD, thereby being a promising solution for precise,
time-sensitive, population-based disease phenotyping. With the
advent of digital technologies in health care, the results
contribute toward an automated approach to better cohort
identification, patient surveillance, and quality improvement
for the treatment of hospital-acquired adverse events. The

application of the model is particularly relevant for effectively
mining clinical data that does not capture a large sample size
for adverse effects phenotyping. The proposed method of
identifying patients in acute care hospitals who are likely to
have or develop PI will most likely be used by front-line hospital
staff to prevent or manage PI earlier and more effectively.
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