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Abstract

Background: Machine learning (ML) can offer greater precision and sensitivity in predicting Medicare patient end of life and
potential need for palliative services compared to provider recommendations alone. However, earlier ML research on older
community dwelling Medicare beneficiaries has provided insufficient exploration of key model feature impacts and the role of
the social determinants of health.

Objective: This study describes the development of a binary classification ML model predicting 1-year mortality among
Medicare Advantage plan members aged ≥65 years (N=318,774) and further examines the top features of the predictive model.

Methods: A light gradient-boosted trees model configuration was selected based on 5-fold cross-validation. The model was
trained with 80% of cases (n=255,020) using randomized feature generation periods, with 20% (n=63,754) reserved as a holdout
for validation. The final algorithm used 907 feature inputs extracted primarily from claims and administrative data capturing
patient diagnoses, service utilization, demographics, and census tract–based social determinants index measures.

Results: The total sample had an actual mortality prevalence of 3.9% in the 2018 outcome period. The final model correctly
predicted 44.2% of patient expirations among the top 1% of highest risk members (AUC=0.84; 95% CI 0.83-0.85) versus 24.0%
predicted by the model iteration using only age, gender, and select high-risk utilization features (AUC=0.74; 95% CI 0.73-0.74).
The most important algorithm features included patient demographics, diagnoses, pharmacy utilization, mean costs, and certain
social determinants of health.

Conclusions: The final ML model better predicts Medicare Advantage member end of life using a variety of routinely collected
data and supports earlier patient identification for palliative care.
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Introduction

Background
Approximately 43% of all Medicare beneficiaries are enrolled
in Medicare Advantage plans, totaling 24.4 million Americans
as of July 2020 [1]. As the Medicare Advantage population
lives longer with more chronic conditions, the need for palliative

services and serious illness care management becomes
increasingly important [2]. Palliative services in Medicare
Advantage refer to (nonhospice) primary, specialty, and
supportive care services for individuals with serious advanced
illness and complex chronic conditions that are typically
delivered in the patient’s home or in a clinical outpatient setting.
Palliative care not only may provide patients a better quality of
life but also can reduce costs by enabling avoidance of
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unnecessary hospitalizations, diagnostic and treatment
interventions, and intensive and emergency department care
[3-6].

Although the need for and engagement with palliative care
among older adults and Medicare beneficiaries is growing, these
valuable services are often underutilized [7-9]. One major cause
of lower uptake involves unreliability in provider identification
of patients who are appropriate for palliative care. Research
shows a clinician’s intuition alone is not the most effective
method for recognizing individuals in general practice who
could benefit from palliative services [10-12]. Standardized
screening tools that rely primarily on diagnostic criteria, medical
record information, and patient-reported needs can promote
better reliability in clinician identification of palliative patients
[13-20]. However, providers and health plans are increasingly
leveraging powerful, data-driven machine learning (ML)
techniques to help recognize potential candidates for palliative
care earlier and more objectively.

Machine Learning for Palliative Care Identification
in Medicare
ML is being adopted across hospital and community-based
health care settings as a mechanism to guide early identification
of older adults in need of palliative services. ML algorithms
attain superior predictive performance from using one or more
sources of big data for model training, such as routinely
collected medical service claims, electronic medical records,
and clinical assessment outcomes [21]. The likelihood of patient
mortality within a certain time frame is commonly used as the
predictive outcome for ML models intending to identify
potential palliative service candidates, because patients who are
approaching the end of life are most likely to need and benefit
from palliative care [22]. Using ML to identify patients for
palliative care not only saves clinicians valuable time but may
also improve the efficiency of service delivery to those at highest
risk. Early models such as the Charleston Comorbidities Index
and Elixhauser score incorporated claims and administrative
data to predict mortality of hospitalized older patients [23,24].
Since then, ML models trained using big data from claims and
electronic medical records of Medicare beneficiaries (aged ≥65
years) in nonhospital settings have achieved greater predictive
performance, with the area under the receiver operating
characteristic curve (AUC) values ranging between 0.79 and
0.97 [25-28]. The predictive power of ML for the early
identification of palliative care in nonhospitalized Medicare
patients can surpass that of clinical screening tools developed
for similar purposes [14,16].

Previous research on ML mortality models for earlier palliative
care identification in the Medicare population has mainly
focused on optimizing and comparing the performance of
different model configurations [6,25-29]. That said, evaluating
critical features of ML mortality models is also necessary to
understand performance variation among different model
configurations relative to the patient population, health care
setting, and type of data analyzed. Failing to report on the
important feature inputs gives inadequate transparency about
how the algorithm reached its stated outcomes based on the
sources of training data [30]. ML model feature impact reporting

appears to be more common in studies analyzing hospitalized
Medicare patients [31-33] but has been largely neglected in ML
studies that focus on nonhospitalized Medicare beneficiaries
[25-28]. Moreover, such prior studies have tapped into various
data sources including medical claims, electronic medical
records, patient demographics, and clinical assessment
information for model training and validation [6,25-29]. The
extent to which other, nonmedicalized data are incorporated
into these ML mortality models remains unclear, in part due to
the lack of discussion around feature impacts. For example,
social determinants (eg, socioeconomic status, environmental
conditions) are known to influence the mortality and health
outcomes of older adults [34,35]. However, previous ML studies
in the Medicare population do not clearly indicate if nonmedical
data, like measures of the social determinants of health (SDOH),
were incorporated as algorithm features [6,25-29,31-33,36].

The important individual features of ML mortality models used
to identify palliative care need among nonhospitalized older
Medicare patients remain underreported in the current research
[25-28]. In an aim to fill this knowledge gap, this study describes
the important feature outcomes and performance of a ML
algorithm that was developed and validated to predict 1-year
mortality of older US adults (aged ≥65 years) enrolled in
Medicare Advantage plans. Our predictive binary classification
model was routinely supplied with data extracted from medical
claims as well as electronic health records (EHRs), patient
demographic information, and location-specific index measures
of SDOH for purposes of identifying Medicare Advantage plan
members who may need to connect to palliative resources.
Through this study, we investigated the following objectives:

• To what extent is the performance of a baseline ML model
(demographics-based with high-risk indicators) predicting
1-year mortality of Medicare Advantage plan members
(aged ≥65 years) improved by adding features capturing
patient service utilization, diagnoses, and SDOH?

• What individual features are of top importance in the final
ML model iteration?

Methods

Model Development
An ML algorithm predicting 1-year mortality among Medicare
Advantage plan members was developed by the team at Cigna,
a large US commercial health benefits company. The aim was
to create a prognostic ML model of mortality risk that could
enhance the process of identifying patients for palliative care,
with the long-term goal of increasing engagement with
community-based, nonhospice palliative services among adults
(aged ≥65 years) in Medicare Advantage plans for whom it
would be appropriate. Increasing utilization of palliative services
can reduce unnecessary high-cost hospital care and improve
patient quality of life. An overview of the health plan’s process
for identifying and connecting with potential palliative care
patients is outlined in Multimedia Appendix 1.

The retrospective data used in the analysis were internally
sourced from Cigna’s proprietary administrative records and
claims database. These standard data elements are routinely
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collected to fulfill the operational purposes of the health benefits
company; claims and administrative data were only extracted
for the purposes of developing the ML algorithm post facto.
Security measures for personal health information require all
data be completely de-identified by a separate internal team
prior to any secondary data analysis to protect member
confidentiality. Due to the sensitivity and proprietary nature of
the information, data cannot be shared externally.

Ethical Considerations
Our study methods were in accordance with the ethical
guidelines of the 1975 Declaration of Helsinki, and our reporting
conforms to the Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical Research
[37]. The data used in the analysis were retrospective,
deidentified, and not originally collected for research nor model
development purposes; data were only extracted to develop the
ML algorithm after the fact. An internal ethics committee
approved and regularly reviewed the project protocol throughout
the model development process.

Sample Inclusion Criteria
Medicare Advantage plan members eligible for inclusion in
analysis were all those with continuous health benefits coverage
enrollment as of July 1, 2016, through the feature generation
period of December 31, 2017, who also had at least one inpatient
or outpatient service encounter in their randomly assigned
feature generation time frame. Additionally, to be included in
the analyzed sample, during the outcomes period (January 1,
2018, through December 31, 2018), patients must have either
(1) had continuous enrollment for the 2018 calendar year or (2)
became deceased during 2018. This requirement ensured any
beneficiaries who disenrolled from their Medicare Advantage
plan in 2018 but were not deceased were not counted as patient
expirations.

Machine Learning Method and Training Protocol
Various binary classification ML models were considered.
Performance was compared using 5-fold cross-validation. A
light gradient-boosted tree model (LightGBM) performed best
and was selected based on cross-validation log loss (or
cross-entropy loss). The protocol analyzed data from a total
sample of 318,774 Medicare Advantage plan members. Features
were generated using a training cohort (255,020/318,774, 80%
of the sample) with a randomized outcomes time period. Models
were further applied to a holdout data set (63,754/318,774, 20%
of the sample) to validate and assess generalization to new cases.
Data were computed using an instance of DataRobot v6.1.2
(Python 3, custom lightgbm model) running on an on-premise
Red Hat Enterprise Linux 7.9 (Maipo) server and with variable
resources dedicated via Docker containers (4-8 CPUs each with
32-64 GB RAM).

Target Outcome
The model’s predicted outcome was defined as any member
who expired between January 1, 2018, and December 31, 2018
(1 year). Patients were determined to be deceased based on
corresponding plan enrollment data and validation through
reporting to the Centers for Medicare and Medicaid Services
[38].

Data Sources and Feature Generation

Feature Generation
A SQL script aggregated data to generate predictive features.
To determine the date range for model input generation, a
randomized cutoff date was assigned to negative and positive
cases. We randomized the actual feature generation dates used
per customer, so the distribution of start dates was the same for
deceased and alive customers. The random date ensured the ML
process did not suffer from seasonality and selection bias.
Features were built from the 1-year look-back period (ending
December 31, 2017) and included 907 unique inputs based on
routinely collected data. Data used in model development were
information sourced from claims, EHRs, and administrative
member records.

Claims
Data from claims were primarily used to generate features
representing patient service utilization. Diagnosis information
was also extracted from claims. Types of claims data included
medical service claims, pharmacy claims, and laboratory
encounters. Laboratory encounters were based on medical claims
for lab-related Current Procedural Terminology (CPT) codes.
The actual clinical outcomes (results) of laboratory tests are not
part of claims data and were thus not incorporated into the
model.

Electronic Health Records
Medical data were extracted from EHRs to supplement claims
in generating 5 features of high-risk service utilization used in
the first iteration of the model (ie, occurrence counts of
electrocardiograms, kidney disease, sepsis, ventilator usage,
and surgeries). Data from EHRs are aggregated through a
third-party vendor partner and are used by the health plan for
internal care management and care coordination activities. Not
all patients had EHR data on record.

Administrative Member Records
Demographic data, as well as information used to calculate
measures of SDOH, were extracted from internal administrative
member records. Demographic features were patient age
(continuous, in years) and gender (male/female). Social
determinants index (SDI) scores are a suite of measures in the
administrative member record that were developed for internal
use. SDI scores are composite measures representing 6 domains
of the SDOH: economy, education, language, health,
infrastructure, and food access. SDI scores are determined by
the member’s census tract, which corresponds to the member’s
residential address and zip code [39]. The data associated with
the measures in each domain are sourced from public use data
such as the US Census and US Department of Agriculture (see
Multimedia Appendix 2). Total overall weighted and unweighted
SDI scores were also included as features in the model.

Data Preprocessing
Sample members must have had at least one countable service
utilization claim in the randomized feature generation period.
No feature observations were removed due to missing data. The
data had some categorical fields, such as gender or a categorical
indicator of utilization status, but most features were continuous

JMIR AI 2023 | vol. 2 | e42253 | p. 3https://ai.jmir.org/2023/1/e42253
(page number not for citation purposes)

Bowers et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and numeric. Numeric data were not transformed (apart from
missing value imputation). Most instances of missing numeric
data indicated an individual did not experience a particular type
of claim, diagnosis, or event (not due to data quality); such
instances were manually coded as 0 to avoid missing values
and to represent the patient did not experience the event. Beyond
this, DataRobot handles the missing value imputation strategy
automatically based on the specified type of imputation
algorithm. For the selected model configuration (LightGBM),
both continuous/numeric and categorical data had imputed
values to represent “missing” data. The final model used ordinal
encoding for categorical variables that included a separate
category for “missing.” The most common type of missing data
was SDI scores, which occurred for 4.9% (15,655/318,774) of
the sample population. Age (541/318,774) and gender
(647/318,774) data were each missing for 0.2% of the sample.

Model Training and Validation
Data were split 80/20 into training and holdout partitions,
respectively. Within the training partition, additional
subdivisions were made to tune parameters and apply early
stopping. In a LightGBM tree-based algorithm, early stopping
refers to stopping the training process if the model performance
does not improve after some consecutive iterations. First, the
training data were split (training split 1) to keep 90% for train
and 10% for test; this set was used for early stopping. Next, the
data were split yet again to create training split 2; using only
the training portion of training split 1, we assigned 70% for
training and 30% for testing. Training split 2 was used to tune
model parameters (ie, num_leaves). After these parameters were
tuned, we returned to training split 1 to tune the number of
estimators (n_estimators) using early stopping (early_stopping).
Key parameters included learning_rate (0.05), n_estimators
(550), num_leaves (16), max_depth (no limit),
min_child_samples (10), and early_stopping_rounds (200).
Both the training and holdout partitions had similar mortality
rates of 4% in 2018, indicating the mortality outcome was not
biased nor skewed in either the training or validation step.

Evaluation Measures
Model performance was assessed using AUC, positive predictive
value, negative predictive value, true positive rate, true negative
rate, average precision, and lift charts focusing on true positives
in the top 10% of predictions for the holdout cohort. Based on
the data, DataRobot software selected a threshold of 0.16 for
comparing the performance metric matrices of the different
model iterations. We performed 1-tailed and 2-tailed z tests to
evaluate significant differences between model iterations with
the addition of features. Model performance outcomes for the
training data set (255,020/318,774, 80% of the sample) are
located in Multimedia Appendix 3. Performance outcomes for
the holdout data set (63,754/318,774, 20% of the sample) are
presented herein to validate the model and assess generalization
to new cases. We report the ranked order importance and
absolute (unnormalized) importance values of the top 20 model
input features based on Shapley Additive Explanations (SHAP)
values [30,40].

Results

Of the 318,774 patients included in the total sample, 96.1%
(306,227/318,774) were determined to be alive, and 3.9%
(12,547/318,774) were determined to be deceased during the
2018 outcomes period (see Table 1). Compared with alive
patients, deceased patients were older, had higher rates of
chronic health conditions (cancer, dementia, stroke, heart failure,
and chronic respiratory disease), and had greater average service
utilization including emergency room, pharmacy, and laboratory
encounters. Deceased patients also had lower SDI scores on
average (weighted and unweighted) compared with alive
patients.

Table 2 summarizes the ML model development and
performance outcomes for the holdout cohort (63,754/318,774,
20% of the sample). The baseline model, Model 1 (M1),
included 2 demographic features (age and gender) and 5 features
capturing elements of high-risk utilization. Model 1 achieved
an AUC value of 0.736 (95% CI 0.728-0.744), which was
significantly better than mortality prediction based on random
chance alone (z=56.4, P<.001). In the next stage of development,
Model 2 (M2) was created by adding 894 more input features
using service claims that captured patient clinical diagnoses as
well as individual medical, laboratory, and pharmacy utilization.
The M2 iteration had an AUC value of 0.834 (95% CI
0.828-0.840), which was a significant performance improvement
compared with M1 (z=19.1, P<.001). Model 3 (M3), the final
model, added 8 features representing SDOH (SDI scores). M3
had the best performance of all the model iterations, with an
AUC value of 0.839 (95% CI 0.833-0.845), showing significant
improvement over that of M1 (z=20.2, P<.001). The final model
(M3) also has a high degree of specificity in that it accurately
predicted patients who were not deceased (negative predictive
value=0.971), with the model’s average precision improving
with each iteration (from 0.12 to 0.24). Adding the SDI score
features to the final model (M3) did not improve the
performance of the previous model (M2) to a statistically
significant degree (z=1.2, P=.19); however, there was a
significant performance improvement between M2 and M3 in
the training cohort outcomes (z=0.02, P=.02; see Multimedia
Appendix 3). Other model performance outcomes of M1, M2,
and M3 for the holdout cohort were similar to those of the
training cohort (Multimedia Appendix 3), which cross-validates
the algorithm. The receiver operating characteristic curves and
precision recall curves of the 3 model iterations are charted for
comparison in Figure 1. Figure 2 compares the predicted
outcomes of M1, M2, and M3 against the actual 2018 mortality
rate for those patients in the top decile of predicted mortality
likelihood. As features were added with each model iteration,
classification of the highest risk members improved. The final
model (M3) was superior to both M1 and M2, predicting that
those in the top 1% of highest risk would have a mortality rate
of 47.4% in 2018 (versus an actual mortality rate of 44.2%).

Table 3 reports the top 20 features and their rank among the
907 total inputs of M3. To aid interpretation, features are
categorized by demographics, diagnoses, medical utilization,
pharmacy utilization, laboratory utilization, and SDOH. The
absolute (unnormalized) impact values of the top 20 features
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are shown in Figure 3. Patient demographics (age and gender)
were 2 of the inputs comprising M1, and these were also the
most important features contributing to the M3 mortality model.
Notably, 3 of the top 20 model features quantify patient
information from the total claims data set (total claims, average
cost of claim, total diagnoses), and 1 feature was strictly
temporal (time since last outpatient visit). Among the top
features in M3, 4 inputs captured patient diagnoses, with chronic
respiratory disease and kidney disease having the greatest ranked
importance (#3 and #8, respectively). Aside from age and
gender, kidney disease occurrence was the only other input from
M1 to rank in the top 20 features of M3. Additionally, 4 of the
265 medical utilization features were also among the top 20,
with total patient claims ranking as the most important in the
category (#4) followed by the patient's average cost of claim

(#11). Of the 198 pharmacy utilization inputs, 7 ranked in the
top 20 features of M3; 3 of these were among the top 10 most
important features in the final ML model. These were
antihyperlipidemics (#5), furosemide (#7), and
anti-inflammatory analgesics (#9). Although there were 201
laboratory utilization inputs, only 1 was among the top 20 most
important features in M3 (lipid panel test, #6). The laboratory
features were extracted from claims data and only measure
utilization; actual results of patient laboratory tests were not a
part of the data used to develop the ML model. Finally, 2 of the
8 patient SDI score features ranked among the top 20 features
of M3. The important SDOH features predicting mortality in
M3 were food access score (#10) and local economy score (#12)
based on the plan member's census tract.

Table 1. Sample member characteristics.

Deceased (n=12,547, 3.9%)Alive (n=306,227, 96.1%)Total sample (n=318,774)Characteristic

Gender, n (%)

6518 (51.9)174,640 (57.0)181,158 (56.8)Female

6029 (48.1)130,941 (42.8)136,970 (43.0)Male

0 (0)646 (0.2)646 (0.2)Missing/not available

77.2 (9.7)70.4 (11.5)70.7 (11.5)Age (years), mean (SD)

Medical diagnoses, n (%)

4551 (14.0)52,183 (10.2)56,734 (10.4)Chronic respiratory disease

4448 (13.7)50,254 (9.8)54,702 (10.1)Heart failure

3160 (9.7)40,985 (8.0)44,145 (8.1)Cancer

2011 (6.2)19,327 (3.8)21,338 (3.9)Stroke

2608 (8.0)13,018 (2.5)15,626 (2.9)Dementia or Alzheimer disease

9370 (28.8)195,035 (38.2)204,405 (37.6)Hypertension

6395 (19.7)139,999 (27.4)146,394 (26.9)Diabetes

Medical service utilization, mean (SD)

36.7 (60.9)20.2 (38.2)20.8 (39.5)Total care visits per yeara

0.9 (1.7)0.4 (1.1)0.4 (1.1)Emergency room visits per year

Pharmacy utilization, mean (SD)

11.7 (8.3)8.9 (7.3)9.04 (7.4)Total unique medications prescribed

9.8 (9.9)8.0 (12.1)8.11 (12.0)Number of prescribed medications per day

Laboratory utilization, mean (SD)

11.7 (11.0)8.6 (8.2)8.7 (8.4)Total unique lab-related CPTb codes

Social determinants index (SDI)c, mean (SD)

58.09 (8.08)58.43 (8.67)58.41 (8.65)Weighted SDI scored

55.91 (9.63)56.98 (10.13)56.94 (10.12)Unweighted SDI scored

aIncludes all inpatient and outpatient visits.
bCPT: Current Procedural Terminology.
cHigher is better.
d100 points maximum.
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Table 2. Model summary and performance comparison (holdout cohort).

Model 3 (M3; final)Model 2 (M2)Model 1 (M1; baseline)Measure

9078997Total model features, n

Demographicsa; High-risk utiliza-

tion indicatorsb,c; Medical, lab,

and pharmacy utilizationc; SDId

scoresa

Demographicsa; High-risk utiliza-

tion indicatorsb,c; Medical, lab,

and pharmacy utilizationc

Demographicsa, High-risk utiliza-

tion indicatorsb,c

Model input summary

Model performance (holdout cohort)

0.839 (0.833-0.845)0.834 (0.828-0.840)0.736 (0.728-0.744)AUCe (95% CI)

0.29930.3200.105True positive ratef

0.29910.2640.212PPVf,g

0.0290.0370.016False positive ratef

0.971260.9630.984True negative ratef

0.971290.9720.964NPVf,h

0.7010.6790.890False negative ratef

0.2430.2330.122APi

Performance comparison (holdout cohort)

AUCM3 – AUCM2 = 0.0AUCM2 – AUCM1 = 0.0AUCM1 = 0.5Null hypothesis

1.219.156.4z statistic

.19<.001<.001P value

aSource: internal administrative member records.
bSource: electronic health record (EHR) data.
cSource: claims data.
dSDI: social determinants index.
eAUC: area under the curve.
fValues based on a defined threshold of 0.16.
gPPV: positive predictive value.
hNPV: negative predictive value.
iAP: average precision.
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Figure 1. Comparison of Model 1 (M1), Model 2 (M2), and Model 3 (M3) using (A) receiver operating characteristic curves and (B) precision recall
curves. AP: average precision; AUC: area under the receiver operating characteristic curve.

Figure 2. Model mortality outcomes for patients in the top decile of the highest predicted risk. M1: Model 1; M2: Model 2; M3: Model 3.
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Table 3. Ranked importance of top features in the final model (M3; 907 total inputs).

M3 ranked importanceaFeature category and M3 features

Demographics (2 inputs)

1Ageb

2Genderb 

Diagnoses (233 inputs)

3Chronic respiratory disease

8Kidney diseaseb 

17Total patient diagnoses 

18Dementia 

Medical utilization (265 inputs)

4Total patient claims

11Average cost of claim 

13Total CTc scans 

15Time since last outpatient visit 

Pharmacy utilization (198 inputs)

5Antihyperlipidemics

7Furosemide 

9Anti-inflammatory analgesics 

14Beta blockers 

16Antidepressants 

19Diuretics 

Laboratory utilization (201 inputs) 

20Systemic and topical nasal agents

6Lipid panel lab test

Social determinants index (SDI) score (8 inputs)

10Food access

12Economy

aRanked importance based on positive Shapley Additive Explanations value of features.
bM1 feature.
cCT: computed tomography.
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Figure 3. Absolute feature importance in Model 3 (M3). CT: computed tomography; DEM: demographics; DNX: diagnoses; LAB: laboratory utilization;
MED: medical utilization; PHA: pharmacy utilization; SDI: social determinants index.

Discussion

Principal Findings
In the past, provider groups and physicians have relied on
manual checking of patient records to prescribe palliative care
for patients. Today, palliative care teams are increasingly using
enhanced decision tools, such as ML approaches, for expedient
care delivery. Our palliative care ML model aims to provide a
more objective, automated way to identify patients in Medicare
Advantage who could most benefit from palliative services,
ensuring appropriate clinical resource allocation to the patients
with the highest need. The health plan’s goal is to optimize the
patient’s quality of life outcomes and incorporate all aspects of
palliative care, including care coordination, polypharmacy,
symptom management, advanced care plans, as well as spiritual
and psychosocial assessments. In this sense, identifying patients
who can benefit from a palliative care intervention takes a
whole-person health approach to chronic health management
and end of life care; the focus is not solely on a transition to
hospice. In practice, the model could be deployed within case
management, home health, or direct-to-provider programs.

Earlier ML studies of community-dwelling older Medicare
beneficiaries have attempted to refine the predictive capabilities
of various ML model configurations. However, few have
reported outcomes of their specific model feature inputs [25-29].
Understanding important features contributing to mortality
prediction algorithms can highlight differences in outcomes
between models based on the population studied, ML model
approach, and type of data analyzed. Increased transparency in
reporting model feature outcomes may also help inform the
criterion validity of existing clinical assessment tools used to
evaluate patients for palliative care needs. Furthermore, features

capturing the SDOH have also been largely neglected from ML
models in previous literature [6,25-29,31-33,36,41]. Our feature
impact outcomes show that SDOH (ie, food access and local
economy) not only are relevant to the prediction of end of life
in the community-dwelling Medicare Advantage population
but also may be more influential on the outcome than some
archetypal high-risk diagnostic and service utilization indicators
of palliative care need that are perhaps more commonly observed
in hospital settings (eg, ventilator use, sepsis).

The performance of our baseline gradient-boosted machine
model predicting 1-year mortality in Medicare Advantage plan
members (aged ≥65 years) improved with the incorporation of
patient service utilization, diagnoses, and SDOH features.
Having access to and adding the full medical, laboratory, and
pharmacy claims data and SDI measures enhanced our ML
approach. The performance of our model is comparable to that
of previous ML studies of older community-dwelling Medicare
beneficiaries using claims data (see Multimedia Appendix 4).
Some of these models have achieved greater accuracy than that
in this study, particularly those models using deep learning
configurations. For example, the long short-term memory and
deep neural network models developed by Guo et al [25]
outperformed their random forest model for predicting mortality
in outpatients. Although these types of ML models may achieve
greater accuracy, the enhanced model complexity and types of
data analyzed by deep learning configurations may not be
available or necessary in some cases. Patient medical claims
are a common and plentiful source of data that can be used to
train binary classification ML algorithms for predicting mortality
and other health outcomes. In contrast to inputs already defined
within discrete data sets, model inputs generated from raw text
might also produce more ambiguous feature definitions that
could create challenges for feature impact reporting.
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Classification models using routine, standard data (ie, claims,
administrative records) may be a more attractive option for
health plans and other organizations that already collect such
data with predefined discrete variables to fulfill their business
purposes.

Limitations
Age and gender were the most influential features in our final
model. Although these demographic features had substantial
impact on the mortality risk outcome, it is unsurprising that age
is the most important model feature, as the probability of death
increases with age in older individuals. There is also evidence
that, for various reasons, men may be likelier to die earlier than
women [42]. The importance of age as a predictive variable is
documented in the feature reporting of studies on ML mortality
models for hospitalized patients [43]. For community-dwelling
Medicare Advantage members over 65 years of age, omitting
the age or gender inputs may influence the prediction of
mortality risk in cases for which the outcome could be better
explained by these demographic variables. Race and ethnicity
were purposefully excluded from the model. Race and ethnicity
are related to certain disease outcomes, but the literature
suggests that social determinants may mediate or modify
observed racial or ethnic health differences [44]. When
predicting mortality, we believe the composite SDI scores
provide more information on the regional variation in individual
levels of SDOH and potentially less measurement bias compared
with patient race or ethnicity [33].

Our model was developed using only data from a nationwide
population sample of community-dwelling Medicare Advantage

plan members aged 65 years or older, which could constrain
the generalizability of study results to other kinds of patient
groups and health settings. Although our model was trained
based just on the Medicare Advantage population, bidirectional
data sharing between US commercial and other government
products would allow for other types of health care consumers
to benefit from ML tools for early identification of patients for
palliative care. Additionally, our ML model was built to be
generic and disease-agnostic. The mortality outcome for the
year 2018 encompassed all causes of death, and the feature
generation period was also randomized with the span of 1 year.
Although the model’s applicability to different patient
populations and care settings is still unknown, the generic model
can be applied to the plan’s Medicare Advantage members
across different years.

Conclusion
ML offers greater precision and sensitivity in predicting patient
end of life and potential need for palliative services among
community-dwelling older Medicare beneficiaries. In response
to a lack of feature reporting in relevant previous research, this
study explored the development of a binary classification ML
algorithm predicting 1-year mortality among a sample of
Medicare Advantage plan members and investigated the
mortality model’s features of top importance. We found the
most important features included demographics, diagnoses,
pharmacy utilization, mean costs, and certain SDOH. The final
ML model predicts mortality among Medicare Advantage plan
members with a high degree of accuracy and precision using a
variety of routinely collected data and can support earlier patient
identification for palliative care.
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