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Abstract

Background: Despite immense progress in artificial intelligence (AI) models, there has been limited deployment in health care
environments. The gap between potential and actual AI applications is likely due to the lack of translatability between controlled
research environments (where these models are developed) and clinical environments for which the AI tools are ultimately
intended.

Objective: We previously developed the Translational Evaluation of Healthcare AI (TEHAI) framework to assess the translational
value of AI models and to support successful transition to health care environments. In this study, we applied the TEHAI framework
to the COVID-19 literature in order to assess how well translational topics are covered.

Methods: A systematic literature search for COVID-19 AI studies published between December 2019 and December 2020
resulted in 3830 records. A subset of 102 (2.7%) papers that passed the inclusion criteria was sampled for full review. The papers
were assessed for translational value and descriptive data collected by 9 reviewers (each study was assessed by 2 reviewers).
Evaluation scores and extracted data were compared by a third reviewer for resolution of discrepancies. The review process was
conducted on the Covidence software platform.

Results: We observed a significant trend for studies to attain high scores for technical capability but low scores for the areas
essential for clinical translatability. Specific questions regarding external model validation, safety, nonmaleficence, and service
adoption received failed scores in most studies.

Conclusions: Using TEHAI, we identified notable gaps in how well translational topics of AI models are covered in the
COVID-19 clinical sphere. These gaps in areas crucial for clinical translatability could, and should, be considered already at the
model development stage to increase translatability into real COVID-19 health care environments.

(JMIR AI 2023;2:e42313) doi: 10.2196/42313
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Introduction

The discussion about the value of artificial intelligence (AI) to
health care and how AI can address health care delivery issues
has been in place for some years now [1-3]. However, most
stakeholders are eager for this discourse to move beyond
theoretical or experimental confines to adoption and integration
in clinical and real-world health care environments [1,4,5].
Recently, we have started to see some AI applications
undergoing clinical trials or integration into medical devices or
medical information systems [6]. Yet, most AI applications in
health care have not demonstrated improvement in clinical or
health care outcomes [5,7]. What prevents these applications
from translating their potential to clinical outcomes? First, many
of these AI applications are developed to demonstrate
algorithmic performance or superiority rather than improvement
in clinical results [8,9]. Second, the applications are not
considered for use beyond the experimental or pilot settings [8].
This limitation means their performance does not often
generalize beyond test data sets. Third, even when these
applications are externally validated, they are seldom integrated
into existing clinical workflows, often because of decreased
performance on the external validation [10] or low acceptance
by clinicians [11]. The latter aspect means these applications
remain experimental novelties rather than useful tools for
clinicians. Added to these translational issues are problems with
data that may lead to inaccurate results or the introduction of
biases. Several studies have shown how such issues can have
adverse outcomes for patients and communities [12-14]. Yet,
ethical and governance safeguards are often missing in AI in
health care applications or studies [14].

These translational issues suggest there is a need for a
comprehensive framework that can support researchers, software
vendors, and relevant parties in systematically assessing their
AI applications for their translational potential. To address this
gap, we formed an international team and ran a systematic

process over 18 months to develop an evaluation and guidance
framework, termed “Translational Evaluation of Healthcare AI”
(TEHAI) [15]. This framework focuses on the aspects that can
support the practical implementation and use of AI applications.
TEHAI has 3 main domains (capability, utility, and adoption
components) and 15 subcomponents (Table 1 and Multimedia
Appendix 1). As the range of clinical challenges and potential
AI solutions is wide, it is infeasible to automate the evaluation
using current technology. Instead, we rely on TEHAI as an
expert-driven but formalized framework where the subjectivity
of an individual reviewer is mitigated by the consensus power
of multiple committee members.

The emergence of the COVID-19 pandemic has resulted in
several studies and papers outlining the utility of AI in tackling
various aspects of the disease, such as diagnosis, treatment, and
surveillance [16-19] The number of AI papers published either
as preprints or as peer-reviewed papers has been unprecedented,
even leading to the development of AI applications to keep up
with and summarize the findings for scientists [20]. Some recent
reviews have outlined how most of these studies or the AI
applications presented in these studies have shown minimal
value for clinical care [7,21]. This finding aligns with the
discussion about the translational problem of AI in health care.

The aim of this study is to assess the awareness and
consideration for important translational factors in the scientific
literature related to COVID-19 machine learning applications.
We chose the narrow scope to ensure that our method of
evaluation (ie, TEHAI) would not be confounded by the
differences that are inherent to any particular area of health care.
For this reason, we included only studies where AI was clearly
aimed at solving a practical problem rather than discovering
new biology or novel treatments. This cost-effective approach
enabled us to uncover translational gaps in the AI applications
and validate the usefulness of a variety of AI models without
the added complexity due to a high diversity of diseases or
health care challenges.
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Table 1. Overview of the TEHAIa frameworkb.

WeightInitial scoreComponent and subcomponents

Capability

100-3Objective of the study

100-3Data set source and integrity

100-3Internal validity

100-3External validity

100-3Performance metrics

50-3Use case

Utility

100-3Generalizability and contextualization

100-3Safety and quality

100-3Transparency

100-3Privacy

100-3Nonmaleficence

Adoption

100-3Use in a health care setting

100-3Technical integration

50-3Number of services

50-3Alignment with the domain

aTEHAI: Translational Evaluation of Healthcare Artificial Intelligence (AI).
bThe framework comprises 15 separate criteria (subcomponents) that are grouped into 3 higher-level components. Each criterion yields a score between
0 and 3 points, depending on the quality of the study. To compare 2 or more AI models against each other, further weighting of the scores can be applied
to emphasize translatability. However, in this study, weighting was not used, since we focused on the statistics of the subcomponents instead.

Methods

Data Extraction
Eligible studies included those where a statistical algorithm was
applied to or trained with a COVID-19 data set and where the
intended use of the algorithm was to address a COVID-19 health
care problem. Excluded studies included those where
participants were younger than 18 years and where the full text
of the study was not in English. To find papers eligible for this
study, we searched the National Institutes of Health (NIH)
iSearch COVID-19 portfolio, MEDLINE via Ovid, and Embase.
These sources were searched on December 7, 2020, using search
strategies consisting of keywords expected to appear in the title
or abstract of eligible studies and index terms specific to each
database except in the case of the NIH iSearch COVID-19
portfolio. The search strategy was developed by a health
librarian (author BK) in consultation with the rest of the research
team.

For the COVID-19 element of the search, we adapted the
Wolters Kluwer expert search for COVID-19 on MEDLINE.
Specifically, we removed the search lines for excluding
non–COVID-19 coronaviruses (eg, Middle East respiratory
syndrome) and for pharmaceutical treatment options (eg,
remdesivir); at the time our search strategy was created, these
were lines 5 and 9, respectively, in the Wolters Kluwer Ovid
COVID-19 expert search. For the AI element of the search, we

searched MEDLINE for relevant papers, recording significant
keywords from their titles and abstracts. We also searched the
Medical Subject Headings (MeSH) thesaurus for related MeSH
terms. These steps led to the creation of a draft search strategy,
which was then tested and finalized. The search was limited to
records with a publication date of December 1, 2019, onward.
This limit was to reduce the number of irrelevant results, given
that the first known case of COVID-19 occurred in December
2019 (Multimedia Appendix 2).

A foundational Ovid MEDLINE search strategy was then
translated for Embase to make use of appropriate syntax and
index terms (Multimedia Appendix 2). Similar translation was
done for the NIH iSearch COVID-19 portfolio except for index
terms as this resource did not use indexing at the time of search
development (Multimedia Appendix 2). Finally, search strategy
validation and refinement took place by testing a set of known
relevant papers against the search strategy, as developed, with
all papers subsequently recalled by the search in MEDLINE
and Embase. A full reproduction of the search strategies for
each database can be found in Multimedia Appendix 2.
Searching these databases using the search strategy resulted in
5276 records. After removal of duplicates, we screened 3830
(72.6%) records for relevance. This resulted in 968 (25.3%)
studies identified as relevant and eligible for evaluation. From
these, a sample of 123 (12.7%) was randomly selected for
evaluation and data extraction, of which 102 (82.9%) were
included in the final set. Our target number for full evaluation
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was 100; however, additional papers were randomly picked to
account for the rejection of 21 (17.1%) papers that passed the
initial screen but were deemed ineligible after closer inspection
(Multimedia Appendix 3). Early on in the evaluation, it became
apparent that a significant portion of the studies focused on
image analysis; we then enriched the pool for studies that were
not imaging focused, taking the ratio of
imaging-focused:nonimaging-focused studies to 1:1. The full
text was retrieved for all 123 (12.7%) studies in the randomized
sample; however, only 102 (82.9%) studies met our inclusion
criteria at the evaluation and extraction stage (Multimedia
Appendix 4). Of the studies that did not meet our inclusion
criteria, the majority were nonimaging studies and the final ratio
of imaging-focused:nonimaging-focused studies was 2:1.

Evaluation and data extraction were conducted using Covidence
systematic review software [22]. We used this software to
facilitate the creation of a quality assessment template based
on the TEHAI framework [15] in combination with other
questions (henceforth referred to as data extraction questions)
aimed at further understanding the components that may
influence a study’s capacity to translate into clinical practice
(Multimedia Appendix 1). As a measure to minimize the impact
of subjectivity introduced by human evaluation, each paper was
initially scored by 2 reviewers, who independently evaluated
the paper against the elements of the TEHAI framework and
extracted relevant data. A third reviewer then checked the scores,
and if discrepancies were present, they chose 1 of the 2
independent reviewers’ scores as the final result. This process
was built-in to the Covidence platform. To further minimize
the impact of subjectivity introduced by human evaluation,
reviewer roles were also randomly assigned across the
evaluation team.

For scoring of the included studies, we derived upon previously
provided guidance for scoring evidence within the TEHAI
framework [15]. The TEHAI framework is composed of 3
overarching components: capability, utility, and adoption. Each
component comprises numerous subcomponent questions, of
which there are 15 in total. The scoring of each TEHAI
subcomponent is based on a range of 0-3, depending on the
criteria met by the study. In this study, we also investigated the
sums of these scores at the component level to provide a better
overview of data. In addition, TEHAI facilitates direct
comparisons between specific studies using a weighting
mechanism that further emphasizes the importance of
translatability (see the last column in Table 1). However, for
this study, where we focused on the aggregate statistical patterns,
weighting was not used.

We also asked reviewers to report on a select number of data
extraction questions that would enable us to further tease apart
which components of a study may influence the score obtained.
These questions covered (1) the broad type of the AI algorithm,
(2) methodological or clinical focus, (3) open source or
proprietary software, (4) the data set size, (5) the country of
origin, and (6) imaging or nonimaging data.

Data Analysis
Associations between groupings of papers and the distributions
of subcomponent scores were assessed with the Fisher exact

test. Correlations between subcomponents were calculated using
the Kendall formula. Component scores were calculated by
adding the relevant subcomponent scores together; group
differences in mean component scores were assessed using the
t-test. As there are 15 subcomponents, we set a multiple testing
threshold of P<.003 to indicate 5% type 1 error probability
under the Bonferroni correction for 15 independent tests. Unless
otherwise indicated, mean (SE) scores were calculated.

Results

TEHAI Subcomponent Scores
A total of 102 manuscripts were reviewed by 9 reviewers (mean
22.67 per reviewer, SD 7.71, min.=11, max.=36), with the same
2 reviewers scoring the same manuscript an average of 2.83
times (SD 2.58, min.=0, max.=13). The Cohen κ statistic for
interreviewer reliability was 0.45, with an asymptomatic SE of
0.017 over the 2 independent reviewers. The reviewer scores
were in moderate agreement (κ=0.45) according to Cohen’s
original tiers [23]. In practice, this means that the scoring system
was successful in capturing important and consistent information
from the COVID-19 papers, but there would be too much
disagreement due to reviewer background or random noise for
demanding applications, such as clinical diagnoses [24]. Given
that the role of the TEHAI framework is to provide guidance
and decision support (not diagnoses), moderate accuracy is
sufficient for a meaningful practical benefit for AI development.
Nevertheless, the question of reviewer bias should be revisited
in future updates to the framework.

Overall, the capability component scored the highest mean
score, followed by adoption and utility (Figure 1A). At the
subcomponent level, the poorest-performing questions were
nonmaleficence (93/102, 91.2%, scoring 0 points), followed
closely by safety and quality, external validity, and the number
of services (Figure 1B).

We observed moderate positive correlation (R=0.19-0.43)
between most capability component questions (data source vs:
internal validation R=0.43, external validation R=0.20,
performance R=0.33, and use case R=0.37; internal validation
vs: performance R=0.40, use case R=0.31; performance vs use
case R=0.32), with the exception of the subcomponent objective
of study (objective of study vs: data source R=0.13, internal
validation R=0.09, external validation R=0.08); see Figure 2.
This indicated that if a study scored well in one subcomponent
of the capability component, then it was also likely to score
well in the other capability subcomponents, with the exception
of the “objective of the study” subcomponent. Furthermore,
there was also a correlation between the subcomponents
belonging to the capability component and the “generalizability
and contextualization” (R=0.19-0.31), “transparency”
(R=0.11-0.27), and “alignment with the domain” (R=0.13-0.40)
subcomponents, as well as our data extraction question 9
(method of machine learning used; R=0.11-0.24); see Figure 2.
There was also a significant, moderate correlation between most
adoption component questions (R=0.18-0.42), with the exception
of the “alignment with the domain” subcomponent
(R=0.04-0.26); see Figure 2. A significant negative correlation
was observed between a country’s gross domestic product
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(GDP) and imaging studies (R=–0.30), indicating that high-GDP
countries are less likely to conduct imaging studies than
middle-GDP countries. The negative correlation between the
audience (clinical or methodological) and the number of services
(R=–0.36) indicated that methodological studies are less likely

to be associated with numerous services than clinical studies.
Code availability was inversely correlated with transparency
(R=–0.36), as expected (open source was 1 of the assessment
conditions).

Figure 1. Overall consensus scores obtained by all studies reviewed. (A) Average consensus scores for all studies reviewed (error bars=SE). (B) Stacked
bar graph showing the distribution of scores for each subcomponent question. Ext: external; h/care: health care; int: internal.

JMIR AI 2023 | vol. 2 | e42313 | p. 5https://ai.jmir.org/2023/1/e42313
(page number not for citation purposes)

Casey et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Correlation heatmap showing the strength of correlation between all subcomponents and select data extraction questions. The strength of
correlation, as determined by the Fisher exact test, is shown in color, with the size of squares representing the level of significance. Avail: availability;
ext: external; GDP: gross domestic product; h/care: health care; int: internal.

AI Study Characteristics
The associations between the AI algorithms used in the studies
and TEHAI scores are shown in Figure 3. Deep learning
(including a convolutional neural network, or CNN for short)
was the most frequent machine learning model (54/102, 52.9%,
studies), followed by classic methods (14/102, 13.7%, studies,
comprising primarily linear and logistic regression models) and
standard machine learning (9/102, 8.8%, studies, comprising
primarily random forest [RF] and support vector machine [SVM]
algorithms); see Figure 3A. In 20.4% (n=20) of the studies,
multiple types of algorithms were used. At the component level,
deep learning and machine learning scored better in capability:
mean score 1.69 (SE 0.04) and 1.54 (SE 0.12), respectively. In
addition, deep learning was superior in adoption: mean score
0.95 (SE 0.06); see Figure 3B. This pattern was also evident at
the subcomponent level, where classic methods scored the
poorest for most questions (mean scores 0.07-1.78, SE 0.07-0.1),
with deep learning scoring significantly higher in numerous
subcomponents (mean scores 0.05-1.96, SE 0.03-0.12); see
Figure 3C. These findings revealed that those using deep
learning are more likely to include facets into their design that

are more likely to ensure their work will be integrated into
practice.

Figure 4 contains the results of comparisons between clinical
and methodologically focused papers. Methodological studies
tended to score higher in the capability component
(methodological mean score 1.63, SE 0.04; clinical mean score
1.52, SE 0.06), and clinically focused studies tended to score
higher in utility (clinical mean score 0.81, SE 0.07;
methodological mean score 0.75, SE 0.05) and adoption (clinical
mean score 1.03, SE 0.07; methodological mean score 0.87, SE
0.05; see Figure 4A), particularly in the “use in a health care
setting” (clinically focused mean score 0.90, SE 0.11;
methodologically focused mean score 0.58, SE 0.08; P=.037)
and “number of services” (clinically focused mean score 0.58,
SE 0.09; methodologically focused mean score 0.23, SE 0.06;

P=2.39 × 10–05) subcomponents. It is important to note that all
papers scored poorly in the “safety and quality” (clinically
focused mean score 0.13, SE 0.14; methodologically focused
mean score 0.58, SE 0.05) and “nonmaleficence” (clinically
focused mean score 0.12, SE 0.06; methodologically focused
mean score 0.07, SE 0.03) subcomponents, and despite being
more integrated into the health system, clinical papers did not
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score significantly higher scores in these subcomponents (Figures 4A and 4B).

Figure 3. Methods used by the various studies to achieve end points. (A) Percentage of studies using specific methods. As the field of potential algorithms
is diverse, we created broad categories to make the pie chart readable and to provide an overview of the most prevalent types of algorithms. Classic
methods included linear and logistic regression models, and the machine learning category comprised a heterogeneous mix of established nonlinear
algorithms, such as a random forest (RF) and a support vector machine (SVM). The deep learning category included mostly CNNs and represented
more recent neural network techniques developed for big data. (B) Component scores for the 4 main methods used in the studies. (C) Subcomponent
scores for the 4 main methods used in the studies. Bars show average scores, with error bars equal to SE. Bold P values indicate P<.05. Bonferroni-corrected
significance P=.003. CNN: convolutional neural network; ext: external; h/care: healt care; int: internal.
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Figure 4. Component and subcomponent scores split into subcategories based on data extraction questions, including (A and B) “intended audience,”
(C and D) “type of software,” and (E and F) “size of data set.” Bars show average scores, with error bars equal to SE. Bold P values indicate P<.05.
Bonferroni-corrected significance P=.003. Ext: external; h/care: health care; int: internal.

Close to half of the studies used open source software (n=45,
44.1%), with a small portion (n=8, 7.8%) using proprietary
software (with the remaining studies being unclear as to the
software availability). There was a tendency for proprietary
software to perform better at adoption, particularly in the “use
in a health care setting” subcomponent (open source software
studies mean score 0.69, SE 0.09; proprietary software studies

mean score 1.25, SE 0.16; P=.02), while papers with open source
software tended to score better in utility, including the “safety
and quality” (open source software studies mean score 0.27, SE
0.09; proprietary software studies mean score 0.13, SE 0.13;
P=.99), “privacy” (open source software studies mean score
0.91, SE 0.14; proprietary software studies mean score 0.75,
SE 0.31; P=.43), and “nonmaleficence” (open source software
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studies mean score 0.15, SE 0.05; proprietary software studies
mean score 0.13, SE 0.16; P=.99) subcomponents; see Figures
4C and 4D. We also observed a tendency for open source
software to score better in the “transparency” subcomponent
(open source software studies mean score 1.67, SE 0.15;
proprietary software studies mean score 0.5, SE 0.19; P=.02),
which is compatible with the findings from the correlation
analysis (Figure 2).

Across the studies, the median number of cases was 225
subjects; therefore, we allotted studies with >225 cases to the
large-data-set category and those with ≤225 cases to the
small-data-set category (Figures 4E and 4F). There was an
overall suggestive pattern for the large data set to score higher
than the small data set, again with the exception of safety and
quality, and privacy, and both scored poorly in nonmaleficence.

Countries may have differing capacities to integrate new
technologies into their health systems, and we hypothesized
that it would be detectable via the GDP. We split the studies
into low-, middle- and high-income countries based on the
classification defined by the World Bank [25]. There were no
studies published in the low-income category, with half of the
studies originating in middle-income countries and the other
half in high-income countries. Interestingly there was no
significant difference between components at the multiple testing
threshold; however, there was a trend suggesting a difference
in the adoption component (high-income study mean score 1.0,
SE 0.06; medium-income study mean score 0.83, SE 0.06;
P=.04; Multimedia Appendix 4A,B) and a slight tendency
toward middle-income countries to score better in the
“capability” subcomponent questions, particularly the “objective
of the study” (high-income study mean score 2.1, SE 0.09;
medium-income study mean score 1.76, SE 0.1; P=.03) and
“internal validity” (high-income study mean score 1.58, SE
0.08; medium-income study mean score 1.88, SE 0.08; P=.04)
subcomponents (Multimedia Appendix 4B).

We found that there were many studies where the authors used
AI to analyze images of the lungs (eg, X-rays) of patients with
COVID-19 and controls to classify them into categories,
ultimately producing algorithms that could accurately identify
patients with COVID-19 from images of their lungs. Thus, we
classified the studies as being imaging (direct image analysis
of X-rays or CT scans) or nonimaging (eg, studies that analyzed
blood metabolites), and there was a strong trend for nonimaging
studies to score higher than imaging studies, which included
the “objective of the study” (imaging study mean score 1.79,
SE 0.08; nonimaging study mean score 2.18, SE 0.13; P=.02),
“safety and quality” (imaging study mean score 0.16, SE 0.05;
nonimaging study mean score 0.36, SE 0.14; P=.015),
“nonmaleficence” (imaging study mean score 0.04, SE 0.02;
nonimaging study mean score 0.18, SE 0.07; P=.05), and
“number of services” (imaging study mean score 0.25, SE 0.06;
nonimaging study mean score 0.55, SE 0.11; P=.02)
subcomponents (Multimedia Appendix 4C,D).

Discussion

Principal Findings
Considering the emergence of the COVID-19 pandemic and
the flurry of AI models that were developed to address various
aspects of the pandemic, we conducted a systematic review of
these AI models regarding their likely success at translation.
We observed a significant trend for studies to attain high scores
for technical capability but low scores for the areas essential
for clinical translatability. Specific questions regarding external
model validation, safety, nonmaleficence, and service adoption
received failed scores in most studies. Therefore, we identified
notable quality gaps in most AI studies of COVID-19 that are
likely to have a negative impact on clinical translation.

There have been many claims made of such AI models,
including similar or higher accuracy, sensitivity, or specificity
compared to human experts [26-28] and real-time results that
have been suggested to lead to improved referral adherence
[29], but few independent studies have tested these claims. In
fact, it is suggested that although the AI models have potential,
they are generally unsuitable for clinical use and, if deployed
prematurely, could lead to undesirable outcomes, including
stress for both patients and the health system, unnecessary
intrusive procedures, and even death due to misdiagnosis [5,7].
Of those studies that examined the utility of COVID-19 AI
applications, there has not been a comprehensive evaluation of
AI in health care models encompassing assessment of their
intrinsic capabilities, external performance, and adoption in
health care delivery thus far. It is important for the scientific
community and relevant stakeholders to understand how many
of these AI models are translational in their value and to what
degree. To address this gap, we undertook a comprehensive
evaluation of COVID-19 AI models that were developed
between December 2019 and December 2020. The framework
we chose, TEHAI, is a comprehensive evaluation framework
developed by a multidisciplinary international team through a
vigorous process of review and consultation and systematically
assesses AI models for their translational value [15]. To select
COVID-19 studies, we conducted a systematic search, and after
screening 3830 studies, we selected 102 studies for evaluation.
Based on TEHAI, the studies were assessed for their capability,
utility, and adoption aspects and scored using a weighted
process.

The scale of the studies we screened (over 3000) and the studies
eligible for evaluation (over 900) indicated the level of activity
in this area despite the limited time frame selected for the
evaluation (2019-2020). The evaluation of the 102 studies,
although yielding some interesting findings, also had a few
expected results. Notable was that most studies, although doing
well in the capability component, did not evaluate highly in the
utility and adoption components. The latter components assess
the “ethical,” “safety and quality,” and “integration with health
care service” aspects of the AI model. However, it is not
surprising the AI models scored low in these components, given
the expediency required to develop and release these models in
a pandemic context. This meant the ethical components were
not a priority as one would expect in normal times. It was also
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not surprising to find that the CNN was the most popular
machine learning model, as most of the selected studies related
to medical imaging analysis (69/102 studies were imaging
studies compared to 33/102 studies that were not), where the
technique is widely understood and beginning to be applied in
some clinical settings [6,30].

Although there was a consistent trend for studies with large data
sets to score higher than those with small data sets, there was
no significant difference in any subcomponent between studies
with small versus large data sets. This was a surprising finding
and indicates that even when studies have collected more data,
they advance no further in the utility or adoption fields, and
should the total number of studies analyzed be increased, we
would expect the difference between the two data sets to become
significant. Regarding imaging versus nonimaging, we observed
that nonimaging studies scored higher in some adoption and
utility subcomponents. We suspect this was due to the more
clinical nature of the nonimaging research teams; thus, the
papers focused more on issues important to clinical practice.
Although there was a tendency for those studies using
proprietary software that we expected to be more mature, the
authors had not advanced the findings into practice any more
than that of open source, algorithm-based studies. Again, we
would expect this difference to become significant if the number
of studies scored were to be increased. We also assessed the
interpretability of the models as part of the “transparency”
subcomponent and found that imaging studies in particular
included additional visualization to pinpoint the regions that
were driving the classification. Further, the scoring studies in
each of the TEHAI components evidenced the need for planning
in advance for external validation, safety, and integration in
health services to ensure the full translatability of AI models in
health care.

Most of the reviewed studies lacked sufficient considerations
for adoption into health care practices (the third TEHAI
component), which has implications for the business case for
AI applications in health care. The cost of deployment and costs
from misclassification from both monetary and patient
safety/discomfort perspectives can only be assessed if there are
pilot data available from actual tests that put new tools into
service. Furthermore, critical administrative outcomes, such as
workload requirements, should be considered as early as
possible. Although we understand that such tests are hard to
organize from an academic basis, the TEHAI framework can
be used as an incentive to move in this direction.

We note that availability of dedicated data sets and computing
resources for training could be a bottleneck for some
applications. In this study, we observed multiple instances of
transfer learning, which is 1 solution; however, we will revise
the capability section of TEHAI to make a more specific
consideration for these issues.

Fair access to AI technology should also be part of good design.
The TEHAI framework includes this in the “internal validity”
subcomponent, where small studies in particular struggled with

representing a sufficient diversity of individuals. From a
translational point of view, we also observed shortcomings in
the contextualization of AI models. Again, since there was
limited evidence on service deployment, most studies scored
low on fairness simply due to a lack of data. We also note that
deployment in this case may be hindered by the clinical
acceptance of the models [11], and we will include this topic
in future amendments to the TEHAI framework.

Limitations
Although we undertook a comprehensive evaluation of AI
studies unlike previous assessments, our study still has some
limitations. First, the period we used to review and select studies
was narrow, being just a year. Another limitation is that for
practical reasons, we randomly chose a subset of 102 studies
for evaluation out of the 968 eligible studies. Despite these
limitations, we are confident that the evaluation process we
undertook was rigorous, as evidenced by the systematic review
of the literature, the detailed assessment of each of the selected
studies, and the parallel review and consensus steps.

We recommend caution when generalizing the results from this
COVID-19 study to other areas of AI in health care. First,
evaluation frameworks that rely on human experts can be
sensitive to the selection of the experts (subjectivity). Second,
scoring variation may arise from the nature of the clinical
problem rather than the AI solution per se; thus, TEHAI results
from different fields may not be directly comparable. Third, we
intentionally excluded discovery studies aimed at new biology
or novel treatments, as those would have been too early in the
translation pipeline to have a meaningful evaluation. Fourth,
significant heterogeneity of clinical domains may also confound
the evaluation results and may prevent comparisons of studies
(here, we made an effort to preselect studies that were
comparable). Lastly, the TEHAI framework is designed to be
widely applicable, which means that stakeholders with specific
subjective requirements may need to adapt their interpretations
accordingly.

We acknowledge the rapid progress in AI algorithms that may
make some of the evaluation aspects obsolete over time;
however, we also emphasize that 2 of the 3 TEHAI components
are not related to AI itself but to the ways AI interacts with the
requirements of clinical practice and health care processes.
Therefore, we expect that the translatability observations from
this study will have longevity.

Conclusion
AI in health care has a translatability challenge, as evidenced
by our evaluation study. By assessing 102 AI studies for their
capability, utility, and adoption aspects, we uncovered
translational gaps in many of these studies. Our study highlights
the need to plan for translational aspects early in the AI
development cycle. The evaluation framework we used and the
findings from its application will inform developers, researchers,
clinicians, authorities, and other stakeholders to develop and
deploy more translatable AI models in health care.

JMIR AI 2023 | vol. 2 | e42313 | p. 10https://ai.jmir.org/2023/1/e42313
(page number not for citation purposes)

Casey et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
BK extracted appropriate studies from databases. AEC assigned studies to reviewers, carried out all analysis, and generated
figures. All authors were involved in the scoring process. AEC, SR, SA, and V-PM drafted the manuscript. All authors provided
feedback and edits for the final manuscript.

Conflicts of Interest
SR holds directorship in Medi-AI. The other authors have no conflicts of interest to declare.

Multimedia Appendix 1
Component and subcomponent scores split into subcategories based on data extraction questions, including (A and B) "country
GDP" and (C and D) "imaging/nonimaging"-based study. Bars show average scores, with error bars equal to SE. Bold P values
indicate P<.05. Bonferroni-corrected significance P=.003. GDP: gross domestic product.
[PNG File , 144 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Search strategies.
[DOCX File , 15 KB-Multimedia Appendix 2]

Multimedia Appendix 3
PRISMA flow diagram.
[DOCX File , 41 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Evaluation and scoring questions.
[DOCX File , 29 KB-Multimedia Appendix 4]

References

1. Desai AN. Artificial intelligence: promise, pitfalls, and perspective. JAMA 2020 Jul 23;323(24):2448-2449 [doi:
10.1001/jama.2020.8737] [Medline: 32492093]

2. Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med 2019 Jan;112(1):22-28 [FREE
Full text] [doi: 10.1177/0141076818815510] [Medline: 30507284]

3. Artificial intelligence in health care: benefits and challenges of technologies to augment patient care. United States
Government Accountability Office. 2020. URL: https://www.gao.gov/products/gao-21-7sp [accessed 2022-07-13]

4. Feng J, Phillips RV, Malenica I, Bishara A, Hubbard AE, Celi LA, et al. Clinical artificial intelligence quality improvement:
towards continual monitoring and updating of AI algorithms in healthcare. NPJ Digit Med 2022 May 31;5(1):66 [FREE
Full text] [doi: 10.1038/s41746-022-00611-y] [Medline: 35641814]

5. Nsoesie EO. Evaluating artificial intelligence applications in clinical settings. JAMA Netw Open 2018 Oct 07;1(5):e182658
[FREE Full text] [doi: 10.1001/jamanetworkopen.2018.2658] [Medline: 30646173]

6. van Leeuwen KG, Schalekamp S, Rutten MJCM, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100
commercially available products and their scientific evidence. Eur Radiol 2021 Jul;31(6):3797-3804 [FREE Full text] [doi:
10.1007/s00330-021-07892-z] [Medline: 33856519]

7. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, et al. Common pitfalls and recommendations for using
machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 2021
Mar 15;3(3):199-217 [doi: 10.1038/s42256-021-00307-0]

8. Seneviratne MG, Shah NH, Chu L. Bridging the implementation gap of machine learning in healthcare. BMJ Innov 2019
Dec 20;6(2):45-47 [doi: 10.1136/bmjinnov-2019-000359]

9. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial
intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol
2019 Mar;20(3):405-410 [FREE Full text] [doi: 10.3348/kjr.2019.0025] [Medline: 30799571]

10. Yu AC, Mohajer B, Eng J. External validation of deep learning algorithms for radiologic diagnosis: a systematic review.
Radiol Artif Intell 2022 May;4(3):e210064 [FREE Full text] [doi: 10.1148/ryai.210064] [Medline: 35652114]

11. Schneider J, Agus M. Reflections on the clinical acceptance of artificial intelligence. In: Househ M, Borycki E, Kushniruk
A, editors. Multiple Perspectives on Artificial Intelligence in Healthcare: Opportunities and Challenges. Cham: Springer
International Publishing; 2021:103-114

JMIR AI 2023 | vol. 2 | e42313 | p. 11https://ai.jmir.org/2023/1/e42313
(page number not for citation purposes)

Casey et alJMIR AI

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=ai_v2i1e42313_app1.png&filename=b6f3f35ff9762a21d9fcc781de4c11d7.png
https://jmir.org/api/download?alt_name=ai_v2i1e42313_app1.png&filename=b6f3f35ff9762a21d9fcc781de4c11d7.png
https://jmir.org/api/download?alt_name=ai_v2i1e42313_app2.docx&filename=c2512fe21b8292ed4af5e81951b9d493.docx
https://jmir.org/api/download?alt_name=ai_v2i1e42313_app2.docx&filename=c2512fe21b8292ed4af5e81951b9d493.docx
https://jmir.org/api/download?alt_name=ai_v2i1e42313_app3.docx&filename=bea21b904511d040e04bc6c7646e3a0d.docx
https://jmir.org/api/download?alt_name=ai_v2i1e42313_app3.docx&filename=bea21b904511d040e04bc6c7646e3a0d.docx
https://jmir.org/api/download?alt_name=ai_v2i1e42313_app4.docx&filename=56efbd86d92fe29d473af45cbf2e2373.docx
https://jmir.org/api/download?alt_name=ai_v2i1e42313_app4.docx&filename=56efbd86d92fe29d473af45cbf2e2373.docx
http://dx.doi.org/10.1001/jama.2020.8737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32492093&dopt=Abstract
https://europepmc.org/abstract/MED/30507284
https://europepmc.org/abstract/MED/30507284
http://dx.doi.org/10.1177/0141076818815510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30507284&dopt=Abstract
https://www.gao.gov/products/gao-21-7sp
https://doi.org/10.1038/s41746-022-00611-y
https://doi.org/10.1038/s41746-022-00611-y
http://dx.doi.org/10.1038/s41746-022-00611-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35641814&dopt=Abstract
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/10.1001/jamanetworkopen.2018.2658
http://dx.doi.org/10.1001/jamanetworkopen.2018.2658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30646173&dopt=Abstract
https://europepmc.org/abstract/MED/33856519
http://dx.doi.org/10.1007/s00330-021-07892-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33856519&dopt=Abstract
http://dx.doi.org/10.1038/s42256-021-00307-0
http://dx.doi.org/10.1136/bmjinnov-2019-000359
https://www.kjronline.org/DOIx.php?id=10.3348/kjr.2019.0025
http://dx.doi.org/10.3348/kjr.2019.0025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30799571&dopt=Abstract
https://europepmc.org/abstract/MED/35652114
http://dx.doi.org/10.1148/ryai.210064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35652114&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


12. Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI in health care. J Am Med Inform
Assoc 2020 Mar 01;27(3):491-497 [FREE Full text] [doi: 10.1093/jamia/ocz192] [Medline: 31682262]

13. Mhasawade V, Zhao Y, Chunara R. Machine learning and algorithmic fairness in public and population health. Nat Mach
Intell 2021 Jul 29;3(8):659-666 [doi: 10.1038/s42256-021-00373-4]

14. AlHasan A. Bias in medical artificial intelligence. Bull R Coll Surg Engl 2021 Sep;103(6):302-305 [doi:
10.1308/rcsbull.2021.111]

15. Reddy S, Rogers W, Makinen V, Coiera E, Brown P, Wenzel M, et al. Evaluation framework to guide implementation of
AI systems into healthcare settings. BMJ Health Care Inform 2021 Oct;28(1):e100444 [FREE Full text] [doi:
10.1136/bmjhci-2021-100444] [Medline: 34642177]

16. Kim W, Jang Y, Yang J, Chung J. Spatial activation of TORC1 is regulated by Hedgehog and E2F1 signaling in the
Drosophila eye. Dev Cell 2017 Aug 21;42(4):363-375.e4 [FREE Full text] [doi: 10.1016/j.devcel.2017.07.020] [Medline:
28829944]

17. Saygılı A. A new approach for computer-aided detection of coronavirus (COVID-19) from CT and X-ray images using
machine learning methods. Appl Soft Comput 2021 Jul;105:107323 [FREE Full text] [doi: 10.1016/j.asoc.2021.107323]
[Medline: 33746657]

18. Roimi M, Gutman R, Somer J, Ben Arie A, Calman I, Bar-Lavie Y, et al. Development and validation of a machine learning
model predicting illness trajectory and hospital utilization of COVID-19 patients: a nationwide study. J Am Med Inform
Assoc 2021 Jul 12;28(6):1188-1196 [FREE Full text] [doi: 10.1093/jamia/ocab005] [Medline: 33479727]

19. Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X, et al. Development and evaluation of an artificial intelligence system for
COVID-19 diagnosis. Nat Commun 2020 Oct 09;11(1):5088 [FREE Full text] [doi: 10.1038/s41467-020-18685-1] [Medline:
33037212]

20. Reddy S, Bhaskar R, Padmanabhan S, Verspoor K, Mamillapalli C, Lahoti R, et al. Use and validation of text mining and
cluster algorithms to derive insights from corona virus disease-2019 (COVID-19) medical literature. Comput Methods
Programs Biomed Update 2021;1:100010 [FREE Full text] [doi: 10.1016/j.cmpbup.2021.100010] [Medline: 34337589]

21. Guo Y, Zhang Y, Lyu T, Prosperi M, Wang F, Xu H, et al. The application of artificial intelligence and data integration in
COVID-19 studies: a scoping review. J Am Med Inform Assoc 2021 Aug 13;28(9):2050-2067 [FREE Full text] [doi:
10.1093/jamia/ocab098] [Medline: 34151987]

22. Covidence systematic review software. Veritas Health Innovation. URL: https://www.covidence.org [accessed 2023-06-01]
23. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas 2016 Jul 02;20(1):37-46 [doi:

10.1177/001316446002000104]
24. Sim J, Wright CC. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther

2005 Mar;85(3):257-268 [Medline: 15733050]
25. The world by income and region. The World Bank. 2022. URL: https://datatopics.worldbank.org/world-development-

indicators/the-world-by-income-and-region.html [accessed 2022-07-13]
26. Ruamviboonsuk P, Tiwari R, Sayres R, Nganthavee V, Hemarat K, Kongprayoon A, et al. Real-time diabetic retinopathy

screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. Lancet
Digit Health 2022 May;4(4):e235-e244 [FREE Full text] [doi: 10.1016/S2589-7500(22)00017-6] [Medline: 35272972]

27. Cen LP, Ji J, Lin J, Ju S, Lin H, Li T, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs
using deep neural networks. Nat Commun 2021 Aug 10;12(1):4828 [FREE Full text] [doi: 10.1038/s41467-021-25138-w]
[Medline: 34376678]

28. Deperlioglu O, Kose U, Gupta D, Khanna A, Sangaiah AK. Diagnosis of heart diseases by a secure Internet of Health
Things system based on autoencoder deep neural network. Comput Commun 2020 Oct 01;162:31-50 [FREE Full text] [doi:
10.1016/j.comcom.2020.08.011] [Medline: 32843778]

29. Liu J, Gibson E, Ramchal S, Shankar V, Piggott K, Sychev Y, et al. Diabetic retinopathy screening with automated retinal
image analysis in a primary care setting improves adherence to ophthalmic care. Ophthalmol Retina 2021 Jan;5(1):71-77
[FREE Full text] [doi: 10.1016/j.oret.2020.06.016] [Medline: 32562885]

30. Omoumi P, Ducarouge A, Tournier A, Harvey H, Kahn CE, Louvet-de Verchère F, et al. To buy or not to buy-evaluating
commercial AI solutions in radiology (the ECLAIR guidelines). Eur Radiol 2021 Jul;31(6):3786-3796 [FREE Full text]
[doi: 10.1007/s00330-020-07684-x] [Medline: 33666696]

Abbreviations
AI: artificial intelligence
CNN: convolutional neural network
GDP: gross domestic product
MeSH: Medical Subject Headings
NIH: National Institutes of Health
TEHAI: Translational Evaluation of Healthcare AI

JMIR AI 2023 | vol. 2 | e42313 | p. 12https://ai.jmir.org/2023/1/e42313
(page number not for citation purposes)

Casey et alJMIR AI

XSL•FO
RenderX

https://europepmc.org/abstract/MED/31682262
http://dx.doi.org/10.1093/jamia/ocz192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31682262&dopt=Abstract
http://dx.doi.org/10.1038/s42256-021-00373-4
http://dx.doi.org/10.1308/rcsbull.2021.111
https://informatics.bmj.com/lookup/pmidlookup?view=long&pmid=34642177
http://dx.doi.org/10.1136/bmjhci-2021-100444
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34642177&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1534-5807(17)30596-8
http://dx.doi.org/10.1016/j.devcel.2017.07.020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28829944&dopt=Abstract
https://europepmc.org/abstract/MED/33746657
http://dx.doi.org/10.1016/j.asoc.2021.107323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33746657&dopt=Abstract
https://europepmc.org/abstract/MED/33479727
http://dx.doi.org/10.1093/jamia/ocab005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33479727&dopt=Abstract
https://doi.org/10.1038/s41467-020-18685-1
http://dx.doi.org/10.1038/s41467-020-18685-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33037212&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2666-9900(21)00009-4
http://dx.doi.org/10.1016/j.cmpbup.2021.100010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34337589&dopt=Abstract
https://europepmc.org/abstract/MED/34151987
http://dx.doi.org/10.1093/jamia/ocab098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34151987&dopt=Abstract
https://www.covidence.org
http://dx.doi.org/10.1177/001316446002000104
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15733050&dopt=Abstract
https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html
https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html
https://linkinghub.elsevier.com/retrieve/pii/S2589-7500(22)00017-6
http://dx.doi.org/10.1016/S2589-7500(22)00017-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35272972&dopt=Abstract
https://doi.org/10.1038/s41467-021-25138-w
http://dx.doi.org/10.1038/s41467-021-25138-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34376678&dopt=Abstract
https://europepmc.org/abstract/MED/32843778
http://dx.doi.org/10.1016/j.comcom.2020.08.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32843778&dopt=Abstract
https://europepmc.org/abstract/MED/32562885
http://dx.doi.org/10.1016/j.oret.2020.06.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32562885&dopt=Abstract
https://europepmc.org/abstract/MED/33666696
http://dx.doi.org/10.1007/s00330-020-07684-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33666696&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by K El Emam, B Malin; submitted 31.08.22; peer-reviewed by W Klement, S Lin; comments to author 07.11.22; revised version
received 23.11.22; accepted 22.03.23; published 06.07.23

Please cite as:
Casey AE, Ansari S, Nakisa B, Kelly B, Brown P, Cooper P, Muhammad I, Livingstone S, Reddy S, Makinen VP
Application of a Comprehensive Evaluation Framework to COVID-19 Studies: Systematic Review of Translational Aspects of Artificial
Intelligence in Health Care
JMIR AI 2023;2:e42313
URL: https://ai.jmir.org/2023/1/e42313
doi: 10.2196/42313
PMID: 37457747

©Aaron Edward Casey, Saba Ansari, Bahareh Nakisa, Blair Kelly, Pieta Brown, Paul Cooper, Imran Muhammad, Steven
Livingstone, Sandeep Reddy, Ville-Petteri Makinen. Originally published in JMIR AI (https://ai.jmir.org), 06.07.2023. This is
an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR AI, is properly cited. The complete bibliographic information, a link to the
original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

JMIR AI 2023 | vol. 2 | e42313 | p. 13https://ai.jmir.org/2023/1/e42313
(page number not for citation purposes)

Casey et alJMIR AI

XSL•FO
RenderX

https://ai.jmir.org/2023/1/e42313
http://dx.doi.org/10.2196/42313
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37457747&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

