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Abstract

Background: The accuracy of movement determination software in current activity trackers is insufficient for scientific
applications, which are also not open-source.

Objective: To address this issue, we developed an accurate, trainable, and open-source smartphone-based activity-tracking
toolbox that consists of an Android app (HumanActivityRecorder) and 2 different deep learning algorithms that can be adapted
to new behaviors.

Methods: We employed a semisupervised deep learning approach to identify the different classes of activity based on
accelerometry and gyroscope data, using both our own data and open competition data.

Results: Our approach is robust against variation in sampling rate and sensor dimensional input and achieved an accuracy of
around 87% in classifying 6 different behaviors on both our own recorded data and the MotionSense data. However, if the
dimension-adaptive neural architecture model is tested on our own data, the accuracy drops to 26%, which demonstrates the
superiority of our algorithm, which performs at 63% on the MotionSense data used to train the dimension-adaptive neural
architecture model.

Conclusions: HumanActivityRecorder is a versatile, retrainable, open-source, and accurate toolbox that is continually tested on
new data. This enables researchers to adapt to the behavior being measured and achieve repeatability in scientific studies.
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Introduction

Background
The last decade has seen a significant increase in worldwide
smartphone ownership [1], with approximately half of the
world’s population now owning a smartphone and a device
penetration rate of 80% in Germany and the United Kingdom
[2]. Even low-end smartphones are equipped with various
sensors, including accelerometers, gyroscopes, proximity
sensors, magnetometers, and GPS receivers, along with
energy-efficient processors and stable internet connections.

With the advent of smartphones and wearables, physical activity
analysis has greatly gained in popularity. Accelerometry-based
behavior analysis has a variety of applications, such as fall
detection in older patients [3], health monitoring [4],
work-related stress analysis [5], and sleep analysis [6]. The
widespread use of accelerometry in everyday smartphone apps
has reduced the cost of gyroscope and accelerometer sensors,
which has in turn accelerated their development. While
wearables have gained popularity as accelerometer devices,
smartphones still make up the majority of them.
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Many studies have shown the accuracy and reliability of
smartphone sensors in accelerometry [7-9]. Although wearables
tend to provide more accurate behavior classifications, the
potential of using smartphones far outweighs the additional
accuracy gained from wearables. Although they are more precise
thus far [10], the cost of wearables for larger study populations
is very high, compared with the widespread popularity and
affordability of smartphones, making them a more accessible
option for research. Additionally, smartphone apps are easier
to distribute, update, configure, and adapt to specific research
questions than wearables. Wearables also have the disadvantage
of limited software support and closed-source software, making
research based on previous software nonreproducible after
algorithm updates. This means that wearables bought for
research purposes must be replaced on a regular basis.

Most importantly, however, the default software of wearable
manufacturers is in almost all cases not open-source, meaning
that after each change of the algorithm (ie, app update) that
classifies behavior, research based on previous software is not
reproducible anymore. Furthermore, in most cases, charges
apply for the use of the said software. On the other hand, some
smartphone manufacturers offer free, open-source toolboxes
for movement activity recognition, such as Samsung and
Huawei. However, these toolboxes only recognize a limited
number of activity types and are at the time of writing not
trainable to new activities. The purpose of both, however, is for
them to be integrated into applications, so they can be used to
determine whether a smartphone user is moving and is active
or not, in order to interact with application functionality, such
as energy saving while not moving, clocking active hours, or
encouraging movement when a user is inactive. While data can
be collected and stored, the behavior classes are fixed and
neither trainable nor retrainable. To address these limitations,
the scientific community needs access to an open-source,
adaptable behavior analysis toolbox that also facilitates
reproducible research and is adaptable to specific research
questions. To fulfil this need, we present our open-source, deep
learning–based behavior analysis toolbox. Our Human Activity
Analysis toolbox includes a proprietary Android app, 2 deep
learning algorithms, scripts to process data, and a continually
expanding sample data set. The toolbox has been validated with
a sample of 68 University of Bern students and employees.

Activity Recognition and Deep Learning Background
Deep learning algorithms have gained importance in classifying
human behavior based on sensor data collected from
accelerometers, gyroscopes, and magnetometers [11-18] (for a
deeper understanding and comprehensive overview, see [19]).
These algorithms are based on artificial neural networks, and
specifically, deep neural networks (DNNs) have become the
dominant approach for activity recognition as of 2022. DNNs
consist of multiple layers of neurons of similar or different types,
and the functionality of these neurons is determined by the
nature of the layers and the way they are interconnected [20,21].
It is important to note that a standard neural network consists
of many simple, connected processors called neurons, each
producing a sequence of real-valued activations. Depending on
the problem and how the neurons are connected, such behavior
may require long causal chains of computational stages. Thus,

if multiple layers of neurons are used sequentially, we speak of
DNNs [20].

Most DNN architectures consist of a convolutional neural
network (CNN) layer, followed by either a feedforward neural
network (FNN) layer or a recurrent neural network (RNN) layer.
Unlike the output from an RNN neuron, which is fed back into
the same layer, the output from an FNN neuron is only
connected to the next layer. CNNs handle variable input
dimensions quite well and are mainly used for feature extraction
for the RNN or FNN layer, which, combined with a prior CNN,
output a better generalization than if fed with raw sensor data
[22]. However, FNNs only work well with data of the same
input dimensions, and RNNs only work with a fixed number of
streams. As a result, the widely used CNN-RNN-FNN
combinations do not work with varying input dimensions. This
means that if data collection from one sensor stops, the
movement type cannot be classified by the DNN that was trained
on multiple input dimensions. In order to save battery life in
smartphones during long-term recordings, it is often desirable
to temporarily disable certain sensors or to vary the sampling
rate of sensors, which results in changing the input dimensions
for the DNN.

When a participant is sitting for an extended period, disabling
the gyroscope sensor can conserve battery life. This is because
the rotational position is unlikely to change significantly without
significant acceleration changes unless the person is in an
aircraft and the gravitational acceleration is being compensated
for in the data. In order to determine when the activity type
changes, it is sufficient to use a low recording frequency. This
means that it is possible to deactivate the gyroscope and
magnetometer and lower the accelerometer recording frequency.
To determine when the activity type changes, a very low
recording frequency suffices, so it is desirable to deactivate the
gyroscope and magnetometer and lower the accelerometer
recording frequency significantly. Dummy data can be generated
to compensate for missing data in order to maintain the accuracy
of the trained CNN-FNN-RNN model [23]. However, this
approach can result in a loss of accuracy in classification.
Another solution is to insert a global pooling layer, but this also
leads to a reduction in accuracy. This, however, leads to
accuracy loss in classification. Another solution is to insert a
global pooling layer [24], but this also leads to a reduction in
accuracy.

Previous publications on accelerometry-based movement
recognition have shown great success but significant limitations.
Ordóñez and Roggen [15] presented a deep-CNN–based
framework, which they tested against models such as decision
tree, random forest, and support vector machines. Trained and
then tested on a data set, the accuracy reached up to 86.7%. The
authors then analyzed which component of the data had the
biggest impact on classification accuracy and determined this
to be changes in acceleration, which is in line with our own
results.

Wang et al [11] offer a comprehensive survey of recent
advancements in activity recognition and associated
methodologies. Their work sheds light on the various strengths
and weaknesses of deep learning models when it comes to

JMIR AI 2023 | vol. 2 | e42337 | p. 2https://ai.jmir.org/2023/1/e42337
(page number not for citation purposes)

Wieland & NiggJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


activity classification. Although most models perform accurately
on their trained data [25], significant limitations remain. First,
the lack of extensive, labeled accelerometry data sets limits their
efficacy. Second, the generalization capabilities of models need
improvement. Third, models struggle with sensor noise and
input variability, highlighting a need for greater robustness. Our
algorithms aim to address these issues, working to mitigate the
associated limitations and enhance overall model performance.
To achieve this, we build upon previous research by
incorporating and improving upon their methodologies while
also introducing our own additional data set for algorithm
training.

Malekzadeh et al [26] proposed a new model, which tries to
counteract the aforementioned shortcomings by introducing a
dimension-adaptive pooling (DAP) layer, which makes DNNs
robust to changes in not only sampling rates but also
dimensional changes of the data due to varying sensor
availability.

The authors also introduced a dimension-adaptive training layer,
and combined it with the classical CNN-FNN-RNN approach
and the DAP layer. They claim that dimension-adaptive neural
architecture (DANA) can prevent losses in classification
accuracy, even under varying sensor availability and temporal
sampling rate changes. This model was tested on 4 publicly
available data sets, including the MotionSense [27] data set,
which consists of accelerometer data from 24 students at Queen
Mary University of London.

Our goal was to not only implement this model into our own
DNN, but also to improve upon it and validate it using our own
data. The robustness of the DANA model is very promising,
making it a valuable addition to our research.

Methods

Ethical Considerations
According to the guidelines stated on the Ethics Commission
page of the University of Bern's Faculty of Human Sciences,
no ethics committee approval was required for this research.

This conclusion is based on the fact that all data was collected
with participants' informed consent, the data collection was
conducted anonymously, and the research activities only
involved non-hazardous tasks such as standing, sitting, walking,
and ascending or descending stairs. No personal data was
collected.

Training Data
The data used for the initial training of the neural network was
gathered from the MotionSense Github repository. These data
consist of accelerometer and gyroscope readings from an iPhone
6s (Apple Inc), collected at a frequency of 50 Hz by 24
participants who followed a set of actions on the campus of
Queen Mary University of London. These actions included
ascending or descending stairs, sitting, walking, standing, and
jogging (Figure 1). The data recorded gravity, acceleration,
rotation, and attitude on 3 axes.

After conducting a principal component analysis, we found that
the X, Y, and Z acceleration and rotational changes were the
most predictive factors in classifying the participant’s behavior
(Figure 2). Therefore, only these 6 values were used in the
training of the algorithm. As a result, our app only records these
6 values, which are then used for further analysis.

To gather more data and validate our model, we set up our own
course of action on the campus of the Centre for Sports Science
at the University of Bern, modeled after the course used at
Queen Mary University. A total of 68 participants (aged 21-59,
median 26, SD 3.2 years), who were students and employees
of the University of Bern, completed the course while our
HumanActivityRecorder Android app (Multimedia Appendix
1) was running and collecting data. All participants were fully
informed about the task and gave their consent for the data
collection.

The course consisted of approximately 300 seconds of walking,
jogging, sitting, and walking up and down stairs and standing
still (Figure 3). All participants completed all segments of the
course, and the corresponding data segments were manually
labeled for use in training the models.
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Figure 1. Course for accelerometer data collection on the campus of the Queen Mary University of London for the MotionSense data set; graph from
Malekzadeh et al [26].

Figure 2. Data example of the MotionSense data set. Note that some values do not change significantly when normalized over the course of recording
and are therefore of lesser interest for the prediction of behavior.
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Figure 3. Course on the premises of the University of Bern. Participants followed the indicated path, starting walking, followed by jogging, sitting,
ascending stairs, standing, and descending stairs. Completion took an average of approximately 300 seconds.

The participants completed the course in 2 groups with different
instructions. Group 1 (n=29, median age 26, SD 5.2 years) was
instructed to wear the smartphone in their preferred manner.
Group 2 (n=39, median age 27, SD 4.7 years) wore the
smartphone in the right front trousers’ pocket, with the display
facing toward the body and the top of the phone pointing down
while standing. This placement is consistent with the data
collection method used for the MotionSense data set, as
discussed above. It was found that the orientation of the
smartphone has a significant impact on the performance of the
model. To ensure consistency and comparability between the
data sets, our algorithm was trained on the data of group 2, as
wearing the smartphone in an individually preferred manner
(group 1) resulted in significantly worse performance in
classification accuracy. For a detailed comparison of
classification accuracy between groups 1 and 2, please refer to
Multimedia Appendix 2.

App
The accelerometer and gyroscope data were collected using our
custom-made HumanActivityRecorder Android app, which was
developed using Android Studio 4.1 with Java 1.8.0_271 (Figure
4). The app records accelerometer and gyroscope data at a
sampling rate of 50 Hz and is publicly available on the Google
Play Store as version 13 of the HumanActivityRecorder app.
The accelerometer data are recorded in the x-, y-, and z-axes,
while the gyroscope data consist of rotation around these axes
(roll, pitch, and yaw) at the same frequency. The data are then
automatically sent to a server and can be downloaded as a CSV
or JSON file. The source code is available on Github [28]. The
app is compatible with Android 5.0 and later versions. We used
an Honor View 20 smartphone for data collection to ensure
consistency in recording. Only 1 device was used.
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Figure 4. Comparison of the models used in our study. The dimension-adaptive neural architecture (DANA) model, consists of several additional
layers, which we found did not improve the classification of our data. Note that in our simplified model, the dimension-adaptive pooling (DAP) layer
has been omitted as well, since our data are dimensionally consistent. LSTM: Long short-term memory.

Recording
Before beginning the data collection process, the participants
were asked for their name, age, and consent. The data collection
paradigm was explained to them and demonstrated through a
walk-through by the data collector. The participants then
completed the course, which included walking, jogging, sitting,
ascending and descending stairs, and standing still, while the
app recorded their accelerometer and gyroscope data. After
completing the course, the participants were given a chocolate
bar as an incentive. The accelerometer data were processed and
categorized using a Jupyter notebook script, which automates
the workflow to ensure consistency in categorization. This script
is part of our toolbox.

Deep Learning Model
We implemented a modified version of the DANA model
proposed by Malekzadeh et al [19], which involved removing
and modifying several layers. This modification was made after
testing the model (trained and tested on MotionSense data) and
finding that the omission of these layers did not noticeably
decrease the model’s performance.

It is important to note that in our simplified model, we removed
the DAP layer as our input data are dimensionally consistent at
the time of testing. To validate the models, we trained them
both on the MotionSense data set and our own data set, as well
as testing both combinations.

Results

Through a systematic variation of the number of nodes and
layers, we determined that the best balance between accuracy
and complexity is achieved with the described architecture. This
architecture was determined based on the accuracy of the models
in classifying movement types of the MotionSense data set when
trained on the same data set. Interestingly, when we trained on
the MotionSense data set and tested on our own data, our model
performed better than DANA, yet still with room for
improvement, at 63% vs 26%.

When trained on the same data set as the one they are tested on,
both models performed well in classifying behavior. The DANA
model achieved approximately 87% accuracy when trained and
tested on the MotionSense data set and approximately 90%
accuracy when trained and tested on our own data, depending
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on the sampling rate (Figure 5). However, when trained on the
MotionSense data set and tested on our own data, the accuracy
of DANA drops to around 26%, also depending on the
dimensionality of the input, while our model performs at around
63%, but much less robust against the dimensionality input
(Figure 6). This still leaves room for improvement but shows

the comparatively high generalization ability of our model. It
is important to note that neither the MotionSense data nor our
own data include magnetometer data, which is why the DANA
model performs poorly (at or near zero accuracy) when reduced
to only magnetometer input. The graph includes this information
for consistency.

Figure 5. Accuracy in classifying using the dimension-adaptive neural architecture (DANA) model (A) trained and tested on MotionSense data; (B)
our model trained and tested on our data; (C) DANA trained on MotionSense and tested on our data; and (D) our model trained on our own data and
tested on MotionSense data. Note that the dimensionality is varied here to showcase the robustness, and our model is impacted more strongly by a varied
dimensionality input. Acc: accelerometer; Gyr: gyroscope; Mag: magnetometer.
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Figure 6. Confusion matrices of accuracy in classifying (A) using our own simplified model trained on MotionSense data tested on MotionSense data;
(B) trained on MotionSense data and tested on own data; (C) trained and tested on our own data; and (D) trained on our own data and tested on
MotionSense data. Note that dimensionality is not varied here as all sensors are available. dws: downstairs; jog: jogging; sit: sitting: std: standing; ups:
upstairs; wlk: walking.

Our simplified model does not include the DAP layer and is
less robust against input dimensional variance, as our input data
dimensions did not vary. However, it is easily adaptable if
desired. Despite this, our model outperforms the DANA model
in terms of accuracy. When trained on the MotionSense data
set and tested on it, our model achieved 95.4% accuracy. It was
equally accurate when trained on our own data and tested on it,
with 92.4% accuracy. However, when trained on the
MotionSense data and tested on our own data, accuracy drops
to 25.8%, but when trained on our data and tested on
MotionSense, accuracy reached 63.4%.

Discussion

Conclusions
Both models included in our toolbox perform well when trained
and tested on the same data set. However, they do not perform
well when trained on one data set and tested on the other, as
was the case in our study. This highlights the problem of the
unavoidable part of overfitting the collected data to improve
algorithm performance, although this is controlled for as far as
possible. Despite this, both models (DANA and our own)
performed similarly when trained on one data set and tested on
the other. Our model is slightly more accurate, but the DANA
model is more robust with regards to dimensional variance in
the input. However, there is a significant difference in computing
time when training the models. The DANA model, when trained
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using Google Colab with CPU and GPU resources, took around
11 hours to train each time. On the other hand, our model can
be trained in about 5 minutes with 100 epochs of training using
only CPUs in Google Colab. Note that this estimation does not
include hyperparameter testing.

Given the amount of data used to train the models, the results
are surprisingly accurate. Commercial wearables, such as
sports-oriented smartwatches, often have a function to display
the user’s current activity. However, these displayed activities
are often incorrect, even for activities that seem obvious to the
user. Considering these devices are widely available and sold
to millions of people, we expected movement detection to be
much more challenging, and our accuracy to be in the low 60%
range.

While the accuracy of movement classification is very good,
there is still room for improvement, which we plan to achieve
by training the algorithm on additional data from diverse
populations or environments. We recommend using the DANA
model to classify behavior in data that have been gathered at
different dimensions or with variable input dimensions.
However, if the input type is consistent, we recommend our
model as it is slightly more accurate and much easier to train.
Both algorithms are available at our Github repository, along
with the HumanActivityRecorder app and the scripts to process
the data. In a future step, we plan to integrate both algorithms

into the app and evaluate their performance in a subsequent
study.

Limitations
The orientation of the smartphone during recording has an
impact on classification accuracy if the sample size is not large
enough, as shown in our comparison of classification accuracy
of groups 1 and 2 (Multimedia Appendix 2). However, if trained
on large data sets with varying orientation, this effect disappears.
For comparability, we based our model on the group with the
same orientation as in the MotionSense data set. Accounting
for orientation was outside the scope of our study. To address
the impact of smartphone orientation on classification accuracy
in medium-sized samples, an easy solution would be to
incorporate an orientation recognition stage that detects the
orientation of the smartphone and branches the data to models
that have been individually trained on each orientation. This
would ensure more accurate classification regardless of the
smartphone orientation.

Authenticity
The results of the study are presented clearly, honestly, and
without fabrication, falsification, or inappropriate data
manipulation. The results of this study do not constitute
endorsement by this Journal. This manuscript has not been
published elsewhere, and it has not been submitted
simultaneously for publication elsewhere.
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Multimedia Appendix 1
Screenshots of the Android app. From left to right: start screen, sociodemographics, and recording screen.
[PNG File , 151 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Accuracy of the classification of our model (A) trained and tested on group 1 data; (B) trained on group 1 data and tested on
MotionSense data; (C) trained and tested on group 2 data; and (D) trained on group 2 data and tested on MotionSense data. Group
1 was instructed to wear the smartphone wherever they preferred individually. Group 2 was instructed to wear it screen inside,
top facing downward in the right trouser pocket, in line with data collection for the MotionSense data set, to ensure maximum
comparability.
[PNG File , 139 KB-Multimedia Appendix 2]
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Abbreviations
CNN: convolutional neural network
DANA: dimension-adaptive neural architecture
DAP: dimension-adaptive pooling
DNN: deep neural network
FNN: feedforward neural network
RNN: recurrent neural network
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