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Abstract

Background: Neuroimaging is the gold-standard diagnostic modality for all patients suspected of stroke. However, the
unstructured nature of imaging reports remains a major challenge to extracting useful information from electronic health records
systems. Despite the increasing adoption of natural language processing (NLP) for radiology reports, information extraction for
many stroke imaging features has not been systematically evaluated.

Objective: In this study, we propose an NLP pipeline, which adopts the state-of-the-art ClinicalBERT model with domain-specific
pretraining and task-oriented fine-tuning to extract 13 stroke features from head computed tomography imaging notes.

Methods: We used the model to generate structured data sets with information on the presence or absence of common stroke
features for 24,924 patients with strokes. We compared the survival characteristics of patients with and without features of severe
stroke (eg, midline shift, perihematomal edema, or mass effect) using the Kaplan-Meier curve and log-rank tests.

Results: Pretrained on 82,073 head computed tomography notes with 13.7 million words and fine-tuned on 200 annotated notes,
our HeadCT_BERT model achieved an average area under receiver operating characteristic curve of 0.9831, F1-score of 0.8683,
and accuracy of 97%. Among patients with acute ischemic stroke, admissions with any severe stroke feature in initial imaging
notes were associated with a lower probability of survival (P<.001).

Conclusions: Our proposed NLP pipeline achieved high performance and has the potential to improve medical research and
patient safety.

(JMIR AI 2023;2:e42884) doi: 10.2196/42884
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Introduction

Overview
Computed tomography (CT) and magnetic resonance imaging
(MRI) are the gold standards for assessing and triaging patients
with suspected strokes. However, free-text imaging reports
containing important radiological findings are embedded in
electronic health records (EHRs) systems in an unstructured
narrative format, precluding data encoding [1] to enable clinical
decisions and support research applications [2-4]. Fortunately,
the limitations of unstructured data have been mitigated by
recent advancements in information extraction and processing
methods, such as natural language processing (NLP).

Traditional rule-based NLP algorithms that use handcrafted
dictionaries, keywords, and decision rules to analyze the
structure of the language have classically been adopted for
analyses of textual data [5-7]. However, the creation and
maintenance of decision rules are labor-intensive tasks, and the
quality of rules significantly influences model performance. In
recent years, data-driven methods, including machine learning
and deep learning, have been developed. Machine learning
approaches use derived features (eg, term frequency and n-gram)
from text to train supervised-learning models (eg, support vector
machine [SVM] or random forest) and predict desirable outputs
on new documents [3,8,9]. Deep learning methods often involve
more sophisticated architectures (eg, recurrent neural networks,
convolutional neural networks, and self-attention) and use word
embeddings to account for the sequence and context of natural
language [1,10,11].

The Bidirectional Encoder Representations from Transformers
(BERT) NLP model, which uses a 24-layered deep learning
architecture, was published in 2018 and achieved state-of-the-art
performance on NLP benchmarks [12]. A clinical version,
ClinicalBERT, was later developed by pretraining the BERT
model on EHR notes to achieve improved performance on
clinical data [13]. Furthermore, the ClinicalBERT model has
also been trained and validated for the extraction of radiological
features from chest and bone x-ray notes [14,15].

In the context of cerebrovascular disease and stroke, NLP has
been applied to classify various stroke phenotypes [3,8,9] and
perform feature extraction [1,5,6]. Despite these emerging
applications, optimal use of NLP pipelines for stroke research
is yet to be achieved. More specifically, limited studies have
used BERT to extract important neuroimaging findings, such
as midline shift [16] and mass effect [17]. Therefore, the use of
NLP-based extraction of many critically important neuroimaging
features has not been systematically implemented. We evaluated
a deep learning–based NLP model (HeadCT_BERT) that is
built upon ClinicalBERT and fine-tuned for the extraction and
structured data generation of 13 critical stroke neuroimaging
features.

Related Work

NLP on Stroke Imaging Notes
NLP has been adopted to automate stroke acuity classification.
Li et al [8] used head CT and MRI radiology reports to train a

random forest model for ischemic stroke acuity classification.
Kim et al [9] evaluated logistic regression, naïve Bayesian,
decision tree, and SVM models to identify ischemic stroke from
MRI reports. In addition, Garg et al [3] trained a variety of
machine learning algorithms (ie, k-nearest neighbors, SVM,
random forest, extra trees classifier, and XGBoost) to identify
ischemic stroke subtypes from neurology progress notes and
neuroradiology reports. In addition to NLP-based classification
algorithms, a few studies adopted NLP for stroke imaging
feature extraction. Yu et al [5] used a rule-based NLP tool,
CHARTextract, to extract the type of occlusion, presence of
established ischemia, and hemorrhage from CT reports. Gordon
et al [17] proposed a machine learning–based method using
XGBoost to extract the intracranial mass effect. However, there
are several untapped avenues for the applications of
state-of-the-art NLP methods in the stroke and cerebrovascular
disease domain.

Fine-Tuning BERT for Medical Imaging Findings
Extraction
The most common application of BERT is to fine-tune the
out-of-box network for the NLP task. Olthof et al [18] fine-tuned
the BERT model with 3268 labeled radiology reports of injured
extremities and chest radiographs for extracting the presence
of injury. The BERT network was appended with a binary
classifier layer and trained (“fine-tuned”) with the labeled
reports. The authors reported that BERT outperformed
rule-based classifiers and machine learning classifiers and
achieved an F1-score of 0.95 and an area under receiver
operating characteristic curve (AUROC) of 0.99. Fink et al [19]
fine-tuned the German-language BERT with structured oncology
reports for rapid tumor response category classification. The
results showed that the BERT model (F1=0.70) achieved a
similar performance as that of medical students (F1≈0.73),
although it was inferior to radiologists’ performance (F1=0.79).

Pretraining and Fine-Tuning BERT for Medical
Imaging Findings Extraction
Pretraining BERT with domain-specific text is an additional
step that may boost model performance in subsequent
fine-tuning. Smit et al [14] used an automatic labeling algorithm
to tag 200,000 radiology reports for pretraining. After
pretraining, 1000 reports were randomly sampled and annotated
by radiologists for fine-tuning. The final NLP model, CheXbert,
achieved state-of-the-art performance on one of the largest chest
x-ray data sets, MIMIC-CXR, with an F1-score of 0.798, which
is close to radiologists’ performances (F1=0.805). Dai et al [15]
took a similar approach using x-ray radiology reports for bone
fracture. The authors developed a rule-based automatic labeling
algorithm to label 6048 reports for model pretraining.
Subsequently, the model was fine-tuned with a subset of 4890
manually annotated reports for fracture status detection (ie,
positive, negative, or uncertain) and fracture type, bone type,
and location extraction. To our knowledge, BERT pretraining
in the biomedical field is underused and has not been attempted
within the cerebrovascular disease domain.
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Methods

Data Source and Variables
Registry for Neurological Endpoint Assessments among Patients
with Ischemic and Hemorrhagic Stroke (REINAH) [20] is a
data warehouse built upon the EHR at Houston Methodist, a
tertiary health care system serving the greater Houston
metropolitan area. REINAH hosts data for over 45,000 patients
with cerebrovascular disease, representing over 982,000
neuroimaging records obtained between September 2007 and
August 2022. From REINAH, we queried records that (1) had
final results available before data collection on July 19, 2021;
(2) had an imaging type of “CT head without contrast”; and (3)
had attached imaging notes. All imaging notes were written in
short paragraphs and stored as plain text. The age, sex, race,
ethnicity, BMI, insurance type, stroke type, and National
Institutes of Health Stroke Scale scores were extracted from
each patient’s initial stroke encounter.

Ethics Approval
This study was approved by the Houston Methodist Institutional
Review Board (PRO00025034).

Annotation
We identified 20 clinically relevant stroke-related features to
extract, including hemorrhage volume, midline shift, herniation,

perihematomal edema, white matter hyperintensity, intracerebral
hemorrhage (ICH) location, lacunes, old stroke, remote stroke,
subacute infarct, cerebral atrophy, intraventricular hemorrhage,
acute ischemia, subdural hematoma, subarachnoid hemorrhage,
extra-axial hemorrhage, encephalomalacia, mass effect, and
location for any non-ICH lesion (finding location). Each imaging
note could include none, one, or multiple concepts. As illustrated
in Figure 1, we randomly sampled 400 notes for model
fine-tuning and evaluation and adopted the Begin-Inside-Outside
method [21], which tags the starting position and end position
of predetermined imaging features of interest in the text. We
then randomly partitioned the 400 samples into the following
three data sets: (1) a communication set containing 50 notes;
(2) a reviewer-agreement set with 50 notes; and (3) two
independent-review sets, each containing 150 notes. Two
clinically trained reviewers in neuroimaging (ATB and TP) then
manually annotated the imaging notes in 3 sequential stages.
In the first stage, the communication set was annotated
collaboratively by the 2 reviewers. In the second stage, reviewers
performed separate annotations of the reviewer-agreement set,
and Kappa statistics and percent agreement were evaluated.
Inconsistent annotations were discussed to reach a consensus.
Finally, independent review sets were separately annotated.
Stroke imaging features that were identified in less than 20 notes
were excluded from modeling.

Figure 1. Methodology flowchart. We used unannotated computed tomography (CT) imaging notes to pretrain the natural language processing (NLP)
model and used a subset of annotated imaging notes to fine-tune and evaluate it. BERT: bidirectional encoder representations from transformers;
REINAH: Registry for Neurological Endpoint Assessments among Patients with Ischemic and Hemorrhagic Stroke.

JMIR AI 2023 | vol. 2 | e42884 | p. 3https://ai.jmir.org/2023/1/e42884
(page number not for citation purposes)

Hsu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Text Processing
Before a sequence of human language can be processed by NLP
models, the text often goes through processes of segmentation,
tokenization, and word embedding [22]. To segment notes, we
first fixed a segment length of 32 words and a step size of 10
words. For each note, the first 32 words were taken as a segment,
which was then shifted to the right by 1 step (10 words) to
isolate the next segment of 32 words. This process was repeated
until the end of the note was reached, thereby transforming a
single long note into multiple short, overlapping, text segments.

For each segment, word tokenization, which transforms
sentences and phrases into individual word-tokens, was
performed using the WordPiece [23] algorithm implemented
in the Python Transformers module (version 4.10.0) and based
on a predefined dictionary. In-dictionary words with
predetermined tokens (eg, “stroke” and “patient”) were mapped
to respective numeric IDs (word embedding). Conversely,
out-of-dictionary words (eg, “edema” and “hemorrhage”) were
split into multiple in-dictionary tokens and mapped to multiple
token IDs (Table 1).

Table 1. Examples of text segmentation and word embeddinga.

Word embedding ID(s)Word-token(s)Input word

6625strokestroke

5351patientpatient

(5048, 14494)(ed, ##ema)edema

(23123, 1766, 1197, 19911)(hem, ##or, ##r, ##hage)hemorrhage

aThe WordPiece algorithm takes each word as input. If a word matches a predefined word-token, embedding is done by assigning a token ID to the
word. If a word does not match any predefined token, the word is split into multiple fractions and matched with predefined tokens.

Deep Learning NLP Models
Our NLP model training involved two phases, as follows: (1)
an optional general training phase (“pretraining”) that
familiarized the model with clinical terminology in head CT
notes, and (2) a required task-specific training phase
(“fine-tuning”), where the model learned to identify the 13
remaining stroke features (Table S1 in Multimedia Appendix
1).

Pretraining
Though NLP models can be trained with solely fine-tuning,
recent studies have reported an improved performance after
general [12,24] and domain-specific [13,25] pretraining. We
used the ClinicalBERT model, which has been pretrained on
general English corpora and EHR narratives [13]. We
hypothesized that further pretraining it with our head CT notes
using masked language model (MLM) [12] would boost the
performance for stroke feature extraction. Details of NLP model
pretraining are provided in Table S2 in Multimedia Appendix
1. MLM used a “self-supervised” algorithm that generated labels
without human annotation. A note was first tokenized into a
sequence of word-tokens, and 15% of the tokens were randomly
selected. Among each selected token, there was an 80%
probability it would be masked (replaced by a “[MASK]” token),
a 10% probability it would be replaced by a random token, and
a 10% probability it remains unchanged. The MLM pretraining
trained the NLP model to do “cloze,” that is, input a sequence
of word-tokens with masked tokens and predict the masked
tokens using the context. It is hypothesized that through learning
the cloze task, the NLP model can generalize this knowledge
to improve the performance of other NLP tasks. We
continuously pretrained the ClinicalBERT model with 74.0k
head CT imaging notes from 2007 to 2020, including a total of
13.7 million words for 5 rounds (“epochs”), and used
stand-alone 8.2k notes from January to July 2021 for MLM
evaluation (Table S3 in Multimedia Appendix 1). This

pretraining process produced a BERT model, which we labeled
“HeadCT_BERT,” that is specific to the head CT imaging
domain and can be further fine-tuned for downstream NLP
tasks.

Fine-Tuning
To train the HeadCT_BERT for stroke features extraction, our
downstream task in this study, we fine-tuned it with a
development set of 200 notes annotated with stroke features.
The HeadCT_BERT was appended with a feedforward layer
with sigmoid activation function (“classification layer”) for the
stroke feature classification. For each input segment (coded as
a sequence of word-tokens with a maximum length of 64), the
network outputs an array of probabilities (one probability for
each stroke feature). The entire network (HeadCT_BERT +
classification layer) was trained simultaneously. To prevent the
model from becoming too attuned to the details of the
development set, and consequently losing flexibility for new
data (ie, to avoid overfitting), the development set was divided
into a training set (80% of the notes) and a validation set (the
remaining 20% of notes) [26]. Model weights were saved as
checkpoints after each epoch, and optimal checkpoint weights
were selected during validation as our final NLP model. The
same fine-tuning process was also performed on the out-of-box
ClinicalBERT model for comparison. The deep learning model
was implemented using Python 3.9.6, PyTorch 1.9.0, and
Transformers 4.10.0. Model computations were performed on
an NVIDIA RTX 5000 graphics processing unit.

Prediction and Evaluation
The NLP model predicts the probabilities of stroke features in
each segment. We aggregated the prediction to note level by
selecting the maximum probability of each stroke feature among
segments. The final prediction for each note consists of a
probability per stroke feature (multilabel classification). We
considered stroke features with a probability >.5 as presence.
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To evaluate our NLP model performance, we used a stand-alone
evaluation set of 200 annotated imaging notes. Evaluation
metrics included recall (sensitivity), specificity, precision
(positive predictive value), and F1-score (the harmonic mean
of precision and recall). F1-score ranges from 0 to 1, with 1
implying perfect model performance, AUROC curve, and
accuracy. We also calculated predicted probabilities and fraction
of stroke features and presented probability calibration curves
(reliability diagrams).

Sensitivity Analysis
One challenge for NLP modeling is the need for a large amount
of human annotation, which is time consuming and labor
intensive. To explore the relationship between the number of
annotated training notes and model performance, and potentially
reduce the annotation workload, we performed a sensitivity
analysis that compared NLP models that were fine-tuned with
different development set sizes: 25, 50, 100, and 150 notes.
Each subset was split into a training set (80%) and a validation
set (20%) and was evaluated on the set of 200 notes.

Structured Data Generation
Upon achieving satisfactory evaluation, we ran the model on
all head CT imaging notes to automatically generate a structured
data set of stroke imaging features. Each feature was represented
as a binary variable (yes/no) associated with an imaging note.
We further performed survival analysis with the Kaplan-Meier
curves to evaluate the association between having any of the
severe stroke features (eg, midline shift, perihematomal edema,
and mass effect), as captured by NLP, and mortality for patients
with acute ischemic stroke (AIS) and ICH. Differences in
survival curves were compared using log-rank tests. We
calculated survival rates and median survival days.

Results

Of the 982,536 available images in REINAH, we identified
82,073 head CT imaging notes representing 24,924 unique
patients, of whom, 13,439 (53.9%) were female, 14,028 (56.3%)
were non-Hispanic White, and 15,121 (60.7%) were Medicare
beneficiaries, with an overall median age of 69 (IQR 58.5-78.3)
years. With regard to stroke subtypes (at the initial encounter),
12,623 (54.4%) of patients had AIS diagnosis, 1307 (5.6%) had
subarachnoid hemorrhage (SAH), 7084 (30.5%) had a transient
ischemic attack (TIA), and 2208 (9.5%) had ICH. For patients
with AIS, the median National Institutes of Health Stroke Scale
within 6 and 12 hours of admission was 3.0 (IQR 1.0-7.0),
whereas it was 7.0 (IQR 2.0, 19.0) for patients with ICH. The
400 randomly sampled notes represented 398 unique patients.
Their sociodemographic characteristics were consistent with
the overall population of patients with head CT images.
However, a greater proportion of sampled (vs full cohort)
patients had a subarachnoid hemorrhage or an ICH, perhaps
owing to head CT being a gold standard for evaluation of ICH.
Although median BMI was not significantly different in the
annotation sample (vs full cohort), the full cohort had a

significantly higher proportion of missing BMI information
(Table 2).

After annotation, stroke imaging features, including hemorrhage
volume, herniation, ICH location, location of other relevant
findings, remote stroke, subdural hematoma, and extra-axial
hemorrhage, were excluded from modeling due to low
frequencies (Table S1 in Multimedia Appendix 1). The
interreviewer agreement analysis showed an excellent agreement
between the 2 annotators (0.85 % average Kappa and 97.1%
agreement).

Our fine-tuned HeadCT_BERT model had an AUROC of 0.9831
and an F1-score of 0.8683. The F1-scores were greater than 0.9
for 8 of 13 (61.5%) stroke imaging features, and the AUROCs
were greater than 0.96 for all features except for acute ischemia.
Results show that after fine-tuning, both ClinicalBERT and
HeadCT_BERT achieved favorable performances, while
HeadCT_BERT demonstrated marginally better performance
(Table 3 and Table 4; Figure S2 in Multimedia Appendix 1).

The sensitivity analysis revealed sigmoid shapes for both
models, indicating that improvement in model performance
wanes as sample size approaches an optimal point. Specifically,
we found marked performance improvements when increasing
the training sample size from 25 to 50 and 100 notes. From 100
to 150, however, performance gain decreases, and from 150 to
200 notes, the performance gain is minimal, indicating that the
NLP models had achieved near-optimal performance (Figure
S1 in Multimedia Appendix 1).

The probability calibration curves showed HeadCT_BERT is
well calibrated for some stroke features (eg, midline shift, white
matter hyperintensity, subacute infarct, acute ischemia,
subarachnoid hemorrhage, and encephalomalacia), while
ClinicalBERT is well calibrated for midline shift, white matter
hyperintensity, old stroke, subacute infarct, cerebral atrophy,
acute ischemia, ICH, encephalomalacia, and mass effect (Figure
S3 in Multimedia Appendix 1).

Running on a single–graphics processing unit server, our final
NLP model processed ~230 imaging notes per minute and
automatically generated a structured stroke imaging feature data
set from 24,924 patients with head CT notes across the hospital
system. In the resulting data set, 3826 (15.4%) of patients had
a mass effect, 3600 (14.4%) had perihematomal edema, 1908
(7.7%) had a midline shift, and 5146 (20.6%) had 1 or more
than 1 severe stroke features (eg, midline shift, mass effect, or
perihematomal edema; Table 5).

Survival analysis based on the initial head CT notes of 6463
AIS and 1243 ICH emergency admissions showed that patients
with severe stroke features had higher mortality and shorter
survival times (AIS: 18.4% mortality rate and 585 days median
survival time; ICH: 20.7% mortality rate and 572 days median
survival time) compared to other patients (AIS: 10.1% mortality
rate and 759 days median survival time; ICH: 17.8% mortality
rate and 638 days median survival time). Differences in survival
probability over time are shown as Kaplan-Meier curves. Among
AIS admissions, patients with severe stroke features had
significantly lower survival probabilities (P<.001; Figure 2).
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Table 2. Patient characteristics (average age and BMI are reported at imaging encounters). Italicized P values are significant.

P valueAnnotation sampleHead CTa populationCharacteristics

40082,073Imaging notes, N

39824,924Unique patients, N

.2268.0 (56.4, 78.1)69.0 (58.5, 78.3)Age (years), median (Q1, Q3)

.41Age (years), n (%)

57 (14.3)3025 (12.1)0-49

61 (15.3)3793 (15.2)50-59

103 (25.9)6149 (24.7)60-69

177 (44.5)11,957 (48)≥70

.69Gender, n (%)

219 (55)13,439 (53.9)Female

179 (45)11,485 (46.1)Male

.22Race or ethnicity, n (%)

206 (51.8)14,028 (56.3)Non-Hispanic White

102 (25.6)5690 (22.8)Black

61 (15.3)3412 (13.7)Hispanic

16 (4)1209 (4.9)Asian

13 (3.3)585 (2.3)Other or unknown

.5927.3 (23.5, 31.0)27.3 (23.7, 31.7)BMI (kg/m2), median (Q1, Q3)

.001BMI (kg/m2), n (%)

13 (3.3)637 (2.6)Underweight

108 (27.1)6193 (24.8)Normal

123 (30.9)6518 (26.2)Overweight

107 (26.9)6610 (26.5)Obese

47 (11.8)4966 (19.9)Missing

Insuranceb, n (%)

.15Medicare

142 (35.7)9803 (39.3)No

256 (64.3)15,121 (60.7)Yes

.12Medicaid

373 (93.7)23,793 (95.5)No

25 (6.3)1131 (4.5)Yes

.04Commercial

306 (76.9)20,194 (81)No

92 (23.1)4730 (19)Yes

.79Exchange

389 (97.7)24,437 (98)No

9 (2.3)487 (2)Yes

<.001Primary stroke typec, n (%)

29 (7.7)1307 (5.6)Subarachnoid hemorrhage

100 (26.5)7084 (30.5)Transient ischemic attack

59 (15.6)2208 (9.5)Intracerebral hemorrhage
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P valueAnnotation sampleHead CTa populationCharacteristics

189 (50.1)12,623 (54.4)Acute ischemic stroke

NIHSSd Stroke Scale for acute ischemic stroke, median (Q1, Q3)

.093.0 (1.5, 9.0)3.0 (1.0, 7.0)Average NIHSS in 6 hours

.243.0 (1.0, 8.0)3.0 (1.0, 7.0)Average NIHSS in 12 hours

NIHSS Stroke Scale for intracerebral hemorrhage, median (Q1, Q3)

.946 (1.5, 18.0)7.0 (2.0, 19.0)Average NIHSS in 6 hours

.817.0 (2.0, 18.0)7.0 (2.0, 19.0)Average NIHSS in 12 hours

aCT: computed tomography.
bInsurance type was collected throughout all imaging encounters.
cFor patients with multiple stroke visits, the initial encounter’s stroke scale and primary stroke type are presented. We perform hypothesis testing to
compare the 398 sampled patients with the nonsampled population. Chi-square tests were adopted for categorical variables, and Kruskal-Wallis tests
were adopted for continuous variables.
dNIHSS: National Institutes of Health Stroke Scale.

Table 3. Final natural language processing model evaluation with the evaluation set (N=200) at the imaging note level.

Accuracy (95% CI)AUROCa (95% CI)F1-scoreRecallPrecisionSpecificityStroke feature

0.9950 (0.9852-1.0048)0.9973 (0.9792-1.0154)0.96770.937511Midline shift

0.9900 (0.9762-1.0038)0.9994 (0.9917-1.0071)0.94740.94740.94740.9945Perihematomal edema

0.9650 (0.9395-0.9905)0.9704 (0.9452-0.9955)0.96130.9560.96670.9725White matter hyperintensity

1.0000 (1.0000-1.0000)1.0000 (1.0000-1.0000)1111Lacunes

0.9450 (0.9134-0.9766)0.9693 (0.9277-1.0110)0.84060.87880.80560.9581Old stroke

0.9550 (0.9263-0.9837)0.9789 (0.9321-1.0258)0.68970.55560.90910.9945Subacute infarct

0.9400 (0.9071-0.9729)0.9673 (0.9369-0.9978)0.91670.98510.85710.9173Cerebral atrophy

0.9600 (0.9328-0.9872)0.9798 (0.9259-1.0338)0.66670.61540.72730.984Intraventricular hemorrhage

0.9400 (0.9071-0.9729)0.9362 (0.8570-1.0154)0.70.77780.63640.956Acute ischemia

0.9550 (0.9263-0.9837)0.9872 (0.9532-1.0212)0.80.85710.750.9665Intracerebral hemorrhage

0.9900 (0.9762-1.0038)1.0000 (1.0000-1.0000)0.90910.833311Subarachnoid hemorrhage

0.9950 (0.9852-1.0048)0.9989 (0.9890-1.0088)0.97560.952411Encephalomalacia

0.9800 (0.9606-0.9994)0.9952 (0.9743-1.0161)0.91310.840.9777Mass effect

aAUROC: area under receiver operating characteristic curve.

Table 4. Average natural language processing model evaluation metrics among 13 stroke features for the fine-tuned models.

Accuracy, mean (SD)AUROCa, mean (SD)F1-score, mean (SD)Stroke feature

0.9700 (0.0225)b0.9831 (0.0189)b0.8683 (0.1176)bHeadCT_BERT (final model)

0.9665 (0.0237)0.9786 (0.0216)0.8564 (0.1173)ClinicalBERT (baseline model)

aAUROC: area under receiver operating characteristic curve.
bItalicized values denote performance of the proposed model.
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Table 5. Natural language processing (NLP) model generating structured stroke feature data sets from imaging notesa.

Intracerebral hemorrhage admission

initial CTe (N=1243), n (%)

Acute ischemic stroke admission

initial CTd (N=6463), n (%)
Head CTb imaging patientsc

(N=24924), n (%)

Characteristics

407 (32.7)3429 (53.1)16,014 (64.3)White matter hyperintensity

268 (21.6)2262 (35)13,615 (54.6)Cerebral atrophy

91 (7.3)1324 (20.5)7426 (29.8)Old stroke

116 (9.3)1386 (21.4)6622 (26.6)Lacunes

500 (40.2)614 (9.5)3826 (15.4)Mass effect

1096 (88.2)354 (5.5)3822 (15.3)Intracerebral hemorrhage

623 (50.1)436 (6.7)3600 (14.4)Perihematomal edema

50 (4)373 (5.8)3453 (13.9)Encephalomalacia

33 (2.7)1173 (18.1)3426 (13.7)Acute ischemia

28 (2.3)841 (13)2675 (10.7)Subacute infarct

245 (19.7)132 (2)2179 (8.7)subarachnoid hemorrhage

345 (27.8)184 (2.8)1908 (7.7)Midline shift

405 (32.6)37 (0.6)1409 (5.7)Intraventricular hemorrhage

845 (68)901 (13.9)5146 (20.6)Severe stroke featuresf

aOur final NLP model processed 82,073 head computed tomography notes for 24,924 unique patients in the entire hospital system and generated
structured data sets.
bCT: computed tomography.
cThe stroke features in the overall population were aggregated at the patient level.
d,eThe stroke features in the initial head CT of acute ischemic stroke and intracerebral hemorrhage emergency admissions were presented.
fSevere stroke features include midline shift, perihematomal edema, or mass effect. Severe stroke feature is a composite feature.

Figure 2. Kaplan-Meier curve of survival probability from initial admissions. Patients whose initial imaging includes severe stroke features (eg, midline
shift, mass effect, or perihematomal edema) had a lower survival probability. (A) Acute ischemic stroke admissions (P<.001). (B) Intracerebral hemorrhage
admissions (P=.19).
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Discussion

Principal Findings
We propose an NLP pipeline to extract ischemic and
hemorrhagic stroke characteristics from head CT imaging notes
(HeadCT_BERT model). Built upon one of the latest clinical
NLP models, the HeadCT_BERT model achieved an excellent
average AUROC of 0.9831 and an accuracy of 97%. Our NLP
pipeline showed promising performance for the detection of
midline shift, perihematomal edema, lacunes, subarachnoid
hemorrhage, encephalomalacia, and mass effect, with AUROCs
for each of these features exceeding 0.99 and F1-scores above
0.9 for the evaluation set. Other features, including white matter
hyperintensity, old stroke, subacute infarct, cerebral atrophy,
intraventricular hemorrhage, and ICH showed AUROCs between
0.96 to 0.98. Other NLP studies have achieved optimal AUROC
values of 0.9625 for mass effect extraction [17], 0.96 for stroke
presence, and 0.93 for stroke acuity [1]. Our method achieved
comparable or better performance for extracting stroke imaging
features.

In 2018 alone, 11.5 million head CT scans were performed in
the United States [27], generating valuable information that can
be used to answer a multitude of stroke-related research
questions. In the absence of methods to extract information in
unstructured formats, the generation of insights from such
sources is limited. This underscores the value of our NLP
pipeline, which provides a fast, scalable, and automatic solution
for the processing of unstructured text data.

Application of our pipeline in a health care environment has
the potential to benefit both medical research and patient safety.
For example, in this study, we demonstrated the use of NLP for
retrospectively identifying cohorts of patients with AIS and
ICH with severe stroke features. We identified 901 (13.9%)
AIS and 845 (68%) patients with ICH with severe stroke
neuroimaging features and demonstrated lower survival rates
for patients with these severe features, consistent with previous
studies [28,29]. Beyond outcome prediction, modifications of
our pipeline may also be implemented to improve patient safety.
For example, NLP pipelines that detect incidents can be used

to improve patient outreach workflows by optimizing reporting
procedures for health care providers as well as the patients and
their families [30]. Our pipeline has the potential to process
imaging notes in real time, generate flags for severe stroke
findings, and trigger reminders and alerts within the EHR
system.

Despite the performance of our NLP pipeline, this study has
limitations. First, it was conducted and evaluated in a single
organization, where many of the notes may have been written
by a relatively small number of radiologists or neuroradiologists.
Therefore, the generalizability of the trained NLP models could
be limited by overly consistent wording and grammar in training
data. However, as one of the largest hospital systems,
comprising 7 certified stroke care hospitals in the Houston
metropolitan area, we feel that our inclusion of a diverse
collection of notes yields enough variability in the training data
to mitigate this issue. Second, although our HeadCT_BERT
model demonstrated slightly improved performance for stroke
features extraction, it is hard to compare our model with
ClinicalBERT due to the lack of well-established NLP
benchmarks for head imaging reports. Future efforts to create
head imaging NLP benchmarks are needed for comprehensive
evaluation. Finally, the probability calibration curves of both
HeadCT_BERT and ClinicalBERT for individual stroke features
demonstrate a mixed performance in calibration, indicating
potential imbalance of certain stroke features in the training
data set. As a result, using a probability of .5 as a general cut-off
might not be optimal for all stroke features. Future work is
required to adequately calibrate the model for all stroke features.

Conclusions
This study represents a step forward in NLP adoption for
neuroimaging among patients with cerebrovascular disease. Our
work demonstrates an effective and customizable NLP pipeline
for retrieving multiple stroke features from large amounts of
unstructured imaging notes. Derived from the latest artificial
intelligence technology, we believe our model will benefit stroke
research and patient safety. To fully understand the impact on
the health care industry, future work in the data pipeline
deployment and evaluation is anticipated.
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