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Abstract

Given the growing use of machine learning (ML) technologies in health care, regulatory bodies face unique challenges in governing
their clinical use. Under the regulatory framework of the Food and Drug Administration, approved ML algorithms are practically
locked, preventing their adaptation in the ever-changing clinical environment, defeating the unique adaptive trait of ML technology
in learning from real-world feedback. At the same time, regulations must enforce a strict level of patient safety to mitigate risk
at a systemic level. Given that ML algorithms often support, or at times replace, the role of medical professionals, we have
proposed a novel regulatory pathway analogous to the regulation of medical professionals, encompassing the life cycle of an
algorithm from inception, development to clinical implementation, and continual clinical adaptation. We then discuss in-depth
technical and nontechnical challenges to its implementation and offer potential solutions to unleash the full potential of ML
technology in health care while ensuring quality, equity, and safety. References for this article were identified through searches
of PubMed with the search terms “Artificial intelligence,” “Machine learning,” and “regulation” from June 25, 2017, until June
25, 2022. Articles were also identified through searches of the reference list of the articles. Only papers published in English
were reviewed. The final reference list was generated based on originality and relevance to the broad scope of this paper.
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Introduction

Machine learning (ML) technology aims to improve the quality
and efficiency of health care within the current health systems.
Its applications encompass roles traditionally undertaken by
health care professionals, such as clinical triage at emergency
departments, mammography screening, and diagnosis

undertaken by radiologists [1,2]. In many studies, ML algorithms
have outperformed clinicians, for instance, in chest radiograph
interpretation, skin cancer diagnosis, and directing optimal
treatment strategies for sepsis in intensive care [3,4].

ML-based adaptive algorithms have the ability to learn and
optimize their performance within the ever-changing clinical
environment. The adaptability helps to optimize its clinical
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utility but has the potential to impact patient safety by
introducing an element of unpredictability.

While there has been a significant increase in the volume of
literature describing ML since 2010 [5], the regulation of
adaptive ML technology has lagged behind its rapid
technological advancement. In the United States, the current
framework under the Food and Drug Administration (FDA)
only regulates an algorithm at the point of clinical deployment
but fails to account for the initial model inception, development,
and evolution once deployed into clinical use. In the United
Kingdom, the National Health Service (NHS) has accelerated
its effort in digitalization within health care through the creation
of NHSx and NHS AI Lab, with an emphasis on the
development of a suitable governance framework for artificial
intelligence (AI) in health care [6]. Elsewhere in the world, ML
regulation is at varying stages. India does not draw a distinction
between ML algorithms and other medical devices, while
China’s New Generation Artificial Intelligence Development
Plan does not address regulation of medical devices [7,8]. While
the World Health Organization has published guiding principles
for ML use, it does not outline a specific framework for
regulation [9].

This paper aims to use the current FDA regulatory model as an
example, build on the existing framework, and propose a novel
regulatory pathway for ML algorithms from inception through
clinical deployment to model evolution. Since ML algorithms
aim to support or, in certain cases, replace the role of medical
professionals, we likened the regulatory pathway to those of
medical professionals. We then discuss the associated challenges
to its implementation and potential solutions to overcome the
challenges.

Current Regulatory Pathways and
Potential Issues

Currently, most ML algorithms are approved by the FDA
through one of three pathways: 510k, premarket approval, or
the DeNovo pathway (see Figure 1) [10-12]. At a single
timepoint prior to its approval, the ML production company
will need to demonstrate the safety and effectiveness of the
algorithm within its intended use. The current benchmark for
approval requires companies to demonstrate good model
performance on a varied data set and in a real-world setting.
With no explicit definition of what constitutes reproducible
standards, it is no surprise that the current FDA-approved ML
algorithms vary considerably by the size of data sets and number
of sites [5].

Under the current regulation, once an algorithm is approved,
its behavior will remain fixed, defeating the distinguishing
advantage of many adaptive algorithms in their ability to learn
throughout their life cycle. Its current inflexible state not only
reduces its clinical utility but can alarmingly infringe patient
safety. For instance, an algorithm trained in 2018 to recognize
pneumonia on a chest radiograph will not be able to differentiate
it from COVID-19. Furthermore, variations exist in disease
prevalence and population demographics across sites, such that
the internal training and testing data sets used during algorithm
development may not be representative of the population they
are deployed to, thus performing poorly during external
validation [13-15]. Moreover, depending on the training data
set, the model may not be able to respond to geographically,
ethnically, and socioeconomically diverse patient cohorts.

Additionally, the current FDA framework does not regulate the
inception of an ML algorithm. As a result, a number of
algorithms have been approved, many of similar use cases with
varying development sites and data sizes. This can potentially
constitute an inefficient use of resources [16].
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Figure 1. The current Food and Drug Administration (FDA) regulatory pathway. *A predicate: if the algorithm is found to be substantially equivalent
to a legally marketed device. **A preamendment device: devices legally marketed in the United States before May 28, 1976, which have not been
significantly changed/modified and for which no regulation requiring premarket approval has been published by the FDA.

Current Attempts to Support Model
Evolution

In April 2018, to account for the iterative improvement in ML
model performance as new training data and improved data
science techniques become available, the FDA released a white
paper outlining a proposed framework for the regulation of
ML-based software in medicine [17].

The proposed Total Product Lifecycle (TPLC) regulatory
approach allows for iterative product improvement while
maintaining essential safeguards. The framework adopts the
principle of a Predetermined Change Control Plan produced
by the manufacturer, which aims to anticipate potential
modifications during clinical deployment. The Software as a
Medical Device Pre-Specifications (SPS) will underline the
modification expected by the manufacturer relating to
performance, inputs, and intended use. Modifications within
the SPS can be implemented without the need to resubmit for
marketing application.

The implementation of the TPLC approach thus places the onus
on the manufacturers to monitor and evaluate algorithm
performance during its clinical use and regularly report to the
FDA with updates and performance metrics. The culture of
quality and organizational excellence of the company would be
assessed according to the outlined standards in Good
Machine-Learning Practice (GMLP). To date, only a single
manufacturer of a cardiac ultrasound software has used the
Predetermined Change Control Plan to facilitate future model
alterations [18].

Elsewhere, similar trends have been observed in ML regulatory
policies. The European Union has recently introduced the EU
Medical Device Regulation, imposing stringent regulatory
requirements from early-stage considerations through algorithm

development to postmarket surveillance that need to be met
prior to the clinical use of medical devices, including ML
algorithms [19]. Likewise, in the United Kingdom, a code of
conduct for AI and data-driven technology has been introduced
to facilitate collaboration between technological companies and
the NHS in developing high-quality safe medical devices [20].

While the TPLC approach has set out a useful theoretical
framework in addressing the adaptive nature of ML algorithms,
it places heavy emphasis on the manufacturer in governing the
algorithm post deployment and overlooks the need to involve
local end users immersed in the clinical environment. Moreover,
despite being proposed for some time, the TPLC framework is
yet to be implemented, which likely stems from the complexities
involved. The framework also does not accommodate the
evolution of algorithms beyond the predetermined specifications
and change protocols. Finally, the framework has not addressed
wider issues of the clinical utility, data suitability, and health
equity of ML algorithms, which may call for a greater degree
of regulation at a much earlier stage in the model life cycle.

In January 2021, the FDA released a document outlining an
action plan in response to feedback from stakeholders on the
TPLC approach, as well as SPS and the Predetermined Change
Control Plan [21]. The five-point plan expressed the FDA’s
intention to facilitate various enhancements to their TPLC
approach, such as furthering GMLP by participating in
communities (eg, the Xavier AI World Consortium) that
collaborate to promote best practices in ML. In addition, the
document expressed an appreciation for the need for a
patient-centered approach as well as the evaluation of
real-world model performance. The current action taken includes
working with volunteers and engaging in further research to
consider methods for real-world performance monitoring.
Therefore, while the FDA has acknowledged many of the
stakeholder queries (including some mentioned in this paper),
there still is not much in the way of tangible solutions.
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The Proposed Regulatory Pathway

Currently, the regulation of ML algorithms is akin to those for
drug development [22]. However, the lack of ongoing
prospective evaluation of AI algorithms truly limits their use

in practice. As such, ML algorithms share a greater analogy to
medical professionals, as they often undertake or support tasks
traditionally performed by them and are subject to ongoing
regulation. We therefore propose an analogous regulatory
framework for ML algorithms, as summarized in Figure 2.

Figure 2. The proposed algorithm regulatory pathway analogous to the current medical professional training pathway. ML: machine learning.

At the start, aspiring medical professionals are required to go
through a selective process that ensures their baseline
capabilities and suitability to begin their medical education.
Similarly, the inception of an ML algorithm begins with a
clinical problem that it aims to solve in health care. Algorithms
across health care fields should be contested on their clinical
value, usability, cost-effectiveness, and sustainability prior to
its development, which will help to direct resources
appropriately.

The model development phase can be likened to the
undergraduate training of medical professionals. In the United
Kingdom, the General Medical Council sets out standards and
expected outcomes for medical education across the 44
recognized medical schools [23]. Similarly, in the face of the
current heterogeneity present in the approved ML algorithms,
structured standard-setting by an independent regulatory body
should be in place during the development of algorithms on
indicators such as data size and quality, technical assurance,
and clinical safety. Guidelines such as TRIPOD-AI (Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis–Artificial Intelligence) and
PROBAST-AI (Prediction Model Risk of Bias Assessment
Tool–Artificial Intelligence) are being developed to help
appraise AI-based prediction and diagnostic models [24]. These
can be incorporated into the regulatory framework.

Prior to clinical deployment, the final clinical efficacy of ML
algorithms is determined by a test data set, akin to the exit
examination undertaken by medical professionals prior to
qualification and employment. We propose further stages after
the current regulation that ends after clinical deployment of ML
algorithms.

Medical professionals often enter a period of supervision prior
to independent practice, for instance, the internship period
(foundation program) in the United Kingdom, which allows
them to adapt to clinical practice [25]. Similarly, we propose
that ML algorithms should enter a period of phased introduction
that will involve an initial trial period for the algorithm to
observe, operate alongside clinicians, and adjust to local working
practices and systems. Ongoing evaluation and adaptation will
take place in preparation for its full deployment.

After the initial period of shadowing, medical professionals are
continuously re-evaluated to demonstrate ongoing competencies
at a local and national level through national body board
examinations [26], continuing professional development, and
clinical portfolios [27,28]. We propose analogous local and
national regulations for ML algorithms to ensure that they are
consistently pertinent and useful in the ever-changing landscape
of clinical practice. Locally, we propose for institutions to curate
their own test sets containing representative cases that better
reflect the variability in equipment, protocol, epidemiology,
and patient populations encountered at the deployment site.
Should the local testing demonstrate deficiencies, models can
then be retrained on the curated local training data sets.

During the local training process, it is imperative that the
algorithm does not deviate substantially from its initial
objectives and continues to provide its proposed clinical benefit.
While the FDA has delegated the task of ongoing data collection
and monitoring of the algorithms to the manufacturer, a
dedicated national regulatory body may be more suitable for
this role. We thus propose the formation of national governance
structures consisting of a panel of appointed experts who would
be responsible for the selection of a series of cases that would
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typify the minimum standard the algorithm is expected to
achieve within its specified case use—known as the golden test
set. Unlike the local regulatory bodies, the core aim is to
maintain safety and basic competence of the algorithm rather
than its optimization. Additionally, the national golden test set
will be updated in response to large changes in clinical practice
by selecting cases from local representative data sets, for
instance, when more effective treatment emerges, such as the
use of mechanical thrombectomy for patients with stroke [29];
changes in policies, such as radiology imaging guidelines; and
changes in pathology, such as the COVID-19 emergency.

The Complexity Behind ML Regulation:
Now and the Future

Both technical and nontechnical barriers pose a challenge to the
implementation of any effective regulatory model. This may
also explain why the TPLC approach has not been implemented
more than 3 years following its inception. Ongoing regulation
of an ML algorithm requires mechanisms to monitor model
performance and methods of updating the model, the latter
necessitating data sharing.

Facilitating Model Evolution
Model drift, a process where the model’s prediction power
deteriorates due to changes in the clinical environment, is the
main cause of deviation in model performance once deployed
clinically. The proposed regulatory pathway aims to engineer
a performance monitoring and adaptation system on a local and
national level that aims to detect, monitor, and mitigate the
effect of model drift. Logistically, this process can be more
nuanced.

In some circumstances, model drift can be anticipated, enabling
retraining in advance of its occurrence. This is typically limited
to foreseeable changes that alter the data distribution, such as
a newly acquired computed tomography (CT) scanner that
enables thinner reconstruction of images (eg, 1-mm thickness
slices rather than 5-mm thickness). When the data in the domain
is expected to change frequently, the identification of model
drift can be automated so that the model can be retrained
accordingly on a regular basis, both of which will require
overhead infrastructure to be in place [30].

In other cases, once model drift is detected, its cause must be
understood to take appropriate action. These range from
biological factors such as a change in the characteristics of the
patient population or management guidelines, technological
factors such as novel treatment and imaging technology, and
operational factors such as a change in the format of incoming
data (eg, when the oxygen saturation probe outputs saturation
as an integer [“97”] rather than a string [“97%”]).

To retrain ML algorithms, a wide range of methods are available
from simple calibration to full retraining with the possible
addition of new features. The choice of using old or new data
for retraining depends on the application of the algorithm. For
instance, if a specific cause has resulted in model drift, such as
the above example of a novel CT scanner, then the model will
need to be retrained on the new data as they are generated. If

the drift is infrequent, both data sets can be combined to update
the existing algorithm or generate a new algorithm. If the data
is highly dynamic, retraining can be performed on new data
while replacing the old.

During the retraining process, one must strive for a fine balance
between maintaining the algorithm’s original function while
adapting to its new local environment and minimizing new bias.
For instance, in approaches that disregard the old data or
algorithm, a risk of overfitting is present such that the algorithm
may lose its original function. At the same time, care must be
taken not to bias the model toward the outliers in the data set.
For instance, the addition of a new data set with more cases of
malignant chest nodules may bias an algorithm to predict lung
cancer rather than benign modules from chest radiographs.

Ground-Truthing
During the local and national testing and retraining,
ground-truthing, or annotation of data to compare with algorithm
predictions, is an essential process during model evolution.
While fully automated methods exist, typically achievable in
binary classification tasks with well-structured data, more
complex tasks such as segmentation tasks (eg, identification of
a lesion on a scan) will require manual labeling by a specialist.
The question remains as to who, when, and how this process
will take place alongside the clinical workflow. Independent
companies that specialize in data annotation and ground-truthing
exist, which may help to circumvent this added layer of
complexity.

Data Sharing
Insufficient sample size or restricted data sets can make it
difficult for data to be interpreted through ML techniques
subsequently introducing bias and underestimation of minority
groups [31]. For example, the International Skin Imaging
Collaboration: Melanoma Project, one of the largest dermatology
data sets of pigmented lesions, largely focuses on Caucasian
populations, which will limit its performance in other
populations. Moreover, health outcomes are known to be worse
in minority populations. Thus, it continues to be imperative to
be able to acquire a range of data from a variety of sources to
train ML models [32].

However, data sharing poses a challenge due to the sensitive
nature of patient data and the sheer volume of data to be
transferred [33]. During the current workflow for the
development of ML algorithms, clinical sites typically share
medical data for a specified period of time through two
pathways: direct sharing and data enclaves. The former involves
sending data out of the clinical network to the developers, while
the latter takes the opposite approach by allowing external model
developers into the clinical sites. Both routes can open up the
potential for data misuse outside the agreed terms and
compromise patient trust and safety. Data curated across
multiple sites help to improve algorithm performance and
minimize bias but will require greater stringency in its
governance and standardization.

One potential solution is federated learning, a process that allows
a model to be trained on multiple data sets across different sites
by solely allowing access to specific features of each data set
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without physically exchanging data [34]. This circumvents the
risks of data sharing while increasing the size and diversity of
case pathology and demographics the algorithm is exposed to.
Moreover, federated learning opens up the possibility of
continuous learning by ongoing access to live data, rather than
the outdated static data sets procured through the current two
pathways. Collectively through a federated platform, the
performance of the algorithm can be constantly tracked, trained,
and tested.

Nevertheless, to unlock the full potential of this technique, we
will need to overcome several logistical challenges. First, the
initial algorithm development will still require intimate access
to data. Second, data across sites can be stored in variable
formats, making it more difficult to standardize and access the
specified features required for federated learning. Finally,
federated learning will need to be supported by adequate local
hardware and networks, and can be bottlenecked by
resource-constrained sites [34].

A number of ML- and non-ML–based prediction tools have
been developed using national and international collaborative
data sets [35-37]. In Taiwan, the National Health Insurance
Research Database exemplifies a population-level data source
for research in health care, with strict requirement for privacy
and data confidentiality [38]. The Chronic Kidney Disease
Prognosis Consortium, international collaborative data sets
sponsored by the US National Kidney Foundation, harnesses
data from over 80 population cohorts in an effort to improve
the global outcome of kidney disease [39]. The use of data often
requires stringent application through research institutions and
public bodies. This, however, helps to optimize data quality,
size, and diversity in a collaborative effort to direct ML
technology toward priority areas while ensuring an optimal
level of data governance.

Integration Into Clinical Practice
Ultimately, the approved algorithms will need to yield sufficient
clinical value to be accepted and integrated into the existing
clinical workflow. Medical professionals will need to adapt
their clinical practice and maximize the utility of the new
technology. At the same time, ML algorithms make mistakes,
as exemplified by the erroneous treatment recommendations
made by IBM Watson for Oncology and the more recent Epic
Sepsis Model that was found to miss two-thirds of sepsis cases
that it was designed to predict [40,41]. Astringent safeguarding
processes should be put in place, as the risk of faulty algorithms
can affect a population at a system level, rather than of a single
doctor-patient interaction [3].

Adaptation of Medical Professionals
The introduction of ML algorithms into the clinical workflow
of medical professionals will not be an easy task. As mentioned
above, we propose for a period of shadow deployment of the
ML algorithm to allow clinicians to acclimatize to the new
practice and troubleshoot for any issues while ensuring the
algorithm is safe and reliable. During its clinical practice, once
an algorithm is retrained, its functions and iterations may differ,
while clinicians may continue to practice based on the
algorithm’s prior behavior, introducing an element of automation

bias. Therefore, clinicians will be required to continually adapt
their clinical practice alongside the ML algorithm to maintain
a good standard of care. Nevertheless, ongoing learning is
already an integral part of medical professionals’ career paths.
Clinicians have in the past adapted well to system changes such
as the introduction of electronic health systems, the emergence
of new diseases (COVID-19 being a stark example), alongside
the flexibility in working with different members of the
multidisciplinary team.

Looking beyond the future, the traditional health care training
curriculum will need to adapt to the evolving medical technology
through the introduction of ML into the medical curriculum. In
fact, universities worldwide have recognized the demand for
interdisciplinary medical professionals by introducing combined
medical and engineering programs [42-44]. As proposed by
Panch et al [45], ML may emerge as a new medical specialty
to oversee the development and clinical implementation of ML
algorithms into health care.

Adaptation of the Current Workflow
Ongoing local monitoring is a necessity. This will require design
of a protocol and the use of specific resources. For instance, a
threshold will need to be predetermined to trigger the
re-evaluation of algorithm performance at a fixed interval or
when a deterioration in performance is detected. When an
algorithm is suspended for retraining and evaluation, a
sustainable substitute will need to be in place to maintain the
standards of care prior to its reintroduction.

The development of local test sets will become an additional
process alongside the usual clinical practice. As to who will
undergo the process of ground-truthing, the practice of internal
clinicians that regularly work with the model may be influenced
by the model itself, thus introducing bias to subsequent inputs.
For instance, radiologists who rely on ML algorithms to detect
nodules may be less adept at their detection during the
ground-truthing process. On the other hand, external clinicians
may be less accustomed to the local equipment and practices.
The optimal solution may involve the recruitment of a
representative number of internal and external clinicians to
expose the algorithm to a variation in clinical practice and
minimize bias. Nevertheless, the entire process of model
evolution will require a learning curve for all health care workers
involved.

Adaptation of the Governing Structure
At present, the FDA places the onus on the third-party
manufacturers to develop, monitor, and evaluate their ML
algorithms. This is no longer sufficient or efficient. As described
above, independent local and national governing structures
involving multiple stakeholders will need to be in place, taking
on a strong oversight in regulating the development of
algorithms, clinical implementation, detection of deviation in
algorithm performance, curation of local and national data sets,
and circumventing automation bias, all within the constraints
of limited clinical resources. The governing responsibility should
be shared among clinicians, managers, software engineers,
parent company representatives, and patients.
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Adaptation of the Health System
All local sites are not created equal. Smaller resource-limited
hospitals with limited infrastructure or expertise may in fact
benefit the most if the full potential of ML technology is used
appropriately, supporting limited workforce resources,
inefficient workflow, and inadequate time between patients and
clinicians. These hospitals, however, will require extensive
support. In addition, the potential increase in workload to
facilitate the local evolution and monitoring of algorithms may
be particularly taxing for smaller peripheral hospitals, potentially
nullifying the local uptake of ML technology. Potential solutions
may be in the form of a network of external ML experts as well
as specialist hardware and software to support local
implementation of ML algorithms, their monitoring, and
evaluation. In addition, regulatory frameworks worldwide should
emphasize the importance of equity and accessibility in the
development of ML algorithms, taking into consideration
resource-limited hospitals and countries, optimizing the use of
available resources while optimizing the performance of the
ML algorithms.

Conclusion

The growing use and development of ML algorithms worldwide
mandate the need for robust regulatory mechanisms. Current
pathways proposed by the FDA demonstrate limited scope for
the algorithm to adapt to the ever-changing clinical landscape.
While propositions have been made on how to improve the
existing pathways, they do not involve major stakeholders and
face many challenges to implementation. Given the supporting
role of ML algorithms alongside medical professionals, this
paper has proposed a parallel regulatory pathway from inception
to implementation that allows continuous model evolution
throughout its clinical course. Complexities and barriers do
exist in its implementation. Successful implementation will
necessitate novel, robust, and ML-specific infrastructure and
governing bodies. Concomitantly, adaptability of medical
professionals and interdisciplinary collaboration will be vital
to unleash the full potential of ML technology in health care
while ensuring quality, equity, and safety.
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