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Abstract

Background: The regulatory affairs (RA) division in a pharmaceutical establishment is the point of contact between regulatory
authorities and pharmaceutical companies. They are delegated the crucial and strenuous task of extracting and summarizing
relevant information in the most meticulous manner from various search systems. An artificial intelligence (AI)–based intelligent
search system that can significantly bring down the manual efforts in the existing processes of the RA department while maintaining
and improving the quality of final outcomes is desirable. We proposed a “frequently asked questions” component and its utility
in an AI-based intelligent search system in this paper. The scenario is further complicated by the lack of publicly available relevant
data sets in the RA domain to train the machine learning models that can facilitate cognitive search systems for regulatory
authorities.

Objective: In this study, we aimed to use AI-based intelligent computational models to automatically recognize semantically
similar question pairs in the RA domain and evaluate the Recognizing Question Entailment–based system.

Methods: We used transfer learning techniques and experimented with transformer-based models pretrained on corpora collected
from different resources, such as Bidirectional Encoder Representations from Transformers (BERT), Clinical BERT, BioBERT,
and BlueBERT. We used a manually labeled data set that contained 150 question pairs in the pharmaceutical regulatory domain
to evaluate the performance of our model.

Results: The Clinical BERT model performed better than other domain-specific BERT-based models in identifying question
similarity from the RA domain. The BERT model had the best ability to learn domain-specific knowledge with transfer learning,
which reached the best performance when fine-tuned with sufficient clinical domain question pairs. The top-performing model
achieved an accuracy of 90.66% on the test set.

Conclusions: This study demonstrates the possibility of using pretrained language models to recognize question similarity in
the pharmaceutical regulatory domain. Transformer-based models that are pretrained on clinical notes perform better than models
pretrained on biomedical text in recognizing the question’s semantic similarity in this domain. We also discuss the challenges of
using data augmentation techniques to address the lack of relevant data in this domain. The results of our experiment indicated
that increasing the number of training samples using back translation and entity replacement did not enhance the model’s
performance. This lack of improvement may be attributed to the intricate and specialized nature of texts in the regulatory domain.
Our work provides the foundation for further studies that apply state-of-the-art linguistic models to regulatory documents in the
pharmaceutical industry.
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Introduction

Regulatory Affairs
In a pharmaceutical company, the regulatory affairs (RA)
department is responsible for obtaining approval for new
pharmaceutical products and ensuring that approval is
maintained for as long as the company wants to keep the product
on the market. It serves as the interface between the regulatory
authorities (such as the Food and Drug Administration, European
Medicines Agency, etc) and pharmaceutical companies. It is
the responsibility of the RA department to keep abreast of
current legislation, guidelines, and other regulatory intelligence.

Regulatory data sources are dynamic and enormous. Regulatory
professionals go through the extremely tedious and grueling
task of extracting relevant information for various regulatory
tasks. The process includes generating one or more suitable key
phrases; searching for these key phrases in multiple data sources;
and combining appropriate information retrieved from different
data sources into a clear, compact, and concise summary of
findings. Keeping track of such large data sources for relevant
information manually is difficult and complex. An artificial
intelligence–powered search system can drastically reduce
manual efforts and improve the efficiency and quality of the
existing processes.

The question answering (QA) system is an efficient approach
for retrieving information. Much research has been conducted
on open-domain QA systems based on deep learning techniques
owing to the availability of vast data sources. However, the
medical domain received less attention owing to the shortage
of medical data sets. Although electronic health records
empower the field of medical QA by providing medical
information to answer user questions, the gap remains significant
in the medical domain, especially for text-based sources.

The intricate challenges of automated QA in the biomedical
domain are growing with the increasing diversity and
specialization of medical texts. One of the promising tracks
investigated in QA is to map new questions to formerly
answered questions that are “similar.” Frequently asked
questions (FAQ) component in an intelligent search system can
considerably speed up the automated search system and enhance
the status of search results. Therefore, an FAQ model component
that interacts with the user query input to return a similar
question that has already been asked in the recent past can
significantly accelerate the remaining components of the search
system pipeline and improve the system’s effectiveness.

In this study, we proposed a new approach for detecting similar
questions based on Recognizing Question Entailment (RQE)
in the RA domain. We considered FAQs as a valuable and
widespread source of information.

RQE is a crucial component of modern QA systems. The RQE
approach for a QA system is to retrieve answers to a given
question proposed by users using natural languages by retrieving

answers to an entailed and already answered question. The
answered question and its associated answer are saved in a
question-answer pair database. Question entailment is formally
defined by Ben Abacha and Demner-Fushman [1] as follows:
question A entails question B if every answer to question B is
also a correct answer to question A exactly or partially. It is a
challenging task to understand questions and judge the semantic
similarity of two questions: (1) one question could be rephrased
in many different ways and (2) two different questions may
refer to the same problem and could be answered by the same
answer [2].

Background

RQE in the General Domain
Researchers in the general domain used 2 public benchmark
data sets for question similarity tasks: SemEval and Quora
question pair. These 2 data sets have labeled training data for
question-question similarity. SemEval-2017 task 3 [3] featured
questions from subforums of StackExchange, a family of
technical community support forums. Quora question pair data
set contains pairs of similar questions asked by people on the
Quora website. The topics of these questions range from
philosophy to entertainment. The best-performing systems for
the SemEval question similarity task used syntactic tree kernels
or the SoftCosine metric [4]. Kunneman et al [5] compared 2
recent approaches (SoftCosine and Smoothed partial tree kernel)
and 2 traditional approaches (BM25 [6] and translation-based
language model) and showed that the choice of a preprocessing
method and a word-similarity metric have a considerable impact
on the final result. Shah et al [7] first applied the adversarial
domain adaptation to the problem of duplicate question detection
across different domains and outperformed the best baseline on
StackExchange questions. More recently, Nguyen et al [8]
outperformed previous studies on the SemEval data set by
combining a convolutional neural network and features from
external knowledge to measure the similarity between 2
questions. In addition to these studies on the aforementioned
popular data sets, Wang et al [9] used a method based on the
Coattention-DenseGRU (gated recurrent unit) to match similar
questions on Chinese rice-related questions.

Although many researchers have put efforts into recognizing
general question similarity, their approaches do not generalize
well to domains that require domain expert knowledge, such as
the biomedical domain. First, questions in the biomedical
domain demand much domain-specific knowledge, and a single
word can change the meaning of the question [10]. Second,
there are few publicly available biomedical question–question
similarity data sets, resulting in a limited number of samples
that can be used to train models that can effectively learn those
differences. Given the increasing popularity of RQE-based QA
systems, question similarity in the biomedical domain is
currently an active research area. A growing number of
RQE-based QA systems have been proposed, and an
international challenge was held in 2019 [11].
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RQE in Biomedical Domain
A wide range of approaches has been proposed to capture the
semantic relationship between pairs of questions in RQE-based
QA systems. Luo et al [12] calculated similarities between
questions using statistical syntactic features and Unified Medical
Language System annotated semantic features. Ben Abacha and
Demner-Fushman [1] used machine learning models with lexical
features and semantic features to determine the similarity of
question pairs. More recent studies have gone beyond traditional
feature-based methods and used deep learning models. Wang
and Nyberg [13] used a dual entailment approach with
bidirectional recurrent neural networks and attention
mechanisms to predict question similarity. Ben Abacha and
Demner-Fushman [14] improved their system using
feature-based logistic regression and neural network that passed
the concatenated sentence representations to multiple ReLU
layers to classify question pairs into entailment or no entailment
categories. McCreery et al [10] augmented a general language
model with medical knowledge by using a double fine-tuning
process. A pretrained language model is first fine-tuned with a
large general corpus (eg, Quora question pairs) and then
fine-tuned with a small number of labeled question pairs.

The MEDIQA 2019 challenge [11] included 3 tasks: natural
language interface (NLI), RQE, and QA in the medical domain.
It aimed to further research efforts to improve domain-specific
information retrieval and question-answer systems. In the
challenge, approaches using ensemble methods and transfer
learning of multitask language models outperformed traditional
deep learning models for RQE task [11]. The PANLP team [15]
achieved the best result on RQE task by fine-tuning the
pretrained language models, Bidirectional Encoder
Representations from Transformers (BERT) [16] and
multitask–deep neural network (DNN) [17]. They further
boosted the performance on the RQE task by transfer learning
from the NLI task. The Sieg team [18] ranked second for RQE
tasks and used a multitask learning approach, with shared layers
trained for the NLI on the RQE task. Approaches that used
ensemble methods without multitask language models [19]
ranked third in the competition, and approaches that used
multitask models without ensemble methods [20] ranked fourth.
More recently, Sarrouti et al [21] proposed a multitask transfer
learning method based on data augmentation for RQE. They
outperformed other teams on the RQE test set of the 2019
MEDIQA challenges.

RQE or similarity is part of another more general natural
language processing (NLP) task called semantic textual
similarity (STS). Tasks of STS include comparing 2 sentences,
2 paragraphs, or even 2 documents. RQE is more closely related
to QA and information retrieval systems.

STS in the General Domain
STS is connected to textual entailment (TE) and paraphrasing;
however, it differs in many ways and is more directly applicable
to several NLP tasks. Semantic similarity or STS is a task in
NLP that scores the relationship between texts or documents
using a defined metric. The aim is to identify the likeness or
similarity in the meaning of 2 pieces of text.

STS differs from TE in that it assumes bidirectional graded
equivalence between a pair of textual snippets. In the case of
TE, the equivalence is directional; for example, a car is a
vehicle, but a vehicle is not necessarily a car. STS also differs
from both TE and paraphrasing in that rather than being a binary
yes-or-no decision (eg, a vehicle is not a car), we defined STS
to be a graded similarity notion (eg, a vehicle and a car are more
similar than a wave and a car).

STS in the Biomedical Domain
STS in the clinical domain can empower stakeholders to detect
and eliminate redundant information that may reduce the
cognitive burden and improve the clinical decision-making
process. The description in the study by Wang et al [22]
discusses the details of the task of identifying clinical STS
(ClinicalSTS). The participating systems were asked to return
a numerical score, ranging from 0 to 5, indicating the degree of
semantic similarity between the pair of 2 clinical sentences. The
performance was measured using the Pearson correlation
coefficient between the predicted similarity scores and human
judgments.

1. The winning team submitted 4 systems. The first system
was the random forest model using 63 features including
string similarity features, entity similarity features, number
similarity features, and deep learning features. The second
system used the average score of the first system and dense
neural networks. The third system, which was also the
best-performing system among all submitted systems with
a Pearson correlation of 0.8328, applied a regression model
on 8 trained models including the random forest model, the
Bayesian Ridge regression model, the Lasso regression
model, the linear regression model, the Extra Tree model,
the DNN using the Universal Sentence Encoder, the DNN
using the inferSent encoder, and the Encoder–multilayer
perceptron using the inferSent encoder. The fourth system
used the average score of the first system, and the
Encoder–multilayer perceptron used the inferSent encoder.

2. The team that placed second in this challenge used
attention-based convolutional neural network (ABCNN)
and bidirectional long short-term memory (Bi-LSTM)
networks. One of their submissions used ABCNN with
traditional NLP features. The second is a hybrid model of
ABCNN and Bi-LSTM, with traditional NLP features. The
third run ensembled the previous 2 systems by calculating
the average scores. The ensemble model performed the best
among their submitted systems.

3. The third-placed team proposed a sentence-embedding
method that represents a sentence as a weighted average of
word vectors, followed by a soft projection. They used a
self-regularized identity map named Conceptors to correct
the common component bias in linear sentence embedding.
Majority voting and 2 different support vector regression
models with only word embedding representation features
were explored by the fourth-placed team for their
submissions. The best performance was achieved by the
majority voting method.

Lastra-Díaz and García-Serrano [23] presented an empirical
study on the impact of a number of model design choices on a
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BERT-based approach to clinical STS. It was demonstrated that
the proposed hierarchical convolution mechanism outperformed
several alternative conventional pooling methods. Different
parameter fine-tuning strategies with varying degrees of
flexibility were investigated, and the optimal number of trainable
transformer blocks was identified, thereby preventing
overtuning. Finally, the utility of 2 data augmentation methods
(segment reordering and back translation) on clinical STS was
verified.

Hadj Taieb et al [24] proposed a novel framework based on a
gated network to fuse distributed representation and one-hot
representation of sentence pairs. Some state-of-the-art distributed
representation methods, including convolutional neural network,
Bi-LSTM, and BERT, were used in this framework, and a
system based on this framework was developed for a shared
task regarding clinical STS organized by BioCreative and
OHNLP in 2018.

Elavarasi et al [25] demonstrated transformer-based models
(BERT, XLNet, and RoBERTa) and developed a system that
can use various transformer algorithms for measuring clinical
STS. STS system has two modules: (1) a transformer
model–based feature learning module that learns distributed
sentence-level representations from sentence pairs and (2) a
regression-based similarity score learning module that calculates
similarity score between 0 and 5 according to the distributed
representations derived from the transformers. The authors
explored several methods to combine the distributed
representations from different transformers, including (1) simple
head-to-tail concatenation, (2) pooling, and (3) convolution.
The experiment’s results showed that the RoBERTa model
achieved the best performance compared with other transformer
models.

The work done in the study by Lastra-Díaz et al [26] focuses
on ranking the degree of similarity between clinical texts. The
paper studied the impact of using different preprocessing
methods as well as different feature representation methods
(word embeddings–BioWordVec vs sentence
embeddings–BioSentVec) by proposing a system with a simple
neural network. The study demonstrated that sentence
embeddings provided superior text representation than word
embeddings, better capturing sentence semantics, whereas word
embeddings were not a distant performer. It was observed that
word embeddings benefited from using a more thorough
text-preprocessing pipeline, whereas sentence embeddings
obtained better test results with a basic preprocessing approach.

Data Sets for STS
This subsection briefly describes some of the popular data sets
at the sentence pairs level that are used to evaluate the semantic
similarity algorithms. The performance of various semantic
similarity algorithms is measured by the correlation of the
achieved results with that of the standard measures available in
these data sets. Li et al [27] used a data set comprises 65
sentence pairs that were created using the dictionary definition
of 65 word pairs used in the Rubenstein-Goodenough data set
[28]. A similarity range of 0 to 4 (from the lowest to the highest)
was provided voluntarily by 32 native English speakers. The
mean of the scores given by all the volunteers was taken as the

final score. The SICK data set [29] consists of 10,000 sentence
pairs derived from 2 existing data sets, the ImageFlickr 8 and
MSR-Video descriptions data sets. Each sentence pair is
associated with a relatedness score and a text entailment relation.
The relatedness score ranges from 1 to 5, and the 3 entailment
relations are “NEUTRAL, ENTAILMENT, and
CONTRADICTION.” The annotation was performed using
crowdsourcing techniques. The STS [30-34] data sets were built
by combining sentence pairs from different sources by the
organizers of the SemEVAL shared task. The data set was
annotated using Amazon Mechanical Turk and verified by the
organizers themselves. Various sources such as newswire,
videos, glosses, Workshop on Machine Translation evaluation,
Machine Translation evaluation, newswire headlines, forum
posts, news summary, image descriptions, tweet news pairs,
student answers, QA forum answers, and committed belief were
used to build the STS data set.

The computation of semantic similarity between various types
of text fragments such as words, sentences, or documents plays
a key role in a wide range of NLP tasks such as information
retrieval [35], text summarization [36], text classification [37],
essay evaluation [38], machine translation [39], and QA [40,41].

A wide range of semantic similarity measures has been proposed
and applied in various applications and domains. These measures
vary in performance based on their approaches and application
domains. Detailed comparisons of these measures can be found
in previous work [22,42-47].

Amir et al [42] proposed a semantic similarity algorithm using
kernel functions. They used constituency-based tree kernels
where the sentence is broken down into subject, verb, and object
based on the assumption that most semantic properties of a
sentence are attributed to these components. The input sentences
are parsed using the Stanford Parser to extract various
combinations of subject, verb, and object. The similarity
between the various components of the given sentences is
calculated using a knowledge base, and different averaging
techniques are used to average the similarity values to estimate
the overall similarity, and the best among them is chosen based
on the root mean squared error value for a particular data set.
Benedetti et al [43] proposed a novel knowledge-based
technique, Context Semantic Analysis, for estimating
interdocument similarity. The technique is based on a Semantic
Context Vector, which can be extracted from a knowledge base
and stored as metadata of a document and used to compute
interdocument similarity. The authors also demonstrated how
Context Semantic Analysis can be effectively applied in the
information retrieval domain, even if user queries, typically
composed of a few words, contain a limited number of entities.
Yang et al [44] presented a response prediction model that learns
a sentence encoder from conversations. The encoder learned
from the input-response pairs performs well on sentence-level
STS. The basic conversation model learned from Reddit
conversations is competitive with existing sentence-level
encoders on public STS tasks. A multitask model trained on
Reddit and Stanford NLI classification achieved the
state-of-the-art for sentence encoding–based models on the STS
Benchmark task. An FAQ retrieval system with a method using
query-question similarity and BERT-based query answer
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relevance was proposed by Sakata et al [48]. A traditional
unsupervised information retrieval system is used to calculate
the similarity between the query and the question. In contrast,
the relevance between the query and answer, calculated using
BERT model, are learned using QA pairs in an FAQ database.
Minaee and Liu [49] evaluated the proposed approach on two
data sets: (1) localgovFAQ, a data set that is constructed in a
Japanese administrative municipality domain, and (2)
StackExchange data set, which is the public data set in English.
Uva et al [50] proposed to inject structural relationships in neural
networks by (1) learning a support vector machine model using
tree kernels on relatively few pairs of questions (a few
thousands), as gold standard training data are typically scarce;
(2) predicting labels on a very large corpus of question pairs;
and (3) pretraining neural networks on such a large corpus. The
experiments in the study were performed on the Quora and
SemEval question similarity data sets. A deep learning–based
model for automatic QA was proposed [51] to solve the use
case of customer case service automation. The questions and
answers are embedded using neural probabilistic modeling
(doc2vec), followed by training a deep similarity neural network
to determine the similarity score of a pair of answer and
question. For each question, the best answer is found as the one
with the highest similarity score. Cai et al [51] trained this model
on a large-scale public QA database and then fine-tuned it to
transfer to the customer care chat data.

About Transfer Learning
The advancements of deep learning in NLP in recent years have
improved, accelerated, and automated various functions and
features of text analytics. Deep learning enables models to
understand and learn the meaning of words and phrases in
different language contexts. However, all these utilities demand
large and complex deep learning models that are data hungry.
They require training with thousands or millions of data points
before making a plausible prediction. Training is expensive in
terms of both time and resources. The issue with such models
is that they are performed only on a single task. Future tasks
require a new set of data points and a greater number of
resources. Transfer learning comes into the picture by
transferring knowledge learned from one model to another.

Transfer learning is a machine learning method where a model
trained on one task is repurposed on a second related task as an
optimization that allows rapid progress when modeling the
second task. It can train DNNs with comparatively fewer data.

We subsequently briefly describe a few DNN models
experimented with in this paper that use the transfer learning
approach.

BERT
Google’s BERT [16] has significantly altered the NLP landscape
in recent years. BERT is a contextualized word representation
model based on a masked language model and pretrained using
bidirectional transformers. It is designed to pretrain deep
bidirectional representations from the unlabeled text by jointly

conditioning on both the left and right context. As a result, the
pretrained BERT model can be fine-tuned with only one
additional output layer to create state-of-the-art models for a
wide range of NLP tasks.

BERT is pretrained on a large corpus of unlabeled text, including
the entire Wikipedia (2500 million words) and Book Corpus
(800 million words). BERT is a “deeply bidirectional” model,
meaning that BERT learns information from both the left and
the right side of a token’s context during the training phase.

BERT architecture builds on top of the transformer. all these
transformer layers are encoder-only blocks. BERT is pretrained
on 2 NLP tasks: masked language modeling and next-sentence
prediction. The pretrained BERT has a maximum of 512 input
tokens (position embeddings). The output would be a vector
for each input token. Each vector is composed of 768 float
numbers (hidden units).

Clinical BERT
BERT model is pretrained in general text corpora. A specific
model pretrained on specialty corpora, such as clinical text, is
available in the form of Clinical BERT, a modified BERT
model. Specifically, the representations are learned using
medical notes and further processed for downstream clinical
tasks. Clinical BERT [52] models are pretrained on 2 types of
data: one for generic clinical text and another for discharge
summaries. Similar to BERT, Clinical BERT is a trained
transformer encoder stack. Clinical BERT is also a bidirectional
transformer.

BioBERT
BioBERT [53] is a domain-specific language representation
model that is pretrained on large-scale biomedical corpora.
BioBERT is specifically pretrained on PubMed abstracts
(PubMed) and PubMed Central full-text articles along with
English Wikipedia and Book Corpus data sets as in BERT.

BlueBERT
The success of the General Language Understanding Evaluation,
which was primarily to help the development of pretrained
language models based on performance on generic NLP tasks,
led to the development of Biomedical Language Understanding
Evaluation (BLUE). BLUE is similar to General Language
Understanding Evaluation but is more specific to the biomedical
domain. The benchmark consists of 5 tasks with 10 data sets
covering biomedical and clinical texts with different data set
sizes and difficulties. BlueBERT [54], which was originally
named National Center for Biotechnology Information BERT,
was pretrained on PubMed abstracts and MIMIC-III (Medical
Information Mart for Intensive Care) clinical notes. The work
done by Peng et al [54] focused on experimenting BLUE in
conjunction with Embeddings from Language Model and BERT
models. BlueBERT was found to be the best-performing model
and significantly superior to other models in the clinical domain.

Table 1 summarizes the pretraining details of different BERT
models used in the experiments of this study.
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Table 1. Summary of pretraining details for the various Bidirectional Encoder Representations from Transformers (BERT) models used in our
experiments.

Text sizeCorpusPretrainingVocabularyModel

3.3B words (16 GB)Wikipedia+BooksN/AaWikipedia+BooksBERT

0.5B words (3.7 GB)MIMICb (subset)+MIMIC-IIIContinual pretrainingWikipedia+BooksClinical BERT

4.5B wordsPubMed+PMCcContinual pretrainingWikipedia+BooksBioBERT

4.5B wordsPubMed+MIMIC-IIIContinual pretrainingWikipedia+BooksBlueBERT

aN/A: not applicable.
bMIMIC: Medical Information Mart for Intensive Care.
cPMC: PubMed Central.

Methods

DNN Architecture
Figure 1 describes the working of our proposed FAQ system.
The proposed FAQ system uses 2 major components: a question
repository and a fine-tuned language model. The FAQ
repository, which acted as the source of questions to identify
entailment or no entailment for input queries, was maintained
in the proposed FAQ system. The input query to the fine-tuned

language model was compared against each question in the
question repository to identify and retrieve the most similar
FAQ, if any.

The language model was fine-tuned by using the Quora question
pairs and clinical RQE (C-RQE) data sets. Different
experimental and data split strategies were used to identify the
best-performing model configuration. These data sets and
experimental strategies are explained in detail in the following
subsections.

Figure 1. Architecture diagram for frequently asked questions (FAQ) system. MAD: manually annotated data set; RQE: Recognizing Question
Entailment.

Data Sets
The experiments in this paper were based on these three different
data sets.

1. Quora questions pairs (Quora): The Quora question pairs
data set [55] provides an opportunity to train and test models
of semantic equivalence, based on actual Quora data. Each
line in the data set contains an ID for each question in the
question pair, a unique ID for the question pair, the full text
for each question, and a binary label that indicates whether
the line contains a duplicate question pair. Table 2 presents
a few sample lines of the data set. This data set contains
over 400,000 labeled question pairs. Of the 404,290

question pairs, 255,027 (63.08%) had a negative (0) label
and 149,263 (36.92%) had a positive (1) label, making our
data set unbalanced.

2. C-RQE: The work done in the study by Ben Abacha and
Demner-Fushman [1] describes an automatic method for
constructing training corpora for RQE. The RQE data set
constructed in this paper used the National Library of
Medicine collection of 4655 clinical questions asked by
family physicians. The resulting C-RQE data set had
approximately 8588 question pairs in the form of an XML,
with RQE value labels as true or false.

3. Regulatory RQE—manually annotated data set (MAD):
The subject matter experts, who are part of the
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organizational RA team, manually annotated a collection
of 268 question pairs with entailment and no entailment
labels. Of these 268 question pairs, 127 were entailment
pairs and 141 were no entailment pairs. The records in this

data set were of the following format: (question_pair_ID,
label, question1, question2). Some of the example records
from this data set are presented in Table 3.

Table 2. Samples of Quora question pairs.

Question2Question1Question2 IDQuestion1 IDID

What is a least natural number?What are natural numbers896895447

How many calories does a Domino’s pizza have?Which pizzas are the most popularly ordered
pizzas on Domino's menu?

303830371518

How can one start a bakery business?How do you start a bakery?654365423272

If I had to choose between learning Java and Python,
what should I choose to learn first?

Should I learn python or Java first?672367223362

Table 3. Samples of question pairs in the test set.

Question 2Question 1LabelID

Has the European Medicines Agency authorized Emend?Is Emend approved by the European Medicines Agency?Entailment1

What is the indication of Emend in the European Union
product information?

What is Emend approved indication in the European Union?Entailment2

Does Tisagenlecleucel refused by the European Medicines
Agency?

Does Tisagenlecleucel has gotten an orphan designation
by the European Medicines Agency?

Not_entailment15

Is ELIANA (other IDs: NCT02435849/CCTL019B2202)
a randomized arm trial?

Is ELIANA (other IDs: NCT02435849/CCTL019B2202)
a single arm trial?

Not_entailment16

Preprocessing of Data Sets
Both the Quora and C-RQE data sets were transformed to a
format that was consistent with the MAD data set. The Quora
data set was transformed to this format by removing individual
question IDs and converting “is_duplicate” binary field to
“entailment/no entailment” label field (“is_duplicate=1”
indicates entailment label and vice versa). In contrast, the
C-RQE data set, which is an XML, was converted to the format
consistent with MAD by extracting ID, question1, question2,
and value labels. The “value label=true” was transformed into
an entailment label and vice versa.

Data Split Strategy
Three data sets are commonly used in deep learning model
development: training, validation, and test sets. The model is
trained on the training set, and the validation set is used to
evaluate the model fit unbiasedly during the hyperparameter
tuning stage. The test set is independent from the training and
validation sets and is used to assess the model’s performance.

The experiments designed in this study are built on 2 types of
data set split strategy described as follows:

Strategy 1: Quora and C-RQE data sets were used as training
and validation sets, respectively. With this strategy, we have
404,283 sentence pairs in the training data set, 7143 pairs in the
validation data set, and 150 pairs in the testing data set.

Strategy 2: Quora and C-RQE data sets were combined to
further split them into training and validation sets such that the
training set had approximately 90% of the records, whereas the
remaining 10% were part of the validation set. Therefore, the
training set had 90% of the records from Quora and C-RQE

data sets. The validation set comprised 10% of the records from
Quora and C-RQE data sets, which were not part of the training
set. The validation set also included 50% of MAD, which was
not part of the test set. With this strategy, we have 370,282
sentence pairs in the training data set, 41,279 pairs in the
validation data set, and 150 pairs in the testing data set.

Model Evaluation
The variation of experiments conducted in this study for the
Quora, C-RQE, and MAD data sets were performed on top of
4 types of BERT models: (1) regular BERT [16], (2) Clinical
BERT [52], (3) BioBERT [53], and (4) BlueBERT [54]. The
performance of several types of model configurations was
evaluated for accuracy, F1-score metrics, and the area under the
receiver operating characteristic curve (AUC). The model’s
accuracy was estimated by finding the total number of true
entailment or no entailment predictions out of the total number
of predictions done by the model. F1-score was an error metric
that was calculated from the precision and recall of the test.
F1-score of the model was interpreted as the harmonic mean of
the precision and recall, conveying the balance between the
precision and recall of the model.

F1-score ranges from 0 to 1, with 0 being the worst and 1 being
the best value. The highest value of 1 indicates that the model
has a perfect precision and recall, whereas the lowest value of
0 indicates that either the precision or recall is 0.

AUC is another commonly used statistical metric that evaluates
the performance of classification models and provides a
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comprehensive measure of a model’s ability to classify instances
from different classes correctly. The AUC metric has advantages
over accuracy and F1-score in that it is insensitive to data
imbalance and considers the model’s behavior across all possible
classification thresholds. The AUC value lies in the range of 0
to 1, where a higher value indicates a more robust ability for
classification. An AUC of ≤0.5 suggests a model with no
predictive power other than random guessing.

Experimental Design
The experiments performed in this paper used regular BERT,
Clinical BERT, BioBERT, and BlueBERT models, which were
fine-tuned on the Quora, C-RQE, and MAD data sets. Each of
these models was fine-tuned on the 2 data split strategies. For
experimentation of regular BERT, we used bert-base-uncased,
whereas the Clinical BERT model used in this paper was
pretrained on clinical notes. The BlueBERT-Base, Uncased,
PubMed+MIMIC-III variant of the BlueBERT model was
experimented with in this paper.

We used the Hugging face transformers library for model
fine-tuning and text classification. The following set of

hyperparameters was established to be the best set of
hyperparameters and was used for all the experiments conducted

in this paper: epochs=3, learning rate=3 × 10–5, batch size=32,
and maximum sequence length=150.

Ethical Considerations
This study is not human participant research; thus, no ethics
approval was sought.

Results

The experimental design of this paper is described in Table 4.

Table 4 describes the performance of different BERT models
on the datasets discussed in the Data Split Strategy section. As
baseline experiments, we used experiments 1, 4, 7, and 10 to
assess the performance of the models without transferring any
prior knowledge. With comparable accuracy, F1-score, and
AUC, the Clinical BERT and BioBERT models outperformed
the other 2 baseline models, whereas the BlueBERT model
performed the lowest with an accuracy of 48.9%, F1-score of
0.328, and AUC of 0.242.

Table 4. Performance of different Bidirectional Encoder Representations from Transformers (BERT) models on data sets: without augmentation.

AUCaF1-scoreAccuracy (%)Data split strategyModelExperiment

0.3030.32848.9N/AbBERT1

0.9200.808821BERT2

0.9580.90490.662BERT3

0.5840.58658.6N/AClinical BERT4

0.9710.894901Clinical BERT5

0.9610.897902Clinical BERT6

0.6120.51354.1N/ABioBERT7

0.7290.538661BioBERT8

0.5800.51556.662BioBERT9

0.2420.32848.9N/ABlueBERT10

0.9200.807821BlueBERT11

0.9200.84284.662BlueBERT12

aAUC: area under the receiver operating characteristic curve.
bN/A: not applicable.

Regardless of the data split approach, the performance of all
models enhanced after being fine-tuned with domain-specific
data. BERT’s accuracy, F1-score, and AUC improved the most
after being fine-tuned with data split strategy 1. The accuracy
of the model increased from 48.9% to 90.66%. The performance
of BioBERT model showed minimal improvement. The
accuracy of the BioBERT model increased from 54.1% to 66%
after being fine-tuned with our data split strategy 1. Although
the accuracy of BioBERT model improved from 54.1% to
56.66%, the model’s classification capability decreased because
AUC decreased from 0.612 to 0.580.

The best-performing models were BERT (data split strategy 2)
and Clinical BERT (data split strategy 1 and 2) with an accuracy

of 90.66%, 90%, and 90%; F1-score values of 0.904, 0.894, and
0.897; and AUC of 0.958, 0.971, and 0.961, respectively.
Experiments 1 and 2 used the general BERT model to provide
82% and 90.66% accuracy for data split strategy 1 and 2,
respectively. This behavior of data split strategy 2 surpassing
data split strategy 1 was consistent across all BERT models
experimented in Table 4, except for the BioBERT model. The
Clinical BERT model with both data split strategies was among
the top-performing models with an accuracy of approximately
90% and an AUC of >0.96. The BioBERT model did not fare
very well compared with all the other models in Table 4, with
an accuracy of 66% and 56.66% for data split strategy 1 and 2,
respectively. The BlueBERT model performed noticeably better
than BioBERT, with an accuracy of approximately 82% and
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84.66% for data split strategy 1 and 2, respectively, which was
still lower than that of the high-performing BERT and Clinical
BERT models.

Discussion

Principal Findings
In this study, we used computational models to recognize
question entailment in pharmaceutical regulatory domains. As
there is no publicly available labeled data set in this field, we
adopted the idea of transfer learning. We fine-tuned 4 different
versions of pretrained BERT language models on 2 publicly
available data sets (Quora and C-RQE). The best model achieved
90.66% accuracy in RQE on our MAD, which contained 150
question pairs in the regulatory field. To the best of our
knowledge, this study is the first to use state-of-the-art NLP
models to recognize question semantic similarity in the
pharmaceutical regulatory domain. Our study could provide the
foundation for future studies that apply NLP technologies to
text in the pharmaceutical regulatory domain.

As shown in Table 4, the BERT model outperformed the other
BERT variants in terms of its ability to learn domain knowledge
using transfer learning. Although the BERT model performed
poorly on the test data set before fine-tuning, its accuracy
increased in RQE after being fine-tuned using domain-specific
question pairs. This finding was also supported by experiments
2 and 3. The model based on BERT did not perform well with
our data split strategy 1 (experiment 2). However, it reached
the highest accuracy when we fine-tuned the BERT with our
data split strategy 2 (experiment 3). Our data split strategy 1
used only Quora’s general domain question pairs as training
resources. In contrast, strategy 2 includes both general domain
question pairs and clinical questions from C-RQE as part of the
training and validation sets. This indicates that BERT can
perform well in the pharmaceutical regulatory domain text if
we provide sufficient clinical domain background knowledge
to the model and fine-tune it.

We also found that Clinical BERT models outperformed other
BERT variants in this specific domain. Clinical narratives from
general and nonclinical biomedical text have known differences
in linguistic characteristics [52]. All BERT variants used in this
study were initialized from BERT, but they were pretrained on
the corpus from different fields. The Clinical BERT model was
pretrained with clinical notes, the BioBERT model was
pretrained with biomedical corpus, and the BlueBERT model
was pretrained with the combination of biomedical text and
clinical notes. We found that the Clinical BERT and BlueBERT
models performed better than the BioBERT model. In other
words, the models that were pretrained with clinical notes from
MIMIC-III data set have a better performance than the models
pretrained with PubMed articles in our RQE task. A possible
reason is that the nature of questions in the regulatory domain,
shown in Table 3, resonates more closely with the clinical notes
text genre. This finding highlights the importance of pretraining
with the proper text genre in learning the context-dependent
representation [54].

Although DNNs perform well in a variety of NLP tasks, a large
number of data are required to train deep learning models. The
lack of training data has become one of the significant
challenges to training deep learning models in the biomedical
field, which could lead to underfitting models and could reduce
their performance. We do not have a publicly available labeled
data set for the pharmaceutical regulatory domain. Instead, we
fine-tuned pretrained language models on the C-RQE data set
to learn domain-specific knowledge. In our previous
experiments, only 21% of the question pairs in the training
corpus were from the regulatory-related domain. Consequently,
we extended our experiments by expanding our training data
set with data augmentation technologies. We aimed to study
the impact and utility of augmentation techniques on
pharmaceutical domain text using the general BERT and Clinical
BERT models.

Researchers in the field of computer vision commonly use data
augmentation to expand the number and variety of data without
collecting new data. They create new image samples by rotating,
changing the color, cropping, and compressing the images.
Unlike images, the data in NLP are discrete, making it more
challenging to generate high-quality augmented examples
efficiently and effectively in the field of NLP.

With the increasing interest in and demand for data
augmentation in NLP, many text data augmentation technologies
have been proposed. Back translation is the most popular data
augmentation method. The back translation approach involves
translating a sequence into another language and then back to
the original language. Deep learning models, such as Seq2Seq
[56], neural machine translation [57], and transformers [58],
can be used to translate. Various rule-based techniques have
also been used in data augmentation. Wei and Zou [59] proposed
Easy Data Augmentation, including synonym replacement,
random insertion, deletion, and swapping. For paraphrase
identification, Chen et al [60] built a signed graph over the data,
with each sentence as nodes and labels as edges. They used
balance theory and transitivity to induce augmented sentence
pairs based on the graph. Kang et al [61] extended the Easy
Data Augmentation method for biomedical named entity
recognition by incorporating the Unified Medical Language
System knowledge. Another class of techniques uses multiple
samples to generate new pieces, pioneered by MixUp [62],
which interpolates the inputs and labels of ≥2 examples. The
difficult part of using MixUp in NLP is that it requires a
continuous input. This issue was overcome by Chen et al [63],
who mixed embeddings or higher layers. Some other
model-based approaches used the text generation models, such
as GPT-2 [64], to generate candidate examples from the training
data set. Some trade-offs should be considered when choosing
from these methods.

We used 2 data augmentation techniques in this study, entity
replacement and back translation. The entity replacement
technique in this study used the Scispacy [65] named entity
recognition model trained on the BC5CDR corpus to identify
CHEMICAL and DISEASE entities from the question pairs.
The identified CHEMICAL and DISEASE entities were further
replaced by synonyms from the dictionary of concepts and
synonyms created from Observational Medical Outcomes
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Partnership (OMOP) Common Data Model. OMOP has
consolidated multiple vocabularies into a common format, and
OMOP’s Standardized Vocabularies contain all the code sets,
terminologies, vocabularies, nomenclatures, lexicons, thesauri,
ontologies, taxonomies, classifications, abstractions, and other
such data that are required. This saves researchers and
developers from having to understand and handle multiple
formats and conventions of the originating vocabularies. For
back translation, we used Google Translate application
programming interface to do back translation and Chinese as
the middle language. We compared several middle languages
and found that Chinese had the best performance in recognizing
question similarity. The original source text and back-translated
text were compared to find differences, if any, in which case
the back-translated text was used as an augmented record. In

these experiments, we used only BERT and Clinical BERT as
our base language models because these 2 models were found
to have the best performance on the original test data set.

The results of the experiments with the augmented training data
are shown in Table 5. We found that the data augmentation
techniques did not improve the model’s performance.
Experiments with back translation–augmented data samples
performed better than experiments with entity
replacement–augmented data samples. By analyzing the
augmented data samples, we found that although these 2 data
augmentation techniques expanded the number of data samples,
they introduced some noise samples to our training set. This
could be explained by the complexity and specificity of the text
in the regulatory domain.

Table 5. Model performance with augmented training data.

Accuracy (%)Data split strategyModel

Entity replacement+back translationBack translationEntity replacement

79.3377.3379.331BERTa

77.3385.3379.332BERT

82.6686.6688.661Clinical BERT

8889.33842Clinical BERT

aBERT: Bidirectional Encoder Representations from Transformers.

Our study has some limitations. First, we only experimented
with the BERT-based model in this study. Some other
state-of-the-art pretrained language models, such as XLNet, T5,
and GPT-2, also perform well in related NLP tasks. We will try
other state-of-the-art models in our future studies. Second, we
only had 150 pairs of questions in our test data set. If we had
had a greater number of question pairs in our test data set, we
would have better understood the performance of each model.
Third, our manually labeled data set covers only a limited
number and types of concepts in the regulatory domain. We
should further our analysis by expanding the variety of question
pairs.

Conclusions
This study used deep learning models to recognize question
entailment in the pharmaceutical regulatory domain. As no
previous study has used computational models to learn text in
the regulatory domain, our study demonstrates the possibility
of using state-of-the-art artificial intelligence–based NLP models
to understand the regulatory text. We also attempted 2 data
augmentation techniques, back translation and entity
replacement, to increase the number of training samples.
However, these 2 techniques did not improve the model’s
performance in this study.
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