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Abstract

Background: Aspirin-exacerbated respiratory disease (AERD) is an acquired inflammatory condition characterized by the
presence of asthma, chronic rhinosinusitis with nasal polyposis, and respiratory hypersensitivity reactions on ingestion of aspirin
or other nonsteroidal anti-inflammatory drugs (NSAIDs). Despite AERD having a classic constellation of symptoms, the diagnosis
is often overlooked, with an average of greater than 10 years between the onset of symptoms and diagnosis of AERD. Without
a diagnosis, individuals will lack opportunities to receive effective treatments, such as aspirin desensitization or biologic
medications.

Objective: Our aim was to develop a combined algorithm that integrates both natural language processing (NLP) and machine
learning (ML) techniques to identify patients with AERD from an electronic health record (EHR).

Methods: A rule-based decision tree algorithm incorporating NLP-based features was developed using clinical documents from
the EHR at Mayo Clinic. From clinical notes, using NLP techniques, 7 features were extracted that included the following: AERD,
asthma, NSAID allergy, nasal polyps, chronic sinusitis, elevated urine leukotriene E4 level, and documented no-NSAID allergy.
MedTagger was used to extract these 7 features from the unstructured clinical text given a set of keywords and patterns based on
the chart review of 2 allergy and immunology experts for AERD. The status of each extracted feature was quantified by assigning
the frequency of its occurrence in clinical documents per subject. We optimized the decision tree classifier’s hyperparameters
cutoff threshold on the training set to determine the representative feature combination to discriminate AERD. We then evaluated
the resulting model on the test set.

Results: The AERD algorithm, which combines NLP and ML techniques, achieved an area under the receiver operating
characteristic curve score, sensitivity, and specificity of 0.86 (95% CI 0.78-0.94), 80.00 (95% CI 70.82-87.33), and 88.00 (95%
CI 79.98-93.64) for the test set, respectively.

Conclusions: We developed a promising AERD algorithm that needs further refinement to improve AERD diagnosis. Continued
development of NLP and ML technologies has the potential to reduce diagnostic delays for AERD and improve the health of our
patients.
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Introduction

Aspirin-exacerbated respiratory disease (AERD) is an acquired
inflammatory condition characterized by the presence of asthma,
chronic rhinosinusitis with nasal polyposis, and respiratory
hypersensitivity reactions on ingestion of aspirin or other
nonsteroidal anti-inflammatory drugs (NSAIDs) [1]. These
reactions typically involve the upper and lower airways and
may include nasal congestion, sneezing, rhinorrhea, cough, and
wheezing [1]. The prevalence of AERD is approximately
0.3%-0.9% in the general population, but the actual prevalence
is unknown in practice, as AERD has no unique International
Classification of Diseases, Ninth Revision (ICD-9) or ICD-10
codes [2,3]. In the general population, the mean age of onset of
AERD is approximately 30 years [2,4], and the prevalence of
AERD is estimated to be 7%-15% in individuals with asthma
and 10%-16% in individuals with chronic rhinosinusitis with
nasal polyposis [5]. Individuals with AERD have significant
symptom burden and morbidity, including severe and
recalcitrant sinus disease, high rates of polyp recurrence and
revision surgery, and higher asthma exacerbation and
hospitalization rates [1]. Despite AERD having a classic
constellation of symptoms, the diagnosis is often overlooked,
with an average of greater than 10 years between the onset of
symptoms and diagnosis of AERD [6]. Without a diagnosis,
individuals will lack opportunities to receive effective
treatments, such as aspirin desensitization or biologic
medications [5,7].

One opportunity to improve diagnostic delays with AERD
involves leveraging the immense volume of clinical data
available in electronic health records (EHRs). By leveraging
natural language processing (NLP) and machine learning (ML),
analyses of medical concepts from unstructured clinical
documents may aid in early detection of AERD [8]. In this
study, we developed a combined algorithm of NLP with ML to
identify individuals with AERD.

Methods

Ethical Considerations
This study was approved by the Mayo Clinic institutional review
board as exempted from ethics approval in accordance with the
ethical standards of the responsible committee on human
experimentation and the Helsinki Declaration of 1975, as revised
in 2000.

Procedure
Patients who were evaluated within the Allergy and Immunology
divisions at Mayo Clinic from January 2001 to March 2022 and
met diagnostic criteria for AERD based on accepted guidelines
[1] were retrospectively identified by chart review. In total, 200
patients with AERD and 200 patients without AERD were
identified. Of these patients, we randomly selected 100 patients

with AERD and 100 without AERD to serve as the training set,
and the remaining were used for the test set.

A rule-based decision tree algorithm incorporating NLP-based
features was developed to identify patients with AERD using
clinical documents from the EHR at Mayo Clinic. From clinical
notes, 7 features were extracted using NLP techniques based
on common characteristics of AERD [1]. These features
included the following: prior AERD diagnosis, asthma, NSAID
allergy, nasal polyps, chronic sinusitis, elevated urine
leukotriene E4 level, and documented no-NSAID allergy. “Prior
AERD diagnosis” was defined as whether the patient had a
diagnosis of AERD before or had suspicion of a high chance
of AERD by the physician. For “asthma,” “nasal polyps,” and
“chronic sinusitis,” the patient needed to have a diagnosis
confirmation by the physician in the clinical documents.
“Elevated urine leukotriene E4 level” indicated if the patient
had any record in lab results of a urine leukotriene E4 level
greater than 104 pg/mg creatinine. “NSAID allergy” was defined
as a patient having had a respiratory reaction to an NSAID.
Meanwhile, “documented no-NSAID allergy” indicated that a
health care provider recorded “unconfirmed or no specific
history of NSAID allergy up to date” in the clinical documents.
Given the successful use cases of MedTagger [9] to identify
disease in different clinical domains [10,11], we used
MedTagger to extract these features with the given set of
keywords (including typos, abbreviations, and acronyms) and
patterns based on the chart review of 2 allergy and immunology
experts for AERD. If the extracted features were located in
particular note sections (ie, “History of Present Illness,”
“Allergies,” “Past Medical/Surgical History,”
“Impression/Report/Plan,” “Diagnosis,” “Principal Diagnosis,”
“Secondary Diagnoses,” and “Post Procedure Diagnosis”), they
were considered valid AERD features. We collected each feature
in all clinical documents per patient in the past 5 years from the
last clinic visit because clinical characteristics of AERD can
evolve over time (ie, development of NSAID allergy).

We counted the number of times each extracted feature appeared
in the clinical documents for each patient and used this count
as the numerical representation of each feature. To identify the
most practical combination of features for discriminating
between different presentations of AERD, we optimized the
hyperparameters of the classification and regression tree (CART)
decision tree classifier with the identified features on the training
set using sklearn [12,13]. We performed hyperparameter tuning
on 5 different parameters with 1 model setting, as follows: (1)
criterion, with options of gini or entropy; (2) maximum depth,
ranging from 1 to 10 with an interval of 1; (3) minimum samples
split, ranging from 2 to 10 with an interval of 2; (4) minimum
samples leaf, ranging from 1 to 10 with an interval of 1; (5)
maximum features, ranging from 1 to 7 with an interval of 1;
and (6) a fixed random number generation seed was used to
ensure reproducibility. Furthermore, to achieve the highest area
under the receiver operating characteristics curve (AUC) score,
these hyperparameters were tuned for two types of feature sets:
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(1) quantitatively represented as numerical values per patient
and (2) binary, where “1” denotes the presence and “0” denotes
the absence or missing status of each extracted feature per
patient. We constructed a decision tree using the best feature
set with optimized hyperparameters and then calculated the
AUC scores for a range of cutoff thresholds from 0.1 to 1.0 in
intervals of 0.1 to determine the optimal cutoff threshold based
on a given training set. The resulting tree with the optimized
parameters and cutoff threshold converted into sequential rule
sets to evaluate the performance in the test set.

Results

In our cohort, the mean age of the 400 patients was 55.5 years,
and 54% (216/400) were female. Table 1 displays the descriptive
statistics for each feature, comparing the presence or absence
of the feature in the training and test sets. Based on the training
set, we obtained the sequential rule sets through the optimized
decision tree (with criterion as gini, maximum depth as 7,
minimum samples leaf as 7, minimum samples split as 2,
maximum features as 3, random state as 20, and best cutoff
threshold as 0.6 for parameter settings) using the numerical
represented feature set in Table 2. The sequential rules listed in

Table 2 describe several clinical factors that include diagnosis
of AERD (referred to as AERD), diagnosis of allergy to an
NSAID (referred to as NSAID allergy), diagnosis of chronic
sinusitis, documented history of tolerance to an NSAID (referred
to as non-NSAID allergy), and a prior abnormally elevated urine
leukotriene E4 level (referred to as LAB).

In Table 2, it was observed that the derived sequential rule,
ranging from 1 to 9, captured 28% (56/200) of the cases in the
test set. However, a significant portion of the test set (112/200,
56%) was not identified according to the original intended
sequential rule but rather by a different sequence rule. For
example, rule 6 failed to capture 73 cases, whereas rule
9—which is less strict than rule 6—captured 59 of those 73
cases that were supposed to belong to rule 6. Similarly, rule 3
captured 15 cases of the remaining 18 cases that should have
been identified by rule 1. Therefore, the overall accuracy was
0.84.

The AERD algorithm achieved an AUC score of 0.92 (95% CI
0.93-1.00) and 0.86 (95% CI 0.78-0.94) for the training and test
sets (Figure 1 and Figure 2), respectively. The optimal cutoff
point was 0.6 on the training set (Figure 1). Additional
performances are presented in Table 3.

Table 1. Descriptive statistics of aspirin-exacerbated respiratory disease (AERD) features, describing its presence as 1 and absence as 0 (N=200).

Test, n (%)Train, n (%)AERD Feature

60 (30)103 (52)AERD

82 (41)192 (96)Asthma

121 (61)98 (49)NSAIDa allergy

192 (96)175 (88)Nasal polyps

180 (90)182 (91)Chronic sinusitis

179 (90)93 (47)LABb

101 (51)70 (35)Documented no-NSAID allergy

aNSAID: nonsteroidal anti-inflammatory drug.
bLAB refers to the elevated urine leukotriene E4 level.
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Table 2. Derived sequential rules for aspirin-exacerbated respiratory disease (AERD) algorithm and the resulting performance in the test set.

Confidence (%)aError, nCorrect, nCase, nAERDSequential rulesRule

4001230NoAERD≤3.5, NSAID allergyb≤2.5, Chronic Sinusitisc≤6.5, and then document-
ed non-NSAID allergy≤0.5

1

0009NoAERD≤3.5, NSAID allergy≤2.5, Chronic Sinusitis≤6.5, and then documented
non-NSAID allergy>0.5

2

9304043NoAERD≤3.5, NSAID allergy≤2.5, Chronic Sinusitis>6.5, and then documented
non-NSAID allergy≤0.5

3

75034NoAERD≤3.5, NSAID allergy≤2.5, Chronic Sinusitis>6.5, and then documented
non-NSAID allergy>0.5

4

00010YesAERD≤3.5, NSAID allergy>2.5, and then Chronic Sinusitis≤9.05

10174YesAERD≤3.5, NSAID allergy>2.5, and then Chronic Sinusitis>9.06

0000YesAERD>3.5, NSAID allergy≤1.5, and then LABd≤0.57

0002NoAERD>3.5, NSAID allergy≤1.5, and then LAB>0.58

0002YesAERD>3.5, NSAID allergy>1.59

00016YesOthers10

00010No

80207999YesThe cases were not identified according to the original intended sequential
rule; instead, a different sequence rule was used.

N/Ae

73123345No

aConfidence = the numbers of correct cases divided by numbers of real cases in the test set multiplied by 100 for the particular rule from 1 to 9.
bNSAID allergy refers to diagnosis of allergy to a nonsteroidal anti-inflammatory drug (NSAID).
cChronic sinusitis refers to diagnosis of chronic sinusitis.
dLAB refers to a prior abnormally elevated urine leukotriene E4 level.
eN/A: not applicable.

Figure 1. Area under the receiver operating characteristic curve (AUC) scores at different threshold values on the training set.
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Figure 2. Receiver operating characteristic (ROC) on the test set.

Table 3. Performance of the rule-based aspirin-exacerbated respiratory disease (AERD) algorithm.

Accuracy (%; 95% CI)Negative predictive value
(%; 95% CI)

Positive predictive value
(%; 95% CI)

Specificity (%; 95% CI)Sensitivity (%; 95% CI)Data set

92.50 (87.93-95.74)88.99 (81.56-94.18)96.70 (90.67-99.31)97.00 (91.48-99.38)88.00 (79.98-93.64)Train

84.00 (78.17-88.79)81.48 (72.86-88.31)86.96 (78.32-93.07)88.00 (79.98-93.64080.00 (70.82-87.33)Test

Discussion

Principal Findings
In our study, we demonstrated that an algorithm, which
combines NLP and ML techniques, can identify patients with
AERD with a positive predictive value of approximately 86.96
and a negative predictive value of 81.48. Our results are
comparable to prior work [3] on automated diagnosis of AERD
from EHR data using structured query language statements for
data analysis and resulting in positive predictive values ranging
from 78.4 to 88.7, depending on the cohort being analyzed.

Prior diagnosis of AERD presents the highest impacted feature
(ie, a majority of sequential rules contain prior diagnosis of
AERD feature) to detect diagnosis of AERD. In the training
and test sets, 85% (85/100) and 91% (91/100) of patients with
AERD had a prior diagnosis of AERD, respectively. We also
extracted new clinical factors associated with AERD (“elevated
urine leukotriene E4 level” and “alcohol intolerance”) that were
not previously studied. Furthermore, the “elevated urine
leukotriene E4 level” feature may need to be considered as a
new meaningful feature associated with AERD because the
presence of the term “AERD” with an “elevated leukotriene E4
level” was a common feature of rule sets 7 and 8. Most patients
with AERD in the test set were accurately identified by having
had an AERD diagnosis and a documented NSAID allergy
(Table 2). Lastly, diagnosis of nasal polyps was not used to
construct the optimal decision tree, which may indicate that it
may be an insignificant feature to distinguish patients with
AERD from possible AERD candidates.

The test set included 32 errors from 200 patients, which upon
review, were due to either unidentified rule sets for patients
with AERD (n=11) or missing and incorrect feature extraction
because of unseen keywords or patterns for features (n=9)
primarily. For example, the sentence “Patient took an aspirin
approximately ten years ago for headache and developed a
sensation of pressure in his nose and sinuses” is an unseen
pattern for prior AERD features. Based on the expression, “a
sensation of pressure in his nose and sinuses,” the sentence
should be a prior AERD feature; however, AERD algorithm
categorized it as absence of an AERD feature because this
pattern was not available in the training phrase. A total of 6
patients had necessary feature information beyond the past 5
years of clinical documents from the last visit day; 6 patients
had necessary information belonging to an unknown note section
in the training set for feature extraction. When examining the
specific rules, rule sets 2-3 resulted in very few errors (Table
2). In contrast, the absence of terms explicitly documenting the
absence of NSAID allergy and lack of references to an elevated
leukotriene E4 level resulted in more errors in the AERD
algorithm.

Diagnosing and confirming AERD may be a prolonged process,
as the associated clinical features may present at different times
in a variety of time sequences. As a result, there is no solid ICD
code (structured data) to represent AERD, and AERD-associated
clinical characteristics are often undocumented in clinical texts
(unstructured data) in the EHR. This lack of information
regarding AERD results in the low quality of data sources and
potential bias for ML models [14]. Additional efforts (eg,
standardizing routine exams for AERD) are necessary to fill
these missing information gaps in practice.

JMIR AI 2023 | vol. 2 | e44191 | p. 5https://ai.jmir.org/2023/1/e44191
(page number not for citation purposes)

Pongdee et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


This AERD algorithm has limitations in deploying to detect
patients with confirmed AERD in a practical setting without
further refinement. We focused on identifying feature selections
in the limited parameter tuning using a balanced data set (N=200
for patients with AERD and N=200 for patients without AERD),
which was not a real-world situation. We used the minimum
sample size due to the nature of AERD, which has a low
prevalence. The rule-based algorithm is used because the limited
sample and feature set provide high interpretability and accuracy
at downstream tasks rather than neural network MLs, which
require a large training data set. However, this algorithm
provides a valuable contribution to capturing potential patients
with AERD in the setting of a large health system EHR because
the prevalence of patients with AERD is low in clinical settings.
To follow up, we plan to rank features with diverse identified

feature sets and parameter tuning for the decision tree model
within a large cohort. We will investigate our new feature in
the EHR, which is information about urine leukotriene E4 levels
in the extensive feature selections, and we will explore
additional features for AERD (eg, alcohol sensitivity, anosmia,
and prior sinus surgeries).

Conclusions
We developed an AERD algorithm, which combines NLP and
ML techniques, to enhance AERD diagnosis in practice. On top
of prior work [3], we used NLP with a potential feature—urine
leukotriene E4 levels from EHR—which have been shown to
aid in AERD diagnosis [15]. Leveraging NLP and ML
techniques in practice has the potential to reduce diagnostic
delays for AERD and improve the health of patients.
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