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Abstract

Background: Ground-glass opacities (GGOs) appearing in computed tomography (CT) scans may indicate potential lung
malignancy. Proper management of GGOs based on their features can prevent the development of lung cancer. Electronic health
records are rich sources of information on GGO nodules and their granular features, but most of the valuable information is
embedded in unstructured clinical notes.

Objective: We aimed to develop, test, and validate a deep learning–based natural language processing (NLP) tool that
automatically extracts GGO features to inform the longitudinal trajectory of GGO status from large-scale radiology notes.

Methods: We developed a bidirectional long short-term memory with a conditional random field–based deep-learning NLP
pipeline to extract GGO and granular features of GGO retrospectively from radiology notes of 13,216 lung cancer patients. We
evaluated the pipeline with quality assessments and analyzed cohort characterization of the distribution of nodule features
longitudinally to assess changes in size and solidity over time.

Results: Our NLP pipeline built on the GGO ontology we developed achieved between 95% and 100% precision, 89% and
100% recall, and 92% and 100% F1-scores on different GGO features. We deployed this GGO NLP model to extract and structure
comprehensive characteristics of GGOs from 29,496 radiology notes of 4521 lung cancer patients. Longitudinal analysis revealed
that size increased in 16.8% (240/1424) of patients, decreased in 14.6% (208/1424), and remained unchanged in 68.5% (976/1424)
in their last note compared to the first note. Among 1127 patients who had longitudinal radiology notes of GGO status, 815
(72.3%) were reported to have stable status, and 259 (23%) had increased/progressed status in the subsequent notes.

Conclusions: Our deep learning–based NLP pipeline can automatically extract granular GGO features at scale from electronic
health records when this information is documented in radiology notes and help inform the natural history of GGO. This will
open the way for a new paradigm in lung cancer prevention and early detection.
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Introduction

The goal of lung cancer treatment is primary prevention, early
prediction, and detection of lung malignancy to reduce lung
cancer mortality. Currently, prevention screening programs
have proven to be effective in the early detection of many
cancers [1]. Low-dose computed tomography (CT) has been a
standard method for lung cancer screening in the United States
since the National Lung Screening Trial in 2011 [2,3]. With the
increased utilization of CT scans and advances in CT techniques,
the detection rate of pulmonary nodules has increased during
the last decade [4]. Approximately 20% to 30% of CT images
detect pulmonary nodules with ground-glass opacity (GGO), a
subtype of pulmonary nodules [5-7]. GGOs, either pure GGOs
(without a solid component) or part-solid GGOs (with a solid
component), have gained significant attention in recent years
due to their malignancy potential [8-11] ever since Jang and
colleagues [12] found that ground-glass attenuation could be a
sign of lung adenocarcinoma. However, identifying malignant
lesions based on GGO images from CT scans remains a
challenge since both benign and malignant lung lesions can
appear as GGOs [13-15]. Persistent GGOs, which have not been
resolved in subsequent CT scans between 6 and 12 months, are
more likely to be associated with precancerous or cancerous
conditions, while transient and self-resolving GGOs are benign
[16-19]. Other GGO features such as larger baseline nodule
size, spiculated shape, upper lobe location, presence of a solid
component, and less than 5 nodules in quantity are known to
be highly associated with the probability of malignancy [20-23].
Understanding the characteristics and prognosis of GGOs is
critical for predicting and preventing lung cancer development
by adopting proper management [24,25].

Radiomics is a study field leveraging artificial intelligence (AI)
to extract medical information from radiology images. Recent
advances in radiomics have significantly improved the accuracy
of identifying malignant lesions [26-28] and made possible
differentiating etiologies of GGOs [29]. However, limited access
to scans, the high cost, and the complexity of processes [30-32]
have hindered the routine knowledge extraction from CT scans
and prompted the use of patient electronic health records
(EHRs). EHRs are rich sources of patients’ clinical information
including radiological findings [33,34], which are generally
captured in unstructured data fields. However, large-scale
extraction of GGO information from an enormous collection
of unstructured EHR data is almost impossible without
leveraging the power of natural language processing (NLP).

NLP is an AI approach that enables extracting large-scale
information automatically from clinical notes and presenting
the extracted information in a computer interoperable structured
format. Over the last 2 decades, NLP has played a critical role
in representing medical information that is embedded in

unstructured clinical notes [35-39] and has been applied to the
field of radiology [40]. Pons et al [34] systematically reviewed
67 NLP studies in radiology reports and demonstrated how
radiology fields benefit from NLP techniques. Linna and Kahn
[41] also highlighted the potential benefits of NLP technology
in multiple areas, such as improved diagnostic decision-making,
patient care, and delivery. Although the development of deep
learning methods and transformer models like Bidirectional
Encoder Representations From Transformers (BERT) showed
a significantly improved impact in named entity recognition
and relation extraction [42], these state-of-the-art NLP methods
have not been applied yet to extract data on GGOs and their
related features. A few shallow NLP parsers have been
developed to identify cohorts with GGOs [14,43-46]. Recently,
a rule-based GGO NLP algorithm was developed and applied
in combination with negation and temporal algorithms to extract
and characterize all GGO attributes from radiology reports [4].

This study aimed to investigate the feasibility of
developing a deep learning–based NLP model to extract GGO
features systematically from radiology notes for the longitudinal
analysis of patient-level GGO features on a large scale with
ontology-guided contextual embedding and temporal reasoning.
The utility of the NLP was then evaluated by deploying it to
longitudinal data to assess changes in GGO features
longitudinally, which is vital for understanding the natural
history of GGOs in the real-world lung cancer setting.

Methods

Ethics Approval
This study was approved by the Program for the Protection of
Human Subjects at the Mount Sinai School of Medicine
(IRB-17-01245).

Study Cohort
The cohort of patients diagnosed with lung cancer between 2010
and 2021 (13,216 patients) was curated from the Mount
Sinai/Sema4 Healthcare system, which contains longitudinal
data for approximately 3.9 million patients. Demographic and
other clinical variables were obtained by either extracting from
structured data or curating the relevant information from
unstructured clinical notes (ie, radiology notes and progress
notes). The study cohort includes (1) pathology-confirmed
patients with lung cancer; (2) non–pathology-confirmed patients
with lung cancer via ≥3 visits and International Classification
of Diseases (ICD) lung cancer codes (ICD-9: 162 and ICD-10:
C34); and (3) non–pathology-confirmed patients who had <3
visits with lung cancer ICD codes. We curated these initial lung
cancer cohorts to develop and test the GGO NLP pipeline, which
can then be applied to other relevant cohorts in the future. Figure
1 shows how we selected study cohorts and their radiology notes
from EHRs for the next steps of model training and evaluation.
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Figure 1. The workflow of the ground-glass opacity (GGO) natural language (NLP) pipeline. The workflow shows how we selected study cohorts and
their radiology notes from EHRs for the next steps of model training and evaluation. EHR: electronic health record; ICD: International Classification
of Diseases.

NLP Framework

Overview
The framework we propose to curate GGOs and their
related attributes are described as follows: (1) preprocessing
and query expansion; (2) GGO ontology construction and
annotation; (3) NLP model development; (4) postprocessing
and entity normalization; and (5) NLP pipeline evaluation. These
are discussed in greater detail in the following subsections.

Preprocessing and Query Expansion
The preprocessing phase focused on query expansion. An initial
list of seed terms was obtained from a manual survey of the
literature and a review of clinical notes by a clinical researcher
and a domain expert (authors KL and MM). A bigram word2vec
algorithm [47] was developed to identify additional significant
terms potentially related to GGO to ensure the encapsulation
of an expansive cohort. The expanded list of query terms was
then applied to extract a comprehensive set of GGO-specific

patient notes that were subsequently leveraged for NLP
modeling.

GGO Ontology and Annotation
NLP is the process of simulating an expert’s knowledge and
understanding of the free text using modeling. As the first step
of NLP, we built up an ontology that was established based on
clinical expert opinion, comprehensive literature, and patient
note review. The GGO ontology includes entities that are critical
for cancer prediction based on previous studies and available
from our radiology notes. Our GGO ontology includes 15
entities comprising pure GGO, part-solid GGO, GGO size, GGO
quantity (number), GGO location, GGO shape/margin, GGO
solidity, temporal (date), potential GGO cause (neoplasm,
infectious/inflammation, hemorrhage, and other pulmonary
lesions), and GGO status change (better, stable, and worsen).
Moreover, it has 7 semantic relations between entities: has size
information (info), has number info, has location info, has
shape/margin info, has solidity info, has status, has a potential
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cause (Figure 2A). This ontology was used as a guideline for
manual annotation. GGO status change indicates any description
of size or solidity changes (eg, increased, getting smaller, getting
denser). The primary GGO entities, either pure or part solid,
were associated with their attributes like size, location, and so
on. Then, 2 independent domain experts manually annotated
the 15 entities and 7 semantic relations in the clinical notes
(Figure 2B) using the Clinical Language Annotation, Modeling,
and Processing (CLAMP) NLP toolkit [48], and a third domain
expert (KL) reviewed the annotations.

Since a biomedical concept could be described in heterogeneous
forms, continuous discussions and agreement between annotators
and domain experts were needed to confirm that the annotations
represented the expert’s understanding of biomedical knowledge.
Interannotator agreement scores (kappa scores) were measured
between the first 2 annotators in the same set of notes until they
reached over 90% in entities and over 80% in relation annotation
before commencing the independent annotation.

Figure 2. The ontology of ground-glass opacity (GGO) and the sample note with GGO annotations. A) The ontology of GGO. A total of 15 entities
and 7 semantic relation types were defined in the GGO ontology. Entity semantic types: GGO location, GGO number, GGO shape/margin, GGO size,
GGO solidarity, GGO status change: better, GGO status change: stable, GGO status change: worsen, GGO term: pure GGO term, GGO term: part-solid
GGO, potential GGO cause: infectious/inflammatory, potential GGO cause: neoplasm, potential GGO cause: hemorrhage, potential GGO cause: other
pulmonary lesions, and temporal. Relation semantic types: has location info, has number info, has shape/margin info, has size info, has solidarity info,
has status, and has potential causes. B) Sample deidentified radiology reports with GGO annotations. Each part-solid nodule or ground-glass nodule is
associated with attributes (such as size, location, status, change, shape, and/or solidity information) and potential etiologies. The upper panel shows a
radiology report with multiple GGOs and their attributes; the lower panel shows a GGO and its associated potential etiologies. CT: computed tomography;
PET: positron emission tomography.
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NLP Model Development
A multilayer deep learning architecture was implemented for
NLP modeling. The text was first transformed as sequential
vectors of characterization in the embedding step. The vectors
were then sent to the bidirectional long-short term memory
(Bi-LSTM), an artificial neural network of text classification
architecture, for pattern recognition in both forward and
backward directions [49]. The patterns were sent to the next

layer of a conditional random field (CRF) model to compute
prediction probability (Figure 3A) [50]. In the example sentence
of Figure 3A, the “ground-glass opacity” is predicated as the
entities of “GGO,” while “right apex” is predicated as
“location.” The model was trained, calibrated, and tested for
optimal performance. Among manually annotated clinical notes,
80% (798/998) were used for training the GGO model and 20%
(200/998) were used for validation.

Figure 3. A deep learning natural language processing (NLP) pipeline for ground-glass opacity (GGO) curation and the process of GGO entity
normalization. A) Multilayer deep learning NLP architecture for GGO curation. All clinical notes underwent word embedding before being sent to the
bidirectional long-short term memory (Bi-LSTM), an artificial neural network of text classification architecture. The outputs were fed to a conditional
random fields (CRF) model to predict the GGO entities and relations. B) GGO entity normalization. The raw outputs of NLP models (upper panel) were
normalized to standardized concepts (lower panel) for each GGO attribute (middle panel).
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Postprocessing and Entity Normalization
A postprocessor was developed to subsequently postcoordinate
and refine the output. All predicated entities from the raw text
were normalized to standardized concepts based on clinical
experts’opinions and were then ready for downstream analysis.
Figure 3B illustrates examples of extracted GGO feature entities
categorized and normalized for the data analysis. GGO location
was extracted and classified into 2 levels; the first level
corresponded to a high-level indication of right, left, or bilateral
lungs, and the second level corresponded to a more granular
indication of the anatomic location like right upper lobe (RUL),
right middle lobe (RML), or right lower lobe (RLL), left upper
lobe (LUL), and left lower lobe (LLL). We categorized GGO
size into 3 groups: <6 mm, 6 to 20 mm, and >20 mm based on
expert opinion and the practice guidelines for nonsolid nodules.
Potential etiologies found in the notes were classified into 3
subgroups: infectious/inflammatory, malignant, and others,
whereby precancerous conditions such as atypical adenomatous
hyperplasia and adenocarcinoma in situ were included in the
malignant category. Others include all benign pulmonary lesions
like fibrosis/scarring and hemorrhage.

NLP Pipeline Evaluation
The performance of the GGO NLP pipeline was estimated in
the validation set with precision via the positive predictive value
(PPV) and recall via sensitivity, as well as F1-score, a balanced
score between false positives (FPs) and false negatives (FNs).
Recall was calculated as the ratio of the number of entities that
were identified by the pipeline over the total number of the
corresponding entities in the manually annotated gold standard,
such as true positive (TP)/(TP + FN). Precision was measured
as the ratio of the number of distinct entities returned by the
pipeline that was correct according to the gold standard divided
by the total number of entities found by our pipeline, such as
TP/(TP + FP). The F1-score was calculated as the harmonic
mean of PPV and sensitivity, such as 2 × PPV × sensitivity/(PPV
+ sensitivity). The manual annotation and training process was
repeated with additional manually annotated notes until the
model achieved an average F1-score >0.8.

Characterization of GGO Cohorts and Longitudinal
Analysis of GGOs
To demonstrate the utility of our GGO NLP pipeline, the NLP
was deployed to the lung cancer cohort identified in the Mount
Sanai/Sema4 data set to identify a cohort of patients with GGOs.

Since the persistence of GGOs is an important indicator of
malignancy [18,19], a subset of patients with persistent GGOs
was identified by the NLP. Persistence was defined as either
patients having multiple GGO reports, except when the last
report indicated resolution of the GGO, or patients having only
1 GGO report but with an indication of the increase in the size
or quantity or change in solidity. We used the NLP pipeline to
identify GGO features from patient notes over time and assessed
longitudinal changes in GGO features for this cohort.

To evaluate whether our automatically extracted information
was consistent with published findings, such as larger baseline
size or upper lobe location of GGOs being highly associated
with the malignancy [22], we selected patients who had their
first GGO report before lung cancer diagnosis date and
performed a descriptive statistical analysis across the natural
history of GGOs.

Finally, we extracted patients’ demographics and other clinical
characteristics including smoking status, comorbidities, and
family disease history from structured EHR data to characterize
the population with GGOs. All statistical analyses were
conducted using R software (R Foundation for Statistical
Computing) and done both at the GGO level and patient level
depending on the type of assessment.

Results

Patient Characteristics
The distribution of demographic and other clinical characteristics
(ie, smoking status, comorbidities, and family history of cancer
for the overall GGO cohort) over GGO persistency is shown in
Table 1. The average age of the GGO cohort was 68 years;
53.77% (2431/4521) were female, and 52.95% (2394/4521)
were White. Smoking data were not available for half the cohort,
while among those for whom smoking data were available,
37.63% (1701/4521) of patients were either former or current
smokers. Almost 70% (3086/4521) of patients had a history of
cancer, and around 13% (606/4521) had a history of chronic
obstructive pulmonary disease. The majority (3269/4521,
72.30%) of the GGO cohort had persistent GGOs and similar
distributions of patient characteristics as the overall GGO cohort.
Most GGO reports were found in the postlung cancer diagnosis
period (2815/4251, 62.3%) (Figure S1 in Multimedia Appendix
1).

JMIR AI 2023 | vol. 2 | e44537 | p. 6https://ai.jmir.org/2023/1/e44537
(page number not for citation purposes)

Lee et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Distribution of demographic and other clinical characterization of GGOa cohorts.

GGO cohort persistencyOverall (N=4521), n (%)Variables

Nonpersistent GGO (n=1252), n (%)Persistent GGO (n=3269), n (%)

Gender

641 (51.20)1790 (54.76)2431 (53.77)Female

611 (48.80)1479 (45.24)2090 (46.23)Male

Race

694 (55.43)1700 (52)2394 (52.95)White

188 (15.02)603 (18.45)791 (17.50)Other

192 (15.34)530 (16.21)722 (15.97)Black or African American

119 (9.50)244 (7.46)363 (8.03)Unknown

26 (2.08)139 (4.25)165 (3.65)Asian

33 (2.64)50 (1.53)83 (1.84)Native Hawaiian or other Pacific
Islander

0 (0)3 (0.09)3 (0.07)American Indian or Alaska Native

Ethnicity

578 (46.17)1864 (57.02)2442 (54.01)Not Hispanic or Latino

537 (42.89)955 (29.21)1492 (33)Unknown

120 (9.58)399 (12.21)519 (11.48)Hispanic or Latino

17 (1.36)51 (1.56)68 (1.50)Not reported

Smoking status

747 (59.66)1557 (47.63)2304 (50.96)No record of smoking

291 (23.24)996 (30.47)1287 (28.47)Former smoker

116 (9.27)395 (12.08)511 (11.30)Never smoker

97 (7.75)317 (9.70)414 (9.16)Smoker

1 (0.08)4 (0.12)5 (0.11)Passive smoker

Comorbiditiesb

160 (12.78)444 (13.58)604 (13.36)History of COPDc

373 (29.79)924 (28.27)1297 (28.69)History of heart disease

78 (6.23)262 (8.01)340 (7.52)History of chronic kidney disease

9 (0.72)27 (0.83)36 (0.80)History of NMSCd

897 (71.65)2189 (66.96)3086 (68.26)History of any cancer except NM-
SC

Family history

1 (0.08)7 (0.21)8 (0.18)Family history of lung cancer

16 (1.28)63 (1.93)79 (1.75)Family history of any cancer

aGGO: ground-glass opacity.
bEach patient can have more than 1 comorbidity.
cCOPD: chronic obstructive pulmonary disease.
dNMSC: nonmelanoma skin cancer.

Performance of the GGO NLP Pipeline
Among the cohort of 13,216 patients with lung cancer, 4521
(34.2%) had GGO reports, which comprised the “GGO cohort.”
The NLP identified GGO features in 29,496 radiology notes

of 4521 patients. Performance metrics for each GGO feature
are shown in Table 2. The NLP pipeline achieved between 95%
and 100% precision scores, 89% and 100% recall scores, and
92% and 100% F1-scores on different GGO features in the
independent validation set. As an example, the GGO NLP
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algorithm correctly identified 986 pure GGOs out of 987 in the
gold standard and 145 part-solid GGOs out of 146 in the gold

standard with a recall of 99.7% and 99%, respectively.

Table 2. Quality metrics of the NLPa pipeline.

F1-scoreRecallPrecisionGolddPredictcRightbSemantic

0.9910.99989987986GGOe term: pure GGO

0.990.990.99146146145GGO term: part-solid GGO

0.990.9911009999GGO solidity

0.9810.95144151144GGO shape/margin

0.980.980.99667659653GGO size

0.970.960.99160156154GGO quantity

111464646GGO status change: better

0.990.971110107107GGO status change: worsen

0.920.890.95572535510GGO status change: stable

0.990.990.99148147146Potential GGO cause: infectious/inflammatory

0.950.920.99132122121Potential GGO cause: neoplasm

0.950.950.97767371Potential GGO cause: others

0.930.920.95127012201164GGO location

0.9910.97165017001650Temporal

aNLP: natural language processing.
bThe number of accurately extracted entities based on the gold standard.
cThe number of entities predicted from the NLP pipeline.
dManually annotated entity by annotators.
eGGO: ground-glass opacity.

GGO Characteristics
Almost all patients (n=4432, 98%) had at least 1 pure GGO in
their reports, and 11% (n=505) patients had terms related to
part-solid GGOs. As shown in Table 3, GGO location
(3588/4521, 79.36%) was most often mentioned in notes and
captured by NLP followed by potential etiology, GGO size, and
change in GGO status. Over 60% (2277/3588, 63.46%) of
patients had GGOs in both lungs, followed by the right lung
only, with 43.42% (3948/9093 GGOs) of GGOs located in the
upper lobes (Table S1 in Multimedia Appendix 1). Similarly,
43.80% (1095/2500) of patients had more than 1 potential
etiology mentioned in their clinical notes, with the most common
etiology being infectious or inflammatory. Around 10% (31/319)

of patients in the malignant neoplasm etiology group had
precancerous conditions. Among the 2350 patients identified
with data on GGO size, almost half of the patients had GGOs
baseline size in the range category between 6 and 20 mm
(1138/2350, 48.43%), followed by >20 mm (340/2350, 14.5%)
and <6 mm (274/2350, 11.6%) categories. The vast majority
(845/1043, 81%) of patients with reported GGO shape or margin
indicated nodules with irregular or spiculated shape, and most
patients seemed to have multiple GGOs (898/904, 99.3%) rather
than single GGOs (6/904, 0.7%), but data for this attribute were
not frequently captured in notes. The quantity entities, even
when captured, were not described as integer values in most
cases but as concept values such as numerous, scattered, and
several.
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Table 3. Distribution of NLPa-identified GGOb features in patients with GGO findings.

Patients (N=4521), n (%)GGO attributes

4432 (98)Pure GGO

505 (11)Part solid GGO

Locationc

2277 (63.5)Bilateral/both

438 (12.2)Left

831 (23.2)Right

42 (1.1)Unknown/subpleural

Potential etiologyc

795 (31.8)Infectious/inflammatory

319 (12.8)Malignant neoplasm

291 (11.6)Other

1095 (43.8)More than 1 cause

Sizec

274 (11.6)<6 mm

1139 (48.5)6-20 mm

340 (14.5)>20 mm

597 (25.4)More than 1 size

GGO statusc

97 (4.2)Better

1388 (59.4)Stable

288 (12.3)Worse

564 (24.1)More than 1 status

Shape/marginc

845 (81)Irregular/spiculated

63 (6)Rounded/smooth

135 (13)More than 1 shape

Change in GGO sized

240 (16.8)Increase in size

208 (14.6)Decrease in size

976 (68.5)Stable in size

Change in GGO statuse

259 (23)Increased

27 (2.4)Decreased

815 (72.3)Stayed stable

26 (2.3)Resolved

aNLP: natural language processing.
bGGO: ground-glass opacity.
cPatient numbers were calculated from the first notes. GGO status was based on the description in the notes.
dLongitudinal analysis between the first and the last notes.
eLongitudinal analyses between the first and the subsequent notes.

JMIR AI 2023 | vol. 2 | e44537 | p. 9https://ai.jmir.org/2023/1/e44537
(page number not for citation purposes)

Lee et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Longitudinal Analysis
Longitudinal analysis in patients with at least 2 GGO notes
revealed that size increased in 16.8% (240/1424) of patients,
decreased in 14.6% (208/1424), and remained unchanged in
68.5% (976/1424) in their last note compared to the first note
(see Table 3 and Table S2 in Multimedia Appendix 1). The
Figure S2 boxplot in Multimedia Appendix 1 shows GGO sizes
at baseline and latest notes. Patients with GGO size available
for only a single date were excluded from the plot. The largest
GGO size was used if there was more than 1 size reported on
the same day. The median GGO sizes among all relevant patients
were smaller at the end point. We noticed that the patients
starting with a large (>20 mm) baseline GGO size had a more
medium/small GGO size reported at the end point compared
with patients starting with a medium-sized GGO (see the bottom

right corner split by the red lines in Figure S2 in Multimedia
Appendix 1).

A similar longitudinal analysis was performed to assess changes
in GGOs over time, including indications in notes about changes
in size and/or solidity or any descriptions of change. For this
analysis, patients with more than 2 notes were included, and
the most severe status change with the order of
increased>stable>decrease was selected if more than 1 status
change was reported in a day. Most patients (815/1127, 72.3%)
had notes reporting a stable status of their GGOs, and “stable”
was the only status reported for 40% (450/1127) of patients.
The sequence of GGO status changes in the first 10 notes is
depicted in Figure 4. For patients reported as stable, the
subsequent report was usually stable again, followed by an
increased status.

Figure 4. Analysis of ground-glass opacity (GGO) change in longitudinal notes. GGO status change (size and/or solidity) in the first 10 notes is
visualized in the Sankey diagram. If a report had multiple status changes, the worst status change was selected. The majority of GGO stayed stable.
Dec: decreased; Inc: increased; Res: resolved; Sta: stable.

Analysis of GGO Features and Interval Days Between
GGO and Lung Cancer in the “Pregroup”
To examine whether our data are aligned with current knowledge
about the impacts of size and location of nodules on lung
malignancy, we analyzed GGOs in patients who had their first
GGO reports before the lung cancer diagnosis date (called
pregroup hereafter). Of 4521 patients with GGOs, 1706 (37.7%)
were stratified into the pregroup. Among the 1706 pregroup
patients, 853 (50%) patients had GGOs that can be classified
exclusively into 1 baseline size group (<6 mm, 6-20 mm, or
>20 mm). Table 4 shows the interval days between the first
GGO report dates and the lung cancer diagnosis dates in each
size group. We noted that 78% (136/174), 58% (319/550), and
47.3% (61/129) of patients had lung cancer diagnosis within 6

months in the >20 mm, 6 to 20 mm, and <6 mm groups,
respectively. On the contrary, 16.6% (29/174), 31.5% (173/550),
and 39.5% (51/129) of patients developed lung cancer after 1
year in the >20 mm, 6 to 20 mm, and <6 mm groups,
respectively. Next, we investigated the location of GGOs in the
pregroup. A total of 861 (50.5%) patients had a GGO location
that could be classified into 1 location group (LLL, LUL, RLL,
RML, or RUL). The upper lobe location was more frequently
detected compared with the lower lobe location. Among the
patients, 62.6% (539/861) had GGOs in the upper lobes, either
RUL (336/861, 39%) or LUL (203/861, 23.6%). Moreover,
27.4% (236/861) of patients had GGOs in the lower lobes, either
RLL (142/861, 16.5%) or LLL (94/861, 11%). The remaining
10% (86/861) of patients had GGOs in the middle lobe (RML).

Table 4. Patients in each size category at the different timelines from the first ground-glass opacity (GGO) notes to lung cancer diagnosis.

Total, n (%)>3 years, n (%)1 year to 3 years, n (%)6 months to 1 year, n (%)<6 months, n (%)Size/timeline

129 (100)22 (17)29 (22.5)17 (13.2)61 (47.3)<6 mm

550 (100)79 (14.4)94 (17.1)58 (10.5)319 (58)6-20 mm

174 (100)15 (8.6)14 (8)9 (5.2)136 (78.2)>20 mm
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Discussion

Principal Findings
To understand the nature of GGOs in lung cancer cohorts, we
constructed a GGO NLP pipeline in this study. Our data
demonstrated high accuracy and efficiency of GGO feature
identification for both pure GGOs and part-solid GGOs when
this information was captured in notes. By implementing our
model, we achieved automated extraction and analysis of GGO
features in a huge volume of clinical notes, which enabled the
identification of patients with GGOs for whom other clinical
data were also available. Our model also enabled analysis of
changes in GGO features over time by leveraging available
longitudinal data at scale.

Similar to findings from Zheng et al [4] that utilized data from
the community practices, we found that the laterality of the
GGO nodules was more frequently documented in notes than
other features like margins and shape. Hence, our study further
supports the need for potentially standardizing the
documentation of CT findings in radiology reports and progress
notes. Early detection of GGOs and understanding of GGO
features are critical for clinical decision-making, and they enable
earlier intervention [51]. GGO status changes, including
increased size and solidity, were described as critical factors
for making a clinical decision on the resection [22]. Although
a decrease in average nodule size has been observed across chest
CT reports in general over time [4], in our study, we were able
to use longitudinal data to track nodule changes specifically in
each patient over time. Further analysis of whether this finding
is related to treating larger GGOs can provide a better
interpretation of this result and insights into GGO treatment. In
our study, we also observed that the majority of patients with
a GGO larger than 20 mm were diagnosed with lung cancer in
the 6 months following the GGO finding.

Although GGO solidity information is one of the most critical
prognostic factors [52], except for the pure or part-solid GGO
information, additional GGO solidity information—such as
absolute solid component sizes or solidity status changes—was
not automatically extracted in previous NLP studies. In this
study, we showed the feasibility of tracking the solidity status
changes, as captured in the notes, but changes in every nodule
may not be reflected. The solidity status changes including
density change were curated by comparing the baseline and last
note GGO terms. Our data revealed that most patients with
solidity change information showed either a solidity increase
(from pure to part solid) or stayed stable.

The quantity of GGO nodules is another crucial piece of
information. It has been found that 1 to 4 GGO in a single note
can be cancerous with no significant difference between 1 to 4
nodules, but ≥5 is more likely infectious/inflammatory in the
etiology [53,54]. In many notes, the entities indicating the total

number of GGO were not found. Radiologists described the
number of GGO nodules as concepts like numerous or scattered
rather than giving the actual number of GGO nodules when
there are multiple GGO. Although we classified the number of
GGO as multiple or single in this study, further subtyping the
number of GGO nodules as 1 to 4 or ≥5 in future work by
counting each GGO term extracted and their related attributes,
such as location and size, could provide better insights.

Strengths and Limitations
Although NLP technologies have significantly impacted
real-world evidence generation, there remain unmet needs in
clinical data retrieval such as relation recognition, longitudinal
analysis, and providing insights rather than extracting data only,
as Sheikhalishahi et al [39] described in their systematic review.
In our deep learning model, we showed the feasibility of relation
extraction rather than isolated entity extraction only and the
temporal reasoning for the longitudinal analysis of patient-level
data analysis. Transformer models such as BERT-based models
can be examined together in future work.

There are several limitations to our study. We analyzed the
GGO data in a lung cancer cohort for the initial feasibility
assessment. However, our NLP pipeline can be easily expanded
to other cohorts such as non–lung cancer cohorts with GGO
reports in future studies, which provides more opportunities
such as analyzing the associated risk factors of developing lung
cancer from GGO. Additionally, a deeper analysis of pre- and
postdiagnosis patient journeys can provide more insights into
preventing and detecting lung malignancy. In radiology reports
with multiple GGOs, tracking individual GGOs across reports
over time for the longitudinal analysis of individual GGOs is
challenging. Further efforts for identifying and monitoring each
GGO can give us better insights into each GGO’s nature and
outcome. NLP is naturally limited by its ability to capture only
documented information. However, Zheng et al [4] reported
trends of increasing documentation of smaller nodules and their
features in radiology reports. Given this fact, NLP can be
utilized as a powerful tool to study the natural history of GGOs
and identify cohorts of interest for further analysis or for more
in-depth radiomics work.

Conclusions
Our study demonstrates that the deep NLP model can
automatically extract granular GGO features, when documented,
at scale. The model could be deployed further to large volumes
of longitudinal free-text reports to continuously update prognosis
as an individual’s disease course unfolds and leverage the
longitudinal data with treatment patterns, clinical outcomes,
and risk factors for various applications. The AI-enabled model
offers a potential advantage as an automated clinical decision
support tool to identify cohorts of interest for radiomics and
optimize resource utilization for cancer prevention, early
detection, and effective management.
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