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Abstract

Background: With the growing volume and complexity of laboratory repositories, it has become tedious to parse unstructured
data into structured and tabulated formats for secondary uses such as decision support, quality assurance, and outcome analysis.
However, advances in natural language processing (NLP) approaches have enabled efficient and automated extraction of clinically
meaningful medical concepts from unstructured reports.

Objective: In this study, we aimed to determine the feasibility of using the NLP model for information extraction as an alternative
approach to a time-consuming and operationally resource-intensive handcrafted rule-based tool. Therefore, we sought to develop
and evaluate a deep learning–based NLP model to derive knowledge and extract information from text-based laboratory reports
sourced from a provincial laboratory repository system.

Methods: The NLP model, a hierarchical multilabel classifier, was trained on a corpus of laboratory reports covering testing
for 14 different respiratory viruses and viral subtypes. The corpus includes 87,500 unique laboratory reports annotated by 8 subject
matter experts (SMEs). The classification task involved assigning the laboratory reports to labels at 2 levels: 24 fine-grained
labels in level 1 and 6 coarse-grained labels in level 2. A “label” also refers to the status of a specific virus or strain being tested
or detected (eg, influenza A is detected). The model’s performance stability and variation were analyzed across all labels in the
classification task. Additionally, the model's generalizability was evaluated internally and externally on various test sets.

Results: Overall, the NLP model performed well on internal, out-of-time (pre–COVID-19), and external (different laboratories)
test sets with microaveraged F1-scores >94% across all classes. Higher precision and recall scores with less variability were
observed for the internal and pre–COVID-19 test sets. As expected, the model’s performance varied across categories and virus
types due to the imbalanced nature of the corpus and sample sizes per class. There were intrinsically fewer classes of viruses
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being detected than those tested; therefore, the model's performance (lowest F1-score of 57%) was noticeably lower in the detected
cases.

Conclusions: We demonstrated that deep learning–based NLP models are promising solutions for information extraction from
text-based laboratory reports. These approaches enable scalable, timely, and practical access to high-quality and encoded laboratory
data if integrated into laboratory information system repositories.

(JMIR AI 2023;2:e44835) doi: 10.2196/44835
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Introduction

Clinical laboratory data account for a large proportion of data
stored in electronic health record systems worldwide and present
a wealth of information vital for evidence-based
decision-making and public health improvement [1,2].
Laboratory information systems record, manage, and store
laboratory test data to facilitate reporting to clinicians and
jurisdictional laboratory information repositories [3]. These
repositories often include test orders and results from various
laboratory service providers, such as hospitals, public health
agencies, and private companies, and are populated as part of
clinical care.

Several factors limit the secondary use of laboratory data for
other purposes. The most important are concerns about the
quality of the data, lack of standardization, and difficulty
extracting the needed information [4,5]. Laboratory data vary
over time due to evolving standards of care and changing
population demographics. Furthermore, specific categories of
laboratory data are reported as free text in an unstructured format
with no standard vocabulary in the actual contents, which adds
more complexity for their secondary uses [1]. Therefore, efforts
are needed to eliminate redundancies, extract the necessary
information, and derive accurate interpretations from laboratory
data.

Our institute, ICES, has developed a specific information
extraction workflow to manage the interpretation of a large
volume of provincial clinical laboratory results, as shown in
Figure 1. The workflow, called a semi–rule-based workflow,
relies on time-consuming and operationally resource-intensive
approaches, including a library of rule-based and handcrafted
tools. These tools are explicitly programmed for various
laboratory result categories and must be refined continually. To
address challenges with our existing semi–rule-based workflow
and automate the exhaustive information retrieval task, we built
a deep learning–based natural language processing (NLP) tool.

The objective of this study was to assess the feasibility of our
deep learning–based NLP model and evaluate its performance
relative to the semi–rule-based workflow.

The development of NLP methods is essential to automatically
transform laboratory reports into a structured representation
that scales data usability for research, quality improvement, and
clinical purposes [6-12]. NLP enables automated extraction of
information, and its use in the clinical domain is growing, with
increasing uptake in various applications such as biomedical
named entity recognition [11,12], summarization [10], and
clinical prediction tasks [9]. More recently, deep learning
approaches such as convolutional neural networks, recurrent
neural networks (RNNs), and RNN variants such as bidirectional
long short-term memory (Bi-LSTM) have been successfully
applied to clinical NLP tasks [10,13-16]. They are now
considered the baseline techniques for various information
extraction tasks [11,12,17-20].

In this study, we focused on automating the retrieval of
information related to respiratory viruses from the laboratory
repository of Ontario, Canada’s most populous province.
Respiratory viruses account for a substantial burden of disease
globally [21,22], causing both respiratory and nonrespiratory
illnesses [23]. It is impossible to distinguish which respiratory
virus is causing infection based on clinical examination alone,
necessitating laboratory testing for confirmation. We sought to
(1) implement a deep learning–based NLP predictive model to
extract respiratory virus information from the laboratory
repository and (2) evaluate the generalizability and robustness
of predictions (extracted information) across different categories
of respiratory viruses and test sets. Our study findings can
inform public health practitioners and researchers about using
NLP approaches to empower and facilitate access and retrieval
of information from a collection of text-based laboratory reports
without any time-consuming handcrafted rule-based approaches.
This can facilitate the development of a scalable and easily
deployable automated information extraction tool.
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Figure 1. Semi–rule-based workflow versus fully automated deep learning natural language processing (NLP) approach. Semi–rule-based relies on
time-consuming and operationally resource-intensive approaches for the information extraction task. The corpus was derived from the Ontario Laboratories
Information System (OLIS). Following basic text-cleaning steps, around 87,500 unique laboratory reports were collected and included in our corpus to
be used in parallel by both semi–rule-based and deep learning NLP approaches. Semi–rule-based workflow is a multistep procedure where all the unique
reports were grouped by Logical Observation Identifiers Names and Codes (LOINC), year, and location in the first step. In the second step, subject
matter experts (SMEs) created a list of dictionaries for terms related to the different viruses and strains and a set of if-then-else rules to generate
interpretations and extract information from each laboratory report. The dictionaries and if-then-else rules were packaged as a python library called the
rule-based text parser. Finally, the parser was improved based on inputs from 3 SMEs in an iterative manner.

Methods

Study Design
The data set used in this study was a collection of laboratory
reports that covered testing for 14 different respiratory viruses
and viral subtypes (Table 1), most of which were in the form
of texts. The reports were text-based and required cleaning,
parsing, and encoding.

The data set was derived from the Ontario Laboratories
Information System (OLIS). OLIS has over 100 contributors,
which comprise hospital, commercial, and public health
laboratories, adding to the complexity and variability of the
clinical data. These data were analyzed at ICES.

The automated encoding of laboratory testing reports into
respiratory viruses is framed as a multilabel hierarchical
classification task to address the needs of knowledge users in

our institute in distinguishing respiratory viruses. According to
our users, information at 2 resolution levels is needed: high and
low. Therefore, we defined 2 levels of a classification hierarchy,
and at each level, the classification was multilabel. Each input
text sequence was assigned to a nonempty subset of various
labels, as shown in Figure 2. In the first level of the hierarchy,
the classifier assigned outputs to 24 mutually nonexclusive
fine-grained labels. The fine-grained labels were reassigned to
6 coarse-grained sets of labels in the second level of the
classification hierarchy. In this work, “sequence” refers to the
input laboratory reports to the NLP model, which may be single
or several sentences. A “label” also refers to a status of a specific
virus or strain being tested or detected.

To summarize, the information extraction for an input text
sequence involved retrieving virus types and identifying their
status as being tested and/or detected. Figure 2 illustrates a
running example of the input and output of the deep
learning–based NLP model.
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Table 1. Details of the respiratory viruses embedded in text-based laboratory reports derived from the Ontario Laboratories Information System (OLIS).

Specimens may be tested for 1 or more of the following viruses: influenza, RSVa, adenoviruses, seasonal coronaviruses, enterovirus/rhinoviruses,

parainfluenza viruses, HMVb, and bocavirusc.

Detectedf,

n (%)

Testede,

n (%)

Mention countsd,

n (%)

Viruses

2 (1)45 (6)21,614 (7)Adenovirus

5 (3)96 (13)5112 (2)Bocavirus

9 (5)95 (13)9128 (3)Coronavirus (seasonal)

35 (20)78 (11)49,282 (16)Any influenza

30 (18)80 (11)44,753 (15)Influenza A

17 (10)N/Ag6797 (2)Influenza A H1

18 (10)N/A9929 (3)Influenza A H3

12 (7)78 (11)40,840 (13)Influenza B

19 (11)92 (13)13,262 (4)Enterovirus/rhinovirus

3 (2)46 (6)21,194 (7)HMV

4 (2)46 (6)21,584 (7)Parainfluenza

11 (6)68 (9)38,080 (12)Any RSV

2 (1)N/A11,227 (4)RSV A

3 (2)N/A11,094 (4)RSV B

170 (100)724 (100)303,896 (100)Total

aRSV: respiratory syncytial virus.
bHMV: human metapneumovirus.
cThe testing modalities employed include single and multiplex polymerase chain reaction (PCR), direct fluorescent antibody, viral culture, and enzyme
immunoassay rapid antigen tests. Repeated testing may involve multiple laboratories and testing modalities.
dRepresents the counts of specific virus terms from all the distinct laboratory reports (unique sequences). It does not provide any clinical information
regarding the prevalence of the aforementioned viruses in Ontario.
eRepresents the proportion of mentions flagged as tested by the parser.
fRepresents the proportion of mentions flagged as positively detected by the parser. Note that tested and detected are not mutually exclusive; we first
determined whether it was tested for (ie, has e a result) and then flagged it as detected if the result is positive. Detected is a subset of the tested.
gN/A: not applicable. Note that the subtypes of influenza A and RSV were only analyzed for detection but not testing, as the scope of the planned
analyses for using the respiratory virus data was primarily focused on the larger virus categories.
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Figure 2. The fully automated deep learning–based natural language processing (NLP) approach is a hierarchical-based multilabel classification task
that retrieves virus (or strain) types and identifies their status as being tested and/or detected. Note that a sequence refers to the input laboratory reports
to the NLP approach, which may be a single or several sentences. A label also refers to the status of a specific virus or strain (tested or detected).
“influenza is tested” implies it was tested for any influenza type; however, the total number of “influenza is tested” is greater than the total number of
“influenza A tested + influenza B tested” since not all influenza types are mentioned. The same applies to “influenza is detected” and “RSV is tested.”
HMV: human metapneumovirus; NAAT: nucleic acid amplification test; PCR: polymerase chain reaction; RSV: respiratory syncytial virus.

Corpus Development Description

About OLIS
To create the corpus for this study, over a million observations
corresponding to 99 unique Logical Observation Identifiers
Names and Codes (LOINC) were pulled from OLIS, and the
text-based laboratory results were extracted from the
observations. OLIS was created and is managed by Ontario
Health, from whom ICES receives an ongoing data feed. At the
time of writing this paper, the OLIS data held at ICES consists
of >9000 unique LOINC and >5 billion laboratory observations
across 150 laboratory test centers in Ontario. As such, the
clinical laboratory data have considerable complexity and
variability.

Development of the Ground Truth
In this study, we leveraged the semi–rule-based workflow, an
information extraction workflow relying on a rule-based and
handcrafted tools library, to create ground truth for the deep
learning model. A group of 8 SMEs was engaged in performing
the required tasks in the workflow; they comprised 2 infectious
disease epidemiologists (authors JCK and SAB), 2 infectious
disease microbiologists (AM and SM), a genomic specialist

(AMA), a research methodologist (MA), a data analyst (BC),
and a machine learning scientist (ED). These tasks included
basic text cleaning, quality checking, and rule-based algorithm
development for interpreting reports, as shown in Figure 1. In
our institute, LOINC are mainly used to filter OLIS observations
into relevant groupings (eg, respiratory viruses) and not for
encoding and interpretation since they are not always used
appropriately by those entering the data into OLIS.
Consequently, the SMEs identified a list of 99 LOINC related
to respiratory viruses, and all the laboratory reports in OLIS
corresponding to these LOINC were retrieved. The workflow
consists of 3 tasks, which are detailed in the subsequent
paragraphs.

First, the data analyst and data scientist (authors BC and ED)
scanned the text strings. After performing basic text cleaning
(eg, removing punctuations, stop words, case normalization,
lemmatization, and stemming) and removing duplicates, they
created a meaningful list of 87,500 unique laboratory reports.

Next, the unique reports were grouped by laboratory and facility
names, LOINC, and year. Then, 3 SMEs, including 2 analysts
and an infectious disease specialist, manually reviewed multiple
samples per group and created a knowledge base and sets of
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if-then-else rules to generate interpretations for each laboratory
report. Specifically, the knowledge base consisted of dictionaries
for terms related to the different viruses and strains. The
if-then-else rules provided instructions for grouping virus terms
with respective results packaged as a Python library, which we
refer to in this study as the rule-based text parser.

Following the initial development of the rule-based text parser,
it was improved based on inputs from 3 other SMEs in an
iterative manner. The text parser was applied to the entire corpus
to generate annotations at each iteration. Next, the data analyst
manually reviewed the interpretations and flagged unclear results
to be reviewed by SMEs at another iteration. In addition, a small
random sample of unflagged test results was provided to SMEs
to be reviewed at this iteration. The SMEs subsequently
reviewed the list and provided new rules to be added to the text
parser. This procedure was repeated until there were no more
flagged test results.

Model Development and Evaluation

NLP Model Description
The deep learning–based NLP model consisted of 3 components
that were trained jointly: the word embedding layer, the
Bi-LSTM layer, and the output layer. The word embedding
layer computed a vector representation of each word in the text
as a combination of a character-based representation learning
model [24,25] and word vectors initialized with pretrained global

vectors (GloVe) embeddings [26]. The embedding layer was
coupled with a Bi-LSTM on top of it to generate conceptually
and contextually meaningful representations of words. An output
layer of a size equal to the number of distinct labels was placed
on top of Bi-LSTM, and the last hidden state of the Bi-LSTM
was projected into the output layer.

Model Evaluation
The model’s robustness and generalizability were evaluated
internally and externally on various test sets, as shown in Table
2. The internal test set used for model training was a randomly
sampled subset representing 10% (n=6719) of the laboratory
reports from OLIS from 2007 to 2018. The performance of the
model was also evaluated on 2 out-of-time test sets, including
samples from an entirely different time period: (1) a large
pre–COVID-19 (2019) sample and (2) a small post–COVID-19
(2020) sample. A separate test set, denoted as the external test
set, included samples up to 2019 from 2 separate laboratories
(testing sites not included in the development of the model) and
was used to assess the external generalizability of the model.
F1-scores, along with precision and recall scores, were calculated
for the model’s predictions. A 2-tailed paired t test was used to
determine whether there was a statistically significant difference
in the F1-scores between classes and test sets. In addition, 95%
CIs were calculated for the precision and recall scores to
quantify the uncertainty of the model's estimates.

Table 2. Data set statistics for laboratory descriptions of the development and test sets.

Any virusAny RSVc virusAny influenza virusbSequencesa, n
(%)

Cohorts

Tested, n (%)Detected, n (%)Tested, n (%)Detected, n (%)Tested, n (%)Detected, n (%)87411 (100%)Total

Development set (2009-2018)

40,652 (46)22,284 (25)27,196 (31)3959 (4)35,292 (40)13,792 (16)60,471 (69)Training set

4534 (5)2541 (3)3009 (3)428 (0.5)3941 (4)1604 (2)6719 (8)Internal test set

Out-of-time test sets

8643 (10)4745 (5)5957 (7)706 (0.8)6903 (8)3019 (3)15,908 (18)Pre–COVID-19
(2019)

27 (0.03)<6 (0.006)11 (0.01)<6 (0.006)11 (0.01)N/Ad100 (0.01)Post–COVID-19
(2020)

3237 (4)1431 (2)2546 (3)261 (0.2)3020 (34)864 (1)4213 (5)External test set
(2009-2018)

aRepresents the counts of unique sequences; a sequence refers to the input laboratory reports to the NLP model, which may be a single sentence or
several sentences.
bDetected and tested represent the aggregation of the proportion of any mentions of the virus terms from the total unique sequences in the data set.
cRSV: respiratory syncytial virus.
dN/A: not applicable.

Ethical Considerations
The use of the data in this study was approved by the ICES
Privacy and Legal Office. Projects that solely use data collected
by ICES under section 45 of Ontario’s Personal Health
Information Protection Act (PHIPA) are exempt from research
ethics board review. Section 45 of the PHIPA authorizes ICES
to collect personal health information, without consent for the

purpose of analyzing or compiling statistical information
concerning the management, evaluation, monitoring, and
allocation of resources to or planning for the health system.

Results

The development corpus, including training and test sets,
included 87,500 sequences involving ~5 million tokens. The
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summary statistics for the data sets are shown in Table 2. The
NLP model was implemented in TensorFlow on an NVidia
Tesla (Nvidia) graphics processing unit, and Adam optimization
was used as the optimization algorithm (more details in
Multimedia Appendix 1). The maximum sequence length was
fixed to 400 words. The model was trained several times with
random initialization on the development corpus, and the results
of the top 10 best-performing models on the test sets are
presented in this paper. The results for the fine-grained
classification in the first level of the hierarchy are presented in
Table 3 and aggregated by microaveraging across the 24
fine-grained labels. Detailed performance for each label is also
shown in Multimedia Appendix 2. The F1-score performance
of the model in the second level of the hierarchy, coarse-grained
multilabel classification, for “any influenza,” “any RSV”
(respiratory syncytial virus), and “any virus” are shown in Table
3. In addition, the variation of the model’s precision and recall
scores using bar plots and 95% CIs are shown in Figure 3.

As expected, the performance on the internal test set was better
than the out-of-time (pre–COVID-19) and external test sets. In
this regard, the F1-score results of the test sets were compared,
and noticeable differences were observed between the pairs of
internal and out-of-time (pre–COVID-19) test sets, internal and
out-of-time (post–COVID-19) test sets, and internal and external

test sets. The out-of-time (post–COVID-19) test set was a small
and imbalanced sample, including 100 sequences with <6
mentions of any virus as being detected. The sample included
12 sequences labeled as being tested for coronavirus, and our
model correctly classified them with an F1-score of 0.67.
Regarding the degree of uncertainty in the estimates, fewer
variations in precision and recall scores are observed for the
internal and out-of-time test sets (pre–COVID-19). On the
contrary, the estimates on the out-of-time (post–COVID-19)
and external test sets have larger CIs.

In general, the models’ estimates on any test sets were variable
across classes with varying degrees of uncertainty. The averaged
F1-scores of the estimates for both fine-grained (microaveraged)
and “coarse-grained any virus” classes were above 90% on the
internal test set. The F1-score for the “coarse-grained any
influenza detected” on all test sets was above 91%. Overall, the
performance for coarse-grained detected classes was lower than
for coarse-grained tested classes. Among the detected classes,
the performance for “any influenza virus” was evidently higher
than “any RSV virus.” The same result was observed between
“any influenza virus” and “any RSV virus.” Comparably, larger
CIs are evidenced for the “coarse-grained any RSV detected”
estimates.

Table 3. The prediction results (F1-score) of the top 10 best-performing models on the in-time, out-of-time, and external test sets. The fine-grained
results are aggregated by microaveraging across 24 fine-grained labels.

External test setOut-of-time test setaInternal test setVariables

(Post–COVID-19)(Pre–COVID-19)

96.23 (0.38)60.45 (7.99)94.31 (0.59)97.3 (0.25)Fine-grained microaveraged, mean (SD)

Coarse-grained any influenza virus, mean (SD)

91.11 (2.14)N/Ac94.47 (1.04)97.64 (0.28)Detectedb

98.94 (0.1)69.8 (4.43)97.26 (0.45)98.71 (0.15)Testedb

Coarse-grained any RSVd, mean (SD)

57.68 (12.53)48.33 (44.76)81.56 (3.63)90.94 (1.7)Detected

98.02 (0.47)95.6 (5.69)96.18 (0.9598.16 (0.34Tested

Coarse-grained any virus, mean (SD)

82.83 (3.27)31.71 (9.44)92.31 (1.59)95.01 (1)Detected

98.59 (0.2)75.87 (4.82)96.3 (0.35)98.4 (0.17Tested

aThe out-of-time test set (post–COVID-19) is a very small and imbalanced sample, including only 100 sequences with no mentions of any virus detected.
bDetected and tested represent the aggregation of the proportion of any mentions of the virus terms from the total unique sequences in the data set.
cN/A: not applicable.
dRSV: respiratory syncytial virus.
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Figure 3. The precision and recall scores of the predictions of the top 10 best-performing models with 95% CIs. The fine-grained results are aggregated
by microaveraging across 24 fine-grained labels. RSV: respiratory syncytial virus.

Discussion

Principal Findings
In this study, we demonstrated an implementation and evaluation
of an NLP model for an automated and reductive information
extraction task in a province-wide laboratory data repository.
Our results suggest that the NLP model is a promising approach
for information extraction from text-based laboratory reports
as an alternative method to address the time-consuming and
operationally resource-intensive nature of handcrafted rule-based
models.

Overview of Model Findings

Generalization Across Various Test Sets
Overall, the NLP solution, which was a hierarchical multilabel
classifier, performed well on the internal, out-of-time
(pre–COVID-19), and external (different laboratories) test sets.
Except for the internal test sets, the other test sets were sourced
from either a more recent time period or other laboratory sites,
but the model was able to generalize well with microaveraged
F1-score >94% across all classes. The performance of the model
on the other out-of-time (post–COVID-19) test set was
satisfactory; however, due to its small sample size with many
underrepresented classes, it was not possible to draw any
conclusion. The out-of-time (post–COVID-19) test set was
pulled from the 2020 cohort to simulate a nonstationary
production environment for observation.

Stability and Performance Variation Between Classes
In general, the model’s performance on any test sets was variable
across classes and virus types due to the imbalanced nature of
the corpus and sample sizes per class. There were intrinsically

fewer classes of viruses detected compared with those tested.
Therefore, the model’s performance was noticeably lower in
the “detected” cases. Among the detected cases, the lowest
performance was observed for RSV, and the highest
performance among the tested cases was observed for influenza.
Moreover, more considerable variations were observed for the
positive predictive and sensitivity values of the detected classes,
particularly for the “any RSV virus detected” class.

Comparison With Prior Work
Deep learning–based NLP approaches have demonstrated
efficacy in many clinical NLP tasks and have thoroughly
permeated the informatics community. The existing body of
literature has mainly focused on using deep learning models to
extract and interpret cancer-related clinical concepts [17,27,28]
from free text or other clinically meaningful entities from
radiology reports or hospital notes [10,15]. At the time of writing
this paper, only 1 study has explored the use of an NLP system,
Topaz, for the automated extraction and classification of
influenza-related terms from text emergency reports [29-31].
To our knowledge, our study is the first to explore using deep
learning models for efficient processing and extraction of
clinically meaningful knowledge pertaining to respiratory
viruses from a laboratory repository.

One strength of the NLP approach used in this study is its
scalability for various text-based laboratory scenarios. As the
size and complexity of laboratory data grow, so does the need
for scalable and reusable tools for automated extraction of
knowledge from vast amounts of clinical notes and quick
generalization from 1 task to another. Manual processing of
laboratory reports severely limits the utilization of rich
information embedded in the data repositories and makes the
process of data cleaning and quality improvement prohibitively
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expensive. Usually, the rules learned from cleaning a single
collection of laboratory reports show little generalizability
toward other collections. On the other hand, deep learning–based
NLP algorithms are well poised to scale the information
extraction process. Although building deep learning–based NLP
models is computationally intensive and memory demanding,
the benefit-to-cost ratio of these models in clinical settings will
continue to increase.

Limitations
Although this deep learning model promises great potential for
digitized health data, putting the model into production and
prospectively validating operational data is as crucial as model
building and a critical step in assessing and ensuring its
operational effectiveness. However, we expect the model’s
performance to deteriorate as it goes into production, potentially
impacting data quality. Moving forward, we plan to run a
silent-period production validation to further prospectively
explore the model’s performance. During the silent period, our
model will be integrated into the data quality and management
workflow for the laboratory data repository, and the outputs
will be internally validated in a fashion that would avoid
exposure to data users. We also plan to run rigorous evaluation
and continuous refinement of the model in the silent period to
assess its performance better before it enters production.
Transformers heralded a new era in the NLP field and have
shown to be very successful in many tasks. Our future direction
includes improving the performance of our NLP pipeline by
adding transformer models.

Another significant limitation of this study is that the model
was only trained on respiratory virus laboratory reports. Even
within that collection, some categories were naturally
underrepresented, which impacted the model's generalizability.
Therefore, during the silent period, more records from a diverse
set of laboratory reports from various categories will be
annotated and made available to the model, and the model will
be updated accordingly. Finally, this study lacks explainability,
which could limit the adoption of our deep learning–based
models in future applications. Therefore, we plan to develop
parallel pipelines that help explain the representations of the
laboratory reports and the classifier’s decision boundary. 

Conclusion
The health industry is rapidly becoming digitized, and
information extraction is a promising method for researchers
and clinicians seeking quick retrieval of information embedded
in texts. This study described developing and validating a deep
learning–based NLP approach to extract respiratory virus testing
information from laboratory reports. We demonstrated that our
system could classify and encode large volumes of text-based
laboratory reports with high performance without any of the
previous time-consuming handcrafted feature engineering
approaches. Taken together, the findings of this study provide
encouraging support that NLP-based information extraction
could become an important component of laboratory information
repositories to assist researchers, clinicians, and health care
providers with their information and knowledge management
tasks.
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