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Abstract

Background: The use of patient health and treatment information captured in structured and unstructured formats in computerized
electronic health record (EHR) repositories could potentially augment the detection of safety signals for drug products regulated
by the US Food and Drug Administration (FDA). Natural language processing and other artificial intelligence (AI) techniques
provide novel methodologies that could be leveraged to extract clinically useful information from EHR resources.

Objective: Our aim is to develop a novel AI-enabled software prototype to identify adverse drug event (ADE) safety signals
from free-text discharge summaries in EHRs to enhance opioid drug safety and research activities at the FDA.

Methods: We developed a prototype for web-based software that leverages keyword and trigger-phrase searching with rule-based
algorithms and deep learning to extract candidate ADEs for specific opioid drugs from discharge summaries in the Medical
Information Mart for Intensive Care III (MIMIC III) database. The prototype uses MedSpacy components to identify relevant
sections of discharge summaries and a pretrained natural language processing (NLP) model, Spark NLP for Healthcare, for named
entity recognition. Fifteen FDA staff members provided feedback on the prototype’s features and functionalities.

Results: Using the prototype, we were able to identify known, labeled, opioid-related adverse drug reactions from text in EHRs.
The AI-enabled model achieved accuracy, recall, precision, and F1-scores of 0.66, 0.69, 0.64, and 0.67, respectively. FDA
participants assessed the prototype as highly desirable in user satisfaction, visualizations, and in the potential to support drug
safety signal detection for opioid drugs from EHR data while saving time and manual effort. Actionable design recommendations
included (1) enlarging the tabs and visualizations; (2) enabling more flexibility and customizations to fit end users’ individual
needs; (3) providing additional instructional resources; (4) adding multiple graph export functionality; and (5) adding project
summaries.

Conclusions: The novel prototype uses innovative AI-based techniques to automate searching for, extracting, and analyzing
clinically useful information captured in unstructured text in EHRs. It increases efficiency in harnessing real-world data for opioid
drug safety and increases the usability of the data to support regulatory review while decreasing the manual research burden.
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Introduction

Postmarketing drug safety surveillance at the Center for Drug
Evaluation and Research (CDER) of the US Food and Drug
Administration (FDA) aims to detect, characterize, monitor,
and prevent adverse drug reactions (ADRs) for FDA-approved
drugs and therapeutic biologic products. Biomedical resources
used to detect adverse drug event (ADE) safety signals include
clinical trials, spontaneous adverse event (AE) reports submitted
to the FDA Adverse Events Reporting System (FAERS),
published scientific reports in the literature, and others. The
FAERS database compiles AE and medication error reports
submitted to the FDA to support postmarket drug safety
monitoring. FAERS monitoring has yielded information on rare
ADEs, but the information is limited by underreporting [1,2].
Multimodal approaches to pharmacovigilance using multiple
biomedical resources may offer improved drug safety signal
detection compared to reliance on single resources [3].

Electronic health records (EHRs) are a rich source of real-world
information that may potentially serve as a new complementary
drug safety resource. Although not specifically created to
document ADEs, the EHR may provide information about
product side effects, including those that occur a prolonged time
following initial drug exposure [4], and may contribute to
assessments of the safety of generic and pediatric drug products
[5,6]. EHRs have been explored to complement ADE signal
identification from spontaneous AE reports [7].

Published scientific reports describe various natural language
processing (NLP) and artificial intelligence (AI)-based
approaches to analyzing text from EHRs for ADE detection and
pharmacovigilance. Named entity recognition (NER) to identify
drug and AE mentions in text followed by extraction of the
relationships between those entities is a critical technical
challenge in building successful analytical algorithms. In
general, keywords, rule-based algorithms, and machine learning
methods have been used for case detection [8]. Some early
studies used trigger phrases to screen the text of discharge
summaries for AE concepts [9,10]. Established NLP algorithms
applied to AE detection include MedLEE, which identifies
clinical concepts and cross-maps them to Unified Medical
Language System (UMLS) concepts [11]; MetaMap, which
processes biomedical text and maps it to the UMLS [12]; and
Clinical Text Analysis and Knowledge Extraction System
(cTAKES), an NLP system that incorporates rules and machine
learning [13]. More recent studies use multiple NLP models,
including long short-term memory (LSTM), conditional random
field (CRF), support vector machines (SVMs), and bidirectional
encoder representations from transformers (BERTs) [14]. Shared
task challenges designed to promote advances in NLP for drug
safety and ADE detection from EHRs have been conducted in
recent years, including the MADE 1.0 challenge [15] and the
n2c2 Clinical Challenge [16]. Text analytic engines, such as
Amazon Comprehend Medical, Microsoft Text Analytics for
Health, and the Google Healthcare Natural Language application
programming interface, are deep learning–based pretrained
models. These models can perform a variety of general health
care NLP tasks, such as NER, relation detection, entity
disambiguation, and others [17]. We combine a similar deep

learning model with domain-specific, rule-based algorithms
from domain expertise to detect opioid-related ADEs (ORADEs)
from clinical notes.

Using novel AI methods, time-consuming manual chart review
can be automated to provide active surveillance with enhanced
detection of emerging product safety issues in near–real time.
Opioids are one of the most frequently implicated drug classes
for ADRs in hospitalized patients and are associated with
confusion, constipation, respiratory depression, sedation, ileus,
hypotension, and other ADRs [18]. One study reported an
ORADE prevalence rate of 9.1% in previously opioid-free
surgical patients [19]. In this manuscript, we report on the
development of and user feedback for SPINEL (Supporting
Pharmacovigilance by Leveraging Artificial Intelligence
Methods to Analyze Electronic Health Records Data), a novel
AI-enabled software prototype that analyzes unstructured text
in discharge summaries to extract candidate ADEs for opioid
drugs. FDA participants provide feedback on the serviceability
of the prototype in meeting their needs to support drug safety,
research, and regulatory decision-making.

Methods

Ethical Considerations
This study does not meet the requirements of research involving
human subjects as defined by the US Department of Health and
Human Services (45CFR46) for the following reasons: (1) there
was no interaction or intervention with human subjects; (2)
MIMIC is a free, publicly available database and the authors
have completed the required Collaborative Institutional Training
Initiative training and data use agreement; (3) all MIMIC III
data were deidentified in accordance with Health Insurance
Portability and Accountability Act requirements, including
removal of 18 identifying data elements; (4) protected health
information has been removed from free text fields; and (5) no
personally identifiable information was available to the study
investigators.

Data Source

EHR Data
We limited our work to publicly accessible EHR databases and
focused on the free text in discharge summaries from the
Medical Information Mart for Intensive Care III (MIMIC III)
[20]. This database contains EHRs from 2001 through 2012
from a single health care center; the records are encoded with
codes in the International Classification of Diseases, Ninth
Revision (ICD-9). We leveraged ICD-9 code E935.2, which
indicates opioids and other narcotics causing AEs in therapeutic
use, to prescreen discharge summaries that may contain
information on ORADEs. We identified 227 summaries
consisting of 227 unique hospital-event records for 226 unique
patients. We planned to explore the more recently released
MIMIC IV EHR database for additional cases, but the discharge
summaries were not made publicly accessible until after this
project was completed.
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Reference Data Set for Testing and Training
Considering that ICD-9 codes have limited positive predictive
value for drug safety surveillance [21], 2 medical students (AV,
KZ) and a physician (AS) conducted independent manual
reviews of the 227 discharge summaries identified by ICD-9
prescreening (as above) to manually assess for documentation
of ORADEs in the text. We did not use a formal annotation
guideline; positive assessments were based on specific textual
mentions describing opioid drug exposure and adverse events
either linked or potentially linked to the exposure irrespective
of the severity or seriousness of the events. To create a reference
data set of discharge summaries with true positive and negative
cases, positive assessment for an ORADE required agreement
among all 3 reviewers. Discrepancies were reconciled through
joint discussion. The 3 reviewers had similar assessments for

ORADE documentation for 174 (77%) of the 227 discharge
summaries reviewed. We trained our AI-enabled model on 181
(80%) of the discharge summaries and used the remaining 46
(20%) for testing.

NLP Process

Detection of Sections in Discharge Summaries
Based on a manual review, we identified 3 sections with the
highest frequency of ORADE mentions: “brief hospital course,”
“hospital course,” and “history of present illness.” In our
AI-enabled model (Figure 1), we used the Sectionizer module
in the MedSpacy open-source Python library [22] to automate
the identification of those component sections in the sample of
discharge summaries.

Figure 1. The artificial intelligence–enabled model is depicted with natural language processing and rule-based algorithms, MedSpacy sectionizer
components, Spark NLP for Healthcare entity recognition components, SciSpacy disambiguation of terms, Usagi interconnection of UMLS concepts
with MedDRA terminology, and further filtering of ORADE pairs. A higher resolution version of this figure is available in Multimedia Appendix 1.
MIMIC: Medical Information Mart for Intensive Care; NLP: natural language processing; POS: part of speech; UMLS: Unified Medical Language
System; MedDRA: Medical Dictionary for Regulatory Activities; ORADE: opioid-related adverse drug event.

Identifying ORADE Context Sentences Using Keywords,
Trigger Phrases, and Rule-Based Algorithms
Using MedSpacy components, we divided the unstructured text
in the 3 component sections of the discharge summaries into
individual sentences. We identified the context sentences in 2
stages. In the first stage, we identified the sentences that
contained one or more mentions of opioid-drug generic terms
or opioid-drug brand names using keyword lists manually
constructed by one of the team members (AS). The drug names
were aligned with RxNorm terminology.

In the second stage, we used 2 rule-based approaches to identify
context sentences with mentions of possible ORADEs. First,
the trigger-phrase rule: We applied trigger phrases [23] to link
mentions of an opioid drug with ADE terms using the MedSpacy
context algorithm [24]. We curated 58 additional trigger phrases
(Multimedia Appendix 2) from the training subset of the
reference data set and included them in our analysis. To capture
mentions of opioid drugs and ADEs that did not co-occur in the
same sentence, we searched for those terms in the 3 sentences
preceding and following the sentence of interest based on
reported heuristics [23].

An example of a trigger-phrase rule is as follows: “It is
noteworthy that the patient had received 0.5 mg Ativan x2 and
morphine earlier in the afternoon and there is a concern that this
may have contributed to his altered mental status.” In this
context sentence, an opioid drug (“morphine”) is identified
alongside a trigger phrase (“contributed to”). The Spark-NLP
NER model identified the AE term as altered mental status.
This term was resolved to the Medical Dictionary for Regulatory
Activities (MedDRA) term mental state abnormal using Usagi
(Observational Health Data Sciences and Informatics) and the
corresponding UMLS concept, as in the section on
disambiguation of the ORADEs below. The candidate ORADE
pair generated from this information is morphine-mental state
abnormal.

Second, the antidote-based ADE detection rule: We identified
ORADE context sentences by identifying mentions of the drug
naloxone, an FDA-approved medication that reverses an
overdose caused by an opioid drug. To capture mentions of
naloxone and opioid drugs that did not co-occur in the same
sentence, we searched through the preceding and following 3
sentences. Antidote signals have been used in detecting ADRs
in published literature reports [25,26].
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An example of an antidote-based ADE detection rule is as
follows: “He received dilaudid q 2 hr at 7:30 am, 9:30 am, 11:30
am. Code blue was called for respiratory arrest (unwitnessed).
0.4 mg of Narcan IV was administered followed by 1 mg of IV
Narcan. This resulted in improvement of his respiratory status
and regain of his consciousness.” In this example, the
antidote-based detection rule captures mentions of naloxone in
the context sentence, respiratory arrest in the preceding sentence,
and the Dilaudid mention in the prior sentence to generate the
candidate ORADE pair Dilaudid-respiratory arrest.

NER to Identify ORADEs in Clinical Text
Having detected opioid drug terms, we used a pretrained NER
model, Spark NLP for Healthcare, which uses deep
learning–based NER to identify possible AE terms in sentences.
The model is a biLSTM, convolutional neural network,
character–based deep learning model trained using biomedical
NER data sets such as AnatEM, BC5CDR, BC4CHEMD,
BioNLP13CG, JNLPBA, Linnaeus, NCBI-Disease, and S800
[27]. After identifying the AE terms in the context sentences,
we connected all opioid mentions in the context sentences with
the AE terms to create candidate ORADE pairs.

Disambiguation of ORADEs
AE terms can appear with different spellings, spelling errors,
or abbreviations; therefore, we used the UMLS to map the free
text to standardized concepts. We used ScispaCy to map the
raw phrase found in the discharge summary to the standard
UMLS translation of the concept [28]. Furthermore, we used
Usagi to obtain the MedDRA term for the UMLS concept. The
identified MedDRA AE term is mapped to the opioid drug term
to create a candidate ORADE pair that incorporates standardized
MedDRA terminology, including preferred terms (PTs) or
lower-level terms (LLTs).

Prototype User Testing and Feedback From Participants
We recruited 15 CDER staff members to assess the various
features, functionalities, and graphic visualizations. They were

experienced in the use of web-based software tools but were
not involved in the development of this prototype.

Testing Design and Conduct
A testing guide was provided that included login instructions,
descriptions and screenshots of the application features and
components, and instructions for exporting outputs. Test
participants worked remotely, were not monitored, and were
given 1 week to complete their testing. Participants were free
to explore the application for their regulatory work.

For user testing, we extracted from the MIMIC III database a
subset of discharge summaries filtered for an opioid drug
keyword. The subset included 31,052 notes corresponding to
30,326 hospital admission events for 24,539 patients.

Metrics
Each participant completed an anonymous electronic survey
covering technical operation, ease of navigating and interpreting
various visualizations, and user satisfaction for drug safety and
research (Multimedia Appendix 3).

Results

ORADE Detection
The prototype application successfully detected ORADEs that
correspond to known opioid drug toxicities. The most commonly
identified opioid drugs and the top 3 most frequent ORADEs
per drug are summarized in Table 1.

To assess the contribution of keywords with trigger phrases and
antidote (naloxone) signals for ORADE detection, we examined
quantitative parameters for a filtered MIMIC III data subset, as
shown in Table 2.

Table 2 shows that keywords with trigger phrases detect most
unique AEs and candidate ORADEs in context discharge
summaries. In comparison, the approach based on the antidote
(ie, naloxone) makes a much smaller relative contribution to
ORADE detection.

Table 1. Opioid-related adverse drug event detection from the text of the electronic health record discharge summaries.

Top 3 most frequently identified opioid-related adverse drug eventsMost frequently identified opioid drugOpioid drug class

Hypotension; somnolence; nauseaMorphineNatural

Confusion; hypotension; agitationHydromorphoneSemisynthetic

Hypotension; adverse reaction; hepatitis CFentanylSynthetic
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Table 2. Relative contribution of keywords with trigger phrase and antidote (ie, naloxone) signals for candidate opioid-related adverse drug event
detection. International Classification of Diseases (Ninth Revision) code E935.2, which specifies opioids and other narcotics causing adverse effects in
therapeutic use, was used to create a filtered subset of Medical Information Mart for Intensive Care III (MIMIC III) discharge summaries having at least
one opioid-related adverse drug event pair.

ORADE detection based on both
trigger phrases and antidote signals

ORADE detection based only
on antidote (naloxone) signals

ORADEa detection based on
keywords with trigger phrases

6 (50%)6 (50%)12 (100%)Number of unique opioid drugs detected
(n=12)

15 (13%)8 (7%)110 (94%)Number of unique AEsb detected (n=117)

17 (8%)13 (6%)205 (94%)Number of unique candidate ORADE pairs
(n=219)

12 (12%)8 (8%)95 (94%)Number of discharge summaries (n=101)

12 (12%)8 (8%)94 (94%)Number of unique patients (n=101)

aORADE: opioid-related adverse drug event.
bAE: adverse event.

Error Analysis
An error analysis was performed to characterize incorrect
candidate ORADE pairs and is summarized with mitigation
strategies in Table 3.
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Table 3. Error analysis of false-positive and false-negative candidate opioid-related adverse drug event pairs.

Mitigation strategyExampleCategory/type and relative frequency

False positive

Condition terms that include “pain” are ex-
cluded.

Text: “She was given fentanyl for the back pain with subsequent

hypotension.” Incorrect candidate ORADEb pair: fentanyl-back
pain

Drug indication pairsa

The context sentence is scanned for the
following phrases using regular expressions:
“change to,” “switch to,” “change from drug
X to drug Y,” or “switch from drug X to
drug Y.” Candidate opioid drug-drug medi-
cation change event pairs so generated are
excluded.

Text: “She was changed from Percocet to Ultram due to nausea,
which resolved.” Incorrect candidate ORADE pair: Ultram-nau-
sea

Drug/medication change eventsc

The assertion module in Spark NLPg for
Healthcare is used to detect negation so that
any negated condition term is not included
in a candidate ORADE pair.

Text: “No further apneic events.” Incorrect candidate ADE: ap-
neic events

Negated ADEd mentions where

the AEe is not due to a drugf

False negative

Severe constipation was detected, but the
current model could not find which pain
medication it was related to. To resolve, we
will explore more data and consider other
rules or models.

Text: “She had been treated with high dose fentanyl and benzo-
diazepines which were the most likely cause of delirium.... She
was also found to be severely constipated. # Constipation: patient
developed severe constipation related to pain medication. She
was manually disimpacted and started on an aggressive [sic]
bowel regimen.” Missed candidate ORADE pair: opioid drug-
constipation

Concept fragmentationc

To resolve, we will explore more data and
consider other rules or models.

Text: “He does endorse decreased sleep latency, falling asleep
in less than 5 minutes, and also questionable daytime hypersom-
nolence, but denies morning headaches. Of note, patient received
prescription for Vicodin upon discharge from ED on [**2173-8-
28**].” Missed candidate AE: hypersomnolence

Entity not recognized as an AE

Narcotics could be added to the opioid
keyword list. To resolve to a specific opioid
drug, we will explore more data and consid-
er other rules or models.

Text: “His hospital course was complicated by a respiratory code
on the floor attributed to respiratory suppression from narcotics.”
Missed candidate drug: narcotics

Entity not recognized as an opi-

oid drugc

aMost commonly encountered error.
bORADE: opioid-related adverse drug event.
cModerately encountered error.
dADE: adverse drug event.
eAE: adverse event.
fRarely encountered error.
gNLP: natural language processing.

Prototype Application Performance Metrics
We calculated the performance metrics accuracy, recall,
precision, and F1-score using conventional mathematical
formulas [14]. The AI-enabled model achieved accuracy, recall,
precision, and F1-scores of 0.66, 0.69, 0.64, and 0.67,
respectively, based on the test subset of 46 discharge summaries.
Candidate ORADE pairs generated with this software prototype
are hypothetical and do not indicate causality or absolute risk
for an association. Further assessment is required by subject
matter experts.

Prototype Application Analytics Dashboard
The Qlik Sense data analytics platform (QlikTech International
AB) was used to implement the SPINEL dashboard with
interactive graphics, visualizations, and line listings. The landing
page (Figure 2) has 4 sheet tabs: ORADE, Patient Demographic,
Chord Diagram ORADEs, and Brand and Generic Drugs. They
are described below with morphine used as an arbitrarily
selected opioid drug for the graphics and visualizations.

The ORADE tab (Figure 3) has four components: (1) a pie chart
that shows subsets of the 3 classes of opioid drugs, (2) a
histogram of all subjects per drug, (3) a tree map of the
MedDRA PTs and LLTs for each drug, and (4) a second
histogram of patient count by MedDRA PT and LLT for the
selected drug(s) of interest.
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Figure 2. The landing page for SPINEL (Supporting Pharmacovigilance by Leveraging Artificial Intelligence Methods to Analyze Electronic Health
Records Data) depicting a pie chart (upper left) of the 3 opioid classes; a histogram (upper right) of the subject counts per opioid drug; a tree map (lower
left) of the electronic health record–derived opioid-related adverse drug profiles, where the adverse events for each opioid drug are represented by nested
rectangles and the size of the nested rectangle relates to the patient count per adverse event; and a histogram (lower right) of patient count by MedDRA
(Medical Dictionary for Regulatory Activities) preferred term and lower-level term for the drugs. A higher resolution version of this figure is available
in Multimedia Appendix 1.

Figure 3. The opioid-related adverse drug page depicting a pie chart (upper left) and a histogram (upper right) of the 101 subjects who received at least
one opioid class drug, a tree map (lower left) of the electronic health record–derived opioid-related adverse drug profile for the most frequently identified
opioid class drugs, and a histogram (lower right) of patient count by MedDRA (Medical Dictionary for Regulatory Activities) preferred term and
lower-level term for the top 3 most frequently identified opioid-related adverse drugs. A higher resolution version of this figure is available in Multimedia
Appendix 1.

The patient demographic tab (Figure 4) includes the following
components: (1) a histogram of age, (2) a pie chart of gender,
(3) another histogram of ethnicity, and (4) a line listing of the
individual patients with AEs and associated demographics.

The chord diagram tab (Figure 5) displays a graphic to visually
explore interconnections between opioid drugs and AE
mentions.

The brand and generic drugs tab (Figure 6) includes multiple
displays: (1) a pie chart with the percentage patient count by
brand or generic drug type, (2) a stacked bar chart of patients
by opioid class and drug type, and (3) a searchable, scrollable
spreadsheet listing of the drug name, drug type, and adverse
events associated with the subject IDs.
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Figure 4. Patient demographics page depicting a histogram for morphine treated-patients by age (upper left), a pie chart for gender (upper right), a
histogram for ethnicity (lower left), and a line listing (lower right) of the individual patients with adverse events and associated demographics. Morphine
is an arbitrarily selected natural opioid drug. A higher resolution version of this figure is available in Multimedia Appendix 1.

Figure 5. Cord diagram page visually depicting the interconnections between the opioid drug of interest (morphine in this example) and adverse event
mentions as derived from the electronic health record discharge summaries. The larger the caliber of the connecting cord, the higher the adverse drug
event frequency. Morphine is an arbitrarily selected natural opioid drug. A higher resolution version of this figure is available in Multimedia Appendix
1.
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Figure 6. Brand and generic drugs page depicting a pie chart (upper left) of brand, generic, or replaced/discontinued drug type, a stacked bar chart
(upper right) of patients by type, and a line listing (lower section) of the patients by drug name, drug type, and adverse events. A higher resolution
version of this figure is available in Multimedia Appendix 1.

Results of User Testing
SPINEL was assessed as a highly desirable prototype that
satisfies end user needs for supporting opioid drug safety signal
detection from EHR data. The application was easy to use, the
visualizations enhanced detection of drug safety signals, and
the prototype ranked high in saving time compared to manual
chart review. Survey results were based on a Likert rating scale
(Multimedia Appendix 4).

Fifteen FDA staff completed the survey questionnaire with 11
providing observational feedback. Participant feedback
uncovered a few minor bugs and indicated the following areas
for potential improvement: (1) enlarge the tabs and
visualizations, (2) enable more flexibility and customizations
to fit each end user’s needs, (3) provide additional instructional
resources to enhance learning about the various features and
functionalities, (4) add multiple graph export functionality, and
(5) add project summaries. Possible mitigation strategies include
adding a slider bar with zoom function for the more complex
visualizations, providing an instructional video on the
application’s features and functionalities, providing tool-tip
pop-ups and a supplemental “user tips” guide to highlight key
features or functionality, modifying the export function to
accommodate multiple graphics, and developing a customizable
user portal to include project summaries.

Discussion

Principal Results
The AI-enabled SPINEL prototype successfully detects known
opioid drug toxicities from free text in EHRs and provides a
framework to uncover emerging safety data that could
potentially augment regulatory review and decision-making.
Automated processing and analysis of EHR data reduces the

research burden compared to manual chart review, saving
considerable time and effort. The prototype expedites the quick
perusal of data for trends and patterns reflecting drug toxicities
while facilitating drilling down into the data to patient-level
line listing information. FDA participants conveyed high
satisfaction ratings for this prototype and acknowledged its
potential to add value in harnessing unstructured text in EHRs
for pharmacovigilance.

In applying our AI-based model, we limited our analysis to
discharge summaries because published studies confirm that
discharge summaries are the best subsection of the EHR for
gathering information about ADEs reported by physicians
[29-31]. In reviewing the discharge summaries, we observed
considerable heterogeneity in the quality of reporting and the
depth of detail conveyed about possible ORADEs, which could
affect the accuracy and other performance metrics for the
software application. We applied 2 rule-based algorithms to
enhance ORADE detection from discharge summaries. Our
results demonstrate that the majority of candidate ORADE pairs
and context discharge summaries are detected using keywords
with trigger phrases. As described in published literature [32],
this approach to searching for drug safety signals is best for
uncovering ADEs potentially related to specific drug products
as delineated in the keyword list (opioids in our use case). As
new drug products are approved by the FDA, the keyword list
would need manual updating to keep it current. However, for
broader and more generalized searching, this could become
cumbersome, as new keyword lists would need to be manually
compiled for each drug grouping or class of interest.

The accuracy, recall, and precision of this prototype will need
to be improved to better align with established NLP processors.
Two steps to be considered in future work to improve
performance are (1) leveraging information from established
drug databases, such as the DailyMed database of the most
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recent FDA-approved drug product labels to filter out false
positive ORADEs due to drug-indication pairs and (2) using
large language models (LLMs) such as GPT-4 [33], BioGPT
[34], or GatorTron [35] to improve capture of mentions of opioid
drugs and ADE terms that may be separated by multiple
paragraphs.

Limitations
This project encountered three main challenges and limitations.
First, patient cohort identification: Use of ICD-9 codes to
prescreen discharge summaries for potential cases of ORADEs
could be impacted by selection and misclassification biases
resulting in a subset that may not reflect the total number of
ORADE cases in the MIMIC III data. These biases could result
in a skewed patient sample wherein there may be missed patients
with ORADEs or patients incorrectly classified as having an
ORADE due to erroneous coding. In addition, in focusing only
on the free-text discharge summaries, we may have missed
patients whose ORADEs were captured only in other text reports
that we did not explore, such as physician notes, nursing notes,
and consultation reports. Together, these issues may prevent us
from capturing the full extent and scope of patients experiencing
ORADEs from the MIMIC III EHRs. In future work, a more
robust approach to identifying patients with ORADEs will be
considered, including use of a standardized annotation guideline
and reporting of interannotator agreement scores related to
development of a reference data set; possible inclusion of
objective components for case ascertainment, such as laboratory
or medical imaging abnormalities; and expanding the scope of
reports assessed to include physician notes, nursing notes, and
consultation reports, where available, in addition to discharge
summaries. Second was the use of MIMIC III. The single-center
MIMIC III EHR database may not reflect the broad diversity
of the US population, which could limit generalizability for

drug safety surveillance to larger and more diversified domains
and lend to potentially biased assessments. Third, the lack of a
publicly available reference standard data set hindered efforts
to evaluate the NLP component of our AI-enabled model in
detecting ADE safety signals from text in EHRs. The small size
of our reference data set risked overfitting and biased
assessments.

There were limitations inherent in the user testing procedures.
User testing was unmonitored and conducted without
prespecified tasks. This approach accommodated participants
working in remote locations to explore the software in their
regulatory work. However, direct observation by a facilitator
may have enabled us to gather more details about end-user
experience. Additionally, the sample size of intended users was
small. Feedback from a larger group of CDER regulatory staff
may be more informative about the potential impact on their
regulatory work and decision-making.

Conclusions
SPINEL, our novel AI-enabled software, extracts ORADEs
from free-text discharge summaries in EHRs, streamlines
workflow, and augments access to real world data for
pharmacovigilance. Detecting opioid safety signals from EHRs
enhances the capacity to harness an important yet underutilized
resource of clinically relevant information for regulatory review
and decision-making.

Future work will explore detecting newly emerging opioid drug
safety issues using a larger and more diversified EHR database,
investigating various methods to improve NLP performance,
resolving application features per FDA participant feedback,
and integrating knowledge graphs to interconnect information
from EHRs with reports published in the literature.
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ADR: adverse drug reaction
AE: adverse event
AI: artificial intelligence
BERT: bidirectional encoder representations from transformers
CDER: Center for Drug Evaluation and Research
CNN: convolutional neural network
CRF: conditional random field
cTAKES: Clinical Text Analysis and Knowledge Extraction System
EHR: electronic health record
FAERS: FDA Adverse Events Reporting System
FDA: US Food and Drug Administration
GPT: generative pretrained transformer
ICD-9: International Classification of Diseases, Ninth Revision
LLM: large language model
LLT: lower-level term
LSTM: long short-term memory
MedDRA: Medical Dictionary for Regulatory Activities
MIMIC: Medical Information Mart for Intensive Care
NER: named entity recognition
NLP: natural language processing
ORADE: opioid-related adverse drug event
POS: part of speech
PT: preferred term
SPINEL: Supporting Pharmacovigilance by Leveraging Artificial Intelligence Methods to Analyze Electronic
Health Records Data
SVM: support vector machine
UMLS: Unified Medical Language System
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