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Abstract

Background: Early warning score systems are widely used for identifying patients who are at the highest risk of deterioration
to assist clinical decision-making. This could facilitate early intervention and consequently improve patient outcomes; for example,
the National Early Warning Score (NEWS) system, which is recommended by the Royal College of Physicians in the United
Kingdom, uses predefined alerting thresholds to assign scores to patients based on their vital signs. However, there is limited
evidence of the reliability of such scores across patient cohorts in the United Arab Emirates.

Objective: Our aim in this study was to propose a data-driven model that accurately predicts in-hospital deterioration in an
inpatient cohort in the United Arab Emirates.

Methods: We conducted a retrospective cohort study using a real-world data set that consisted of 16,901 unique patients
associated with 26,073 inpatient emergency encounters and 951,591 observation sets collected between April 2015 and August
2021 at a large multispecialty hospital in Abu Dhabi, United Arab Emirates. The observation sets included routine measurements
of heart rate, respiratory rate, systolic blood pressure, level of consciousness, temperature, and oxygen saturation, as well as
whether the patient was receiving supplementary oxygen. We divided the data set of 16,901 unique patients into training, validation,
and test sets consisting of 11,830 (70%; 18,319/26,073, 70.26% emergency encounters), 3397 (20.1%; 5206/26,073, 19.97%
emergency encounters), and 1674 (9.9%; 2548/26,073, 9.77% emergency encounters) patients, respectively. We defined an
adverse event as the occurrence of admission to the intensive care unit, mortality, or both if the patient was admitted to the
intensive care unit first. On the basis of 7 routine vital signs measurements, we assessed the performance of the NEWS system
in detecting deterioration within 24 hours using the area under the receiver operating characteristic curve (AUROC). We also
developed and evaluated several machine learning models, including logistic regression, a gradient-boosting model, and a
feed-forward neural network.

Results: In a holdout test set of 2548 encounters with 95,755 observation sets, the NEWS system achieved an overall AUROC
value of 0.682 (95% CI 0.673-0.690). In comparison, the best-performing machine learning models, which were the
gradient-boosting model and the neural network, achieved AUROC values of 0.778 (95% CI 0.770-0.785) and 0.756 (95% CI
0.749-0.764), respectively. Our interpretability results highlight the importance of temperature and respiratory rate in predicting
patient deterioration.

Conclusions: Although traditional early warning score systems are the dominant form of deterioration prediction models in
clinical practice today, we strongly recommend the development and use of cohort-specific machine learning models as an
alternative. This is especially important in external patient cohorts that were unseen during model development.
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Introduction

Background
Early warning score (EWS) systems are a staple of modern
clinical practice because they provide a standardized method
for detecting in-hospital patient deterioration. Several other
systems have been introduced with the advent of computerized
medical records [1,2], such as the Modified Early Warning
Score system [3] and the National Early Warning Score (NEWS)
system [4], which is recommended by the Royal College of
Physicians in the United Kingdom.

Such systems assign an overall aggregate score to the patient
to indicate their overall risk of deterioration, based on a
predetermined set of alerting ranges [5]; for example, the
alerting thresholds of the NEWS system are shown in Table 1.
Later work introduced EWS systems tailored for specific patient
subgroups, such as for pediatrics [6] or cardiovascular-related
deterioration [7]. The main strengths of EWS systems are that
they are simple, easy to use, and highly interpretable [8,9],
which facilitates their use in hospitals, including those with
limited resources [10,11].

Table 1. Summary of the National Early Warning Score system, with the thresholds of the system outlined. For a given set of vital signs measurements,
each variable is compared against its respective threshold and assigned a score accordingly. The patient’s overall score is the summation of scores
assigned to all variables.

ScoreVital sign

3210123

≥131111-13091-11051-9041-50N/Aa≤40Heart rate (beats/min)

N/AN/AN/A≥9694-9592-93≤91Oxygen saturation (%)

N/A≥39.138.1-39.036.1-38.035.1-36.0N/A≤35Temperature (°C)

≥220N/AN/A111-219101-11091-100≤90Systolic blood pressure
(mm Hg)

≥2521-24N/A12-209-11N/A≤8Respiratory rate
(breaths/min)

Voice, pain, or
unresponsive

N/AN/AAlertN/AN/AN/ALevel of consciousness

N/AN/AN/ANoN/AYesN/ASupplementary oxygen

aN/A: not applicable.

Despite their ubiquity, EWS systems also have limitations.
Many of the alerting thresholds are defined in a heuristic manner
with respect to a specific deterioration timeline, which makes
it increasingly difficult to modify the thresholds for cohorts
with significantly different characteristics or demographics than
those relied upon during model development, as witnessed
during the COVID-19 pandemic [12-14]. In addition, EWS
systems do not capture any relationships between the input
variables and commonly treat them equally, despite some being
more indicative of deterioration than others [1]. However,
because of their simplicity, they have been widely deployed in
hospitals around the world.

In recent years, machine learning (ML) techniques have gained
popularity in the development of deterioration prediction models
[15-18] by treating the problem as a binary classification task
[19-21]. Such approaches range from gradient-boosted trees
[12,22], which consist of an ensemble of tree models, to neural
networks (NNs) [21,23] and have been used in different
scenarios where deterioration prediction is needed [24-26].
Although ML models have been shown to outperform traditional

EWS systems [19,27], especially during the COVID-19
pandemic [28,29], one of their main limitations is the lack of
interpretability compared with traditional EWS systems [30].

Objectives
Our aim in this study was to propose a data-driven model that
predicts patient deterioration with high accuracy in an inpatient
cohort in Abu Dhabi, United Arab Emirates. To this end, we
assessed and compared the performance of the NEWS system
with that of 3 ML models, namely logistic regression (LR),
gradient-boosted trees, and NNs, and developed and evaluated
the models using a real-world data set collected at a
multispecialty hospital in Abu Dhabi. We also used Shapley
additive explanations (SHAP) analysis as a way to interpret the
predictions of the ML models.

Methods

This study is reported in accordance with the Transparent
Reporting of a Multivariable Prediction Model for Individual
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Prognosis or Diagnosis (TRIPOD) guidelines [31]. The TRIPOD
checklist can be found in Multimedia Appendix 1.

Ethics Approval
The study received approval from the research ethics committees
at Cleveland Clinic Abu Dhabi (A-2020-102) and New York
University Abu Dhabi (HRPP-2020-55).

Data Set
We obtained a data set collected between April 2015 and August
2021 at the multispecialty facility Cleveland Clinic Abu Dhabi
in Abu Dhabi, United Arab Emirates. The data set included
patient demographics; vital signs measurements; and time
stamps relating to admission to the intensive care unit (ICU)
and mortality, which are the adverse events of interest in this
study.

We defined the inclusion and exclusion criteria following the
standard in previous work for the development of EWS systems
[2] (Figure 1). First, we grouped a set of vital signs
measurements to represent a single observation set if they had
been recorded within the same patient encounter and shared the
same time of measurement. We excluded any patients with
missing identifiers or necessary information such as records
pertaining to whether the patient was alive at the time of

discharge, patient age, and patient or encounter identifiers, as
well as time stamps of vital signs measurements. We included
inpatient admissions and excluded encounters of patients aged
<18 years at the time of admission. We only included emergency
encounters and excluded other types of admissions. Within each
encounter, we dropped any vital signs measurements recorded
after the occurrence of an adverse event, which is essentially
admission to the ICU. We excluded any observation sets that
contained ≥1 implausible observations or >2 missing vital signs
measurements. An illustration of our data set processing pipeline
is shown in Figure 2. The plausible ranges used are presented
in Table S1 in Multimedia Appendix 2.

Finally, we split the data set randomly into training, validation,
and test sets in a ratio of 7:2:1, respectively. This split was
carried out on a patient level such that all examples belonging
to a single patient were assigned to a single split only. We split
the data randomly because we assumed that most of the patients
admitted in 2020 and 2021 were patients with COVID-19
infection (the COVID-19 outbreak began approximately in
March 2020 in the United Arab Emirates); therefore, we were
interested in assessing the average performance of the models
over time. We conducted a secondary analysis where we split
the data based on time to understand the impact of a temporal
split.

Figure 1. Application of the inclusion and exclusion criteria. We illustrate here the results of applying the inclusion and exclusion criteria, where p, e,
and n represent the number of patients, encounters, and observation sets, respectively. We first excluded patients with missing information, such as age
or patient identifiers. We included inpatient encounters of adult patients (aged >18 years) and excluded nonemergency encounters. Finally, we excluded
observation sets recorded after an adverse event (AE) had occurred as well as observation sets with ≥1 implausible observations.
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Figure 2. Definition of observation sets. We illustrate here a simplified version of how we defined observation sets using 3 vital signs only: heart rate
(HR), respiratory rate (RR), and systolic blood pressure (SBP). Vital signs taken at the same time were grouped together for the same patient encounter
into observation sets. We subsequently applied our inclusion and exclusion criteria to select the relevant patient encounters and associated observation
sets.

Input Features
We extracted 7 vital signs variables that are used in the NEWS
system. These included heart rate; respiratory rate; temperature;
systolic blood pressure; oxygen saturation; level of
consciousness indicated by the alert, voice, pain, or unresponsive
score; and whether a patient was receiving supplementary
oxygen. To derive the supplementary oxygen variable, we relied
on the patient’s fraction of inspired oxygen reading. We assumed
that any fraction of inspired oxygen measurement of >21%
indicated that the patient was receiving supplementary oxygen
[32]. For level of consciousness, we used a provided binary
feature in the data set that follows the scoring of the NEWS
system (0 if a patient is alert and 3 otherwise). We applied mean
imputation to all features, except for supplementary oxygen and
level of consciousness, where a missing value was treated as
not receiving supplementary oxygen and alert, respectively. We
treated vital signs measurements recorded at the same time as
a single observation set (Figure 2), meaning that each encounter
(patient stay) contained multiple observation sets recorded at
various times during the patient stay.

Outcome Definition
We defined the composite outcome of admission to the ICU
and mortality as a deterioration (adverse) event. In cases of
multiple adverse events, we considered the time of the first
occurring event. For a given observation set, we generated
binary ground-truth labels based on whether an adverse event
occurred within a certain time window from the measurement
time of the respective observation set. If it did indeed occur
within the time window, we set the label as 1 (positive label);
otherwise, we set it as 0 (negative label). To evaluate the
performance of the models over different time windows, we
considered 4 different values: 6, 12, 24, and 36 hours. We note
that 24 hours is the standard window of evaluation in the existing
literature [33].

Prediction Models
We developed several prediction models (refer to the following
subsections) based on prevalent ML techniques. All models,
except for the NEWS system, are fitted on the training set and
optimized via hyperparameter tuning on the validation set, with
final results being reported on the test set.

NEWS System
The NEWS system [4] was developed by the Royal College of
Physicians to provide a standardized EWS system to easily and
quickly identify patients at high risk of deterioration. The NEWS
system assigns a score to 7 vital signs measurements based on
predetermined alerting thresholds (Table 1). The higher the final
score, the greater the risk of deterioration. For each observation
set, we calculated the total score based on the scores assigned
to each vital sign. We then normalized each score by dividing
it by the maximum possible NEWS score, which is 20, to
compute performance metrics.

Gradient-Boosting Model
We developed a gradient-boosting model, extreme gradient
boosting (XGBoost) [22,34], that uses an ensemble of decision
trees. We implemented this model using the XGBoost package
[34].

LR Model
LR [35] is a simple statistical method that assumes a linear
combination of the input variables and uses a sigmoid activation
to compute predictions in the range between 0 and 1. We
implemented this model using the scikit learn package [36].

NN Model
We implemented a feed-forward NN [37] consisting of 10 linear
layers with scaled exponential linear unit activation function
[38], followed by batch normalization to reduce overfitting. The
outputs of the final layer are fed to a sigmoid activation function,
which outputs predictions in the range between 0 and 1. For
this model, we applied min-max normalization to the input
features first, whereby the minimum and maximum values were
defined using the training set for all data splits. We implemented
this baseline using the PyTorch framework [39].

Evaluation Metrics
We evaluated all models using 2 main evaluation metrics: the
area under the receiver operating characteristic curve (AUROC)
and the area under the precision-recall curve (AUPRC). Both
metrics are represented as a single number between 0 and 1 to
summarize the performance of a binary classifier. The receiver
operating characteristic curve plots the true positive rate against
the false positive rate at different classification thresholds and
indicates the model’s ability to discriminate between positive
and negative classes. The precision-recall curve plots precision
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against recall at different classification thresholds and gives an
indication of the model’s average precision. The baseline
performance of a random classifier is equivalent to 0.5 for the
AUROC and to the ratio of positive samples to the total number
of samples for the AUPRC. We computed 95% CIs for the
AUROC and AUPRC metrics of all models through
bootstrapping with 1000 runs [40].

In addition, we compared the difference in performance, in
terms of the AUROC and AUPRC values, between each ML
model and the NEWS system. We report the difference and its
95% CIs using bootstrapping with 1000 runs. We computed P
values for each comparison using the 1-tailed permutation test
with 10,000 iterations [41]. All results are reported on the test
set.

Model Selection
To develop the ML models, we used random hyperparameter
search [42] to select the best hyperparameters using the
validation set (XGBoost, LR, and NN). We have summarized
the sampling ranges of the hyperparameters in Table S2 in
Multimedia Appendix 2. We ran each model 10 times with
hyperparameters selected randomly from predetermined ranges.
We then selected the model with the hyperparameters that
achieved the best performance on the validation set in terms of
the AUPRC value because it is considered a more informative
metric owing to class imbalance [43,44]. We trained the NN
models for 250 epochs. We report the performance on the test
set for the selected best models.

Model Interpretability
We used the open-source SHAP package [45] to analyze feature
importance using SHAP values for the best-performing model
in terms of the overall AUROC. We calculated the SHAP value
for each feature such that the magnitude of the SHAP value
indicates greater importance for the model’s prediction, and we
present the average of the absolute SHAP values for each of the
7 input features in the test set. We also present the SHAP plots
for the observation sets with the highest and lowest prediction
scores in the best-performing model. In addition, for each input
feature, we plotted the SHAP partial dependence plot, and
calculated the Pearson correlation coefficient and the Spearman
rank correlation coefficient between the feature values and their
respective sets of SHAP values. The partial dependence plots
show the relationship between the average SHAP value and
each possible vital signs measurement, whereas the coefficients
indicate the overall correlation between the SHAP values and
the input feature values. We also included the LR coefficients
and odds ratios as a comparison point owing to the simplicity

of the LR model and the significance of the coefficients in
summarizing the effect of each feature on the overall prediction
of the model compared with the SHAP values.

Results

Patient Cohort
We have summarized the results of applying the inclusion and
exclusion criteria in Figure 1. Our data set comprised 1,620,010
encounters from 278,186 patients, yielding a total of 9,213,040
observation sets. Of the 278,186 patients, 255,557 (91.87%)
had complete identifying information recorded in the data set,
leading to the exclusion of the rest (22,629/278,186, 8.13%),
leaving 97.87% (1,585,532/1,620,010) of the encounters and
98.31% (9,057,635/9,213,040) of the observation sets. Our study
specifically targets inpatients; therefore, of the 255,557 patients,
after excluding 223,117 (87.31%) outpatient encounters, 32,440
(12.69%) remained. Of these 32,440 patients, 31,628 (96.39%)
were aged >18 years and thus eligible for inclusion
(6,258,085/9,057,635, 69.09% observation sets recorded within
49,508/1,585,562, 3.12% encounters). Furthermore, we included
only emergency encounters; thus, of the 31,268 patients, 18,045
(57.71%) were included (3,886,591/6,258,085, 62.11%
observation sets recorded within 27,589/49,508, 55.73%
encounters). We then excluded any observation sets that
occurred after an adverse event, which meant that, of the
3,886,591 observation sets, 1,252,921 (32.24%) remained.
Finally, of the 1,252,921 observation sets, we removed 301,266
(24.05%) that contained implausible readings for their respective
vital signs, leaving 951,655 (75.95%) observation sets. Thus,
of the 18,045 patients, 16,901 (93.66%) remained in the final
cohort (associated with 26,073/27,589, 94.51% encounters
recorded between April 2015 and August 2021). We divided
the data set of 16,901 patients as follows: training set: 11,830
(70%; 18,319/26,073, 70.26% encounters), validation set: 3397
(20.1%; 5206/26,073, 19.97% encounters), and test set: 1674
(9.9%; 2548/26,073, 9.77% encounters).

We provide a summary of the cohort’s characteristics,
distributions of vital signs measurements, and occurrences of
adverse events in Table 2. We observed an average age of 55.3
(SD 19.3), 54.9 (SD 18.7), and 53.6 (SD 19.1) years across the
training, validation, and test splits, respectively. We observed
a higher proportion of male patients than female patients across
all splits, with the training set comprising 59.64% (7056/11,830)
male patients and the validation and testing sets comprising
60.17% (2044/3397) and 58.06% (972/1674) of male patients,
respectively.
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Table 2. Patient cohort summary. We provide a summary of the patient cohort characteristics across the training, validation, and test sets. This includes
the patient demographics, distributions of input features, and the prevalence of the deterioration labels across the different time windows.

Test setValidation setTraining setCharacteristic

Cohort demographics

1674 (9.9)3397 (20.1)11,830 (70)Patients (n=16,901), n (%)

972 (58.1)2044 (60.2)7056 (59.6)Male patientsa

2548 (9.8)5206 (20)18,319 (70.3)Encounters (n=26,073), n (%)

53.6 (19.1)54.9 (18.7)55.3 (19.3)Age group (years), mean (SD)

672 (26.4)1371 (26.3)4843 (26.4)<40, n (%)b

728 (28.6)1506 (28.9)5313 (29)40-59, n (%)b

1148 (45.1)2329 (44.7)8163 (44.6)≥60, n (%)b

549 (21.5)1144 (22)3979 (21.7)Encounters with composite outcome, n (%)b

836 (32.8)1657 (31.8)5594 (30.5)Encounters during the COVID-19 pandemic, n (%)b

95,755 (10.1)182,795 (19.2)673,041 (70.7)Observation sets (n=951,591), n (%)

79 (15.8; 70-89)78 (16.3; 68-89)78 (15.9; 68-90)Heart rate (beats/min), mean (SD; IQR)

18 (2.9; 18-20)18 (2.9; 18-20)18 (2.8; 18-20)Respiratory rate (breaths/min), mean (SD; IQR)

122 (20.2; 109-136)124 (21.6; 110-139)122 (20.9; 109-137)Systolic blood pressure (mm Hg), mean (SD; IQR)

36.7 (0.4; 36.5-36.9)36.7 (0.5; 36.5-36.9)36.7 (0.4; 36.5-36.9)Temperature (°C), mean (SD; IQR)

99 (2.1; 97-100)99 (2.0; 97-100)99 (2.0; 97-100)Oxygen saturation (%), (SD; IQR)

Level of consciousness, n (%)c

76,376 (97.5)144,014 (97.9)537,853 (98.1)Alert

1940 (2.5)3086 (2.1)10,685 (1.9)Voice, pain, or unresponsive

Supplementary oxygen, n (%)d

2086 (2.2)3332 (1.8)15,201 (2.3)Provided

93,669 (97.8)179,463 (98.2)657,840 (97.7)Not provided

Deterioration, n

537310,68136,760Within 36 hours

1542661100Death

531910,57136,255ICUe admission

4556930631,431Within 24 hours

71127715Death

4521923331,088ICU admission

3658763325,382Within 12 hours

2170358Death

3643758925,199ICU admission

2987647621,332Within 6 hours

937166Death

2979645221,227ICU admission

aTraining set: n=11,830; validation set: n=3397; test set: n=1674.
bTraining set: n=18,319; validation set: n=5206; test set: n=2548.
cTraining set: n=548,538; validation set: n=147,100; test set: n=78,316.
dTraining set: n=673,041; validation set: n=182,795; test set: n=95,755.
eICU: intensive care unit.
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Performance Compared With the NEWS System
We summarize the performances of the ML models and NEWS
system in Table 3 for deterioration within 24 hours in terms of
AUROC and AUPRC values. We note that the NN and XGBoost
models achieved the best performance. The XGBoost model
achieved an AUROC value of 0.778 (95% CI 0.770-0.785)
across the entire test set. The NEWS system achieved an
AUROC value of 0.682 (95% CI 0.673-0.690), which means
that the XGBoost model achieved an improvement of 0.096
(95% CI 0.088-0.103; P<.001). In terms of the AUPRC values,
compared with the NEWS system, the XGBoost model achieved
an improvement of 0.093 (95% CI 0.083-0.101; P<.001). The
NN model achieved an AUROC value of 0.756 (95% CI
0.749-0.764) and an AUPRC value of 0.222 (95% CI
0.211-0.235), leading to improvements of 0.074 (95% CI
0.067-0.081; P<.001) and 0.061 (95% CI 0.049-0.073; P<.001)
in AUROC and AUPRC values, respectively, compared with

the NEWS system. The LR model did not perform better than
the NEWS system in terms of AUROC values, and it achieved
slightly better performance in terms of AUPRC values.

In Figure 3, we show the AUROC and AUPRC results for all
models on the test set when varying the lengths of the prediction
time window as follows: 6, 12, 24, and 36 hours. We noted that
the XGBoost model and the NN model performed best across
all time windows, with a better performance by the XGBoost
model in terms of both AUROC and AUPRC values across all
time windows. We also noted a comparable performance
between the NEWS system and the LR model, with the NEWS
system achieving a superior AUROC value and the LR model
achieving a better AUPRC value. In addition, the performance
of all models decreased as the prediction time window increased.
This likely indicates that the difficulty of the task increases as
the adverse events occur further away in time.

Table 3. Model performance across different subgroups. We report performances in terms of area under the receiver operating characteristic curve
(AUROC) and area under the precision-recall curve (AUPRC) values for deterioration within 24 hours in the test set. We also provide 95% CIs computed
using bootstrapping.

NEWSbNeural networkLogistic regressionXGBoostaSubgroup

AUPRC (95%
CI)

AUROC (95%
CI)

AUPRC (95%
CI)

AUROC (95%
CI)

AUPRC
(95% CI)

AUROC (95%
CI)

AUPRC
(95% CI)

AUROC (95%
CI)

0.151 (0.142-
0.161)

0.682 (0.673-
0.690)

0.222 (0.211-
0.235)

0.756 (0.749-
0.764)

0.169
(0.158-
0.181)

0.654 (0.644-
0.663)

0.244
(0.231-
0.258)

0.778c (0.770-
0.785)

All patients

0.176 (0.163-
0.190)

0.675 (0.665-
0.685)

0.253 (0.237-
0.269)

0.752 (0.742-
0.762)

0.208
(0.193-
0.223)

0.651 (0.638-
0.663)

0.274
(0.258-
0.291)

0.775 (0.764-
0.784)

Male patients

0.129 (0.116-
0.145)

0.704 (0.689-
0.718)

0.194 (0.176-
0.216)

0.766 (0.754-
0.779)

0.137
(0.123-
0.155)

0.676 (0.662-
0.692)

0.214
(0.194-
0.236)

0.785 (0.772-
0.797)

Female patients

Age group (years)

0.120 (0.104-
0.138)

0.738 (0.717-
0.758)

0.213 (0.184-
0.249)

0.804 (0.784-
0.824)

0.153
(0.130-
0.179)

0.739 (0.718-
0.761)

0.222
(0.193-
0.256)

0.818 (0.797-
0.837)

<40

0.149 (0.134-
0.165)

0.640 (0.626-
0.655)

0.226 (0.208-
0.248)

0.734 (0.721-
0.749)

0.159
(0.143-
0.176)

0.609 (0.592-
0.626)

0.251
(0.230-
0.275)

0.758 (0.744-
0.772)

40-59

0.177 (0.162-
0.192)

0.700 (0.689-
0.712)

0.235 (0.218-
0.254)

0.757 (0.745-
0.768)

0.196
(0.181-
0.214)

0.663 (0.649-
0.676)

0.258
(0.240-
0.278)

0.779 (0.768-
0.790)

≥60

aXGBoost: extreme gradient boosting.
bNEWS: National Early Warning Score.
cThe best results in each subgroup are italicized.
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Figure 3. Performance of the models on the overall test set across the different prediction time windows. We evaluated the performance of each model
for deterioration prediction within 6, 12, 24, and 36 hours. AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating
characteristic curve; NEWS: National Early Warning Score; NN: neural network; XGBoost: extreme gradient boosting.

Performance Across Different Patient Subgroups
In Table 3, we have also summarized the performance of the
models across different patient subgroups within the test set.
Across the male population, the XGBoost model achieved the
best performance in terms of AUROC values (0.775, 95% CI
0.764-0.784), with an improvement of 0.099 (95% CI
0.090-0.109; P<.001) compared with the NEWS system. The
XGBoost model also achieved the best performance in the
female population with an AUROC value of 0.785 (95% CI
0.772-0.797) and an AUPRC value of 0.214 (95% CI
0.194-0.236), which corresponds to improvements of 0.081
(95% CI 0.070-0.092; P<.001) in AUROC value and 0.084
(95% CI 0.070-0.099; P<.001) in AUPRC value compared with
the NEWS system.

In the different age subpopulations, the XGBoost model
achieved the best results (AUROC 0.758-0.818), followed by
the NN model (AUROC 0.721-0.760). In the population
consisting of patients aged <40 years, the XGBoost model
achieved the best performance in terms of AUROC value (0.818,
95% CI 0.797-0.837) and AUPRC value (0.222, 95% CI
0.193-0.256), with improvements of 0.080 (95% CI 0.064-0.097;
P<.001) and 0.102 (95% CI 0.082-0.125; P<.001) in AUROC
and AUPRC values, respectively, compared with the NEWS
system. In the group consisting of patients aged 40-59 years,
the XGBoost model achieved an AUROC value of 0.758 (95%
CI 0744-0.772) and an AUPRC value of 0.251 (95% CI

0.230-0.275), with improvements of 0.118 (95% CI 0.104-0.133;
P<.001) and 0.102 (95% CI 0.087-0.119; P<.001) in AUROC
and AUPRC values, respectively, compared with the NEWS
system.

Finally, in the group consisting of patients aged ≥60 years, the
XGBoost model achieved an AUROC value of 0.779 (95% CI
0.768-0.790) and an AUPRC value of 0.258 (95% CI
0.240-0.278), with improvements of 0.078 (95% CI 0.069-0.088;
P<.001) and 0.081 (95% CI 0.068-0.094; P<.001) in AUROC
and AUPRC values, respectively, compared with the NEWS
system.

Performance Based on a Temporal Data Split
Given that most of the patient cohort during 2020-2021 consisted
of patients with COVID-19 infection, we investigated the impact
of increasing the size of the training set based on a temporal
data split for deterioration within 24 hours. To do so, we defined
four training sets that encompassed data collected during (1)
2016, (2) 2016-2017, (3) 2016-2018, and (4) 2016-2019. We
defined a new test set that included the observation sets of all
patients admitted to the hospital in 2020. We excluded any data
collected during 2015 and 2021 because our data set only
included a few months from both years. The new test set
consisted of 517 unique patients (307/517, 59.4% male patients),
with 638 encounters associated with an average age of 54.0
years and 23,227 observation sets (1208/23,227, 5.2%
deterioration within 24 hours).

JMIR AI 2023 | vol. 2 | e45257 | p. 8https://ai.jmir.org/2023/1/e45257
(page number not for citation purposes)

Lashen et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


We summarize the results in Table 4. We observed that
increasing the size of the training set yielded marginal
improvements in terms of AUROC and AUPRC values across
all models. The NN model saw the largest improvement in
AUROC value, which increased from 0.706 (95% CI

0.688-0.722) to 0.754 (95% CI 0.739-0.769), whereas the
XGBoost model saw the largest improvement in AUPRC value,
which increased from 0.207 (0.187-0229) to 0.250 (95% CI
0.226-0.276).

Table 4. Model performance based on a temporal data split for deterioration within 24 hours. We performed a temporal data split for the training and
test sets. We fixed the test set to patient encounters recorded during 2020, whereas we expanded the training set gradually to eventually include encounters
recorded between 2016 and 2019. We report area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve
(AUPRC) values with 95% CIs.

Neural networkLogistic regressionXGBoostaDeterioration within
24 h, n (%)

Training set

AUPRC (95%
CI)

AUROC (95%
CI)

AUPRC (95%
CI)

AUROC (95%
CI)

AUPRC (95%
CI)

AUROC (95%
CI)

0.211 (0.188-
0.233)

0.706 (0.688-
0.722)

0.204 (0.182-
0.228)

0.679 (0.660-
0.696)

0.207 (0.187-
0.229)

0.740 (0.724-
0.754)

2788 (4.1)2016: n=68,499

0.241 (0.216-
0.266)

0.744 (0.727-
0.759)

0.213 (0.191-
0.237)

0.687 (0.669-
0.704)

0.232 (0.211-
0.257)

0.763 (0.747-
0.778)

7062 (4.4)2016-2017:
n=159,888

0.237 (0.213-
0.262)

0.745 (0.728-
0.760)

0.216 (0.194-
0.240)

0.69 (0.671-
0.706)

0.242 (0.218-
0.267)

0.758 (0.742-
0.773)

12,352 (4.3)2016-2018:
n=285,733

0.233 (0.211-
0.259)

0.754 (0.739-
0.769)

0.215 (0.192-
0.239)

0.688 (0.670-
0.705)

0.25 (0.226-
0.276)

0.778 (0.763-
0.792)

19,261 (4.5)2016-2019:
n=431,503

aXGBoost: extreme gradient boosting.

Interpretability Results
Table 5 shows the overall importance of each input feature in
the XGBoost model predicting deterioration within 24 hours.
The plots for the other time windows (6, 12, and 36 hours) are
shown in Figure S1 in Multimedia Appendix 2. We observed
a similar pattern across all time window values. We noted that
temperature is the most important feature, followed closely by
respiratory rate, systolic blood pressure, heart rate, level of
consciousness, oxygen saturation, and finally provision of
supplementary oxygen.

Figure 4 shows the SHAP values and the corresponding feature
values of the observation sets that were assigned the highest
and lowest predictions of deterioration. We observed that for
all observation sets with the highest assigned probabilities, the
factors contributing the most were high or low systolic blood
pressure measurements, level of consciousness where a value
of 3 indicated that the patient was unconscious, and high heart
rate measurements. In the 5 observation sets with the lowest
assigned probabilities, the patients displayed mostly normal
vital signs measurements.

Figure 5 shows the SHAP partial dependence plots for 6 (86%)
of the 7 input features. We observed that for continuous

variables (eg, heart rate, respiratory rate, oxygen saturation,
temperature, and systolic blood pressure), there is a range of
values for which the SHAP contributions are the lowest; for
example, for heart rate, the average SHAP value encounters the
sharpest drop between approximately 50 and 100 beats per
minute. For oxygen saturation, we observed that the SHAP
values decreased as oxygen saturation increased to >80%,
whereas for respiratory rate, we observed that SHAP values
increased as respiratory rate increased. Level of consciousness
is a binary variable, and it can be observed in Figure 5 that the
average SHAP value for level of consciousness varies based on
whether the patient is conscious.

Table 6 shows the Pearson correlation coefficients and Spearman
rank correlation coefficients between the SHAP values and the
feature values, as well as the LR coefficients and odds ratios.
We observed that level of consciousness shows the highest level
of correlation (Pearson correlation coefficient=0.950, Spearman
rank correlation coefficient=1.000, and LR coefficient=0.532).
We also noted that the LR coefficients are aligned with those
of SHAP, based on the relative ranking of the features with the
calculated Pearson coefficients and the LR coefficients.
Temperature exhibits the lowest level of correlation, perhaps
because of the complexity of the nonlinear relationship between
the feature and the outcome variable.
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Table 5. Feature importance of the extreme gradient boosting model. We present the results of our Shapley additive explanations (SHAP) analysis for
the extreme gradient boosting model for the deterioration within each of our proposed time windows. We provide the mean of the absolute SHAP value
for each of the 7 input features.

Mean of absolute SHAP valueVital sign

6 hours12 hours24 hours36 hours

0.0180.0180.0180.019Temperature

0.0120.0150.0150.016Respiratory rate

0.0110.0130.0130.013Systolic blood pressure

0.0080.0100.0100.011Heart rate

0.0020.0030.0030.003Level of consciousness

0.0020.0030.0030.003Oxygen saturation

0.0000.0000.0000.000Supplementary oxygen

Figure 4. Feature importance of the highest and lowest predictions of deterioration in the test set. We present the Shapley additive explanations (SHAP)
values for (A) 5 observation sets with the highest predictions of deterioration assigned by the extreme gradient boosting (XGBoost) model in the test
set and (B) 5 observation sets with the lowest predictions of deterioration. We confirmed that all observation sets in (A) did indeed experience an adverse
event within 24 hours, whereas all observation sets in (B) did not. Note that temperature values are displayed in degrees Fahrenheit. For a higher-resolution
version of this figure, see Multimedia Appendix 3.
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Figure 5. Partial dependence plots for the input features. We present the Shapley additive explanations (SHAP) partial dependence plots for six input
features: (A) heart rate, (B) respiratory rate, (C) oxygen saturation, (D) temperature, (E) level of consciousness, and (F) systolic blood pressure. The
partial dependence plot for supplementary oxygen is a flat line; hence, it has been omitted from the figure.

Table 6. Feature correlation values. We summarize the Pearson correlation coefficients and Spearman rank correlation coefficients between the
calculated Shapley additive explanations (SHAP) values and the respective features. For each feature, we also present the coefficients of the logistic
regression model and their respective odds ratios.

Logistic regression odds ra-
tio

Logistic regression coeffi-
cient

Spearman rank correlation
coefficient

Pearson correlation co-
efficient

1.0160.0160.8160.606Heart rate

1.1370.1280.4170.792Respiratory rate

0.930−0.073−0.694−0.713Oxygen saturation

1.0020.001−0.0680.006Temperature

1.7020.5321.0000.950Level of consciousness

1.0110.0110.0800.021Supplementary oxygen

1.0010.001−0.099−0.060Systolic blood pressure

Discussion

Principal Findings
EWS systems provide a standardized method for the detection
of patient deterioration [46]. Despite the proliferation of EWS
systems in electronic health record systems, they are often
developed based on heuristics or data acquired from a specific
patient cohort [12]. One such EWS system is the NEWS system
[4], which is recommended by the Royal College of Physicians
and is currently in use in some hospitals in the United Arab
Emirates. In this work, we developed and evaluated data-driven
deterioration prediction models using ML and real-world data
collected at a local hospital. We compared the performance of
the ML models with that of the NEWS system in a holdout test
set consisting of 2548 encounters and 95,755 observation sets
in terms of AUROC and AUPRC values.

Our study has several strengths. First, in the overall population,
our results showed that the XGBoost model and the NN model
achieved the best performance with improvements of 0.096
(95% CI 0.088-0.103; P<.001) and 0.074 (95% CI 0.067-0.081;

P<.001), respectively, compared with the NEWS system. This
is consistent with the findings of other studies, where the
XGBoost model predominantly achieved the best performance
compared with other models, especially with tabular input data
[34,47,48]. Considering the performance improvement with
respect to the NEWS system, we suggest in this case that a
hospital is likely to benefit more by developing its own models
using cohort-specific data, instead of relying on external models
[49]. However, this requires expertise and computational
resources that may not always be readily available. In addition,
we showed that although the models’ performance remained
stable as the training sets were expanded, and more data were
collected, future work should focus on tackling distribution
shifts owing to changes in practice over time or changes in
patient phenotype and demographics. The discrepancy in
performance across all models when using a random data split
compared with a temporal split also highlights the importance
of choosing training and test sets that best reflect the eligible
population during model deployment and implementation.

Another strength of our study is that we assessed the
performance of the models across different deterioration
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windows. We showed that as the prediction window increased
in size, the predictive performance of all models decreased
because the level of difficulty of the prediction tasks increased.
This implies that, in practice, one must deploy the model that
best aligns with the interventions that can be implemented. We
also assessed the importance of the input features as an
interpretability mechanism. In predicting deterioration within
24 hours, respiratory rate was among the top 2 most important
features. This is in line with existing work that emphasizes the
importance of respiratory rate as a clinical biomarker and
indicator of patient status [50].

Despite the contributions of our study in proposing a new
deterioration prediction model for the United Arab Emirates
population, our study has some limitations. We only assessed
the performance of our model using an internal test set from a
single center because we did not have access to any external
validation cohorts. In addition, our model relied on a small set
of 7 input features, mostly vital signs, and we did not include
any other variables that may be indicative of deterioration, such
as laboratory test results. We performed a patient-level split
across the training, validation, and test splits to avoid data
leakage across the data splits. However, this could potentially
bias the learning of the model owing to patients having multiple
encounters or observation sets within a specific data split. On
average, each unique patient had 1.6, 1.5, and 1.5 encounters
in the training, validation, and test sets, respectively; therefore,
we suspect low levels of bias, although this is a limitation of
the training strategy. As we developed models that computed
predictions every time an observation set was recorded, to mimic

EWS systems in real time, we also included all observation sets
of all encounters. In future work, more advanced data-split
training and evaluation strategies can be investigated for
encounter-level predictions with more advanced methods that
consider time-series analysis.

Future work should also focus on the development of
multimodal EWS systems, including imaging modalities such
as chest x-ray images [51]. However, this depends on the target
population of the EWS system and the availability of multimodal
data. We also did not assess the performance of the latest version
of the NEWS system [1,52], also referred to as NEWS2, which
introduced specific alerting thresholds for patients with
hypercapnic respiratory failure in a current or previous
encounter, and this is an area of future work. Another area of
future work with expected clinical impact would be to study
how existing patient management protocols can be re-evaluated
with respect to the model’s predictions and marginal risk
measures computed using SHAP analysis for the input features.

Conclusions
In conclusion, we developed and evaluated deterioration
prediction models using ML and a real-world data set and
compared their performance with that of the NEWS system,
which is commonly used in practice. In future work, we will
seek to evaluate the performance of the XGBoost model in a
silent prospective validation study to verify further areas of
improvement. Although we developed models specific to our
patient cohort, we believe that our framework may be useful to
other researchers interested in developing and evaluating
deterioration prediction models.
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