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Abstract

Background: The utilization of artificial intelligence (AI) technologies in the biomedical field has attracted increasing attention
in recent decades. Studying how past AI technologies have found their way into medicine over time can help to predict which
current (and future) AI technologies have the potential to be utilized in medicine in the coming years, thereby providing a helpful
reference for future research directions.

Objective: The aim of this study was to predict the future trend of AI technologies used in different biomedical domains based
on past trends of related technologies and biomedical domains.

Methods: We collected a large corpus of articles from the PubMed database pertaining to the intersection of AI and biomedicine.
Initially, we attempted to use regression on the extracted keywords alone; however, we found that this approach did not provide
sufficient information. Therefore, we propose a method called “background-enhanced prediction” to expand the knowledge
utilized by the regression algorithm by incorporating both the keywords and their surrounding context. This method of data
construction resulted in improved performance across the six regression models evaluated. Our findings were confirmed through
experiments on recurrent prediction and forecasting.

Results: In our analysis using background information for prediction, we found that a window size of 3 yielded the best results,
outperforming the use of keywords alone. Furthermore, utilizing data only prior to 2017, our regression projections for the period

of 2017-2021 exhibited a high coefficient of determination (R2), which reached up to 0.78, demonstrating the effectiveness of
our method in predicting long-term trends. Based on the prediction, studies related to proteins and tumors will be pushed out of
the top 20 and become replaced by early diagnostics, tomography, and other detection technologies. These are certain areas that
are well-suited to incorporate AI technology. Deep learning, machine learning, and neural networks continue to be the dominant
AI technologies in biomedical applications. Generative adversarial networks represent an emerging technology with a strong
growth trend.

Conclusions: In this study, we explored AI trends in the biomedical field and developed a predictive model to forecast future
trends. Our findings were confirmed through experiments on current trends.

(JMIR AI 2023;2:e45770) doi: 10.2196/45770

KEYWORDS

bibliometrics; trend forecasting; AI in medicine; Word2Vec; regression models; agglomerative clustering; usage; artificial
intelligence; utilization; biomedical; effectiveness; AI trends; predictive model; development

JMIR AI 2023 | vol. 2 | e45770 | p. 1https://ai.jmir.org/2023/1/e45770
(page number not for citation purposes)

Gu et alJMIR AI

XSL•FO
RenderX

mailto:lili.wang.gr@dartmouth.edu
http://dx.doi.org/10.2196/45770
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Artificial Intelligence in Biomedicine
Medicine has long been recognized as a prime area for applying
artificial intelligence (AI) [1], with biomedicine being a vibrant
and promising field. Advances in technology and science have
led to the use of various methods to obtain biomedical data,
such as clinical analyses, biological parameters, and medical
imaging. However, the diversity and complexity of these data,
along with the need for more information on certain atypical
diseases result in unbalanced and nonsmooth biomedical data.
In this scenario, machine learning can improve medical big data
analysis, reduce the risk of medical errors, and generate a more
unified diagnostic and prognostic protocol.

Recent AI research has leveraged machine learning methods to
identify patterns and complex interactions from data, which
require large amounts of data as support. Artificial neural
networks and deep learning are currently among the most
popular machine learning technologies. These methods are used
in biomedicine across all medical dimensions, from genomic
applications such as gene expression to public health care
management such as for predicting population information or
infectious disease outbreaks [2]. AI has also significantly
impacted biomedical processors such as electrocardiogram,
electroencephalogram, and electromyography classification
processors and hearing aid processors [3].

AI is increasingly being utilized in a variety of applications in
the biomedical field. Notable examples include IBM
Watson-Oncology, which selects drugs for cancer treatment
with equal or superior efficiency compared to human experts;
Microsoft’s Hanover project at Oregon, which personalizes
cancer treatment plans through analysis of medical research;
and the UK National Health Service utilizing Google’s
DeepMind platform to detect health risks by analyzing mobile
app data and medical images from patients. Additionally,
algorithms developed at Stanford University have been shown
to detect pneumonia more accurately than human radiologists;
in the diabetic retinopathy challenge, the computer was as
effective as an ophthalmologist in making referral decisions
[4]. Therefore, it is essential to analyze the trends in the
integration of these AI-related technologies with the biomedical
field to understand which technologies have played an important
role in the past, predict the current and emerging technologies
that are more likely to be important in the future, and determine
which original technologies are regaining importance in a
particular biomedical field.

Language models offer an effective means to analyze texts and
have become the basis for many applications, including machine
translation and text classification. In all text-related fields,
language models can bring new improvements and opportunities
to a greater or lesser extent and assist in literature research.

Co-word Analysis
Recently, increased attention has been paid to the management
of references and expansion of the research scope. Bibliometric
analysis summarizes the structure of a field by analyzing the
social and structural relationships between different research

components such as authors, countries, institutions, and topics.
Additionally, bibliometric analysis significantly impacts
reorienting research and identifying popular issues. Thus,
bibliometric analysis enables discovery of how research in a
given field is distributed and changing. The data collected and
the conclusions drawn from a bibliometric analysis can be used
to track popular topics, predict promising technologies, and
assist scientists in redirecting their research. There has been
substantial research and application of bibliometric analysis in
academia and industry, and extracting keywords to analyze texts
is a very common strategy in such studies. Although it is
intuitive to use the whole text as an object of analysis, this
requires extensive computational resources. Moreover, many
texts are not of high quality, some of them are repetitive or have
no actual content, and a lot of noise can make the model learn
the wrong knowledge. Therefore, keyword-focused analysis is
often a better choice. Co-word analysis is one such technique
that focuses on keywords and analyzes the content itself [5].
This analysis aims to uncover the intrinsic connections of articles
and discover trends within them with applications in many
fields, including medicine and business.

Co-word analysis was first proposed by French bibliometricians
in the late 1970s [6] as a technique for studying keywords in
the content of publications. Words in the co-word analysis are
typically derived from the article title, abstract, and full text.
These words may be specifically extracted from certain parts
of each component, depending on the goal of the analysis.
Co-word analysis assumes that words that frequently occur
together have thematic relationships with each other. Based on
this assumption, co-word analysis can be used to predict future
research in a field. Analysis of the keywords of published
articles in a given field has the potential to predict keywords
for future research in the field, which in turn portrays the future
of the research field accordingly. Co-word analysis uses several
methods based on covariate matrices, such as factor, cluster,
multivariate, and social network analyses. These methods help
researchers to obtain an overview of a field. Thus, co-word
analysis is a method to analyze papers in a field and make valid
judgments.

Text Similarity
Text similarity measurement is fundamental to natural language
processing tasks and is essential in information retrieval,
question answering, machine translation, and dialogue systems,
among other applications. In recent years, various techniques
for measuring semantic similarity have been proposed. Text
similarity techniques can be divided into two main categories:
text distance and text representation [7].

Text distance describes the semantic similarity of two text words
from the perspective of distance. Length-based and
distribution-based distance are the two main types of text
distance. Traditionally, text similarity is evaluated by measuring
the length distance, which uses the numerical properties of the
text to calculate the text vector distance length, such as the
Euclidean distance, cosine distance, or Manhattan distance [8].
However, the text similarity should not be symmetric and the
length distance does not consider the statistical characteristics
of the data. The distribution distance determines the similarity
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between documents based on the similarity of their distribution,
such as Jensen-Shannon divergence [9], Kullback-Leibler
divergence [10], and Wasserstein distance [11], among others.

Text representation methods convert text to a numerical feature
vector. These methods are mainly divided into a string-based
method, corpus-based method, semantic text matching, and
graph structure–based method. String-based methods operate
on string sequences and character compositions to measure the
similarity or dissimilarity (distance) between two text strings
for approximate string matching or comparison. The advantage
of such methods is that they are simple to compute.
Representative string-based methods include longest common
subsequence [12], Edit distance [13], Jaro similarity [14], Dice
[15], and Jaccard [16]. The corpus-based methods use
information from the corpus to compute text similarity; this
information can be either text features or co-occurrence
probabilities. In recent studies, corpus-based approaches include
three different measures: the bag-of-words model, distributed
representation, and matrix decomposition method. The
corpus-based methods mainly include bag-of-words [17], text
frequency-inverse document frequency [18], Word2Vec [19],
latent semantic analysis [20], and others. Semantic similarity
determines the similarity between text and documents based on
their meaning rather than character-by-character matching.
Deep-structured semantic models [21] are typical models in this
regard. Graph-based text similarities are mainly based on a
knowledge-graph representation and a graph neural network
representation. The graph structure better enables determining
the similarity between nodes. Knowledge graphs [22] and graph
neural networks [23] are the main methods for exploiting a
graph structure.

Predicting the Future of AI in Health Care
Some previous works have also discussed the application of AI
in medicine and possible future directions. One is integrative
analysis [24], where data from different modalities can describe
various aspects of a health problem. By mining these
heterogeneous data in an integrated way, holistic and
comprehensive insight into health can be obtained. In recent
years, there has been a growing number of studies and initiatives
related to AI in health, integrating different aspects of clinical
data and linking drug development to clinical data. AI for
precision medicine [25] represents another promising
combination of AI and medicine, which assists in solving the
most complex problems in personalized care. For example, AI
in microscopic diagnostics [26] can improve the work of
pathologists and may even gradually replace their work.

In this study, we used language models to measure the
relationship between keywords, which can subsequently assist
in building aggregation models and using adjacent keywords.
Specifically, we propose a background-enhanced prediction
method for constructing data for prediction using adjacent
keywords, which refer to matrices adjacent to a 2D correlation
matrix constructed using a clustering algorithm. This approach
allows regression models to learn better and more accurately
predict the relationships between keywords. We applied this
approach to predict the future trend of AI technologies used in
different biomedical domains based on past trends of related

technologies and biomedical domains. We further compared
the prediction results to the patterns of current trends to evaluate
the reliability of the prediction.

Methods

Data Sets
The data sets used in this study were obtained from the National
Institutes of Health PubMed and PMC collections, with
measures taken to avoid duplication by utilizing unique
identifiers.

The corpus utilized in this study consists of three parts: (1)
114,266 abstracts and 49,126 full texts from PubMed and PMC
obtained by searching keywords such as “machine learning,”
“data mining,” “artificial intelligence,” “deep learning,” and
“classifier” in the Title/Abstract field; (2) 61,382 full-text papers
from PMC obtained by searching keywords such as “machine
learning,” “data mining,” “artificial intelligence,” and “deep
learning” in all fields, serving as a complement to the previous
part; and (3) 2,507,391 full-text papers retrieved from the
PubMed Central Open Access section with no keyword filtering
to capture a comprehensive understanding of the biomedical
field.

Due to permission restrictions, full-text access was limited for
some papers. The full text of the papers primarily served for
training, with the core of our experiments lying in the analysis
and model prediction based on the abstracts.

Language Model
We utilized the word-embedding model Word2Vec as our
language model owing to its advantages of efficiency and
robustness among other available options [27].

Word embedding is a method of transforming a single word
into a digital representation that captures various features of the
word within a text, such as semantic relationships, definitions,
and contexts. These digital representations can be used to
identify similarities or dissimilarities between words.

To feed text data into a machine learning model, the text must
be converted into an embedding. A simple method to achieve
this involves “hot-coding” the text data, where each vector is
mapped to a category. However, such simple embeddings have
limitations as they do not capture the features of the words and
can be large depending on the corpus size.

The effectiveness of Word2Vec is derived from its ability to
combine vectors of similar words, leading to reliable estimates
of word meaning based on their frequency in the corpus. This
results in associations with other words, such as similar
embedding vectors of “king” and “queen.” Algebraic operations
on word embeddings can also provide approximations of word
similarity, such as obtaining the vector for “queen” by
subtracting the vector for “man” from the vector for “king” and
adding the vector for “woman.” The cosine similarity measure
is used to compare the similarity of two words, which is
calculated according to the following formula:

cos(x,y)=x·y/∣x∣×∣y∣
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To improve the suitability of the original corpus for our language
model, we performed extensive preprocessing to address any
noise that may impact the model’s effectiveness. This included
removing all numeric and nonalphabetic characters, except for
the special character “-,” which is often used to link multiple
words and create unique phrases. Additionally, to enhance the
word vectors of biomedical- and AI-related keywords, we
transformed multiword keywords in 114,266 abstracts into
single tokens by merging them; for example, “machine learning”
was merged into “machine+learning.”

The selection of hyperparameters was based on the available
computational resources and the training corpus size. Our
Word2Vec model had 300 dimensions and a window size of 5.
Our computational device is a cluster with 384 GB of memory
and 16 CPU cores. The Word2Vec model was trained
sequentially on the three data sets, with the entire training
process taking approximately 72 hours.

Background-Enhanced Prediction
Technology tends to be heavily studied in similar areas of
research. Conversely, technology and its similar variants may
be very popular in the same field. For example, techniques used
for one type of cancer may also be relevant to other types of
cancer, and various artificial neural models can all be applied
in the field of medical image recognition. Our model was
developed to predict future research trends based on direct
relationships between technologies and fields and related
technologies and fields. More specifically, we extracted the top
500 most frequent AI terms and the top 1000 most frequent
biomedical fields from the 114,266 abstracts. To distinguish AI
terms from biomedical terms, we adopted a simple classifier.

We obtained approximately 47,000 biomedical phrases from
Medical Subject Headings and approximately 700 AI algorithms
from Wikipedia. We used the average cosine similarity of each
keyword and all terms in the two-word sets to predict whether
the keyword should belong to the biomedical or AI domain.
Next, Word2vec was used to obtain embeddings from each
word. After converting all words into embeddings using
Word2vec, we applied agglomerative clustering [28] to classify
all the keywords according to their embeddings. Agglomerative
clustering is a bottom-up clustering process. Initially, each input
object forms its cluster. In each subsequent step, the two
“closest” clusters are merged until only one remains. In our
case, words with similar meanings will be grouped. Such a
hierarchy is useful in many applications, and we provide the
resulting tree diagram next to the corresponding heat map to
best visualize the relationships between the surrounding
categories.

Figure 1 depicts the co-occurrence frequency of biomedical and
AI keywords. For regression prediction, we utilized not only
the data from the orange part (information held by the keyword)
but also from the green part (information held by the word
neighboring the keyword). This inclusion provides a richer
context, offering models that include more relevant information
to learn from. The number 4 in the orange cell indicates the
number of co-occurrences of “neural network” and “cancer,”
which we not only used as input to predict the number of future
co-occurrences of the terms “neural network” and “cancer” but
also added the number of co-occurrences in the green section,
5+3+5+3+4+7+5+4, to obtain a more comprehensive prediction
using the neighboring information.

Figure 1. Co-occurrence frequency table of biomedical- and artificial intelligence–related keywords. Each number represents the number of co-occurrences
of a given artificial intelligence model and biomedical term. The orange part represents the information held by the keyword and the green part represents
the information held by the keyword's neighbors. CNN, convolutional neural network; LSTM: long short-term memory; MLP, multilayer perceptron;
NN: neural network; RNN, recurrent neural network.

Regression Model
The inputs and outputs of the regression model represent the
co-occurrence frequency of biomedical and AI keywords in
previous years and the co-occurrence frequency of future

biomedical and AI keywords obtained by prediction. Due to the
limited number of AI-related papers from 1970 to 2000, we
used semiannual statistics for January 2000 to December 2021
in our analysis. We incorporated each semiannual data set into
a training and testing prediction model. Our model uses a small
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window of the heatmap for the past 6 months, which was
constructed using specific technology and domain pairs as
features, and the model was trained on all prior-year samples
to predict the current year’s heat level. We employed six
different regression algorithms: support vector regression, lasso
regression, ridge regression, elastic net [29], orthogonal
matching pursuit [30], and passive aggressive regressor [31],
using Scikit-learn [32]. We set the parameters to random_state=0
for lasso, ridge, elastic net, and passive aggressive regressor;
normalize=True for lasso and ridge; and left the other parameters
as default values.

The data from 2016 to 2021 were used as a validation set and
the data from 2002 to 2021 were used to predict trends from
2021 to 2026.

Results

Visualization
Figure 2 presents a heatmap that illustrates the distribution of
publications from 1970 to 2021. To improve the visualization,
we limited the analysis to the top 100 frequently occurring AI
terms and the top 200 frequently occurring biomedical terms.
However, in subsequent experiments, we expanded the analysis
to include the top 500 AI terms and the top 1000 biomedical
terms. The heatmap plots the intersection of computer
technology and biomedical fields, with the heat representing
the logarithm of the number of papers published between 1970
and 2021 that mention both areas in the abstract. This map
demonstrates that neural network–based methods are the most
popular AI tools for application in the medical field.

Figure 2. Heatmap of the publications related to certain artificial intelligence (AI) technologies and biomedical fields from 1970 to 2021. The horizontal
axis is the keywords in the biomedical field and the vertical axis is the keywords of AI technology. A higher resolution version of this figure is available
in Multimedia Appendix 1.
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After encoding words using Word2Vec, each word becomes a
corresponding embedding. To evaluate the quality of the
generated embeddings, we employed t-distributed stochastic
neighbor embedding (t-SNE) [33], a technique for visualizing
high-dimensional data by projecting it onto a 2D map. The
t-SNE plots in Figures 3 and 4 reveal that the word embeddings

obtained by Word2Vec do allow words with similar meanings
to be close together in the embedding space. Figure 3 highlights
the vector positions of cancer-related keywords in 2D space,
while Figure 4 shows the positions of classifier-related
keywords.

Figure 3. Biomedical keywords in a t-distributed stochastic neighbor embedding plot.

Figure 4. Artificial intelligence keywords in the t-distributed stochastic neighbor embedding plot.

Future Trend Prediction

Figure 5 illustrates the average R2 values of all predicted and
actual results from July 2002 to December 2021, with different
window sizes of 1, 3, 5, 7, and 9. From Figure 5, we can also
see that the elastic net model provided the best results when the
window size was equal to 9, whereas some other models worked
best when the window size was equal to 3.

Since our model relies on the previous year’s heatmap as a
feature, to predict a longer time horizon, we iteratively ran our
model using the predicted heatmap of cycle x to predict the

heatmap of cycle x+1. As shown in Figure 6, although the R2

value decreased during the 5-year prediction, it was still
relatively high. We also provide a 100×200 demonstration to
visualize the prediction results in Figures 7-10. These heatmaps,
like those in Figure 2, are also used to show the frequency of
co-occurrence between the keywords of AI technology and
biomedicine. Figure 8 depicts the original publications that were
recorded between July and December 2021, while Figure 9
represents the predicted publications for the same time period.
To effectively showcase the disparity between the actual and
projected outcomes, a heatmap was generated using both the
original and predicted heatmaps. This comparison is visually
presented in Figure 10, allowing for a clear and easily
understandable differentiation between the two sets of data.
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Figure 5. Mean R-square values obtained by forecasting in half-yearly intervals from July 2002 to December 2021 under different window sizes for
different methods. SVR: support vector regression.

Figure 6. Line graph of the forecast results for each half year from 2002 to 2021. The model used was elastic net with a 9×9 window size, as this
resulted in the best prediction (R-square value).
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Figure 7. The predictions are iterated in half-year increments from July 2014 to December 2021, and the data obtained from the predictions are used
as the data set for the subsequent prediction models for training. The horizontal axis is time and the vertical axis is the R-square value. A higher resolution
version of this figure is available in Multimedia Appendix 2.
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Figure 8. Heatmap from July to December 2021 for the actual intersection of artificial intelligence (AI) technology and biomedical field applications.
The horizontal axis is the keywords in the medical field and the vertical axis is the keywords in AI technology. A higher resolution version of this figure
is available in Multimedia Appendix 3.
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Figure 9. Predicted heat map of the intersection of artificial intelligence (AI) technology and biomedical field applications from July to December
2021. The horizontal axis is the keywords in the medical field and the vertical axis is the keywords in AI technology. A higher resolution version of
this figure is available in Multimedia Appendix 4.
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Figure 10. Heatmap drawn from the difference between the predicted and actual heatmaps for July to December 2021 (Figures 9 and 8, respectively)
representing the intersection of artificial intelligence (AI) technology and biomedical field applications. The horizontal axis is the keywords in the
medical field and the vertical axis is the keywords in AI technology. A higher resolution version of this figure is available in Multimedia Appendix 5.

Co-occurrence Trend Analysis
The data obtained through statistical analysis indicated that the
number of papers combining AI with biomedicine is increasing
in spurts. From Table 1, we can see which combinations between
AI and biomedicine are the most popular. The field of genetics
shows many combinations with various AI technologies,
occupying 13 of the top 20 positions. Numerous papers on this
topic highlight its popularity [34-36]. The combination of AI
and protein ranked fourth, demonstrating that protein analysis
is a very suitable field for the use of machines. Cancer and
tumors are currently the main challenges in biomedicine, and

their combination with AI is also a popular topic at present. In
these biomedical fields, machine learning is the AI technology
with the highest number of applications. Although deep learning
and neural networks are trendy, traditional methods such as
vector automata and random forests are still the main choices
in biomedical fields. Many fundamental concepts of AI are also
included in this ranking, such as classification, regression,
cross-validation, feature extraction, receiver operating
characteristic, and others. Overall, this analysis shows that AI
has become a key technology in the biomedical field and
requires the proficiency of biomedical scientists.
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Table 1. The top 20 combinations of artificial intelligence (AI) technologies and biomedical fields that have appeared in the literature in the last 5
years.

Proportion of publications, %AI technology, biomedical fieldRank

1.650machine learning, gene1

1.038classification, gene2

0.634neural network, gene3

0.453deep learning, gene4

0.447support vector machine, gene5

0.404machine learning, protein6

0.402regression, gene7

0.385learning algorithm, gene8

0.380machine learning, cancer9

0.351classification, cancer10

0.331random forest, gene11

0.249artificial intelligence, gene12

0.241convolution neural network, gene13

0.219cross-validation, gene14

0.191feature selection, gene15

0.176neural network, cancer16

0.172classification, tumor17

0.171supervised learning, gene18

0.171machine learning, tumor19

0.169receiver operating characteristic, gene20

Since many combinations between AI and biomedicine have a
very small contribution or are nonexistent, some are not
meaningful; therefore, we set a reasonable threshold to filter
such combinations, avoiding the situation where the original
minimal combination grows by a considerable percentage with
little growth so that the table showing the trend of changes is
more meaningful. From Table 2, we can see the very rapid
growth of cases combining AI and biomedicine in the last 5
years. This is because genes, proteins, oncology, and many other
fields are growing rapidly, and core medical testing technology
such as magnetic resonance imaging is compatible with AI.

We used the best model from our proposed methodology to
forecast the trends in AI technology and biomedicine over the
next 5 years. The prediction results for the contributions of each
combination and their growth are shown in Table 3 and Table

4, respectively. The regression results were rounded for brevity
of presentation in the tables. We can use these predicted results
to provide an outlook on the future development of AI in
biomedicine. From the point of view of AI technologies,
standard techniques such as deep learning, machine learning,
and neural networks still dominate. Traditional machine learning
methods such as random forest and support vector machine are
outside the top 20 prediction results. Deep learning will
gradually become the mainstream AI technology combined with
biomedicine [37]. From a biomedical perspective, genetics will
continue to dominate. At the same time, studies focusing on
proteins and tumors will leave the top 20 and be replaced by
early diagnostics, tomography, and other detection technologies.
These are certain areas that are well suited to incorporate AI
technology.

JMIR AI 2023 | vol. 2 | e45770 | p. 12https://ai.jmir.org/2023/1/e45770
(page number not for citation purposes)

Gu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. The 20 most rapidly growing combinations of artificial intelligence (AI) technologies and biomedical fields in the last 5 years.

Growth, %AI technology, biomedical fieldRank

1054.545electronic, health records1

1054.545electronic health records, electronic health2

1033.333machine learning, electronic health record3

820.000machine learning, health care4

816.667machine learning, risk factor5

735.000machine learning, public health6

700.483neural network, gene7

647.059neural network, cancer8

619.697machine learning, tumor9

613.333image analysis, gene10

572.414machine learning, clinical trial11

566.667machine learning, clinical practice12

547.619decision making, gene13

511.111artificial intelligence, gene14

493.617random forest, cancer15

487.179machine learning, clinical data16

480.000electronic medical record, medical records17

467.647next generation sequencing, gene18

466.667random forest, tumor19

456.579machine learning, magnetic resonance20
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Table 3. The top 20 combinations of artificial intelligence (AI) technologies and biomedical fields that will emerge in the next 5 years.

Predicted proportion of publications, %AI technology, biomedical fieldRank

2.331machine learning, gene1

2.289artificial intelligence, early diagnosis2

1.901artificial intelligence, early detection3

1.487artificial intelligence, gene4

1.392neural network, gene5

1.288deep learning, computed tomography6

1.239artificial intelligence, systematic reviews7

1.197classification, gene8

1.188supervised learning, gene9

1.040generative adversarial network, gene10

0.881artificial intelligence, personalized treatment11

0.659machine learning, risk factors12

0.633deep learning, gene13

0.617artificial intelligence, systematic review14

0.604convolution neural network, gene15

0.593learning algorithm, gene16

0.581receiver operating characteristic, computed tomography scans17

0.578machine learning, medical records18

0.569machine learning, blood pressure19

0.554artificial intelligence, imaging modalities20
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Table 4. The top 20 rapidly growing combinations of artificial intelligence (AI) technology and biomedical fields in the next 5 years.

Predicted growth, %AI technology, biomedical fieldRank

2253.521artificial intelligence, gene1

2184.491machine learning, risk factor2

2164.150cross-validation, gene3

1504.581receiver operating characteristic, gene4

1421.751learning algorithm, gene5

1340.880neural network, gene6

1296.067convolution neural network, gene7

1280.985classification, gene8

1261.342machine learning, gene9

888.106classification, cancer10

791.807support vector machine, gene11

665.430neural network, cancer12

621.627artificial intelligence, cancer13

502.318deep learning, gene14

415.298classification, tumor15

377.864regression, gene16

333.778machine learning, protein17

322.787random forest, gene18

200.080deep learning, cancer19

192.518natural language processing, natural language20

Discussion

Principal Findings

AI Technology Trends in Biomedicine
Our findings confirm that standard AI techniques, including
deep learning, machine learning, and neural networks, continue
to be the primary driving forces behind the integration of AI
into biomedicine. However, it is noteworthy that generative
adversarial networks (GANs) [38] are gaining prominence,
particularly in the genetics field. GANs hold immense potential
for applications in medical imaging and drug discovery owing
to their ability to generate synthetic images across various
modalities.

Evolution of Biomedical Research
The data also highlight the shifting landscape of biomedical
research. While genetics remains dominant, areas such as
proteins and tumors are gradually giving way to early
diagnostics, tomography, and other detection technologies.
These developments align with the suitability of these fields for
AI integration, resulting in promising advancements in health
care analysis and diagnostics.

Impact of AI on Health Care
As suggested by previous research [24], the future of AI in
health care is promising. AI has the potential to enhance the
accuracy of cancer diagnosis and prognosis beyond that of
average statistical experts [39,40]. Furthermore, as AI

technology continues to advance, it will enable the resolution
of more complex and specialized health care problems, further
transforming the biomedical landscape.

Future Work
By utilizing keywords to filter medical papers that have applied
AI techniques, we identified key connections and trends among
them. The approach of using keywords aggregated based on
text similarity performed well in the regression model. This
approach is intuitive and leads to improved co-word analysis
for trend prediction.

Fundamentally, incorporating peripheral information led to
higher regression accuracy and more accurate predictions of
future trends. Additionally, this approach also takes into account
internal relationships within a class compared to previous
methods. However, this also raises the question of how to best
measure the degree of keyword association.

We made some simple assumptions that words with similar
meanings would complement the information of the others.
Specifically, considering only their own meanings tends to make
the predictions one-sided, while having more reference
information naturally makes the predictions more robust. This
can be seen as a type of data augmentation. There are still many
directions to explore regarding this approach. In future research,
it may be possible to use different text similarity methods such
as convolutional neural network, bidirectional encoder
representations from transformers, and various regression
models, where the reliability of text similarity determines
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whether the information obtained from the surrounding context
is valid. Additionally, different time spans for the prediction
can be studied. Although this study focused on AI techniques
in the biomedical field, the applicability of the proposed
approach extends to any study involving co-word analysis.

Limitations
While our study provides valuable insights into the trends of
AI technologies in the biomedical domain based on a
comprehensive data set from PubMed, there are several
limitations to consider. First, there is a limitation of the data
source, since our study solely relies on PubMed as the primary
source of articles, which might introduce a selection bias. There
are numerous other databases and grey literature sources that
were not considered, and their inclusion might have offered a
more comprehensive view. Second, our study lacks external
validity. Our findings, although significant in the context of our
data set, require validation with real-world applications and
events to check their external validity.

Conclusions
In this study, we aimed to explore the analysis and prediction
of trends at the intersection of biomedical and AI research. To
accomplish this, we collected a large corpus of articles from
PubMed on the intersection of AI and biomedicine. Initially,
we attempted to use regression on the extracted keywords alone.
However, we found that this approach was lacking in
information. Therefore, we proposed a method called
background-enhanced prediction to expand the knowledge
utilized by the regression algorithm by incorporating both the
keywords and their surrounding context. This data construction
method improved the performance of our forecasting models.
Our findings were validated through comparisons with current
trends. In particular, the integration of electronic medical record
big data with AI, laboratory data, clinical trials, and imaging
diagnostic tools has emerged as a prominent approach.
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