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Abstract

Background: Deep learning models have shown great success in automating tasks in sleep medicine by learning from carefully
annotated electroencephalogram (EEG) data. However, effectively using a large amount of raw EEG data remains a challenge.

Objective: In this study, we aim to learn robust vector representations from massive unlabeled EEG signals, such that the learned
vectorized features (1) are expressive enough to replace the raw signals in the sleep staging task, and (2) provide better predictive
performance than supervised models in scenarios involving fewer labels and noisy samples.

Methods: We propose a self-supervised model, Contrast with the World Representation (ContraWR), for EEG signal representation
learning. Unlike previous models that use a set of negative samples, our model uses global statistics (ie, the average representation)
from the data set to distinguish signals associated with different sleep stages. The ContraWR model is evaluated on 3 real-world
EEG data sets that include both settings: at-home and in-laboratory EEG recording.

Results: ContraWR outperforms 4 recently reported self-supervised learning methods on the sleep staging task across 3 large
EEG data sets. ContraWR also supersedes supervised learning when fewer training labels are available (eg, 4% accuracy
improvement when less than 2% of data are labeled on the Sleep EDF data set). Moreover, the model provides informative,
representative feature structures in 2D projection.

Conclusions: We show that ContraWR is robust to noise and can provide high-quality EEG representations for downstream
prediction tasks. The proposed model can be generalized to other unsupervised physiological signal learning tasks. Future directions
include exploring task-specific data augmentations and combining self-supervised methods with supervised methods, building
upon the initial success of self-supervised learning reported in this study.
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Introduction

Deep learning models have shown great success in automating
tasks in sleep medicine by learning from high-quality labeled

electroencephalogram (EEG) data [1]. EEG data are collected
from patients wearing clinical sensors, which generate real-time
multimodal signal data. A common challenge in classifying
physiological signals, including EEG signals, is the lack of
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enough high-quality labels. This paper introduces a novel
self-supervised model that leverages the inherent structure within
large, unlabeled, and noisy data sets and produces robust feature
representations. These representations can significantly enhance
the performance of downstream classification tasks, such as
sleep staging, especially in cases where only limited labeled
data are available.

Self-supervised learning (specifically, self-supervised contrastive
learning) aims at learning a feature encoder that maps input
signals into a vector representation using unlabeled data.
Self-supervised methods involve two steps: (1) a pretrain step
to learn the feature encoder without labels and (2) a supervised
step to evaluate the learned encoder with a small amount of
labeled data. During the pretrain step, some recent methods (eg,
Momentum Contrast [MoCo] [2] and the simple framework for
contrastive learning of visual representations [SimCLR] [3])
use the feature encoder to construct positive and negative pairs
from the unlabeled data and then optimize the encoder by
pushing positive pairs closer and negative pairs farther away.
A positive pair consists of 2 different augmented versions of
the same sample (ie, applying 2 data augmentation methods
separately to the same sample), while a negative pair is
generated from the augmented data of 2 different samples. For
example, the augmentation method for EEG data can be
denoising or channel flipping. In this practice, existing negative
sampling strategies often incur sampling issues [4,5], especially
for noisy EEG data, which significantly affects performance
[6]. Specifically, in the self-supervised learning setting (without
labels), the negative samples are actually random samples, which
may be from the same latent class. Using these “negative
samples” can potentially undermine model performance.

Technically, this study contributes to the pretrain step, where
we address the aforementioned limitations of existing negative
sampling strategies (eg, MoCo [2] and SimCLR [3]) by
leveraging global data statistics. In contrastive learning, positive
pairs provide similarity-related information, while negative
pairs provide contrastive information. Both types of information
are essential in learning an effective feature encoder. This study
proposes a new contrastive learning method, named Contrast
with the World Representation (ContraWR). In our ContraWR,
we construct positive pairs using data augmentation, similar to
existing methods, while we use one global average
representation over the data set (called the world representation)
as the negative sample to provide the contrastive information.
Derived from global data statistics, the world representation is
robust even in noisy environments, and it follows a new
contrastive guidance in the absence of labels: the representation
similarity between positive pairs is stronger than the similarity
to the world representation. Moreover, in this study, we later
strengthen our model with an instance-aware world

representation for individual samples, where closer samples
have larger weights in calculating the global average. Our
experiments show that the instance-aware world representation
makes the model more accurate, and this conclusion aligns with
the findings from a previous paper [6] that harder negative
samples are more effective in learning feature encoding.

We evaluated the proposed ContraWR on the sleep staging task
with 3 real-world EEG data sets. Our model achieved results
comparable to or better than those of recent popular
self-supervised methods including MoCo [2], SimCLR [3],
Bootstrap Your Own Latent (BYOL) [7], and simple Siamese
(SimSiam) [8]. The results also show that self-supervised
contrastive methods, especially our ContraWR method, are
much more powerful in low-label scenarios than supervised
learning (eg, 4% accuracy improvement on sleep staging with
less than 2% training data of the Sleep EDF data set).

Methods

EEG Data Sets
We considered 3 real-world EEG data sets for this study (the
first 2 data sets entirely comprise at-home PSG recordings):

1. The data set of the Sleep Heart Health Study (SHHS) [9,10]
is a multicenter cohort study from the National Heart Lung
& Blood Institute (Bethesda, Maryland), assembled to study
sleep-disordered breathing, which comprises 5804 adult
patients older than 40 years and 5445 recordings in the first
visit. We used first-visit polysomnography (PSG) data in
the experiments. Each recording has 14 PSG channels, and
the recording frequency is 125.0 Hz. We used the C3/A2
and C4/A1 EEG channels.

2. The Sleep EDF [11] cassette portion is another benchmark
data set collected in a 1987-1991 study of age effects on
sleep in healthy Caucasians. The data comprise 78 subjects
aged 25-101 years who were taking non–sleep-related
medications; the data set contains 153 full-night EEG
recordings with a recording frequency of 100.0 Hz. We
extracted the Fpz-Cz/Pz-Oz EEG channels as the raw inputs
to the model.

3. The Massachusetts General Hospital’s (MGH’s) MGH
Sleep data set [1] was collected from MGH’s sleep
laboratory, which comprises more than 5000 individuals,
where 6 EEG channels (ie, F3-M2, F4-M1, C3-M2, C4-M1,
O1-M2, and O2-M1) were used for sleep staging, recorded
at a 200.0-Hz frequency. After filtering out mismatched
signals and missing labels, we finally curated 6478
recordings.

The data set’s statistics can be found in Table 1, and the class
label distribution is shown in Table 2.
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Table 1. Data set statistics.

Storage (GB)Epochs, nRecordings, nChannels, nLocationName

2604,535,94954452At homeSleep Heart Health Study

20415,0891532At homeSleep EDF

13224,863,52364786In the laboratoryMGHa Sleep

aMGH: Massachusetts General Hospital.

Table 2. Class label distribution of the data sets.

Epochs, n (%)Name

RN3N2N1W

632,865 (14.0)571,191 (12.6)1,856,130 (40.9)169,021 (3.7)1,306,742 (28.8)Sleep Heart Health
Study

25,835 (6.2)13,039 (3.2)69,132 (16.6)21,522 (5.2)285,561 (68.8)Sleep EDF

671,168 (13.8)855,980 (17.6)700,347 (14.4)481,488 (9.9)2,154,540 (44.3)MGHa Sleep

aMGH: Massachusetts General Hospital.

Problem Formulation
To set up the experiments, the raw subject EEG recordings,
which are multichannel brain waves, were used. First, the
unlabeled subject recordings were grouped as the pretrain set,
and the labeled recordings were grouped into the training or
test sets. The training and test sets are usually small, but their
EEG recordings are labeled, while the pretrain set contains a
large number of unlabeled recordings. Within each set, the long
recordings are segmented into disjoint 30-second windows.

Each window is called an epoch, denoted as x∈RC×N. Each
epoch has the same format: C input channels and N time stamps
from each channel.

For these data sets, the ground truth labels were released by the
original data publishers. To align with the problem’s setting,
participants were randomly assigned to the pretrain set, training
set, and test set in different proportions (90%: 5%: 5% for the
Sleep EDF and MGH sets and 98%: 1%: 1% for the SHHS set,
since they have different amounts of data). All epochs
segmented from a participant are placed within the same set.
The pretrain set is used for self-supervised learning; hence, we
removed their labels.

In the pretrain step, the EEG self-supervised representation
learning problem requires building a feature encoder f(⋅) from
the pretrain set (without labels), which maps an epoch x into a

vector representation h∈Rd, where d is the feature
dimensionality, such that the representation h can replace raw
signals for downstream classification tasks. Evaluation of the
encoder f(⋅) was conducted on the training and test data (with
labels). We focus on sleep staging as the supervised step, where
the feature vector of a sample x will be mapped to 5 sleep cycle
labels, awake (W), rapid eye movement (REM; R), non-REM
1 (N1), non-REM 2 (N2), and non-REM 3 (N3), based on the
American Academy of Sleep Medicine’s (AASM’s) scoring
standards [12]. Specifically, based on the feature encoder from
the pretrain step, the training set is used to learn a linear model

on top of the feature vectors, and the test set is used to evaluate
the linear classification performance.

Background and Existing Methods

Overview
Self-supervised learning occurs in the pretrain step, and it uses
representation similarity to exploit the unlabeled signals, with

an encoder network f(⋅):RC×N→Rd and a nonlinear projection

network g(⋅):Rd→Rm. Specifically, for a given signal x from the
pretrain set, commonly, one applies data augmentation methods
a(⋅) to produce 2 different modified signals x ̃', x ̃'' (after this
procedure, the format does not change), which are then

transformed into h', h''∈Rd by f(⋅) and further into z', z''∈Rm by
g(⋅). The vectors z’, z’’ are finally normalized with the L2 norm

onto the unit hypersphere .

We call the anchor, the positive sample, and these 2
together are called a positive pair. For the projections zk obtained
from other randomly selected signals (by negative sampling

strategy), their representation is commonly conceived of as
negative samples (though they are random samples), and any
one of them together with the anchor is called a negative pair
in the existing literature [2,3]. The loss function L is derived
from the similarity comparison between positive and negative
pairs (eg, encouraging the similarity of positive pairs to be
stronger than that of all the negative pairs, referred to as the
noise contrastive estimation loss [13]). A common forward flow
of self-supervised learning on EEG signals can be illustrated as

.

For data augmentation, this study used bandpass filtering,
noising, channel flipping, and shifting (see the definition in
Multimedia Appendix 1 and the visual illustrations in
Multimedia Appendix 2). We conducted ablation studies on the
augmentation methods in our experiment and have provided
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the implementation details. To reduce clutter, we also used z to
denote the L2 normalized version in the rest of the paper.

ContraWR

Background

As mentioned above, most existing models use random samples
as negative samples, which can introduce issues (that the
negative sample might be from the same latent class) for the
pretrain step and undermine representation quality. To address
the issue, this paper proposes a new self-supervised learning
method, ContraWR. ContraWR replaces the large number of
negative samples with a single average representation of the
batch, called the world representation or global representation.
This way is robust as it avoids constructing negative pairs where
2 data are actually obtained from the same latent class. The
world representation servers as a reference in our new
contrastive principle: the representation similarity between a
positive pair should be stronger than the similarity between the
anchor and the world representation. Note that the world
representation is not fixed but changes with the encoder updating
the parameters.

The World Representation

Assume z’ is the anchor, z’’ is the positive sample, and zk

denotes a random sample. We generate an average representation
of the data set, zw as the only negative sample. To formalize,
we assume k∼p(⋅) is the sample distribution over the data set
(ie, k is the sample index), independent of the anchor z’. The
world representation zw is defined by zw=Ek∼p(⋅)[zk].

Here, we denote D=[z:||z||≤1, z∈Rm]. Obviously, zw∈D. In the
experiment, zw is approximated by the average over each batch;
that is, we used the average sample representation over the batch

as the world representation, where M is the batch
size.

Gaussian Kernel Measure

We adopted a Gaussian kernel defined on D,
sim(x,y):D×D→(0,1] as a similarity measure. Formally, given
2 feature projections z’, z’’ the similarity is defined as

, where σ is a hyperparameter. The
Gaussian kernel combined with the following triplet loss gives
the alignment and uniformity properties in the loss convergence
(Multimedia Appendix 3). When σ becomes large, the Gaussian
kernel measure will reduce to cosine similarity.

Loss Function

For the anchor z’, the positive sample z’’ and the world
representation zw, we devise a triplet loss, L=[sim(z',
zw)+δ–sim(z', z'')]+, where δ>0 is the empirical margin, a
hyperparameter. The loss is minimized over batches, ensuring
that the similarity of positive pairs sim(z’, z’’), is larger than
the similarity to the world representation sim(z’, zw), by a margin
of δ.

The pipeline of our ContraWR is shown in Figure 1. The online
networks fθ(⋅), gθ(⋅) and the target networks fϕ(⋅), gϕ(⋅) share an
identical network structure. Encoder networks fθ(⋅), fϕ(⋅) map 2
augmented versions of the same signal to respective feature
representations. Then, the projection networks gθ(⋅), gϕ(⋅) project
the feature representations onto a unit hypersphere, where the
loss is defined. During optimization, the web-based networks
are updated by gradient descent, and the target networks update
parameters from the online network with an exponential moving
average (EMA) trick [2].

θ(n+1)← θ(n)–η⋅∇θL

ϕ(n+1)←λ⋅ϕ(n)+(1–λ)⋅θ(n+1)

where n indicates the nth update, η is the learning rate, and λ
is a weight hyperparameter. After this optimization in the
pretrain step, the encoder network fθ(⋅) is ready to be evaluated
on the training and test sets in the supervised step.

Figure 1. The Contrast with the World Representation (ContraWR) model pipeline. We show the 2-way model pipeline in this figure. The web-based
network (upper) is updated by gradient descent, while the target network (lower) is updated by the exponential moving average. Finally, the results of
the 2 models form the triplet loss function.
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ContraWR+: Contrast With Instance-Aware World
Representation

Background

To learn a better representation, we introduced a weighted
averaged world representation based on the harder principle:
the similarity between a positive pair should be stronger than
the similarity between the anchor and the weighted average
feature representations of the data set, where the weight is set
higher for closer samples. We call the new model ContraWR+.
This is a more difficult objective than the simple global average
in ContraWR.

Instance-Aware World Representation

In this new model, the world representation is enhanced by
modifying the sampling distribution to be instance-specific. We
define p(⋅|z) as the instance-aware sampling distribution of an
anchor z, which is different from the sample distribution p(⋅)

used in ContraWR, , where T>0 is a temperature
hyperparameter, such that similar samples are selected with
higher probability parametrized by p(⋅|z). Consequently, for an
anchor z’, the instance-aware world representation becomes

.

Here, T controls the contrastive hardness of the world
representation. When T→∞, p(⋅|z) is asymptotically identical
to p(⋅), and the above equation reduces to the simple global

average form zw=Ek∼p(⋅)[zk]; while T→0+, the form becomes
trivial, zw=argmaxzk(sim(z', zk)))). We have tested different T
and found that the model is not sensitive to T over a wide range.
Here, zw is also practically implemented by using the weighted
average over each batch. We can rewrite the similarity measure
given the anchor zi and the new world representation zw as:

sim(zi, zw)=sim(z', Ek∼p(⋅|z')[zk])

In this new method, we also used triplet loss as the final
objective.

Implementations

Signal Augmentation

For the experiments, we used four augmentation methods,
illustrated in Multimedia Appendix 2: (1) bandpass filtering: to
reduce noise, we used an order-1 Butterworth filter (the
bandpass is specified in Multimedia Appendix 2); (2) noising:
we added extra high- or low-frequency noise to each channel,
mimicking the physical distortion; (3) channel flipping:

corresponding sensors from the left side and the right of the
head were swapped due to symmetricity; and (4) shifting: within
one sample, we advanced or delayed the signal for a certain
time span. Detailed configurations of augmentation methods
vary for the 3 data sets, and we have listed them in Multimedia
Appendix 2.

Baseline Methods

In the experiments, several recent self-supervised learning
methods were implemented for comparison.

MoCo [2] devises 2 parallel encoders with an EMA. It also uses
a large memory table to store new negative samples, which are
frequently updated.

SimCLR [3] uses an encoder network to generate both anchor
and positive samples, where negative samples are collected
from the same batch.

BYOL [7] also uses 2 encoders: a web-based network and a
target network. They put one more predictive layer on top of
the web-based network to predict (reconstruct) the result from
the target network, while no negative samples are presented.

SimSiam [8] uses the same encoder networks on 2 sides and
also does not use the negative samples.

Average k-nearest neighbor TopX is our developed baseline
model, which identifies the top X nearest neighbors for each
sample within the batch and uses the average representation of
these top X neighbors as the negative sample. We used the same
triplet loss as our ContraWR model. In the experiments, we
tested X=1, X=5, and X=50. When X approaches the batch size,
this model will gradually reduce to ContraWR.

Model Architecture

For a fair comparison, all models, including baseline approaches
and our models, use the same augmentation and encoder
architecture, as shown in Figure 2. This architecture cascades
a short-time Fourier transform (STFT) operation, a 2D
convolutional neural network layer, and three 2D convolutional
blocks. Empirically, we found that the application of neural
networks generates better accuracy on the STFT spectrogram
of the signals than on the raw signals. The same practices were
reported by Yang et al [14,15].

We also considered a supervised model (called Supervised) as
a reference model, which uses the same encoder architecture
and adds a 2-layer fully connected network (128, 256, and 192
units for the Sleep EDF, SHHS, and MGH data sets,
respectively) for the sleep staging classification task. The
supervised model does not use the pretrain set but is trained
from scratch on raw EEG signals in the training set and tested
on the test set. We also included an untrained encoder model
as a baseline, where the encoder was initialized but not
optimized in the pretrain step.
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Figure 2. The short-time Fourier transform (STFT) convolutional encoder network. The encoder network first transforms raw signals into spectrogram
via STFT, and then a convolutional neural network–based encoder is built on top of the spectrogram. ELU: exponential linear unit; FFT: Fast Fourier
Transform; Conv.:convolution operation.

Evaluation Protocol
We evaluated performance on the sleep staging task with overall
5-class classification accuracy. Each experiment was conducted
with 5 different random seeds. For self-supervised methods, we
optimized the encoder for 100 epochs (here, “epoch” is a concept
in deep learning) with unlabeled data, used the training set to
find a good logistic classifier, and used the test set data for
evaluation in accordance with He et al [2] and Chen et al [3].
For the supervised method, we trained the model for 100 epochs
on the training set. Our setting ensures the convergence of all
models.

Results

Better Accuracy in Sleep Staging
Comparisons on the downstream sleep staging task are shown
in Table 3.

All self-supervised methods outperformed the untrained encoder
model, indicating that the pretrain step does learn some useful
features from unlabeled data. We observed that ContraWR and
ContraWR+ both outperform the supervised model, suggesting
that the feature representations provided by the encoder can
better preserve the predictive features and filter out noises than
using the raw signals for the sleep staging task, in cases when
the amount of labeled data available are not sufficient (eg, less
than 2% in Sleep EDF). Compared to other self-supervised
methods, our proposed model ContraWR+ also provided better
predictive accuracy; that is, about 1.3% on Sleep EDF, 0.8%
on SHHS, 1.3% on MGH Sleep. The performance improvements
were mostly significant (P<.001; comparing MoCo vs Sleep
EDF data sets, P=.002). MGH Sleep data contain more noise
than the other 2 data sets (reflected by the relatively low
accuracy with the supervised model on raw signals).
Performance gain was notably much more significant on MGH
over other self-supervised or supervised models (about 3.3%
relative improvement on accuracy), which suggests that the
proposed models handle noisy environments better.
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Table 3. Comparison of sleep staging accuracy with different methods.

Sleep staging accuracy (%), mean (SD)aName

MGHb Sleep data setSleep Heart Health Study data setSleep EDF data set

69.73 (0.4324)75.61 (0.9347)84.98 (0.3562)Supervised

55.64 (0.0082)60.03 (0.0448)77.83 (0.0232)Untrained Encoder

62.14 (0.7099)77.10 (0.2743)85.58 (0.7707)MoCoc

67.32 (0.7749)76.61 (0.3007)83.79 (0.3532)SimCLRd

70.75 (0.1461)76.64 (0.3783)85.61 (0.7080)BYOLe

62.08 (0.4902)74.25 (0.4796)84.78 (0.8028)SimSiamf

60.73 (0.7423)69.70 (0.8944)80.39 (1.3721)AVG-KNN-Top1g

69.14 (0.3393)75.18 (0.7845)83.24 (0.6182)AVG-KNN-Top5

71.95 (0.3482)77.63 (0.3625)86.35 (0.3246)AVG-KNN-Top50

71.97 (0.1774)77.52 (0.5748)85.94 (0.2326)ContraWRh

72.03 (0.1823)77.97 (0.2693)86.90 (0.2288)ContraWR+

aCalculated over 5 random seeds.
bMGH: Massachusetts General Hospital.
cMoCo: Momentum Control.
dSimCLR: simple framework for contrastive learning of visual representations.
eBYOL: Bootstrap Your Own Latent.
fSimSam: simple Siamese.
gAVG-KNN-TopX: average k-nearest neighbor TopX.
hContraWR: Contrast with the World Representation.

Ablation Study on Data Augmentations
We also inspected the effectiveness of different augmentation
methods on EEG signals, shown in Table 4.

We empirically test all possible combinations of 4 considered
augmentations: channel flipping, bandpass filtering, noising,

and shifting. Since channel flipping cannot be applied by itself,
we combined it with other augmentations. The evaluation was
conducted on Sleep EDF data with the ContraWR+ model. To
sum up, all augmentation methods are beneficial, and
collectively, they can further boost the classification
performance.

Table 4. Evaluation accuracy of different augmentations.

Accuracy (%), mean (SD)aAugmentations

84.23 (0.2431)Bandpass

83.60 (0.1182)Noising

84.65 (0.2844)Shifting

85.77 (0.2337)Bandpass + flipping

84.45 (0.1420)Noising + flipping

85.13 (0.0558)Shifting + flipping

85.37 (0.1214)Bandpass + noising

84.78 (0.1932)Noising + shifting

85.25 (0.1479)Shifting + bandpass

85.76 (0.1794)Bandpass + noising + flipping

85.17 (0.2301)Noising + shifting + flipping

86.38 (0.2789)Shifting + bandpass + flipping

aCalculated over 5 random seeds.
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Varying Amount of Training Data
To further investigate the benefits of self-supervised learning,
we evaluated the effectiveness of the learned feature
representations with varying training data on Sleep EDF (Figure
3). The default setting is to split all the data into pretrain,
training, or test sets by 90%: 5%: 5%. In this section, we
maintained the 5% test set constant and resplit the pretrain and
training sets (after resplitting, we ensured that all the training
set data have labels and removed the labels from the pretrain
set), such that the training proportion becomes 0.5%, 1%, 2%,
5%, and 10%, and the rest is used for the pretrain set. This
resplitting was conducted at the subject level, after which we

again segmented each subject’s recording within the pretrain
or training set. We compared our ContraWR+ model to MoCo,
SimCLR, BYOL, SimSiam, and the supervised baseline models.
Similar ablation studies on SHHS and MGH can be found in
Multimedia Appendix 4. Our model outperforms the compared
models consistently with different amounts of training data. For
example, our model achieves similar performance (with only
5% data as training) to that of the best baseline, BYOL, which
needs twice the amount of training data (10% data as training).
Also, compared to the supervised model, the self-supervised
methods performed better when the labels were insufficient; for
example, only ≤2% of the data were labeled.

Figure 3. Model performance with different amounts of training data (on the Sleep EDF data set). The curves indicate mean values and shaded areas
show the SD of the training/test over 5 random seeds. All models have the same encoder network architecture. For the self-supervised method, we
trained a logistic regression model on top of the frozen encoder with the training set, and for the supervised model, we trained the encoder along with
the final nonlinear classification layer from scratch with the training set. The proportion of training data is 0.5%, 1%, 2%, 5%, and 10%. Each configuration
runs with 5 different random seeds and the error bars indicate the SD over 5 seeds. BYOL: Bootstrap Your Own Latent; MoCo: Momentum Contrast;
SimCLR: simple framework for contrastive learning of visual representations; SimSiam: simple Siamese.

Representation Projection
We next sought to assess the quality of the learned feature
representations. To do this, we used the representations produced
by ContraWR+ on the MGH data set and randomly selected
5000 signal epochs per label from the data set. The ContraWR+
encoder is optimized on the pretrain step without using the
labels. We extracted feature representations for each sample
through the encoder network and used uniform manifold
approximation and projection (UMAP) [16] to project onto the

2D space. We finally color-coded samples according to sleep
stage labels for illustration.

The 2D projection is shown in Figure 4. We also computed the
confusion matrix from the evaluation stage (based on the test
set; also shown in Figure 4). In the UMAP projection, epochs
from the same latent class are closely colocated, which implies
that the pretrain step extracts important information for sleep
stage classification from the raw unlabeled EEG signals. Stage
N1 overlaps with stages W, N2, and N3, which is as expected
given that N1 is often ambiguous and thus difficult to classify
even for well-trained experts [1].
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Figure 4. Uniform manifold approximation and projection and confusion matrix. (A) Using the Massachusetts General Hospital’s (MGH’s) MGH
Sleep data set, we projected the output representations of each signal into a 2D space and color by the actual labels. (B) We have included a confusion
matrix on sleep staging.

Hyperparameter Ablation Study
To investigate the sensitivity of our model to hyperparameter
settings, we tested with different batch sizes and trained on
different values for the Gaussian parameter σ, temperature T,
and margin δ. We focused on the ContraWR+ model and
evaluated it on the Sleep EDF data set. During the experiment,
the default settings are a batch size of 256, σ of 2, T of 2, δ of

0.2, learning rate η of 2×10–4, weight decay of 10–4, and epoch
of 100. When testing on 1 hyperparameter, others are maintained
constant.

The ablation study’s results are in shown in Figure 5; the red
star indicates the default configuration. Each configuration runs

with 5 different random seeds, and the error bars indicate the
SD over 5 experiments. We see that the model is not sensitive
to batch size. We see that over a large range (<10) the model is
insensitive to the Gaussian width σ. For temperature T, we noted
previously that a very small T may be problematic, and a very
large T reduces ContraWR+ to ContraWR. Based on the ablation
experiments, the performance is relatively insensitive to choices
of T. For the margin δ, the difference in distance is bounded
(given a fixed σ of 2):

Thus, δ should be large enough; that is, δ≥0.1.
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Figure 5. Ablation study on batch size and 3 hyperparameters. The curves indicate the mean values and shaded areas show the SD of training/test over
5 random seeds. The red star denotes the default setting. It is obvious that with a larger batch size, the model will perform better, but it is not sensitive
to all hyperparameters.

Ethical Considerations
This study has been approved by the Institutional Review Board
of Beth Israel Deaconess Medical Center (BIDMC IRB protocol
#2022P000417 [Brain Informatics Database]).

Discussion

Principal Results
Our proposed ContraWR and ContraWR+ models outperformed
4 recent self-supervised learning methods on the sleep staging
task across 3 large EEG data sets (P<.001 in almost all cases).
ContraWR+ also superseded supervised learning when fewer
training labels were available (eg, a 4% improvement in
accuracy when less than 2% of data were labeled). Moreover,
the models provided well-separated representative structures in
2D projection.

Comparison With Prior Work

Self-Supervised Learning
Many deep generative methods have been proposed for
unsupervised representation learning. They mostly rely on
autoencoding [17-19] or adversarial training [20-22]. Mutual
information maximization is also popular for compressing input
data into a latent representation [23-25].

Recently, self-supervised contrastive learning [2,3,7,8,14] has
become popular, where loss functions are devised from
representation similarity and negative sampling. However, one
recent study [4] highlighted inherent limitations of negative
sampling and showed that this strategy could hurt the learned
representation significantly [5]. To address these limitations,
Chuang et al [5] used the law of total probability and
approximated the per-class negative sample distribution using
the weighted sum of the global data distribution and the expected

class label distribution. However, without the actual labels, the
true class label distribution is unknown. Grill et al [7] and Chen
and He [8] proposed ignoring negative samples and learning
latent representations using only positive pairs.

In this paper, we leverage the negative information by replacing
negative samples with the average representation of the batch
samples (ie, the world representation). We argue and provide
experiments showing that contrasting with the world
representation is more powerful and robust in the noisy EEG
setting.

EEG Sleep Staging
Before the emergence of deep learning, several traditional
machine learning approaches [26-28] significantly advanced
the field using hand-crafted features, as highlighted by Biswal
et al [29]. Recently, deep learning models have been applied to
various large sleep databases. SLEEPNET [29] built a
comprehensive system combining many machine learning
models to learn sleep signal representations. Biswal et al [1]
designed a multilayer recurrent and convolutional neural
network model to process multichannel signals from EEG. To
provide interpretable stage prototypes, Al-Hussaini et al [30]
developed a SLEEPER model that uses a particular deep
learning approach called prototype learning guided by a decision
tree to provide more interpretable results. These studies rely on
a large set of labeled training data. However, the annotations
are expensive, and oftentimes the labeled set is small. In this
study, we exploited the large set of unlabeled data to improve
the classification, which is more challenging.

Self-Supervised Learning on Physiological Signals
While image [31,32], video [33], language [34,35], and speech
[36] representations have benefited from contrastive learning,
research on learning physiological signals has been limited
[37,38]. Lemkhenter et al [39] proposed phase and amplitude
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coupling for physiological data augmentation. Banville et al
[40] conducted representation learning on EEG signals, and
they targeted monitoring and pathology screening tasks, without
using frequency information. Cheng et al [41] learned
subject-aware representations for electrocardiography data and
tested various augmentation methods. While most of these
methods are based on pairwise similarity comparison, our model
provides contrastive information from global data statistics,
providing more robust representations. Also, we extracted signal
information from the spectral domain.

Strengths and Limitations
The strengths of our study are (1) we used 3 real-world data
sets collected from different institutes and across different year
ranges, and 2 are publicly available; (2) our PSG recordings are
diverse and generalizable, including 2 data sets collected at
home and 1 collected in the laboratory setting, all having
relatively large sizes; (3) we have open-sourced our data
processing pipelines and all programs used for his study [42],
including the baseline model implementations; and (4) we
proposed new data augmentation methods for PSG signals and
have systematically evaluated their effectiveness. However, the
following limitations of our study should be noted: (1) we fixed

the neural network encoder architecture in the study, which we
plan to explore using other models including recurrent neural
networks in the future; (2) we have used STFT to extract
spectrograms, but we may consider alternative techniques such
as wavelet transformation in future; and (3) our current data
augmentation methods are based on clinical knowledge, and
we aim to investigate data-driven approaches to design more
effective methods in the future.

Conclusions
This study is motivated by the need to learn effective EEG
representations from large unlabeled noisy EEG data sets. We
propose a self-supervised contrastive method, ContraWR, and
its enhanced variant, ContraWR+. Instead of creating a large
number of negative samples, our method contrasts samples with
an average representation of many samples. The model is
evaluated on a downstream sleep staging task with 3 real-world
EEG data sets. Extensive experiments show that the model is
more powerful and robust than multiple baselines including
MoCo, SimCLR, BYOL, and SimSiam. ContraWR+ also
outperforms the supervised counterpart in label-insufficient
scenarios.
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