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Abstract

Background: There is a dearth of knowledge on reliable adherence prediction measures in behavior change support systems
(BCSSs). Existing reviews have predominately focused on self-reporting measures of adherence. These measures are susceptible
to overestimation or underestimation of adherence behavior.

Objective: This systematic review seeks to identify and summarize trends in the use of machine learning approaches to predict
adherence to BCSSs.

Methods: Systematic literature searches were conducted in the Scopus and PubMed electronic databases between January 2011
and August 2022. The initial search retrieved 2182 journal papers, but only 11 of these papers were eligible for this review.

Results: A total of 4 categories of adherence problems in BCSSs were identified: adherence to digital cognitive and behavioral
interventions, medication adherence, physical activity adherence, and diet adherence. The use of machine learning techniques
for real-time adherence prediction in BCSSs is gaining research attention. A total of 13 unique supervised learning techniques
were identified and the majority of them were traditional machine learning techniques (eg, support vector machine). Long
short-term memory, multilayer perception, and ensemble learning are currently the only advanced learning techniques. Despite
the heterogeneity in the feature selection approaches, most prediction models achieved good classification accuracies. This
indicates that the features or predictors used were a good representation of the adherence problem.

Conclusions: Using machine learning algorithms to predict the adherence behavior of a BCSS user can facilitate the reinforcement
of adherence behavior. This can be achieved by developing intelligent BCSSs that can provide users with more personalized,
tailored, and timely suggestions.

(JMIR AI 2023;2:e46779) doi: 10.2196/46779
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Introduction

Behavior change support systems (BCSSs) have been effective
in improving health and healthier lifestyles. These are persuasive
systems that have been designed to change behavior without
force or deception [1]. However, the effectiveness of these
systems is generally hindered by nonadherence [2-4].
Nonadherence to recommended regimes in BCSSs has the

potential to diminish their long-term benefits [5]. It is associated
with the increased prevalence of diseases such as hypertension,
diabetes, obesity, dementia, bipolar disorder, and heart failure
[2,4,6-8], as well as the increased cost of health care. Yet, there
are no standardized factors that can reliably predict adherence
[9,10]. Direct adherence monitoring approaches are expensive,
burdensome to care providers, and susceptible to distortion by
patients, while indirect monitoring approaches such as pill count,

JMIR AI 2023 | vol. 2 | e46779 | p. 1https://ai.jmir.org/2023/1/e46779
(page number not for citation purposes)

Ekpezu et alJMIR AI

XSL•FO
RenderX

mailto:akon.ekpezu@oulu.fi
http://dx.doi.org/10.2196/46779
http://www.w3.org/Style/XSL
http://www.renderx.com/


patient questionnaires, electronic medication monitors, or
electronic reporting of daily physical activity are susceptible to
misinterpretations and overestimation of adherence [11,12]. To
implement effective BCSSs and ensure positive behavior change
outcomes that can be attributed to the recommended
interventions, an accurate assessment of adherence behaviors
and their predictors has become imperative. This will guide
researchers and health care providers in identifying nonadherent
individuals as well as provide measures that will re-engage and
help them to adhere [13]. Additionally, an early prediction of
user dropout or relapse during interventions may suggest
measures that can be used to improve adherence [14].

Existing systematic reviews [2,7,15-19] have sought to examine
predictors or determinants of adherence to several BCSSs. They
predominately report that there is a lack of consistency regarding
reports of adherence, key variables mediating adherence, and
reliable measures of adherence. However, findings from these
reviews were based on studies that relied solely on self-reported
measures of adherence using pharmacological claims and
validated questionnaires from behavior change and health
psychology theories. Hence, abounding issues of over- and
underreporting may limit the validity of the findings.

This review enhances existing knowledge by focusing on
predictors of adherence to BCSSs using machine learning
techniques. Machine learning techniques have enabled a
proficient means of classifying, detecting, and predicting
complex phenomena including human behavior. It has also
attracted considerable research interest in the development of
BCSSs [20-22]. Nonetheless, literature on the use of machine
learning techniques as adherence prediction methods in BCSSs
is limited [13,23]. Although Bohlmann et al [23] provided
literature summaries on machine learning techniques for
predicting adherence, they focused on medication adherence
only and considered both digital and nondigital interventions.
In contrast to previous reviews, this systematic review focuses
on the use of machine learning approaches to predict all kinds
of adherence problems in BCSSs. In addition, it focuses only
on primary studies that used objectively collected data or data
generated by the BCSS. Accordingly, this review seeks to
answer the following question: What are the existing trends in
the use of machine learning techniques to predict adherence to
BCSSs? Specifically, this study answers 4 main review
questions, as shown in Table 1.

Table 1. Review questions (RQs) and their motivations.

MotivationQuestionRQ

Research on adherence has predominately focused on adherence to medication and
pharmacological treatments. However, adherence covers a wider range of health behaviors
than medication adherence [9]. This RQ sought to identify other target adherence problems

in BCSSsa.

What are the targeted adherence problems and
their related definitions?

RQ1

Considering the variabilities in adherence problems and BCSSs, this RQ aimed to provide
summaries on the characteristics of the BCSS and the persuasive system features that
have been used to improve adherence.

What are the characteristics of the BCSS includ-
ing persuasive system features?

RQ2

This RQ sought to identify the nature of the raw data and predominately used machine
learning techniques, feature selection techniques, and performance metrics.

What are the adopted machine learning approach-
es in predicting adherence to BCSSs?

RQ3

Though various barriers to adherence have been identified in the literature, this RQ sought
to identify only those barriers that limit individuals from adhering to the request of the
BCSS.

What are the limitations or barriers to adherence?RQ4

aBCSS: behavior change support system.

Methods

Literature Search
Following the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) approach, a search on Scopus
and PubMed electronic databases was conducted. This search
aimed to identify peer-reviewed English conference and journal
papers published between January 2011 and August 2022.
Scopus indexes a larger number of peer-reviewed scientific
journals than the Web of Science and offers results of more
consistent accuracy than Google Scholar, while PubMed remains
a leading database in biomedical research [24]. Including papers
published within the past decade will reveal recent
evidence-based research trends [25]. Using the logical OR/AND
operators, the search phrases were a combination of keywords
related to prediction, adherence, health behavior change
interventions, and machine learning (See Multimedia Appendix
1 for the search phrases). Considering the plethora of approaches

to investigate adherence, the search for eligible studies was not
limited to a specific study design.

Only empirical studies that described the development and
testing of machine learning models for BCSS adherence
prediction were considered. Studies that used only self-reported
data, were not reported in English, or did not focus on human
participants were ignored.

Study Selection
During the initial search of the databases, 2182 papers were
retrieved. The results were refined by year, document type,
publication stage, source type, and language, resulting in 1866
papers. The exported papers were screened for uniqueness and
for titles containing keywords such as adherence, prediction,
and any machine learning technique. Of these, 1812 papers were
excluded. The remaining 54 papers were screened by abstracts
and full texts. Papers were excluded by abstract if the machine
learning technique(s) were not mentioned. Furthermore, papers
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were excluded by full text if the intervention was not
characterized by a BCSS (any form of information system that
has been developed to change human behavior voluntarily).
Finally, 11 journal papers were considered eligible for this
systematic review and thus downloaded for methodological
quality assessment.

Figure 1 shows the PRISMA flow diagram of study
identification and selection. Since the study selection was not

limited to a specific study design, the Mixed Methods Appraisal
Tool by [26] was used to assess the methodological quality of
the downloaded papers (see Multimedia Appendix 2
[13,14,26-35]). Accordingly, 11 studies were identified to be
of high methodological quality. Pertinent information on the
study characteristics and machine learning approaches was
extracted using a data extraction form in Microsoft Excel created
by the authors. Multimedia Appendix 3 [13,14,27-35] presents
a list of included studies.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection. BCSS: behavior change
support systems.

Results

All included studies (N=11) were primarily aimed at the
development and use of machine learning techniques for the
prediction of adherence [27-32], nonadherence, dropout, or
relapse [13,14,33-35]. The ensuing sections will elaborate on
findings related to the review questions (RQs).

Targeted Adherence Problems and Their Related
Definitions (RQ1)

Overview
This review identified 7 health behaviors that BCSSs target:
medication adherence [29,31,34], use of health care systems
[13,28], physical activity [14,27], diet [33], illicit drug use [30],
depression and anxiety [32], and insomnia [35]. Based on the
characteristics of these health behaviors, they were grouped into
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4 categories of adherence problems, described in the following
sections.

Adherence to Digital Cognitive or Behavioral
Interventions (n=5)
This category includes health behaviors such as health care
system use, illicit drug use, depression, anxiety, and insomnia.
This adherence problem focused on predicting adherence or
nonadherence to internet-based cognitive behavioral therapy
[32,35], and remote health monitoring systems [13,28,30] using
machine learning models. Adherence to digital cognitive or
behavioral interventions refers to the successful completion of
all recommended tasks and achievement of initial set goals.
While nonadherence refers to ignoring or not completing the
recommended task consecutively after signing up to use the
BCSS.

Medication Adherence (n=3)
This adherence problem is linked to medication adherence
behavior. Although extant literature posit that medication
nonadherence is the most common form of adherence problem,
this review identified 3 studies that addressed this problem
within BCSSs. It compromises the effectiveness of treatment
outcomes in about 85% of patients with chronic and acute
medical conditions globally [11,36]. Studies in this category
applied machine learning models to remote real-time
measurements of medication dosing [29,31,34]. Though these
studies had different thresholds for defining medication
adherence, it generally referred to a patient’s behavior or
commitment to taking the medications as prescribed by a
physician with an average adherence rate of 80% and above.

Physical Activity Adherence (n=2)
Adhering to physical activity routines has the potential to reduce
the risk of chronic diseases irrespective of age or other
sociodemographic factors. Whereas some individuals find it
difficult to regularly engage in or continue a physical activity
routine [14], others discontinue when they have achieved a
health or body goal [27]. These studies were observed to have

varying definitions of adherence. For instance, Zhou et al [14]
considered an increase in the number of steps over time, while
Bastidas et al [27] considered the users’ app use patterns. Thus,
physical activity adherence may be defined as either a consistent
increase in physical activity levels compared to an individual’s
baseline activity levels or an individual’s responsiveness to
prompts from the app. These 2 definitions describe behavior
compliance and program compliance, respectively [37].

Diet Adherence (n=1)
This was observed in only 1 study [33]. Dietary relapse in a
weight loss intervention was predicted. Dietary relapse refers
to any instance in which a person exceeded a specified meal or
snack point threshold (per meal).

Characteristics of the BCSSs and Persuasive System
Features (RQ2)
The BCSSs included mobile apps [13,14,27,28,33,34],
web-based apps [30,32,33,35], and sensor-based systems plus
mobile apps [29,31]. They were targeted at different groups of
people, namely physically inactive women, illicit drug users,
obese or overweight people, and patients with a wide range of
chronic diseases, such as heart failure, myocardial
infarction-anxiety, depression (MI-ANXDEP), insomnia, and
Parkinson disease. Multimedia Appendix 4 [14,15,29-44]
describes other study-specific characteristics.

The BCSSs leveraged some behavior change techniques and
persuasive systems features to improve user adherence. These
features were extracted and evaluated using the persuasive
systems design (PSD) model [45]. The PSD model has been
validated in several studies [37] and is predominately used in
the design and evaluation of BCSSs [46]. The model consists
of 28 system features that make up 4 categories of persuasive
principles (namely primary task support, dialogue support,
credibility support, and social support). Table 2 displays the
frequency of the PSD features represented in the BCSS. All the
studies had primary task support features, 8 studies had dialogue
support features, 5 studies had credibility support features, and
only 1 study had social support features.
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Table 2. Persuasive features identified in the behavior change support systems (BCSSs). Check marks indicate that the feature was identified.

TotalStudies predicting nonadherenceStudies predicting adherencePersuasive features

[14][34][33][35][13][27][31][29][32][28][30]

Primary task support

8/11✓✓✓✓✓✓✓✓✓Personalization

4/11✓✓✓✓Self-monitoring

4/11✓✓✓✓Reduction

1/11✓Rehearsal

1/11✓Tailoring

Dialogue support

5/11✓✓✓✓✓Reminders

2/11✓✓Suggestions

2/11✓✓Praise

1/11✓Rewards

1/11✓Similarity

1/11✓Liking

Credibility support

5/11✓✓✓✓✓Real world feel

3/11✓✓✓Expertise

3/11✓✓✓Verifiability

1/11✓Third party endorsement

Social support

2/11✓✓Social facilitation

Primary task support simplifies and motivates users to perform
recommended tasks (eg, exercise). A total of 5 features of the
primary task support principle were used: personalization,
self-monitoring, reduction, rehearsals, and tailoring.
Personalization was the most used feature in this category. It
delivers personalized content to the users. For example, artificial
intelligence generated workouts according to an individual’s
characteristics and preferences. Self-monitoring enables app
users to view and track their activity levels and health status in
real-time (eg, the app enables users to monitor, visualize, and
track activity levels and calories burned in real time). Reduction
breaks down tasks such as daily point goals into specific meal
or snack targets. The least used features in this category were
rehearsal (practicing the target behavior, eg, gait movements)
and tailoring (eg, the app provided content that was distinct to
users of specific age groups and health goals, such as alcohol
or smoking cessation, weight loss, or mental health).

Dialogue support provides a means to help users to achieve
their goals via human-computer interactions. The dialogue
support features included reminders (eg, medication prompts),
suggestions (eg, the app advises users based on their input to
the app), and praise (automated feedback on the completion of
a task). The least used features included rewards (eg, point-based
incentives), similarity (eg, therapy resembling traditional
cognitive behavioral therapy), and liking (eg, user-friendly and
appealing design).

System credibility support provides a means for users to trust
the system. Features identified in this category included
expertise (app provided theory-based information and were
designed to improve engagement, effectiveness, and security),
verifiability (app provided links to related sites), third-party
endorsement (from the National Institute of Health), and
real-world feel. The real-world feel feature was implemented
as “Contact Us” (a means to communicate with the developers
of the app) and “About Us” (providing information about the
developers of the app).

Social support provides a means of supporting users via social
influence. However, it was the least used principle. Social
facilitation was the only identified social support feature and it
was implemented by allowing user participation in online app
forums. Perhaps, the minimal use of social support features may
be attributed to the negative sentiments associated with some
of its features [38].

It is important to note that the effectiveness of these persuasive
system features in improving adherence was not explicitly
evaluated in the included studies. However, these features may
have directly or indirectly improved adherence rates. Some of
the studies used behavior change techniques such as goal-setting,
web-based human coaching, face-to-face counseling sessions,
and feedback from psychologists and expert program providers
to improve adherence behavior. However, this review could not
identify behavioral theories or models upon which these
techniques were based.

JMIR AI 2023 | vol. 2 | e46779 | p. 5https://ai.jmir.org/2023/1/e46779
(page number not for citation purposes)

Ekpezu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Machine Learning Approaches (RQ3)
Developing machine learning models for predicting user
adherence or nonadherence was the general aim of all the
included studies. This process conventionally consists of 4 main
stages: data collection, feature selection, model training, and
model validation.

Data Collection
Apart from the gait-related data, which were collected in a
controlled environment (laboratory), the data used to train or
test the machine learning models in the majority of the studies
were objectively collected by the health app while the study
participants were performing the behavior of interest in an
uncontrolled environment. For example, data such as log data,
training behavior, walking steps, and 3D movement scans were
automatically extracted in a contactless manner without any
form of self-report from the users.

Studies on medication adherence were observed to use images
and videos to capture participants’ medication adherence
behavior. The apps used technologies such as computer vision
[34], internet-connected smart sharp bin [29], and flight sensors
[31] for the real-time monitoring of self-administered injections
and medication ingestion. Time-stamped data of injection
needles discarded into the smart sharp bin, time-stamped skeletal
joint data, and images of the participants taking the medication
were retrieved, validated, and then used to generate the data set
for training or testing the model. Similarly, studies on physical
activity adherence [14,27] used continuously collected
time-dependent physical activity data from app users to develop
machine learning models.

Studies on adherence to digital cognitive or behavioral
interventions [13,28,30,32,35] and dietary adherence [33] used
a combination of objectively collected data and participants’
responses to questions on self-assessment delivered by the health
app. Goldstein et al [33] used a BCSS that asked predefined
questions related to triggers of dietary relapse for the analysis.

Considering that objectively collecting trigger-related data or
self-assessment data on health symptoms from a mobile app
may currently be challenging as triggers (such as food cravings
and hunger) are physiologically motivated, future studies on
BCSSs that seek to extract trigger-related data may consider
using physiological sensor data. This is a noninvasive approach
to detecting hunger and cravings using wearable body sensors
[39]. Such sensor data may also be integrated into the health
app to enable self-monitoring.

Feature Selection or Engineering
Among the 11 studies, 5 performed feature selection, 5
performed feature engineering, and 1 adopted features based
on existing literature (see Multimedia Appendix 5
[14,15,29-37]). Feature selection and feature engineering were
both aimed at enhancing model performance by eliminating
irrelevant features and generating new features from raw data
respectively. Due to the complexities of combining 2 or more
machine learning techniques (ie, ensemble learning), some
studies [28] applied more than 1 feature selection method.
However, there were no differences in the selected features.

The flat features algorithm (including filter, wrapper, and
embedded methods) were the predominately used feature
selection method. This algorithm assumes all features to be
independent [40]. Interestingly, each study had its own set of
unique predictors irrespective of the category of adherence
problem. Multimedia Appendix 5 [14,15,29-37] highlights the
various feature selection approaches.

Model Training
The learning problem was a binary classification. Thus, there
were 2 class labels (outcomes), namely adherence/nonadherence,
adherers/nonadherers, relapse/nonrelapse, and
dropout/nondropout. An overview of the adopted techniques
and the outcomes of the best-performing techniques is provided
in Table 3.
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Table 3. Identified machine learning and model validation techniques.

Predicted outcomeEvaluation metricsMachine learning techniquesRef

Successful or early dropoutAUROCa,b, specificity, sensitivity,

PPVc, NPVd, and confusion matrix

Logistic regression and random foresta[30]

Dropout or nondropoutAccuracy, precisiona, and AUROCLogistic regression, random foresta, and decision trees[13]

Adherers or nonadherersPrecision, sensitivity, F1-score, TPRg,

FPRh, and AUROCa

Decision tree, MLPe, and KNNa,f[28]

Adherence or nonadher-
ence

AccuracyRandom foresta[32]

Dropout or nondropoutAUROCa, TPR, FPR, and PRAUCjLogistic regression, SVMi, and decision trees (boosted)a[35]

Relapse or notAccuracy, sensitivitya, specificity, and

AUROCa
Ensemble methodsa[33]

Adherence or nonadher-
ence

Accuracy, specificitya, sensitivity, preci-
sion, F1-score, and AUROC

XGBk, extra trees, random forest, MLP, gradient tree boosting, recurrent

neural network, and LSTMa,l

[29]

Adherence or nonadher-
ence

Accuracy, precisiona, sensitivity, AU-
ROC, TPR, and FPR

XGBa[34]

Adherence or nonadher-
ence

Confusion matrixDecision treesa, KNN, naive Bayes, SVM, and random forest[31]

Adherent or nonadherentAccuracy, sensitivity, F1-score, and
confusion matrix

LSTMa and SVM[27]

Relapse or notAccuracy, sensitivity, specificity, and
AUROC

Logistic regressiona and SVM[14]

aBest performing machine learning technique or most relevant metric for the outcome prediction.
bAUROC: area under the receiver operating characteristic curve.
cPPV: positive predictive value.
dNPV: negative predictive value.
eMLP: multilayer perceptron.
fKNN: k-nearest neighbor.
gTPR: true positive rate.
hFPR: false positive rate.
iSVM: support vector machine.
jPRAUC: precision-recall curve.
kXGB: extreme gradient boost.
lLSTM: long short-term memory.

A total of 13 supervised machine-learning techniques were used
across the included studies. Logistic regression, support vector
machines, and random forest were the most used techniques
cutting across all 4 categories of the adherence problems. The
machine learning techniques mapped to specific adherence
problems included support vector machines for physical activity
adherence; extreme gradient boosting, extra trees, recurrent
neural network, naive Bayes, and gradient tree boosting for
medication adherence; and ensemble methods for dietary
adherence. Random forest was observed to be the predominant
best-performing model in studies on adherence to digital
cognitive or behavioral interventions, while long short-term
memory (LSTM) was a common best-performing model
between medication adherence and physical activity adherence.
Overall, the predominant best-performing models across all
included studies were random forest, decision trees, logistic
regression, k-nearest neighbor, LSTM, and ensemble learning.

Model Validation
Owing to the relatively small and imbalanced data sets used in
some of the included studies, cross-validation methods were
adopted to eliminate bias that may occur during data split. The
following cross-validation methods were identified: K(5)-fold
cross-validation [29,34]; leave-one-out cross-validation
[28,31,33]; and stratified K(10)-fold cross-validation [13,30,35].

Besides cross-validation methods, several performance metrics
were used to compare and evaluate the performance of the
various machine learning models. It was observed that the choice
of performance metrics was dependent on the context of the
study and more than 1 metric was used to evaluate the
performance of a model (see Table 3). The predominately used
metrics in order of frequency included area under the receiver
operating characteristic curve (7/11), accuracy (6/11), sensitivity
(6/11), specificity (4/11), precision (3/11), F1-score (3/11), true
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positive rate (3/11), false positive rate (3/11), confusion matrix
(3/11), positive predictive value (1/11), negative predictive
value (1/11), and precision-recall curve (1/11).

Generally, it was observed that the prediction models had good
classification accuracies. This was an indication that the features
or predictors used in each of these studies were a good
representation of the intervention domain. Nonetheless, due to
the plethora of digital platforms, the interaction between
technology and behavior may affect the generalizability of the
results [33,34]. Thus, Koesmahargyo et al [34] posit replication
and integration of data from various digital platforms.

Barriers to Adherence (RQ4)
Studies suggest that the rate of adherence may be affected by
the following:

1. Achievement of set health or body goals
2. Issues associated with trust and the tolerability of the

technology
3. The complexity of the system, and the mismatch between

the system design and the needs and preferences of its users
4. Inappropriate timing for delivering or sending notifications

or suggestions to the users; since these timings are usually
not well chosen, they may either inconvenience the users
when delivered or may not be effective in getting their
attention

5. The insufficient open collaborative relationship between
health app providers and the users. Prior studies [37] refer
to this as a lack of accountability in adherence prediction
models

These barriers may be classified into two nonadherent groups:
intentional nonadherence (1 and 2), or unintentional
nonadherence (3, 4, and 5).

Discussion

This systematic review provides an overview of existing trends
in the use of machine learning techniques to predict adherence
to different BCSSs. This was achieved by finding answers to a
set of review questions using data extracted from the 11 included
studies. The rest of this section will summarize and discuss
findings based on the review results.

This review identified 4 categories of adherence problems:
adherence to digital cognitive or behavioral interventions,
medication adherence, physical activity adherence, and diet
adherence. These problems collectively represent what
Middleton et al [4] describe as an “adherence challenge.”
However, when considering the taxonomy of key health
behaviors [41], it was observed that the behaviors identified in
this systematic review were not exhaustive. Consequently, the
prediction of adherence to other health behaviors is an open
research area for further investigation.

On the use of persuasive system design features, it was observed
that primary task support features were the most used, while
social support features were the least used. This finding is
consistent with that of related systematic reviews [37]. Though
the included studies claimed that either the implementation of
the BCSS or the selected features (predictors) for the machine

learning algorithm was theory-based, this systematic review
could not identify the behavior change theories adopted by the
studies. Hence, it was not clear if the operating mechanisms of
behavioral theories were considered in most of the included
studies. Nonetheless, prior studies have provided evidence of
the effectiveness of theory-based interventions and persuasive
system features in promoting adherence behavior in BCSSs.
Future studies should therefore be intentional about the use of
these mechanisms as measures of improving adherence behavior.

The relevant predictors identified align with findings from
existing literature. Similar to existing reviews [4,42], exercise
history, intensity, and frequency emerged as relevant predictors
of physical activity adherence. Exercise, fatigue, cognitive load,
and confidence were the most relevant predictors of diet
adherence, affirming previous findings (eg, [42]). While
communication with or feedback/advice from the physician or
health provider, fear, and patients’ cognitive capacity were the
most relevant predictors of medication adherence as also found
in past reviews (eg, [3,42]). Furthermore, some of the identified
predictors of physical activity adherence and medication
adherence affirm 2 viewpoints from social learning theory [43]:
that individuals develop beliefs that they can perform the
necessary tasks to obtain the desired outcome based on prior
accomplishment of similar behaviors and verbal persuasion by
credible sources. This systematic review identified the
completion of homework assignments as a predictor of cognitive
or behavioral intervention adherence, while Heesch et al [44]
identified the same predictor for physical activity adherence.
Furthermore, this review suggests that not all initially selected
predictors or features of adherence are subsequently considered
most relevant by the feature selection algorithms (see
Multimedia Appendix 5 [14,15,29-37]). Using multiple feature
selection methods yields the same feature set. Future studies
should consider incorporating the feature selection or
engineering techniques identified in this review to enable a
comparison of their results with the existing literature.

Most of the included studies used traditional machine learning
techniques, with limited use of advanced learning techniques
such as ensemble learning, reinforcement learning, and deep
learning. Among the 13 supervised machine learning algorithms,
only 2 were deep learning techniques (multilayer perceptron
and recurrent neural network–LSTM), 1 ensemble, and zero
reinforcement learning. Perhaps the sparing use of deep learning
techniques may be attributed to the small sample sizes of these
studies, considering that deep learning is more efficient in the
analysis of huge amounts of data. For instance, LSTM may have
been a more appropriate algorithm for the study by Evangelista
et al [28], because the data collected captured changes in
conditions that evolved slowly over time. However, it was not
used probably due to a sample of only 14 participants.
Interestingly, in a study with a large data set (342,174 injection
historic drop data) [29], LSTM outperformed traditional machine
learning models like random forest. Future studies should
therefore consider using advanced learning methods instead of
traditional learning techniques. Deep learning techniques can
automate feature engineering or selection and extract complex
and nonlinear patterns from data. Reinforcement learning is
well suited for systems with inherent time delays where
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decisions are evaluated by a long-term future reward and not
an immediate knowledge of the effectiveness of a system [47].
In addition, since they learn by observing the results of their
actions, they are applicable in study settings with scarce or
varying data as found in BCSSs [22,47].

This systematic review observed that quite a small amount of
data were used in most of the included studies. With each study
participant treated as a single data point, data were extracted
from as little as 12 study participants to as many as 7697 study
participants. Although training a machine learning model
requires a reasonable amount of data to train the model, the
required sample size for training and producing a model with
good generalizability is not well established [33,48]. Regardless,
the included studies adopted suitable machine learning
techniques, dimensionality reduction techniques, and evaluation
methods that are designed to improve model performance
irrespective of the sample size. For instance, Zhou et al [14]
performed data augmentation on the training data.

Multiple metrics can be used to evaluate model performance
(see Table 3). However, the choice of which metrics best
measure the model performance depends on the nature of the
problem, the researcher’s understanding of the domain or
problem, and the expected outcome of the study. For instance,
Gu et al [29] prioritized predicting nonadherers (those who will
not perform the recommended task on time), hence specificity
(true negative rate) was a preferred metric. Considering that a
wrong prediction may lead the health app provider to develop
unnecessary persuasive strategies for the user, Pedersen et al
[13] and Bastidas et al [27] aimed to reduce false negatives (ie,

participants at high risk of dropout are not identified as such),
hence a high precision was a preferred metric. However, if the
study’s goal is to validate the hypothesis that machine learning
methods can be used in predicting adherence [14,31] rather than
to compare machine learning methods, then choosing the most
appropriate metric becomes irrelevant.

A major research challenge reported in 9 of 11 of the included
studies was the scarce and small-sized data sets and their effect
on the generalizability and reliability of the research results. A
specific study limitation pertained to collecting data in a
controlled environment [31]. This method of data collection
does not represent the entire range of user behavior in a
free-living environment.

Conclusions
Findings from this systematic review indicate that though the
use of machine learning techniques in the prediction of
adherence to BCSSs is scarce and is only beginning to gain
research interest, it has the potential to accurately predict
adherence behavior in real time using objectively collected data.
This systematic review is unique as it has not yet been reported
in the literature, and it provides an overview of machine learning
approaches in determining predictors of specific adherence
problems in BCSSs. A grasp of these trends across different
BCSSs will guide researchers in choosing appropriate features
and machine learning techniques that favor the prediction of
specific adherence problems. In summarizing findings from 11
journal papers, this systematic review highlights research gaps
and areas for future research. It also acknowledges limitations
that may exist due to the selection strategy for eligible studies.
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