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Abstract

Background: Diabetes mellitus is the most challenging and fastest-growing global public health concern. Approximately 10.5%
of the global adult population is affected by diabetes, and almost half of them are undiagnosed. The growing at-risk population
exacerbates the shortage of health resources, with an estimated 10.6% and 6.2% of adults worldwide having impaired glucose
tolerance and impaired fasting glycemia, respectively. All current diabetes screening methods are invasive and opportunistic and
must be conducted in a hospital or laboratory by trained professionals. At-risk participants might remain undetected for years
and miss the precious time window for early intervention to prevent or delay the onset of diabetes and its complications.

Objective: We aimed to develop an artificial intelligence solution to recognize elevated blood glucose levels (≥7.8 mmol/L)
noninvasively and evaluate diabetic risk based on repeated measurements.

Methods: This study was conducted at KK Women’s and Children’s Hospital in Singapore, and 500 participants were recruited

(mean age 38.73, SD 10.61 years; mean BMI 24.4, SD 5.1 kg/m2). The blood glucose levels for most participants were measured
before and after consuming 75 g of sugary drinks using both a conventional glucometer (Accu-Chek Performa) and a wrist-worn
wearable. The results obtained from the glucometer were used as ground-truth measurements. We performed extensive feature
engineering on photoplethysmography (PPG) sensor data and identified features that were sensitive to glucose changes. These
selected features were further analyzed using an explainable artificial intelligence approach to understand their contribution to
our predictions.
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Results: Multiple machine learning models were trained and assessed with 10-fold cross-validation, using participant demographic
data and critical features extracted from PPG measurements as predictors. A support vector machine with a radial basis function
kernel had the best detection performance, with an average accuracy of 84.7%, a sensitivity of 81.05%, a specificity of 88.3%, a
precision of 87.51%, a geometric mean of 84.54%, and F score of 84.03%.

Conclusions: Our findings suggest that PPG measurements can be used to identify participants with elevated blood glucose
measurements and assist in the screening of participants for diabetes risk.

(JMIR AI 2023;2:e48340) doi: 10.2196/48340
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Introduction

Diabetes mellitus (DM) is a chronic and heterogeneous
metabolic disorder characterized by the presence of
hyperglycemia due to deterioration of insulin secretion, defective
insulin action, or both [1,2]. There are 3 main types of DM:
type 1 DM (T1DM), type 2 DM (T2DM), and gestational
diabetes. T2DM is the most prevalent type of diabetes, affecting
over 95% of people with diabetes worldwide [3,4].

The prevalence of DM has been proliferating in recent decades,
and it is now the most prominent and fastest-growing global
public health challenge [5,6]. Uncontrolled diabetes is associated
with an increased risk of complications such as cardiovascular
disease, kidney failure, vision loss, nerve damage, and overall
mortality [7-9]. On the basis of the latest diabetes prevalence
estimate, 10.5% of the global adult population is affected by
diabetes, and almost half of them are undiagnosed [10]. The
growing at-risk population has further strained scarce health
resources. Globally, approximately 10.6% of adults have
impaired glucose tolerance (IGT) and 6.2% have impaired
fasting glycemia (IFG) [4]. IGT and IFG are reversible
transitional conditions between normality and diabetes. These
conditions, also known as prediabetes, are characterized by
elevated blood glucose levels that are not high enough to be
classified as diabetes. However, individuals with IGT or IFG
are at increased risk of developing cardiovascular disease,
coronary heart disease, stroke, and mortality [11]. One of the
challenges with IGT and IFG is that they often do not have any
obvious symptoms, which means that they can go undetected
and undiagnosed for years. Moreover, a follow-up study
conducted in Singapore reported that one-third of these
individuals with prediabetes would likely develop T2DM within
8 years without lifestyle changes [12]. A similar study with data
from the United Kingdom has also reported that a substantial
proportion of individuals with prediabetes could progress to
T2DM within 5 years [13]. Therefore, predicting the risk of
diabetes in the asymptomatic population is a significant health
challenge that must be addressed. Early recognition of
prediabetes and undiagnosed T2DM will result in a better health
outcome or a more favorable long-term prognosis [14].

Currently, the diagnosis of diabetes and prediabetes is well
established. T2DM and prediabetes can be detected using one
of four methods: (1) the fasting plasma glucose value, (2) the
2-hour plasma glucose value during a 75 g oral glucose tolerance

test, (3) hemoglobin A1c, and (4) a random plasma glucose test
[3]. All these diagnostic screening methods are invasive and
opportunistic in nature and must be conducted in a hospital or
laboratory by trained professionals. A confirmed diagnosis
usually requires repeated testing. As all the tests are single-time
point screenings, adults aged >35 years are recommended to
undergo regular screening every 3 years. Nevertheless, at-risk
individuals hardly comply with this recommendation, especially
in developing countries, owing to the cost of diagnostic tests
and the scarcity of medical resources [15,16].

Unlike T1DM and gestational diabetes, the development of
T2DM and its complications is preventable or controllable. A
considerable number of studies have shown that lifestyle and
behavioral interventions help patients with diabetes achieve
adequate glycemic control [17,18]. Recent evidence also
suggests that early lifestyle adjustment will help participants
with prediabetes return to normoglycemia and reduce the risk
of developing T2DM [19-21]. Frequent diabetes screening
identifies individuals with a high risk of T2DM 2.2 years earlier
[22], creating a precious time frame and opportunity for taking
an early intervention to prevent or delay the onset of diabetes
and its complications and improve overall clinical outcomes.

For established individuals with diabetes, constant monitoring
of their blood glucose concentration is crucial so that appropriate
insulin dosage can be administered in a timely manner to avoid
acute and chronic complications and delay disease progression.
Conventional blood glucose measurement requires patients to
prick their fingers several times a day, which causes the
development of massive scarring and loss of sensation at the
fingertips over the year [23]. This measurement method is
invasive, inconvenient, and expensive, which are the main
barriers to the effective self-management of diabetes in the older
adult group [24,25]. To improve diabetes outcomes and assist
patients in self-managing the disease, continuous glucose
monitoring devices have entered the market and are made
available for some patients with diabetes. However, most
continuous glucose monitoring sensors currently available are
still invasive, which measures glucose concentration in the
subcutis using an electrochemical needle sensor [26]. Users
need to replace the sensor frequently and purchase different
components of the system regularly, which will cost from US
$2500 to US $6000 per year [27,28].

In recent years, the advancement and use of wearable
technologies and artificial intelligence (AI) have gradually
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changed our daily lives, as many people use wrist-worn
wearables daily for fitness and health monitoring [29]. Most
consumer wearables have incorporated green light reflection
photoplethysmography (PPG) sensors into their products.
Wearable technology has the potential to greatly expand the
impact of public health initiatives by using a proactive approach
to identify abnormal physiological signals, assessing disease
risk factors, and helping patients manage chronic conditions
and recovery [30-33].

In 2011, Monte-Moreno [34] demonstrated the use of PPG data
collected using a pulse oximeter to estimate blood glucose
levels. By analyzing the PPG waveform, features such as the
respiration frequency, heart rate variability (HRV), and other
physiological parameters can be extracted. They are then fed
into a random forest model, yielding a prediction accuracy of
87.7% based on the Clark error grid. Rodin et al [35] validated
a wearable biosensor developed by Zilberstein et al [36] as an
indirect measure of glucometry. The biosensor comprises a PPG
sensor and an optically sensitive backglass panel that changes
its optochemical characteristics according to the concentrations
of specific sweat metabolites. In total, 200 adult participants
were recruited, and each participant wore a smartwatch to extract
PPG data, while blood samples were collected from the
antecubital vein concurrently. The estimation of the blood
glucose level was derived using a proprietary algorithm
developed by SpectroPhon and compared against a glucose
lactate analyzer (YSI 2300). The proposed biosensor was able
to detect anteprandial glucose with a mean absolute percentage
error of 7.4% and a normalized root mean squared error of
11.56%, while postprandial glucose measurements yielded
7.54% mean absolute percentage error and 9.79% normalized
root mean squared error. Zhang et al [37] used a smartphone,
taking a video of the index finger covering the flash, to capture
the fluctuation in the light absorption associated with the change
in blood volume. The resulting red, green, and blue image was
then transformed into PPG data. The Gaussian fitting method
was applied to model the PPG waveform components, from
which 28 time-domain and frequency-domain features were

extracted. A support vector machine (SVM) with a Gaussian
kernel was trained with data from 80 participants to classify the
user’s glucose level as normal, borderline, or warning, with an
accuracy of 81.49%, 79.85% sensitivity, 83.19% specificity,
and 80.2% F score. The study was conducted in a highly
controlled environment with limited participants, so the
generalizability of these results is subject to certain limitations.

Conventional blood glucose monitoring technologies often
require invasive measures such as finger pricking or the use of
skin sensors and patches. These methods can be uncomfortable
and inconvenient for users and can also be financially
burdensome. To address these issues, we propose a novel
solution called blood glucose evaluation and monitoring
(BGEM) that leverages the latest advancements in signal
processing, wearable technology, and AI to detect elevated
blood glucose levels and evaluate the risk of developing
diabetes. With BGEM, users only need to measure their PPG
data using a consumer-grade wrist-worn wearable device. The
AI model will then compute relevant digital biomarkers and
evaluate the risk of prediabetes or T2DM by recognizing
elevated blood glucose levels (≥7.8 mmol/L). This solution
allows for frequent blood glucose testing without the discomfort
and inconvenience of current technologies.

Methods

PPG Sensor
PPG is a low-cost, noninvasive technique that measures the
volumetric fluctuation in arterial blood flow [38]. The human
wrist is one of the sites for measuring the PPG signal because
it has a rich arterial source and an excellent sensor placement
with minimal interference to one’s daily activities. The PPG
signal comprises superimposed pulsatile alternating current
components and direct current voltage components. A PPG
signal is obtained by illuminating the light emitting device on
the skin surface and measuring the variations in light absorption
or reflection that reflect the pulsatile flow patterns, as shown
in Figure 1.

Figure 1. Illustration of the working principle of a photoplethysmography (PPG) sensor. Changes in blood flow represent different phases within the
cardiac cycle. During the diastolic phase, blood volume, arterial diameter, and hemoglobin concentration in the measurement site are minimized, leading
to minimum absorption of light by blood and, consequently, an increase in light intensity detected by the sensor system. The reverse is valid for the
systolic phase, where a decrease in light intensity is detected instead. AC: alternating current; DC: direct current.
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The pulsatile alternating current component corresponds to the
cardiac cycle, characterizing that the wrist’s blood vessels
expand and contract with each heartbeat, whereas the direct
current component reflects constant light absorption by venous
and arterial blood, as well as other tissues [39]. The PPG signal
can detect vascular changes associated with diabetes and
contains substantial valuable information from HRV, which is
significantly associated with diabetes [40]. Hence, it will be
used in this study to extract valuable and meaningful features
to identify an individual’s glucose status (elevated or normal).

Ethical Considerations
Before commencing the study, ethical clearance was obtained
from the SingHealth Centralised Institutional Review Board of
Singapore (2020/2968) on March 21, 2021. All methods were
performed in accordance with Singapore’s clinical guidelines
and regulations. Informed consent was obtained from all the
trial participants or their legal guardians. The clinical trial was

registered on ClinicalTrials.gov (NCT05504096) on August 17,
2022.

Study Protocol
In total, 500 participants were recruited from KK Women’s and
Children’s Hospital in Singapore. Participants’ demographics
are summarized in Table 1. For most participants, the blood
glucose levels were measured before and after consumption of
75 g of a sugary drink using both the conventional glucometer
(Accu-Chek Performa) and the wrist-worn wearable device.
Participants who were excluded for the second measurement
had high blood glucose measurements ≥11.1 mmol/L on their
first measurement and hence were not administered the sugary
drink measuring 75 g.

After consuming the sugary drink, 55.1% (266/483) of the
participants had high blood glucose (≥7.8 mmol/L). The
distribution of blood glucose levels before and after consuming
the sugary drink is shown in Figure 2. A statistically significant
difference was observed between the 2 distributions (P<.001).

Table 1. Description of participants (N=500).

ValuesCharacteristics

Demographic data

38.73 (10.61); 21-81Age (years), mean (SD); range

24.4 (5.1); 16.3-71.1BMI (kg/m2), mean (SD); range

Gender, n (%)

51 (10.2)Men

449 (89.8)Women

Diabetes profile

Family history of diabetes, n (%)

157 (31.4)Yes

343 (68.6)No

Prediabetes, n (%)

17 (3.4)Yes

483 (96.6)No

Diabetes, n (%)

8 (1.6)Yes

492 (98.4)No

Gestational diabetes, n (%)

21 (4.2)Yes

428 (85.6)No

51 (10.2)N/Aa

aN/A: not applicable.
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Figure 2. The distribution of ground-truth blood glucose levels before and after sugary drinks (P<.001).

Study Device
The Actxa Spark+ Series 2, a low-cost and commercially
available wrist-worn wearable device, was used in this project.
This multifunctional device, built for everyday activities, fitness,
and preventive health monitoring, provided an adequate PPG
signal quality at 50 Hz. The wearable device is equipped with
advanced PPG technology that enables accurate and reliable
measurement of heart rate (HR) and other physiological
parameters. This is similar to the devices used in Singapore’s
nationwide health care campaigns, such as the National Steps
Challenge. It is also worth noting that our proposed solution is
device agnostic and can be easily integrated into other wearables
with PPG capabilities, allowing for a scalable and cost-effective
assessment of risk-based populations, including high-risk
participants, participants with undiagnosed diabetes, and patients
in need of primary prevention interventions.

Before Processing
The raw PPG signal was collected using both wrist-worn
wearables in 16-bit binary format. We first performed a
digital-to-analog conversion using the following formula:

Liang et al [41] suggested that a fourth-order Chebyshev II filter
provides an optimal processing performance for short PPG
signals. Hence, we adopted the recommended filter design to
remove low-frequency drift and high-frequency noise using a
band-pass Chebyshev II filter. The proposed band-pass filter
has a lower cut-off frequency of 0.3 Hz and an upper cut-off
frequency of 4 Hz.

The filtered PPG signals still contain various forms of outliers,
such as peaks with abnormally high amplitudes or distortions
in the oscillating waveform, which can be caused by movement
from the upper extremity or improper contact between the sensor
and skin. Features derived from signals that possess outliers
may not be accurate, so a z scores outlier detection with a cut-off
value of 3 SDs of the mean was applied. The identified outliers
or regions of outliers were replaced with a reasonable estimate
via a nearest neighbor interpolation for the HRV feature
extraction. Because PPG signals do not change drastically in
such a short duration, this method is determined to be an
appropriate approach to the problem. Furthermore, the number
of outliers was minimal in our data set, and hence should not
have affected the features that we generated later. The data
preprocessing steps are illustrated in Figure 3.

JMIR AI 2023 | vol. 2 | e48340 | p. 5https://ai.jmir.org/2023/1/e48340
(page number not for citation purposes)

Shi et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Data preprocessing workflow. (A) Raw photoplethysmography (PPG) signal, (B) removal of the signal’s moving trend using a Chebyshev
high-pass filter, (C) use of a Chebyshev low-pass filter to eliminate high-frequency noise, and (D) final step involves outlier identification from the
filtered PPG signal. DAC: digital-to-analog conversion.

Feature Extraction

Overview
The preprocessed data were suitable for generating reliable
features, and a total of 248 features were generated. These
features can be classified into seven categories: (1) HRV
features, which encompass time domain, frequency domain,
and nonlinear HRV features; (2) waveform features; (3) HR
features; (4) energy measure features; (5) complexity measure
features; (6) continuous wavelet transform (CWT) features; and
(7) patient demographics. The complete set of features analyzed
in this study is summarized in Multimedia Appendix 1.
However, these 248 feature candidates are not all relevant to
the change in glucose level, and redundant features might cause
prediction performance deterioration. The details of the
feature-engineering and feature-selection process are discussed
in the “Feature Selection” section.

HRV Features
HRV is the variation in time intervals between consecutive
heartbeats and is widely used as a noninvasive physiological

biomarker of the autonomic nervous system response [42-44].
HRV provides a proxy to measure sympathetic nervous system
(SNS) and parasympathetic nervous system (PNS) activity,
which reflects the ability to respond to and recover from abrupt
physical, psychological, and environmental changes [44-46].
As HR estimated at any given time represents the net effect of
the neural output of the PNS, which slows HR, and SNS, which
accelerates HR, HRV also detects imbalance in the autonomic
nervous system resulting from over- or understimulation of SNS
and PNS. Therefore, the fluctuation in HRV values provide
useful insights into many clinical applications, such as mental
stress, exercise and rehabilitation, cardiovascular fitness,
pathological state, progression of chronic disease, and even
predicting the onset of diseases [47-51]. Depending on the
application, HRV features are usually extracted from an
ultra–short-term (<5 min), short-term (approximately 5 min),
or whole-day 24-hour time frame [52]. Most HRV features can
be grouped under time-domain, frequency-domain, or nonlinear
categories. In this project, most of the widely used HRV features
were included in our analysis and were extracted using a
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5-minute time frame. These HRV features are briefly explained
in Multimedia Appendix 1 using the feature indices (F1-F71).

HR Features
Prior studies have noted the influence of impaired blood glucose
on HR, especially resting HR [53,54]. Hence, HR was extracted
by finding the number of peaks for every 10 seconds of the
filtered PPG signal. The statistical features of the HR were then
calculated and used as part of the feature inputs (F72-F81).

Wavelet Analysis
A considerable number of studies have applied wavelet
transformation to analyze HRV data associated with a wide
variety of health care applications. Earlier research has used
features derived from CWT to predict blood glucose levels [55].
In this project, we applied CWT to the PPG signal using the
Mexican Hat mother wavelet. The mean, SD, and maximum
value of the resulting CWT matrix were included in the feature
vector (F82-F84).

Waveform Features
Previous studies have reported that the characteristics of the
PPG waveform extracted from healthy participants and
participants with diabetes exhibited statistical differences
[37,56]. Nirala et al [56] also suggested that the first and second
eigenvalues derived from the first derivative of the PPG signal
are the top features for identifying T2DM. In addition, several
studies have revealed a functional relationship between the PPG
signal and blood glucose levels [34,57]. Similarly, respiratory
information can also be extracted from the PPG waveform
[33,58]. However, PPG waveforms derived from signals using
a wrist-worn PPG sensor often have a nondetectable diastolic
peak and a dicrotic notch, unlike the signals collected using
fingertip PPG.

Waveform features (F85-F196) derived from the PPG waveform
were included in the feature set, and the definition of the
waveform features is illustrated in Figure 4.

Figure 4. Definition of the photoplethysmography (PPG) waveform features. AUF: area under the falling edge; Apulse: area under a PPG wave; AUR:
area under the rising edge; FN: magnitude of falling edge; Fslope: slope of falling edge; FT: fall time; RP: magnitude of rising edge; Rslope: slope of
rising edge; RT: rise time.

Energy Measures
Several studies have used the energy features extracted from
PPG signals to estimate blood glucose [34,59,60]. The
Kaiser-Teager energy (KTE) operator and logarithmic energy
are 2 commonly used methods to analyze the energy profile.
These features were computed from a 5-second sliding window,
as it ensures that the PPG signals within each window would
be long enough to contain several heartbeats but short enough
such that the wave amplitude changes are negligible.

The KTE operator is a well-known method for providing a
time-frequency analysis of the instantaneous energy of the PPG
signal from the amplitude and frequency. Using the
implementation strategy explained by Monte-Moreno [34], we
computed the energy profile of the PPG signal at each sliding

window frame, and the KTE operator for the n-th frame was
computed using the following equation:

KTEn(i) = xframe(i)
2 – xframe(i + 1) * xframe(i – 1), which

holds for i = 2,3,...,(Lframe – 1) (2)

Where xframe is the filtered PPG signal within each sliding
window frame.

The statistical metrics were computed for each frame, and the
average of the metrics for the nth frame was then calculated and
represented as F197 to F206.

To estimate the respiration rate from the PPG signal, we used
the logarithmic energy value calculated at the frame level using
the following equation:
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Where xframe is the filtered PPG signal within each sliding
window frame.

The autoregressive model coefficients of order 7 were estimated
using the Yule-Walker method, and the Python function aryule
was used for this purpose. In addition, other statistical
parameters were also computed (F207-F223).

Complexity Measures
Sample entropy (SampEn, F224) measures the unpredictability
of physiological signals and is commonly used in HRV analysis
[61]. The lower the SampEn, the more regular the signal.

SampEn can be defined after calculating the template vector

ϕm that is the probability that 2 sequences will match for m
points without allowing self-counting [62]:

Where m denotes the embedding dimension, tolerance r equals

0.1∗SD, N denotes the number of data points, and Ci
m counts,

within the tolerance resolution r, the number of matching blocks
across different embedding dimensions.

SampEn is a tool used to analyze physiological time-series data,
but it does not evaluate the complexity of the data at different
time scales. Hence, we applied multiscale entropy (MSE)
analysis on raw PPG signals to evaluate the hypothetical
difference in signal complexity across various time scales for
normoglycemia and elevated glucose levels. However, the scale
factor was inversely proportionate to the number of data points.
From our empirical results, we found that a minimum of 240
pulse waves were required to correctly compute the MSE values
over all the timescale factors (τ=20). We found that the sample
entropy calculated from PPG signals during periods of elevated
blood glucose was significantly higher than that of blood glucose
in the normal range at timescale factors between 8 and 14 (τ).
This information was then used to create features for the
detection of elevated blood glucose levels. Each timescale factor
between 8 and 14 was used as a separate feature. In addition,
the mean of the adjacent timescale factors was derived to create
additional features. These MSE features are represented in the
feature vector with feature indices F225 to F244.

Results

Software
All experiments and analyses were performed using Python
(version 3.9) and relevant libraries (Table 2). The final model
was deployed on Amazon Web Services.

Table 2. A list of the software, and relevant libraries, along with the versions used.

VersionLibrary

3.9.10Python

0.10.1Imbalanced-learn

1.2.0Joblib

1.0.0Jupyter

3.3.4Lightgbm

3.6.2Matplotlib

0.2.2Neurokit2

0.5.2Nolds

0.53.1Numba

1.23.5Numpy

1.5.2Pandas

9.3.0Pillow

1.1.3Scikit-learn

1.8.0Scipy

0.12.1Seaborn

0.8.1Spectrum

0.13.5Statsmodels

1.7.2Xgboost

Feature Selection
Considering AI ethics and the practicality of implementing the
algorithm, some demographic data, such as skin color, race,

and personal lifestyle habits, were not used as inputs to the
models. However, other general personal characteristics
associated with the risk of developing T2DM, such as age,
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gender, BMI, and family health history of diabetes, were added
to the feature vector before the feature-selection process.

The redundant or irrelevant features might hinder the
performance of the prediction model. To reduce the
dimensionality of the input features, we applied an ensemble
strategy that uses multiple feature-selection algorithms. This
creates an optimal feature subset that minimizes the prediction
error rate and is the most relevant for predicting the target
variable. The ensemble feature-selection steps are summarized
as follows:

• Six feature-selection methods, including ANOVA
correlation coefficient, mutual information, dispersion ratio,
recursive feature elimination, lasso regression, and Extreme

Gradient Boosting, were used to choose the 30 best features
independently.

• We combined the features obtained from each
feature-selection method and ranked them using a majority
vote approach to find the common features selected by more
than 1 model.

• The highly correlated features were dropped from the
selected feature subset.

In total, 12 features were selected from the entire feature set
and ranked based on the results of the feature-selection strategy
(Table 3). In our study, these selected features were the most
sensitive predictors for capturing the characteristics of a
participant’s elevated blood glucose levels.

Table 3. The selected top features after the ensemble feature-selection method.

FeatureRank

Welch_hf_rel1

AR_hf_rel2

A_FE_mean3

A_ratio_mean4

Age5

A_Pulse_iqr6

KTE_skew7

LOG_std8

BMI9

MSE_sum_13_1410

Family history11

A_ratio_max12

Gendera13

aNote that gender was not selected as a top feature in our feature-selection algorithm. However, it was previously identified as a sensitive predictor for
T2DM, in which the prevalence of T2DM in men was higher than that in women [63]. This discrepancy could be attributed to the gender imbalance in
the data set (men: 10.2%; women: 89.8%). Therefore, we included gender as one of the top features to provide a complete user profile for future
investigation and development.

The selected features could be further divided into 4 main
categories. Under the time-domain features, the selected features
were the area under the PPG curves. A_FE_mean refers to the
average area under the falling edge of each pulse (Figure 4).
A_ratio refers to the ratio of the area under the rising edge to
the area under the falling edge of each pulse (Figure 4), and
both the average and maximum values were deemed relevant
to the model’s predictions. A_pulse_iqr refers to the IQR of the
total area under each pulse (Figure 4). In the frequency domain,
the selected features were the relative powers of the
high-frequency bands in both the Welch power spectral density
(PSD; Multimedia Appendix 1, F32-F44) and autoregressive
PSD (Multimedia Appendix 1, F45-F57).

In the nonlinear domain, the selected features were either related
to the energy or the complexity of the signal. LOG_std refers
to the SD of log-energy entropy (equation 3), whereas
KTE_skew refers to the skewness of the KTE energy measure
for each sliding window (equation 2). Furthermore, the

complexity feature that was selected was the sum of the MSE
over 2 scales, 13 and 14.

Finally, the remaining selected features were demographic
features that described the age and BMI of the participants, as
well as if they had any family history of diabetes.

Machine Learning Model Performance
Seven widely used machine learning (ML) algorithms, including
the naive Bayes classifier, K-nearest neighbors algorithm,
logistic regression, random forest, SVM, XGB, and light
gradient boosting machine, were trained with the selected
features as inputs. We fine-tuned the hyperparameters of each
model and validated their performance using the stratified
10-fold cross-validation method. We adopted multiple
regularization techniques across various models to prevent
overfitting during the model training. Six evaluation metrics,
accuracy, sensitivity, specificity, precision, geometric mean
(G-mean), and F score, were used to evaluate the model’s
performance, as accuracy alone cannot provide a comprehensive
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examination of model performance due to data imbalance. The
G-mean and F score are critical evaluation criteria to assess the
models’ performance, as they are robust to significant label
imbalance.

The prediction results from each model are reported as the mean
and SD of the evaluation metrics, and Table 4 shows the

summary of the results. SVM with the radial basis function
kernel showed the best prediction performance with an average
accuracy of 84.7%, a sensitivity of 81.05%, a specificity of
88.35%, and a precision of 87.51%. In particular, the average
G-mean was 84.54% and F score was 84.03%.

Table 4. The prediction results obtained from 10-fold cross-validation using various machine learning models.

F scoreGeometric meanPrecisionSpecificitySensitivityAccuracyModel

σμσμσμσμσμσμ

5.1962.514.660.084.1259.435.7854.877.4466.174.6360.51NBa

2.6879.53.0975.42.4770.974.1562.944.3090.45376.7KNNb

5.3763.524.67634.1662.654.3061.667.0764.564.6563.1LRc

6.2376.685.7276.646.0876.816.4276.698.1876.845.7376.76RFd

4.5884.034.1884.544.2687.514.1988.346.7781.054.1484.7SVMe

5.1577.774.89784.8878.74.9879.126.58774.9178.06XGBf

4.8177.244.0777.744.179.354.4580.277.3675.543.9877.9LGBMg

aNB: naive Bayes.
bKNN: K-nearest neighbors.
cLR: logistic regression.
dRF: random forest.
eSVM: support vector machine.
fXGB: Extreme Gradient Boosting.
gLGBM: light gradient boosting machine.

Model Interpretation
The use of deep learning in the medical and health care domain
has shown great potential for solving a range of problems, such
as detecting specific symptoms or abnormalities [64,65].
However, the interpretability of deep learning models remains
a significant challenge, and it is often difficult for clinicians to
trust the decisions made using a black-box system. The lack of
model interpretability also raises ethical concerns, particularly
when the decision fails. Furthermore, our current data set is
considerably small (500 participants) compared with typical
deep learning models in other domains, which are trained with
thousands of data points. Deep learning models are known to
perform well with a larger data set and fail to learn meaningful
representations when there is a lack of data [66]. Therefore, we
did not investigate the use of deep learning in this study.

As the proposed ML model is designed to complement the
existing diabetes detection solution and is relatively new to the
clinical community, the features selected in the previous section
must be interpretable and exhibit a certain level of agreement
with existing findings. A family history of diabetes, being male,
being aged ≥45 years, and having an increased BMI have been

identified as major risk factors in the literature for developing
prediabetes or T2DM [63,67,68]. These 4 risk factors were part
of the selected predictors, and this paper provides a preliminary
attempt to explain how the selected predictors contribute to
detecting elevated blood glucose using the Shapley additive
explanations (SHAP) framework. SHAP is a game theoretical
approach that provides global and local explanations of the
association between the ML output and input features [69].

Figure 5A illustrates the SHAP values of each feature across
all the predictions from the training set. The features were
ranked by their mean SHAP values, with larger values shown
in red and smaller values shown in blue. The beeswarm plot
revealed that a family history of diabetes, increasing age, and
higher BMI are associated with a higher probability of elevated
blood glucose levels. These observations are consistent with
previous research and demonstrate that the ML algorithm has
successfully captured the relationship between these features
and elevated blood glucose levels. In addition, other proposed
features showed varying levels of impact on the model’s output.
However, the gender feature did not have any apparent effect
on the model’s predictions.
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Figure 5. The Shapley additive explanations (SHAP) plots indicate the association between the selected features and their impact on the predicted
outcome. (A) SHAP beeswarm plot and (B) SHAP waterfall plot.

In Figure 5B, each row in the plot shows how the contributions
of different features move the output of the model from the
expected value (E[f(x)]) to the actual prediction output f(x) for
a single sample with a positive class prediction (blood glucose
level ≥7.8 mmol/L) in the test set. The expected value, E[f(x)],
is determined using the entire training data set. As expected,
most features provide positive SHAP values in this sample,
which collectively push the model’s output toward the correct
prediction. However, this specific test participant’s BMI was
in the healthy range, which pushed the model’s output toward
the normal class and might have resulted in a false negative
prediction. This indicates that relying on a single feature or
demographic data alone may not provide an accurate prediction
of blood glucose levels.

Using the SHAP values, we can understand the model’s overall
behaviors and how features affect the output positively or
negatively, which can help improve the prediction model in the
future.

Assessment of the Elevated Blood Glucose Levels From
Multiple Measurements
Generally, diagnostic tests are not highly sensitive and highly
specific. Therefore, repeated measurements of the wrist-worn
wearable device were combined and assessed in an optimum
fashion to maximize sensitivity, specificity, and precision.

Consecutive measures of blood glucose were combined in
parallel using the “AND” and “OR” rules to assist in the
detection of elevated blood glucose measurement levels. The
“OR” rule increases the overall sensitivity, and the “AND” rule
increases the overall specificity, which is greater than that of
either test alone [70].

Discussion

Principal Findings
While the health care landscape is changing, the rapidly aging
society and the need for improved population health outcomes
call for new models of care to effectively prevent the onset and
delay the progression of chronic diseases. Furthermore,

short-term health behaviors contribute significantly toward
long-term health outcomes, while unattended and frequent
glucose spikes might result in prediabetes and eventually
diabetes. The availability of noninvasive and device-agnostic
blood glucose detection solutions will allow for more frequent
and better monitoring of blood glucose levels, thereby reducing
the risk of developing T2DM. This study demonstrates that a
noninvasive method of assessing diabetes risk using PPG is a
viable option to provide a cheaper and accessible modality for
the population-wide screening of blood glucose levels. This
population-based screening would allow for the earlier detection
of DM in the population, especially among those individuals
who are unaware of their elevated blood glucose levels. Hence,
timely and appropriate lifestyle advice and medical interventions
can be provided to prevent diabetes complications. This will
subsequently reduce the health care burden for both the
individual and the society.

BGEM is a cloud-based solution that can frequently monitor
multiple digital biomarkers with minimal disruption to daily
life. Developed using the advanced ML operations practice,
BGEM can be easily scaled to meet the increasing demand for
health care services. The solution includes a user-friendly mobile
app that can screen a large population to identify high-risk
individuals, people with undiagnosed diabetes, and those who
require primary prevention intervention. It also provides timely
feedback to users through the app, informing them of their
diabetes risk and providing targeted, actionable insights to
empower them to take a proactive approach to monitor their
glucose levels.

Limitations
Our pilot study has certain limitations. Since fasting blood
glucose measurements were excluded and the criteria to define
normal and abnormal levels under fasting conditions differed
from our current cut-off, we must refrain from definitively
concluding that our model is applicable to fasting conditions.
Regarding gender, our feature-selection model did not
specifically incorporate it, and our analysis using SHAP
demonstrated that gender exerted minimal influence on model
predictions. Moreover, all analyses were adjusted for the
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covariate gender, as required. Therefore, we considered gender
to have a limited impact and is not a primary limitation of our
findings. To address these limitations, we are actively planning
the subsequent phase of data collection. This phase will involve
collecting fasting blood glucose measurements in a primary
care setting, also allowing for a more balanced gender
distribution. More importantly, we could expand our participant
pool to encompass participants with prediabetes and diabetes.
By addressing these gaps, we aimed to offer a more
comprehensive and robust assessment of our model’s
applicability and effectiveness.

There was no longitudinal follow-up of the participants. External
validation of our model on an independent sample must be
undertaken to further assess the detection accuracy and
generalizability of the results. Nevertheless, as a preliminary
investigation, the potential implications of our findings are
significant as they might offer a means to identify previously
undiagnosed prediabetes or diabetes cases at the population
level. We anticipate that our study will serve as a foundational
stepping stone, paving the way for more comprehensive diabetes
research using AI and wearable devices. To the best of our
knowledge, there is no publicly available data set that
systematically examines the relationship between PPG data and
blood glucose levels. Acquiring a substantial volume of data is
imperative, encompassing a diverse and representative sample

spanning the entire spectrum of glucose values and incorporating
relevant sociodemographic factors. Such comprehensive data
can be obtained through a collaborative effort involving research
institutions and industry partners while ensuring strict adherence
to local ethical considerations and data privacy regulations.

We demonstrated that the cloud-based ML model can detect
elevated blood glucose levels, where consecutive measurements
can be combined in an optimal manner to provide high
sensitivity, specificity, and precision. However, further research
is required to address these limitations.

Conclusions
In this study, we performed sophisticated feature engineering
and found that the features derived from the MSE analysis of
PPG signals effectively detect blood glucose changes. We will
discuss this set of novel features in detail in a separate paper.
To reduce bias and evaluate the generalizability of the model,
we used a 10-fold cross-validation to assess its performance.
The SVM with the radial basis function model performed the
best, with an average accuracy of 84.7%, a G-mean of 84.54%,
and an F score of 84.03%. Previous models were developed
using smaller samples and have lower model performance
measures. Our model was developed with a larger sample of
500 participants, and most participants were assessed before
and after the consumption of a sugary drink. It also achieved
better detection accuracy.
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Abbreviations
AI: artificial intelligence
BGEM: blood glucose evaluation and monitoring
CWT: continuous wavelet transform
DM: diabetes mellitus
G-mean: geometric mean
HR: heart rate
HRV: heart rate variability
IFG: impaired fasting glycemia
IGT: impaired glucose tolerance
KTE: Kaiser-Teager energy
ML: machine learning
MSE: multiscale entropy
PNS: parasympathetic nervous system
PPG: photoplethysmography
PSD: power spectral density
SampEn: sample entropy
SHAP: Shapley additive explanations
SNS: sympathetic nervous system
SVM: support vector machine
T1DM: type 1 diabetes mellitus
T2DM: type 2 diabetes mellitus
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