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Abstract

Background: Infusion failure may have severe consequences for patients receiving critical, short–half-life infusions. Continued
interruptions to infusions can lead to subtherapeutic therapy.

Objective: This study aims to identify and rank determinants of the longevity of continuous infusions administered through
syringe drivers, using nonlinear predictive models. Additionally, this study aims to evaluate key factors influencing infusion
longevity and develop and test a model for predicting the likelihood of achieving successful infusion longevity.

Methods: Data were extracted from the event logs of smart pumps containing information on care profiles, medication types
and concentrations, occlusion alarm settings, and the final infusion cessation cause. These data were then used to fit 5 nonlinear
models and evaluate the best explanatory model.

Results: Random forest was the best-fit predictor, with an F1-score of 80.42, compared to 5 other models (mean F1-score 75.06;
range 67.48-79.63). When applied to infusion data in an individual syringe driver data set, the predictor model found that the
final medication concentration and medication type were of less significance to infusion longevity compared to the rate and care
unit. For low-rate infusions, rates ranging from 2 to 2.8 mL/hr performed best for achieving a balance between infusion longevity
and fluid load per infusion, with an occlusion versus no-occlusion ratio of 0.553. Rates between 0.8 and 1.2 mL/hr exhibited the
poorest performance with a ratio of 1.604. Higher rates, up to 4 mL/hr, performed better in terms of occlusion versus no-occlusion
ratios.

Conclusions: This study provides clinicians with insights into the specific types of infusion that warrant more intense observation
or proactive management of intravenous access; additionally, it can offer valuable information regarding the average duration of
uninterrupted infusions that can be expected in these care areas. Optimizing rate settings to improve infusion longevity for
continuous infusions, achieved through compounding to create customized concentrations for individual patients, may be possible
in light of the study’s outcomes. The study also highlights the potential of machine learning nonlinear models in predicting
outcomes and life spans of specific therapies delivered via medical devices.
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Introduction

Overview
Critical care areas require frequent administration of high-alert,
critical, short–half-life infusions, intravenous nutrition, sedation
and analgesia, as well as other infusions that require rigorous
maintenance for continuous delivery. Outside of the intensive
care unit (ICU), approximately 60% of all patients will receive
an intravenous infusion during their stay [1].

Abrupt and unexpected infusion failure may have severe
consequences for patients if the medications are critical, with
short–half-life infusions [2]. Continued interruptions to infusions
and infusions not running “to time” can also lead to
subtherapeutic management. For example, patients receiving
antibiotics who require therapeutic drug monitoring based on
metrics like area under the concentration-time curve and trough
levels often need blood draws before and after administration.
The documented time of administration and subsequent blood
draws are commonly based on the prescribed regimen and not
on the actual completion of the infusion [3,4]. Infusion
downstream and upstream occlusion alarms, when substantial,
may also contribute to alarm fatigue among clinical staff [5,6].
One extensive study showed that venous access occlusion alarms
are responsible for 55% of all intravenous infusion pump alarms
in neonatal ICUs [2].

The issue of infusion failure and its determinants has not been
comprehensively studied in the literature. Existing in vivo
studies have focused on mechanical causes at the vascular access
device site [7] and incompatibility issues, either between
medications [8] or between medications and administration line
materials [9].

A vascular access device (VAD) is defined by the Infusion
Nurses Society of the United States as a “catheter, tube, or
device inserted into the vascular system, including veins,
arteries, and bone marrow” [10]. Definitions for VAD failure
include situations where the catheter stops working safely before
its intended dwell time or before the traditional 72- to 96-hour
dwell time limit [11,12]. Recent guidelines from the Centers
for Disease Control and Prevention state that peripheral VADs
do not need to be electively resited “more frequently than every
72 to 96 hours” [13]. Using these definitions, the VAD failure
rate has been suggested to be as high as 63%, with mean and
median values of 46% and 43%, respectively, across studies
[14].

The VAD failure rate has a fundamental relationship with the
administration method, with gravity administration having a
VAD failure rate twice that of even simple rate control infusion
devices [15,16]. Modern infusion devices with increased
accuracy for the detection of downstream occlusion issues would
be expected to reduce the VAD failure rate further. The

management of vascular access and infusions also results in a
substantial nursing workload. The Therapeutic Intervention
Scoring System-28 allocates 3 points to “multiple intravenous
medications” (ie, more than 1 medication, “either as single shots
or continuously”), 3 points to any “single vasoactive
medication,” 4 points in the case of “multiple vasoactive
medications, regardless of types and doses,” and 2 points for
the care of a “central venous line.” Therefore, continuous
infusions of critical, short–half-life intravenous medications via
a central VAD could consume 5 to 9 points from a maximum
workload of 46 points that can be undertaken by 1 nurse [17],
equating to 10%-19% of a critical care nurse’s total activity
time. In a study on nursing workload in ICUs with an average
length of stay of 7.7 days, it was found that the mean score
based on the Therapeutic Intervention Scoring System-28 was
23 (range 14-32 points) and that nursing time constituted the
largest economic cost for ICUs [18].

A 2019 study [19] indicated an “excessive nursing workload”
across ICUs that was significantly associated with quality of
care. Reducing the number of interventions nurses need to
undertake to avoid infusion interruption and to increase infusion
longevity would be expected to reduce the baseline of nursing
workload in intensive care, high-dependency units, and
lower-acuity care areas.

In a 2021 study [20] on the impact of infusion alerts and alarms
on nursing workflow, alarms and alerts from both intermittent
and continuous infusions were analyzed. Alerts, such as those
generated by the Dose Error Reduction System due to dose or
rate selection by the clinician outside of the defined limits for
individual medications, do not interrupt infusions. The study
deemed alerts and alarms as “undesirable error states” and
described specific conditions that would interrupt infusions,
such as flow occlusion and air-in-line alarms.

In our study, we developed working definitions for infusion
longevity, and conversely, infusion failure as follows: infusion
longevity may be described as the length of time during which
a continuous infusion runs without an alarm state causing
unexpected and unplanned interruption to the infusion and
comes to an end as a planned cessation. Infusion failure may
be described as an infusion that does not reach a planned
cessation without clinician interventions to manage unexpected
and unplanned interruptions.

Objectives
This study aimed to identify and rank determinants of the
longevity of continuous infusions delivered by syringe drivers
through the use of nonlinear predictive models to evaluate key
factors, and subsequently, develop and test a model for
predicting the likelihood of successful infusion longevity; this
also involves determining the best predictive model for future
use. We expected the analysis to show therapeutic practices and
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pump management processes that may assist with infusion
longevity. Additionally, we aimed to determine which
medications are more likely to cause infusion failure and may
warrant more intense observation or access management. We
also sought to identify critical care units in which infusion
failure is more likely to occur and to assess the likelihood of
uninterrupted infusion that can be expected in these care areas.

Methods

Ethical Considerations
We collected infusion data from smart syringe pumps of type
CareFusion/BD Alaris Plus CC from different hospitals in Spain.
These data are part of a larger data aggregation for the European
region, which is held as a repository as part of the obligation
for medical device manufacturers to maintain vigilant
postmarket surveillance programs for regulatory and quality
purposes.

These data are collected passively as part of the standard
function of infusion pumps, capturing all events including alerts,
alarms, fault conditions, and programming of all infusions. No
patient data are recorded. As these data are retrospective, and

therefore, cannot influence clinician decision-making, do not
record any direct information related to individual patient
therapy, and are detached from any patient or clinician
information, there was no requirement for formal ethics
approval. The Medication Management Solutions Medical
Affairs Department of the pumps’ manufacturer gave clearance
for using these data in this study. The question of any conflict
of interest was also addressed at this stage. None was found, as
the variables studied are universal to “smart” infusion pumps
and are not exclusive to the pumps studied.

Procedure
The data set was obtained from 384 pumps and contained
information about various variables. These variables include
the profile, indicating the hospital care unit or ward; medication
name or type; infusion rate; medication concentration; syringe
brand and syringe size; occlusion setting, indicating the pressure
threshold at which the pump alarms for an occlusion; and a
configured category label for a dependent variable, indicating
if the infusion ended by an unexpected and unplanned occlusion
or as a planned cessation. Table 1 shows the values for each
categorical variable in our data set.

Table 1. Values for different categorical variables in “Hospitals infusion data set: Spain.”

Skewness statisticsVariable

158,620Infusions

423Medications

42Profiles

11Syringe brands

80,764Occlusions

We used 5 nonlinear models to fit the data and evaluated them
with test data to find the best-fit model. These nonlinear models
were the following:

• Random forest: a tree-based ensemble learning method that
combines multiple decision trees to make predictions. It
has been widely used in medical applications due to its
ability to handle complex data sets with high performance
[21,22].

• XGBoost: a gradient boosting algorithm that uses a series
of weak decision trees so that each tree improves the
prediction of the previous one. It is known for its speed and
ability to handle large data sets [23].

• K-nearest neighbor (KNN): a nonlinear model that makes
predictions based on the closest neighbors to the data point.
It is often used for classification and regression problems
[24].

• Naive Bayes: a probabilistic algorithm that makes
predictions based on Bayes’ theorem. It is commonly used
for many applications, including medical data sets. The
algorithm’s naive assumption is that there is independence
among input variables of the model [25].

• Support vector machine (SVM): a kernel-based algorithm
that separates data points by finding the best hyperplane
that maximizes the margin between classes. It is often used
for classification and regression problems [26].

Choosing the best machine learning model to be used in a study
among the hundreds of different available models should be
based on their characteristics and their previous success in the
field. We chose 2 different ensemble models with extreme
gradient boosting along with the random forest model. These
models differ in use, and they allowed us to combine multiple
models to reach a result. These are well-known models that can
be used as delegates of ensemble learning methods. We used
KNN as a delegate for nonparametric instance-based learning
models. SVM was used as the most commonly used
kernel-based learning model. Naive Bayes was tested to check
a Bayesian learning model with an independence assumption
between the predictors. This set of models covered a large area
of different learning natures, and the ideal model selection was
made based on finding a global optimum. Undertaking a
trial-and-error procedure among hundreds of models with
infinite parameter selection was beyond the scope of our
resources, but selecting a starting set of different models that
represented different learning algorithms gave us a diverse and
comprehensive starting point.

SVM’s kernel is a radial basis function with the regularization
parameter set to 1. XGBoost uses 100 estimators with both the
learning rate and maximum depth set to 1. Our random forest
uses 100 decision tree estimators, and it uses the Gini index
function as its criterion to measure the split quality in each tree.
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The nearest neighbor (K) was set to 3 for the KNN model. The
Naive Bayes model used a Gaussian function. The parameters
were tested on a validation set of 20% of the entire data set
before running the final output of sample testing.

We then evaluated the performance of each model using an
F1-score and a 5-fold cross validation. F1-score is a widely used
performance metric in classification tasks that measures the
balance between precision and recall. It is the harmonic mean
of precision and recall, which means that it takes into account
both false positives and false negatives, giving equal weight to
both [27]. The F1-score ranges from 0 to 1, where a score of 1
represents perfect precision and recall, and a score of 0
represents poor performance.

The formula for the F1-score is as follows:

In this formula, precision is the number of true positives divided
by the sum of true positives and false positives, and recall is
the number of true positives divided by the sum of true positives
and false negatives.

The F1-score was introduced by Van Rijsbergen [28] in 1979
as a way to evaluate the effectiveness of information retrieval
systems; since then, it has been widely adopted in various fields,
including natural language processing, machine learning, and

computer vision. F1-score is particularly useful when the data
set has an imbalance, implying a significant difference in the
number of instances for each class; it takes into account both
precision and recall, which can be affected by imbalanced data
sets.

The target variable was binary, with an imbalance ratio (IR) of
1.05. The IR is defined as the ratio of the majority class to the
minority class and is the alternative to skewness in binary
classifiers. As a rule of thumb, all IRs less than 1.5 are
considered to represent balanced data sets [29,30]. As for the
skewness of predictor variables, they can only affect the
performance of the models and not the selection of the F1-score
as an evaluation method, as the F1-score is calculated on the
target variable and encompasses both precision and recall.
Variables such as profile, medication, and syringe brand are
categorical, and variables like infusion rate, concentration dose,
occlusion setting, and syringe size are continuous. Therefore,
we chose to limit ourselves to calculating only the Pearson
skewness ratio statistics for continuous (numerical) variables
(Table 2). The formula used to calculate the skewness ratio is
as follows:

Skewness ratio = (3(mean(x) - median(x))) ⁄ (standard
deviation(x))

The skewness ratios showed that there is no high skewness
present in the predictor variables.

Table 2. Skewness statistics with imbalance ratios for the numerical data. On the target variable, the data set had an imbalance ratio of 1.05.

Skewness statisticsVariable

Skewness ratioMedianMean

1.052.06.28Infusion rate

1.222.013.11Concentration dose

–0.275049.67Syringe size

–0.27200175.86Occlusion setting

In this study, we set a default threshold of 0.5 to transform
predicted probabilities into binary class labels. This approach,
commonly used in similar studies, balances precision and recall.
Although not a parameter within the models, this threshold
selection is an essential postprocessing step that substantially
influences categorizing instances as positive or negative.

The efficacy of our selected 0.5 thresholds is substantiated by
the balanced precision and recall rates observed in our results.
This aligns effectively with our research objectives. We
understand that different applications may require different
thresholds, but we suggest that our choice of 0.5 is appropriate
due to its consistent performance across various models and
data sets. As part of our future endeavors, we are keen to
investigate dynamic threshold selections. We recognize that
this could significantly influence our study’s outcomes.

The best-performing model was chosen as the final analysis
model. We also calculated the F1-score for a model that
consistently resulted in the majority class in the data set, which
is the occlusion class in our data set. We called this model the
“majority voting model.”

In the Results section the selection of random forest as the
best-fit model for our data is explained. These results derive
from the 5-fold cross-validation technique, where we divided
the data set into 5 equal subsets. With each test, 1 subset was
run as the test set while we attempted to fit our model with the
other 4 subsets as the training set. The 5-fold cross-validation
technique is a good modelling practice because it helps to
mitigate the problem of overfitting and provides a more accurate
estimation of model performance. It is a commonly used
approach because it balances the trade-off between the number
of folds and the variance in the estimated performance metrics
[25].

Once we identified random forest as the best-fit model, we used
it to calculate each variable’s importance to infusion longevity
and to identify the most important predictors of unexpected
infusion failure. Variable importance measures the contribution
of each variable to the model’s overall fitness power. Random
forest is a popular machine learning algorithm that combines
multiple decision trees to make more accurate predictions. One
important aspect of random forest is the calculation of feature
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importance, which helps to identify which features have the
most impact on the prediction.

Feature importance is calculated by analyzing the contribution
of each variable in the decision-making process of each
individual tree within the random forest model. The importance
of a feature is determined by calculating the total reduction of
the impurity measure achieved by splitting on that variable
across all trees in the forest [21]. In other words, variables that
are able to create the largest reduction in impurity (eg, Gini
index or entropy) are considered the most important variables.

The importance scores of each variable are then normalized to
ensure that they add up to 1, so they can be compared to one
another. This enables researchers to identify which features are
most relevant for predicting the target variable or model fitness.

In summary, variable importance in random forest is calculated
by measuring the impact of each variable in the decision-making
process of each individual tree and then aggregating these values
across all trees in the forest. The resulting scores can help
researchers to identify the most important features for predicting
the target variable [31].

Results

As noted above, random forest was the best-fit model for the
data set (Table 3).

As random forest outperformed all other models and had the
highest F1-score, it was selected to predict infusion occlusion
in smart syringe infusion pumps of type CC in “Hospitals
infusion data set: Spain.” The results are provided in Figure 1.

Table 3. The F1-score of all the selected models’ fits to the infusion data set. The results show that random forest was the best-fit model for our data.

F1-scoreModel

67.48Majority voting model

79.63Extreme gradient boosting

80.42Random forest

77.42Support vector machine

75.04Naive Bayes

75.73K-nearest neighbor

Figure 1. Variable importance in infusion occlusion prediction for “Hospitals infusion data set: Spain” for CareFusion/BD Alaris Plus syringe pumps.

Figure 2A-I shows the total number of infusions with and
without occlusions for binary variables, which are essentially
bound to the treatment process or location and are beyond the
direct control or manipulation of clinicians. The application of
profiles differs widely among end-user facilities dependent on
their structure, risk strategy, and the services they provide. The

nomenclature is “free text” and is also language dependent. For
example, the term “anesthesia rea” seen here would usually
pertain to resuscitation area usage and the operating room in
several European languages. The profile “HUCA 4.5 6.7
VP+CC” may mean that the hospital has a mix of different pump
types from different manufacturers as particular pumps are
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mentioned in the profile title. Generally, profiles are given care
units, such as neonatal intensive care, adult intensive care,
pediatric oncology, and labor and delivery. Therefore, although
there is a strong degree of harmonization across facilities and
patient types within profiles, as with all multicenter data, there
may be differences in acuity; an ICU in a university-level facility
will likely have far higher patient acuity levels than a general
tertiary care unit. This said, general patient characteristics by
profile, in terms of weight, medication concentrations used, and
other infusion parameters, may reasonably be expected to be
uniform across profiles pertaining to each discipline [2].

Figure 3 illustrates the total number of infusions with and
without occlusions across varying values of important nonbinary
variables, which are within the control of clinicians or clinical
teams.

Figure 4 shows a more detailed breakdown of continuous
low-rate infusions by rate. These low-rate infusions are of
particular interest and importance clinically, as they are
commonly critical short–half-life medication infusions, which
are titrated to effect, and their low-rate infusions can cause a
longer time to alarm, leading to reduced detectability of “no
delivery” states.

Figure 2. Total number of infusions with and without occlusion for binary variables, which are essentially bound to the treatment process or location
and beyond the direct control or manipulation of clinicians. (A) HUCA 4.5 6.7 VP+CC (profile). (B) Insulin 1 IU/mLl (medication). (C) Omeprazole
(medication). (D) Fentanil (medication). (E). UCI Hosp Gral (profile). (F) Anesthesia Rea (profile). (G) Fentanil 1.2 Mg (medication). (H) UCI trauma
(profile). (I) Remifentanil (medication).
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Figure 3. Occlusion versus no occlusion in nonbinary variables of (A) occlusion threshold (mm Hg), (B) infusion rate (mL/hr), and (C) concentration
(units/mL). these variables are within the control of clinicians or clinical teams. Concentration units pertain to several units in the International System
of Units per ml (eg, mg, mcg, ng, and IU). Blue indicates no occlusion (no infusion failure) and orange indicates occlusion (infusion failure).

Figure 4. Low-flow infusion rates versus the number of infusions with occlusion (unexpected infusion interruption) and no occlusion (planned infusion
cessation). Blue indicates no occlusion and orange indicates occlusion.

Discussion

Study Limitations
Data were only collected from hospitals in Spain, though the
investigational method could be applied to other regions as the
software deployed in the smart pumps is available worldwide
and the structure and deployment of the medication library from

which the data were gathered has been found to be very similar
in a previous wide-ranging study of event logs [2].

The study was limited to one type of syringe pump, the
CareFusion/BD Alaris CC pump. Similarly, the investigational
model can be applied to other pumps, as features like profile,
syringe types and brands, medication libraries, and occlusion
alarm pressure settings are considered to be universal across
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syringe pumps. However, one caveat is that the devices in this
study have a fairly unique feature, that of in-line pressure
monitoring, where the vein pressure of the patient at the point
of the VAD is transmitted directly to a dedicated pressure sensor
situated downstream of the syringe and in direct line connection
to the VAD. The occlusion alarm setting in this device can be
set as low as 15 mm Hg above the detected vein pressure, though
commonly, this is set at 30 mm Hg above the vein pressure in
neonatal care, and some units use an “auto-offset” feature for
automatically setting the alarm after 15 minutes of infusion
[32]. Generally, syringe driver infusion pumps without in-line
pressure monitoring transmit these data from the drive head
behind the syringe, which involves added variables of
medication viscosity, syringe friction, and a minimum level of
pressure detection, which is rarely below 85 mm Hg.

The question of the type of vascular access of each patient in
the study was also a limitation, and whether the VAD was
central, peripheral, or umbilical in the case of neonates or a
“long line,” such as peripherally inserted central catheters, could
not be answered given the data available. However, some
inferences could be made from clinically acceptable maximum
concentrations for peripheral administration from facility
protocols. That being said, evidence is accruing that the
concentration of administered individual medications
(concentration was not identified as a substantial determinant
in our study) is not per se as important as the contact time
between medications when multiple infusions pass through a
single VAD, along with the subsequent interactions between
them. [7,8] At low-flow rates, this contact time is extended,
with more time for reactions between medications and
subsequent precipitate production. In-line filtration to protect
the VAD from precipitate occlusion is emerging from the
available evidence as an important factor in determining VAD
longevity beyond that of VAD type and medication
concentration [7,8].

Including more variables to the information directly available
from smart pumps in the analysis, such as direct information
about the VAD type and other infusions running via one VAD,
may provide a more comprehensive understanding of the in
vivo factors that influence infusion longevity.

Principal Findings
The occlusion alarm setting threshold was the most important
variable for infusion longevity, and beyond 2 individual
medications, the infusion rate was the next most important
variable. The data drill-down (Figure 3) and ratio ranking
(Tables 4 and 5) show that lower ratios of occlusion to no
occlusion were associated with higher rates of infusion, with
the rate bracket of >3.6-≤4.0 mL/hr having the best ratio at
0.311. However, the bulk of infusions in the study run at rates
far lower than that, with 60.11% running at below 2.0 mL/hr.
This is understandable given the fluid balance (or more
correctly, the fluid restriction requirements) of medication
infusions in critical care, particularly in neonatology and
pediatrics. Due to maintaining critical care patients’ nutrition
as well as managing renal failure and fluid balance, it is not
uncommon to use higher concentration infusions to deliver
continuous infusion doses with smaller volumes.

Considering the findings of this study and in vitro studies of
infusion startup delay and infusion “no-flow” interruptions [33],
as well as the influence of administration line compliance [34],
filters [35], the interplay between multiple infusions [36], and
resistance from backcheck and antisyphon valves [35], the risks
of protracted and clinically important nondelivery and occlusion
are likely at low rates, particularly below rates of 0.5 mL/hr
[35]. The study’s findings suggest a balance between the need
to restrict fluid delivery to patients and maintaining the integrity
and longevity of infusion might be best achieved with a rate
ranging from >2.0 to ≤2.4 mL/hr (ratio 0.985), although the
next higher rate of >2.4-≤2.8 mL/hr would yield a far better
ratio of 0.553, albeit with some compromise in fluid restriction
control.

Table 4. Ratios of occlusion versus no-occlusion infusions at investigated flow rates (N=131,654).

>4.4-
≤4.8

>4.0-
≤4.4

>3.6-
≤4.0

>3.2-
≤3.6

>2.8-
≤3.2

>2.4-
≤2.8

>2.0-
≤2.4

>1.6-
≤2.0

>1.2-
≤1.6

>0.8-
≤1.2

>0.4-
≤08

0.0-
≤0.4

Rate (mL/hr)

0.3870.5470.3110.4880.6910.5530.9850.7861.1691.6041.2970.859Ratio (occlusion vs no
occlusion)

2423
(72.1)

4452
(64.6)

2189
(76.3)

2340
(67.2)

4887
(59.1)

3909
(64.4)

10,868
(50.4)

4266
(56.0)

7686
(46.1)

10,759
(38.4)

8741
(43.5)

3635
(53.8)

Occlusion, n (%)

938
(27.9)

2437
(35.4)

680
(23.7)

1142
(32.8)

3376
(40.9)

2160
(35.6)

10,708
(49.6)

3352
(44.0)

8986
(53.9)

17,261
(61.6)

11,338
(56.5)

3121
(46.2)

No occlusion, n (%)

3361
(2.55)

6889
(5.23)

2869
(2.18)

3482
(2.64)

8263
(6.28)

6069
(4.61)

21,576
(16.39)

7618
(5.79)

16,672
(12.66)

28,020
(21.28)

20,079
(15.25)

6756
(5.13)

Total infusions studied,
n (%)
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Table 5. Ratios of occlusion versus no-occlusion infusions, ranked by the best-performing rate according to the ratio (N=131,654). The possible optimal
rate ranges are 2.4-2.8 mL/hr (0.553) and 2.0-2.4 mL/hr (0.985).

121110987654321Ranking by ratio

>0.8-
≤1.2

>0.4-
≤08

>1.2-
≤1.6

>2.0-
≤2.4

0.0-
≤0.4

>1.6-
≤2.0

>2.8-
≤3.2

>2.4-
≤2.8

>4.0-
≤4.4

>3.2-
≤3.6

>4.4-
≤4.8

>3.6-
≤4.0

Rate (mL/hr)

1.6041.2971.1690.9850.8590.7860.6910.5530.5470.4880.3870.311Ratio (occlusion vs no
occlusion)

28,020
(21.28)

20,079
(15.25)

16,672
(12.66)

21,576
(16.39)

6756
(5.13)

7618
(5.79)

8263
(6.28)

6069
(4.61)

6889
(5.23)

3482
(2.64)

3361
(2.55)

2869
(2.18)

Total infusions studied,
n (%)

Therefore, we suggest that, when feasible, some relaxation of
fluid restriction and medication concentrations be considered
to deliver infusions at rates between 2.0 and 2.8 mL/hr and
higher, if at all possible, for continuous infusions. The
improvement in the occlusion ratio may be related to the simple
volume of medication moving through the VAD and “flushing”
it more effectively than very low-rate infusions can achieve, or
it could be attributed to the previously mentioned concept of
reduced contact time between medications being administered
through a single VAD at higher rates. It is possible to target this
flow rate range even through wider titration ranges by
manipulation of the final concentration of medications. The
suggested rate range would also assist with the clinical
detectability of nondelivery [33,35].

In Figure 2A-I, binary variables linked to the treatment process
or unit type are identified. These variables are essentially beyond
the direct control or manipulation of clinicians. However, this
information remains valuable as a “high-risk” indicator for
individual medications that may benefit from concentration

manipulation to facilitate higher delivery rates, closer
observation of the infusion, or central VAD delivery and
exclusive-line administration rather than peripheral
administration along with multiple infusions. A multidisciplinary
approach to the management of such high-risk medications is
advocated.

Conclusions
These findings have important implications for health care
professionals who use smart infusion pumps to deliver
medications to patients. The study may assist health care
professionals to make informed decisions regarding the
medication to be administered, concentrations to be used, and
infusion duration or rate, to improve infusion longevity, reduce
the risk of unplanned infusion interruption, and mitigate risks
to the VAD.

The study also highlights the potential of machine learning
nonlinear models to predict infusion occlusions in smart infusion
pumps. The process of selecting the most appropriate model
could be applied to studies involving other medical devices.
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