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Abstract

Cross-validation remains a popular means of developing and validating artificial intelligence for health care. Numerous subtypes
of cross-validation exist. Although tutorials on this validation strategy have been published and some with applied examples, we
present here a practical tutorial comparing multiple forms of cross-validation using a widely accessible, real-world electronic
health care data set: Medical Information Mart for Intensive Care-III (MIMIC-III). This tutorial explored methods such as K-fold
cross-validation and nested cross-validation, highlighting their advantages and disadvantages across 2 common predictive modeling
use cases: classification (mortality) and regression (length of stay). We aimed to provide readers with reproducible notebooks
and best practices for modeling with electronic health care data. We also described sets of useful recommendations as we
demonstrated that nested cross-validation reduces optimistic bias but comes with additional computational challenges. This tutorial
might improve the community’s understanding of these important methods while catalyzing the modeling community to apply
these guides directly in their work using the published code.
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Background

By learning complex statistical relationships from historical
data, predictive models enable automated and scalable risk
detection and prognostication, which might inform clinical
decision-making. Although relatively few have been
implemented in clinical use compared with the number
developed, predictive models are increasingly being deployed
and tested in clinical trials. The importance of predictive
modeling is on the rise, with increasing attention from regulatory
bodies such as the US Food and Drug Administration. Efforts
to standardize the steps in model development and validation
include statements such as transparent reporting of a
multivariable prediction model for individual prognosis or
diagnosis and multiple published guidelines on deployment and
governance [1-3]. However, the mode in a critical step in model
development, the validation strategy, remains a simple “holdout”

or “test-train split,” which has been shown to introduce bias,
fail to generalize, and hinder clinical utility [4-6].

Broadly, validation consists of either internal validation, which
should be reported alongside model development, or external
validation, in which a developed model is tested in an unseen
data set in a new setting [7,8]. A newer concept of
“internal-external” validation has also been suggested for studies
with multisite data [9]. Most published models evaluate
performance metrics by splitting the available data set into an
independent “holdout” or “test set,” consisting of unforeseen
samples excluded from model training. Such held-out sets are
often selected randomly, for example, “80% training and 20%
testing,” from the data in the original model development setting.
In contrast to holdout validation, cross-validation and resampling
methods such as bootstrapping can be used to produce less
biased estimates of the true out-of-sample performance (ie, the
ability to generalize to new samples). Although cross-validation
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is a widely used and extensively studied statistical method,
many variations of cross-validation exist with respective
strengths and weaknesses, distinct use cases for model
development and performance estimation that are often
misapplied, and domain-specific considerations necessary for
effective health care implementation [10,11].

Cross-validation surveys with practical examples, such as those
involving microarray and neurologic data, have been published
[12,13]. However, gaps in comprehensive tutorials including
complete codesets with relevant tutorial data are less well
disseminated. Tutorials that move beyond simulated data or
laboratory-based samples to real-world health care data sets
might add to the understanding of these important methods
while catalyzing the modeling community to apply these guides
directly in their work using the published code.

The intent of this tutorial is to define and compare means of
cross-validation using representative, accessible data based in
the well-known and well-studied Medical Information Mart for
Intensive Care-III (MIMIC-III) data set [14]. All cross-validation
modeling experiments and preprocessing codes will be provided
through reproducible notebooks that will further guide readers
through the comparisons and concepts introduced [15]. Best
practices and common missteps, particularly in modeling with
electronic health care data, will be emphasized.

Overview and Major Types of
Cross-Validation

The goal of supervised learning is to use a data set with known

labels, D(Xi,Yi), to produce a model that accurately

predicts the true labels of unforeseen “test” samples Yi. must
learn robust relationships between the covariate features [X1...
Xn] and the outcome of interest. The model is considered a
statistical estimator of Yi because the model prediction is
calculated from the available training data, and Yi is a random
variable with an unknown probability distribution. Given finite
data samples with inherent statistical noise, the generalization
or “test” error of this estimator will be imperfect. Assuming the
true label to be a continuous outcome, we can decompose the
mean-squared error of the learned model into 2 fundamental
sources of error: bias and variance, formalized in the equation
below by the first and second terms on the right hand side,

respectively. The s2 term represents irreducible, independent,
and identically distributed error terms attributed to noise in the
training data set.

(1)

Understanding the tradeoff between bias and variance is
necessary to develop useful predictive models in health care.
Bias can be thought of as the model’s inability to discern
complex statistical patterns associated with true test labels.
Variance is the additional error owing to the model mistakenly
interpreting random fluctuations in the training data set as a
robust predictive signal. Bias can often be reduced by increasing

the complexity of the model (ie, if the model is underfit) in
hopes of uncovering deeper statistical patterns within the
training data. However, the tradeoff between bias and variance
then occurs, as more complex models are liable to overfit to
random noise in the training data (thus increasing the variance).
Model validation strategies such as cross-validation also have
implications for the bias-variance tradeoff. Cross-validation
generally relates to this tradeoff, as larger numbers of folds
(smaller numbers of records per fold) tend toward higher
variance and lower bias, whereas smaller numbers of folds tend
toward higher bias and lower variance.

Before delving into the technical details and comparative
advantages of specific cross-validation methods, it is imperative
to emphasize that cross-validation was developed as a method
to estimate the expected out-of-sample prediction error of a
model learned from a set of training data. Machine learning
developers have typically lacked access to external data sets
(the gold standard that allows direct estimation of the true
out-of-sample prediction error), and cross-validation offers an
improvement over existing internal validation methods such as
holdout validation. In contrast to parametric, model-specific
methods such as Bayesian Information Criteria that rely on strict
assumptions, cross-validation is nonparametric, compatible with
any supervised learning algorithm, and directly estimates the
primary measure of model validity—whether predictive
performance generalizes to new data points. Cross-validation
has become increasingly prominent for internal validation in
health care given its flexibility with diverse and sophisticated
learning algorithms and the advantage of using all available
data for model evaluation and selection (compared with using
a single holdout validation set). The use of cross-validation over
holdout validation is particularly advantageous with health care
data sets that are often comparatively small to moderately sized,
costly to obtain, or restricted by privacy and regulatory concerns.

Cross-validation originated in the 1930s with K-fold
cross-validation, the most common form of cross-validation,
described in the 1960s [16,17]. In this form of cross-validation,
the development data set is split into some number, k—often 5
or 10—parts, or “folds,” as described below (Multimedia
Appendix 1). Several variations of this approach have since
been described, each with its own advantages and disadvantages
for clinical modeling.

Considerations for Clinical Prediction and
Implications for Cross-Validation

Most published predictive modeling studies focus on the
classification of binary outcomes; however, fewer models have
been developed to predict continuous or ordinal variables.
Clinical data, especially those in secondary use, for example,
electronic health records (EHRs), are also typified by (1)
irregular time-sampling, (2) inconsistent repeated measures,
and (3) sparsity and rarity. Missingness, noise, and anomalous
outlier values are additional complicating factors associated
with EHR data. Although not uniquely relevant to
cross-validation, appropriate ways of handling these data issues
within model development and evaluation pipelines are covered
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in the applied demonstrations and available code accompanying
this tutorial.

As health care delivery varies naturally and widely between
individuals, real-world health care data such as EHRs usually
contain irregularly and inconsistently sampled measures within
and across individuals. This factor has significant implications
for cross-validation and is described by the differences between
subject-wise and record-wise cross-validations. Subject-wise
cross-validation maintains identity across splits, such that an
individual’s set of events cannot exist in both training and testing
simultaneously. In the record-wise cross-validation approach,
data are split by event and not by individual. Record-wise
cross-validation thereby increases the risk that the same
individual will have events split across training and testing. A
model might then achieve a spuriously high apparent
performance simply by reidentifying the individual in testing
based on highly similar inputs used in training.

Although the technical details and practical guidelines of
subject-wise versus record-wise cross-validation are debated,
the best approach depends on the specific use case, the number
of records, the size of the data set, and the degree of correlation
within subject records [18]. Developers should also consider
the unit of modeling, that is, making a prediction for a given
person versus a given health care encounter or event such as a
prescription. In the former example, record-wise cross-validation
might be adopted for diagnosis at a given clinical encounter,
and subject-wise cross-validation would be favorable for
prognosis over time [19]. In the latter examples, the training
data might include multiple events per person, and the number
of events will also vary across individuals. Cross-validation
poses an additional potential benefit in that training and testing
strategies might split individuals in such a way that models can
be trained on some folds and then applied as inputs for
ensembling in different folds without increasing the risk of
overfitting or data leakage [20].

Many clinical outcomes subject to predictive modeling studies
are rare at the health-system scale (eg, ≤1% incidence). Although
rare outcomes create modeling challenges out of scope for this
tutorial, they also impact cross-validation. Randomly
partitioning data sets into training and test splits often produces
folds with various outcome rates and even folds with no outcome
instances. For binary classification problems, stratified
cross-validation ensures that outcome rates are equal across
folds, and it is recommended for classification problems (and
should be considered necessary for highly imbalanced classes)
[20].

Major Steps in Using Cross-Validation

Dividing steps into development steps and validation steps eases
interpretation. Development steps include data cleaning and
preprocessing—a time-consuming but critical task given noisy
and often invalid health care data from real-world
sources–feature selection, classifier selection, hyperparameter

tuning, and model refitting (Textbox 1). For brevity and scope,
classifier selection will not be covered in detail but is
emphasized as an important step in any predictive modeling
pipeline. As classifiers, broadly parametric or nonparametric,
require different assumptions and themselves pose disparate
advantages and disadvantages, it has become standard to test
multiple classifiers in the same modeling study. Moreover,
ensembles of these classifiers are increasingly developed given
the rise in complexity, depth, and breadth of real-world health
care data sets in the literature.

Model performance metrics inform validation steps and, when
properly contextualized in the clinical use case, suggest key
metrics on which to either optimize or evaluate model
performance. A detailed discussion of model performance
metrics remains outside the scope of this tutorial and has been
covered in depth elsewhere. In brief, prediction models must
be evaluated in terms of discrimination (ie, the ability to predict
higher probabilities for individuals with the outcome) and
calibration (a measure of similarity between predicted
probabilities and the observed risk) [21]. Two methods to
evaluate discrimination via the area under the receiver operator
characteristic curve (AUROC) and the area under the
precision-recall curve (AUPR) from cross-validation include
(1) pooling: averaging test-fold results at each point on the
receiver operating characteristic or precision-recall curve and
(2) averaging: reporting the average AUROC and AUPR over
each test-fold metric. Calibration can also be assessed
analogously using metrics such as the Brier score, calibration
slope, and intercept. We highlight methods that can be used for
calibrating predictions along with cross-validation in a provided
Jupyter notebook. Clinical usefulness based in decision analysis
is the third major area of evaluation [22]. Usefulness bridges
model performance to utility, for example, showing how a model
might reduce cost or increase the measurement of quality of
life.

In addition to cross-validation, bootstrapping is another
resampling-based method used to provide more accurate
estimates of the model generalization performance than holdout
validation. Bootstrapping involves randomly sampling with
replacement from the entire data set to generate a training set
that will not include all original samples. A model is then fitted
on the bootstrap training set and evaluated on a test set
comprising the remaining unselected observations. This process
is repeated several times, where the number of iterations is
typically referred to as the number of bootstraps, and a CI is
generated from the collection of out-of-sample (sometimes
called “out of bag”) performance metrics. Traditional
bootstrapping is referred to as out-of-bag bootstrapping, whereas
further improvements include the “0.632” and “0.632+” methods
that apply additional forms of bias adjustment [23,24]. More
advanced resampling methods include bootstrap-based
cross-validation, Monte Carlo holdout validation (or repeated
holdout sampling), and repeated nested cross-validation [25,26].

JMIR AI 2023 | vol. 2 | e49023 | p. 3https://ai.jmir.org/2023/1/e49023
(page number not for citation purposes)

Wilimitis & WalshJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 1. List of steps required for cross-validation.

1. Data cleaning (outside the loop)—Basic manipulation and feature engineering (converting data types, one-hot label encoding, etc) can and should
be completed on the entire data set before beginning cross-validation.

2. Feature scaling and imputation (within the loop)—Imputation and feature scaling based on the other values in the data set (such as standardization
via mean-centering or normalization) need to be completed only on the training set—which we call “within the loop” as a reference to use with
nested cross-validation. This is necessary to reduce data leakage that can be caused if values in the test set are used to impute or scale the values
in the training set.

3. Feature selection (within the loop)—To reduce overfitting and the detection of spurious correlations between the outcome and independent
variables, feature selection should be completed only on the training fold (“inner loop” of nested cross-validation) and then applied and evaluated
on the test fold.

4. Model selection (within the loop)—To mitigate optimistic bias, the comparison of different modeling algorithms (eg, random forest vs logistic
regression) should also be completed separately from model evaluation.

5. Model selection (within the loop)—Optimizing hyperparameters can also be done simultaneously with classifier selection and should be used
when identifying the best modeling algorithm.

6. Evaluation—Evaluation by way of “averaging” or “pooling” should be completed separately from using cross-validation for model selection to
reduce optimism resulting from overfitting parameters to the data set used for evaluation.

7. Model refitting—To produce a final model trained with all the available data, one should learn the ideal feature selection and model selection
parameters from cross-validation and then train the selected algorithm with these parameters using the entire data set. The model can then be
ported outside the development setting to use for external validation or within production-grade systems.

Case Study in Cross-Validation:
In-Hospital Mortality and Length of Stay
Prediction

MIMIC-III represents a well-known deidentified data set based
in intensive care at Beth Israel Deaconness for approximately
40,000 patients who received care from 2001 to 2012 [14]. It
has been studied extensively, given its relative accessibility
compared with most health care modeling studies using EHRs,
in which privacy or challenges in at-scale deidentification
prohibit data sharing with publication [27].

To demonstrate the key concepts in cross-validation, we selected
2 exemplary problems that typify predictive modeling studies:
classification and regression. For this case study, in-hospital
mortality prediction will represent the former, whereas length
of stay prediction will represent the latter. The models will be
developed and validated using multiple forms of
cross-validation, including K-fold, stratified, repeated, repeated
stratified, and nested cross-validation. We also applied bootstrap
methods to generate CIs for estimated model performance.

From patient visit records, we derived time-invariant features
such as age, sex, and race, along with binary features indicating
the presence of prior diagnoses using 25 higher-order categories
of International Classification of Diseases codes grouped into
Clinical Classifications Software codes. In-hospital mortality
was defined as a binary classification problem, where 1 indicated
that mortality occurred at any point during the hospital visit and
0 otherwise. Length of stay was defined in days and used as a
continuous outcome for a separate regression prediction
problem.

Preprocessing included imputation of continuous features using
the median, setting outlier age values to a maximum of 110
years, and standardization of all numerical features. We also
applied a feature selection routine to select only the top 10
features available for in-hospital mortality prediction and either

the top 30 or 50 features (where the number of features was
included as a hyperparameter) for length of stay prediction.
Finally, in-hospital mortality prediction was classified using
logistic regression and grid search over hyperparameters
including least absolute shrinkage and selection operator (L1),
Ridge (L2), and no penalization and a range of regularization
values. Length of stay prediction was performed using random
forest regression and grid search over hyperparameters including
the number of estimators and maximum tree depth.

In accordance with the best practices outlined for
cross-validation and model selection in Figure 1, we
implemented a nested cross-validation approach that performed
all hyperparameter tuning and model selection steps within the
“inner” cross-validation loop. Theoretically, this should mitigate
the source of optimistic bias introduced when cross-validation
is used to tune model parameters on the same data used for
model performance evaluation (ie, observed performance can
be spuriously high owing to randomness in the data and the
learning algorithm) [28,29]. This source of bias in the estimated
model performance can be considered as a type of overfitting
in the model selection procedure [30].

To empirically evaluate whether nested cross-validation
produces more accurate performance estimates than nonnested
cross-validation, we compared the nested cross-validation with
nonnested cross-validation used simultaneously for model
selection and model evaluation. For nonnested cross-validation
methods, we evaluated the performance of each set of model
tuning configurations (eg, models trained with varied
hyperparameters) on the test fold at each cross-validation split.
After repeating this procedure for each split within the given
cross-validation method, we computed the average performance
over all test folds for each model tuning configuration. The
model parameters with the best average performance over the
cross-validation test folds were then selected. The performance
of this optimal set of hyperparameters was then reported as an
estimate of true out-of-sample performance.
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To demonstrate the optimism that can result from improperly
applied model validation strategies (ie, simultaneously applying
nonnested cross-validation methods for both model selection
and model evaluation), we evaluated the accuracy of the
estimated true test performance when using various
cross-validation methods. We performed this by randomly
splitting the data set into an 80% (32,897/41,121) sample used
for cross-validation and a 20% (8224/41,121) withheld
validation sample. We used a holdout setup to simulate ground
truth in the absence of a naturally bounded holdout (eg, by site
or clinical setting) in the MIMIC data. We then compared the

best model performance reported from cross-validation with
the performance of that model when predicting on the held-out
validation set (Figure 2).

Performance measures will include discrimination metrics such
as the AUROC and AUPR. For length of stay regression
modeling, we adopted mean absolute error and median absolute
error as the primary performance metrics. Computational time,
a pragmatic concern affecting many modeling experiments, will
also be compared across cross-validation methods for both
prediction outcomes.

Figure 1. Pseudocode for nested cross-validation algorithm with model tuning.

Figure 2. Diagram of the methodology for cross-validation (CV) optimism error estimation experiment.
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Case Study Results

Cohort Description
After applying the exclusion criteria, our cohort included 41,121
hospital visits that comprised 71.63% (29,457/41,121) of White
patients and 55.92% (22,996/41,121) of male patients. Mortality
was observed for 4320 patient visits (4320/41,121, 10.51% of
the total cohort). The length of stay (days) did not vary across
different demographic groups, whereas the mean age of patients
with in-hospital mortality (68.7, SD 15.0 y) was greater than
those without mortality events (61.6, SD 16.7 y). Among visits

in which mortality occurred, the most common primary
admission reasons were brain hemorrhage (256/4320, 5.93%)
and sepsis (201/4320, 4.65%). Cardiac arrest and hypoxia
showed the highest length of stay, with mean values of 5.3 (SD
5.8) and 5.1 (SD 5.6) days, respectively. For prior Clinical
Classifications Software diagnostic history, patients with
pneumonia, respiratory failure, arrest, and insufficiency, and
shock had a mean length of stay of approximately 7 days (SD
8.6, 8.2, and 8.2, respectively). The proportion of in-hospital
mortality events was highest for patients diagnosed with
respiratory failure, arrest, and insufficiency, fluid and metabolic
disorders, and renal failure (Table 1).
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Table 1. Medical Information Mart for Intensive Care-III patient cohort summary by mortality and average length of stay (N=41,121).

Length of stay (days)In-hospital mortality

Values, median
(IQR)

Values,
mean (SD)

10

Sex, n (%)

1.99 (1.16-3.74)3.64 (5.26)2279 (52.75)20,717 (56.29)Male

2.05 (1.17-3.78)3.63 (5.17)2041 (47.25)16,084 (43.71)Female

Race, n (%)

2.0 (1.19-3.54)3.61 (5.36)116 (2.69)847 (2.3)Asian

1.99 (1.16-3.41)3.42 (5.01)286 (6.62)3663 (9.95)Black

1.89 (1.12-3.36)3.24 (4.21)82 (1.9)1369 (3.72)Hispanic

2.01 (1.16-3.72)3.61 (5.21)3036 (70.28)26,421 (71.79)White

2.13 (1.2-4.14)4.04 (5.61)800 (18.52)4501 (12.23)Other or unknown

Age

——a447 (10.35)1739 (4.73)Not applicable, %

——68.67 (14.99)61.63 (16.71)Values, mean (SD)

Height

——167.46 (13.22)169.01 (13.39)Values, mean (SD)

——3420 (79.17)28,383 (77.13)Not applicable, %

Weight

——77.39 (23.4)82.2 (24.14)Values, mean (SD)

——709 (16.41)6541 (17.77)Not applicable, %

Admission reason, n (%)

1.93 (1.05-4.74)4.01 (5.13)256 (5.93)517 (1.4)Brain hemorrhage

3.8 (1.7-6.81)5.27 (5.75)114 (2.64)105 (0.29)Cardiac arrest

2.49 (1.5-4.7)4.71 (7.19)201 (4.65)747 (2.03)Sepsis

2.62 (1.41-5.08)4.28 (4.45)25 (0.58)96 (0.26)Respiratory distress

2.78 (1.63-5.8)4.76 (5.38)39 (0.9)107 (0.29)Liver failure

2.87 (1.65-5.65)5.07 (5.61)21 (0.49)81 (0.22)Hypoxia

1.99 (1.06-3.34)3.26 (4.29)18 (0.42)54 (0.15)Cerebrovascular accident

CCSb diagnoses: cardiovascular, n (%)

2.25 (1.3-4.2)3.83 (4.82)559 (12.94)3708 (10.08)Acute myocardial infarction

2.03 (1.17-3.45)3.22 (4.07)1091 (25.25)12,193 (33.13)Coronary atherosclerosis and other heart disease

2.3 (1.29-4.44)4.26 (5.92)1724 (39.91)11,486 (31.21)Cardiac dysrhythmias

1.99 (1.16-3.43)3.31 (4.39)1604 (37.13)15,685 (42.62)Essential hypertension

2.11 (1.22-3.98)3.77 (5.33)649 (15.02)4738 (12.87)Hypertension with complications and secondary hyperten-
sion

2.54 (1.4-4.85)4.45 (6.01)1482 (34.31)9482 (25.77)Congestive heart failure and nonhypertensive

2.16 (1.24-4.02)3.58 (4.60)335 (7.75)2603 (7.07)Conduction disorders

CCS diagnoses: diabetes and metabolic, n (%)

2.45 (1.38-4.92)4.51 (5.91)1823 (42.2)9195 (24.99)Fluid and electrolyte disorders

1.89 (1.13-3.14)2.96 (3.77)812 (18.8)11,162 (30.33)Disorders of lipid metabolism

2.08 (1.19-3.95)3.71 (5.12)872 (20.19)7044 (19.14)Diabetes mellitus without complication

2.07 (1.21-3.44)3.46 (4.96)288 (6.67)3597 (9.77)Diabetes mellitus with complications
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Length of stay (days)In-hospital mortality

Values, median
(IQR)

Values,
mean (SD)

10

CCS diagnoses: infectious disease, n (%)

3.18 (1.78-7.54)6.48 (8.53)1497 (34.65)4332 (11.77)Septicemia (except in labor)

3.89 (1.89-8.99)7.15 (8.60)1094 (25.32)4594 (12.48)Pneumonia (except that caused by tuberculosis or sexually
transmitted disease)

CCS diagnoses: kidney and gastrointestinal and liver, n (%)

2.77 (1.56-5.75)5.26 (7.22)1855 (42.94)6911 (18.78)Acute and unspecified renal failure

2.57 (1.44-5.14)4.98 (6.88)804 (18.61)2847 (7.74)Other liver diseases

2.09 (1.25-4.04)4.06 (6.14)430 (9.95)2567 (6.98)Gastrointestinal hemorrhage

2.12 (1.22-3.91)3.63 (4.93)657 (15.21)4780 (12.99)Chronic kidney disease

CCS diagnoses: respiratory, n (%)

4.37 (2.1-9.31)7.30 (8.21)2042 (47.27)5361 (14.57)Respiratory failure, insufficiency, and arrest (adult)

2.9 (1.47-6.17)5.46 (7.31)143 (3.31)1514 (4.11)Other upper respiratory disease

2.25 (1.28-4.56)4.20 (5.73)245 (5.67)1892 (5.14)Other lower respiratory disease

2.26 (1.27-4.61)4.24 (5.86)684 (15.83)4642 (12.61)Chronic obstructive pulmonary disease and bronchiectasis

3.03 (1.7-6.3)5.78 (7.7)454 (10.51)3139 (8.53)Pleurisy, pneumothorax, and pulmonary collapse

CCS diagnoses: stroke, n (%)

2.62 (1.35-6.16)5.11 (6.51)798 (18.47)2248 (6.11)Acute cerebrovascular disease

CCS diagnoses: surgical complications or shock, n (%)

2.61 (1.36-5.24)5.18 (7.33)719 (16.64)7823 (21.26)Complications of surgical procedures or medical care

3.89 (1.99-8.4)6.85 (8.15)1173 (27.15)2017 (5.48)Shock

aStratified summary statistics were indeterminable for continuous demographic variables.
bCCS: Clinical Classifications Software.

In-Hospital Mortality Prediction
In a comparison of cross-validation approaches for in-hospital
mortality prediction (including all model selection steps and
setting the number of folds to 5 for each method), stratified
K-fold cross-validation performed approximately the same as
regular K-fold cross-validation. Repeated methods of
cross-validation performed marginally worse than the simple
methods of cross-validation, whereas wider spreads of
performance metrics were observed for repeated methods.
Nested cross-validation performed slightly worse than both
repeated and simpler methods, with a mean AUPR value of
0.369 (compared with 0.371-0.372) and an AUROC value of
0.814 (compared with 0.818-0.821). Across all cross-validation
methods, discrimination was moderate to strong for in-hospital
mortality prediction, likely owing to the case prevalence of
10.51% (4320/41,121) and the availability of relevant predictive
features (demographics, diagnostic history, and admission
criteria; Figure 3).

To assess whether nested cross-validation mitigates overfitting
and optimistic bias compared with nonnested methods, we
compared the performance estimate given by cross-validation
(the average over test folds) with the performance of a model
trained on the entire data set with the optimal hyperparameters
from cross-validation. We used this refitted model and made

predictions on an entirely withheld validation set (comprising
8224/41,121, 20% of the total data set vs 32,897/41,121, 80%
used for cross-validation with model selection). The y-axes in
Figures 4 and 5 show that the cross-validation estimate had a
slight pessimistic bias, as the ratio of validation set performance
divided by the cross-validation estimate was >1.
Cross-validation estimates slightly underestimated out-of-sample
performance. The discrepancy between the cross-validation
estimates and validation set performance was greatest for lower
numbers of folds. We only observed marginal differences in
the degree of pessimistic bias across the cross-validation
methods, although AUPR estimates had a greater bias than
AUROC. Estimates from nested cross-validation and repeated
K-fold cross-validation were the most pessimistically biased
(approximately 1%-2% for AUROC and 5%-9% for AUPR),
whereas K-fold cross-validation was the least pessimistically
biased (Figures 4 and 5).

Over 100 bootstrap iterations, the 0.632 bootstrap method had
a mean AUPR of 0.368 (95% CI 0.351-0.382) and a mean
AUROC of 0.819 (95% CI 0.813-0.825). The out-of-bag
bootstrap method had a mean AUPR of 0.367 (95% CI
0.346-0.390) and a mean AUROC of 0.818 (95% CI
0.796-0.828).

We also repeated the optimism estimation experiment using
cross-validation methods (each specified with 5 folds) applied
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to 10 randomly sampled validation sets for a more robust
estimation of the model performance bias. Nested
cross-validation showed a marginally greater pessimistic bias
than nonnested cross-validation methods for both AUROC and
AUPR. Over the 10 randomly sampled validation sets, outlier
values for the relative error of the cross-validation estimate
ranged from 8% optimistic bias (AUPR for nested
cross-validation) to 10% pessimistic bias (AUPR for all
nonnested methods; Figures 6 and 7).

In addition to modest performance differences, tendencies
toward increased computational time were observed with a more
sophisticated schema, for example, nested cross-validation.
Although the overall training time differences were
inconsequential for this data set, the computational time of the
nested cross-validation increased quadratically with the number

of folds (O(k2)). In comparison, the computational time required
for the repeated cross-validation methods increased linearly
(O(k)) and simple cross-validation methods required nearly
constant time across varying number of folds (O(c)) (Figure 8).

Figure 3. Discrimination for in-hospital mortality prediction by cross-validation (CV) method (with 5 folds used for each method). AUPR: area under
the precision-recall curve; AUROC: area under the receiver operator characteristic curve.

Figure 4. Cross-validation (CV) estimates versus validation set performance (AUROC) for in-hospital mortality by number of folds. AUROC: area
under the receiver operator characteristic curve.
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Figure 5. Cross-validation (CV) estimates versus validation set performance (AUPR) for in-hospital mortality by number of folds. AUPR: area under
the precision-recall curve.

Figure 6. Cross-validation (CV) estimates versus validation set performance (AUROC) for in-hospital mortality over repeated 5-fold trials. AUROC:
area under the receiver operator characteristic curve.
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Figure 7. Cross-validation (CV) estimates versus validation set performance (AUPR) for in-hospital mortality over repeated 5-fold trials. AUPR: area
under the precision-recall curve.

Figure 8. Computational time required by cross-validation (CV) method and number of folds for in-hospital mortality prediction. CV: cross-validation.

Length of Stay Prediction
With length of stay prediction defined as a regression problem,
we compared the test-fold performance metrics across various
cross-validation methods (with each method using 5 folds). We
were unable to include stratified cross-validation, which is only
applicable to classification problems wherein the case prevalence
can be made equivalent across different training and test folds.
Similar to in-hospital mortality prediction, we observed
equivalent or marginally worse performance for nested
cross-validation compared with nonnested methods (with
average mean absolute errors of 2.39 vs 2.38 for nested vs
nonnested methods, and average median absolute errors of 1.23
for all methods). The mean absolute error was nearly twice that
of the median absolute error, which suggests that higher outlier
values for length of stay increased the mean prediction error in
this regression problem (Figure 9).

The 0.632 bootstrap method had an average mean absolute error
of 2.01 (95% CI 1.98-2.04) and an average median absolute
error of 1.05 (95% CI 1.03-1.07). The out-of-bag bootstrap
method had an average mean absolute error of 2.84 (95% CI
2.79-2.90]) and an average median absolute error of 1.53 (95%
CI 1.49-1.55).

For median absolute error, all cross-validation methods showed
a slight pessimistic bias (because the validation set performance
was slightly greater than the estimated performance from
cross-validation). There were few disparities between the
accuracy of the performance estimates for varying numbers of
folds or different cross-validation methods. The pessimistic bias
was greatest for the K-fold cross-validation with 2 folds
(approximately 2%). Nested cross-validation produced the least
biased estimates overall, although the bias from the nonnested
methods remained <1% (Figure 10).

Repeated and single K-fold cross-validation estimates of the
mean absolute error were slightly optimistically biased, whereas
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nested cross-validation was pessimistically biased across all
folds. As the number of folds increased, the nonnested methods
were generally less biased. Nested and nonnested
cross-validation estimates of the mean absolute error were
approximately unbiased, with a range between 1% pessimistic
bias (nested cross-validation) and 1% optimistic bias (K-fold
cross-validation; Figure 11).

Consistent with the classification problem, we also observed a
quadratic relationship between the computational time required
for nested cross-validation and the number of folds. K-fold
cross-validation showed linear time complexity, with repeated
K-fold cross-validation increasing linearly with the additional
multiplicative factor from the number of repeats. Owing to the

increased training time required for ensemble models such as
random forest, the absolute time required for cross-validation
methods was much higher for length of stay prediction than for
in-hospital mortality (Figure 12).

Finally, we tested record-wise versus subject-wise
cross-validation and found negligible differences in the accuracy
of the model performance estimates. We suspect that this may
have resulted from the relatively few repeated hospital visits
(records or observations in our data set) associated with each
unique subject or the minimal correlation between the feature
values of identical records across different hospital visits (ie,
differences in reasons for hospital admission may have been
diverse within a subject’s set of visit records).

Figure 9. Regression metrics by cross-validation (CV) method for length of stay prediction (with 5 folds used for each method).

Figure 10. Cross-validation (CV) estimates versus validation set performance (Median Absolute Error) by number of folds for length of stay prediction.
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Figure 11. Cross-validation (CV) estimates versus validation set performance (Mean Absolute Error) by number of folds for length of stay prediction.

Figure 12. Computational time required by cross-validation (CV) method and number of folds for length of stay prediction. CV: cross-validation.

Recommendations, Common Missteps,
and Best Practices

This tutorial described and compared multiple forms of
cross-validation. Cross-validation generally results in reduced
bias compared with holdout testing and poses the clear
advantage of training and testing on all available data [6]. A
more sophisticated schema of model validation involves
bootstrapping methods (and even involving bootstrap-based
cross-validation or repeated nested cross-validation). However,
the modest computational time and the acceptable biased
estimates of true test error that we observed suggest that the
conventional cross-validation methods should remain the first
line for real-world health care modeling. Although K-fold
cross-validation remains the most common, other types of

cross-validation pose advantages and disadvantages worth
considering for each use case (Multimedia Appendix 1). Case
studies using readily accessible and well-studied EHR data,
MIMIC-III, showed slight performance differences in terms of
cross-validation performance and optimistic bias for more
computationally intensive forms of cross-validation such as
nested cross-validation. Although our results should not dictate
whether nested cross-validation is used across the variety of
prediction problems and clinical data sets, the reduction in
optimistic bias with nested cross-validation does not outweigh
the additional challenges of implementing nested
cross-validation and the added computational time it requires.

Common missteps detract from the potential for cross-validation
in diverse modeling scenarios. For example, model development
might be more complex across iterations, and separating
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development (feature selection, hyperparameter tuning, and
classifier selection) from model validation remains paramount.
When using cross-validation for model development within the
same process as model validation, it is often recommended to
use a nested cross-validation approach where preprocessing,
feature selection, and hyperparameter tuning are conducted
entirely independent of the “outer fold” that is used
independently for validation.

However, as our results illustrate, and prior studies have covered
both empirically and theoretically, the degree of optimistic bias
from nonnested cross-validation methods varies with the number
of features, the size of the data set, the extent of hyperparameter
tuning and feature selection, and the nature of the clinical
outcome. In this case study, we had a relatively large sample
size relative to the number of original features included (referred
to as n>p). When performing hyperparameter tuning and other
model selection steps within cross-validation, the difference in
optimistic bias observed between nested and nonnested
cross-validation methods should have been mitigated [31].
Furthermore, our range of hyperparameters and the subsequent
number of possible model tuning configurations was relatively
smaller than a developer would typically use when wanting to
optimize performance. This also contributed to a relatively lower
reduction in optimistic bias when using the theoretically
validated approach to reduce optimistic bias resulting from
model tuning in cross-validation (nested methods) [12,30,32].

Although it is impossible to recommend a single cross-validation
approach that will be appropriate for all modeling scenarios,
we encourage developers to use nested cross-validation methods
in cases with higher dimensional feature spaces relative to the
sample size, higher numbers of algorithms and parameters being
tested, and problems in which the increase in computational
time required from nested cross-validation remains within
feasible bounds (as we observed in both modeling problems in
our case study). As emphasized throughout our discussion of
nested cross-validation, this approach also offers the simplicity
of performing both model selection and tuning and model
evaluation within the same procedure, allowing developers to
disregard concerns about or additional evaluations needed to
mitigate the bias introduced when using nonnested methods for
model selection (which should be used by default to optimize
model performance) and model evaluation. Although we hope
to contribute further empirical evidence on the comparative bias
between various cross-validation methods, we emphasize that
this work is a tutorial meant to demonstrate the use of various
approaches that developers can use for their specific use cases.

In routine health care, EHRs include repeated, irregular samples
(records or health care encounters) across records (patients).
Although we observed negligible differences in performance
between subject-wise and record-wise cross-validation in this
case study, the use case for predictive modeling should
determine the choice between subject-wise and record-wise
sampling. For example, a cohort study of encounters in an
emergency department to predict admissions for pneumonia
might include data sets with multiple encounters per person,
some with a single encounter and others with multiple
encounters. Record-wise splitting might permit encounters for
the same individual to be present in both training and testing
sets, even if the outcomes of each of those encounters with
respect to the prediction target might differ. The tendency in
health care data for correlation and, specifically, autocorrelation
would also introduce undue bias in this scenario.

A fundamental misconception about cross-validation is that it
necessarily “returns” a model that can then be used for
production deployment or external validation [33]. Rather,
cross-validation is more appropriately considered a learning
procedure, which allows a developer to fine-tune the parameters
involved in model development and estimate model performance
on out-of-sample data (internal validation). Once model
selection via cross-validation has produced the best selected
features, hyperparameters, and modeling algorithm, it is
necessary to retrain a “final model” using the entire available
data set with these optimized specifications.

We hope to address the current limitations of machine learning
evaluation and development that might hinder the translation
and reproducibility of predictive models in health care. With
respect to their specific clinical implications, we provided
greater conceptual understanding of cross-validation as both a
model evaluation and model development method, outlined the
respective strengths and weaknesses of common cross-validation
methods, specified the technical steps involved when using
cross-validation with model tuning and selection, demonstrated
cross-validation in a real-world case study, and offered further
empirical evidence on the performance and computational time
of cross-validation methods. Practically, we refer readers to our
open-source code repository with reproducible Jupyter
notebooks and Python code, implementing all the statistical
analyses and experiments of this tutorial. Therefore, developers
will have access to cross-validation examples with real-world
health care data and software functionality that can aid
developers with various clinical machine learning problems.
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