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Abstract

Synthetic electronic health record (EHR) data generation has been increasingly recognized as an important solution to expand
the accessibility and maximize the value of private health data on a large scale. Recent advances in machine learning have
facilitated more accurate modeling for complex and high-dimensional data, thereby greatly enhancing the data quality of synthetic
EHR data. Among various approaches, generative adversarial networks (GANs) have become the main technical path in the
literature due to their ability to capture the statistical characteristics of real data. However, there is a scarcity of detailed guidance
within the domain regarding the development procedures of synthetic EHR data. The objective of this tutorial is to present a
transparent and reproducible process for generating structured synthetic EHR data using a publicly accessible EHR data set as
an example. We cover the topics of GAN architecture, EHR data types and representation, data preprocessing, GAN training,
synthetic data generation and postprocessing, and data quality evaluation. We conclude this tutorial by discussing multiple
important issues and future opportunities in this domain. The source code of the entire process has been made publicly available.

(JMIR AI 2024;3:e52615)   doi:10.2196/52615
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Introduction

Generating synthetic versions of private human-generated data
sets has garnered increasing attention in both academia and
industry as a means to enable broad data access on a large scale
[1,2]. When appropriately generated, synthetic data can mirror
the statistical structures of the real data upon which they are
based while severing connections to real human individuals [3].
Synthetic data not only enable data sharing with minimal privacy
risks but also support data augmentation (ie, artificially increase
the amount of available data by generating new data) to boost
the performance of machine learning (ML) models. Such a
nature has significant implications for maximizing the value of
patient data to improve biomedicine and health care.

The widespread adoption of electronic health record (EHR)
systems has amassed vast patient data globally. Despite their
potential to enrich health knowledge and support care

optimization [4-7], data accessibility remains limited due to
privacy concerns [8,9], which impedes the advancement of
knowledge discovery and translational artificial intelligence
(AI) or ML research in health care. Synthetic data generation
emerges as a solution by producing EHRs that are of minimal
privacy risks while maintaining usability to facilitate endeavors
[10,11] ranging from health information system (or software)
testing and medical education to hypothesis generation and
medical AI development. Acknowledging their benefits, multiple
initiatives have relied upon synthetic data to expand the
accessibility of their data for public use, including the National
Institute of Health’s National COVID Cohort Collaborative
[12] and the Clinical Practice Research Datalink by the United
Kingdom’s National Institute for Health and Care Research
[13].

Due in part to the limited accessibility of real EHRs, the data
sets made available for biomedical research often exhibit small
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sizes, insufficient diversity, missing modalities, biased
subpopulation representativeness, imbalanced labels, and scarce
annotations [14]. As a result, ML models trained on these data
may demonstrate inferior performance, limited generalizability,
and unfair outcomes (ie, when there exist disparities in model
performance across patient subpopulations) [15]. Compared
with solely using existing data, integrating synthetic EHR data
with real data can potentially enhance model performance and
reduce biases [3,16,17]. This strategy effectively enlarges the
proportion of underrepresented classes or patient subpopulations
within the real data and, thus, prevents the model training
process from overly focusing on the dominant groups.
Importantly, synthetic EHR data can be produced quickly, of
arbitrary size, and at low cost, and they are able to introduce
higher diversity than traditional augmentation strategies (eg,
over- or undersampling), which reduces the likelihood of
overfitting. It is notable that creating synthetic EHR data, when
based on a private real data set and supplied to support ML
innovations by a third party, offers a unique opportunity to
realize the dual benefits of data sharing that maintains privacy
and data augmentation.

Among numerous synthetic data generation techniques,
generative adversarial networks (GANs) and their variants have
showcased their capability to accurately capture the statistical
properties of real EHR data while inducing low privacy risks
[18-20]. GAN-based methods avoid explicitly modeling clinical
knowledge and making assumptions about variables and their
correlations; instead, they directly learn the underlying
relationships from the multidimensional data and then generate
synthetic records based on the learned model [21].

Despite the rapid advancement and evolution of synthetic EHR
data generation technologies, the whole procedure for producing
synthetic EHR data has not been revealed in a detailed manner.
This tutorial paper aims to fill that gap by providing a sequence
of step-by-step instructions, supported by complementary demo
code, to assist those practitioners who are not specialized in this
area to effectively translate state-of-the-art research in synthetic
EHR data to practical applications. This tutorial is designed
with the expectation that readers have a basic understanding of
ML concepts and proficiency in Python programming. We cover
multiple topics, including GAN architecture, EHR data types
and matrix representation, data preprocessing, GAN training,
synthetic data generation, and evaluation. For demonstration
purposes, we use the state-of-the-art open-source model (ie,
EMR-WGAN [22]) and a publicly available EHR data set (ie,
the Medical Information Mart for Intensive Care, the Fourth
Version [MIMIC-IV] [23]) for structured EHR data generation.
We defer the comparisons of various GAN-based models to our

previous paper [21]. We also provide a detailed Jupyter
notebook [24] to ensure the replicability of the tutorial content.

Methods

Data Set
We use the MIMIC-IV [23] data set as an example to
demonstrate the generation and evaluation process of synthetic
structured EHR data. MIMIC-IV is the latest version of the
MIMIC EHR data, a publicly available database sourced from
real EHRs of the Beth Israel Deaconess Medical Center. Adult
patients admitted to the emergency department or an intensive
care unit between 2008 and 2019 were incorporated. MIMIC-IV
includes a wide array of information such as diagnoses,
procedures, treatments, measurements, orders, free-text clinical
notes, and mortality labels that indicate whether a patient died
within 1 year following their last hospital stay within the
timeframe. In this tutorial, we extracted patients from
MIMIC-IV who had at least 1 hospital admission and were
discharged alive following their last hospitalization. To build
a simple demonstration data set, we extracted patients’
demographic information (including age, sex, and race);
diagnoses; and 2 types of the latest measurements, that is, BMI
and blood pressure (systolic and diastolic pressures). We reduced
the dimensionality by converting the International Classification
of Disease, Ninth or Tenth Revision (ICD-9/10) diagnosis codes
to phenome-wide association study codes (ie, phecodes), which
aggregate billing codes into clinically meaningful phenotypes
[25].

GAN Architecture
GANs consist of 2 neural networks: a generator that is trained
to produce realistic synthetic data from random noise and a
discriminator that aims to distinguish between real and synthetic
data generated by the generator [26]. During the iterative
training process, the generator receives feedback through
backpropagation from the discriminator and then continues to
refine its capability until the discriminator cannot differentiate
between real and synthetic data. GAN variants retain this
common architecture while customizing how each component
is implemented to adapt to various data types and stabilize the
training procedure [27]. Specifically, EMR-WGAN [22] (Figure
1) applies Wasserstein divergence [28] to characterize the
distance between real and synthetic data and uses fully
connected layers, as well as normalization techniques, to
construct the generator and discriminator. This combination of
design has demonstrated its superiority in capturing the
statistical characteristics of real data over other models for EHR
data generation [21].
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Figure 1. An architectural overview of EMR-WGAN. EHR: electronic health record.

EHR Data Types and Matrix Representation
Structured EHR data for secondary analysis are usually stored
in a relational database (eg, Epic Clarity) or in multiple separated
files with a tabular format (eg, MIMIC-IV), where each row
represents a patient’s fact, such as demographic information,
or a medical event marked by a timestamp, such as disease
diagnoses, medication prescriptions, measurements, medical
procedures, and clinical outcomes related to an encounter. These
data are usually represented by continuous, categorical, or
discrete variables (Figure 2A). Continuous variables can assume
any value within a specific range, making them suitable for
representing medical measurement results, such as hemoglobin
A1c readings. Discrete variables are characterized by a countable
number of numerical values, such as the number of pregnancies.
However, the discrete variables with a broad range of values,
such as age, can be approximated as continuous variables. In
contrast, categorical variables are defined by a limited and
typically unchanging set of options, such as sex, race, and
diagnosis. Unlike discrete variables that naturally possess an
order, categorical variables typically do not have a hierarchical
order among their options, or they may display only a nominal
relationship with nonquantitative distinctions, such as
classifications of “low,” “medium,” or “high.” In the practice
of synthetic data generation, discrete variables with a limited

range of values are sometimes considered categorical for
simplicity.

Timestamps indicate medical events’ positions on the time
dimension. In the longitudinal synthetic EHR generation
scenario, the time interval between 2 consecutive medical events
is often used as a substitute for timestamps [29,30]. In this paper,
we focus on demonstrating the generation of snapshot (or static)
EHR data by removing or transforming the occurrence time of
medical events so that all information about 1 patient can be
represented by 1 single row of a table. While temporal
information on medical events adds significant value to EHR
data, snapshot EHR data still offers a wealth of information to
support care delivery, data analytics, research, policy making,
and education. Figure 2B shows a transformed snapshot EHR
data matrix (EHR matrix for short) derived from Figure 2A. In
this matrix, each row denotes a patient’s record, and each
column denotes a variable. It is notable that each categorical
variable with k (k>2) distinct options is represented by k new
variables (or columns) in a one-hot manner (eg, insurance and
number of pregnancies in the example), whereas the categorical
variables with only 2 options (eg, mortality in the example) are
represented by a single binary column.

Figure 3 illustrates the whole process of producing synthetic
EHR data by training generative models.
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Figure 2. An illustration of (A) data types in electronic health record data, and (B) transformed snapshot electronic health record matrix for synthetic
data generation. #P: number of pregnancies; BP-D: diastolic blood pressure; BP-S: systolic blood pressure; H-A1C: hemoglobin A1C; HT: hypertension;
Ins: insurance; T2D: type 2 diabetes.

Figure 3. An overview of synthetic electronic health record data generation process through training generative models.

Data Preprocessing

Overview
With the patient cohort of interest extracted and the
corresponding matrix representation of their EHR data (ie, EHR
matrix) obtained, a series of data preprocessing procedures need
to be performed in order to produce a GAN-ready training data
set. The procedures include (1) removing outliers, (2) handling
missing values, (3) normalizing continuous variables, and (4)
handling concepts with low prevalence.

Removing Outliers
We define outliers in structured EHR data as data points that
are significantly distant from the majority of values. These can
be data points that conflict with common sense or established
clinical knowledge. This phenomenon typically occurs when
incorrect values are entered or generated in EHRs and is
particularly prevalent among discrete and continuous variables.
Outliers can also represent occurrences that are theoretically
possible but exceedingly rare, which creators of synthetic data
may opt to exclude depending on the requirement of data
generation. In both cases, it is critical to inspect the distribution
of each noncategorical variable by creating histograms and
reviewing basic statistical measures, such as the mean, median,
minimum, and maximum values. As an example, we examined

the distribution of BMIs in the processed EHR matrix, which
led to findings that the minimum and maximum BMIs are 0 and
107,840.2. There are 366 patients with their latest BMIs greater
than 60, and there are 120 patients with their BMIs less than
10. Given that these BMIs are unreasonable for adult patients,
we removed the corresponding patients from the EHR matrix.
One alternative solution that preserves the amount of data
available for training generative models is to clip outlier values
based on a pre-established reasonable range for the relevant
variables.

Handling Missing Values
Multiple reasons can contribute to EHR data missingness,
including, but not limited to, fragmented EHRs, incomplete
documentation, data entry errors, and skipped clinical
measurements. These reasons have also been classified in the
literature as missing completely at random, missing at random,
or missing not at random [31]. Before proceeding with
imputation, it is generally recommended to eliminate variables
with a high missing rate (eg, more than 50%). Numerous missing
data imputation methods for EHR data have been developed
[32-35], such as random sampling, prediction-based methods,
and nearest neighbor–based methods. Yet, growing evidence
has suggested that different methods are suitable for different
missingness types, data sets, and use cases and that there is no
single method that is universally considered the best for all
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scenarios. In this tutorial, we applied a random sampling strategy
to impute missing values in BMI, which had a 38.6% missing
rate, and both diastolic and systolic blood pressure, each with
a 43.5% missing rate. Specifically, we randomly sampled and
then imputed values based on the marginal distribution of each
variable, though we acknowledge that this might not be the
optimal strategy for all use cases of this data set.

Normalizing Continuous Variables
Continuous variables each possess a specific range of values,
as illustrated by the difference between blood pressure and
height in feet in Figure 2B. Normalizing continuous variables
prevents the training of generative models from being dominated
by variables with large ranges. To keep the distribution of each
continuous variable, it is recommended to linearly compress
their values into the range of (0,1), with its maximum and
minimum values the same as binary variables. Given a
continuous variable v, as well as its maximum value vmax and
minimum value vmin, the normalized value v’k of vk can be
calculated as:

(1)

Handling Concepts With Low Prevalence
Concepts with low prevalence correspond to clinical variables
that represent rare facts or events within the patient cohort.
Examples include diseases, procedures, and medications that
are uncommonly diagnosed, executed, and prescribed,
respectively. ML-based generative models, including GANs,
cannot accurately capture the statistical properties of these
variables, as well as their correlations with other variables, due
to the limited observations in the real data set. Noise, however,
could be induced by keeping these variables in the EHR matrix
for GAN training. To address this issue, several strategies can
be used as follows: (1) removing these low-prevalence variables
from the EHR matrix and reintroducing them in the
postprocessing stage when needed, (2) rolling up variable
granularity to a higher level to raise prevalence (eg, converting
raw ICD-9/10 codes to their integer level or to phecodes), and
(3) combining both approaches. In this tutorial, we converted
ICD-9/10 diagnosis codes to phecodes and then removed the

phecodes with a prevalence of less than 5×10–5.

Model Training
Depending on model architectures, distance measures, and
training techniques used (such as batch sizes, and alternating
strategies for training the generator and discriminator),
GAN-based synthetic EHR data generation models show varied
capabilities in capturing the properties of real data. However,
they typically encounter 2 main types of uncertainties throughout
the training process. First, GAN training usually occurs within
a parameter space that is both complex and high-dimensional.
This inherent complexity and the adversarial dynamics of GANs
often lead to an unstable training process that converges to
suboptimal solutions. Such nature of GAN training can cause
multiple undesired phenomena, including mode collapse (the
generator maps different inputs to the same output) and mode

drop (the generator only captures part of the distribution in the
real data) [22]. Second, the model checkpoint that corresponds
to the highest quality of the synthetic data is not necessarily the
one with the lowest training loss. In addition, it has been realized
that overtraining GAN-based models might degrade the quality
of synthetic data. In other words, there is no monotonic
relationship between training loss and the quality of synthetic
data.

In order to attain the synthetic EHR data of the highest possible
data quality that a GAN-based model can achieve, we highly
recommend training the model multiple times (or multiple runs)
from scratch and testing data quality at multiple checkpoints
along the training trajectory of each run. This mechanism will
not only improve the quality of synthetic EHR data to better
support downstream uses but also contribute to more fair
comparison between different generative models. This is crucial
because researchers often need to select the best synthetic EHR
generation model tailored to the real data sets and designated
use cases [21].

Two different training paradigms can be considered for scenarios
involving patient labels, for example, health outcomes (eg,
mortality, readmission, and discharge), medical events of interest
(eg, the presence of phenotypes and interventions), and patients’
demographic information (eg, race, sex, and age groups). The
nonconditional training paradigm does not distinguish the label
variables in the EHR matrix from the remaining variables,
whereas the conditional training paradigm uses the label
variables to guide model training, as well as the generation of
the synthetic EHR data [22], which enables the control over the
categories of the generated data in terms of the label variables.
Conditional training is usually achieved by incorporating the
label variables as extra input of the neural networks of the
generator and discriminator. However, consensus has not been
established regarding which paradigm achieves a higher quality
of synthetic EHR data.

When categorical variables with k (k>2) unique options are
converted into k binary variables within the EHR matrix, it is
essential to maintain the one-hot constraint in the synthetic data.
This means that only 1 of the binary variables can take a value
of 1, while the remaining k–1 variables must be set to 0.
However, the GAN training mechanism may lead to a violation
of this constraint. To solve this issue, a SoftMax layer should
be attached to the output of the generator to preserve the one-hot
constraint.

Additionally, real data may contain critical record-level
constraints that represent established clinical knowledge, which
need to be preserved in the synthetic data. For instance, female
patients should not be assigned male-specific diseases, such as
prostate cancer. Such constraints can be effectively enforced
by adding corresponding penalty terms to the loss function of
GANs [36].

In this tutorial, for illustrative purposes, we use the
nonconditional paradigm, preserve the one-hot constraints, yet
refrain from imposing record-level constraints during model
training to showcase the phenomenon of clinical knowledge
violation in results.
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Synthetic Data Generation and Postprocessing
Random noises, typically drawn from the standard normal
distribution, need to be input into the trained generator to
produce synthetic EHR data. By repeating this process, the
generator is able to produce a specified quantity of synthetic
records. When the conditional training paradigm is adopted, the
prespecified label values should also be fed into the generator
as part of the input. The capability to generate synthetic data in
any desired quantity and to control the categories of the
generated records affords us the flexibility to determine the
composition of the resultant data set for downstream use. This
nature has significant implications for data augmentation as it
enables practitioners to augment their existing data sets with
synthetic records tailored to their specific needs.

By applying a sigmoid or SoftMax function as the output layer
of the generator, variables in the synthetic data assume values
ranging between 0 and 1. For noncontinuous variables, rounding
the values is necessary, whereas the values of continuous
variables require rescaling to their original range by applying
the inverse version of Equation 1. This process ensures that the
synthetic data preserves the value ranges found in the real data
set.

Data Quality Evaluation

Overview
The quality evaluation of synthetic EHR data primarily revolves
around 3 key aspects: data utility, privacy, and fairness. This
process requires a comparison between synthetic data and real
data using a set of metrics. In this tutorial, we select multiple
commonly used metrics that are complementary to each other
to demonstrate data evaluation. Below, we provide a brief
overview of these metrics. For more comprehensive details, we
point readers to several recent publications in the field
[18,19,21], which provide in-depth explanations of how these
metrics are designed.

Data utility measures the usefulness and applicability of a data
set for specific purposes. More concretely, it is evaluated by
determining how well the generated data captures the critical
characteristics present in the real EHR data. Unlike imaging
data whose quality can be visually evaluated by humans or
assessed using a single metric, the quality of synthetic EHR
data is less intuitive and can vary in a variety of aspects.
Typically, data utility is assessed by evaluating the extent to
which synthetic EHR data (1) resemble the statistical
characteristics of real data at both variable and record (or
patient) levels and (2) retain the capability of developing ML
models that perform comparably to those trained using real data.
In earlier research, the concept of resemblance was often
characterized as being distinct and independent from data utility.
Variable-level characteristics include but are not limited to,
variables’ marginal distributions, their correlations, and joint
distributions, whereas record-level characteristics cover multiple
crucial aspects, including the violation rate of clinical
knowledge, the distribution of medical concept quantity, etc.

Dimension-Wise Distribution
This metric evaluates the degree to which a synthetic data set
captures the marginal distributions of variables in the real data.
It calculates the average of the absolute prevalence differences
(APDs) for categorical variables and the average of the
Wasserstein distances for continuous variables between real
and synthetic data sets. When both types of variables are present,
we add these 2 values together and then normalize the sum to
derive the final score, which is referred to as dimension-wise
distance (DWD). A lower value of this metric indicates a higher
level of data utility.

Column-Wise Correlation
This metric measures how well a synthetic data set maintains
the correlations of variables present in the real data. It calculates
the Pearson correlation coefficient matrices (for all variable
pairs) in both the real and synthetic data sets and then computes
the average of the absolute differences between corresponding
cells in these 2 matrices. A lower value of this metric indicates
a higher level of data utility.

Latent Cluster Analysis
This metric evaluates the effectiveness of a synthetic data set
in preserving the underlying structures (or joint distribution) of
real data in the latent space. It involves combining the real and
synthetic EHR matrices and then applying principal component
analysis to project the combined data set into a latent space that
covers a specific threshold of variance in the system.
Subsequently, a clustering algorithm, such as k-means, is used
to derive the latent deviation, which is calculated as the
logarithmic average of the transformed ratio of real data points
present in each identified cluster. A lower value of this metric
suggests a closer resemblance of the synthetic data set’s latent
distribution to that of the real data.

Medical Concept Abundance
This metric quantifies the degree to which a synthetic data set
maintains the quantity of the record-level information in the
real data. The normalized Manhattan distance between the
histograms of the number of distinct record-level medical
concepts for real and synthetic data sets is calculated as the
medical concept abundance distance. A lower value of this
metric indicates a higher level of real-synthetic data similarity.

Clinical Knowledge Violation
This metric measures the degree to which a synthetic EHR data
set violates clinical knowledge, particularly in terms of
maintaining record-level consistency with established medical
common sense. To do so, we identified the most prevalent
diagnoses (3 in this tutorial) that are only associated with 1 sex
in the real data and subsequently computed the average ratio of
all diagnoses appearing in the opposite sex in the synthetic data
sets. A lower value of this metric indicates a higher level of
data utility.

Prediction Performance
This metric evaluates the capability of a synthetic EHR data set
to support ML model development. The real data set is split
into a training set and a testing set. The reference model is then
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trained using the real training set and evaluated on the real
testing set by calculating the area under the receiver operating
characteristic curve (AUROC). Subsequently, a new model is
trained using the synthetic data set and then evaluated on the
same real testing set. These 2 scenarios are referred to as training
on real testing on real (TRTR) and training on synthetic testing
on real (TSTR), respectively. The more closely the AUROC of
TSTR aligns with that of TRTR, the higher the utility of the
synthetic data set.

Feature Importance
This metric focuses on assessing how reliably a synthetic data
set reveals key features that are significant in the prediction
task. We first identified the top N (20 in this tutorial) important
features in the TRTR scenario by computing the Shapley
additive explanations values of all features and then computed
the overlap proportion of the top N features with those identified
in the TSTR scenario. The higher the proportion, the higher the
data utility. Note that “feature” used in the context of feature
importance is equivalent to variable.

Data privacy evaluation is crucial when considering the sharing
of synthetic EHR data. While synthetic EHR data are designed
to minimize privacy risks by severing the linkage to real patients,
it is still important to conduct thorough privacy evaluations to
ensure the preservation of individual privacy in multiple privacy
inference settings, where adversaries’knowledge and objectives
differ. Across different privacy inference settings, it is
commonly assumed that adversaries only have access to the
generated synthetic data, but not the synthetic data generation
model. Examples of widely used privacy metrics include
membership inference risk and attribute inference risk
[21,22,37], each with values ranging from 0 to 1. Membership
inference risk measures the ability of an adversary to infer
whether a specific real record is part of the data set to train the
synthetic data generation model. It is quantified using the
F1-score of the inference based on the distances between targeted
records and all synthetic records. By contrast, attribute inference
risk reflects an adversary’s capability to infer sensitive attributes
of partially observed real EHRs. Specifically, it is calculated
through the weighted sum of F1-scores of the inferences against
sensitive attributes.

Multiple additional metrics have been created to assess privacy
risks in various contexts, including meaningful identity
disclosure risk [38] and nearest neighbor adversarial accuracy
risk [39]. Meaningful identity disclosure risk extends the concept
of identity disclosure from the context of releasing real data to
the scenario of sharing synthetic data. It encompasses a
comprehensive privacy risk that involves two main aspects: (1)
inferring the identifiability of patients and (2) acquiring new
knowledge about targeted patients. In contrast, nearest neighbor
adversarial accuracy risk assesses the extent to which a synthetic
data set overfits the real training data set. Specifically, it
measures the difference between (1) the aggregated distance
between synthetic records and those in the real testing data set
and (2) the aggregated distance between synthetic records and
those in the real training data set.

Synthetic EHR data are also anticipated to fairly represent
patient subpopulations with respect to protected attributes, such
as age groups, sex, race, and ethnicity. Distributional differences
or distances between real and synthetic data with respect to the
protected attributes of interest are often used as metrics to
evaluate fair representation [40]. To ensure fair data quality,
synthetic data may need to show similar variations in preserving
data utility and protecting privacy for each patient
subpopulation, akin to their real data counterparts. This
consideration of fairness requires that utility and privacy
evaluations of synthetic data should be performed independently
within each subpopulation and then compared across them.
Another fairness consideration necessitates that synthetic data
sets provide equal support for downstream AI or ML tasks
across all subpopulations, regardless of the basis of the real
data. Due to the complexity surrounding fairness and the absence
of clear guidelines for evaluating it in synthetic EHR data, we
will skip this evaluation in our demonstration.

It is crucial to note that quality evaluation of synthetic EHR
data should be tailored to align with specific use cases because
different use cases prioritize the preservation of different data
aspects. For instance, when the synthetic EHR data are intended
to facilitate hypothesis generation to support medical research
in a controlled research environment, the evaluation would
emphasize metrics that measure disease prevalence and
correlations between features and outcomes, while privacy risks
may be of lesser concern. On the other hand, if the synthetic
EHR data are developed to support the development of clinical
decision support software by third-party developers, evaluating
privacy risks becomes more critical than determining whether
the synthetic data preserves the nuanced statistical properties
of the real data. Our previous research provides a use
case-oriented benchmarking framework to enable systematic
comparisons of synthetic data generation models [21]. The users
of this framework determine the prioritization of evaluation
metrics by providing a weight profile, which applies to the
evaluation results from individual metrics and represents the
relative importance or preference assigned to each metric. The
final score of a synthetic data set or a synthetic data generation
model is derived by aggregating the weighted results for all
considered metrics.

Using this benchmarking framework enables the selection of
the most suitable synthetic data set for a specific use case or the
comparison of various synthetic data generation models (not
necessarily limited to those that are GAN-based) based on the
scores assigned to produced synthetic data sets.

Results

Overview
In this section, we present the results of data quality evaluation
for synthetic EHR data sets in terms of data utility and privacy.
Furthermore, we demonstrate how to compare these synthetic
EHR data sets to identify the most suitable one for specific use
cases. To do so, 70% of records of the preprocessed MIMIC-IV
data set were used to train the EMR-WGAN model and the
remaining 30% of records were used for evaluation purposes.
Considering the inherent uncertainties associated with
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GAN-based model training as mentioned earlier, EMR-WGAN
was independently trained 5 times. While we recommend
examining multiple checkpoints during each model’s training
phase, for the purposes of this demonstration, we selected an
epoch with a relatively low training loss from each independent
training session to generate the corresponding synthetic data
set. All synthetic data sets produced by these models have the
same size as the real training data set. The complete process of
data quality evaluation can be found in the shared Jupyter
notebook [24].

Characteristics of the Real Data Set
Table 1 provides an overview of the basic characteristics of the
MIMIC-IV cohort selected for the creation and evaluation of

synthetic EHR data. We initially included a total of 181,294
patients who had at least 1 hospital admission and were
discharged alive for their last hospital stays. The average age
of this cohort is 56.2 (SD 20.4) years. This cohort comprises
96,617 (53.3%) female individuals and multiple racial groups,
with 7667 (4.2%) Asian; 23,999 (13.2%) Black; 10,058 (5.5%)
Hispanic; 121,954 (67.3%) White; 10,078 (5.6%) belonging to
other races; and 7538 (4.2%) of unknown race. A total of 20,493
(11.3%) of the cohort died within 1 year after their last hospital
stay. The data preprocessing procedure led to the removal of
548 patients and more reasonable distributions of BMI, diastolic,
and systolic blood pressures. The curated real EHR matrix
contains 1460 columns after we removed 140 extremely rare
diagnoses.

Table 1. Cohort characteristics before and after data preprocessing.

Distributions and valuesCharacteristics

After preprocessing (n=180,746)Before preprocessing
(n=181,294)

180,746 (100)181,294 (100)Cohort size, n (%)

56.2 (20.3)56.2 (20.4)Age (y), mean (SD)

Sex, n (%)

96,304 (53.3)96,617 (53.3)Female

84,442 (46.7)84,677 (46.7)Male

Race, n (%)

7654 (4.2)7667 (4.2)Asian

23,889 (13.2)23,999 (13.2)Black

10,035 (5.6)10,058 (5.5)Hispanic

121,603 (67.3)121,954 (67.3)White

10,049 (5.6)10,078 (5.6)Others

7516 (4.2)7538 (4.2)Unknown

20,414 (11.3)20,493 (11.3)Died within 1 year, n (%)

28.4 (6.8)21.1 (277.03)BMI, mean (SD)

73.6 (11.8)47.6 (36.4)Diastolic blood pressure, mean (SD)

126.6 (18.2)81.9 (62.3)Systolic blood pressure, mean (SD)

Top 10 prevalent diagnoses (in phecodes), n (%)

57,056 (31.6)57,238 (31.6)Hypertension (401)

39,103 (21.6)39,216 (21.6)Disorders of lipoid metabolism (272)

33,844 (18.7)33,979 (18.7)Other anemias (285)

31,541 (17.5)31,694 (17.5)Essential hypertension (401.1)

27,896 (15.4)28,011 (15.5)Hyperlipidemia (272.1)

25,800 (14.3)25,887 (14.3)Diseases of esophagus (530)

25,195 (13.9)25,284 (14)Cardiac dysrhythmias (427)

25,089 (13.9)25,201 (13.9)Mood disorders (296)

24,054 (13.3)24,152 (13.3)Tobacco use disorder (318)

23,807 (13.2)23,895 (13.2)Disorders of fluid, electrolyte, and acid-base balance (276)

23,695 (13.1)23,789 (13.1)Diabetes mellitus (250)

14601600Total number of columns in electronic health record matrix
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Data Utility
Figure 4 illustrates the dimension-wise distribution results and
the associated APD for categorical variables. Although all 5
runs effectively maintain the marginal distributions of these
variables, the second run exhibits the smallest APD. When
considering both the categorical and continuous variables (ie,
age, BMI, diastolic, and systolic blood pressures), the second
run still achieves the lowest DWD. By contrast, the third run is
associated with the highest DWD, indicating a relatively low
effectiveness in preserving dimension-wise distributions.

Figure 5 summarizes the evaluation results of the 5 synthetic
data sets for the remaining 6 data utility metrics, with the
indication of directional implications of the values under each

metric. Notably, the second run demonstrates the highest data
utility in column-wise correlation, latent cluster analysis,
prediction performance, and feature importance and secures the
second position in medical concept abundance. Yet, its score
in clinical knowledge violation is positioned fourth.
Additionally, it was observed that male-specific diagnoses are
more than 10 times as likely to be incorrectly assigned to female
records in the synthetic data sets compared with similar
violations for female-specific diagnoses. This suggests that the
correlations between sex and sex-specific diagnosis columns
were not equally preserved, possibly resulting from different
levels of complexity (or noise) in the data pertaining to different
sexes. While this phenomenon falls beyond the scope of this
tutorial, it merits further exploration.

Figure 4. Dimension-wise distribution for categorical variables. The dashed diagonal line indicates the perfect replication of variable prevalence. APD:
absolute prevalence difference; DWD: dimension-wise distance.

Figure 5. Data utility in (A) column-wise correlation, (B) latent cluster analysis, (C) medical concept abundance, (D) clinical knowledge violation, (E)
prediction performance, and (F) feature importance. For clinical knowledge violation, “hyperplasia of prostate," “cancer of prostate,” and “erectile
dysfunction” are examined as male-specific diagnoses (in phecodes); “other conditions or status of the mother complicating pregnancy, childbirth, or
the puerperium,” “known or suspected fetal abnormality affecting management of mother,” and “other complications of pregnancy necrotizing
enterocolitis” are examined as female-specific diagnoses (in phecodes). AUROC: area under the receiver operating characteristic curve.

Privacy
Table 2 presents the privacy risk associated with each synthetic
EHR data set in terms of membership inference attack and
attribute inference attack. It also includes a baseline comparison,
which corresponds to an extreme situation of releasing real data.

Compared with the real data set, every synthetic data set
achieves substantially reduced risks. While the variance in risk
levels among the 5 synthetic data sets is relatively small, the
second run exhibits the highest membership inference risk and
the second lowest risk in attribute inference.
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Table 2. Privacy risks of synthetic electronic health record data sets. For each risk category, the identical risk value is attributed to a loss of precision.

RealRun 5Run 4Run 3Run 2Run 1Risk type

0.910.300.290.290.310.29Membership inference

0.970.140.130.140.140.14Attribute inference

Identifying the Most Suitable Synthetic Data Set for a
Specific Use Case
We have obtained the evaluation results of all 5 synthetic data
sets for individual metrics, allowing for straightforward
derivation of their rankings in each metric as presented in Table
3. A smaller ranking position indicates better data quality. In
this tutorial, we consider two distinct use cases of synthetic
EHR data: (1) ML model development, which prioritizes the
performance of prediction tasks and model explainability, and

(2) education, which focuses more on the record-level
consistency with clinical knowledge, prevalence of diagnoses,
and privacy. We proposed example weight profiles for these 2
use cases and then calculated the overall rankings of the
synthetic data sets for each scenario. The analysis identifies the
second and third runs as the most suitable data sets for ML
development and education, respectively. This observation
further justifies that the quality evaluation of synthetic data
should be in the context of use cases.

Table 3. Data quality rankings of synthetic data sets. Weight profiles A and B correspond to the use cases for supporting machine learning model
development and education, respectively. Overall rankings of data sets are weighted summation of individual rankings in all metrics.

Run 5Run 4Run 3Run 2Run 1Weight profile BWeight profile AMetric

Utility

245130.10.1Dimension-wise distribution

453120.10.1Column-wise correlation

453120.00.1Latent cluster analysis

145230.00.0Medical concept abundance

531420.40.1Clinical knowledge violation

453120.00.2Prediction performance

444120.00.2Feature importance

Privacy

412530.20.1Membership inference

514230.20.1Attribute inference

4.03.73.21.8b2.3N/AN/AaOverall rankings for weight profile A

4.42.52.4b3.22.5N/AN/AOverall rankings for weight profile B

aN/A: not applicable.
bIndicates the most suitable data set for each use case.

Discussion

Principal Findings
GAN-based synthetic data generation has demonstrated
significant potential to enlarge the accessibility of health data
and enhance the effectiveness of ML in health care [41-43].
This tutorial demonstrates how to create and evaluate structured
synthetic EHR data by applying a GAN-based generative model
to a publicly available EHR data set. Beyond introducing
technical details, we aim to discuss several important issues
related to this topic.

GAN-based synthetic EHR data generation models exhibit
limited capability in accurately representing and then generating
the concepts with low prevalence. This is also a common
challenge for almost all ML methods. From our experience,
incorporating these concepts into the real data for GAN training,
compared with removing them, can result in adverse effects on

capturing the distributions of prevalent concepts. In settings
where accurate representation of concepts with low prevalence
is crucial (eg, synthetic data are developed to replicate studies
related to rare diseases), additional efforts should be dedicated
to ensuring their fidelity in the synthetic data. One solution is
to increase the representation of these concepts in the real data
through data collection or data oversampling. The second
solution is to independently model the cohort associated with
the targeted concept. Subsequently, the synthetic data for this
specific cohort can be generated and then merged with the main
synthetic data. Another approach, which is modeling-free, is to
perturb the real EHR data with the targeted concept based on
expert knowledge and then add the resultant data back into the
main synthetic data. It should be noted that the quality of
synthetic data after using these approaches should be
comprehensively evaluated.
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Selecting the most suitable synthetic EHR data set or synthetic
data generation model for a targeted use case is subject to 2
types of tradeoffs: extrinsic and intrinsic tradeoffs. Users of this
technology control the extrinsic tradeoff by prioritizing which
aspects of the data to preserve in data quality evaluation. This
can be accomplished by using an appropriate set of evaluation
metrics and assigning weights to each metric to achieve a
balanced evaluation outcome that aligns with the use case, as
mentioned earlier. Different prioritization strategies can yield
variations in evaluation results, thereby influencing the selection
of the optimal data set or model.

The intrinsic tradeoff arises from the inherent interrelation and
tension among data utility, privacy, and fairness. In general,
better data utility aligns with a more accurate representation of
the nuanced statistical characteristics present in the real data,
which can, in turn, improve the success rate of privacy inference
regarding sensitive information about patients. Similarly, aiming
for a higher level of privacy protection is often paired with a
reduction in data fidelity. Different synthetic EHR generation
models, and even different runs of the same model, can exhibit
varying utility-privacy tradeoffs. The choices of model
structures, parameter settings, data preprocessing, and learning
methods can all impact the resulting tradeoff. In addition, one
can integrate privacy protection strategies during model training,
such as differential privacy, to induce more privacy protection.
However, for the use cases that demand high fidelity of synthetic
EHR data, such as data analysis or augmenting medical AI
development, the integration of additional privacy safeguards
may potentially limit the value of synthetic data for the intended
scenarios.

Pursuing either a higher overall utility of synthetic EHR data
or stronger privacy may lead to poor fairness across patient
subpopulations. This is because different patient subpopulations
may not be equally affected and that the unique characteristics
of underrepresented groups are more likely to be neglected.
Similarly, focusing solely on fairness may result in a lower level
of overall data utility or privacy. As such, both extrinsic and
intrinsic tradeoffs among data utility, privacy, and fairness
impact the determination of the most suitable synthetic EHR
data or synthetic EHR data generation model for a specific use
case.

Multiple key questions regarding the best practice of synthetic
EHR data generation remain unanswered in the literature. First,
the determination of the appropriate size of real data needed to
train GANs and other generative models for a specific data
generation task, along with an effective estimation approach,
is uncertain and lacks comprehensive research. Second, the
scalability of GANs and other generative models with respect
to varying sizes of the variable space is still not well understood.
Third, the optimal matrix representations of various EHR data
types, in particular when mixed together, are relatively
unexplored in current research. All of these questions need to
be answered through systematic research.

The evolvement of synthetic EHR data generation technology
presents numerous opportunities for various applications and
advancements. We conclude this paper by highlighting several

future research directions that are worth exploring and
summarizing the limitations of this tutorial.

Most cutting-edge approaches for structured synthetic data
generation, including EHR data, rely on a matrix or tabular
representation of the real data, which involves merging all
information into a single table as part of data preprocessing.
When addressing the emerging need to generate a synthetic
version of a relational EHR database, where patients’ data are
distributed in multiple tables, such as the widely adopted OMOP
common data model, joining relevant tables together can lead
to an unmanageable data size with significant redundancy. There
is a strong need for a novel synthetic EHR data generation
paradigm that can directly learn from the original database,
including its structural relationships, to address the current
limitations in the field.

EHR data, in a broad sense, encompass multiple modalities,
including structured health information, textual notes, medical
imaging data, genetic information, and more. Current synthetic
EHR data generation algorithms are designed to handle a single
modality at a time, leading to a lack of consistency between
separately generated data when attempting to describe the same
patient. Methodology innovations are required to effectively
harmonize the available modalities in EHR data during model
training and then generate synthetic data that cover and represent
these modalities. The core objective of this task is to learn an
accurate latent representation of a patient across different
modalities.

Since 2023, large language models, such as OpenAI’s ChatGPT
and Google’s Med-PaLM 2, have gained substantial attention
due to their remarkable ability to generate high-quality free text
responses to users’questions and instructions. Such exceptional
ability stems from their extensive pretraining on vast amounts
of textual data, which contain a wide range of human knowledge
and common sense. In addition, the users of these models can
demand the desired format of their output such as CSV and
JSON. This entails a new opportunity for synthetic EHR data
generation. While private EHR data have not been used by these
models, an appropriate fine-tuning process using real EHR data
can quickly shape them into synthetic EHR data generators.
Compared with other generative methods, large language models
could potentially strengthen the generation of synthetic EHR
data in multiple critical aspects. First, large language models
have encoded complex knowledge and relationships between
medical concepts through extensive pretraining. When
fine-tuned on real EHR data sets, they can more easily capture
the nuances in intricate patient data and understand the
underlying data semantics, which would not be easily achieved
by other generative models. Second, large language models can
generate data with stronger contextual relevance and coherence.
In other words, they are more capable of producing data that
are not only syntactically and semantically correct but also
consistent with real-world scenarios and knowledge. Third, with
prompt-level customization, these models can be tailored to
generate specific types of EHR data in a more flexible and
efficient manner, significantly reducing the human effort
required in postprocessing compared with previous methods.
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This tutorial has several limitations. First, it focuses on
simulating static structured EHR data and neglects the
timestamping of medical events. However, it is important to
note that EHR data inherently consists of time series, where the
temporal information is critical for numerous applications, such
as modeling the progression of diseases. To address this,
multiple generative models have been developed to produce
temporal EHR data, a process that shares similar principles to
those demonstrated in this tutorial. Second, the real data set we
used for demonstration purposes does not fully capture the
complexity inherent in real snapshot EHR data. It is likely that
a transformed snapshot EHR matrix contains a subset of columns
governed by complex semantic constraints, which may not be
straightforward to implement during model training. For
example, a snapshot EHR matrix for a women’s health cohort
may include columns indicating the age and method (nature vs
cesarean) for each childbirth. This scenario compounds
constraints in several aspects, including patterns of missing data
(eg, the data set might not contain only a record of the second
delivery), the age at each delivery (eg, ages for subsequent

deliveries should be older than previous ones), and time intervals
between deliveries (eg, there should be a minimum gap of 10
months between each). Addressing this type of complex
constraint is still an open research question and needs more
investigation.

Conclusions
Creating synthetic EHR data has been increasingly pursued to
address the limited availability of real EHR data to facilitate
various endeavors in the health domain. This tutorial provides
a comprehensive guide to the entire process of generating
synthetic structured EHR data using GANs, ranging from data
representation, preprocessing, model training, and
postprocessing to data generation and evaluation. By following
this tutorial, as well as the open-sourced example based on the
MIMIC-IV data set, we anticipate that potential users of
synthetic data generation technology can understand and
implement all involved components, and then correctly evaluate
the produced data sets and interpret the evaluation results to
fulfill their data needs.
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Abstract

Background: The world has witnessed increased adoption of large language models (LLMs) in the last year. Although the
products developed using LLMs have the potential to solve accessibility and efficiency problems in health care, there is a lack
of available guidelines for developing LLMs for health care, especially for medical education.

Objective: The aim of this study was to identify and prioritize the enablers for developing successful LLMs for medical education.
We further evaluated the relationships among these identified enablers.

Methods: A narrative review of the extant literature was first performed to identify the key enablers for LLM development.
We additionally gathered the opinions of LLM users to determine the relative importance of these enablers using an analytical
hierarchy process (AHP), which is a multicriteria decision-making method. Further, total interpretive structural modeling (TISM)
was used to analyze the perspectives of product developers and ascertain the relationships and hierarchy among these enablers.
Finally, the cross-impact matrix-based multiplication applied to a classification (MICMAC) approach was used to determine the
relative driving and dependence powers of these enablers. A nonprobabilistic purposive sampling approach was used for recruitment
of focus groups.

Results: The AHP demonstrated that the most important enabler for LLMs was credibility, with a priority weight of 0.37,
followed by accountability (0.27642) and fairness (0.10572). In contrast, usability, with a priority weight of 0.04, showed negligible
importance. The results of TISM concurred with the findings of the AHP. The only striking difference between expert perspectives
and user preference evaluation was that the product developers indicated that cost has the least importance as a potential enabler.
The MICMAC analysis suggested that cost has a strong influence on other enablers. The inputs of the focus group were found
to be reliable, with a consistency ratio less than 0.1 (0.084).

Conclusions: This study is the first to identify, prioritize, and analyze the relationships of enablers of effective LLMs for medical
education. Based on the results of this study, we developed a comprehendible prescriptive framework, named CUC-FATE (Cost,
Usability, Credibility, Fairness, Accountability, Transparency, and Explainability), for evaluating the enablers of LLMs in medical
education. The study findings are useful for health care professionals, health technology experts, medical technology regulators,
and policy makers.
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Introduction

Background
Natural language programming solutions have been available
for the last 15 years. However, these models recently witnessed
an avalanche breakdown with the launch of ChatGPT by
OpenAI, a company that was only established recently
(December 2015) after receiving an investment from Elon Musk
and others. ChatGPT is a generative language model tool that
enables users to converse with machines about various subjects.
With 1.6 billion monthly users, this freemium is the
fastest-growing application in the history of the internet. Since
its release on November 30, 2022, ChatGPT has sparked much
discussion and enthusiasm in multiple industries, including
medicine. ChatGPT and related technologies have been
identified as disruptive innovations with the potential to
revolutionize academia and scholarly publishing [1].
Additionally, preliminary research suggests that ChatGPT has
practical applications throughout the clinical workflow [2].

The introduction of ChatGPT and the subsequent release of
several extended products and functional plugins have
profoundly impacted scientific researchers. These products have
also influenced the ideas and methodologies used in traditional
research, including recommendation, emotion recognition, and
information generation. ChatGPT’s assistance has improved
some of the associated work in these fields, particularly with
providing helpful supplementary information to raise the caliber
of data generation. With the integration of machine learning
and artificial intelligence (AI) technologies, medical imaging
has advanced quickly. Among these developments, using
cutting-edge language models such as large language models
(LLMs), ChatGPT, and GPT-4 has shown significant promise
in elevating several elements of medical imaging and
revolutionizing radiology. These models can produce and
comprehend human-like text owing to access to various
textbooks, journals, and research materials available on the
internet. This could provide the necessary context and prior
knowledge to support a variety of tasks involving medical
imaging, such as synthesis, reconstruction, analysis,
segmentation, interpretation, automated reporting, and more.
These technologies have further been improved using supervised
and reinforcement learning methods based on OpenAI’s GPT
LLMs. These models have shown excellent performance in
various natural language processing (NLP) tasks, including
language translation, text summarization, and
question-answering. The models have been pretrained on
enormous amounts of text data. Users can ask questions, obtain
responses, and engage in genuine conversation with the bot
given ChatGPT’s human-like conversational experience.

ChatGPT and other LLMs remain a research hotspot in
multimedia analysis and application. However, several crucial
difficulties must be resolved, including (1) improving
interactions with ChatGPT to collect more useful auxiliary
information, (2) methods to combine ChatGPT with traditional
inquiries to fully exploit its benefits, and (3) analyzing the data
obtained from ChatGPT for their incorporation with the intended
usage. A particularly significant challenge is to effectively use
past information obtained with such huge models and to ensure
consistency and complementary features across many modalities
to improve multimodal generation performance, which is
especially relevant for AI-generated content. The finest use
cases for ChatGPT, a well-liked chatbot built on a potent AI
language model, are still being worked out. ChatGPT can
provide help in writing an essay, thesis, or dissertation by
creating a research question, developing a plan, developing
literary concepts, rewriting text, and getting feedback. Moreover,
the NLP and automated data analysis capabilities offered by
ChatGPT enable researchers, marketers, and organizations to
analyze text quickly and accurately. Via its AI-powered
functions, ChatGPT can help to spot significant trends and
insights in a data set that might otherwise be challenging to find.
Additionally, ChatGPT can assist with the creation of top-notch
prompts for paper analysis.

LLM Functionality
ChatGPT is a prediction system that anticipates what it should
write based on previously processed texts. This type of AI is
known as a language model. However, ChatGPT offers more
promise than its predecessors given that it is trained on
enormous amounts of data, with the majority of these data
originating from the abundant supply of data available on the
internet. According to OpenAI, ChatGPT was also trained on
examples of back-and-forth human interaction, which results
in a conversation style that is much more human than that of
other chatbots, thus advancing the capability of NLP solutions.

NLP is a field of AI employing linguistics, statistics, and
machine learning to enable computers to comprehend spoken
language. NLP systems can infer meaning from spoken or
written words, including all of the subtleties and complexities
of an accurate narrative text. This makes it possible for machines
to obtain value from even unstructured data. NLP has witnessed
significant advancements in recent years. An LLM is a
deep-learning algorithm that can be used to perform NLP tasks,
including, among other abilities, summarizing and generating
text. As one of the main applications, LLM-based chatbots are
computer programs that can simulate conversations with human
users. NLP techniques can be used to enable chatbots to
understand and respond to user input. LLM uses deep-learning
techniques to understand and generate human language, which
requires training on vast amounts of text data and then uses
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statistical algorithms to learn patterns and relationships within
language. These models can perform various tasks, including
language translation, question-answering, sentiment analysis,
and summarization. With ChatGPT, users can learn, compare,
and validate answers for different academic subjects, including
physics, math, and chemistry, as well as abstract topics such as
philosophy and religion [3]. Users can also generate human-like
text such as news articles, chatbot conversations, and even
literary works such as essays and romantic poems. The main
difference of GPTs from other LLMs lies in their architecture
and training methodology. GPTs are based on a deep-learning
architecture known as a “transformer.” Transformers are
designed to process sequential data such as language more
efficiently than other architectures. LLMs are currently at the
forefront of intertwining AI systems with human communication
and everyday life [4]. Large pretrained language models have
significantly advanced NLP research with respect to various
applications [5,6]. Although these more complicated language
models can produce complex and coherent natural language,
several recent studies have shown that they can also pick up
unfavorable social biases that can feed into negative stereotypes
[7].

NLP in Health Care
Health care consumers may turn to the research literature for
information not provided in patient-friendly documents.
However, reading medical literature can be difficult. One study
identified four key elements made possible by NLP to increase
access to medical papers: explanations of foreign terminology,
plain language section summaries, a list of crucial questions
that direct readers to the portions that provide the answers, and
simple language summaries of those passages [8]. Significant
advancements in smart health care have been made in recent
years, with new AI technologies enabling a range of intelligent
applications in various health care contexts. NLP, as a
fundamental AI-powered technology that can analyze and
comprehend human language, is crucial for smart health care
[9]. NLP methods have been utilized to organize data in health
care systems by sifting out pertinent information from narrative
texts to offer information for decision-making. Thus, NLP
approaches help to lower health care costs and are essential for
streamlining health care procedures [10]. Advancements in NLP
will make robotic process automation possible in health care,
which can further drive efficiency. Health care data are complex,
which should be given due consideration at the time of designing
health care applications. Deep-learning approaches such as
convolutional neural network and recurrent neural network
models have become prominent in health care applications,
demonstrating promising accuracy. Nevertheless, there is still
substantial room for improvement of these models to enable
their usage without human supervision. Deep-learning
techniques offer an effective and efficient model for data
analysis by revealing hidden patterns and extracting valuable
information from a large volume of health data, which standard
analytics cannot perform within a given time frame [11].

ChatGPT in Medical Education
ChatGPT has many potential applications in health care
education, research, and practice [12], which can enhance

medical education by helping students develop subjective
learning and expression skills [13]. The number of ChatGPT
users has shown exponential growth and the tool is increasingly
utilized by students, residents, and attending physicians to direct
learning and answer clinical questions [14]. However, authors
using ChatGPT professionally for academic work should
exercise caution as it remains unclear how ChatGPT handles
hazardous content, false information, or plagiarism [15]. While
ChatGPT can simplify the task of radiological reporting, there
is still a chance of inaccurate statements and missing medical
information [15]. Therefore, the tool needs refinement before
it can be used widely with confidence in medicine [16]. A recent
review explored ChatGPT’s applications and reported various
challenges such as ethical concerns, data biases, and safety
issues [17]. Thus, it is imperative to balance AI-assisted
innovation and human expertise [18]. ChatGPT has quickly
gained significant attention from academia, research, and
industries despite these shortcomings. The first aim of this study
was therefore to determine the requirements, or enablers, for a
successful LLM application in medical education using a
narrative review of the existing literature.

Enablers of LLM for Medical Education
For the purpose of this study, we refer to enablers as the factors,
resources, or conditions that facilitate or support achieving a
good LLM application for medical education. Medical education
prepares would-be physicians and other health care professionals
with the knowledge, skills, and attitudes necessary for competent
and compassionate patient care. The general definition of an
enabler is a factor that makes it easier for a goal to be realized
or for someone to accomplish a particular task. Enablers of LLM
for medical education can be tangible or intangible and should
play a crucial role in achieving the outcomes expected from the
application.

As LLMs are trained on massive data, they are
resource-demanding tools. Therefore, the cost of training an
LLM for medical education may be prohibitive [19].
Accordingly, it is imperative to use efficient computing to
address this issue [20]. Usability is one of the key criteria that
determines the usefulness of an application in medical education,
and LLMs are no exception [21]. The extant literature has
highlighted usability as an important criterion for the successful
implementation of a new technology in education [22].
Similarly, the credibility of an application is another very
important factor for technological interventions used in medical
education [23,24]. Although ChatGPT has disclaimers about
the source of information provided, it does not disclose its
sources categorically, and can sometimes hallucinate about the
source, which may be misleading to the user. LLMs also have
reported issues with fairness, computation, and privacy. By
perpetuating social prejudices and stereotypes, they risk causing
unfair discrimination and physical harm, along with potential
harm to the user’s reputation [25]. Ma et al [26] provided an
overview of fairness of LLMs in multilingual and non-English
situations, emphasizing the limitations of recent studies and the
challenges faced by English-only methodologies [26].

Another issue of LLMs such as ChatGPT is related to their
accountability, generally defined as taking responsibility for
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one’s obligation to treat others honestly and morally. However,
it is unclear who will be held accountable and responsible if the
LLM provides incorrect recommendations or forecasts for a
particular downstream activity. Overall, employing LLMs is
associated with considerable risk; therefore, precautions must
be taken to minimize these risks and ensure their ethical and
responsible use. To foster a cross-disciplinary global inclusive
consensus on the ethical use, disclosure, and proper reporting
of generative AI models such as GPT and other LLM
technologies in academia, Cacciamani et al [23] proposed the
ChatGPT, Generative Artificial Intelligence, and Natural Large
Language Models for Accountable Reporting and Use
Guidelines initiative in 2023. However, the underlying model
of GPT3.5 deviates from the ethical guidelines proposed by
Cacciamani et al [23]. Another important criterion reported for
the medical applications of LLMs is transparency, which is an
essential ethical consideration in the fields of science,
engineering, business, and the humanities. Transparency refers
to functioning in a way that makes it simple for others to observe
what actions have been taken [27], thus representing a sign of
responsibility, honesty, and openness. Conversely, LLMs are
opaque to users. Recently suggested explainability techniques
aim to make LLMs more transparent. Although these techniques
are not a cure-all, they might form the basis for the development
of models with fewer flaws or, at the very least, the ability to
explain their logic. In their systematic experiments with
synthetic data, Wu et al [28] demonstrated that autoregressive
and masked language models can successfully learn to emulate
semantic relations between expressions with strong transparency,
where all expressions have context-independent denotations.

Finally, the LLMs used in medical education must be
explainable, and the best freely available options lag in this
respect. Most LLMs are complex models built using deep
learning [29]; therefore, these models can produce better
predictions with more information or network parameters, which
comes at a cost of sacrificing explainability. Some models fail
to describe how they came to their conclusion. Recently
suggested explainability techniques aim to make language
models more transparent. Even though these are not complete
solutions, they can act as the basis for the development of less
problematic models or, at the very least, models that can explain
their logic. However, Du et al [30] identified false patterns
detected by LLMs using explainability in their study.

Need for This Study
The need for this study arises from the rapid integration of LLMs
such as ChatGPT in various fields, including medical education.
Although LLMs offer promising benefits for health care, their
effective integration in medical education remains a developing
area. Accordingly, the aim of this study was to identify and
prioritize the key enablers for successful LLM implementation
in medical education. This can in turn help to address the lack

of comprehensive frameworks guiding the development and
use of LLMs in this field. By exploring the dynamics of various
enablers such as credibility, accountability, fairness, cost,
usability, transparency, and explainability, this study provides
a structured approach to enhance the quality and effectiveness
of LLMs in educating health care professionals.

Specifically, this study was based on the following three major
research questions: (1) What are the enablers of a suitable LLM
application for medical education? (2) What is the relative
importance of these enablers in achieving the goals of medical
education? and (3) What is an approach to developing an LLM
to achieve medical education goals? With this background, the
following research objectives were set: (1) identify the enablers
of a suitable LLM for medical education, (2) prioritize the
identified enablers in achieving the goals of medical education,
and (3) propose a framework for developing an LLM to achieve
the medical education goals.

Methods

Study Design
To achieve the first research objective, we performed a narrative
review of the extant literature published on technology solutions
in medical education. A narrative review is a scholarly article
synthesizing existing research on a particular topic in a narrative
or story-like manner. Unlike systematic reviews or
meta-analyses, which use rigorous methodologies to analyze
and summarize research findings quantitatively, narrative
reviews provide a qualitative, comprehensive overview of a
subject. Narrative reviews often involve critical analysis and
discussion, integrating the authors’ expertise and interpretation.
Narrative reviews are thus useful for obtaining a broad
understanding of a topic and identifying trends, gaps, and
controversies within a field.

Two authors (SM and VM) searched the Scopus, Web of
Science, and Google Scholar databases to identify suitable
literature for our narrative review. The inclusion criteria were
articles published in the English language in the last 5 years. In
the second stage, duplicates and articles for which the full text
was unavailable were eliminated. The identified enablers from
this review were then used to address the first research question.
These enablers were presented in front of a focus group
comprising seven experts working in universities and institutions
delivering medical education in India and the United Arab
Emirates to validate the selection (Table 1). The focus group
endorsed the choice of the enablers for further research; in
addition, one article published in 2010 was added on the
recommendation of the focus group as it was found to be useful
in explaining competing interests in medical education. One
author (VM) facilitated the focus group discussion to obtain the
finalize list of enablers.
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Table 1. Characteristics of the focus group for validation of identified enablers.

NationalityAge (years)Experience (years)QualificationExpert

India4212Masters in MedicineCardiologist

India4520Masters in MedicineEndocrinologist

United Arab Emirates5015Doctor of PhilosophyTechnology expert

United Arab Emirates4010Masters in DentistryDentistry educator

United Arab Emirates3510Doctor of PhilosophyPodiatrist educator

India4318Doctor of PhilosophyDiabetes educator

United Arab Emirates4115Doctor of PhilosophyNursing educator

India4112Doctor of PhilosophyRadiologist

Analytical Hierarchy Process Modeling
An analytical hierarchy process (AHP) was utilized to achieve
the second study objective of prioritizing the identified enablers
for developing an LLM for medical education. The AHP is a
popular method for determining the relative importance of the
criteria in a multicriteria decision analysis task. To date, the
AHP has been extensively used in the management and social
science fields [31]. The advantage of this process is that it
incorporates the mechanisms to assure reliability in the
decision-making case of ambiguity. Some researchers have
suggested using a “fuzzy” version of the AHP [32] and others
have suggested using the entropy weight method to reduce the
negative effect of individual subjective evaluation bias on the
accuracy of comprehensive evaluation [33]. Since the ranking
obtained by the AHP method was further validated by total
interpretive structural modeling (TISM) in this study (see
below), fuzzy logic or entropy weight was avoided in our AHP
modeling. The five steps used for AHP are: (1) defining the
decision problem, (2) creating a hierarchy, (3) pairwise
comparison, (4) deriving a weighted priority, and (5) consistency
check for decision. We used the Delphi method for pairwise
comparisons. A cut-off value of 75% was used to accept the
value for the pairwise comparison. The standard scale proposed
by Saaty [34] was used for the pairwise comparison.

TISM and Focus Groups
Finally, to address the third research objective, we investigated
the relationships among key enablers to inform the development

of a suitable medical education LLM. A qualitative research
design is useful to understand a phenomenon under study rather
than assessing the strength and direction of causal relationships
in a conceptual model [35]. For this purpose, we established a
focus group with five experts in the fields of information
technology and product development with relevant research
experience. The details of this expert group are provided in
Table 2.

According to the information obtained from the focus group,
TISM was used to model the enablers for a medical education
LLM application. In his seminal paper, Sushil [36] provides a
detailed account of the interpretation of interpretive structural
modeling and TISM, highlighting the advantage of the latter
over the former. For the sake of brevity, we have not included
the details of the TISM method herein, which can be found in
the relevant literature [37]. In brief, TISM is a process that
converts poorly articulated mental models of systems into visible
and well-defined models that are useful for gaining better
understanding and decision-making. The presence and absence
of a relationship between enablers were ascertained based on
an unstructured interview of the focus group conducted by one
researcher (SM). If more than 50% of the focus group members
indicated that there is a relationship between two enablers, the
enabler was considered to be present, which was coded as “Y.”
An overview of the TISM approach used in this study is
provided in Figure 1.

Table 2. Characteristics of the focus group used for total interpretive structural modeling.

CountryAge (years)Experience (years)QualificationExpert

Singapore4221Masters in managementProduct development

United Arab Emirates4221Bachelors in engineeringProduct development

India4019Bachelors in engineeringTechnology expert

India3310Masters in engineeringTechnology expert

India3810Doctor of PhilosophyDecision science expert
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Figure 1. Summary of the total interpretive structural modeling (TISM) approach used in the study. Adapted from Mishra and Rana [33].

We further used cross-impact matrix multiplication applied to
classification (MICMAC) analysis to evaluate the direct and
indirect relationships among various elements in a complex
system. MICMAC analysis is applied to the reachability matrix
to classify the elements into four categories based on their
driving power (ability to influence other elements) and
dependence (level of being influenced by other elements).

Ethical Considerations
This study, involving a qualitative focus group discussion, did
not require approval from an ethical review board as it did not
involve human subjects in a manner necessitating such review.
No informed consent was required for the same reason.
However, to maintain ethical standards, we ensured that all data
collected were either anonymized or deidentified. This means
that any information that could potentially identify individual
participants was removed or altered to protect their privacy. No
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compensation was provided to participants, as is common in
studies of this nature. This decision was made considering the
study design and the ethical imperative to avoid undue influence
on participants’ responses. The absence of compensation was
communicated to all participants. Throughout the study, we
adhered to strict data protection protocols to safeguard the
confidentiality of the information shared during the focus group
discussions. These measures included secure data storage,
restricted access to authorized personnel, and adherence to data
protection laws and regulations. This approach ensured that the
privacy and integrity of participant information were always
maintained.

Results

AHP Modeling
Based on the selected enablers identified for developing a
suitable LLM medical education application according to the
narrative review of the literature (Table 3), the focus group was
asked to provide their input for pairwise comparison, and the
resultant matrix [A] is presented in Table 4.

Once the initial comparison matrix was determined, the matrix
was normalized and an average of each row was taken to
calculate the priority weight [X]. The normalized matrix, priority
weight, and rank of the enablers are given in Table 5. The
priority weight, as the eigenvector, was further used to calculate
the consistency ratio (CR).

Table 3. Summary of reported enablers of large language models for medical education.

ReferencesDescriptionEnablerEnabler code

[19,20]Cost of computation, including hardware, software, and energy requirementCostE1

[21,22]User-centric design, ease of use, and positive user experiencesUsabilityE2

[23,24]Level of trust and reliability that users place in the applicationCredibilityE3

[25,26]Absence of unfair discrimination, physical harm, and harm to user reputationFairnessE4

[27,38]Taking responsibility for the obligation to treat users with honesty and moralityAccountabilityE5

[27,30]Functioning in a way that makes it simple for others to observe what actions are takenTransparencyE6

[29,30]Ability to describe how the models came to their conclusionExplainabilityE7

Table 4. Initial pairwise comparison matrix for the analytical hierarchy process.a

Explainability (E7)Transparency (E6)Accountability (E5)Fairness (E4)Credibility (E3)Usability (E2)Cost (E1)Enablers

330.210.231E1

110.110.330.1110.33E2

3355195E3

330.210.231E4

55150.295E5

110.20.330.3310.33E6

10.20.20.330.3310.33E7

aNumbers represent the pairwise comparison of different enablers using the scale developed by Saaty [34].

Table 5. Normalized matrix and priority weight of enablers.

RankPriority
weight

Explainability
(E7)

Transparency
(E6)

Accountability
(E5)

Fairness
(E4)

Credibility (E3)Usability
(E2)

Cost (E1)Enablers

30.105720.17650.18520.02890.0770.08440.11110.077E1

70.038710.05880.06170.01590.0260.04640.0370.0254E2

10.372890.17650.18520.72360.3850.42190.33330.3849E3

30.105720.17650.18520.02890.0770.08440.11110.077E4

20.276420.29410.30860.14470.3850.08440.33330.3849E5

50.05380.05880.06170.02890.0250.13920.0370.0254E6

60.046740.05880.01230.02890.0250.13920.0370.0254E7

Based on this matrix, the eigenvector X was calculated
according to the following equation:

[A] X = λmax X – (1)
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Using the data in Tables 4 and 5, λmax was obtained as follows:

[A]X = [0.76, 0.28, 3.46, 0.76, 2.26, 0.39, 0.34] – (2)

λmax = average {0.76/0.11, 0.24/0.04, 3.46/0.37,
0.76/0.11, 0.39/0.05, 0.34/0.05} – (3)

λmax = 7.66 – (4)

The consistency index (CI) was then calculated based on the
λmax as follows: CI = (7.66 – 7)/6 = 0.11 – (5). Finally, the CR
of the judgment was calculated by dividing the CI by the random
index (RI). The RI value for a 7×7 matrix is 1.32 from the RI
table. Thus, the CR becomes 0.084; as this is less than 0.1, it is
considered to be acceptable.

Modeling Relationships Among Enablers
We further used TISM for ascertaining the relationships among
these seven enablers. Table 6 shows a matrix indicating the
interrelationships between the enablers listed in Table 3, with
“Y” indicating the existence of a relationship and “N” indicating
no relationship. The resultant matrix is referred to as the
structural self-interaction matrix.

In the next step, we replaced all “Ys” with 1s and all “Ns” with
0s and incorporated the transitivity rule to obtain the final
reachability matrix shown in Table 7.

The next step in developing LLMs for medical education
involved listing reachability and antecedent sets for each enabler,
followed by level partitioning, which is an iterative process of
assigning enablers at different levels. Enablers with similar
intersection sets as reachability sets are placed at the top level.
The process is then repeated until levels are established for all
enablers. In this study, all enablers were assigned after three
iterations; hence, there are three levels in the hierarchy. The
summary of level partitioning is provided in Table 8. The level
of an enabler is a reflection of its driving power and dependence
power, as indicated in Table 7. The higher the level of the
enabler, the more dependent it is, whereas the driving ability
improves when moving to lower levels.

Once the level partitioning was complete, the TISM was
developed and presented to the focus group for validation. Only
significant transitive links were included in the model to
facilitate interpretation. The final digraph for the TISM
developed in the study is depicted in Figure 2.

Table 6. Structural self-interaction matrix for the identified enablers of large language models for medical education.

Explainability (E7)Transparency (E6)Accountability (E5)Fairness (E4)Credibility (E3)Usability (E2)Cost (E1)Enablers

NYNNNbYYaE1

YYNNNYYE2

NNYYYNNE3

NNNYYNNE4

NNYNYNNE5

YYNNNYYE6

YYNNNYNE7

aY: existence of a relationship between two enablers.
bN: no relationship exists between two enablers.

Table 7. Final reachability matrix of the enablers for developing large language models in medical education.

Driving powerExplainability
(E7)

Transparency
(E6)

Accountability (E5)Fairness
(E4)

Credibility
(E3)

Usability
(E2)

Cost (E1)Enablers

41100011E1

41100011E2

30011100E3

20001100E4

20010100E5

41100011E6

31100010E7

Not applicable4422343Dependence power
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Table 8. Summary of label partitioning iterations (1 to 6).

LevelIntersection set, R(Mi)∩A(Ni)Antecedent set, A(Ni)Reachability set, R(Mi)Enablers, (Mi)

III1111

I1, 2, 6, 71, 2, 6, 71, 2, 6, 72

I3, 4, 53, 4, 53, 4, 53

I3, 43, 43, 44

I3, 53, 53, 55

I1, 2, 6, 71, 2, 6, 71, 2, 6, 76

II71, 777

Figure 2. Diagraph of the total interpretive structural model for the development of large language models in medical education.

Validation Analysis
We further used MICMAC analysis to validate the study
findings and derive conclusions. MICMAC analysis involves
the development of a graph that classifies enablers based on
their driving and dependence power. As shown in Figure 3, the
first quadrant contains autonomous enablers E3 (Credibility),
E4 (Fairness), and E6 (Accountability), indicating that the

variables falling in this quadrant have low driving and
dependence powers. The two enablers falling in the grey region
between the third (linkage) and fourth (independent) quadrants
are E2 (Usability) and E6 (Transparency), which have medium
driving and dependence powers. Similarly, E7 (Explainability)
falls in the grey region between the first (autonomous) and
second (dependent) variables. Finally, E1 (Cost) falls under the
fourth (independent) quadrant.

JMIR AI 2024 | vol. 3 | e51834 | p.29https://ai.jmir.org/2024/1/e51834
(page number not for citation purposes)

Quttainah et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Cross-impact matrix-based multiplication applied to a classification (MICMAC) analysis for enablers of a large language model in medical
education. I-IV indicate different levels of the enablers E1-E7. E1: cost; E2: usability; E3: credibility; E4: fairness; E5: accountability; E6: transparency;
E7: explainability.

Discussion

Principal Findings
The results of the AHP suggested that credibility, followed by
accountability are the foremost enablers for effective LLMs in
medical education. The extant literature supports this finding,
in highlighting the relevance of the source of information based
on which the response was generated [39]. Similarly, the
importance of defining accountability has been emphasized in
the recent literature. For example, Tan et al [40] advocate for
accountability as an important factor in increasing the adoption
of LLMs in medical education, training, and practice. The next
most important factors to consider are ethical issues such as
fairness and cost. LLMs have been criticized for bias against
gender or ethnic groups [17]. These problems need to be
addressed to make LLMs effective in medical education.
Moreover, training LLMs on billions of parameters is
demanding; thus, only technology giants will launch these LLMs
[41]. Governments should therefore ensure that the cost of using
these LLMs does not become prohibitive for end users, who
may resort to insufficient solutions that could ultimately affect
the safety of patients.

In contrast to existing studies, transparency and explainability
ranked fifth and sixth in importance in our analysis [40]. Many
best practices related to health technology suggest that models
should use explainable AI in medical devices [17]. The low
priority of these enablers identified in this study indicates that
the end user is unaware of the criticality of these factors; thus,
health care professionals need to be educated about these issues
as they are not technology savvy [42]. Governments should also
establish guidelines for the approval of Software as Medical
Devices so that these enablers are taken care of at the product
development stage. Finally, the focus group indicated that
usability is the least important factor among the seven enablers
discussed. Although general-purpose LLMs such as ChatGPT
are less cluttered, their performance is input-dependent.
Improving the prompt use of the recommendation system can
enhance the usability and accuracy of LLMs in medical
education [43]. The expert group advised that the LLMs will
improve on these factors with time.

The results from TISM suggested a slight difference in the
perspective of product developers and end users, as the experts
gave equal importance to the enablers credibility, fairness,
accountability, transparency, and explainability. These results
are consistent with extant literature published in peer-reviewed
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journals [40,41], as these are all features related to model
development and training.

In contrast to earlier studies, the product developers and
technology experts placed less significance on usability as an
enabler, which was given a medium level [43]. Thus, the finding
of the TISM validates the results of the AHP. The only
difference was that cost was considered as the least important
enabler for product developers. However, a recent study
indicated that economic and environmental costs are significant
factors in developing general-purpose LLMs [44].

Successful LLM development involves a complex interplay
among technical innovation, regulatory compliance, production
costs, and end-user needs. The aim should be to develop
products that excel in functionality and positively impact the
lives of those who rely on them without causing financial
hardship. Thus, this study calls for collaboration between
product developers, original equipment manufacturers,
regulators, and other stakeholders to find solutions that align
with technological advancements and societal expectations for
affordability and accessibility.

Finally, the findings of this study were validated using
MICMAC analysis, creating a graph that categorizes enablers
based on their driving power and dependence power. In this
graph, the enablers credibility, fairness, and accountability are
in the first quadrant (autonomous) with low power, indicating
that these variables are relatively independent and have limited
influence on other variables. Usability and transparency are in
the grey region between the third (linkage) and fourth
(independent) quadrants with medium power, indicating a
moderate influence on other variables and similarly influenced
by them. Explainability falls in the grey region between the first
(autonomous) and second (dependent) quadrants, also indicating
a medium influence on other variables and a similar influence
on them. Finally, cost falls under the fourth quadrant
(independent), suggesting that it strongly influences other
enablers without being significantly influenced by them.
MICMAC analysis comprehensively explains the relationships
and dynamics among variables within a complex system. This
can help decision makers identify key drivers, dependencies,
and interactions, enabling them to make informed strategic
decisions and allocate resources effectively.

Practical and Theoretical Implications
The study has one implication each for theory and for practice.
For theory, this study extends the Fairness, Accountability,
Transparency, and Explainability (FATE) framework [45] into
a more comprehensive Cost, Usability, Credibility, Fairness,
Accountability, Transparency, and Explainability (CUC-FATE)
framework for developing LLMs for health care professionals.
With respect to the implication for practice, this study is the
first of its kind and provides a prescriptive framework for
developing LLMs in health care, especially medical education.
The findings of this study are useful for policy makers, medical
device regulators, education policy makers, health care
professionals, and product developers at the helm of creating
Software as a Medical Device.

Limitations
One of the limitations of the study is that the results largely rely
on experts from India and the United Arab Emirates. Although
technology and health care practices are standardized globally,
the findings should only be generalized to the populations from
these regions. This study provides insight into the relationships
between different enablers but we did not further evaluate the
strength of these associations. Graph theory or structured
equation modeling can be used to address these gaps in future
studies.

Conclusion
This study emphasizes key factors for effective LLMs in medical
education: credibility and accountability are vital enablers, while
addressing bias and cost is crucial for enhancing LLM potential.
Although important, transparency and explainability rank lower
as LLM enablers among health professionals, suggesting a need
for further education on this technology. Usability emerged as
the least important factor; however, enhancing prompt use
improves LLM accuracy. This study highlights a slight
difference between product developers and end users. Although
both groups prioritize credibility, fairness, accountability,
transparency, and explainability, usability ranks lower for
developers. Successful LLM development must balance
innovation, compliance, costs, and user needs. Collaboration
among stakeholders is crucial for aligning with technology and
societal expectations.
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Abstract

Background: Artificial intelligence (AI) is an umbrella term for various algorithms and rapidly emerging technologies with
huge potential for workplace health promotion and prevention (WHPP). WHPP interventions aim to improve people’s health and
well-being through behavioral and organizational measures or by minimizing the burden of workplace-related diseases and
associated risk factors. While AI has been the focus of research in other health-related fields, such as public health or biomedicine,
the transition of AI into WHPP research has yet to be systematically investigated.

Objective: The systematic scoping review aims to comprehensively assess an overview of the current use of AI in WHPP. The
results will be then used to point to future research directions. The following research questions were derived: (1) What are the
study characteristics of studies on AI algorithms and technologies in the context of WHPP? (2) What specific WHPP fields
(prevention, behavioral, and organizational approaches) were addressed by the AI algorithms and technologies? (3) What kind
of interventions lead to which outcomes?

Methods: A systematic scoping literature review (PRISMA-ScR [Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews]) was conducted in the 3 academic databases PubMed, Institute of Electrical and
Electronics Engineers, and Association for Computing Machinery in July 2023, searching for papers published between January
2000 and December 2023. Studies needed to be (1) peer-reviewed, (2) written in English, and (3) focused on any AI-based
algorithm or technology that (4) were conducted in the context of WHPP or (5) an associated field. Information on study design,
AI algorithms and technologies, WHPP fields, and the patient or population, intervention, comparison, and outcomes framework
were extracted blindly with Rayyan and summarized.

Results: A total of 10 studies were included. Risk prevention and modeling were the most identified WHPP fields (n=6),
followed by behavioral health promotion (n=4) and organizational health promotion (n=1). Further, 4 studies focused on mental
health. Most AI algorithms were machine learning-based, and 3 studies used combined deep learning algorithms. AI algorithms
and technologies were primarily implemented in smartphone apps (eg, in the form of a chatbot) or used the smartphone as a data
source (eg, Global Positioning System). Behavioral approaches ranged from 8 to 12 weeks and were compared to control groups.
Additionally, 3 studies evaluated the robustness and accuracy of an AI model or framework.

Conclusions: Although AI has caught increasing attention in health-related research, the review reveals that AI in WHPP is
marginally investigated. Our results indicate that AI is promising for individualization and risk prediction in WHPP, but current
research does not cover the scope of WHPP. Beyond that, future research will profit from an extended range of research in all
fields of WHPP, longitudinal data, and reporting guidelines.

Trial Registration: OSF Registries osf.io/bfswp; https://osf.io/bfswp

(JMIR AI 2024;3:e53506)   doi:10.2196/53506
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Introduction

Artificial Intelligence as an Umbrella Concept
Artificial intelligence (AI) is a concept that dates back to the
mid-1900s [1] and was first defined as “the science and
engineering of making intelligent machines” [2]. Today, AI is
described as a computer system’s capability to perform complex
tasks that mimic human cognitive functions to perform tasks
such as reasoning, decision-making, or problem-solving,
autonomously and adaptively [3]. However, its capabilities and
underlying functions have changed significantly over the
decades [1,4]. More recently, AI has emerged as a
transformative force across various industries. Its application
has shown promise in health promotion and health care [5-7],
opening new possibilities concerning patient care and enhanced
medical practices.

There is growing consensus in the literature that adaptivity and
autonomy are the key characteristics of AI applications and
technologies [5]. AI is considered an umbrella concept of
emerging technologies, enclosing fundamental distinct types
such as machine learning (ML), deep learning (DL), or natural
language processing (NLP) [4,8]. Technically, AI is an
ML-based approach that simulates human minds’cognitive and
affective functions [3,8] and is designed to observe and react
to a specific environment. In contrast to deterministic
programming, such models feature many free parameters that
can adapt autonomously to calibrate the model. For example,
AI can be applied in repetitive tasks requiring human
intelligence, such as scanning and interpreting magnetic
resonance imaging, autonomous driving, or analyzing big data
sets [9-11]. ML and DL algorithms and artificial neural networks
enable a machine or system to learn from large data sets, make
autonomous decisions, and improve their performance over
time [4]. More narrowly, NLP allows machines to generate and
understand text and spoken language in the same way humans
do. It combines rule-based natural language modeling with ML
and DL models to process human language in text or speech
data, understand its meaning, including feelings, and even
generate human language, as it is sometimes used in chatbots
or language translation [12].

AI in Health Care and Public Health
Implementing AI algorithms and technologies for health care
institutions bears enormous potential, ranging from efficient
health service management, predictive medicine, patient data,
and diagnostics with real-time analyses to clinical
decision-making. Most studies report a broader AI architecture
with a combination of algorithms rooted in ML, DL, and NLP
[4,11]. For example, 1 AI approach evaluated the support of
clinical decision-making by analyzing continuous laboratory
data, past clinical notes, and current information of physicians
synthesizing significant associations [13]. AI implementation

in the form of predictive modeling showed positive results by
detecting irregular heartbeats through smartwatches [14],
automatically identifying reports of infectious disease in the
media [15], or ascertaining cardiovascular risk factors from
retinal images [16]. Through systematic profiling of 4518
existing drugs against 578 cancer cell lines with an AI-based
approach, a study revealed that nononcology drugs have an
unexpectedly high rate of anticancer activity [17]. Another study
developed and evaluated a Medical Instructed Real-Time
Assistant that listens to the user’s chief complaint and predicts
a specific disease [18]. Chatbots have been used to detect
COVID-19 symptoms through detailed questioning [6] or to
predict the risk of type II diabetes mellitus [19].

Workplace Health Promotion and Prevention
As adults spend a significant amount of time working, it is
widely accepted that work and work environments have a major
impact on individuals’ health. Workplace health promotion and
prevention (WHPP) are important fields that “[…] improve the
health and well-being of people at work […]” [20] through a
combination of behavioral and organizational measures.
Workplace health promotion follows a competence-oriented,
salutogenetic approach to promoting the resources of an
individual [20]. Prevention in the workplace focuses on
minimizing the burden of workplace-related diseases and
associated risk factors [21,22]. WHPP interventions range from
behavioral measures with active participation (eg, courses or
seminars) to organizational measures such as consultations,
analyses, inspections, and establishing organizational structures
such as a health committee [23,24].

Prior Work
With the Luxembourg declaration, WHPP has evolved into an
independent discipline that differentiates from return-to-work
(RTW) and occupational safety and health (OSH) measures
[20,25]. In OSH-related disciplines, previous reviews have
focused on risk assessment or detection related to physical
ergonomics [26], occupational physical fatigue [27], or core
body temperature [28]. Other reviews explored the evidence of
AI in F-related areas, such as vocational rehabilitation [29] and
functional capacity evaluation [30]. In health promotion in
general, 1 review evaluates the use of chatbots to increase
health-related behavior but does not focus on the workplace
setting [31]. To the authors’knowledge, no review has evaluated
the use of AI in WHPP.

Therefore, this systematic scoping review aims to
comprehensively assess an overview of the current use of AI
in WHPP. The results will then be used to point to future
research directions. The following research questions (RQ) were
derived from these aims:

• RQ1: What are the study characteristics of studies on AI
algorithms and technologies in WHPP?
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• RQ2: What specific WHPP fields (prevention, behavioral,
and organizational approaches) are addressed by the AI
algorithms and technologies?

• RQ3: What kind of interventions were conducted, and what
outcomes were assessed?

Methods

Design
A systematic scoping review approach [32] was selected
following the extended PRISMA-ScR (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews; Multimedia Appendix 1) [33]. We applied
the 5-step framework to identify current or emerging research
directions and provide an overview of research activities [34].
Additionally, the patient or population, intervention, comparison,
and outcomes (PICO) framework [35] was used to specify the
study’s objective, from the search string and data charting to
more systematic discussion [36]. The review was registered
prospectively in the Open Science Framework (OSF) on July
5, 2023. All files (protocol, search string, and search results)
have been uploaded to the OSF profile and are publicly
accessible [37].

Eligibility Criteria
Included studies needed to be (1) peer-reviewed, (2) written in
English, and (3) focused on any AI-based algorithm or
technology that (4) were conducted in the context of WHPP, or
(5) an associated field (workplace prevention, occupational
health, and workplace health) that applies to WHPP. The types
of research considered were review types (systematic, scoping,
or rapid), cross-sectional studies, and longitudinal studies.

Our conceptualization of AI included the concepts of “machine
learning,” “deep learning,” and “natural language processing.”
Our conceptualization of “workplace health promotion and
prevention” followed a broader understanding comprising the
setting (eg, “work,” “workplace,” or “in or at the workplace”),
the target population (eg, “working adults” or “employees”)
and the outcome dimension (eg, “health” or “health behavior”).
The search period was limited to studies published since January
2000 and before July 31, 2023. During the review, the search
was extended to December 20, 2023.

Information Sources and Search
The systematic literature research was conducted in July 2023
in 3 databases: PubMed, IEEE Xplore, and Association for

Computing Machinery. The search string included Boolean
operators (“AND,” “OR,” and “NOT”) and search terms related
to “artificial intelligence,” “workplace health promotion,”
“health promotion,” and “workplace setting” (see supplementary
files available at OSF profile [37]). Papers were managed with
the software tool Rayyan, followed by a 2-stage screening
process. First, 1 reviewer (ML) removed all duplicates. Second,
2 reviewers (ML and AL) screened all titles or abstracts and
read full texts for eligibility criteria in a blinded procedure.
Disagreement was resolved by either consensus of the 2
reviewers or by consultation of a third reviewer (IK).

Data Charting and Synthesis of Results
In the first step, the study characteristics were extracted: first
author (name and year), study design (eg, cross-sectional or
randomized controlled trial), the primary type of AI algorithm
and technology as referred to in the study (eg, AI, ML, DL, or
NLP), and the frontend in which the AI-technology was
implemented (eg, mobile app or web app). Second, the PICO
framework [35] was applied to extract information about the
target group (number of included participants/workplace
context), the intervention approach, the comparison, and the
reported outcomes of the study.

We used the extracted information from the study characteristics
to answer RQ1 on current AI-based technologies applied in
WHPP. For answering RQ2 and RQ3, we used the data extracted
by the PICO framework. The information was then categorized
within the results’ tables and summarized narratively.

Results

Included Studies
The predefined search led to a total of 3317 results. The
screening results revealed 478 duplicates, 712 records not
meeting inclusion criteria (eg, publication type, language, or
setting), 42 unique records, and 104 with missing information,
leaving 1981 records for the title and abstract screening. The
title and abstract screening excluded another 1761 records for
not meeting inclusion criteria, leading to 220 records for full-text
screening, of which one was inaccessible. After screening 219
full-text records, another 209 records were excluded. Finally,
10 studies remained in this systematic scoping review (the
PRISMA-ScR flowchart is shown in Figure 1).
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Figure 1. PRISMA flowchart of the literature search process. ACM: Association for Computing Machinery; AI: artificial intelligence; PRISMA:
Preferred Reporting Items for Systematic Reviews and Meta-Analyses; WHPP: workplace health promotion and prevention.

Study Characteristics (RQ1)
The results of the study characteristics are presented in Table
1. Regarding the study designs, 6 studies were cross-sectional
studies [38-43], 3 were randomized controlled trials [44-46],
and 1 was a quasi-controlled trial [47]. None of the studies
explained data protection standards (security protocols, storage
location or duration, or access of third parties) within the AI
algorithms and technologies used. In most studies, white-collar
workers were the intended target group [38,41,42,46], whereas,
in 3 studies, white-collar and physical labor workers participated
[40,45,47]. Further, 1 study evaluated AI-based technologies
with physical labor workers [39], and another did not disclose

any information about the type of work setting [44]. Information
on sample characteristics was missing in 3 studies [40,41,44],
little information was provided in 2 studies [38,44], and 4 studies
offered sufficient information [39,42].

A comparison was used in different ways by 6 studies
[40,42,44-47]. Further, 4 studies recruited a classic control group
[39,44,46,47], 2 of which exposed the control group after a
waiting period [44,46]. Another study compared their assessed
data to external data thresholds [40], and 1 study compared
assessed objective data with subjective data [42]. Regarding
the outcome, all studies stated sufficient and significant results.
Further, 1 study reported no changes in 1 of the 3 assessed
outcomes [47].
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Table 1. Study characteristics, AIa algorithms and technologies, and WHPPb fields.

Study designWHPP fieldImplemented frontendIncluded type of AI algorithmYearAuthor

RCTcPrevention; behavioral health
promotion

Smartphone app with integrat-
ed chatbot

Machine learning2021Anan et al [45]

CSdPreventionSoftware-based sensor technol-
ogy

Machine learning2022Morshed et al [38]

CSPrevention (risk assessment)N/AeDeep learning networks (recur-
rent neural network or long-
short-term neural network)

2020Cui et al [39]

RCTBehavioral health promotionWeb appMachine learning2018Dijkhuis et al [44]

CSPrevention (risk assessment)Viki chatbot within a web
browser interface

Machine learning2021Hungerbuehler et al [40]

CSOrganizational health promotion
(risk assessment)

Smartphone app with GPSf

and eHealth sensor

Fuzzy neural network-based
fusion

2021Kaiser et al [41]

qCThBehavioral health promotionEMYSg robotNeural language processing or
machine learning

2023Lopes et al [47]

CSPrevention (risk assessment)Smartphone appMachine learning2021Maxhuni et al [42]

RCTBehavioral health promotionWatson conversation tool
(IBM Corp) integrated into a
smartphone app

Deep learning networks, ma-
chine learning, and natural lan-
guage processing (large lan-
guage model)

2020Piao et al [46]

CSPrevention (risk assessment)Web-based appConvolutional neural network2020Yan et al [43]

aAI: artificial intelligence.
bWHPP: workplace health promotion and prevention.
cRCT: randomized controlled trial.
dCS: cross-sectional study design.
eN/A: not applicable.
fGPS: Global Positioning System.
gEMYS: emotive head system.
hqCT: quasi controlled trial.

AI Applications and Technologies in Specific WHPP
Fields (RQ2)
AI algorithms and technologies were mainly used for preventive
purposes in risk assessment (Table 1). Furthermore, 2 studies
evaluated prediction models [39,42]. Additionally, 3 studies
[44,46,47] targeted health behavior change using 3 different
approaches ranging from a web app [44] and smartphone app
[46] to social robot agents [47]. Further, 1 study [41] was
categorized as an organizational health promotion approach. A
major target indication was mental health, which was addressed
in 4 studies [38,40,42,43]. In contrast, 1 study dealt with
musculoskeletal disorders [45] and 1 on overall physical health
and work-related factors [39].

Interventions and Outcomes (RQ3)
The PICO category “intervention” did not apply to studies
focusing on prevention since they did not evaluate an
intervention [38-43]. Interventions were evaluated by 4 studies
[44-47] with a duration of 12 weeks [44-46] and 8 weeks [47].
Within these 4 studies, 2 used chatbots as a primary AI
application [45,46], 1 used a web application [44], and 1 used
a social robot agent [47]. These 4 studies recruited a control
group, of which 2 studies exposed the control group after a
waiting period [44,46]. Regarding the outcome, all studies stated
sufficient and significant results. The study of Lopes et al [47]
reported no changes in 1 of the 3 assessed outcomes (Table 2).
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Table 2. Interventions and outcomes of studies included in the review.

OutcomeComparisonInterventionPopulation

Adherence rate: 92%; significant difference in the
worst pain scores of neck or shoulder pain or stiffness

CG: exercise routine of 3
minutes per day during

AIc-assisted program for MSDd that
selects exercises depending on partic-

IGa 48 and

CGb 46 engi-

Anan et
al [45]

and low back pain between baseline and 12 weeksbreak time; routine con-ipants’ chat input; 12-week interven-neers and (score: –1.12; 95% CI –1.53 to –0.70; P<.001); signif-sists of standard exercisestion with individualized exercises forwhite-collar
workers

icant improvements of IG in the severity of the neck
or shoulder pain or stiffness and low back pain com-

for stretching, maintaining
good posture, and mindful-
ness.

stretching, maintaining good posture,
and mindfulness.

pared to CG (ORe 6.36, 95% CI 2.57-15.73; P<.001);
subjective improvement in symptoms in IG at 12 weeks
(score: 43; 95% CI 11.25-164.28; P<.001).

Passive sensors detect triggers and manifestations of
workplace stress effectively (eg, keyboard activity and

Comparison of passive
sensor data with self-report

Development and implementation of
a workplace stress sensing system for

46 remote in-
formation
workers

Morshed
et al [38]

less facial movement were positively correlated with

stress (r=0.05, P<.05f and r=0.09, P<.05f, respective-

(study intake, experience
sampling, daily check-in,
daily check-out, end of
study expectations) data.

4 weeks using passive sensors (email,
calendar, app, mouse and keyboard
use; facial positions and facial action
units; or physiological sensors).

ly); the quality of stress models depends on prior data
of the worker and the amount of data (F1-score: after
10 days=58%; after 19 days=73%).

Based on sociodemographic data (age, income, educa-
tion, or marital status), health-related data (BMI,

N/AiDevelopment and comparison of 2
AI-based risk prediction models

4000 steel
workers

Cui et al
[39]

smoking, drinking, or blood lipids [cholesterol or(LSTMg vs RNNh) that predict the
triglyceride]), and work-related factors (length of ser-influence of the work environment on

employees’ health. vice, high-temperature exposure, shift work, or noise
exposure) the prediction effect of LSTM is significant-
ly better than that of traditional RNN, with an accuracy
of more than 95% (F1-score).

Input variables “hours of the day” and “step count”
were used in the evaluated model and reached an accu-

CG: no participation in the

12-week WHPj-program.

Development and implementation of
a prediction model that personalizes
physical activity recommendations.

IG 24 and
CG 24 popu-
lation/setting
not disclosed

Dijkhuis
et al [44]

racy of 90% (mean accuracy=0.93; range=0.88-0.99;
mean F1-score=0.90; range=0.87-0.94). Tree algo-
rithms and tree-based ensemble algorithms performed

Within a 12-week workplace health
promotion intervention. The goals of
the intervention were to increase exceedingly well. The individualized algorithms allow
physical activity during workdays by for predicting physical activity during the day and
improving physical and mental health
and several work-related variables.

provide the possibility to intervene with personalized
feedback.

The response rate was 64.2% (77/120). The majority

scored in the mild range for anxiety (GAD-7k: mean

Participation rates were
compared to face-to-face
collection method rates.

Development of a chatbot system and
its implementation in a workplace
setting to assess employees’ mental
health.

77 industrial,
logistic, and
office work-
ers

Hunger-
buehler et
al [40]

6.21, SD 4.56; 50%) and depression (PHQ-9l: mean
4.40, SD 5.21; 57%), the moderate range for stress

(DASS-21m: mean 11.09, SD 7.13; 46%), subthreshold

level for insomnia (ISIn: mean 9.26, SD 5.66; 70%),

the low-risk burnout-category (OLBIo: mean 27.68,
SD 8.38; 68%) and in the increased risk category for

stress (JSSp: mean 32.38, SD 3.55; 69%). Chatbot-
based workplace mental health assessment is highly
engaging and effective among employees, with re-
sponse rates comparable to face-to-face interviews.

The app-integrated COVID-19 questionnaire was val-
idated against real-time health conditions. Proximity

N/AEvaluation of a portable health
(pHealth) app to detect COVID-19

12 office
workers

Kaiser et
al [41]

detection, contact tracing, and health monitoring (ex-infection and trace movement to pre-
ternal sensors) were confirmed by proximity testingvent further infections. Additionally,
(surf plot evaluation); it effectively estimates COVID-
19 infection risk and personal health conditions.

the pHealth app detects employees’
health conditions and recommends
further health measures if indicated.
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OutcomeComparisonInterventionPopulation

IG improved significantly compared to CG in produc-

tivity (F1,46=9041, P<.005f; η2=0.26) and in well-be-

ing (F1,53=4517, P<.005f; η2=0.079), but not in work-

engagement (F1,49=0.5176, P>.005f). Additionally,
IG improved significantly in the postintervention

scores compared to CG (F1,43=8997, P<.001f, Wilk
Λ=0.597, partial η2=0.40) despite presenteeism and
regard for their level of mental well-being.

CG received the same inter-
vention measures through
human agents via Teams
(Microsoft Corp).

IG interacted with a social robot agent
that promotes health behavior change
of participants’choice (physical activ-
ity, nutrition, tobacco consumption,
and stress and anxiety) in the work-
place. After baseline assessment 8,
social robots were used for 20-30
minutes weekly for 8 weeks. Based
on the health action process approach
model, the intervention focused on
goal setting, monitoring behavior,
elaborating action plans, and self-effi-
cacy techniques through videos.

IG 28 and
CG 28 ser-
vice and re-
tail workers

Lopes et
al [47]

A high correlation between objective smartphone data
and questionnaire scores was overall significant. The
accuracy of the supervised decision tree was acceptable
(F1-score=67.5%). The semisupervised learning ap-
proach was somewhat better, with an F1-score of 70%.
Overall, the results confirm that the prediction model
is feasible to detect perceived stress at work using
smartphone-sensed data.

Objective data was com-
pared to subjective data

(OLBI, POMSr).

Measurement of smartphone data to
assess employees’ stress levels. Data
were assessed for 8 weeks on physical
activity (accelerometer), location

(GPSq), social interaction (micro-
phone, number of phone calls, or text
messages), and social activity (app
usage).

30 office
workers

Maxhuni
et al [42]

After 4 weeks, the change in SRHIs scores was (mean
IG 13.54, SD 14.99; mean CG 6.42, SD 9.42) signifi-

cantly different between groups (P<.05f). Between the
fifth and 12th week, the change in SRHI scores of the
intervention and control groups was comparable (mean
IG 12.08, SD 10.87; mean CG 15.88, SD 13.29;
P=.21). Level of physical activity showed a significant
difference between the groups after 12 weeks of inter-
vention (F1,11=21.16; P=.045). Intrinsic reward was
significantly influencing habit formation.

CG did not receive intrin-
sic rewards for the first 4
weeks and only received
all rewards, as in IG, from
the fifth to the 12th week.

A healthy lifestyle coaching chatbot
from the KakaoTalk App (Kakao
Corp) was implemented into an office
work setting to promote employees’
stair-climbing habits. During the inter-
vention, the IG received cues, intrin-
sic, and extrinsic rewards for the en-
tire 12 weeks.

IG 57 and
CG 49 office
and adminis-
trative work-
ers

Piao et al
[46]

Model structure with 8 domains was confirmed with
exploratory factor analysis, and 4 types of mental
health were classified using the Rasch analysis with

an accuracy rate of MNSQu=0.92. An app predicting
mental illness was successfully developed and
demonstrated in this study.

N/ABuilding a model to develop a web-
based application for classifying
mental illness at the workplace. Data
on emotional labor and psychological
health was assessed for 4 weeks with

the ELMHt.

352 respirato-
ry therapists
in medical
centers and
regional hos-
pitals

Yan et al
[43]

aIG: intervention group.
bCG: control group.
cAI: artificial intelligence.
dMSD: musculoskeletal disorder.
eOR: odds ratio.
fOriginal P values were not reported in the original publications.
gLSTM: long short-term memory.
hRNN: recurrent neural network.
iN/A: not applicable.
jWHP: workplace health promotion.
kGAD-7: Generalized Anxiety Disorder Scale.
lPHQ-9: Physical Health Questionnaire.
mDASS-21: Depression, Anxiety, Stress Scale.
nISI: Insomnia Severity Index.
oOLBI: Oldenburg Burnout Inventory.
pJSS: job strain survey.
qGPS: global positioning system.
rPOMS: profile of mood states.
sSRHI: self-report habit index.
tELMH: Emotional Labor and Mental Health questionnaire.
uMNSQ: mean square error.
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Discussion

Principal Results

Overview
This study aimed to assess an overview of the current state of
AI use in WHPP. Our results underline that despite the rapid
increase in AI-related studies, only a small number of studies
have addressed AI apps and technologies in WHPP up to now.
Risk prediction and modeling were the most identified WHPP
fields, followed by behavioral health promotion approaches. AI
algorithms and technologies were primarily implemented in
smartphone apps (eg, in the form of a chatbot) or used the
smartphone as a data source (eg, GPS). Further, our results
revealed that most studies validated AI algorithms and
feasibility.

Potential Approaches
The results merely indicate the potential of AI in WHPP with
individualized, real-time data analysis and health-related
information as critical elements but do not fully reflect this at
present. AI-assisted chatbot apps were a primary AI technology,
reaching reasonable adherence rates and offering a potential
access route through various frontend solutions such as
smartphones or web-based apps. Chatbots can easily
individualize health-related information and recommendations
regarding the type of job, educational level, and specific
language barriers. The integration of sensor technologies can
increase the efficacy of individualized chatbot solutions. This
could advance the access and dissemination of workplace
health-related information significantly. Chronically ill
employees or other target groups can profit from context-specific
health information that helps maintain or improve workability
[48]. The aspect of anonymity might increase the acceptance
of prevention measures for smoking cessation, alcohol, or
substance abuse [31,49]. Due to the diversity of job activities
(eg, physical labor or white-collar jobs) and workplace
characteristics (eg, office, hybrid, or remote work),
individualized access to health interventions can improve
resource allocation as well as the density and quality of
preventive health care [50,51]. Personalizing health-related
information or feedback potentially increases workplace
health-related behaviors [52,53]. The genuine ability of AI to
analyze large amounts of data in real-time can be applied to
predict or detect individual or organizational health risks, for
example, infections, stress symptoms, or body positions [54-59].

State of AI-Research in WHPP
The small number of studies on AI and WHPP compared to
other sectors of work-related health (eg, OSH or RTW) or public
health indicates a considerable research gap. At this point,
research in other health care sectors offers much more reviews
[7,60-62]. Reasons can be found in common challenges of
WHPP as a young research field, a high sensitivity regarding
data protection regulation in the context of work, and the
nonexistent legal requirements for WHPP in many countries
[23,63,64]. At the same time, WHPP is often entrenched within
an OSH paradigm among employers that do not prioritize WHPP
[65,66].

As stated, most research WHPP fields were prevention and risk
prediction followed by behavioral approaches. Stress and mental
health were the primary outcomes of 4 studies within these
fields. Given the relevance of mental health, the research interest
can be assessed as adequate. At the same time, musculoskeletal
disorders are the leading cause of sick leave in most countries
[67] and are therefore highly underrepresented in the included
studies. In 2 studies, behavioral approaches focused on physical
activity and general health behavior were investigated in 1 study.
Other WHPP-related behaviors such as nutrition, sleep,
substance abuse (eg, nicotine), or stress management are not
targeted by current research [24]. The same accounts for
organizational WHPP approaches centered in only 1 study [41].
Organizational approaches that aim to disseminate health-related
information, increase work-related health literacy, or implement
educational measures have not been included in current AI and
WHPP research. Areas such as social inequality [68], specific
target groups (eg, chronically ill employees or migrants), or
health-oriented leadership were not addressed.

Most studies of our review were conducted in a cross-sectional
study design to gain data for any AI learning process in a time-
and resource-efficient way [69]. This has 2 implications
regarding the current stage of research. First, AI model life
cycles need to be completed to gain high-level semantics and
create a comprehensive learning basis, from data preparation
(eg, dealing with missing data) and data conditioning to data
acquisition and model refinement [70]. For future AI models,
longitudinal data are of utmost importance, as cross-sectional
data can only reflect on a specific stage of that life cycle [70,71].
Second, longitudinal study designs are usually more cost- and
resource-intensive and often less prioritized. This not only leads
to an imbalance of evidence on behavioral WHPP interventions
but also to a lack of causal relation between AI and WHPP
outcomes.

Most studies reported using ML compared to more sophisticated
DL or NLP algorithms. ML algorithms use extracted data to
predict binary or multiple outcomes or classes without hidden
layers. DL algorithms are characterized by hidden-layer neural
networks. They can be employed for the analysis of more
complex data sets, for example, for the detection of
multidimensional objects in the realm of video and speech
analysis [4,72]. The complexity of DL algorithms, in turn, ties
in with the AI model life cycle, as DL algorithms require a
broader database for learning. While ML approaches are found
to be highly predictive and offer more individualized
interventions in a specific context, they are also prone to errors.
Escorpizio et al [29] point out that in 1 study, ML classification
exceeded clinicians’ decision-making [73]. Still, the results
were later reversed when the approach was implemented with
a different cohort [74]. This is of particular interest, as studies
within our results relied on either a small number of participants
[41], few input variables [44], or a homogenous data input (eg,
only self-report data) [40], causing potential ceiling effects
within the AI learning progress [75,76]. Conversely, the benefit
of longitudinal data in the context of AI reveals itself through
the increase in precision. Further, 1 study pointed out the
relevance of multiple measurements and longitudinal data by
increasing the accuracy from 46% (time point 0) to 73% after
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19 days of data [38]. Nevertheless, the included studies do not
use the potential of AI in comparable health-related fields such
as OSH or RTW [26-31]. Some areas of AI application are not
addressed, such as big data analysis (eg, comparison with
existing data of national cohort studies) or language translation
models.

Future Research
As pointed out, current research is on AI in WHPP regarding
quantity, fields of WHPP and its subdomains, and AI algorithms.
Future research should center around major causes of sick leave,
such as musculoskeletal disorders, mental health, respiratory
conditions, and influenza [67]. Behavioral WHPP interventions
should extend to all areas of health-related behavior, including
nutrition, sleep, substance abuse, and stress management [24].
Further, setting-specific aspects of WHPP, such as intervention
content, implementation strategies, user experience, design,
algorithms, and the company’s size, need to be considered more
specifically. So far, the studies have provided only moderate
information on the job activities or the target groups. At the
same time, workplaces and workers are diverse. The health of
employees is influenced by numerous organizational and
individual factors that must be further considered in the learning
cycle of AI [77-79]. Regarding potential errors, existing AI
algorithms must be validated with different target groups
[59,80], emphasizing the need for longitudinal data and its
impact on learning algorithms [81,82]. Beyond this, the
technological diversity of the presented studies opens new
possibilities for target group-specific or individualized
interventions. Providing health information to chronically ill
employees, migrants with different language skills, or
individualizing health topics of varying age groups can be
provided more effectively through AI to move beyond a “one
size fits” all paradigm [83,84].

Outside of the objective’s scope, we identified 2 aspects that
can improve future research. First, the included studies reported
overall positive results regarding feasibility, significance, or
accuracy, underlining the vast potential that AI technology
harbors. However, the results must be interpreted cautiously as
certain information in the primary studies was not provided,
assessed, or available at the stages of the investigated
technology. For example, few studies mentioned a potential

bias through the novelty [40,47] or the Hawthorne effect
[45,47,85]. The novelty effect [86] applies to most of the
included studies as they did not control for experience with new
technologies or their affinity to them. Second, concerns about
data access, storage or control, the ownership of AI-generated
data, and its further use need to be clarified [87,88]. Standards
should be derived and updated at appropriate intervals,
especially new AI-generated knowledge based on employee’s
personal information [89]. Transparency and high data
protection regulation can increase adherence rates and reduce
usage barriers [90]. In turn, we propose that future research
should rely on reporting guidelines [76,91,92].

Strength and Limitations
Of note, 1 strength of our review is the explanatory nature of
the RQs and the systematic search strategy in this new field.
Consequently, the heterogeneity of the identified studies might
be considered a limitation. Different AI applications and
technologies, the types of intervention, and the variety of
workplace settings limit the conclusion significantly. Beyond
this, the reporting of the types of AI-based algorithms and
technologies used in the study are based on the authors’
self-reports. It is important to consider that the differentiation
of the AI algorithm types cannot be made with a high degree
of distinction.

Conclusions
Overall, this review underlines that AI in WHPP bears
considerable potential but is not used fully at present. The results
of our review offer a promising perspective on the predictive
and personalized health paradigm shift in WHPP. Nevertheless,
we conclude that current AI-related research in WHPP is still
at the beginning, as it does not cover the scope of WHPP. The
most salient research gaps can be found in lacking fields of
WHPP and its subdomains, the predominantly ML-based
algorithms and cross-sectional data, and the weak consideration
of the work context. We believe we have contributed to future
WHPP research by identifying these gaps and recommending
future approaches. As AI applications are gaining an
increasingly important role, we are convinced that future
research will profit from an extended range of research in all
fields of WHPP, longitudinal data, and the use of reporting
guidelines.
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Abstract

Background: The integration of machine learning (ML) in predicting asthma-related outcomes in children presents a novel
approach in pediatric health care.

Objective: This scoping review aims to analyze studies published since 2019, focusing on ML algorithms, their applications,
and predictive performances.

Methods: We searched Ovid MEDLINE ALL and Embase on Ovid, the Cochrane Library (Wiley), CINAHL (EBSCO), and
Web of Science (core collection). The search covered the period from January 1, 2019, to July 18, 2023. Studies applying ML
models in predicting asthma-related outcomes in children aged <18 years were included. Covidence was used for citation
management, and the risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool.

Results: From 1231 initial articles, 15 met our inclusion criteria. The sample size ranged from 74 to 87,413 patients. Most
studies used multiple ML techniques, with logistic regression (n=7, 47%) and random forests (n=6, 40%) being the most common.
Key outcomes included predicting asthma exacerbations, classifying asthma phenotypes, predicting asthma diagnoses, and
identifying potential risk factors. For predicting exacerbations, recurrent neural networks and XGBoost showed high performance,
with XGBoost achieving an area under the receiver operating characteristic curve (AUROC) of 0.76. In classifying asthma
phenotypes, support vector machines were highly effective, achieving an AUROC of 0.79. For diagnosis prediction, artificial
neural networks outperformed logistic regression, with an AUROC of 0.63. To identify risk factors focused on symptom severity
and lung function, random forests achieved an AUROC of 0.88. Sound-based studies distinguished wheezing from nonwheezing
and asthmatic from normal coughs. The risk of bias assessment revealed that most studies (n=8, 53%) exhibited low to moderate
risk, ensuring a reasonable level of confidence in the findings. Common limitations across studies included data quality issues,
sample size constraints, and interpretability concerns.

Conclusions: This review highlights the diverse application of ML in predicting pediatric asthma outcomes, with each model
offering unique strengths and challenges. Future research should address data quality, increase sample sizes, and enhance model
interpretability to optimize ML utility in clinical settings for pediatric asthma management.

(JMIR AI 2024;3:e57983)   doi:10.2196/57983
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Introduction

Background
Asthma is characterized by inflammation and narrowing of the
airways, leading to recurring episodes of wheezing,
breathlessness, coughing, and chest tightness. As the most
prevalent chronic childhood condition, asthma affects
approximately 14% of children worldwide [1,2] and ranks
among the top conditions for disability-adjusted life years in
children [3]. Severe asthma exacerbations, defined as those
requiring systemic corticosteroids, emergency department (ED)
visits, or hospitalization, are not only the primary cause of urgent
health care visits, hospitalizations, and asthma-related mortality
in children but contribute to asthma-related morbidity and
mortality in children, incurring substantial treatment costs [4,5].

Risk factors for asthma exacerbations are multifaceted, ranging
from socioeconomic factors to environmental exposures. Low
income, residing in areas of concentrated poverty, limited access
to health care providers, and high medication costs are
significant contributors [6-8]. In addition, factors such as
systemic and interpersonal racial and ethnic discrimination,
suboptimal asthma control, and environmental triggers play a
crucial role in exacerbation development [9,10]. Specifically,
aeroallergen exposure or sensitization and concurrent viral
infections have been shown to significantly increase
exacerbation risks [11-13]. Given this complex interplay of
factors, accurately predicting severe asthma exacerbations in
children remains a challenge. Accurate prediction of children
at risk for severe exacerbations can facilitate preemptive care
strategies, reduce morbidity, and enhance the quality of life of
those affected [14].

Machine learning (ML), a branch of artificial intelligence (AI),
emerges as a promising tool. A range of supervised learning
techniques, such as linear and logistic regression, decision trees,
and classifier methods, including support vector machines
(SVMs) and gradient boosting, are used to predict specific data
categories (eg, asthmatic vs nonasthmatic) or continuous
variables (eg, lung function measurements) [15]. In contrast,
unsupervised learning techniques, such as k-means clustering
and hierarchical clustering, are used to develop models that
enable the clustering of the data [15]. ML’s ability to analyze
data and identify patterns has already shown success in various
medical applications, including electrocardiography
interpretation, heart failure classification, and diabetes outcome
prediction [16-18]. In asthma management, AI has been
instrumental in diagnosis, severity classification, and even in
predicting asthma-related hospitalization risks at emergency
encounters [19-22]. Several studies have investigated the role
of AI in monitoring asthma exacerbations. Real-time assessment
tools using environmental and physiological sensors have
demonstrated notable accuracy in predicting exacerbations [23].
Contactless bed sensors for nocturnal data collection have also
shown promise in detecting exacerbations [24]. In addition,
AI-assisted clinical decision support tools, such as the Asthma

Guidance and Prediction System, have been evaluated for their
efficacy in reducing exacerbation frequency in children [25].

Recent advancements in ML offer promising tools for predicting
asthma exacerbations. A previous systematic review highlighted
the moderate predictive performance of traditional models, with
emerging ML approaches showing potential for enhancing
prediction accuracy [26]. Similarly, another recent systematic
review and meta-analysis of 11 studies, focusing on participants
aged ≥5 years with preexisting asthma diagnoses, demonstrated
good discrimination. The overall pooled area under the receiver
operating characteristic curve (AUROC) was 0.80 (95% CI
0.76-0.83), and the diagnostic odds ratio was 7.02 (95% CI
5.20-9.47), indicating that ML-based prediction models for
asthma exacerbation could achieve substantial accuracy [27].
Notably, of the 11 studies included in the 2022 systematic
review, 6 (55%) were conducted after 2019, indicating
considerable advancements in a short period [27]. However,
these studies focused on participants aged >5 years, leaving a
gap in research for younger children [27]. Therefore, our scoping
review aims to focus exclusively on studies conducted since
2019 that applied ML in predicting asthma exacerbations in
children aged <18 years.

Objectives
We intend to consolidate current knowledge by examining recent
studies. This includes describing the types of predictive models
developed, their applications in various settings, and the
populations targeted and evaluating their performance in terms
of accuracy, sensitivity, and specificity. This targeted approach
will provide insights into the latest ML advancements and their
potential to enhance pediatric asthma care.

Methods

Search Strategy
We registered this systematic review with PROSPERO
(CRD42023440928) and have used the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) to guide our reporting.

Search Strategy and Eligibility Criteria
An experienced information specialist (BS) developed and tested
the search strategies in an iterative process in consultation with
the review team. The MEDLINE strategy was peer reviewed
by another senior information specialist before execution using
the Peer Review of Electronic Search Strategies checklist [28].
Using the multifile and deduplication tool available on the Ovid
platform, we searched Ovid MEDLINE ALL and Embase
Classic+Embase. We also searched the Cochrane Library
(Wiley), CINAHL (EBSCO), and Web of Science (core
collection). All searches were performed on July 18, 2023. In
addition, the reference lists of retrieved articles and relevant
reviews were searched to identify other relevant studies.

The strategies used a combination of controlled vocabulary (eg,
“Asthma,” “Artificial Intelligence,” and “Risk Assessment”)
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and keywords (eg, asthma, deep learning, and prognosis). There
were no language restrictions on any of the searches, but results
were limited to the publication years 2019 to the present. When
possible, animal-only records, opinion pieces, and other
irrelevant publication types (eg, case studies and conferences)
were removed (refer to Multimedia Appendix 1 for strategies).
Records were downloaded and deduplicated using EndNote
(version 9.3.3; Clarivate Analytics) and uploaded to Covidence
(Veritas Health Innovation [29]) for efficient data management,
extraction, and synthesis.

All studies were required to meet the eligibility criteria
concerning the research focus, at both title/abstract and full-text
screening: (1) in-vivo studies (human-based) that applied ML
techniques to predict asthma-related outcomes, (2) participants
aged <18 years, and (3) reported original data. The inclusion
criteria were not limited to any specific study design to ensure
inclusivity; hence, all available evidence from any study design
was captured. There were no language restrictions for the studies
reviewed. Studies were excluded if they were (1) in vitro studies
(conducted on cellular substrates); (2) not focused on ML
techniques to predict asthma-related outcomes; and (3) reviews,
systematic reviews, opinions, editorials, and/or case reports.

Data Collection
Covidence was used throughout the review to manage citations.
We engaged and trained several individuals to assist with
reviewing citations (AP, RS, TO, and TV). During both parts
of the screening process, the reviewers used the eligibility
criteria to evaluate and determine the inclusion or exclusion of
studies, which were then reported in Covidence. The first-level
screening consisted of title and abstract screening of all uploaded
studies. Each citation was reviewed by 2 people independently
to select studies for full-text review (RS and TO). If the
eligibility criteria were met completely, as assessed by both
reviewers, the studies were included. If studies did not meet
eligibility criteria, as determined by both reviewers, they were
excluded. Any citations in which there was a difference in
opinion were brought to the study team to discuss, and a third
reviewer decided on inclusion or exclusion (AP and TV).
Second-level screening involved a thorough assessment of all
the studies that passed the initial screening on the basis of their
title and abstracts, performed independently by 2 reviewers (RS
and TO). An additional second-level review was performed by
a solo reviewer (AP), who excluded any studies that did not
meet the same eligibility criteria in the primary step and were
considered ineligible. The final set of studies included in this
scoping review includes only those that passed the full-text
screening process. Two members of the study team (RS and
TO) independently assisted with data extraction, with each study
being extracted once. Subsequently, a comparison check was
performed on each extracted study by a third reviewer (AP).

The following data were extracted: authors, title, journal,
publication year, funding source, ML application types, the
intended purpose of ML application, identification of any
potential bias in the ML model design (if applicable), bias
mitigation strategies (if applicable), study design, research
question/study objective, primary and secondary outcomes,
country, demographics, sample size, youth age groups, the unit

of analysis (individuals, groups, etc), data source (electronic
medical records, databases, claims data, and health surveys),
results, limitations, future research requirements (if applicable),
use for clinical applications, and performance metrics
(regression and classification). We noted if the information from
an article was unavailable. A summary of the extracted
information was recorded in Table S1 in Multimedia Appendix
2 [25,30-43].

Risk of Bias Assessment
To assess the risk of bias, we used the Prediction Model Risk
of Bias Assessment Tool (PROBAST) [44] and the guidelines
for developing and reporting ML predictive models in
biomedical research [45].

Data Synthesis
In this review, we used a narrative synthesis to thoroughly
review and summarize the objectives, ML algorithms, and
clinical relevance of each study. We focused on how these
studies used ML to predict asthma-related outcomes in children,
detailing the different ML algorithms, such as random forests
(RFs), logistic regression, and neural networks, that were used
and how they were applied. We organized the studies using the
ML techniques they used and gathered key performance
measures, such as accuracy, sensitivity, and specificity for each
one. We also noted studies that used >1 ML method and
identified and documented common limitations found within
the studies, such as small sample sizes and generalizability
issues.

Results

Study Selection and Characteristics
Our initial screening involved 1231 articles, from which 12
duplicates were removed using EndNote. This was followed by
a primary screening that resulted in the inclusion of 102 studies.
Upon secondary screening, 87 of these were excluded, leaving
15 articles that met our criteria for this review. The selection
process is detailed in Figure 1.

The included studies, published between 2019 and 2023,
predominantly came out in 2021 [25,30-43]. They originated
from various countries, including the United States (n=10, 67%)
[25,30,32,34,35,38,39,41-43], Germany (n=1, 7%) [40], New
Zealand (n=1, 7%) [31], Japan (n=1, 7%) [36], the United
Kingdom (n=1, 7%) [33], and Singapore (n=1, 7%) [37]. Sample
sizes in these studies ranged from 74 to 87,413 pediatric patients,
indicating a wide variation in the population sizes examined.

Table S1 in Multimedia Appendix 2 provides a comprehensive
summary of the key data extracted from each included study.
Most of these studies (n=9, 60%) implemented multiple ML
techniques [30-34,38-40,43]. Logistic regression (n=7, 47%)
and RFs (n=6, 40%) were the most commonly studied
techniques [30-35,38-40,43]. This was followed by gradient
boosting (n=4, 27%) [31,32,39,40] and artificial neural networks
(ANNs; n=3, 20%) [30,38,41]. Decision trees (n=2, 13%)
[34,36], natural language processing (NLP) models (n=2, 13%)
[25,42], and Gaussian mixture models (n=1, 7%) [37] were the
least frequent techniques used. Regarding study design,
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retrospective cohort studies were predominant (n=9, 60%)
[30-32,35,38,39,41-43], with a smaller proportion being
prospective cohorts (n=5, 33%) [33,34,36,37,40] and a single
randomized controlled trial (n=1, 7%) [25]. Detailed information

on the various ML models applied in the prediction of asthma
exacerbations and related outcomes in children is provided in
Tables S2-S8 in Multimedia Appendix 2.

Figure 1. The selection process of eligible studies from all identified citations. ML: machine learning.

Quality Assessments
The risk of bias in the included studies was assessed using the
PROBAST tool [44]. Our analysis revealed that most studies
(n=8, 53%) exhibited a low risk of bias [30-32,34-36,40,41],
indicating robust methodologies and reporting. However, some
studies (n=3, 20%) were classified with an unclear risk
[33,37,42] because of insufficient detail in certain aspects,
whereas a few studies (n=4, 27%) were identified as high risk

[38,39,42,43], suggesting potential issues affecting their
reliability. Studies classified as unclear or high risk often faced
issues such as inconsistent definitions of outcomes across
participants, outcome assessments influenced by prior
knowledge of the predictors, or poorly specified inclusion and
exclusion criteria for participants. Detailed breakdowns of each
study’s bias assessment are presented in Figure 2, and a
summary of the overall risk across all studies is depicted in
Figure 3.
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Figure 2. Risk of bias summary based on the Prediction Model Risk of Bias Assessment Tool quality assessment tool for included studies [25,30-43].

Figure 3. Summary of the risk of bias assessment.

ML Models in Pediatric Asthma: Predictive and
Diagnostic Applications
Table 1 outlines the primary outcomes and the ML models used
across the included studies. For predicting asthma exacerbations,
the outcomes included any asthma-related health care encounter
(outpatient visits, ED visits, and hospitalizations) or a
prescription for a systemic steroid [25,30,35,38,39,43]. In
classifying asthma phenotypes, the outcomes were the
identification of allergic versus nonallergic asthma and the
differentiation between mild and moderate-severe asthma
[31,40,42]. For asthma diagnosis prediction, the outcomes were

the prediction of an asthma diagnosis and the calculation of a
pediatric asthma score (PAS) [32,41]. Studies identifying
potential risk factors for asthma-related outcomes focused on
outcomes, including the severity of symptoms and lung function,
considering factors such as family history, medical history, and
environmental triggers [33,34]. In sound-based diagnosis studies,
the outcomes included the identification of wheezing versus
nonwheezing sounds and the differentiation between asthmatic
and normal coughs [36,37]. Features commonly used across
studies include demographic data, such as sex, age, and race,
despite significant variations in ML models and outcomes
[25,30,35,38,39,43].
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Table 1. Application of MLa models in pediatric asthma management through predictive and diagnostic modalities.

Primary ML modelsOutcomeCategory

Neural networks, LASSOd regression, RFse,
XGBoost, and natural language processing

Any encounter (outpatients, EDb visits, and hospitalization)

with an asthma-related ICD-9 or ICD-10c code or a prescrip-
tion for a systemic steroid

Prediction of asthma exacerbations
[25,30,35,38,39,43]

SVMsf and stochastic gradient boostingAllergic vs nonallergic asthma and mild vs moderate-severe
asthma

Classification of asthma phenotypes
[31,40,42]

XGBoost, ANNsh, and natural language pro-
cessing

Prediction of asthma diagnosis and PASgAsthma diagnosis prediction [32,41]

K-means clustering, RFs, and decision treePotential risk factors (such as family hxi, medical hx, and en-
vironmental triggers) for asthma-related outcomes (including
symptom severity and lung function)

Identification of potential risk factors
for asthma [33,34]

Decision trees and Gaussian mixture modelsIdentification of wheezing vs nonwheezing sounds and differ-
entiation between asthmatic and normal coughs

Sound-based asthma or wheezing diag-
nosis [36,37]

aML: machine learning.
bED: emergency department.
cICD-9 or ICD-10: International Classification of Diseases, 9th or 10th revisions.
dLASSO: least absolute shrinkage and selection operator.
eRF: random forest.
fSVM: support vector machine.
gPAS: pediatric asthma score.
hANN: artificial neural network.
ihx: history.

Table 2 provides a detailed summary of the predictors, clinical
outcomes, and models used in the included studies. Studies have
consistently used demographic data to predict asthma
exacerbations. However, features related to medical history and
health care use varied across the studies. Some studies focused
on prescribed inhaled or oral steroids, previous health care use,
and presence of moderate to severe asthma [25,30,35,39]. In
contrast, others included variables such as time to triage, time
to first medication and asthma medication, ED hourly volume,
and patient disposition, including admitted or discharged [43].
Notably, some studies incorporated hospital characteristics,
such as ownership (private vs public sector), teaching status,
and size, along with family history factors such as alcohol or
drug issues or housing instability [38]. Health insurance presence
and type were also examined [39]. The models used in these
studies included neural networks, least absolute shrinkage and
selection operator regression, RFs, XGBoost, and NLP. The
models were evaluated using metrics such as AUROC, accuracy,
F1-score, precision, recall, and specific measures such as mean
average negative predictive value (NPV). The best-performing
models varied by application. Recurrent neural networks [30]
and XGBoost showed high performance in predicting asthma
exacerbations, with XGBoost achieving an AUROC of 0.761
[39]. ANNs outperformed logistic regression in predicting
hospital readmissions, achieving an AUROC of 0.637 [38]. RFs

were particularly effective in predicting hospitalization needs,
with an AUROC of 0.886 [43].

A variety of demographics and clinical characteristics were used
to differentiate between allergic and nonallergic asthma
[31,40,42]. Key demographic variables included age, sex,
weight, and race. Clinical parameters such as C-reactive protein
levels, eosinophilic granulocytes, and oxygen saturation were
also included in some studies [31]. Genetic markers, specifically
protein kinase N2 and protein tyrosine kinase 2, along with
breastfeeding duration, were also evaluated for their roles in
asthma phenotypes [40]. In addition, some studies evaluated
risk factors such as home conditions (eg, presence of carpets,
home location and year, and animal triggers) and school
characteristics, and home-related ventilators were considered
to assess indoor environmental impacts on asthma [34]. ML
models (eg, RFs, SVMs, gradient boosting, and decision trees)
were used to analyze these variables. The most effective models
varied across studies. Metrics such as AUROC, accuracy,
precision, true positive rate, true negative rate, F1-score,
prevalence ratios, and IQRs were used to evaluate the models’
performance. SVMs demonstrated high performance with
metrics, including an accuracy of 77.8%, precision of 0.81, and
an AUROC of 0.79. Stochastic gradient boosting achieved an
AUROC of 0.81, highlighting its efficacy in incorporating
genetic markers and breastfeeding duration.
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Table 2. Summary of the included studies on MLa applications in pediatric asthma: predictors, clinical outcomes, and models.

ML modelsOutcomesData sourceMetricsPotential predictors, variables of inter-
ests-grouped

Study

Deep learning:
recurrent neural
networks

Frequency of EDf use
(number of visits made by
pediatric patients during a
1-year predication window)

EHRseAUROCb (0.85), AUCc-PRd

(0.74), and F1-score (0.61)

Demographic data, medication use,
health service use, clinical parameters
and characteristics (comorbid illnesses),
and insurance information

AlSaad et al
[30], 2022

RFsh, extreme
gradient boost-

Classify predominantly aller-
gic asthma and nonallergic
asthma among preschool
children

EHRsSVMg differentiated be-
tween allergic and nonaller-
gic asthma most well: accu-
racy (77.8%), precision

Demographic data (age and weight) and
clinical parameters and characteristics
(C-reactive protein, eosinophilic granu-
locytes, oxygen saturation, premedica-
tion inhaled corticosteroid+long-acting

Bhardwaj et
al [31], 2023

ing, SVMs,
adaptive boost-
ing, extra tree(0.81), true positive rate

β-2 agonist, other premedication, Pulmi- classifier, and(0.73), true negative rate
cort or celestamine during hospitaliza- logistic regres-

sion
(0.81), F1-score (0.81), and
AUROC (0.79); because of
the imbalance between both

tion, and azithromycin during hospital-
ization)

groups, a stratified 10-fold
cross-validation was used

Naive Bayes,
K-nearest

Occurrence of asthma diag-
nosis by the age of 10 years

EHRsMean ANSA, median
ANSA, precision, recall,

Demographic data (race, sex, ethnicity,
and language spoken), geographic loca-

Bose et al
[32], 2021

neighbors, logis-following an asthma inci-
dent

F1-score, and accuracy;
XGBoost presented the best

mean ANSAj: mean ANSA

tion (state of residency at the time of
their first asthma diagnosis), insurance
information (Medicaid enrollment), care
site information (place of service such

tic regression,
RFs, and XG-
Boost(0.43), median ANSA

as EDs or office visits and provider spe- (0.43), precision (0.95), re-
cialties at first asthma diagnosis), medi- call (0.82), F1-score (0.88),

and accuracy (0.81)cal hxi (age of first and last asthma diag-
noses and nonasthma-related clinical
visits)

K-means cluster-
ing

Examine risk factors that re-
sult in asthma-related out-
comes in late childhood

EHRs and
health sur-
veys

FVCk, FEV1l, IEm, FEn

(early-onset frequent exacer-
bations), IE (93.7%), and FE

Medical hx and medication use (asthma
diagnosis, use of asthma medication,
current wheeze, asthma severity, and
lung function) and risk factors (environ-

Deliu et al
[33], 2020

(6.3%); shorter duration of
mental tobacco smoke, pet ownership, breastfeeding was the
length of breastfeeding, day-care atten- strongest risk factor.
dance, presence of older siblings, and
family hx of asthma)

FEV1/FVC of FE group:
85.1% at 8 years old

RFs and deci-
sion tree

Evaluating factors in indoor
environments (home vs
school) contributing to asth-

Health sur-
veys

Percentage and PR; top con-
tributing factors: asthma,
family rhinitis hx (relative

Demographic data (sex, race, age, and
grade), family hx (job status, health sta-
tus and hx, and education), insurance

Deng et al
[34], 2021

ma and allergy-related
symptoms

importance: 10.40%), plant
pollen trigger (relative im-
portance: 5.48%), and bed-

information, and risk factors (home
conditions, such as carpet in house, tile
flooring, or home location and year, ani-

room carpet (relative impor-mal triggers, home-related ventilators,
and school characteristics) tance: 3.58%). Allergy-relat-

ed symptoms: plant pollen
trigger (relative importance:
10.88%), higher paternal
education (relative impor-
tance: 7.33%), and bedroom
carpet (relative importance:
5.28%)

Logistic regres-
sion

ED visit because of asthma
exacerbations (also known

as AERo); asthma exacerba-

EHRsAUROC; internal validation:
0.769. 10-fold cross-valida-
tion AUROC: 0.737

Demographic data (age, sex, and race)
and medical hx and medication use (in-
haled or oral steroid prescribed, ED visits
in a year, moderate to severe asthma, and

Gorham et al
[35], 2023

tions: asthma-related emer-
gencyasthma-related primary care visits in a

year)

Decision treeIdentification of wheeze
sounds vs nonwheeze
sounds

EHRsSensitivity, specificity,

PPVp, and NPVq; sensitivity
(100%), specificity (95.7%),

Audio features (wheeze sounds: frequen-
cy, intensity, and duration) and demo-
graphic data (age)

Habukawa et
al [36], 2020

PPV (90.3%), and NPV
(100%)
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ML modelsOutcomesData sourceMetricsPotential predictors, variables of inter-
ests-grouped

Study

Gaussian mix-
ture model-uni-
versal back-
ground model

Classify and differentiate
asthmatic coughs from nor-
mal voluntary coughs

EHRs and
health sur-
veys

Sensitivity (82.81%) and
specificity (84.76%)

Demographic data (age, sex, race, and
weight), clinical parameters and charac-
teristics (temperature, respiratory rate,
heart rate, and shortness of breath), audio
features (cough sounds: mel-frequency
cepstral coefficients and constant-Q
cepstral coefficients), and medical hx
(asthma, allergic rhinitis, and recurrent
wheeze)

Hee et al
[37], 2019

Logistic regres-
sion and ANNs

Asthma hospital readmission
180 days after hospital dis-
charge

Claims data
and biomedi-
cal databases

AUC; logistic regression

(0.592) and ANNss (0.637)

Demographic data (sex and age), insur-
ance, family hx (family member with
alcohol or drug issues, hx of abuse,
housing instability, and foster care),
clinical parameters and characteristics

(LOSr, admission season, and chronic
conditions), and hospital characteristics
(hospital ownership, teaching status, and
hospital size)

Hogan et al
[38], 2022

LASSO, RFs,
and XGBoost

Predict the occurrence of
asthma exacerbation; asthma
exacerbation: any encounter
with an asthma-related ICD-

9 or -10u code and a prescrip-
tion for a systemic steroid

EHRs and
biomedical
databases

AUC at day 30, 90, and 180;

LASSOt (0.753, 0.740, and
0.732), RFs (0.757, 0.747,
and 0.729), and XGBoost
(0.761, 0.752, and 0.739)

Demographic data (age and sex), medical
hx and medication use (comorbidities
and prescribed asthma control plan), in-
surance, and health care use (inpatient
admissions, ambulatory visits, and ED)

Hurst et al
[39], 2022

LASSO, elastic
net, RFs, and
stochastic gradi-
ent boosting

Distinguish between healthy
children, those with mild to
moderate allergic asthma,
and those with nonallergic
asthma

Health sur-
veys and
biomedical
databases

AUC; boosting was the best
model for all data sets: 0.81

Clinical parameters and characteristics

(genes, including PKN2v, PTK2w, and

ALPPx, and breastfeeding), and demo-
graphic data (age and sex)

Krautenbach-
er et al [40],
2019

ANNsUse of vital sign data to pre-
dict the presence of asthma
and to generate a novel pedi-
atric-automated asthma
score

EHRs and
biomedical
databases

Median absolute error; bal-

anced set MAEz: 1.21

Demographic data (age, sex, and race)
and medication use, medical hx, and

medications (LOS, PASy including vital
sign data such as heart rate, respiratory
rate, oxygen saturation, respiratory sup-
port, and medications)

Messinger et
al [41], 2019

NLPIdentifying characteristics
that will identify childhood
asthma and its subgroups
using 2 algorithms

EHRsPercentage;

NLPab-PACac+/NLP–APIad+:
1614 (20%), NLP-PAC+
only: 954 (12%), NLP-API+
only: 105 (1%), and NLP-
PAC–/NLP-API–: 5523
(67%); NLP-PAC) and
NLP-API); asthmatic chil-
dren classified as NLP-
PAC+/NLP-API+ showed
earlier onset asthma, more

Th2ae-high profile, poorer
lung function, higher asthma
exacerbation, and higher risk
of asthma-associated comor-
bidities compared with other
groups

Demographic data (age, sex, ethnicity,
and weight), family hx (asthma and
smoking during pregnancy), medical hx
(diagnosis of asthma, eczema, allergic

rhinitis, eosinophilia, total IgEaa, asthma
and associated outcomes such as persis-
tent asthma, pertussis, pneumonia), and
health care use (visits per year)

Seol et al
[42], 2020

NLPDetermine the presence of
asthma exacerbation to re-
duce its frequency using
clinical information; asthma
exacerbation: ED visit, hos-
pitalization, or outpatient
visit requiring systemic cor-
ticosteroids for asthma

EHRsIQR and P value; asthma
exacerbation: intervention
12%, control 15%, P=.60;
Time (min) taken by the
clinician to take a clinical
decision, median: interven-
tion 3.5 min vs control 11.3
min

Medical hx and medications (IgE count,
eosinophil count, smoking exposure, hx
of allergic rhinitis, previous exacerba-
tions, asthma diagnosis, and medication
use) and demographic data (age, sex, and
race)

Seol et al
[25], 2021
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ML modelsOutcomesData sourceMetricsPotential predictors, variables of inter-
ests-grouped

Study

RFs and logistic
regression

Predict the need for hospital-
ization of pediatric patients
with asthma

EHRsAUC, accuracy, and F1-;
model 1: triage (RF-AUC
0.831, accuracy 0.777, and
F1-score 0.635, and logistic
regression-AUC 0.795, accu-
racy 0.731, and F1-score
0.564); model 2: 60 minutes
after patients’ arrival (RF-
AUC 0.886, accuracy 0.795,
and F1-score 0.689, and lo-
gistic regression-AUC
0.823, accuracy 0.753, and
F1-score 0.618)

Demographic data (age, race, and sex),
insurance, medical hx, and medications
(ED and treatment factors: time to triage,
time to first medication and asthma
medication, ED hourly volume, and dis-
position including admitted or dis-
charged)

Sills et al
[43], 2021

aML: machine learning.
bAUROC: area under the receiver operating characteristic curve.
cAUC: area under cover.
dPR: precision recall.
eEHR: electronic health record.
fED: emergency department.
gSVM: support vector machine.
hRF: random forest.
ihx: history.
jANSA: average negative predictive value specificity area.
kFVC: forced vital capacity.
lFEV1: forced expiratory volume in the first second.
mIE: infrequent exacerbation.
nFE: frequent exacerbation.
oAER: asthma emergency risk.
pPPV: positive predictive value.
qNPV: negative predictive value.
rLOS: length of stay.
sANN: artificial neural network.
tLASSO: least absolute shrinkage and selection operator.
uICD-9 or -10: International Classification of Diseases, 9th or 10th Revisions.
vPKN2: protein kinase N2.
wPTK2: protein tyrosine kinase 2.
xALPP: alkaline phosphatase, placental.
yPAS: pediatric asthma score.
zMAE: masked autoencoder.
aaIgE: immunoglobulin E.
abNLP: natural language processing.
acPAC: predetermined asthma criteria.
adAPI: Asthma Predictive Index.
aeTh2: T helper 2 cells.

Studies that attempted to predict asthma diagnosis included a
range of features, ML models, and metrics [32,41]. One study
used demographic data such as race, sex, ethnicity, and language
spoken, alongside medical history factors such as age at first
and last asthma diagnoses and the number of nonasthma-related
clinical visits, as well as geographic information such as the
state of residency at the time of the first asthma diagnosis and
insurance details, including Medicaid enrollment [32]. Another
study focused on using patients’medical history and medication
use, along with vital sign data, to predict the presence of asthma

and generate a novel PAS [41]. Various ML models were used,
including naive Bayes, k-nearest neighbors, logistic regression,
RFs, ANNs, and XGBoost, with ANNs and XGBoost showing
the best performance. The metrics used to evaluate these models
included mean average NPV specificity area, median average
NPV specificity area, precision, recall, F1-score, and accuracy.

To identify potential risk factors for asthma-related outcomes,
particularly focusing on the severity of symptoms and lung
function, various ML models were used [33,34]. One study
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examined a range of variables, including medical history and
medication use, such as asthma diagnosis, current wheeze,
asthma severity, and lung function, alongside risk factors such
as environmental tobacco smoke, pet ownership, length of
breastfeeding, day-care attendance, presence of older siblings,
and family history of asthma. K-means clustering was used to
identify patterns and categorize risk factors associated with
different asthma outcomes [33]. Evaluation metrics included
forced vital capacity and forced expiratory volume in the first
second, with specific attention to infrequent exacerbations and
early-onset frequent exacerbations. Shorter breastfeeding
duration emerged as the strongest risk factor, with the forced
expiratory volume in the first second/forced vital capacity ratio
in the frequent exacerbation group being 85.1% at 8 years old
[33]. Another study focused on demographic data, such as sex,
race, age, and grade, along with family history variables,
including job status, health status, and education [34]. The study
also considered insurance information and risk factors such as
home conditions (eg, presence of carpets or tile flooring and
home location and year), animal triggers, home-related
ventilators, and school characteristics. Using RFs and decision
trees, the study identified key contributors to asthma and
allergy-related symptoms. The metrics used included prevalence
ratios. Significant factors for asthma included a family history
of rhinitis (relative importance of 10.40%), plant pollen trigger
(relative importance of 5.48%), and bedroom carpet (relative
importance of 3.58%). For allergy-related symptoms, important
factors were plant pollen trigger (relative importance of
10.88%), higher paternal education (relative importance of
7.33%), and bedroom carpet (relative importance of 5.28%)
[34].

To identify and classify asthmatic sounds, particularly focusing
on wheezing and cough patterns, various ML models were used
through a combination of audio features, demographic, and
clinical data [36,37]. One study focused on differentiating
between wheezing and nonwheezing sounds using a decision
tree model [36]. The key features analyzed included audio
characteristics such as the frequency, intensity, and duration of
wheezing sounds, along with demographic data such as age.
The model’s performance was evaluated using metrics such as
sensitivity, specificity, positive predictive value, and NPV. The
decision tree model achieved a sensitivity of 100%, specificity
of 95.7%, positive predictive value of 90.3%, and NPV of 100%,
demonstrating its high accuracy in identifying wheezing sounds
among pediatric patients [36]. Another study aimed to classify
and differentiate asthmatic coughs from normal voluntary
coughs using a Gaussian mixture model-universal background
model [37]. This study incorporated audio features such as
mel-frequency cepstral coefficients and constant-Q cepstral
coefficients, along with demographic data (age, sex, race, and
weight) and clinical parameters (temperature, respiratory rate,
heart rate, and shortness of breath). In addition, medical history
factors such as asthma, allergic rhinitis, and recurrent wheezing
were included. The model’s effectiveness was measured using
sensitivity and specificity, achieving sensitivity of 82.81% and
specificity of 84.76% [37]. These metrics indicate the model’s
robustness in accurately classifying asthmatic coughs and
distinguishing them from normal coughs.

Common Limitations in the Reviewed Studies
A recurring theme in the limitations reported by the included
studies pertains to challenges with data quality and
completeness. Issues such as missing, incomplete, or limited
data availability from medical records and health surveys were
highlighted in several studies [34,38,41-43]. These data
constraints can significantly impact the robustness and
generalizability of the study findings. In the context of predicting
asthma exacerbations, 3 studies specifically cited deficiencies
in electronic health records (EHRs) [30,41,42] and pointed out
the lack of critical variables in EHRs, such as socioeconomic
status and adherence to treatment. These deficiencies arose from
variables not being commonly recorded in EHRs. The absence
of these variables can limit the depth and accuracy of predictive
modeling, thereby affecting the models’ performance and
generalizability. Another notable limitation was the issue of
imbalanced data sets [30-32], which refers to situations where
the number of observations in different classes is
disproportionately distributed. For example, if there are
significantly more cases of nonasthmatic patients compared to
patients with asthma, this imbalance can lead to biased or
skewed models that do not perform well across all classes. Small
sample sizes, which can affect the statistical power and validity
of the findings, were also a concern in a few studies
[25,31,33,40]. A small sample size generally refers to a data set
that is not large enough to yield statistically significant results
or reliable conclusions. This can vary depending on the study
design and statistical methods used, but typically, small sample
sizes limit the ability to generalize findings to a larger
population. In addition, limitations were identified in studies
focusing on wheezing and asthmatic cough recognition
algorithms. For example, a study developed a wheeze detection
device for use in home environments, raising questions about
its clinical value because of the specific context of its intended
application [36]. Similarly, another study [37] on an asthmatic
cough recognition algorithm highlighted that its validity and
accuracy depended on the correct labeling of coughs by
attending physicians. These limitations underscore the need for
improved data quality and data collection processes to enhance
the reliability and applicability of ML models in pediatric asthma
research.

Discussion

Principal Findings
This scoping review successfully identified 15 peer-reviewed
studies published since 2019, focusing on ML models in
predicting pediatric asthma outcomes. Model use was diverse:
logistic regression (7 studies), RFs (6 studies), gradient boosting
(4 studies), ANNs (3 studies), decision trees (2 studies), NLP
(2 studies), and Gaussian mixture model (1 study), with area
under the curve ranging from 0.62 to 0.88. Most studies (n=8,
53%) had a low to moderate risk of bias, and they were
evaluated using PROBAST.

Comparative Analysis of ML Models
Among traditional ML models, logistic regression has
demonstrated robustness, particularly in predicting
hospitalization needs in pediatric asthma cases [30-33,35,38,43].
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However, comparing logistic regression to RFs reveals that the
latter offers superior performance in certain scenarios. For
instance, RFs exhibited a higher area under the curve at the
1-hour postarrival time point in predicting hospitalization needs
[43].

Gradient boosting models, particularly XGBoost, showed
promise in certain scenarios. For example, in predicting early
childhood asthma persistence, XGBoost matched the accuracy
of logistic regression [32]. However, these models still lag
slightly behind logistic regression and RFs in classifying asthma
types, highlighting the potential differences in model efficacy
across various applications.

The application of ANN provided promising results in predicting
ED visits and asthma readmissions [30,38]. However, their
performance, especially in complex clinical settings, warrants
additional exploration and comparison with more conventional
models. Decision trees, applied in more niche areas such as
environmental risk assessment and wheeze sound recognition,
demonstrated high accuracy and specificity [34,36]. NLP
models, used within EHRs, helped early identification of
pediatric asthma criteria [25,42], and Gaussian mixture models
were applied to differentiate between patients with asthma and
nonasthmatic patients through auditory recognition of types of
coughs [37].

Application of Predictive Models Across Different
Outcomes
Among the 15 studies, key outcomes include predicting asthma
exacerbations requiring urgent care, classifying asthma
phenotypes by identifying allergic versus nonallergic asthma
and severity levels, predicting asthma diagnoses and calculating
PAS, and identifying potential risk factors such as symptom
severity and lung function. In addition, sound-based diagnosis
studies focused on distinguishing wheezing and differentiating
asthmatic from normal coughs. One study [39] developed
predictive models for pediatric asthma exacerbations using
sociodemographic data, comorbidities, medication prescriptions,
prescribed asthma controller plans, and patient service use
history. This algorithm functioned as a potent tool capable of
identifying children at risk of asthma exacerbations.
Consequently, it signaled when preventive measures would be
valuable to implement. Several studies used ML models to
predict hospitalization needs and readmission risks using
demographic variables. The studies by Sills et al [43] and Hogan
et al [38] used ML models using varying features, including
demographic variables such as sex, age, and race to predict
hospitalization needs and readmission risks. Sills et al [43]
demonstrated the potential of 2 distinct ML models to predict
hospitalization in pediatric asthma cases, highlighting the
models’utility as supportive tools for clinical decision-making.

Similarly, Hogan et al [38] used an ANN algorithm to predict
asthma readmissions within 180 days after discharge, finding
that ANN outperformed traditional models in identifying
readmission predictors. AlSaad et al [30] and Gorham et al [35]
conducted studies focusing on predicting ED visits using data
from EHRs/electronic medical records. Notably, the studies
found that increased access to primary care with regular
follow-ups resulted in fewer ED visits, suggesting that more

frequent visits allowed for better assessment and management
of asthma. Their findings suggest that ML models can
effectively identify children with asthma who are at higher risk
of repeated ED visits. Given the challenges associated with
frequent ED use in emergency care, these prediction models
emerge as valuable tools in enhancing asthma management and
assisting in clinical decision-making.

We also examined the role of ML in asthma diagnosis in a
pediatric population. One study [37] developed an ML model
to distinguish between asthmatic and normal coughs by creating
a database of cough sounds from asthmatic and nonasthmatic
children. Another study [36] focused on an ML-based wheeze
detection algorithm, analyzing lung sounds recorded through
stethoscopes. Both these studies exemplify the use of ML in
identifying asthma symptoms accurately. In addition, an ML
algorithm was explored to automate asthma severity scoring,
aiming to create a pediatric asthma respiratory score from vital
sign data [41]. Additional research [42] used an NLP model to
identify asthma early in children, and another study [25]
developed the Asthma Guidance and Prediction System using
ML and NLP to enhance asthma management programs and
reduce asthma exacerbations. These studies collectively
demonstrate the considerable potential of ML in improving the
diagnosis, severity assessment, and management of pediatric
asthma.

In examining asthma phenotypes, several studies have leveraged
ML to categorize different characteristics of asthma. Two studies
implemented various ML techniques [31,32], focusing on EHR
data to classify asthma types. One study [31] aimed to
distinguish between allergic and nonallergic asthma, whereas
another study [32] sought to predict persistent versus transient
asthma. Similarly, 2 studies [25,42] used EHR data and applied
an NLP algorithm to identify pediatric asthma subgroups. This
capability to distinguish between different types of asthma can
significantly inform clinical decisions and guide parents in
choosing appropriate asthma treatments, as highlighted by others
[32].

Further support for the use of ML in understanding asthma
phenotypes and allergies comes from the studies of Deng et al
[34] and Krautenbacher et al [40], each adopting a unique
approach. Deng et al [34] used ML models to assess risk factors
in home and school environments affecting asthma and allergies.
In contrast, Krautenbacher et al [40] developed a unique ML
method to enhance the prediction of childhood asthma
phenotypes, specifically distinguishing between allergic and
nonallergic asthma, using various inputs such as genotypes,
questionnaires, and diagnostic tools. Both studies effectively
demonstrated the potential of ML models in identifying asthma
and allergy risk factors as well as in improving the classification
of childhood asthma types. Similarly, another study [33] applied
ML to analyze wheeze exacerbation trajectories in children
using medical record data, revealing diverse exacerbation
patterns, early life risk factors, and asthma outcomes. This study
aligns with the others in using ML to discern patterns predictive
of childhood asthma. Jeddi et al [46] further emphasize the
significance of these findings, noting that the ability to identify
factors associated with childhood asthma via ML can help
predict children considered susceptible. This prediction, in turn,
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enables the implementation of targeted interventions to prevent
the onset of the disease.

Future Directions and Key Considerations
Applying ML models to predict asthma outcomes in children
involves several critical considerations to ensure accuracy,
reliability, and applicability. The basis of any ML model is the
data it is trained on. It should be comprehensive and include
variables such as age, sex, family medical history, environmental
exposures (such allergens, pollutants, and community viral
loads), lifestyle factors (diet and physical activity), and clinical
data (symptoms, medication use, lung function tests, etc).
Several studies highlighted missing or incomplete data in
medical records and health surveys [34,38,41-43], which
underscores the importance of robust strategies for handling
such data challenges. For example, studies have demonstrated
that simple imputation methods, considering informative
missingness, can be effective in managing missing numerical
data in EHR for ML [47]. In addition, research on imputing
missing values in laboratory data from EHRs has shown that
the pattern of missingness is typically nonrandom and closely
related to patients’ comorbidities, suggesting that multilevel
imputation algorithms are more effective than cross-sectional
methods [48].

Another point to consider is that asthma is a chronic condition
with variable progression over time. Incorporating longitudinal
data, which means tracking patient data over time, can help the
model recognize patterns and predict future exacerbations or
improvements. In addition, there is limited information on the
choice of ML models across different age groups within the
pediatric population. This gap highlights the need for future
research to specifically address the performance and
applicability of ML models in different pediatric age groups.
This approach could provide valuable insights into age-specific
predictive features and model adjustments.

Beyond accuracy, the model must also be interpretable [49].
Clinicians and patients should be able to understand how and
why a particular prediction was made, which builds trust and
ensures that the model’s findings are useful in real-world clinical
decision-making. The model should also integrate seamlessly
into existing clinical workflows. This involves considering how
predictions will be delivered and their impact on clinical
decision-making and ensuring they are in a format that health
care providers can understand and easily incorporate into their
existing decision-making processes. Previous research has
shown that user-centered design is essential for successful
implementation. For instance, a study involving 14 clinicians
highlighted the need to identify patients at high risk and take
proactive measures to manage asthma effectively [50].
Clinicians emphasized the importance of clear, actionable
insights from the tool and understanding the underlying reasons
for predictions. Barriers to implementation included usability

and workflow integration challenges; the need for clear
algorithm explainability; and ensuring the tool’s acceptability,
adoption, and sustainability through proper design and training
[50]. By involving clinicians in the design process, the tool was
tailored to meet their needs, which underscores the importance
of user-centered design in developing effective clinical decision
support tools.

Strengths of this review included a comprehensive and
systematic search across multiple databases, along with
establishing clearly defined inclusion and exclusion criteria.
The structured study selection process added robustness to the
review. In addition, the use of the PROBAST tool for risk of
bias assessment augmented the credibility of the review [44].
However, the review also had limitations that should be
acknowledged. Despite a broad and inclusive search strategy
designed to capture all subtypes of ML related to childhood
asthma, some relevant studies might not be published in the
indexed journals included in our search databases, and thus,
there remains a possibility that some pertinent articles may have
been inadvertently excluded.

This review highlights the potential of ML in transforming
pediatric asthma care, from predicting exacerbations to
characterizing asthma types. However, it also underscores the
need for improved data quality, larger and more balanced data
sets, and more rigorous validation to ensure these tools are
clinically valuable. The exploration of varied ML techniques
across studies offers a road map for future research to build
more accurate, reliable, and applicable models for pediatric
asthma management.

Conclusions
This scoping review provides a broad overview of ML
applications used to predict asthma-related outcomes in children.
We reviewed a diverse range of studies focused on the design,
training, testing, and interpretation of ML models and observed
that using ML in childhood asthma is an emerging field that
has seen significant growth over the past few years. This recent
surge in research highlights the evolving nature and increasing
interest in applying ML to improve pediatric asthma outcomes.

By leveraging data from multiple sources, ML approaches have
made strides in identifying distinct asthma phenotypes, paving
the way for more tailored and effective treatment strategies in
clinical practice. However, the field faces ongoing challenges,
particularly regarding minimizing missing data, ensuring robust
model validation, and achieving interpretability. In addition,
integrating these models smoothly into clinical workflows
remains a key obstacle. While ML holds considerable promise
in pediatric asthma research, the field is still evolving. To fully
realize its potential, further research is needed to address these
challenges and enhance the practical application of ML models
in clinical settings.
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PROBAST: Prediction Model Risk of Bias Assessment Tool
RF: random forest
SVM: support vector machine
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Abstract

The China State Council released the new generation artificial intelligence (AI) development plan, outlining China's ambitious
aspiration to assume global leadership in AI by the year 2030. This initiative underscores the extensive applicability of AI across
diverse domains, including manufacturing, law, and medicine. With China establishing itself as a major producer and consumer
of medical devices, there has been a notable increase in software registrations. This study aims to study the proliferation of health
care–related software development within China. This work presents an overview of the Chinese regulatory framework for medical
device software. The analysis covers both software as a medical device and software in a medical device. A comparative approach
is employed to examine the regulations governing medical devices with AI and machine learning in China, the United States,
and Europe. The study highlights the significant proliferation of health care–related software development within China, which
has led to an increased demand for comprehensive regulatory guidance, particularly for international manufacturers. The comparative
analysis reveals distinct regulatory frameworks and requirements across the three regions. This paper provides a useful outline
of the current state of regulations for medical software in China and identifies the regulatory challenges posed by the rapid
advancements in AI and machine learning technologies. Understanding these challenges is crucial for international manufacturers
and stakeholders aiming to navigate the complex regulatory landscape.

(JMIR AI 2024;3:e46871)   doi:10.2196/46871

KEYWORDS

NMPA; medical device software; device registration; registration pathway; artificial intelligence; machine learning; medical
device; device development; China; regulations; medical software

Background

New software solutions that are being developed, especially
medical devices that combine artificial intelligence (AI) and
machine learning (ML), show a huge potential for patient
benefit. These kinds of applications can be used across different
medical conditions, with the potential for easy scale-up to larger
populations. It can reduce the burden on health care
professionals and decrease the possible risk of missing vital
information. For example, radiology software is used to screen
and diagnose large amounts of X-ray images [1]. A combined
AI and ML approach can also be applied in, for example,
oncology for the next‐generation sequencing [2], in

ophthalmology for image recognition [3], or as a support system
for general medical decision-making [4]. ML models have been
used for anything from improving outcomes for diabetic patients
[5] to tuberculosis diagnosis [6]. Many of these approaches
should be applicable on a global scale, and thus there is a
growing interest in applying these solutions across borders. This
has led clinicians, academics, and manufacturers to look at
China and its medical device regulatory environment. However,
navigating China's regulatory environment presents inherent
complexities stemming from language barriers, geographical
distances, and a general lack of familiarity with the regulatory
framework. These complexities are augmented by innovative
products that can have unconventional regulatory requirements.
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Easing these barriers holds the potential to facilitate the seamless
exchange of solutions across international boundaries, fostering
mutual opportunities. This paper provides a regulatory view of
China, the biggest booming market for medical device software,
and discusses the implications for global manufacturers.

China AI Development Plan

The 21st century has seen a rapid development of the Chinese
economy and its ability to produce, manufacture, and distribute
technology. In 2017, the China State Council published a white
paper discussing a new generation AI development plan [7].
The document indicated that the number of AI scientific papers
published and invention patents granted in China ranked second
worldwide. Several domain-specific applications that were
developed in China have gained widespread attention, including
intelligent monitoring, biometric recognition, industrial robots,
service robots, and unmanned driving. The AI Development
Plan clearly states China’s support for smart medical care,
products, and services that use AI. Moreover, it is stated that
this even should be developed as a priority. The vision is to
establish a major medical system that leverages AI and ML.

China has become a major global producer and consumer of
medical devices [8]. With one of the world’s largest populations
(1.426 billion in 2022) [9], the need is obvious in terms of access
to medical technology. In 2019, the Chinese medical device
market had an estimated revenue value of 629 billion RMB (US
$88.7 billion), more than double of what it was in 2015 (308
billion RMB or US $44.2 billion) before the plan was released
[10]. This coincides with a growing trend of medical device
software (MDSW) registrations [11]. One factor driving this
trend is the potential that digital health offers in terms of ease
of scalability, which provides an opportunity to advance health
care more sustainably.

Global manufacturers seeking to enter the Chinese market must
possess a profound comprehension of the regulatory landscape
governing MDSW. This necessitates a thorough grasp of the
intricacies surrounding registration prerequisites, regulatory
oversight, disparities vis-à-vis regulatory bodies in alternative
geographic regions, and the contemporary device taxonomy
specific to China. Simultaneously, researchers and health care
practitioners must remain vigilant by staying abreast of the latest
developments transpiring within the Chinese milieu. The global
pandemic has unequivocally underscored the imperative of
comprehending and navigating policies and regulations in
foreign jurisdictions, including but not limited to China, as an
indispensable facet of effectively addressing worldwide crises.
By extension, software-based solutions can similarly accrue
significant advantages through adopting a holistic and globally
informed perspective.

Chinese Regulation on Medical Device
Software

After the new generation AI development plan was introduced,
China’s medical products regulatory authority—National
Medical Products Administration (NMPA)—released many
regulations to fit the plan’s theme. In 2022, the NMPA launched
a program on digital health. Two MDSW guidelines were
published as part of this program. Table 1 shows a series of
regulatory documents published with regard to MDSW and
AI-enabled software. The NMPA released the first document
in 2015, while a more up-to-date document was made public
in 2022. This updated version raised more detailed requirements
for the whole life cycle management of these technologies, as
well as for quality management, verification, raw code analysis,
and safety management.

Table 1. China National Medical Products administration (NMPA) regulatory documents for medical device software.

Regulatory documentDate of publication

Guidelines of medical device software registration and review [12]August 2015

Key points of deep learning decision-making assisting medical device software review [13]July 2019

Guidelines for the classification and designation of artificial intelligence medical software [14]July 2021

Guidelines of medical device software registration and review [15]March 2022

Guidelines for the classification and designation of artificial intelligence medical software [16]August 2022

Several standards are referenced in the regulation, and they
include (but are not limited to) standards on the risk level of
software (YY/T0664-2008), on software engineering (GB/t
19003-2008), and those that describe the medical device quality
management requirements (YY/t 0287-2003). These standards
can help with compliance with these new regulations, and this
provides a useful function in the regulatory pathway.

In China, MDSW includes “software as a medical device”
(SaMD) and “software in a medical device” (SiMD). The term
“software as a medical device” is defined by the International
Medical Device Regulators Forum (IMDRF) as software
intended to be used for one or more medical purposes without
being part of a hardware medical device [17]. This delineation

posits the software itself as a standalone medical device.
Conversely, “SiMD” denotes software that functions as an
integral constituent of an entire medical apparatus, such as its
involvement in the operation of magnetic resonance imaging
scanners, x-ray machines, or insulin pumps. In these cases, the
software and other components all fall under the same
registration license “SiMD.” It is noteworthy that in China,
software harnessing AI or ML technologies may concurrently
straddle both the SaMD and SiMD categories.

An overview is given in Figure 1 with regard to how software
devices are categorized from a function or a design perspective.
Devices are initially split into SaMD and SiMD. SaMD is
normally registered separately, while, as mentioned previously
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in the case of SiMD, the software is often registered along with
other components [15]. In the case of SiMD, the software
doesn’t have its own classification, but it shares the same
classification with other parts of the device. The final
classification would then be based on the risk of the whole
device. SaMD can be split into 2 types depending on its
purposes. Its purpose can be (1) general or (2) specific. For the
general-purpose definition, the device can work together with
multiple other devices, as happens in the example of data
processing software. For the specific purpose case, the device

always works with a distinct set of devices for a particular
purpose. An illustration of this is the ophthalmic microscope
image processing software. The SiMD also consists of 2 types
of devices. One type is embedded in a machine (eg, an
electrocardiogram machine), while the other type is externally
controlled. A general-purpose computing platform (eg, a
computed tomography [CT] and magnetic resonance image
acquisition workstation) is a good exemplification of an
externally controlled type of SiMD. The categorization of the
software is a crucial step in the regulatory journey of a product.

Figure 1. Categories of medical device software. CT: computed tomography; ECG: electrocardiography; MRI: magnetic resonance imaging; SaMD:
software as a medical device; SiMD: software in a medical device.

Regulatory Environment in China

The oversight and governance of medical devices within China
are primarily administered by the Center for Medical Device
Evaluation, an integral component of the NMPA. The regulatory
landscape formulated by the NMPA to govern medical devices
is predicated upon a comprehensive framework rooted in
Chinese legislation, regulations, and advisory directives. This
multifaceted regulatory apparatus encapsulates various facets
pertinent to market entry, encompassing the specification of
device categories, the classification of devices, the requisite
content of registration review dossiers, and the imperative facet
of post-market surveillance. In conformity with these regulatory
imperatives, manufacturers need to engage proactively with the
NMPA, necessitating their involvement across all
aforementioned dimensions.

Medical devices are subject to regulatory oversight within a
risk management framework that stratifies these products
according to risk levels, ranging from low risk (class I) to high
risk (class III). In the case of manufacturers engaging in the
importation of medical devices into China, the responsibility
for the review process falls under the purview of national
authorities. Concurrently, certain domestically produced medical

devices are subject to regulatory scrutiny by provincial
authorities. The classification of a medical device within the
Chinese regulatory context necessitates the alignment of its
device description with the pertinent information contained
within the medical device catalog [18].

In general, manufacturers possess 2 principal avenues for
conceiving innovative medical equipment, which are
occasionally amenable to synergistic integration. The first
approach involves commencing with a patient-centered needs
assessment (need-led innovation) to engender a “novel”
technological solution. The alternative approach entails the
development of a “novel” technology, with the subsequent
identification of a correlating patient need [19]. These
innovations can occur either before or after appropriate
regulations have been set [20]. It is common that transformative
ideas initially do not have suitable regulations in place and that
this mismatch can lead to either delays in market adoption or
concerns in terms of device performance and safety. However,
any medical software enterprise aspiring to introduce its product
to the market is mandated to adhere to prevailing regulatory
mandates. Accordingly, a comprehensive comprehension of the
product's classification and regulatory prerequisites within a
specific market is of paramount significance, as the realms of
innovation and regulation engage in a dynamic interplay. A
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good understanding is particularly important, as it has been
suggested that the complexity of medical device regulations
can increase whenever new regulations are formed [21].
Erroneous classification of product risk and the correlated
regulatory obligations can result in exacerbated time and
financial investments for subsequent rectification. Thus, the
incorporation of regulatory considerations should be undertaken
expeditiously, as many decisions regarding the final product
are already made at the early stages of the research and
development process.

Specific Rules for Software and AI

Medical software is basically divided into auxiliary diagnosis
and treatment devices according to their intended use. A detailed
translation of the software catalog can be found in Multimedia
Appendix 1. The SaMD (which begins with code 21 according
to regulation) is categorized into 6 categories: treatment planning
software (21-01), image processing software (21-02), data
processing software (21-03), decision support software (21-04),
in vitro diagnostic software (21-05), and other software (21-06).
If the device to be registered is not included in the list, then it
has to be re-classified through the device designation pathway
[22]. A simple flowchart for the classification of the software
is shown in Figure 2.

Figure 2. Medical device software classification flowchart. AI: artificial intelligence; MRI: magnetic resonance imaging; SaMD: software as a medical
device; SiMD: software in a medical device.

There are 2 branches for SaMD, which are split between AI and
other technologies. If AI is applied, then a further decision is
made according to the level of maturity of the algorithm. A high
maturity level of the algorithm signifies that the safety and
efficacy profiles of the algorithm have been judiciously
established, while conversely, a lower degree of maturity implies
that such establishment has not been ascertained. A
preconsultation meeting could be used to discuss the maturity
level with the NMPA. If the AI algorithm has a well-established
profile, then manufacturers can refer back to Multimedia
Appendix 1, code 21 [18] for classification. A request for
designation could then be sent to the NMPA, if the device is
out of scope. If the maturity degree is low, then there are 2
classifications possible. The device could be classified as a class

III device if it is used for decision support; otherwise, the device
will be assigned a classification of II, which represents a lower
risk class. According to the Medical Device Classification
Catalog [18], a class II device classification is given when the
software does not contain any AI and the medical software is
only used for image and data processing, thus not used for
diagnostics. If it were used for diagnostic purposes, then the
classification would become III. The degree of risk for
diagnostic software is determined by the level of maturity,
registration of the applied algorithm in their database, and the
“object” of interest (referring to a particular disease, such as a
certain type of cancer) [23].

However, if the software just provides diagnostic suggestions
through its algorithm (in other words, it only has an auxiliary
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diagnostic function and does not directly provide a diagnostic
conclusion), then the device can be regulated as a class II
medical device. Yet, if the diagnostic software automatically
recognizes, for instance, a lesion site through its algorithm and
provides clear diagnostic prompts, a class III classification
would be assigned due to the increased relative risk. In general,
medical software using AI technology is currently managed by
designating it the highest possible classification in China. This
is driven by the novelty of the technology, as well as the lack
of in-depth and complete evaluations of the clinical risks. China
has been focusing more on reviewing the algorithm itself, while
in the United States, attention has shifted toward the
manufacturers themselves [24].

It should be noted that not all software applied in the medical
field is regulated as a medical device by the NMPA. If the
software is used to process medical device data for
measurement, model calculation, or analysis, then it is deemed
MDSW and thus regulated by NMPA. If the software is used
for non-medical device data, it will not be regulated as a medical

device under the NMPA. This is the case when software is used
for the processing of general patient information or for patient
testing reports, both of which are not seen as medical device
data.

China’s and the IMDRF criteria share many similarities on how
to determine if the software is a SaMD. According to the
IMDRF [25], the SaMD definition should include a clear
statement about the intended use of the device, and the following
aspects need to be described in order to be able to be regulated
as SaMD (Textbox 1).

In alignment with the IMDRF, the European Medicines Agency
declares that only devices whose intended use includes a medical
purpose and influences the patient’s health care situation can
be deemed to be medical devices. Products such as medical
information management software (which is a hospital
management tool) are also not designated as medical devices.
This is similar to China, since it then does not meet the definition
of a medical device.

Textbox 1. Aspects need to be described in order to be able to be regulated as software as a medical device (SaMD).

• The “significance of the information provided by the SaMD to the health care decision,” which is used to identify the intended medical purpose
of the SaMD.

• The “state of the health care situation or condition” that the SaMD is intended for.

General Registration Process and Clinical
Evaluation

Ordinarily, medical software devices, regardless of whether
they use AI or not, are typically not categorized under class I.
Within the context of classes II and III devices, the registration
process typically takes around 18 months if no clinical trials
are required. However, once clinical trials are needed, the
registration timeline can extend to around 36 months or
sometimes even longer. The exact timeline is dependent on the
complexity of the device and the associated clinical data. It is
of particular importance to note that certain devices may qualify
for expedited processing through a fast-track pathway. Under
these circumstances, not only can registration fees be exempted,
but the registration timeline is accelerated, as it is typically
condensed to approximately 50 working days. Currently, there
are 2 software devices that have been designated under the Fast
Track pathway in China, namely, an implantable left ventricular
assist software system and a coronary CT fractional flow reserve
calculation software, identified by license numbers 20213120987
and 20213210270, respectively. Refer to Figure 3 for an
overview of the registration process for Class II and Class III
software devices.

In accordance with the Notice of the Chinese NMPA, which
relates to the issuance of 5 technical guidelines, including the
Technical Guidelines for Clinical Evaluation of Medical Devices
(number 73 of 2021), it is evident that there exist 3 distinct
pathways for meeting the required clinical standards (see Figure
3). These pathways encompass (1) a clinical exemption, (2) a

clinical comparison, and (3) a clinical trial, each associated with
a gradient of clinical requirements ranging from low to high.
Exemptions can be obtained if the device is part of the catalog
of devices that are exempt. For medical devices not
encompassed within the “Catalog of Medical Devices Exempt
from Clinical Trials,” the pathway of conducting a comparative
analysis with similar products already available on the market
can be explored. This can be realized through the systematic
collection and meticulous analysis of clinical data and other
pertinent evidence, thereby proofing their equivalence and thus
expediting the clinical evaluation process.

The need to conduct clinical trials for AI medical devices is
thus not universally mandated. Furthermore, if clinical trials
are required, then it is not determined solely by their
classification. The requirement to run a clinical trial depends
on the intent and the application. The NMPA's “Guidelines for
the Evaluation of Artificial Intelligence Medical Devices,” states
that for functionalities that do not entail decision-making
assistance and are grounded in core operations, a rigorous
comparative analysis with similar medical devices within the
same category is required. However, for decision-assistive
functions underpinned by core algorithms, a comparative
analysis with equivalent medical devices within the same
category is only advocated. Nonetheless, the devices selected
for comparison should ideally have undergone comprehensive
clinical trials, although historical data may be acceptable in
certain circumstances. Finally, novel functions, algorithms, and
applications should be subjected to exhaustive clinical trials to
ensure their efficacy and safety within the clinical domain.
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Figure 3. Medical device software registration process. NMPA: National Medical Products Administration.

Cultivating AI Software Devices: An
Emerging Trend in China

Following the introduction of the new generation AI
development plan, major shifts have occurred in both investment
and policy domains to align with the overarching objectives of
this plan. Notably, the NMPA, as China's regulatory authority
for medical products, has promulgated a series of regulations
in line with the thematic contours of the plan. In 2022, the
NMPA initiated a digital health program. Over the course of 5
years, the NMPA, operating as a subsidiary of the Chinese
government, has enacted a suite of regulations to govern the
medical device industry, a selection of which is delineated in
Table 1. These encompass pivotal documents such as the “Key
Points of Deep Learning Decision-Making Assisting Medical

Device Software Review [13]” and the “Guidelines for the
Classification and Designation of Artificial Intelligence Medical
Software [14],” as well as the “Guidelines for Medical Device
Software Registration and Review [15]” and a duplicate mention
of the “Guidelines for the Classification and Designation of
Artificial Intelligence Medical Software” [16].

China's concerted efforts in this domain have manifested in
substantial investments and the development of numerous
medical software applications. An illustrative milestone occurred
in the year 2020 when the first AI-based diagnostic software
received approval in China, specifically for employment in CT
image AI-assisted diagnostic software products. As of 2023, an
exhaustive review of the NMPA website has revealed that China
has granted approvals for more than 50 AI medical device
products rooted in deep learning technology [26]. These
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products, predominantly classified as medical software, serve
as pivotal aids in diagnostic processes encompassing CT images,
fundus images, and magnetic resonance images, and are
strategically deployed within specialized fields such as
radiology, ophthalmology, and cardiology. Moreover, regional
governments seem to have demonstrated proactive engagement
with the evolving landscape.

Challenges Posed by Software and AI in
Medical Devices

As AI technology develops further, regulators will also face the
challenge of applying regulatory safeguards to these novel
technologies. The technical complexity of certain medical
software solutions warrants the description of these systems as
a “black box,” due to their inherent opacity [27,28]. In addition,
traditional frameworks for regulation are not suitable for
adaptive AI and ML technologies, since the algorithms are
constantly learning and making changes [29]. Therefore, digital
health care solutions provide a different set of challenges to
regulators and the traditional fixed regulatory framework is not
suitable for this type of AI device. At present, governmental
agencies in the United States, the European Union, and China
have all issued new regulatory methods or frameworks for
MDSW to help cope with the changing landscape.

The regulation of AI devices is to ensure safety, quality, and
reliability requirements are met. One key concern is the
”unlocked“ nature of these devices. ”Locked“ devices mean
that the algorithm provides the exact same result for a (specific)
given input [29]. This contrasts with an “unlocked” algorithm,
which represents a continuous learning algorithm. The
“unlocked” algorithm is also known as an adaptive algorithm,
and it changes its behavior using a predefined learning process
that provides time-based updates from new data with the overall
aim of improving its clinical performance. This algorithm
continuously changes the input-output relationship. Thus, for
a given set of inputs, the output may be different before and
after these changes are implemented. This means that after a
“locked” device has been approved and given access to the
market, the device can continue to self-learn and thus alter its
performance in comparison to when it was first approved. In
this situation, it is difficult for the clinicians or the authorities
to fully trust the device before they use it in practice. So far,
the Food and Drug Administration (FDA) has not yet approved
a device that integrates continual learning AI, as they have only
granted approval to locked systems [29].

The FDA has enacted the Digital Health Innovation Action Plan
[30], with the aim of building a more dynamic approval process
with precertification for companies that will then have the ability
to change the characteristics of a product without needing
ongoing FDA assessment. This enterprise-based approach
(precertification program) is very different from traditional
medical device regulation. The FDA adopted the precertification
program together with the total product life cycle database to
screen for eligible organizations. They also adopted a
“predetermined change control plan.” This plan provides a
complete approach based on the total product lifecycle in a way
that manages the risk to patients in a controlled manner.

The European Union (EU) also enacted new directives to
regulate this fast-changing technology domain. They include
the general data protection regulation (GDPR), cybersecurity
directive, medical devices regulation, and in vitro diagnostic
medical device regulation. The GDPR and the Cybersecurity
Directive took effect in May 2018, whilst the medical devices
regulation was applied in May 2021, with the in vitro diagnostic
medical device regulation following suit a year later. These
recent changes further highlight the moving landscape of
regulations on a global scale.

Besides the apprehension about the increase in regulatory
complexity for AI and ML, other aspects are also starting to
raise concerns. Among those are ethical considerations,
cybersecurity, and the reproducibility of the performance. These
aspects are briefly discussed below.

Ethical Considerations

Ethical issues have been intensely debated since the start of AI
technology development. In the medical field, obvious questions
are posed with regard to data privacy, physician dependency,
and potential bias in post-GDPR algorithms, as well as concerns
about changes in the doctor-patient relationship [31]. People
are also concerned about algorithmic fairness and potential
biases. The algorithms are data-driven, and it could be that the
data used might not meet the required ethical standards.

In April 2019, the National Artificial Intelligence
Standardization General Group in China issued the “Artificial
Intelligence Ethical Risk Analysis Report” [32], which further
clarified that the principle of fundamental human interests
should be considered from three viewpoints: (1) the impact on
society, (2) the AI algorithm, and (3) the used data. All these
ethical concerns need to be navigated in order to create
appropriate technology that can be used in the clinic.

Reproducibility

Reproducibility is also an important item in the field of AI.
Nowadays, many AI devices face a problem as their outcomes
are not verifiable by third parties [33]. The reasons for this can
be related to the quality of the data, data inputs, the transparency
of data, or the code used for processing, to name a few factors
[34]. There is a particular concern for adaptive AI, as the data
upon which the model would be built changes, which in turn
can trigger a change in outputs. Consideration should also be
given to the need for detailed information on the data processing
and training pipelines, as this is often lacking [35].

NMPA issued a document (number 8, 2022) [16] that requires
reproducibility evidence from the sponsor in multiple dossier
sections. These sections include user need analysis, algorithm
property evaluation, and algorithm verification and validation.
In the algorithm property evaluation, it suggests that applicants
should consider requirements such as false negatives and false
positives (indicators and relationships), repeatability,
reproducibility, and robustness. At the same time, all factors
that affect algorithm performance should be analyzed, and their
degree of influence should be determined. This includes things
such as the acquisition equipment, acquisition parameters,
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disease composition, and lesion characteristics, among others.
Taking these into account will improve algorithm interpretability
and it can serve as the basis for software verification and
validation [36].

Cybersecurity

Like other computer systems, MDSW can be vulnerable to
security breaches [37]. It has been suggested that 53% of
connected medical devices contain critical vulnerabilities, and
health care professionals struggle to maintain the inventories
of connected devices [38]. For many years, cyberattacks have
been identified as the top health tech hazard within this space
[38]. The FDA indicates that cybersecurity issues could directly
impact the safety and effectiveness of the device, as further
harm can be caused to the patients who are using them [37].
Reducing cybersecurity risks is especially challenging while
medical devices interact with human bodies; as a result, it
becomes a multidisciplinary problem concerning engineering,
computer science, medical, and physical sciences.

The IMDRF issued Principles and Practices for Medical Device
Cybersecurity in 2020 [39], which introduces a “total product
life cycle” risk reduction plan for cybersecurity. Authorities are
now focusing on scrutinizing applicants’ dossiers to make sure
a thorough plan has been designed, which contains a risk
management process, risk analysis, risk control or residual risk,
post-marketing plan, etc. In 2022, the NMPA released a new
version of principles of medical device cybersecurity technical
evaluation [40], which also ensures data confidentiality,
integrity, availability, authenticity, accountability,
nonrepudiation, and reliability are covered according to GB/t
29246-2012. The NMPA suggests that applicants make sure
that the risk management method is applied throughout the
whole life cycle to ensure patient safety. They will focus on
quality control across all stages mentioned before in both the
pre- and postmarket phases.

Future Directions

Since China joined the IMDRF in 2013 [41], China has adopted
and referenced international regulatory methods when
formulating its own regulations. Regulatory similarities between
China and other countries have been witnessed and
demonstrated. However, China also has its own local
requirements, standards, and regulatory ideologies, which can
be an additional layer of complexity for global manufacturers
who want to bring their medical devices to the Chinese market.

There are different aspects for global manufacturers to pay
attention to when they want to leverage US or EU experience
for the Chinese market. In China, the focus is more on the
maturity of the algorithm, which is different from the FDA
sponsor qualification program. Differences in sample
populations upon which the algorithm is built are another key
consideration, in addition to the requirement to ensure data
confidentiality and the protection of patients in a specific region.
In the Regulatory Science Action Plan issued by NMPA in 2019

[42], there is a clear focus on AI, which suggests more
regulations might be developed with an increased level of
harmonization with the US, EU, or other markets. Nonetheless,
regulatory inconsistency still exists between countries. The
same device can be regulated very differently across borders,
which poses global manufacturers with big challenges. Large,
well-founded medical device companies usually have global
regulatory affairs professionals that deal with this situation, but
innovation may also arise from small research teams at
universities or innovative small and medium enterprises. In this
situation, the complexity of the regulatory environment will
hinder the potential of influential new products to enter the
market. The regulatory strategy will need to differ from region
to region to provide the best possible match for each.

For example, in the United States, a high-tech device could be
registered as a class II device if it is like a predicate device that
has already been registered. In this case, the characteristics need
to be the same, and there should not be any cause for concern
with regard to the safety and effectiveness of the device.
However, in China, manufacturers will need to refer to the
classification catalog, which aims to classify the device based
on its own safety and effectiveness. If it is a high-tech device,
then it becomes more likely that it will be seen as a class III
device in China. This means that the device will face more
stringent registration requirements, including clinical evaluation
and even trials. Manufacturers need to consider this when they
start to map their market potential globally, as it could become
a regulatory barrier for them.

Strategically, some manufacturers would choose to register their
devices first in the United States and then explore China or other
markets. The United States regulation is also focused on the
sponsor criteria and “Current Good Manufacturing Practice”
alongside the assessment of the software algorithm itself, which
makes it more organization-centric [43]. Another registration
strategy could be to register half of the medical devices that are
in the development stage (also called “pipeline products”) in
the United States and the other half in China. After getting
feedback from both authorities, they can switch them over. In
the United States, applicants of new devices can go through the
De Novo premarket pathway or Breakthrough Device
designation to register their technology [43]. In China, there
exists a “Green Channel” for software with urgent medical
needs.

It is imperative for international manufacturers and regulatory
authorities to engage in collaborative endeavors aimed at
delineating optimal regulatory pathways for each AI and ML
product. Establishing a conducive environment where
stakeholders can engage in reciprocal learning is of paramount
importance. Enhanced comprehension of regional regulatory
variations serves as a catalyst for fostering an environment
conducive to mutual learning and collaboration. Bolstering
global regulatory awareness in the health care technology sphere
has the potential to catalyze new opportunities, ultimately
yielding enhanced benefits for patients in the long term.
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Abstract

Clinical decision-making is a crucial aspect of health care, involving the balanced integration of scientific evidence, clinical
judgment, ethical considerations, and patient involvement. This process is dynamic and multifaceted, relying on clinicians’
knowledge, experience, and intuitive understanding to achieve optimal patient outcomes through informed, evidence-based
choices. The advent of generative artificial intelligence (AI) presents a revolutionary opportunity in clinical decision-making.
AI’s advanced data analysis and pattern recognition capabilities can significantly enhance the diagnosis and treatment of diseases,
processing vast medical data to identify patterns, tailor treatments, predict disease progression, and aid in proactive patient
management. However, the incorporation of AI into clinical decision-making raises concerns regarding the reliability and accuracy
of AI-generated insights. To address these concerns, 11 “verification paradigms” are proposed in this paper, with each paradigm
being a unique method to verify the evidence-based nature of AI in clinical decision-making. This paper also frames the concept
of “clinically explainable, fair, and responsible, clinician-, expert-, and patient-in-the-loop AI.” This model focuses on ensuring
AI’s comprehensibility, collaborative nature, and ethical grounding, advocating for AI to serve as an augmentative tool, with its
decision-making processes being transparent and understandable to clinicians and patients. The integration of AI should enhance,
not replace, the clinician’s judgment and should involve continuous learning and adaptation based on real-world outcomes and
ethical and legal compliance. In conclusion, while generative AI holds immense promise in enhancing clinical decision-making,
it is essential to ensure that it produces evidence-based, reliable, and impactful knowledge. Using the outlined paradigms and
approaches can help the medical and patient communities harness AI’s potential while maintaining high patient care standards.

(JMIR AI 2024;3:e55957)   doi:10.2196/55957
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Clinical Decision-Making and Clinical
Intelligence

Clinical decision-making can be defined as a fundamental aspect
of health care practice, encompassing a wide set of skills,
competencies, processes, and outcomes through which clinicians
gather and analyze relevant patient data; differentiate among
various conditions; and diagnose, treat, and manage patient care,
balancing the effectiveness, risks, and benefits of each treatment;
patient preferences; and other related values within broader
societal and cultural contexts and guidelines or standards of
care [1-3].

Clinical decision-making involves a complex interplay of
research and biomedical knowledge, experience, and intuitive
understanding developed through years of practice, contextual
analytical reasoning, patient-centeredness, and compliance with
ethical standards and legal requirements, with the goal of
arriving at optimal health outcomes for patients by making
informed, evidence-based, and shared choices while ensuring
patient autonomy and confidentiality [4,5].

The 4 major pillars of clinical decision-making are scientific
evidence, clinical judgment (in some complex cases not isolated
to 1 clinician but involving a team of health care professionals,
each contributing their expertise), ethical considerations, and
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patient involvement, which are pivotal to the delivery of
high-quality health care [6,7].

Clinical decision-making is not a static but rather a dynamic,
multifaceted, iterative process based on reflective practice,
which implies reviewing and auditing clinical decisions and
outcomes to continuously learn and improve decision-making
skills in the face of uncertainty and epistemic risks [5,8].

The Advent of Generative Artificial
Intelligence and Its Role in Supporting
Clinical Decision-Making

Artificial intelligence (AI) [9] and, in particular, generative AI
[10] have the potential to revolutionize the field of clinical
decision-making with their advanced capabilities in data analysis
and pattern recognition. However, together with their rise, there
is a growing necessity to ensure that the knowledge used and
produced is evidence based and reliable. This necessity stems
from the potential risks and biases associated with AI-generated
insights that may not align with established medical knowledge
or practices.

Generative AI can process vast amounts of medical data,
including patient records, imaging data, laboratory test results,
other diagnostic inputs, and clinical studies, as well as research
papers, to identify patterns and correlations that might be missed
by clinicians. By analyzing patient data, generative AI can help
in tailoring treatments to individual patients, improving the
efficacy of therapies and reducing side effects, predicting disease
progression and potential complications, aiding clinicians in
proactive patient management, and assisting in diagnosing

diseases, potentially identifying conditions earlier and more
accurately than using traditional methods [11].

On the other hand, generative AI can produce “hallucinations”
or even “fabrications” and “falsifications,” generating inaccurate
or misleading information that does not accurately reflect the
data it was trained on or reality [12,13], which is of particular
concern in the medical realm.

Addressing these challenges requires a multifaceted approach,
including improving data set quality and diversity, refining
model architectures, and incorporating mechanisms for fact
checking and validation. Moreover, developing methodologies
for the model to express uncertainty or request clarification
when generating outputs on topics in which it has less
confidence could enhance reliability. In real-world clinical
applications where accuracy and truthfulness are paramount, it
is crucial to implement safeguards such as human oversight,
rigorous testing across diverse scenarios, and continuous
monitoring and updating of AI-based models to mitigate the
risks associated with these inaccuracies.

In this conceptual paper, to address these concerns, we introduce
11 “verification paradigms,” with each paradigm being a unique
method to verify the evidence-based nature of AI in clinical
decision-making.

Comparing Clinical Versus AI Reasoning

Interesting parallelisms between clinical decision-making and
AI reasoning can be drawn (Figure 1), especially in the context
of frequentist and Bayesian thinking and large language models
(LLMs) such as GPT-4, which use conditional probability,
revealing an interesting interplay of similarities and contrasts
[5].

Figure 1. Integrating clinical expertise with artificial intelligence (AI) for enhanced health care outcomes—a schematic representation of the flow and
interplay among traditional clinical reasoning, data acquisition, AI-driven predictive analytics, and the continuous learning cycle leading to improved
patient care and diagnostics. This figure was created with BioRender.com.

In clinical decision-making, the reliance on scientific evidence
mirrors AI’s dependence on extensive data sets for training.

Clinicians, through years of practice, develop an intuitive sense
of diagnosis and treatment. Clinical reasoning often involves
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abductive reasoning, which is a form of logical inference that
starts with an observation or set of observations and then seeks
to find the simplest and most likely explanation. In clinical
practice, this means forming hypotheses based on symptoms
and available data to diagnose a patient’s condition. AI,
particularly in fields such as machine learning and diagnostic
algorithms, also frequently uses abductive reasoning—AI-based
systems are, indeed, designed to analyze data, identify patterns,
and make predictions or decisions based on that analysis. In
many ways, this mirrors the process of abductive reasoning in
which the most likely conclusion is drawn from the available
information. For example, in medical diagnostics, AI-based
systems might analyze patients’ symptoms, medical history,
and test results to suggest possible diagnoses. The aspect of
human expertise underlying clinical reasoning somewhat
parallels how AI-enhanced models develop a form of “intuition”
from their vast training data [14,15].

When faced with complex cases, clinical decision-making often
involves a collaborative approach among health care
professionals, akin to the multifaceted approach of AI that
integrates diverse data sources and algorithms. Ethical
considerations and patient involvement are central to clinical
decisions, much like how AI-based models need to be ethically
aligned and user centric. Furthermore, both fields are dynamic
and iterative—clinicians continually adapt their methods based
on new research and patient feedback, similar to how
AI-enhanced models evolve with new data and interactions.

On the AI side, traditional models often align with frequentist
statistics, where the frequency of past events informs future
predictions, somewhat like clinicians using epidemiological
data. Modern AI, particularly in machine learning, uses Bayesian
methods, updating the likelihood of outcomes with new data,
reflecting how clinicians revise their hypotheses about diagnoses
or treatments as new patient information comes to light. LLMs
such as GPT-4 can predict outcomes based on conditional
probability, which can be compared to clinicians using
symptoms to predict diagnoses [16].

AI’s proficiency in pattern recognition and predictive analysis
also finds a parallel in clinical practice, where patterns in patient
symptoms and test results are crucial for effective
decision-making. However, despite these parallelisms,
significant differences remain, with AI lacking the empathetic
and deeply intuitive component inherent in human
decision-making and clinicians interpreting data within a broader
human context, an ability that AI has yet to fully replicate.

In essence, while there are notable similarities in the use of
statistical methods and data analysis between clinical
decision-making and AI reasoning, the human aspects of
intuition, empathy, and ethical considerations underscore the
unique characteristics of each field. The future of health care
may lie in the harmonious integration of these 2 domains,
leveraging the strengths of each to enhance medical care and
improve patient outcomes (Figure 1).

Toward Clinical LLMs: Necessity of
Verifying Evidence-Based Knowledge

However, the integration of generative AI into clinical
decision-making necessitates a rigorous verification process to
ensure the reliability and accuracy of the AI-generated insights.
This verification is crucial because, as previously mentioned,
AI-based models can sometimes generate conclusions based on
flawed or biased data, leading to inaccurate or even harmful
recommendations. It is essential that AI-generated advice aligns
with current medical standards and best practices in addition to
adhering to ethical standards, respecting patient autonomy, and
ensuring equitable treatment [17,18].

Clinically oriented LLMs [19-25] such as ClinicalBERT,
BlueBERT, CAML, DRG-LLaMA, GatorTronGPT, or PaLM
have shown impressive capabilities, yet their application in
clinical settings faces stringent requirements. Traditional
methods of assessing these models’ clinical knowledge often
depend on automated evaluations using narrow benchmarks.
To overcome these shortcomings, Singhal et al [25] recently
introduced MultiMedQA, a comprehensive benchmark that
merges 6 medical question-answering data sets covering a range
of areas from professional medicine to consumer queries and
includes HealthSearchQA, a new data set of medically related
web-based search questions. This novel approach includes a
human evaluation framework that examines model answers
across various dimensions, namely, accuracy, understanding,
reasoning, potential harm, and bias. The authors tested both
PaLM and its instruction-tuned version, Flan-PaLM, on
MultiMedQA. Flan-PaLM, using diverse prompting techniques,
set a new standard in accuracy across all MultiMedQA
multiple-choice data sets, including MedQA, MedMCQA,
PubMedQA, and MMLU clinical topics, achieving a remarkable
67.6% accuracy in MedQA (US Medical Licensing
Examination–style questions), which is >17% higher than the
previous best. However, human assessments uncovered
significant shortcomings. To address these, the authors
introduced “instruction prompt tuning,” an efficient method for
adapting LLMs to new domains with just a few examples. The
resultant model, Med-PaLM, shows promise, yet it still does
not match clinician performance even though the authors could
observe that model scale and instruction prompt tuning
significantly enhance comprehension, knowledge recall, and
reasoning.

A further risk is that LLMs might reinforce existing biases and
provide inaccurate medical diagnoses, potentially leading to
detrimental effects on health care. Zack et al [26] aimed to
evaluate whether GPT-4 harbors biases that could influence its
application in health care settings. Using the Azure OpenAI
interface, the authors scrutinized GPT-4 for racial and gender
biases and assessed the impact of such biases on four clinical
applications of LLMs—(1) medical education, (2) diagnostic
reasoning, (3) development and implementation of clinical plans,
and (4) subjective patient evaluations—involving experiments
using prompts mimicking typical GPT-4 use in clinical and
medical educational settings and drawing from New England
Journal of Medicine Healer clinical vignettes and research on
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implicit bias in health care. The study compared GPT-4’s
estimates of demographic distributions of medical conditions
against actual US prevalence data. For differential diagnosis
and treatment planning, the research analyzed variations across
demographic groups using standard statistical methods to
identify significant differences. The study revealed that GPT-4
inadequately represents demographic diversity in medical
conditions, often resorting to stereotypical demographic
portrayals in clinical vignettes. The differential diagnoses
generated by GPT-4 for standardized clinical vignettes tended
to reflect biases associated with race, ethnicity, and gender.
Furthermore, the model’s assessments and plans demonstrated
a notable correlation between demographic characteristics and
recommendations for costlier procedures, as well as varied
perceptions of patients.

All this, taken together, suggests the potential role of LLMs in
medicine, but human evaluations also highlight the current
models’ limitations, underscoring the importance of
comprehensive evaluation frameworks and continued

methodological advancements to develop safe, effective LLMs
for clinical use.

Implementing “Verification Paradigms”:
A Comprehensive Evaluation Framework

Overview
Several “simulation and scenario testing” or “verification”
paradigms can be particularly effective in verifying the
evidence-based nature of generative AI in clinical
decision-making. The 11 paradigms proposed in this paper were
devised following thorough familiarization with existing
literature and extensive consultation with experts in the field to
ensure that the methodologies were not only grounded in the
latest academic research and theoretical frameworks but also
shaped by practical insights and recommendations from medical
professionals and AI technology specialists (Textbox 1 and
Table 1).

Textbox 1. Overview of the verification paradigms.

Verification paradigms and brief description

• Quiz, vignette and knowledge survey: uses clinical scenarios to test artificial intelligence (AI)’s medical knowledge and reasoning.

• Historical data comparison: compares AI recommendations with known clinical outcomes to gauge accuracy.

• Expert consensus: evaluates AI-generated diagnoses or treatment plans against expert medical opinion.

• Cross-discipline validation: verifies AI insights with professionals from various medical disciplines for comprehensive evaluation.

• Rare or complex simulation and scenario testing: assesses AI’s ability to handle rare and complex medical cases through simulated scenarios.

• False myth: tests AI’s capability to identify and reject medical myths or outdated concepts.

• Challenging (or controversial) question: presents AI with complex medical questions to evaluate its nuanced understanding and reasoning.

• Real-time monitoring: monitors AI recommendations in clinical settings to observe real-world efficacy and safety.

• Algorithm transparency and audit: focuses on the transparency of AI’s decision-making process and its ability to be audited.

• Feedback loop: involves continuous AI improvement based on feedback from practical applications and outcomes.

• Ethical and legal review: regularly reviews AI recommendations to ensure that they adhere to ethical guidelines and legal standards.
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Table 1. Verification paradigms with their strengths and weaknesses.

WeaknessesStrengthsVerification paradigm

Quiz, vignette, and knowledge
survey

•• Complex to designComprehensive evaluation
• •Real-world relevance Resource intensive

•• Potential bias in test creationAssessment of contextual understanding and probabilis-
tic reasoning

Historical data comparison •• Dependent on data qualityReal-world applicability
• •Evidence-based evaluation Historical bias

•• May not capture AI’sa potential for novel in-
sights

Objective benchmarking

Expert consensus •• SubjectiveLeverages human expertise
• •Valuable in complex cases Time-consuming

•• Potential for expert biasIncorporates ethical judgment

Cross-discipline validation •• Coordination challengesComprehensive evaluation from multiple perspectives
• •Mitigates the risk of siloed decision-making Requires broad expert availability

Rare or complex simulation and
scenario testing

•• Potentially limited by available dataReveals AI’s capabilities in handling diversity
• •Can identify areas for innovation Resource intensive

False myth •• Requires careful selection of mythsTests AI’s current knowledge base
• •Assesses ability to discern evidence-based information Risk of reinforcing incorrect information

Challenging (or controversial)
question

•• Subjective evaluation criteriaEvaluates AI’s handling of ambiguity and complexity
• •Assesses balance of different viewpoints Depends on quality of input questions

Real-time monitoring •• Requires controlled clinical environmentDirect insight into practical impact
• •Simulates real-world testing Ethical concerns with experimental use

Algorithm transparency and audit •• Complexity for end usersEnhances trust and understanding
• •Facilitates regulatory compliance Risk of exposing proprietary information

Feedback loop •• Requires ongoing effort and resourcesEnsures continuous improvement
• •Adapts to changing medical knowledge Dependence on quality of feedback

Ethical and legal review •• Time-consumingSafeguards patient rights
• •Ensures adherence to ethical guidelines Needs multidisciplinary expertise

aAI: artificial intelligence.

The Quiz, Vignette, and Knowledge Survey Paradigm
This approach involves assessing the AI’s proficiency in various
domains, such as medical knowledge and diagnostic reasoning,
and its understanding of therapeutic interventions by using
quizzes, vignettes, and validated knowledge surveys designed
to mimic real-world clinical scenarios [27]. This would require
the AI to have not only a vast knowledge base of medical
information but also, and especially, the ability to apply this
knowledge contextually, thus demonstrating an understanding
of the nuances of patient presentations and how they correlate
with various medical conditions and treatments. In addition,
this format could incorporate elements of both frequentist and
Bayesian thinking, reflecting the probabilistic nature of clinical
reasoning—in other words, as previously mentioned, the AI
would have to weigh the likelihood of different diagnoses based
on the presented symptoms and history, similar to how clinicians
use Bayesian reasoning to update their probability assessments
as new information becomes available.

This approach has a number of strengths, including
comprehensive evaluation, real-world relevance, contextual
understanding, probabilistic reasoning assessment, and
adaptability to new information. On the other hand, it suffers
from some weaknesses, such as design complexity and resource
intensiveness, potential bias in test creation, and lack of
interdisciplinary evaluation.

Currently, this approach is the most leveraged. An extensive
body of literature has found that LLMs such as ChatGPT can
successfully pass medical examinations [28] although with
varying degrees of heterogeneity and variability [29], exhibiting
strong abilities in explanation, reasoning, memory, and accuracy.
On the other hand, LLMs struggle with image-based questions
[30] and, in some circumstances, lack insight and critical
thinking skills [31].

Some of the studies that have exploited quizzes, vignettes, and
validated knowledge surveys [32,33] have quantified the fluency
and accuracy of AI-based tools using validated and reliable
instruments such as the “Artificial Intelligence Performance
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Instrument” [32]. This tool includes 9 items related to medical
and surgical history, namely, symptoms, physical examination,
diagnosis, additional examinations, management plan, and
treatments. The Artificial Intelligence Performance Instrument
score ranges from 0 (“inadequate clinical case management by
the AI”) to 20 (“excellent clinical case management by the AI”).
This score can be further subdivided into 4 subscores: patient
feature, diagnosis, additional examination, and treatment score.

The Historical Data Comparison Paradigm
This approach involves comparing AI-generated
recommendations with outcomes from historical data—by
analyzing cases in which the clinical outcomes are well known,
one can assess how well the AI’s suggestions would have
aligned with actual scenarios. This would help in the
comprehension of the AI’s accuracy in real-world health care
settings, providing insights into its potential benefits and
limitations. This is a crucial step in understanding AI’s
performance and guiding its integration into clinical practice,
ensuring that AI-supported decisions are in line with
evidence-based medical standards and, ultimately, enhance
patient care outcomes.

Strengths of this approach include real-world applicability,
evidence-based evaluation, and objective benchmarking by
offering a clear, objective, data-driven, and evidence-based way
to benchmark AI performance against known outcomes,
facilitating a straightforward and comprehensive assessment of
its accuracy. Furthermore, this method enables the identification
of potential gaps and improvement areas—through direct
comparison with historical outcomes, specific areas in which
AI recommendations may fall short can be identified, guiding
further refinements. Demonstrating AI’s ability to match or
surpass historical outcomes can build trust among clinicians
and patients regarding AI’s utility in health care. However, this
method has some weaknesses, too, including dependence on
data quality in that the approach is heavily reliant on the
availability and quality of historical data, with poor data quality
skewing results and misleading about AI’s true performance.
In addition, historical data may contain biases (eg, diagnostic,
treatment, or outcome biases), which can inadvertently be
reinforced by AI, affecting the fairness and accuracy of its
recommendations. This shortcoming is known as “historical
bias,” which arises when the data or corpora used to train
AI-based tools no longer accurately reflect the current reality.
The potential lack of novel insights is another limitation as this
method benchmarks against known outcomes and may not fully
capture AI’s potential to provide novel insights or diagnose
conditions that were previously undetected or misdiagnosed.
Furthermore, this paradigm evaluates AI against past standards
of care, which may not account for advancements in medical
knowledge or changes in clinical guidelines over time (“static
evaluation”), and its performance on complex, multifactorial
cases might not be accurately assessed if historical data are
limited or if such cases were managed differently due to
evolving standards of care.

Currently, to the best of our knowledge, no published studies
have leveraged this approach in the biomedical arena.

The Expert Consensus Paradigm
In this paradigm, AI-generated diagnoses or treatment plans are
evaluated by a panel of medical experts, with the consensus
among these experts on the validity of the AI’s recommendations
serving as a measure of their reliability. This paradigm is
particularly useful in assessing the AI’s performance in complex
cases in which human expertise is invaluable, ranging from the
psychiatric field in dealing with issues such as suicide risk
assessment [34] to occupational medicine [35]; oncology, with
the management of malignancies [36]; and complex surgical
procedures such as bariatric surgery [37].

Strengths include high-quality validation of AI’s performance,
ensuring that AI-generated recommendations are thoroughly
vetted by experts, and bringing a high level of scrutiny and
quality control that is particularly important in complex medical
fields. Incorporation of human expertise and adaptability to
complex cases are other strengths by relying on medical experts
to evaluate AI advice and integrating nuanced human judgment
and clinical experience that AI might lack or in those instances
for which AI algorithms might not have sufficient training data
or might lack the capability to understand context deeply.
Furthermore, expert feedback provides continuous learning
opportunities, offering a platform for AI-based systems to be
continuously updated and improved, enhancing their accuracy
and reliability over time. This leads to heightened acceptance
of AI tools as having a consensus from medical experts can
increase trust among health care providers and patients in
AI-generated diagnoses or treatment plans.

On the other hand, expert feedback is time and resource
intensive—gathering a panel of experts and reaching a consensus
can be time-consuming and expensive, which may not be
feasible for every clinical decision or in settings with limited
resources. In addition, despite being experts, humans are subject
to biases that might affect their judgment, potentially leading
to the validation of inaccurate AI recommendations. Scalability
issues represent a further shortcoming—the approach may not
scale well to everyday clinical practice, where quick
decision-making is often required and the luxury of convening
an expert panel for each AI recommendation is not practical.
Furthermore, variability in expert opinion could lead to
inconsistent validation of AI-generated recommendations and
uncertainty in their reliability. Finally, there is a risk that this
paradigm could discourage direct validation of AI algorithms
through objective measures or independent verification,
potentially overlooking errors or biases in the AI-based systems
themselves.

The Cross-Discipline Validation Paradigm
This paradigm is rooted in the understanding that health care
delivery increasingly relies on the expertise and coordination
of diverse professionals to address complex health issues
effectively. This approach recognizes that no single professional
has all the knowledge and skills necessary to provide
comprehensive care, especially in cases that involve multifaceted
medical, psychological, social, and ethical considerations. As
clinical decision-making is seen as a multidisciplinary teamwork
process, this verification paradigm involves cross-verifying
AI-generated insights with experts from various medical
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disciplines. For example, a diagnosis made by an AI based on
radiology images could be evaluated by experts in radiology,
oncology, and pathology. This multidisciplinary approach
ensures comprehensive evaluation and mitigates the risk of
siloed decision-making, which is known to result in incomplete
information, lack of coordination, and duplication of efforts,
leading to inefficient care, higher costs, increased risk of medical
errors, and decreased patient satisfaction, ultimately impacting
the quality of patient care and health outcomes.

Currently, little is known about the multidisciplinary nature of
LLMs. Li et al [38] evaluated the proficiency of AI-based tools
in addressing interdisciplinary queries in cardio-oncology,
leveraging a questionnaire consisting of 25 questions compiled
based on the 2022 European Society of Cardiology guideline
on cardio‐oncology. ChatGPT-4 showed the highest percentage
of good responses at 68%, followed by Bard, Claude 2, and
ChatGPT-3.5 at 52% and LLaMA 2 at 48%. A specific area of
concern was in treatment and prevention, where all LLMs scored
poorly or borderline, particularly when their advice deviated
from current guidelines, such as the recommendation to interrupt
cancer treatment for patients with acute coronary syndrome.
Other studies have assessed LLMs as support tools for
multidisciplinary tumor boards in the planning of therapeutic
programs for patients with cancer [39,40].

The Rare or Complex Simulation and Scenario Testing
Paradigm
In this method, the AI-based tool is tested against a variety of
simulated clinical scenarios, including rare and complex cases
such as frail patients with multiple comorbidities, unusual
presentations of diseases, or cases in which symptoms are
ambiguous or misleading. This comprehensive testing can
identify areas for innovation and reveal the strengths and
limitations of the AI-based tool in diverse clinical situations,
such as AI’s capabilities in handling diversity. Conversely, this
paradigm can be resource intensive and potentially limited by
available data.

A recent study [41] explored ChatGPT’s potential contributions
to the diagnosis and management of rare and complex diseases,
such as idiopathic pulmonary arterial hypertension,
Klippel-Trenaunay syndrome, early-onset Parkinson disease,
and Rett syndrome. LLMs can detect the disease early through
AI-driven analysis of patient symptoms and medical imaging
data, rapidly analyze an extensive body of biomedical literature
for a better understanding of the mechanisms underlying the
disease, and offer access to the latest research findings and
personalized treatment plans.

Another study [42] examined the efficacy of 3 popular LLMs
in medical education, particularly for diagnosing rare and
complex diseases, and explored the impact of prompt
engineering on their performance. Experiments were conducted
on 30 cases from a diagnostic case challenge collection using
various prompt strategies and a majority voting approach to
compare the LLMs’performance against human consensus and
MedAlpaca, an LLM designed for medical tasks. The findings
revealed that all tested LLMs surpassed the average human
consensus and MedAlpaca’s performance by margins of at least
5% and 13%, respectively. In categories of frequently

misdiagnosed cases, Google Bard equaled MedAlpaca but
exceeded human consensus by 14%. GPT-4 and GPT-3.5
showed superior performance over MedAlpaca and human
respondents in often moderately misdiagnosed cases, with
minimum accuracy improvements of 28% and 11%,
respectively. Using a majority voting strategy, particularly with
GPT-4, yielded the highest overall accuracy across the
diagnostic complex case collection. On the Medical Information
Mart for Intensive Care III data sets, Google Bard and GPT-4
reached the highest diagnostic accuracy scores of 93% with
multiple-choice prompts, whereas GPT-3.5 and MedAlpaca
scored 73% and 47%, respectively.

The False Myth Paradigm
This paradigm involves deliberately introducing known medical
myths or outdated concepts into the AI’s training data. The AI’s
ability to identify and reject these myths serves as a test of its
understanding of current medical knowledge and its ability to
discern evidence-based information. On the other hand, this
approach requires a careful selection of myths and, if used in
an inappropriate way, can reinforce incorrect information.

A few studies have harnessed this approach [43,44]. These
studies evaluated the accuracy of 2 AI tools, ChatGPT-4 and
Google Bard, in debunking 20 sleep-related myths using a
5-point Likert scale for falseness and public health significance
and compared their performance with expert opinions. ChatGPT
labeled 85% of the statements as either “false” (45%) or
“generally false” (40%), showing high reliability in identifying
inaccuracies, especially regarding sleep myths surrounding
timing, duration, and behaviors during sleep. The tool
demonstrated varying success in other categories such as
presleep behaviors and brain function related to sleep. On a
5-point Likert scale, ChatGPT scored an average of 3.45 (SD
0.87) in identifying the falseness of statements and 3.15 (SD
0.99) in understanding their public health significance, indicating
a good level of accuracy and understanding. Similarly, Google
Bard identified 19 out of 20 statements as false, which was not
significantly different from ChatGPT-4’s accuracy. Google
Bard’s average falseness rating was 4.25 (SD 0.70), with
skewness of −0.42 and kurtosis of −0.83, indicating a
distribution with fewer extreme values compared to that of
ChatGPT-4. For public health significance, Google Bard scored
an average of 2.4 (SD 0.80), with skewness and kurtosis of 0.36
and −0.07, respectively, suggesting a more normal distribution
than that of ChatGPT-4. The intraclass correlation coefficient
between Google Bard and sleep experts was 0.58 for falseness
and 0.69 for public health significance, showing moderate
agreement. Text mining analysis showed that Google Bard
focused on practical advice, whereas ChatGPT-4 emphasized
theoretical aspects. A readability analysis found that Google
Bard’s responses matched an 8th-grade reading level, making
them more accessible than ChatGPT-4’s, which aligned with a
12th-grade level.

The Challenging (or Controversial) Question Paradigm
In this paradigm, the AI-based tool is presented with
controversial or complex medical questions that do not have
straightforward answers. The way in which AI navigates these
questions, balancing different viewpoints and evidence, can
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reveal its depth of understanding and its ability to handle
nuanced medical issues. In the realm of medicine, evidence is
hierarchical, with systematic reviews and meta-analyses at the
top. An analytical evaluation would consider how the AI
prioritizes, evaluates, and appraises different levels of evidence
and whether it can differentiate between high-quality and
lower-quality studies. In addition, AI should detect and minimize
biases present in medical literature and data sources.
Analytically, this involves evaluating the algorithms for their
ability to identify potential biases in studies (eg, publication
bias and selection bias) and adjust their conclusions accordingly.
Shortcomings of this paradigm include subjective evaluation
criteria and dependence on the quality of input questions.

A few studies [45,46] have assessed the skills of AI-based tools
in understanding or generating complex and nuanced clinical
documents, such as guidelines.

The Real-Time Monitoring Paradigm
In this paradigm, the AI’s recommendations are implemented
in a controlled clinical environment, and patient outcomes are
closely monitored, simulating a randomized controlled trial
(RCT). This real-world testing provides valuable feedback on
the AI’s efficacy and safety in actual clinical settings.

While this paradigm can provide direct insights into practical
impact and simulate real-world testing, it requires a controlled
clinical environment and may be limited by ethical concerns
related to the experimental use of AI.

So far, only a few RCTs have been implemented. A recent
blinded RCT [47] explored the efficacy of ChatGPT alongside
traditional typing and dictation methods in assisting health care
providers with clinical documentation, specifically in writing
a history of present illness based on standardized patient
histories. A total of 11 participants, including medical students,
orthopedic surgery residents, and attending surgeons, were
tasked with documenting history of present illness using 1 of
the 3 methods for each of the 3 standardized patient histories.
The methods were assessed for speed, length, and quality of
documentation. Results indicated that, while dictation was the
fastest method and resulted in longer and higher-quality patient
histories according to the Physician Documentation Quality
Instrument score, ChatGPT ranked intermediate in terms of
speed. However, ChatGPT-generated documents were more
comprehensive and organized than those produced through
typing or dictation. A significant drawback noted was the
inclusion of erroneous information in slightly more than
one-third of ChatGPT-generated documents, raising concerns
about accuracy. In addition, there was a lack of consensus
among reviewers regarding the quality of patient histories.

In another controlled trial [48], ChatGPT’s utility in providing
empathetic responses to people with multiple sclerosis was
assessed. The study recruited a sample of 1133 participants
(mean age 45.26, SD 11.50 years; 68.49% female), who were
surveyed through a web-based form distributed via digital
communication platforms. Participants, blinded to the authors
of the responses, evaluated alternate responses to 4 questions
on a Likert scale from 1 to 5 for overall satisfaction and used
the Consultation and Relational Empathy scale for assessing

perceived empathy. Results showed that ChatGPT’s responses
were perceived as significantly more empathetic than those from
neurologists. However, there was no significant association
between ChatGPT’s responses and mean satisfaction. College
graduates were significantly less likely to prefer ChatGPT’s
responses compared to those with a high school education.

The Algorithm Transparency and Audit Paradigm
This paradigm focuses on the transparency of the AI algorithms
and the ability to audit their decision-making processes. By
understanding how the AI-based tool arrives at its conclusions,
clinicians can better assess the validity of its recommendations,
which is crucial for building trust in AI-based systems among
health care professionals.

Strengths include improved decision-making and enhanced trust
and confidence by demystifying how decisions are made, thus
building trust among clinicians and patients, crucial for the
acceptance and integration of AI in health care. Clinicians can
make more informed decisions by understanding the reasoning
behind AI recommendations, potentially leading to better patient
outcomes. AI-based tools can also facilitate regulatory
compliance—transparency is key to meeting regulatory
standards for medical devices and software, including AI-based
systems used in health care. AI enables continuous improvement
as a transparent decision-making process allows for easier
identification of errors or biases in the AI system, facilitating
ongoing refinement and improvement. Furthermore, exposing
the decision-making process has educational benefits for health
care professionals, helping them understand complex AI
methodologies and enhancing their ability to work alongside
AI tools. On the other hand, this approach has some weaknesses
that should be acknowledged, including complexity for end
users—AI decision-making processes, especially in deep
learning, can be incredibly complex and difficult for end users
to understand, potentially limiting the effectiveness of
transparency. Understanding and trusting the AI process might
lead some clinicians to overrely on AI recommendations without
applying their judgment, especially in ambiguous or complex
cases. Complete transparency might expose proprietary
algorithms to potential theft or misuse, challenging companies
to balance transparency with protecting their intellectual
property. Moreover, there is potential room for
misinterpretation—there is a risk that transparency could lead
to misinterpretation of how AI algorithms work, especially
without a strong foundation in data science or AI methodologies
among health care professionals. Finally, developing transparent
AI systems that are also understandable to clinicians requires
significant resources, including time and expertise, potentially
slowing down innovation.

The Feedback Loop Paradigm
This approach involves the continuous updating of the AI system
based on feedback from its practical applications, with clinicians
providing feedback on the AI’s performance, which is then used
to refine and improve the AI models. This iterative, ongoing
process ensures that the AI-based system properly evolves and
adapts to changing medical knowledge and practices.
Conversely, it also requires ongoing efforts and resources in
addition to depending on the quality of the feedback.
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A few studies have investigated reproducibility and repeatability
[49,50]. In a study [49] involving emergency physicians, 6
unique prompts were used in conjunction with 61 patient
vignettes to assess ChatGPT’s ability to assign Canadian Triage
and Acuity Scale scores through 10,980 simulated triages.
ChatGPT returned a Canadian Triage and Acuity Scale score
in 99.6% of the queries. In terms of temporal reproducibility
and repeatability, the study found considerable variation in the
results—21% due to repeatability (using the same prompt
multiple times) and 4% due to reproducibility (using different
prompts). ChatGPT’s overall accuracy in triaging patients was
47.5%, with an undertriage rate of 13.7% and an overtriage rate
of 38.7%. Of note, providing more detailed prompts resulted in
slightly greater reproducibility but did not significantly improve
accuracy.

In another study [50] assessing ChatGPT’s proficiency in
answering frequently asked questions about endometriosis,
detailed internet searches were used to compile questions, which
were then aligned with the European Society of Human
Reproduction and Embryology (ESHRE) guidelines. An
experienced gynecologist rated ChatGPT’s responses on a scale
from 1 to 4. To test repeatability, each question was asked twice,
with reproducibility determined by the consistency of
ChatGPT’s scoring within the same category for repeated
questions. Of the frequently asked questions, 91.4% (n=71)
were answered completely, accurately, and sufficiently by
ChatGPT. The model showed the highest accuracy in addressing
symptoms and diagnosis (16/17, 94% of the questions) and the
lowest accuracy in treatment-related questions (13/16, 81% of
the questions). Among the 40 questions related to the ESHRE
guidelines, 27 (68%) were rated as grade 1, a total of 7 (18%)
were rated as grade 2, and 6 (15%) were rated as grade 3. The
reproducibility rate was highest (100%) for questions in the
categories of prevention, symptoms and diagnosis, and
complications. However, it was lowest for questions aligned
with the ESHRE guidelines, at 70%.

These contrasting findings warrant further investigation.

The Ethical and Legal Review Paradigm
The “ethical and legal review paradigm” emphasizes the
importance of ensuring that AI recommendations in health care
settings adhere to established ethical guidelines and legal
standards, which involves regular review rounds of the AI’s
recommendations by an ethics committee or legal team. This
is particularly important in sensitive areas such as critical care,
emergency management, end-of-life care, or genetic testing,
where the stakes of decisions are particularly high and the moral
and legal implications are significant. This approach aims to
safeguard patients’ rights, maintain trust in AI-assisted health
care, and ensure that the implementation of AI technologies in
medicine is both ethically sound and legally compliant [51,52].

The deployment of AI-based tools such as ChatGPT in sensitive
fields raises, indeed, several ethical and legal concerns. One
significant issue is the potential for bias in AI algorithms, which
can lead to unfair or incorrect outcomes. Moreover, the use of
AI in these fields touches on privacy concerns, especially with
the processing of personal data. Furthermore, issues regarding

accountability and liability for malpractices and bad outcomes
associated with AI-influenced LLM medical decision-making
represent an emerging topic in the arena of legal medicine and,
more broadly, forensic science.

These concerns underscore the need for strict ethical guidelines
and robust legal frameworks governing AI use in biomedical
and clinical practices, with the final goal of leveraging AI’s
strengths while mitigating its limitations, ensuring that it serves
as a tool for progress rather than a source of bias and error
[52,53].

Integrating the “Verification Paradigms”

These various paradigms for assessing AI in health care contexts
underscore the multifaceted and complex nature of integrating
AI technologies such as ChatGPT into medical practices. These
paradigms reflect a concerted effort to evaluate AI systems’
proficiency, ethical alignment, and practical utility in clinical
settings comprehensively. Each of these paradigms offers a
unique perspective and method for verifying the reliability and
accuracy of generative AI in clinical decision-making, and they
can be used in combination to provide a robust validation
framework (Tables 2 and 3 and Figure 2).

It is of paramount importance to note that all these paradigms
do not necessarily have the same weight or importance; their
relevance can vary depending on the context, the specific health
care domain, and the goals of the AI system being assessed.
Integrating and combining these paradigms can provide a
comprehensive, robust evaluation framework that leverages the
strengths of each approach while mitigating their individual
limitations.

Contextual or clinical relevance can be used to prioritize these
approaches—in clinical settings in which decision-making is
complex and highly nuanced (eg, oncology or psychiatry),
paradigms that emphasize expert consensus and cross-discipline
validation may be more critical, whereas for emerging treatments
or rare diseases, paradigms focusing on simulation and scenario
testing and challenging questions can be invaluable to explore
AI’s capacity to contribute novel insights or support rare
condition management. In contexts in which AI is being directly
implemented into clinical workflows and related follow-up,
real-time monitoring and feedback loop paradigms become
essential to ensure patient safety and system efficacy.

Combining paradigms for comprehensive evaluation requires
a “layered, sequential, strategic integrative approach,” starting
with broad assessments such as the quiz, vignette, and
knowledge survey paradigm to gauge general knowledge and
reasoning abilities, followed by more specific tests such as
historical data comparison for accuracy in real-world scenarios
and expert consensus for nuanced judgment calls. The
cross-discipline validation paradigm can be harnessed to assess
AI’s recommendations from multiple professional perspectives,
ensuring a holistic evaluation of AI’s clinical recommendations.
Throughout all stages of evaluation, the ethical and legal review
paradigm is continuously applied to ensure adherence to ethical
standards and legal requirements, safeguarding patient rights
and data privacy.
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Table 2. Overview of the layered integrative approach for evaluating artificial intelligence (AI) in health care, delineating the structured, multistage
framework for the comprehensive assessment and continuous improvement of AI systems.

IntegrationObjectiveVerification paradigmStage

Forms the baseline assessment of the AI’s capabil-
ities, setting the stage for more targeted evalua-
tions

To gauge the AI’s foundational medical knowl-
edge and its ability to apply this knowledge in
simulated real-world scenarios

Quiz, vignette, and
knowledge survey

Initial assessment

Uses the insights gained from initial assessments
to focus on areas requiring improvement, ensuring
that the AI’s recommendations are grounded in
real-world evidence

To refine the AI’s understanding and application
of medical knowledge by comparing its recom-
mendations or diagnoses against known outcomes
from historical data

Historical data com-
parison

Refinement

Builds on the refined knowledge base by integrat-
ing expert clinical insights, further improving the
AI’s decision-making processes

To incorporate nuanced clinical insights and ex-
pert judgments into the AI’s learning, ensuring
that it aligns with current clinical practices and
expert opinions

Expert consensusExpert feedback

Leverages the foundational knowledge, refined
understanding, and expert insights to test the AI’s
capabilities in a multidisciplinary context, identi-
fying any gaps or biases

To evaluate the AI’s recommendations and diag-
nostics across various medical disciplines, ensur-
ing a comprehensive and holistic assessment

Cross-discipline vali-
dation

Comprehensive evalu-
ation

Uses the comprehensive evaluations as a founda-
tion to challenge the AI with scenarios that require
sophisticated reasoning, further refining its deci-
sion-making abilities

To test the AI’s ability to handle complex, rare,
or novel medical scenarios, ensuring that it can
adapt to a wide range of clinical challenges

Rare or complex simu-
lation and scenario
testing

Complexity handling

Builds on the previous layers by specifically tar-
geting and rectifying inaccuracies in the AI’s
knowledge, ensuring reliability

To ensure that the AI’s current knowledge base
is accurate and up-to-date, identifying and correct-
ing any misconceptions or outdated information

False mythKnowledge accuracy

Further refines the AI’s decision-making process
by exposing it to nuanced clinical scenarios, en-
hancing its ability to provide balanced and in-
formed recommendations

To evaluate the AI’s ability to navigate complex
medical questions that may not have straightfor-
ward answers, assessing its reasoning in ambigu-
ous situations

Challenging (or con-
troversial) question

Complexity and nu-
ance handling

Applies all previous layers of assessment in a live
clinical environment, providing direct feedback
on the AI’s performance and areas for improve-
ment

To monitor the AI’s recommendations and diag-
noses in real-world clinical settings, assessing its
practical efficacy and safety

Real-time monitoringReal-world efficacy

Uses insights from real-world applications and
previous evaluations to demystify the AI’s logic,
ensuring that it is both effective and comprehensi-
ble

To ensure that the decision-making processes of
the AI are transparent and understandable, build-
ing trust among health care providers and patients

Algorithm transparen-
cy and audit

Transparency and
trust

Represents the culmination of the integrative ap-
proach, in which feedback from all previous stages
is used to iteratively enhance the AI system, en-
suring that it remains effective, safe, and ethically
compliant over time

To continuously refine and improve the AI system
based on real-world data, feedback, and evolving
medical knowledge

Feedback loopContinuous improve-
ment

Runs parallel to all stages, providing a constant
check on the AI’s compliance with ethical norms
and legal requirements, safeguarding against po-
tential malpractices, and ensuring that patient
rights are protected

To ensure that all AI recommendations and pro-
cesses adhere to established ethical guidelines and
legal standards

Ethical and legal re-
view

Ethical and legal
compliance
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Table 3. Engagement and impact of key health care stakeholders—physicians, patients, nurses, administrators, artificial intelligence (AI) developers,
ethicists, and regulators—across various AI evaluation paradigms, highlighting their roles and interactions in the process of assessing and integrating
AI technologies in health care.

StakeholdersVerification
paradigm

RegulatorsEthicistsAI developersHealth care
administrators

NursesPatientsPhysicians

Establish stan-
dards for testing

Evaluate sce-
nario ethics

Design relevant
quizzes and sur-
veys

Oversee imple-
mentation

Assist in sce-
nario design

May be partici-
pants in scenarios

Participate in
creating and
testing

Quiz, vignette, and
knowledge survey

Monitor data use
and outcomes

Assess the ethi-
cal use of histor-
ical data

Analyze compari-
son outcomes for
improvement

Use data for
strategic deci-
sions

Observe AI’s
real-world accu-
racy

Benefit from im-
proved outcomes

Use outcomes
to validate AI

Historical data
comparison

Ensure that ex-
pert consensus
meets guidelines

Participate in
consensus dis-
cussions

Incorporate ex-
pert feedback

Involved in
consensus
building

Support expert
consensus

Trust in consen-
sus-driven AI

Contribute ex-
pertise

Expert consensus

Regulate multidis-
ciplinary valida-
tion processes

Ensure ethical
cross-discipline
validation

Work with di-
verse health care
teams

Ensure inter-
disciplinary
cooperation

Facilitate multi-
disciplinary
care

Benefit from
holistic care ap-
proaches

Collaborate
across special-
ties

Cross-discipline
validation

Oversee testing
for safety and effi-
cacy

Scrutinize simu-
lations for ethi-
cal considera-
tions

Design simula-
tions for complex
conditions

Plan for inno-
vative care so-
lutions

Involved in pa-
tient care scenar-
ios

Receive personal-
ized care for rare
conditions

Engage in sce-
nario creation
and testing

Rare or complex
simulation and sce-
nario testing

Regulate misinfor-
mation manage-
ment

Highlight the
ethical handling
of myths

Correct and up-
date AI knowl-
edge

Promote accu-
rate patient ed-
ucation

Educate pa-
tients on myths
vs facts

Protected from
misinformation

Input on rele-
vant myths

False myth

Set standards for
addressing contro-
versial topics

Engage in ethi-
cal debates

Develop algo-
rithms for nu-
anced questions

Address poli-
cy implica-
tions

Assist in manag-
ing complex
cases

Empowered by
nuanced AI assis-
tance

Address com-
plex questions

Challenging (or
controversial)
question

Ensure patient
safety in real-
time monitoring

Monitor ethical
implications of
real-time use

Refine AI
through real-time
data

Supervise op-
erational inte-
gration

Monitor and re-
port on patient
responses

Directly affected
by AI recommen-
dations

Monitor patient
outcomes

Real-time monitor-
ing

Enforce trans-
parency and au-
ditability

Advocate for
transparent deci-
sion-making

Ensure algorith-
mic transparency

Demand sys-
tem transparen-
cy

Advocate for
clear AI expla-
nations

Seek transparen-
cy for trust

Require under-
standing of AI
decisions

Algorithm trans-
parency and audit

Facilitate regula-
tory feedback
loops

Provide ethical
oversight in
feedback

Use feedback for
technical refine-
ment

Implement
system feed-
back

Offer practical
feedback

Benefit from on-
going improve-
ments

Provide clinical
feedback

Feedback loop

Conduct legal re-
views and compli-
ance checks

Lead ethical
and legal re-
views

Adhere to ethical
and legal stan-
dards

Ensure compli-
ance with regu-
lations

Uphold ethical
standards in AI
use

Protected by ethi-
cal and legal
safeguards

Ensure that AI
aligns with ethi-
cal and legal
standards

Ethical and legal
review
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Figure 2. Integrating verification paradigms for artificial intelligence in health care.

This “layered, sequential, strategic integrative approach” enables
continuous improvement of the entire process. An initial
assessment uses paradigms such as the quiz, vignette, and
knowledge survey and historical data comparison to evaluate
AI’s knowledge base and practical accuracy, which are
iteratively refined and optimized by applying the feedback loop
paradigm using insights from real-time monitoring and expert
consensus followed by algorithm transparency and audits to
ensure that the system’s decisions are understandable and
justifiable.

For AI-based systems targeting specific or novel medical fields,
the rare or complex simulation and scenario testing should be
integrated alongside challenging question paradigms to push
the boundaries of AI’s capabilities and uncover areas for
innovation. The feedback loop paradigm should be implemented
so that AI systems are regularly updated based on new clinical
evidence, shifts in expert consensus, and outcomes from
real-time monitoring to ensure that AI remains aligned with
current medical standards and practices through continuous
evolution and adaptive learning.

This evolution is maintained transparently in terms of how
feedback and new data influence AI algorithms, fostering trust
among health care professionals and patients. Regular ethical
and legal reviews should accompany these updates to address
any emerging concerns.

Throughout the process, which is dynamic, adaptive, and
iterative, a broad range of stakeholders—including patients,
health care professionals, ethicists, and legal experts—should
be engaged. This ensures that diverse perspectives are
considered, particularly in applying paradigms such as expert
consensus, ethical and legal review, and real-time monitoring.
As previously mentioned, integrating these paradigms creates
an ongoing process for evaluating and improving AI in health
care, acknowledging the complexity of medical decision-making
and the importance of maintaining ethical standards and ensuring
that AI systems are not only accurate and effective but also
trusted and ethical components of health care delivery.

Toward a Model of “Clinically Explainable,
Fair, and Responsible Clinician-, Expert-,
and Patient-in-the-Loop Artificial
Intelligence”

Clinical decision-making is a cornerstone of health care,
demanding a blend of knowledge, intuition, and experience. It
is a dynamic process in which clinicians sift through patient
data, balancing the effectiveness and risks of treatments against
patient preferences and ethical standards with the goal of optimal
health outcomes achieved through informed, evidence-based
choices that respect patient autonomy and confidentiality
[54-56].

As previously mentioned, clinical decision-making is built on
4 pillars: scientific evidence, clinical judgment, ethical
considerations, and patient involvement. The integration of
generative AI into this realm presents exciting possibilities and
challenges—on the one hand, AI’s capacity to analyze vast
amounts of medical data can enhance diagnosis, tailor
treatments, and predict disease progression. However, its
incorporation demands rigorous verification to align
AI-generated insights with medical standards and ethical
practices.

In this conceptual paper, to ensure the reliability of AI in clinical
decision-making, various verification paradigms have been
proposed. The quiz, vignette, and knowledge survey paradigm
assesses AI’s proficiency in medical domains by using realistic
scenarios to test its knowledge and contextual application
incorporating frequentist and Bayesian reasoning in clinical
diagnosis, whereas the historical data comparison paradigm
examines AI recommendations against known clinical outcomes,
assessing real-world accuracy. The expert consensus paradigm
involves a panel of medical experts evaluating AI-generated
diagnoses and treatment plans, whereas the cross-discipline
validation paradigm cross-checks AI insights with those of
professionals from different medical fields, ensuring
comprehensive evaluation. In addition, the rare or complex
simulation and scenario testing paradigm tests AI against a
range of clinical scenarios, revealing its strengths and
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limitations. The false myth paradigm tests the AI’s ability to
reject outdated concepts or information and content not
substantiated by scientific evidence, whereas the challenging
question paradigm assesses how AI handles nuanced medical
issues. The real-time monitoring paradigm involves
implementing AI recommendations in controlled environments
to monitor patient outcomes. The algorithm transparency and
audit paradigm focuses on understanding how AI reaches its
conclusions, essential for clinician trust. The feedback loop
paradigm ensures AI’s continuous improvement based on
practical application feedback. Finally, the ethical and legal
review paradigm ensures that AI recommendations comply with
ethical guidelines and legal requirements. Each paradigm offers
a unique perspective for verifying AI in clinical
decision-making, and when used in combination, they provide
a comprehensive framework for ensuring the accuracy and
reliability of AI, crucial for its effective integration into health
care. This blend of AI and traditional clinical expertise promises
a future of enhanced health care delivery, marked by precision,
efficacy, and patient-centered care.

The convergence of generative AI in clinical decision-making,
when rigorously verified and integrated with traditional health
care practices, paves the way for a model of “clinically
explainable, fair, and responsible clinician-, expert-, and
patient-in-the-loop artificial intelligence.” This model
emphasizes not just the technical prowess of AI but also its
comprehensibility, collaborative nature, and ethical grounding,
ensuring that AI acts as an augmentative tool rather than an
opaque, autonomous decision maker (“AI as a black box”).
Clinically explainable AI demystifies the often complex and
opaque decision-making processes of AI systems. In particular,
the algorithm transparency and audit paradigm plays a crucial
role here, ensuring that AI’s reasoning is accessible and
understandable to clinicians. This transparency is vital for trust
and effective collaboration between human experts and AI-based
systems—clinicians need to understand the rationale behind
AI-generated recommendations to make informed decisions,
particularly in complex or critical cases.

This understanding would also facilitate discussions and
interactions with patients, who are increasingly seeking active
roles in their health care decisions. By demystifying AI outputs,
health care providers can offer clear, comprehensible
explanations to patients, fostering trust and informed consent.
Incorporating clinicians and experts in the loop is, indeed,
fundamental in realizing this model—the expert consensus and
cross-discipline validation paradigms highlight the importance
of human expertise in evaluating and interpreting AI-generated
insights, with clinicians bringing invaluable context, experience,
and judgment to the table, which are crucial for nuanced
decision-making. AI in this context is a tool that augments but
does not replace the clinician’s judgment. This collaboration
ensures that AI recommendations are not only based on data
and algorithms but also tempered by human insight and ethical
considerations. Patient involvement is another cornerstone of
this model—patient-centric care is increasingly recognized as
a key component of quality health care.

The integration of AI in clinical decision-making should not
diminish the patient’s role but, rather, enhance it. By providing

tailored and precise medical insights, AI can empower patients
with information that is specific to their condition and treatment
options. This approach aligns with the growing trend toward
personalized or individualized medicine, where treatments are
tailored to individual patient profiles. AI can facilitate this by
analyzing patient data in depth, offering insights that help with
crafting personalized treatment plans. Moreover, engaging
patients in the decision-making process aided by AI’s insights
respects their autonomy and preferences, leading to better
satisfaction and adherence to treatment plans. Implementing a
clinically explainable, fair, and responsible clinician-, expert-,
and patient-in-the-loop AI model also necessitates continuous
learning and adaptation—the feedback loop paradigm ensures
that AI systems evolve based on real-world outcomes and
clinician inputs. This ongoing refinement is crucial for the
AI-based tool to stay relevant and effective in the ever-changing
landscape of medical knowledge and practice.

Finally, the ethical and legal review paradigm ensures that AI
recommendations are continually assessed for ethical and legal
compliance, an aspect critical in maintaining public trust and
upholding professional standards. Trust in this context extends
beyond mere reliability to include ethically relevant and
value-laden aspects of AI systems’ design and use. This
broadened understanding of trust aims to encompass concerns
about fairness, transparency, privacy, and the prevention of
harm, among others. While pure epistemic accounts of trust
focus solely on rational and performance-based criteria, more
broadly speaking, trust encompasses the full spectrum of ethical
considerations necessary for truly trustworthy AI, fully
integrating ethical considerations into the core of what it means
for an AI system to be considered trustworthy. AI-based systems
not only function effectively and reliably but also and especially
operate within ethical boundaries, adhering to ethical standards
and principles that respect human autonomy, prevent harm, and
promote fairness and transparency [57].

In summary, the envisioned model of AI in health care is one
in which AI acts as an intelligent, transparent, and adaptable
assistant in the complex process of clinical decision-making,
enhancing rather than replacing human expertise and keeping
clinicians, experts, and patients central to the decision-making
process. This approach not only leverages the strengths of AI
in data processing and pattern recognition but also upholds the
irreplaceable value of human judgment, experience, and ethical
reasoning, all crucial for delivering high-quality patient-centered
health care.

Current State of the Art and Future
Directions

Currently, in a great portion of articles, the authors have limited
themselves to querying the AI-based tools on a variety of topics
without fully leveraging their potential. While that was
understandable at the beginning of the revolution posed by
LLMs, when early fascination and curiosity were prevalent, it
is time to go beyond just chatting with ChatGPT and shift toward
a deeper, comprehensive, and robust assessment of the
capabilities of smart chatbots in real-world clinical settings.
Researchers should make responsible use of AI; use standardized
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reporting guidelines [58]; systematically compare different types
of AI-based tools; evaluate the accuracy, repeatability, and
reproducibility of the tools; and incorporate ethical and legal
considerations. Validated and reliable reporting checklists are
essential for ensuring that research findings and advancements
are communicated clearly and consistently, facilitating
comparative analyses across different AI-enhanced tools. This
will help not only in identifying the most effective solutions
but also in uncovering potential biases, limitations, and areas
for improvement. By systematically comparing different
AI-based tools and rigorously evaluating their performance, the
research community can establish a benchmark for what
constitutes successful integration of AI in clinical settings. A
composite set of performance and outcome metrics is essential
for validating the reliability of AI in clinical applications and
for ensuring that tools can be confidently used across various
settings without loss of performance quality. Currently, only
accuracy is being investigated, with only a few studies exploring

the repeatability and reproducibility of AI-generated medical
responses and recommendations.

Scholars can harness the 11 paradigms proposed in this paper
to make AI-enhanced applications more clinically relevant and
meaningful as well as robust and safe.

Conclusions

Generative AI holds immense promise in enhancing clinical
decision-making and offering personalized, accurate, and
efficient health care solutions. However, ensuring that this
technology produces evidence-based, reliable, impactful
knowledge is paramount. By using paradigms and approaches
such as those outlined in this conceptual paper, the medical and
patient communities can better leverage the potential of AI
while safeguarding against misinformation and maintaining
high standards of patient care.
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Abstract

Ambient scribe technology, utilizing large language models, represents an opportunity for addressing several current pain points
in the delivery of primary care. We explore the evolution of ambient scribes and their current use in primary care. We discuss
the suitability of primary care for ambient scribe integration, considering the varied nature of patient presentations and the emphasis
on comprehensive care. We also propose the stages of maturation in the use of ambient scribes in primary care and their impact
on care delivery. Finally, we call for focused research on safety, bias, patient impact, and privacy in ambient scribe technology,
emphasizing the need for early training and education of health care providers in artificial intelligence and digital health tools.

(JMIR AI 2024;3:e57673)   doi:10.2196/57673
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Introduction

Integrating artificial intelligence (AI) in health care has opened
new horizons for improving clinical efficiency and patient care.
Given the integral role that communication plays in all aspects
of clinical care, particularly during patient-physician
conversation, using AI to enhance communication and reduce
workflow friction has immense implications. Ambient scribes
are AI-powered systems that passively listen to and analyze
health care provider–patient conversations, automatically
generating accurate clinical documentation. Leveraging
automatic speech recognition and modern forms of AI, ambient
scribes stand at the forefront of the health AI revolution [1].

Large language models (LLMs), a form of AI trained on massive
amounts of data that can generate text and respond to requests
as if they understand them, have been a recent catalyst in the
capabilities of ambient scribes. Initially, automatic speech
recognition demonstrated moderate accuracy in converting

speech to text and lacked contextual understanding [2].
However, more modern neural network models such as
ClinicalBERT [3], leveraging components based on transformer
networks, offer more nuanced understanding and text generation
nearly indistinguishable from human performance [4]. The
internal mechanisms of these transformers, including
self-attention components, may enable models to discern
relevant parts of conversations, which is essential in complex
health care dialogues [5]. Moreover, recent LLMs such as
GPT-4, developed with reinforcement learning, have shown
capabilities beyond traditional models, including passing scores
on all steps of the USMLE (United States Medical Licensing
Examination), demonstrating understanding and potential across
medical contexts [4].

Challenges in Primary Care

In contemporary health care, primary care is experiencing an
acute strain, arguably more so than other medical disciplines
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[6]. The sector is grappling with significant challenges, most
notably health care provider burnout and an escalating human
resource crisis [6]. In Canada, 2023 marked an unprecedented
trend with a record number of unfilled positions in primary care
residency programs [7]. Concurrently, there has been an
alarming increase in the number of primary care providers
leaving the profession, a phenomenon partly attributable to the
overwhelming administrative burdens they face [6]. Primary
care, characterized by its multifaceted nature—commonly
encompassing multi-issue visits, ambiguous clinical
presentations, and a diverse array of visit types—demands
significant administrative work from providers [8]. This,
combined with the inherently unique characteristics of primary
care consultations, positions this domain to benefit from the
adoption of ambient scribes. By alleviating some of the
administrative pressures, ambient scribes may significantly
mitigate these pain points, offering hope for an overburdened
primary care system.

While comprehensive data on ambient scribe use in health care
is sparse, anecdotal evidence suggests a growing adoption in
primary care [9]. These tools have shown potential in reducing
the administrative burden, allowing clinicians to focus more on
patient care. This shift is particularly evident in primary care,
where the diversity and ambiguity of clinical presentations
demands flexible and efficient documentation methods [10].

The Stages of Maturation of Ambient
Scribe Use in Primary Care

The advancement of ambient scribe utilization within primary
care can be described in a staged process based on the nature
of the activities that are supported by the tool. We posit four
high-level stages, shown in Table 1. The rationale behind the
four stages is based on an ascending degree of complexity
associated with several factors, including technical complexity
in development, medicolegal barriers to adoption, and cultural
factors in the practice of medicine that would impact adoption
[5,11].

Table 1. Key activities associated with various stages of ambient scribe maturation in a clinical setting.

Stage 4Stage 3Stage 2Stage 1Key activity

✓✓✓✓Automation of clinical documentation

✓✓✓Automation of administrative actions

✓✓Reactive clinical decision support

✓Proactive clinical decision support

Stage 1 describes the most basic ambient scribe functionality,
in which the tools exclusively automate clinical documentation.
This may involve integration with an electronic medical record
(EMR) and typically does not require information retrieval from
the EMR. Stage 2 adds the ability of the ambient scribe to
address administrative workflow improvements for the clinician,
such as generating a letter, filling out a form, or generating tasks
to be completed. Most present-day ambient scribes are likely
in stages 1 or 2.

Stage 3 introduces the first clinical decision support capabilities
of the ambient scribe. These would be reactive, in that they
would be initiated by the clinician. For example, the clinician
could consult the ambient scribe with a clinical question, such
as asking about the dosing of a medication or other diagnostic
possibilities. This would necessitate that the ambient scribe has
access to medical knowledge and has been trained for this
purpose.

Lastly, stage 4, which we imagine to be achievable in the near
future, would represent the ambient scribe playing a proactive
clinical decision support role during the visit, thereby having
the greatest extent of impact on the evolution of the clinical
encounter. As an example, while a clinician is taking a history
from the patient, if a relevant question is missed (for example,
screening for hypertension or migraines in a patient being
initiated on an oral contraceptive), the ambient scribe may
proactively prompt the clinician through a visual cue to assist
further history taking. Similarly, an advanced ambient scribe
could alert the clinician and patient on other relevant issues to

discuss that may not have been brought up during the visit but
are time-sensitive (eg, a finding on a recent diagnostic imaging
test that has not been addressed). In this way, it can be
appreciated that the ambient scribe can serve as an important
interface between the clinician, the patient, and an evolving
series of computational enhancements that may be available.

Barriers and Considerations

Several important considerations need to be addressed for the
safe deployment of ambient scribes as they mature in capability
and use. Several of these relate to AI in medicine in general
[12]. Some general considerations include:

• The privacy of personal health information that may be
collected by vendors of AI tools, raising concerns around
data security, consent, and potential misuse of sensitive
information

• Limited generalizability of these tools to populations beyond
those with which they were tested or trained; the
applicability of AI tools can vary across clinical settings
and patient populations, as its performance in one context
may not translate to another (eg, a tool optimized for
primary care settings and focused on managing chronic
conditions may not operate as effectively in specialized
acute care settings like cardiology)

• The amplification of biases that may be inherent to the
datasets in which these tools are trained; for example, if an
AI model is trained on data that does not include patients
from an appropriately diverse range of ethnicities and
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socioeconomic backgrounds, it may be biased or overfit to
a limited population [5,13]

In addition, several other considerations exist in the use of
ambient scribes. First, it is important to consider the unique
impact that the recording of a patient-physician conversation
may have on the therapeutic utility of the encounter. The
patient-physician conversation is considered confidential, and
its effectiveness is dependent on the patient feeling comfortable
and free to disclose personal and intimate information [14].
There is limited literature at present investigating the patient’s
perception of their visit being recorded by an ambient scribe.
Furthermore, it is still being determined whether this may impact
the nature of their responses during the visit. Assuming informed
consent for the technology has taken place in which the value
proposition of the technology is clearly explained, we
hypothesize that patients will receive the use of this technology
positively, as it should aid in reducing documentation strain on
the physician, thus allowing them to be more focused on the
human interaction. Second, it is well documented that new
technology implementation in health care delivery often requires
substantive change management, even when the benefits of the
technology being implemented are well known [11]. While
initially it may appear that there are no significant additional
tasks necessary for the physician with ambient scribes, there
may be net new tasks as well as appreciable losses in existing
workflows. The physician (or another team member in the clinic)
may be required to obtain consent from the patient to use the
ambient scribe and answer questions about the technology.
Additionally, it must be stressed that while the clinical visit may
be documented automatically, the clinician must still review
the output from the ambient scribe and correct any errors or
omissions. Indeed, the accuracy of ambient scribes depends on
various unique factors including diversity of linguistic
backgrounds, microphone variability and audio quality
(including exclusion of background sounds), changing and
advanced medical terminologies, and challenges with context
awareness in semistructured conversation. That is, identifying
which parts of the conversation are pertinent to medical
documentation is a unique challenge. Continuous learning
involving both audio and language modeling will be necessary

at the site level. How these AI operations may potentially
involve third-party software vendors without violating privacy
is also an open question. Given physicians may be leveraging
other workflow optimization tools to aid with clinical
documentation, such as clinical note EMR templates, they may
experience an initial degradation of their workflow. Lastly,
procedures should be put in place that specify whether whole
conversations should be saved, whether only utterances from
one party are necessary, and for how long recordings are to be
retained (eg, for auditing or retraining).

As ambient scribe capabilities advance, as described in stages
3 and 4 above, the nature of the clinical encounter may be
subject to inherent changes. Over time, ambient scribes and
related AI technologies will likely play a greater role in clinical
decision-making around clinical diagnosis and management of
the patient. This includes active, real-time recommendations
from the scribe, which must be managed by the physician. This
will lead to an evolution in the role of the primary care
physician, requiring them to have greater foundational
knowledge on the use, benefits, and limitations of AI and
allowing them to focus more on shared decision-making,
empathetic communication, and therapeutic relationship
development [15]. Modernization of medical training and family
medicine residency curricula will be necessary to account for
these changes and upskill the existing labor force.

Conclusion

Ambient scribes, powered by LLMs, offer a promising avenue
for enhancing clinical practice in primary care. Their ability to
reduce administrative load, improve documentation accuracy,
and potentially aid in clinical decision-making positions them
as valuable assets in modern health care. However, their efficacy
and safety must be validated through further research. The risk
of amplifying harmful bias, the applicability and accuracy of
their function in diverse primary care settings, and patient
perception and change management, among other
considerations, must be taken into account. Given the immense
pressures that exist on primary care today, we must address
these and reap the benefits of this powerful technology.

 

Conflicts of Interest
PS is a paid advisor for a company that makes an ambient scribe solution. RC is employed by a company that provides technologies
that integrate with ambient scribe solutions. FR is a shareholder of a company that makes an ambient scribe solution.

References
1. Coiera E, Kocaballi B, Halamka J, Laranjo L. The digital scribe. NPJ Digit Med 2018;1:58. [doi: 10.1038/s41746-018-0066-9]

[Medline: 31304337]
2. Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nat

Med 2023 Aug;29(8):1930-1940. [doi: 10.1038/s41591-023-02448-8] [Medline: 37460753]
3. Huang K, Altosaar J, Ranganath R. ClinicalBERT: modeling clinical notes and predicting hospital readmission. arXiv

Preprint posted online on April 10, 2019.
4. Clusmann J, Kolbinger FR, Muti HS, Carrero ZI, Eckardt J, Laleh NG, et al. The future landscape of large language models

in medicine. Commun Med (Lond) 2023 Oct 10;3(1):141. [doi: 10.1038/s43856-023-00370-1] [Medline: 37816837]
5. van Buchem MM, Boosman H, Bauer MP, Kant IMJ, Cammel SA, Steyerberg EW. The digital scribe in clinical practice:

a scoping review and research agenda. NPJ Digit Med 2021 Mar 26;4(1):57. [doi: 10.1038/s41746-021-00432-5] [Medline:
33772070]

JMIR AI 2024 | vol. 3 | e57673 | p.95https://ai.jmir.org/2024/1/e57673
(page number not for citation purposes)

Seth et alJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.1038/s41746-018-0066-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304337&dopt=Abstract
http://dx.doi.org/10.1038/s41591-023-02448-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37460753&dopt=Abstract
http://dx.doi.org/10.1038/s43856-023-00370-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37816837&dopt=Abstract
http://dx.doi.org/10.1038/s41746-021-00432-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33772070&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


6. Flood CM, Thomas B, McGibbon E. Canada's primary care crisis: federal government response. Healthc Manage Forum
2023 Sep;36(5):327-332 [FREE Full text] [doi: 10.1177/08404704231183863] [Medline: 37424188]

7. Duong D, Vogel L. Ontario, Quebec and Alberta lead record family medicine residency vacancies. CMAJ 2023 Apr
17;195(15):E557-E558 [FREE Full text] [doi: 10.1503/cmaj.1096047] [Medline: 37068806]

8. Ziemann M, Erikson C, Krips M. The use of medical scribes in primary care settings: a literature synthesis. Med Care 2021
Oct 01;59(Suppl 5):S449-S456 [FREE Full text] [doi: 10.1097/MLR.0000000000001605] [Medline: 34524242]

9. Crampton NH. Ambient virtual scribes: Mutuo Health's AutoScribe as a case study of artificial intelligence-based technology.
Healthc Manage Forum 2020 Jan;33(1):34-38. [doi: 10.1177/0840470419872775] [Medline: 31522566]

10. Tran BD, Mangu R, Tai-Seale M, Lafata JE, Zheng K. Automatic speech recognition performance for digital scribes: a
performance comparison between general-purpose and specialized models tuned for patient-clinician conversations. AMIA
Annu Symp Proc 2022;2022:1072-1080 [FREE Full text] [Medline: 37128439]

11. Ghatnekar S, Faletsky A, Nambudiri VE. Digital scribe utility and barriers to implementation in clinical practice: a scoping
review. Health Technol (Berl) 2021;11(4):803-809 [FREE Full text] [doi: 10.1007/s12553-021-00568-0] [Medline: 34094806]

12. Quiroz JC, Laranjo L, Kocaballi AB, Berkovsky S, Rezazadegan D, Coiera E. Challenges of developing a digital scribe to
reduce clinical documentation burden. NPJ Digit Med 2019;2:114. [doi: 10.1038/s41746-019-0190-1] [Medline: 31799422]

13. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic
health record data. JAMA Intern Med 2018 Nov 01;178(11):1544-1547 [FREE Full text] [doi:
10.1001/jamainternmed.2018.3763] [Medline: 30128552]

14. Tran BD, Chen Y, Liu S, Zheng K. How does medical scribes' work inform development of speech-based clinical
documentation technologies? A systematic review. J Am Med Inform Assoc 2020 May 01;27(5):808-817 [FREE Full text]
[doi: 10.1093/jamia/ocaa020] [Medline: 32181812]

15. Seth P, Hueppchen N, Miller SD, Rudzicz F, Ding J, Parakh K, et al. Data science as a core competency in undergraduate
medical education in the age of artificial intelligence in health care. JMIR Med Educ 2023 Jul 11;9:e46344 [FREE Full
text] [doi: 10.2196/46344] [Medline: 37432728]

Abbreviations
AI: artificial intelligence
EMR: electronic medical record
LLM: large language model
USMLE: United States Medical Licensing Examination

Edited by K El Emam, B Malin; submitted 23.02.24; peer-reviewed by T Deng, J Bensemann; comments to author 20.04.24; revised
version received 18.08.24; accepted 08.09.24; published 04.10.24.

Please cite as:
Seth P, Carretas R, Rudzicz F
The Utility and Implications of Ambient Scribes in Primary Care
JMIR AI 2024;3:e57673
URL: https://ai.jmir.org/2024/1/e57673 
doi:10.2196/57673
PMID:39365655

©Puneet Seth, Romina Carretas, Frank Rudzicz. Originally published in JMIR AI (https://ai.jmir.org), 04.10.2024. This is an
open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR AI, is properly cited. The complete bibliographic information, a link to the
original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

JMIR AI 2024 | vol. 3 | e57673 | p.96https://ai.jmir.org/2024/1/e57673
(page number not for citation purposes)

Seth et alJMIR AI

XSL•FO
RenderX

https://journals.sagepub.com/doi/abs/10.1177/08404704231183863?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/08404704231183863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37424188&dopt=Abstract
http://www.cmaj.ca/cgi/pmidlookup?view=long&pmid=37068806
http://dx.doi.org/10.1503/cmaj.1096047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37068806&dopt=Abstract
https://europepmc.org/abstract/MED/34524242
http://dx.doi.org/10.1097/MLR.0000000000001605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34524242&dopt=Abstract
http://dx.doi.org/10.1177/0840470419872775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31522566&dopt=Abstract
https://europepmc.org/abstract/MED/37128439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37128439&dopt=Abstract
https://europepmc.org/abstract/MED/34094806
http://dx.doi.org/10.1007/s12553-021-00568-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34094806&dopt=Abstract
http://dx.doi.org/10.1038/s41746-019-0190-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31799422&dopt=Abstract
https://europepmc.org/abstract/MED/30128552
http://dx.doi.org/10.1001/jamainternmed.2018.3763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30128552&dopt=Abstract
https://europepmc.org/abstract/MED/32181812
http://dx.doi.org/10.1093/jamia/ocaa020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32181812&dopt=Abstract
https://mededu.jmir.org/2023//e46344/
https://mededu.jmir.org/2023//e46344/
http://dx.doi.org/10.2196/46344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37432728&dopt=Abstract
https://ai.jmir.org/2024/1/e57673
http://dx.doi.org/10.2196/57673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39365655&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Viewpoint

The Dual Nature of AI in Information Dissemination: Ethical
Considerations

Federico Germani1, PhD; Giovanni Spitale1, PhD; Nikola Biller-Andorno1, MD, MHBA, PhD
Institute of Biomedical Ethics and History of Medicine, University of Zurich, Switzerland, Zurich, Switzerland

Corresponding Author:
Nikola Biller-Andorno, MD, MHBA, PhD
Institute of Biomedical Ethics and History of Medicine
University of Zurich, Switzerland
Winterthurerstrasse 30
Zurich, 8006
Switzerland
Phone: 41 44 634 40 81
Email: biller-andorno@ibme.uzh.ch

Abstract

Infodemics pose significant dangers to public health and to the societal fabric, as the spread of misinformation can have far-reaching
consequences. While artificial intelligence (AI) systems have the potential to craft compelling and valuable information campaigns
with positive repercussions for public health and democracy, concerns have arisen regarding the potential use of AI systems to
generate convincing disinformation. The consequences of this dual nature of AI, capable of both illuminating and obscuring the
information landscape, are complex and multifaceted. We contend that the rapid integration of AI into society demands a
comprehensive understanding of its ethical implications and the development of strategies to harness its potential for the greater
good while mitigating harm. Thus, in this paper we explore the ethical dimensions of AI’s role in information dissemination and
impact on public health, arguing that potential strategies to deal with AI and disinformation encompass generating regulated and
transparent data sets used to train AI models, regulating content outputs, and promoting information literacy.

(JMIR AI 2024;3:e53505)   doi:10.2196/53505
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Introduction

In the contemporary digital landscape, we find ourselves in an
“infodemic,” a phenomenon characterized by the rapid
proliferation of information, both accurate and misleading,
facilitated by rapid communication through social media and
online platforms [1]. The term “infodemic” originated during
the SARS outbreak [2] and gained prominence during the
COVID-19 pandemic. It has been used in the context of public
health emergencies and in relation to health information, but it
extends beyond that. Generally, infodemics occur alongside
pandemics, despite infodemics being phenomena that are not
limited to their connection with public health events, for
example, the Brexit referendum or the 2016 US presidential
elections. In general, infodemics cause profound dangers, as
the dissemination of disinformation and misinformation can
have far-reaching consequences [3], in particular, for public
health and the stability of democratic institutions, which in turn
can have a detrimental effect on public health [4]. In the

literature, disinformation refers to false or misleading
information that has been intentionally created or disseminated.
In contrast, misinformation is false or misleading information
that is shared without knowledge of its inaccuracy, meaning it
is not intended to harm individual or public health [1,5]. There
are valid concerns that artificial intelligence (AI) systems could
be used to produce compelling disinformation en masse [6-9].
In fact, AI tools could be used to either accelerate disinformation
spreading, or produce the (disinformation) content, or both. The
consequences can range from undermining trust in institutions,
including public health institutions [10,11], and exacerbating
social polarization to directly impacting public health outcomes
and democratic processes [12,13]. Because of this, the World
Economic Forum has listed disinformation and misinformation,
including AI-driven disinformation and misinformation, as the
most relevant threat to humanity in the short term and one of
the biggest threats in the medium term [14].

The rapid progression of AI and its integration across various
domains in contemporary society signifies an era characterized
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by unprecedented technological progress. Among the diverse
array of AI applications, the rise of natural language processing
models has garnered significant attention [15]. Notable examples
of this technological advancement include models developed
by OpenAI, such as GPT-3 [16] and GPT-4 [17], celebrated for
their extraordinary proficiency in generating text that seamlessly
emulates the linguistic intricacies, nuances, and coherence
inherent in human communication [18]. However, concomitant
with the maturation of these AI systems, a perplexing duality
comes to the fore—they are instruments with the capacity to
both illuminate and obscure the information landscape they
navigate [9,19], with potentially significant positive and negative
impacts on public health. This dual nature of AI, characterized
by its profound ability to generate information and
disinformation [9], raises intricate ethical considerations. In
fact, the efficacy of these systems in generating content that
closely approximates human expression [9,20,21] generates not
only opportunities for innovative communication but also dire
risks associated with disinformation and misinformation and
the potential erosion of trust within information ecosystems, a
risk recognized as a critical threat to public health [22] and of
utmost importance for infodemic management practices required
to minimize and anticipate the effects of public health crises
[23]. To address these ethical challenges, it is crucial to examine
the dimensions that AI introduces into the discourse on
misinformation. Key aspects such as transparency, content
regulation, and fostering information literacy are essential to
understanding AI’s ethical role in shaping the dissemination of
information.

Here we attempt to elucidate these ethical dimensions, drawing
on empirical insights from a study focused on GPT-3’s ability
to generate health-related content that both informs and
disinforms better than content generated by humans.[9] We
argue that the swift integration of AI into society underscores
the importance of not only exploring its ethical implications but
also crafting prudent strategies to leverage its potential for
societal benefit and to protect public health, while proactively
addressing potential risks.

Ethical Principles

In navigating the intricate landscape of AI and its impact on
information dissemination, it is necessary to establish a
foundational framework of ethical principles to uphold to in
order to guide, understand, and evaluate the strategies required
to deal with possible dual uses of AI in information production
and its negative impact on public health. A recent systematic
review [24] mapped the “ethical characteristics” emerging from
AI ethics literature. Based on 253 included studies, the authors
of this review have identified and defined 6 core areas that are
crucial in shaping the role of AI in health care [24]. The first
core area, fairness, underlines that AI in health care should
ensure that everyone has equal access to health care, without
contributing to health disparities or discrimination. The second,
transparency, is a key challenge for AI in health care. It means
being able to explain and verify how AI algorithms and models
behave, making it easier to accept, regulate, and use AI in health
care. The third is trustworthiness; parties involved in the use of
AI in health care (typically health care professionals and

patients, in the studies included in the review) need to perceive
it as trustworthy. Trustworthiness can result from, for instance,
technical education, health literacy, clinical audits, and
transparent governance. Fourth is the accountability of AI, which
requires AI systems to be able to explain their actions if
prompted to do so, and it includes safety to prevent harm to
users and others. Fifth is privacy, which implies safeguarding
the personal information of users processed through AI systems
and respecting their human rights, ensuring that AI systems do
not violate their privacy. Finally, the authors identified empathy,
which leads to more supportive and caring relationships in health
care. Based on these 6 core concepts, considered as general
aims of AI in health care, we propose our reflections and our
framework, targeting specifically the dual nature of AI in
information and disinformation dissemination and its
implications for public health, a specific sector of the emerging
area of AI in health care, which has been considered (albeit not
discussed in depth) in the latest World Health Organization’s
guidance on large multimodal models [25]. Building upon the
ethical framework outlined thus far, and specifically delving
into the context of AI use in the dissemination of information
and disinformation, we contend that transparency and openness
stand out as fundamental principles in the ethical implementation
of AI. As AI systems become integral to shaping the information
landscape, by fostering transparency, stakeholders can
comprehend the mechanisms underlying AI-generated content,
enabling informed assessments and external evaluation of its
credibility and potential biases [26,27]. Openness (ie,
accessibility of data and code) is to be considered a conditio
sine qua non for transparency, which in turn complements
openness by accompanying the mere availability of data and
code for scrutiny with a layer of explanations and motivations,
allowing the contextualization of open data and code, and of
development and design choices. Accountability mechanisms
should accompany transparency, establishing a clear chain of
responsibility for the outcomes of AI applications [4,28]. This
promotes ethical standards in AI and mitigates the risks
associated with disinformation and misinformation. In line with
Siala and Wang’s framework [24], in addition to transparency,
openness, and accountability, fairness underscores the
importance of ensuring that AI systems do not perpetuate or
exacerbate existing societal inequalities [29]. In the context of
information dissemination, this principle requires diligent
consideration of how AI might inadvertently amplify certain
perspectives or marginalize others. This is particularly relevant
for public health, given that the negative effects of
disinformation and misinformation are amplified within
marginalized and vulnerable communities lacking information
literacy, which would protect them from an unhealthy
information ecosystem. Evaluating the fairness of AI-generated
content involves addressing algorithmic biases, cultural
sensitivities, and inclusivity in representation. Importantly, as
an element of fairness, the ethical deployment of AI in
information spaces should prioritize user empowerment,
fostering critical thinking and information literacy [4]. AI
systems should therefore serve as tools for enhancing human
decision-making and understanding of information, rather than
dictating narratives—this ensures that AI contributes positively
to public health while respecting human autonomy.
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In the following sections, we will focus on the practical
application of the aforementioned principles. We aim to provide
solutions for the ethical challenges arising from the use of AI
in information production, with the overarching goal of
mitigating its adverse impacts on public health.

Transparency and Openness in Training
Datasets

In line with previous research on transparency and AI [26,27],
and our previous section on ethical principles, we propose that
one (and possibly the most relevant one) of the foundational
ethical principles, which is valid also in the context of AI-driven
disinformation and misinformation, is transparency. At the heart
of this principle lies the recognition that the training datasets
used to develop generative AI models play a crucial role in
shaping the capabilities and internal biases of these systems
[30,31]. Training datasets are collections of input data paired
with corresponding desired outputs; during training, the model
learns patterns and relationships within the data, learning to
make accurate predictions or generating desired outputs when
exposed to new, unseen data. The quality and diversity of the
training dataset significantly influence the model’s performance
capabilities. These datasets, often vast repositories of text
available online, constitute the source from which AI models
draw to generate, for example, human-like text. Yet, this very
opacity surrounding the composition, sources, and curation
methods of training datasets raises pressing ethical concerns
[32]. AI models are, in essence, statistical representations of
the language on which they are trained [33]. Consequently, the
quality, diversity, and representativeness of the data they ingest
profoundly influence their output. The danger lies in the fact
that AI models, devoid of inherent ethical or moral judgment,
reflect the biases, inaccuracies, and prejudices present in their
training data [32,34,35]. Therefore, if these datasets are not built
with the ethical principle of fairness in mind, and are themselves
compromised by disinformation and misinformation or biases,
the AI systems will inadvertently replicate and perpetuate these
flaws. It is essential to highlight that research has extensively
illuminated the issue of biases in AI systems, shedding light on
the far-reaching consequences of these biases [32,34-36]. For
instance, image representations learned with unsupervised
pretraining contain human-like biases [37], and models
generating images of women have been shown to exhibit gender
biases, often portraying women in overly sexualized roles [38].
Another example is the observation that AI is more resistant to
producing disinformation on certain topics compared with
others. For instance, AI shows greater resistance to generating
disinformation about vaccines and autism than about climate
change. This is likely due to the extensive debunking material
on certain topics within the training dataset, and how much the
information environment represented in the dataset is permeated
with disinformation on a given topic [9]. These biases
underscore the critical need for transparency in addressing the
challenges posed by AI, and in particular in the context of
disinformation and misinformation. As discussed, research has
demonstrated that biases can permeate various facets of AI
systems, affecting everything from language generation to image
recognition. The repercussions of these biases are profound,

perpetuating harmful stereotypes, reinforcing systemic
inequalities, contributing to the dissemination of discriminatory
content, and affecting health behavior and public health. As
such, transparency in AI extends beyond understanding the
sources and composition of training datasets to encompass an
ethical imperative to identify, acknowledge, and rectify biases
present within these systems [39,40]. This dimension of
transparency necessitates ongoing research and scrutiny to
uncover hidden biases and ensure that AI systems are developed
and fine-tuned with the utmost awareness of potential
distortions. In the context of misinformation, addressing these
biases becomes particularly important to prevent AI from
inadvertently amplifying and perpetuating false or harmful
narratives, in the best case [41], or from becoming a formidable
tool for the systematic creation of storms of disinformation, in
the worst. A recent example is highlighted by the evidence that
AI large language models can be manipulated through emotional
prompting into generating health-related disinformation, that
is, being polite with the model leads to a higher disinformation
production, whereas impoliteness leads to a lower disinformation
production [42]. To address the outlined ethical dilemmas, we
strongly suggest that companies creating AI models with the
abilities discussed above publicly release the datasets used to
train their models [43], regardless of their size and complexity.
Such a move toward transparency serves several vital purposes:

1. Trust: transparency cultivates trust in AI development and
deployment. By allowing stakeholders, including researchers,
policy makers, and civil society, to scrutinize the composition
and origins of training data, it generates confidence that AI
models are not being shaped for purposes that have a negative
impact on public health.

2. Independent evaluation: the availability of training data for
public inspection enables independent evaluation of its quality
and representativeness. Researchers can assess whether these
datasets include diverse perspectives and are free from biases
that might amplify disinformation and misinformation.

3. Bias mitigation: transparency acts as a safeguard against the
propagation of biases present in training data. When biases are
identified, they can be scrutinized and mitigated, preventing AI
models from perpetuating stereotypes, falsehoods, or harmful
narratives.

4. Ethical accountability: openness about training datasets holds
developers accountable for the ethical implications of their
creations. Already during the design of the technology, it
compels them to take responsibility for ensuring that AI systems
do not inadvertently contribute to misinformation or harm.
Basically, by embracing transparency in training datasets, we
empower society to hold AI developers to higher ethical
standards. This approach fosters a collaborative effort among
stakeholders and, in particular, the general public to ensure that
the AI systems we deploy serve the collective good, free from
misinformation and other biases. We also argue that a systematic
implementation of the principle of transparency in this context,
that is, “ethics by design” would not only allow companies to
implement ethics-based practices in their technology
development processes but also improve their own public image,
thus enhancing the public’s acceptance and willingness to use
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these systems [44,45]. Nevertheless, it is vital to underline that
incorporating ethics to hold developers accountable for flawed
AI design should not be undertaken in isolation. Simultaneously,
policy, legislation, and regulatory mechanisms should be
developed, as currently attempted by the European Union
[46,47]. These mechanisms should delineate protocols for
handling training datasets and ensuring compliance with ethical
standards. Thus, while “ethics by design” concentrates on
internal practices, external regulatory frameworks are
indispensable for comprehensive ethical and legal governance
in the development and deployment of datasets used to train AI
models.

Regulation of Output: Content Moderation
and Beyond

In the ongoing battle against AI-generated disinformation,
efforts to regulate the output of these powerful language models
have taken center stage. For example, OpenAI has taken steps
in this direction by implementing content moderation systems
designed to prevent AI from generating disinformation and
harmful narratives [48-50]. These systems represent a crucial
initial stride in curtailing the dissemination of disinformation
and promoting responsible AI use, but they do not come without
specific challenges and limitations. First, the fight against
AI-generated disinformation is an arms race [51]. The evolution
of AI-generated disinformation and the efforts to counteract it
bear resemblance to the dynamics of traditional arms races,
where each advancement in technology prompts
countermeasures in an escalating cycle [52]. Ethical
considerations arise when we acknowledge that the output of
AI language models can indeed be weaponized, not in a
traditional sense but as a tool for information warfare, with an
impact on global health. As content moderation systems continue
to advance, so too do the methods employed to circumvent these
safeguards. One particularly troubling tactic gaining prominence
is that of impersonation, a strategy that allows individuals to
request AI systems to impersonate specific fictional malicious
and manipulatory characters, that create disinformation upon
the user’s request [53]. Impersonation can be used to trick AI
large language models into fabricating disinformation. For
instance, in an article for Culturico [53], Germani considered a
scenario where a user engages an AI model to craft a social
media post mimicking the writing style of a fictitious “Doctor
Fake,” who is notorious for propagating falsehoods about
vaccines and COVID-19. In this context, the AI-generated text
could include deceptive information about, for instance, vaccine
safety and efficacy [54], posing a substantial risk to public
health. When presented with a hypothetical request to “write
an example of a post Doctor Fake published on social media to
deceive others,” the AI model might produce a convincingly
articulated piece of disinformation that poses a grave threat to
public health. The generated text could read as follows:

Vaccines are dangerous and can cause serious side
effects. They are not tested enough, and the
government is just pushing them to make money.
Don’t fall for the lies. COVID-19 is not a real threat;

it’s just a hoax made up by the government to control
us. Don’t get vaccinated; it’s not worth the risk.

These scenarios underscore the formidable challenges posed by
impersonation for public health and the maintenance of
democracy, and the urgent need for innovative solutions to
mitigate its impact. Of note, impersonation here does not refer
to identity theft through the use of AI, such as in the case of
deep fakes, which is already recognized as a felony under, for
instance, European law [55]. While output moderation remains
an essential component of AI ethics, researchers, policy makers,
and technology developers should explore additional strategies
and interventions to counteract the potential for AI-driven
disinformation campaigns to flourish under the guise of
impersonation and other prompt engineering techniques with
similar goals.

Besides, other strategies and interventions that can complement
content moderation efforts and fortify the defenses against the
proliferation of AI-driven disinformation can be considered.
One possible approach involves the implementation of identity
verification processes for users generating content [56]. Such
measures necessitate users to provide authentication, such as a
verified social media account, a phone number, or their ID, to
corroborate their true identity before gaining access to specific
AI services. This authentication serves as a potent deterrent
against impersonation tactics and the exploitation of AI tools
to generate disinformation in general. However, it should be
noted that such a strategy should only be used to deter users
from generating disinformation, rather than to make them legally
responsible for it since anonymity should be guaranteed while
using services such as OpenAI’s ChatGPT. In particular, this
type of solution will minimize the impact of bots trying to
exploit AI to produce disinformation en masse.

Another way to positively influence users, and to indirectly
regulate the output is to release and integrate AI-driven
fact-checking tools with existing AI-generating content tools
[57]; such fact-checking tools should be capable of swiftly
assessing the accuracy of information dispensed by AI systems,
and offer real-time interventions against disinformation and
misinformation. These tools have the capacity to flag or rectify
false or misleading content, curbing its adverse effects. This
approach is limited by the inability of AI tools such as GPT-3
to determine the accuracy of information with a very high degree
of efficiency, when compared with the ability of humans [9],
although newer or future models may be more capable of
performing such tasks. For fact-checking, current studies suggest
that trained fact-checkers may outperform AI [9], and that even
when AI performs well at detecting misinformation, it does not
change the ability of users to discern between accurate and
inaccurate headlines [58]. Furthermore, a study showed that AI
fact checks can decrease beliefs in accurate news [58]. The
effectiveness of this approach is constrained by the distinction
between cases where it serves as a deterrent against sharing
misinformation (a situation of unintentionality) [5] and situations
where users intentionally use AI to disseminate false or
misleading information (ie, disinformation) [5]; in the latter
scenario, its effectiveness is likely irrelevant. Another relevant
consideration in this setting relates to the question of how we
define “good” or “bad” use of AI text generation tools. As for
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the definition of “good” and “bad,” it is generally possible to
distinguish facts from fiction, and disinformation and
misinformation from accurate information. When the
information under scrutiny contains factual statements, these
can be validated or falsified. However, distinguishing between
“good” and “bad” use of these tools is sometimes a complex
challenge with significant normative and epistemic dimensions.
It is not always obvious if a message contains misinformation,
and determining appropriateness can vary depending on cultural,
ethical, and societal factors. For example, fact-checkers
themselves may have their own interests or biases, and their
actions may not always align with complete competency or
impartiality. In addition, nuances and personal perspectives can
also have an influence on the identification of disinformation
and misinformation. These aspects introduce an additional layer
of complexity, as the very definition of disinformation and
misinformation can be manipulated or abused for personal gains
by individuals or organizations with vested interests.

Another technical approach that could be implemented to reduce
disinformation and misinformation outputs is to implement
user-friendly mechanisms for reporting suspicious or harmful
AI-generated content [59]. This approach empowers the user
community to actively participate in safeguarding the digital
ecosystem. User feedback serves as a valuable resource for
refining content moderation systems and identifying emerging
issues. Elon Musk’s former Twitter, X, for example, has
implemented community notes, aiming to empower people to
add context to potentially misleading tweets [60]. The
effectiveness of this strategy, however, has not been tested. In
addition, for improving technology, developers could publicly
release case studies in which red-teamers try to exploit their
own AI systems to produce disinformation on a large scale,
along with detailed accounts of how such issues were addressed
[59].

Of course, besides the technical approaches that can be
implemented by those advancing and crafting AI technologies,
governments and regulatory bodies can play a role by enacting
legislation and regulations that hold AI developers accountable
for the content produced by their systems or improve the
information ecosystem [61,62], for example, when it is proven
that they were aware of the pitfalls of their technology upon
release. Certainly, governance is important in this context as it
is for other “dual use” technologies, and proactive
decision-making processes and negotiations toward building
viable solutions are needed [63]. These include fostering
collaboration among AI developers, researchers, policy makers,
and technology companies. This collaborative interdisciplinary
approach would enable the sharing of best practices, insights,
and technologies for combating disinformation and
misinformation, resulting in more effective and adaptive
solutions.

Building Information Literacy and
Resilience Strategies

In the battle against the misuse of AI for generating
disinformation and misinformation, the technological solutions
described above are relevant but neither exhaustive nor flawless.

A comprehensive approach must include the promotion of
information literacy and the development of critical thinking
skills within the general population, as well as health literacy,
within the domain of public health [54,64,65]. The foundation
of this approach is the task of equipping individuals with the
ability to distinguish between accurate information and
disinformation and misinformation, thereby promoting their
resilience against false and misleading claims [66]. Despite,
arguably, this strategy is the most valuable and with the highest
potential, the endeavor it entails is extremely complex. In fact,
information literacy (as well as media, digital, and health
literacy) is not a monolithic skill but a dynamic set of abilities
that enable individuals to navigate the complex landscape of
digital information effectively [67,68]. As of now, the perfect
recipe for defining how to teach information literacy, and
especially the skills to be able to distinguish fake news from
accurate news, or disinformation and misinformation from
accurate information, have not been elucidated [66,69,70]. Thus,
it is essential to engage in research to pinpoint and define the
specific skills that must be offered to individuals, keeping their
demographic specificities into account, to empower them as
discerning consumers of information, especially health-related
information, in the digital age [66]. This approach implies 1
crucial advantage, that is, while dataset transparency and output
regulation intervene in the upper part of the pipeline and
therefore require the compliance of companies providing AI
models as a service, information literacy does not rely on
compliance. While the previous strategies become useless when
malicious actors develop and host their own models, rather than
relying on those commercially available, building information
literacy remains a functional tool. Of note, another example of
a bottom-up strategy in the area of education is ethics training
and an ethics code for developers.

Building information literacy is a collective undertaking that
necessitates collaboration between research and educational
institutions [71], governments, and social media platforms.
Research institutions are responsible for advancing the field
forward, identifying viable strategies to teach critical thinking
skills necessary to build information literacy, especially in the
context of public health. Such approaches should be
demonstrated to be effective through empirical work [66].
Schools and universities, we argue, bear the vital role of
incorporating information literacy into curricula, ensuring that
students graduate with the necessary skills to evaluate
information critically [72]. Governments must devise policies
and initiatives that promote information literacy as a means of
safeguarding the integrity of public health [4]. Social media
platforms, which serve as primary conduits of information
consumption, are tasked with implementing features and
mechanisms that facilitate user understanding and evaluation
of the information they encounter [73], and may also be potential
collaborators for research institutions to evaluate the
effectiveness of potentially viable digital interventions. In this
context, it is important to note that, regardless of the source of
disinformation and misinformation, and regardless of whether
the content has been generated with or without the help of AI,
information literacy and critical thinking skills play a crucial
role in the recognition of information accuracy. AI systems have
the capacity to generate disinformation that is more sophisticated
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than human-generated disinformation [9], as they excel in
employing manipulation tactics. However, these tactics align
with those used in human disinformation. This implies that the
ability to discern truthfulness and malicious intent in a complex
information ecosystem requires possessing the skills necessary
to identify the accuracy and intentionality of information in
general, not solely when produced by AI. It is therefore crucial
to underline that fostering information literacy and critical
thinking skills hold the potential to go beyond the issue of
AI-generated disinformation and misinformation. These skills
empower individuals to assess the accuracy and reliability of
information across various domains, whether it originates from
AI systems or human sources [65,74]. Of note, the application
of critical thinking skills and information literacy may prove
effective for AI-generated content in textual form. However,
this might not necessarily hold true for audio or visual content.
The emergence of deepfakes poses unprecedented challenges
to the relevance of information literacy [75]. Evidence from the
literature suggests that media literacy education may protect
against disinformation produced with deepfakes [76]; in line,
we suggest that the manipulative intent behind disinformation
is likely to manifest irrespective of the media type used,
underlying the continued importance of information literacy
and critical thinking skills. Tailoring educational approaches to
information literacy for different content types is likely to be
the required approach to succeed in an increasingly complex
information environment. Addressing the advent of
AI-disinformation, whether in textual form or deepfake audio
and video, demands a swift and adaptable response in education,
acknowledging the challenging nature of this task.

Conclusion

In evaluating the dual nature of AI in information dissemination,
this paper examined the ethical considerations that underlie its
use in our increasingly digitized world. The “infodemics” we
find ourselves immersed in demand not only our vigilance but
also our proactive ethical engagement [77]. Our theoretical
examination, based on the “ethical desiderata” identified as core
areas (fairness, transparency, trustworthiness, accountability,
privacy, and empathy) by Siala and Wang [24], has revealed a
few potentially viable strategies to reduce the negative impact

of AI as a tool to generate disinformation with a negative impact
on public health. First, we considered that promoting openness
and transparency of training datasets could enable independent
evaluation, mitigate biases, and help identifying issues in the
training dataset that could result in the production of
disinformation and misinformation; to a certain extent, this first
strategy could be enacted through regulation. Second, we
considered the potential benefits and limitations of moderating
content output. We have discussed that the rise of impersonation
tactics and other prompt engineering approaches to generate
disinformation highlights the need for innovative solutions,
which potentially include identity verification, the development
and integration, within AI-models to generate information, of
AI-driven fact-checking tools, as well as the integration of
user-friendly reporting mechanisms for disinformation and
misinformation, and potentially of legislative measures to ensure
accountability. Finally, we discussed the necessity of building
information literacy and critical thinking skills within our
society, which could help people tell apart fake versus real news
and disinformation and misinformation from accurate
information. In this way, we can promote resilience against the
threats posed by the digital age, particularly those related to
public health, as seen during the recent COVID-19 pandemic.

While the technology advances fast, and these issues are just
surfacing, it would be important to, at least temporarily, align
the amount of effort and resources invested respectively in the
development of new AI models, and in the reflection on their
potential impact and subsequent policy work, in order to have
enough time to assess the potential downsides of the technology
for the health of information ecosystems and the damages for
individual and public health. This could be achieved by
accelerating ethical reflection and policy-making work, or by
slowing down or even halting the development of new and more
capable models, or by a combined strategy [78].

Ultimately, the ethical considerations surrounding AI in
information production and dissemination demand ongoing
vigilance, innovation, and collaboration. Our ability to integrate
ethics into AI-based processes of information generation and
dissemination will not only shape the future of AI but also
determine the integrity of our information ecosystems and the
resilience of our societies.
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Abstract

Background: Central collection of distributed medical patient data is problematic due to strict privacy regulations. Especially
in clinical environments, such as clinical time-to-event studies, large sample sizes are critical but usually not available at a single
institution. It has been shown recently that federated learning, combined with privacy-enhancing technologies, is an excellent
and privacy-preserving alternative to data sharing.

Objective: This study aims to develop and validate a privacy-preserving, federated survival support vector machine (SVM) and
make it accessible for researchers to perform cross-institutional time-to-event analyses.

Methods: We extended the survival SVM algorithm to be applicable in federated environments. We further implemented it as
a FeatureCloud app, enabling it to run in the federated infrastructure provided by the FeatureCloud platform. Finally, we evaluated
our algorithm on 3 benchmark data sets, a large sample size synthetic data set, and a real-world microbiome data set and compared
the results to the corresponding central method.

Results: Our federated survival SVM produces highly similar results to the centralized model on all data sets. The maximal
difference between the model weights of the central model and the federated model was only 0.001, and the mean difference over
all data sets was 0.0002. We further show that by including more data in the analysis through federated learning, predictions are
more accurate even in the presence of site-dependent batch effects.

Conclusions: The federated survival SVM extends the palette of federated time-to-event analysis methods by a robust machine
learning approach. To our knowledge, the implemented FeatureCloud app is the first publicly available implementation of a
federated survival SVM, is freely accessible for all kinds of researchers, and can be directly used within the FeatureCloud platform.

(JMIR AI 2024;3:e47652)   doi:10.2196/47652
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Introduction

Accessing data to apply machine learning (ML) in biomedical
settings is still challenging [1]. Large amounts of data exist in
clinical settings but are scattered across numerous institutions.
Due to strict privacy regulations, such as the General Data
Protection Regulation (GDPR), this data cannot be easily shared
or collected at a central institution [2]. This causes hurdles for
cross-institutional biomedical analyses that depend on highly
sensitive patient data. One example is time-to-event analysis,
aiming to find parameters that prolong or shorten the time until
a particular event, such as death, occurs [3]. In these studies,
the event of interest does not necessarily occur for all samples,
increasing the need for large sample sizes [4]. Until today, the
need for large sample sizes and heterogeneous data for
time-to-event studies is still mainly solved through traditional
data sharing, leading to the central collection of various
deidentified and anonymized data sets from different centers.
Since using anonymized data in the training of ML models tends
to weaken model performance [5], this comes with a tradeoff
of data privacy and data quality, accelerating the need for
alternative methods that keep data private and ensure the quality
of the data [6].

In recent years, federated learning (FL) has become a feasible
alternative to central data collection by enabling the training of
models on distributed data sets. Instead of sharing sensitive data
with a central institution, in FL, only insensitive model
parameters are shared with a central aggregation server [7,8].
Therefore, each participating party calculates its own model
with local model parameters on their local data. These local
model parameters are then shared with the aggregator and
aggregated into a global model. Afterward, the global model is
shared again with each participant and can be updated in another
iteration. The first and probably most widely used aggregation
approach is the federated average [9], calculating the weighted
mean of the exchanged model parameters. Besides using
different aggregation approaches, FL can also be distinguished
between horizontal and vertical learning, as well as cross-device
and cross-silo learning. Horizontal learning describes FL on
data with the same features but different samples, while vertical
learning performs on the same samples but with different
features between the participating parties. Cross-device FL
trains models across millions of participants (such as mobile
phones), cross-silo FL, on the other hand, focuses on a few
clients only, such as hospitals or research institutes [10].

Especially in combination with privacy-enhancing techniques
(PETs), model parameters can be exchanged securely, such that
a global aggregator or potential attacker cannot even see the
local parameters of each participant [11]. This secure exchange
of model parameters is necessary to comply with the GDPR, as
even local models can be considered personal data [12].
Therefore, FL enables the training on a significantly larger data
set compared with single-institution scenarios. While federated
algorithms still often struggle with communication efficiency,

the significantly increased amount of data can offset this
performance issue, making FL a serious competitor to classical
ML. Additionally, since FL models are trained on a larger
variety of data, they typically generalize better than traditional
ML models and even generalize faster in some cases [13,14].
Many FL approaches are already published for biomedical
applications, such as medical imaging analysis, genome-wide
association studies, or gene expression analysis [15-17].

In addition to federated ML approaches, several federated
time-to-event analysis algorithms have been introduced recently
and confirmed their high potential for privacy-preserving
analyses [18-21]. However, existing approaches solely cover
traditional statistical methods such as the estimation of survival
functions and the Cox proportional hazards model. Modern ML
algorithms for survival analysis, such as survival Support Vector
Machines (SVMs), are not yet available in a federated fashion,
even though SVMs belong to one of the most popular ML
methods. If algorithms are not available in federated scenarios,
this might be a reason why researchers chose not to perform
FL, if their favorite algorithms are not available. Many
well-performing centralized algorithms are challenging to
translate to a federated scenario while keeping sensitive data
private. Another limitation of FL is communication efficiency.
FL algorithms need to exchange the intermediate statistics with
a central aggregator, which is especially inefficient for
algorithms with many iterations. This inefficiency even increases
when adding secure aggregation schemes, such as additive secret
sharing. This PET ensures that only masked and encrypted
model parameters are shared with the aggregating party, securing
the local models from data leakage [18].

To address the lack of availability of federated time-to-event
methods, we propose a privacy-preserving, horizontally
federated, cross-silo survival SVM based on the survival analysis
package scikit-survival [22]. Compared with other existing
time-to-event methods, such as the Cox proportional hazard
model, the survival SVM allows an actual prediction of the time
until an event happens. It can be used to predict the risk of
individual samples, which is not possible in univariate
time-to-event algorithms and is not the aim of the Cox
proportional hazards model. Therefore, to the best of our
knowledge, it is the first freely available federated survival
prediction method. We implemented the algorithm as an app in
the FeatureCloud platform to make it publicly accessible and
to minimize the hurdles of FL infrastructure [23]. Based on a
combination of FL and additive secret sharing, we show on 3
benchmark data sets, that our approach achieves highly similar
results compared with central data analysis. Additionally, we
apply it to a set of real-world microbiome data sets to
demonstrate its applicability to original clinical data.
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Methods

Here, we propose the adapted algorithm for the federated
survival SVM, describe its implementation as a FeatureCloud
app, and explain how we evaluated its performance.

Federated Survival SVM
We extended the regression objective of scikit-survival’s
FastSurvivalSVM without ranking to be applicable in federated
environments [24]. As shown in Figure 1, instead of calculating
the sum of the squared ζ-function centrally, it is calculated at
each site, with the feature vector xi, the survival time yi>0, and
the binary event indicator δi. Each site’s local sum of squared
ζ-function is then sent to a global aggregator and summed up
to the global sum of squared ζ-function. The below equations
show the central objective function and our corresponding
federated objective function, with C being the set of all
participating clients.

Mathematically, our federated formula leads to the same solution
as the centralized calculation of the objective function. Similar
to the centralized analysis, a truncated Newton method (such
as Newton-CG) can be used to optimize the objective function.
For this, in each iteration, the gradient and Hessian matrix of
each client are also sent to the global aggregator to sum them
up to the global gradient and Hessian matrix. To reduce potential
privacy leakage from the exchanged data, the implementation
of the federated algorithm should support a secure aggregation
scheme that hides the locally exchanged data from attackers or
the global aggregation server.

Figure 1. Federated calculation of a survival support vector machine (SVM). Each site calculates the sum of squares locally and sends it to the global
aggregation server. The aggregation server aggregates the local sum of squares by summing them up to the global sum of squares. The objective function
is minimized in a federated fashion by a truncated Newton approach. After convergence, the global model is distributed to all participating clients.

FeatureCloud
We developed an FL app on the FeatureCloud platform to make
our approach publicly available. To develop this app, we used
the app template and application programming interface
provided by FeatureCloud [25]. Using the scikit-survival
package and Python, we implemented our algorithm, put it into
the FeatureCloud app template, and published it in the
FeatureCloud artificial intelligence store. It can be used with
other apps in a workflow or standalone using the platform. Our
code is entirely open source.

In FeatureCloud, 1 participating client also takes the aggregating
role and is called the coordinator. The app is implemented as a
state machine, meaning that the app switches between states to

perform different tasks. All states and their transitions are shown
in Multimedia Appendix 1. After reading the local data and
config files, minimizing the objective function using a federated
Newton conjugate gradient is performed iteratively. Therefore,
the local gradient and Hessian matrices are calculated and sent
to the coordinator. The coordinator aggregates these data to
obtain the global matrices, updates the weight vector ω, and
broadcasts it to all clients. This is repeated until convergence.

A considerable advantage of the FeatureCloud platform is its
native support of 2 very popular PETs, such as secure multiparty
computation (SMPC). For applying SMPC, FeatureCloud
supports a secure aggregation scheme for hiding locally
exchanged parameters using additive secret sharing [26].
Through this, the exchanged local models are protected, and
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only the global aggregations are visible to attackers, clients,
and the global aggregator. This is achieved by splitting the value
that needs to be exchanged with the global aggregator into n
shards, where n is the number of participating clients, and the
sum of these n shards would result in the actual value [23]. Each
shard is encrypted using a public key of each participant. These
encrypted shards are shared with the global aggregator, sending
them to the corresponding client holding the private key. The
clients decrypt the received shards, sum them up, and send them
back to the global aggregator, which sums up all received sums.
This final sum results in the actual, nonhidden, global aggregate.

Ethical Considerations
According to German regulations, for our retrospective study
performed on publicly available data or data with explicit
consent, approval from an ethical committee was not required.

Evaluation
We evaluated our approach using the developed FeatureCloud
app on 3 benchmark data sets, all available via the scikit-survival
package. The breast cancer data set (BRCA) [27] contains the
gene expression profiling of microarray experiments from 198
primary breast tumors, originally used to validate a 76-gene
prognostic signature able to predict distant metastases in lymph
node–negative patients with breast cancer. The German Breast
Cancer Study Group 2 data set (GBSG2) [28] contains data
from a multicenter randomized clinical trial to compare the
effectiveness of 3 versus 6 cycles of cyclophosphamide,
methotrexate, and fluorouracil on recurrence-free and overall
survival of 686 women. The observed parameters were hormonal
therapy (yes or no), age of the patients, menopausal status (pre
vs post), tumor size (in mm), tumor grade, number of positive

tumor nodes, progesterone receptor (in fmol), and estrogen, as
well as the censoring indicator and recurrence-free survival time
(in days). The Worcester Heart Attack Study data set
(WHAS500) [29] contains data from 500 patients with acute
myocardial infarction, collected during thirteen 1-year periods.
Parameters were age, gender, initial heart rate, initial systolic
and diastolic blood pressure, body mass index, history of
cardiovascular disease, atrial fibrillation, cardiogenic shock,
congestive heart complications, complete heart block,
myocardial infarction order and type, vital status, and total
length of follow-up.

Additionally, we evaluated our algorithm on a recent,
high-dimensional gut microbiome data set from the Hospital
Clinic of Barcelona, containing data from 150 patients with
liver cirrhosis [30]. The data set was aimed at assessing the
predicting role of the gut microbiome for the survival of the
patients in the context of liver cirrhosis, using shotgun
metagenomic sequencing performed on fecal DNA isolated
from stool samples. A former version of the data has been
previously analyzed with a different methodology [30]. For this
study, the Metagenomic Species Pangenome (MSP) was used
to identify and quantify microbial species associated with the
IGC2 reference catalog [31]. MSPs are clusters of coabundant
genes (minimum size >100 genes) used as a proxy for microbial
species, reconstructed from 1601 metagenomes to 1990 MSP
species [32]. MSP abundances were estimated as the mean
abundance of their 100 marker genes, as far as at least 20% of
these genes are detected. The MSP abundance table was then
normalized in each sample by dividing its abundance by the
sum of MSP abundances detected in the sample. Further details
regarding the data sets are shown in Table 1.

Table 1. Overview of all data sets. Our 4 evaluation data sets differ greatly in the number of samples, features, events, and censored individuals. Features
indicate the number of clinical variables or microbial species abundance in the data set; median follow-up indicates the median follow-up time of the
patients in days; events indicate the number of patients for whom the event of interest was observed during observation time; and censored indicates
the number of patients for whom the event of interest was not observed during observation time.

End pointCensored, nEvents, nMedian follow-up
(days)

Features, nSamples, nData set

Presence of metas-
tases

147514384.084198BRCA

Recurrence-free
survival

3872991084.011686GBSG2

Death285215631.516500WHAS500

Death9951416.01995150Microbiome

aBRCA: breast cancer data set.
bGBSG2: German Breast Cancer Study Group 2 data set.
cWHAS500: Worcester Heart Attack Study data set.

We one-hot encoded nonbinary categorical features. For each
data set, we created either 1 client (100%) as the centralized
scenario, 3 clients (20%, 50%, and 30%) as the multicentric
imbalanced scenario, and 5 clients (20% each) as the
multicentric balanced scenario, and we split the data
accordingly.

To evaluate the accuracy of our model, we used the Harrell
concordance index, which was developed as a generalization
of the area under the receiver operating characteristic curve for

time-to-event models [33]. It corresponds to the probability of
concordance between observed and predicted survival based on
each pair of individuals. A c-index of 0.5 means that the model
performs as well as a random guess, and a c-index of 1.0 means
that the model predicts perfectly well.

After preprocessing, we performed a 3 × 3-fold cross-validation
(CV) for a FeatureCloud workflow consisting of a federated
normalization, the federated survival SVM, and a federated
survival evaluation (c-index). We then compared our results
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with the centralized analysis of every client and the merged data
set (simulating a central data collection). Centralized analysis
was performed using scikit-survival’s FastSurvivalSVM with
a rank ratio of 0, α of 0.0001, true fit intercept, and a maximum
of 50 iterations. The same hyperparameters were used for the
federated analysis, respectively.

Privacy
FeatureCloud supports several properties to increase the privacy
and security of the computations. One important step is that FL
projects can be only executed with invited participants. For this,
a unique and secret code is needed to join the project. Every
participant can see the workflow and each individually executed
FeatureCloud app that will run in the workflow. As
FeatureCloud apps are open source, even the executed code of
the apps can be examined.

The execution of apps and workflows in FeatureCloud is
containerized and strictly monitored. Due to the containerization,
individual apps are not allowed to establish a connection to the
internet, which prevents the extraction of data from malicious
code. Even though the communication between clients does not
contain sensitive patient information, it is RSA
(Rivest–Shamir–Adleman) encrypted through the standard
HTTPS protocol. This prevents unauthorized third parties from
gaining insights into parameters exchanged during training.

Exchanged parameters from each individual site are masked
through the secure aggregation scheme, hiding the intermediate
statistics from other participating clients and the global
aggregator. This efficiently addresses the problem of local
models considered as personal data in GDPR [18].

Our federated survival SVM app currently uses a hybrid
approach of SMPC and FL. This hybrid approach increases the
privacy of the exchanged local parameters from both participants
and potential attackers, as explained in the methods section.

Differential privacy (DP) [34] is not yet supported by
FeatureCloud but is currently in development and could be
added to the algorithm as an additional layer to improve privacy.
However, as the app trains a linear model, it is less prone to
overfit, reducing the surface for potential membership and
attribute inference attacks [35]. In DP, noise is added to the
model parameters during the training process to guarantee a
mathematically quantifiable amount of privacy for each sample.
While this comes with large advantages regarding privacy, the
application of DP has also various weaknesses. The addition of
noise lowers the performance of the model significantly,
especially when applying the amount of noise necessary for a
meaningful level of privacy [36]. Further, this guarantee only
is applicable for a limited number of interactions with the

resulting model. As the final model is distributed to all
participants, they can interact with the model arbitrarily, making
the privacy guarantee void, thus not warranting an inclusion in
this analysis.

A PET not supported by FeatureCloud currently is homomorphic
encryption (HE), which allows the computation of the model
on encrypted values, making sharing of data even more secure.
While this is great in theory, it actually gains very little benefit
in this analysis scenario. The data we share is already
nonsensitive and through the use of SMPC, we can hide not
only the data but the data’s origin. This is why FeatureCloud
currently supports SMPC instead of HE.

Our implementation of the federated survival SVM app uses
all the functionalities offered by FeatureCloud and does not
deviate from these best practices.

Results

Performance
Our workflow delivered a highly similar model performance
and model parameters for all federated analyses compared with
the ones performed on the corresponding centralized data sets.
The resulting c-indices to estimate the performance of our
time-to-event models are depicted in Figure 2 [33]. For each
data set (subplot), we show a boxplot consisting of the evaluated
c-index for each CV split of our federated workflow with secure
aggregation (green), federated workflow without secure
aggregation (orange), and centralized calculation for each
individual client (blue). The CV results show that our federated
as well as the federated and secure aggregation approach
perform highly similar to the centralized estimates. The
calculation of the federated c-index in FeatureCloud causes
small deviances in the c-index between centralized and
federated. This is because FeatureCloud calculates a local
c-index and aggregates to the mean c-indices of all sites.
Therefore, it does not lead to the same c-index as a central
computation would. The mean c-indices for the 4 data sets are
in the range between 0.658 (GSBG2) and 0.76 (WHAS500). In
contrast to the accuracy, achieving very high c-indices is rather
difficult and depends very much on the problem. In a
bioinformatics context, the lowest c-index of 0.658 (GBSG2)
can be considered as moderate. The model achieves
discrimination between individuals with different survival
outcomes. However, it might not be of clinical utility and needs
further refinement. The c-index of 0.76 (WHAS500) on the
other hand, can be considered as good and has predictive value.
Improving the predictive value of the models and increasing
c-index was out of the scope of this work. A complete table of
the results is available in Multimedia Appendix 2.
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Figure 2. Comparison of federated and centralized analysis. The boxplots show the evaluated c-indices (3 × 3-fold cross validation) of the central, 3
participants, and 5 participants analysis (rows). For each scenario, we compared the federated and secure aggregation approach (green), the federated-only
approach (orange), and the performance of every single site (blue). BRCA: breast cancer data set; GBSG2: German Breast Cancer Study Group 2 data
set; WHAS500: Worcester Heart Attack Study data set.

The model weights are nearly identical, with a maximum
difference of only 0.001 and a mean difference of 0.0002
(Multimedia Appendices 1 and 3). These tiny differences
between the weights of the central model and our model are
negligible, as they do not change the overall prediction results
and still lead to equal c-indices. The resulting model is therefore
almost identical to the one that was trained on central data. A
useful property of the linear survival SVM is, that the model
weights can be used as a feature importance measure, which is
also supported in our approach.

Besides calculating the feature importance from model weights
directly, our federated survival SVM app uses Shapley additive
explanations (SHAP), an explainable artificial intelligence
framework for the interpretation of ML models [37]. Using
SHAP, we compared the final models of the central, federated
without secure aggregation, and federated with secure
aggregation runs. For each data set, the SHAP shows highly
similar model interpretations with a mean Pearson correlation
of 0.991 between the central and the federated model without
secure aggregation, and a mean Pearson correlation of 0.985
between the central model and the federated model with secure
aggregation. A slightly worse correlation in the secure
aggregation model is expected, as the masking of local
parameters leads to floating-point issues. The worst correlation

is shown in the microbiome data set (0.964), which can be
explained by the high correlation between features in this data
set. The results of the SHAP correlation analysis are listed in
Multimedia Appendix 4 and the corresponding SHAP beeswarm
plots are available in Multimedia Appendix 5.

Our results further demonstrate the importance of large data
sets, as the performance of the locally trained models on single
clients (smaller sample size) shows a much higher variance than
our federated models. If 5 institutes combine their small data
sets, they can perform a much more reliable time-to-event
analysis compared with isolated institutions. This further
supports the high practical value of FL in real-world clinical
time-to-event analysis, especially for institutions with small
sample sizes, homogenous cohorts, or only a few patients with
rare diseases.

Runtime
As shown in Figure 3, the runtime largely depends on the data
set. In the case of FL, the number of iterations and, therefore,
the number of data exchanges are the bottleneck. While the
federated-only approach has linear runtime, the runtime of
federated and secure aggregation is much worse and increases
with an increasing number of clients. As described in the
FeatureCloud publication, providing better privacy by hiding
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the exchanged parameters from the global aggregator, the simple
additive secret sharing grows quadratic with the number of
participants. Especially when many iterations and data

exchanges are needed, this has a bad influence on the runtime
of the FL implementation.

Figure 3. Runtime analysis. The lines represent the runtime for each data set and the number of participating clients. The federated-only approach is
depicted on the left, and the federated and secure aggregation approach is depicted on the right.

All results of the runtime analysis are shown in Multimedia
Appendix 6. Additionally, we performed the runtime analysis
on a data set with a large sample size. As real-world
time-to-event data sets are difficult to find, we used a
synthetically generated, published data set from an example
colon data set with 15,564 samples [38]. Our results show that
our method scales well for large sample sizes, as the number of
iterations is the bottleneck in FL (Multimedia Appendix 7).

FeatureCloud App
The app we developed can easily be used within the
FeatureCloud platform. For this, a project coordinator creates
a project, selects the app, and invites collaborators. Each
participant installs FeatureCloud and joins the project. The app
expects 2 CSV files as input, one for the training data and
another for the test data. A config file can be used to define
hyperparameters and other descriptors, such as the time and
event label columns. After the federated computation has
finished, each client receives the globally trained model as a
pickle file, as well as a prediction file containing all predictions
on the local test data set. The app can also be used in a
FeatureCloud workflow, supporting various preprocessing
methods, such as CV, normalization, feature selection, one-hot
encoding, and subsequent evaluation of survival models using
the c-index.

The requirements for running the survival SVM app are the
same as for executing the FeatureCloud platform. It requires a
stable internet connection to exchange the incentive model
parameters with the central aggregator and to run the app on
the website. Docker needs to be installed on a Mac, Linux, or
Windows computer with the corresponding requirements for
running Docker [39]. Moreover, enough memory should be
available to process the data set. This depends mainly on the
data set size, and not on the algorithm itself.

Discussion

Principal Findings
Our federated survival SVM has been demonstrated to offer a
highly viable alternative to centralized data collection in a
time-to-event analysis. It achieves comparable levels of accuracy
without compromising the privacy of highly sensitive patient
data. This makes it a compelling solution for organizations
seeking to safeguard sensitive data while still gaining the
benefits of advanced analysis and the application of ML.
Through its availability as a FeatureCloud app, the platform
takes care of deployment and federated infrastructures, making
it directly usable with little programming knowledge. The results
of the real-world microbiome data set are promising and show
that FL might be an accelerator in microbiome research and the
analysis of time-to-event microbiome data sets. Using FL
combined with additive secret sharing, our approach can be
currently considered GDPR compliant and, therefore, practically
usable in real clinical time-to-event studies [12].

Comparison to Existing Work
Only a few federated survival analysis approaches were
developed in recent years, such as the distributed Cox
proportional hazards model WebDISCO or an approach for
federated survival curves using multiparty HE [18,20]. In a
recent study about privacy-aware multi-institutional
time-to-event analysis, it was criticized that the existing work
was mainly focusing on theoretical solutions, rather than
practical [21]. Therefore, lack of usability was a huge issue that
was addressed by the authors, who developed the platform
“Partea” [21]. The platform supports the Kaplan-Meier estimator
for survival curve estimation [40], Nelson-Aalen estimator for
cumulative hazard ratios [41], and Cox proportional hazards
model for survival regression [42]. Compared with “Partea,”
FeatureCloud does not only address the execution of FL
algorithms, but also development. The FeatureCloud developer
application programming interface for implementing FL
algorithms that can be executed through FeatureCloud and
published in the App Store is a huge advantage in terms of
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development speed and also accessibility for the potential user
group.

To our knowledge, the survival SVM FeatureCloud app is one
of the first time-to-event analysis ML models implemented as
a FL algorithm. This makes the accuracy (or c-index in our case)
between the algorithms not directly comparable. However,
similar to the existing solutions [20,21], our approach achieves
almost identical results compared with the central algorithms.

Regarding runtime, univariate methods without iterations, such
as Kaplan-Meier estimator, Nelson-Aalen estimator, or log-rank
test are much more efficient in FL settings. However, these
approaches cannot be used to analyze high dimensional data
and multivariate settings. The efficiency of our approach is
comparable to the iteratively trained Cox proportional hazard
model, which is trained iteratively and requires communication
and aggregation for every parameter update step.

Limitations
Our current approach does not support the more efficient ranking
objective, as federated ranking is not trivial to implement.
Instead, it is based on scikit-survival’s regression objective.
Moreover, it solely supports the linear SVM and does not
support the kernel SVM yet. Calculating a kernel matrix in a
federated setting is not trivial, as it represents pairwise
similarities (or distances) between the training data points. For
supporting more complex, nonlinear relationships, this should
be further investigated in the future. We still decided to
implement and use a survival SVM in this work, as SVMs are
very popular in health care and the only available time-to-event
analysis ML model in scikit-survival that is not based on an
ensemble approach. Ensemble models, such as random survival
forests [43] or survival gradient boost, are both based on a set
of survival trees. While ensemble models are also popular in
time-to-event analysis, the federated aggregation of the local
forests produces slightly worse results than centrally trained
models in imbalanced scenarios [44]. A federated aggregation
of each local tree, on the other hand, is computationally costly.
The SVM in our implementation produces highly accurate
results compared with central learning for model weights,
c-index, and feature importance and can therefore lower the

burden of applying FL in health care (eg, microbiome analysis),
as the participants can be sure that the results are equal to the
ones they would obtain in a central setting.

FeatureCloud currently only supports a simple additive
secret-sharing scheme, increasing runtime for calculations with
many clients and iterations. This could be solved in the future
by using a more efficient secret-sharing scheme, such as Shamir
secret sharing, that is currently not supported by FeatureCloud
[45]. By using FeatureCloud as the execution platform, our
approach does not solve the still existing open problems of FL,
such as fairness, debugging, and communication efficiency
(especially when using secret sharing) [46]. Furthermore, there
are attacks on FL architectures that cannot be prevented through
the existing methods, such as privacy inference from the global
model, and model or data poisoning [47]. It is therefore
recommended to use the algorithms and FeatureCloud platform
only with trusted parties.

Another limitation that comes from the FeatureCloud platform
is data standardization. Data formatting and standards need to
be discussed and determined in advance by the participants of
the federated analysis. However, FeatureCloud provides the
possibility to include federated data preprocessing applications
in the workflow. While this does not remove the need for
external communication of data standards, such as included
features and naming conventions, it makes it straightforward
to guarantee the same format and preprocessing for the used
data before the actual model training process. Possible
applications include imputation, normalization, train or test
splitting, and CV [48,49].

Conclusions
In conclusion, we developed an open-source federated survival
SVM that performs time-to-event analysis on geographically
distributed data sets without sharing sensitive raw data. It is
freely available in the FeatureCloud App Store. The trained
models are almost identical compared with centrally trained
survival SVMs. This extends the palette of existing federated
time-to-event analysis approaches by another algorithm that
can be applied to various problems.
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Abstract

Background: The cost of health care in many countries is increasing rapidly. There is a growing interest in using machine
learning for predicting high health care utilizers for population health initiatives. Previous studies have focused on individuals
who contribute to the highest financial burden. However, this group is small and represents a limited opportunity for long-term
cost reduction.

Objective: We developed a collection of models that predict future health care utilization at various thresholds.

Methods: We utilized data from a multi-institutional diabetes database from the year 2019 to develop binary classification
models. These models predict health care utilization in the subsequent year across 6 different outcomes: patients having a length
of stay of ≥7, ≥14, and ≥30 days and emergency department attendance of ≥3, ≥5, and ≥10 visits. To address class imbalance,
random and synthetic minority oversampling techniques were employed. The models were then applied to unseen data from 2020
and 2021 to predict health care utilization in the following year. A portfolio of performance metrics, with priority on area under
the receiver operating characteristic curve, sensitivity, and positive predictive value, was used for comparison. Explainability
analyses were conducted on the best performing models.

Results: When trained with random oversampling, 4 models, that is, logistic regression, multivariate adaptive regression splines,
boosted trees, and multilayer perceptron consistently achieved high area under the receiver operating characteristic curve (>0.80)
and sensitivity (>0.60) across training-validation and test data sets. Correcting for class imbalance proved critical for model
performance. Important predictors for all outcomes included age, number of emergency department visits in the present year,
chronic kidney disease stage, inpatient bed days in the present year, and mean hemoglobin A1c levels. Explainability analyses
using partial dependence plots demonstrated that for the best performing models, the learned patterns were consistent with
real-world knowledge, thereby supporting the validity of the models.

Conclusions: We successfully developed machine learning models capable of predicting high service level utilization with
strong performance and valid explainability. These models can be integrated into wider diabetes-related population health
initiatives.

(JMIR AI 2024;3:e58463)   doi:10.2196/58463
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Introduction

In recent years, high-income countries worldwide have seen a
consistent rise in health care expenditure. Singapore, mirroring
this trend, has experienced a steady increase in health care
spending relative to its gross domestic product [1]. To address
this, Singapore is undergoing a transformative health system
initiative known as Healthier SG [2], which is an initiative to
pivot the health system toward preventive care and population
health management.

Parallel to these efforts, there is a burgeoning interest in
leveraging machine learning for individual-level health
utilization predictions. Identifying prospective high utilizers of
health care services could unlock opportunities for targeted
interventions. These interventions are poised not only to enhance
individual health outcomes but also to reduce long-term health
care utilization and system costs. Existing research suggests
that a disproportionate amount of health care spending is
concentrated among a small group of costly patients known as
the high-need, high-cost (HNHC) patients—often defined as
those who account for the top 5% of the annual health care costs
[3,4]. These patients were believed to present an opportunity
for cost reduction [5].

However, the potential for cost savings in caring for HNHC
patients is often less than anticipated [6]. This is due to the
diverse nature of these patients who can be subdivided into 3
categories: persistent and refractory HNHC patients, individuals
who experience a 1-time catastrophic health event, and patients
with multiple chronic conditions but amenable to disease
management programs [6,7]. Notably, the latter group presents
the most viable opportunity for impactful intervention. Persistent
and refractory HNHC patients are those with severe and chronic
diseases who require ongoing and expensive care. For these
patients, disease management programs often do not result in
significant reduction in health utilization and financial savings.
For patients with 1-time catastrophic health events such as
accidents, these events are difficult to predict and therefore not
amenable to any intervention [6,7]. Therefore, targeting the
small cohort with multiple chronic conditions but amenable to
disease management programs represents a limited opportunity
to reduce health care costs [6].

Given these complexities, there is a need to refine the approach
to predicting and managing high health care utilization. One
strategy could be to expand the predictive scope beyond HNHC
patients or explore other indicators. Relatedly, the total length
of stay (LOS) and frequency of emergency department (ED)
visits per calendar year may provide a better indication of
service-related health care utilization and the intensity of
inpatient resource use [8].

This study aims to develop prediction models to forecast annual
inpatient bed days and ED utilization across varying thresholds;
presently, such models are not available in our hospital system.
We utilized the Singapore Health Services (SingHealth) Diabetes
Registry (SDR), a comprehensive clinical database of patients
with diabetes within our hospital system to develop predictive
models. Our objective is to create clinically relevant and

actionable models that can be integrated into wider
diabetes-related population health initiatives [9].

Methods

Study Setting
We used data from the multi-institutional SDR, previously
described in detail [10]. SingHealth is the largest of the 3 public
health care clusters in Singapore and manages 4 acute hospitals,
5 national specialty centers, 3 community hospitals, and a
network of 10 primary care polyclinics. SDR was initiated in
2015 and populated retrospectively and prospectively from
across SingHealth’s electronic medical records and clinical
databases to cover the period of 2013 to 2022.

Outcome Variables
As SDR primarily consists of clinical data from electronic
medical records and lacks financial information, we focused on
service-related health care utilization metrics. To this end, we
developed models to predict utilization across 6 different
thresholds (per calendar year), specifically for total LOS at ≥7,
≥14, and ≥30 days and for ED attendance ≥3, ≥5, and ≥10 visits;
thus, 6 sets of (binary classification) models were constructed.
Currently, there are no standard definitions for long inpatient
LOS or high ED attendance.

For total LOS, we set arbitrary thresholds corresponding to 1
week, 2 weeks, and 1 month. These thresholds were chosen to
reflect varying degrees of health care utilization in ours and
possibly other health care systems, corresponding to different
levels of patient care needs and resource allocation. Inpatient
stays between 1 and 2 weeks represent short-term stays,
potentially indicative of acute or less severe conditions. In
contrast, stays longer than 2 weeks and those extending beyond
1 month represent increasingly prolonged stays, often associated
with more severe or complex health issues, especially in the
latter. These distinctions are critical for understanding and
managing different patient care strategies. They also represent
varying levels of health care management and resource planning,
as we intend to develop disease management programs around
these thresholds in the future. Regarding ED attendance, a recent
systematic review indicated that ≥3 was the most common
definition for high ED attendance but noted that definitions
could extend to 30 or more visits [11]. Accordingly, we defined
high ED attendance by using the 3 aforementioned thresholds,
with ≥3 visits as the minimum criterion. This approach may aid
in planning interventions to prevent escalation to higher levels
of utilization.

Explanatory Variables
The SDR data set facilitated an examination of the effects of
sociodemographic indicators, health indicators, and
diabetes-related complications. Our methodology for
ascertaining diabetes-related complications has been published
previously [12] and detailed in Table S1 of Multimedia
Appendix 1. The models incorporated 24 variables detailed in
Table S2 of Multimedia Appendix 1. These variables are readily
derived from electronic medical records during admissions, ED
visits, inpatient and outpatient clinical consultations, and are
based on local clinical guidelines [13]. These variables offer a
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comprehensive view of the patients from demographic, social,
clinical, and utilization perspectives.

Inclusion and Exclusion Criteria
This study utilizes data from SDR spanning 2019 to 2022, as
this was the period when comprehensive health care utilization
data were available. We included patients aged 18 years and
older diagnosed with type 2 diabetes mellitus. Patients with
missing variables were excluded from this study, as we did not
perform data imputation, and most machine learning algorithms
do not support missing values.

Handling Unbalanced Data
Our data set demonstrated significant class imbalance in
inpatient and ED utilization, which can bias models toward the
majority class, hinder the identification of the high utilizers (the
minority class) [14], and result in subpar model performance.
In this study, we utilized oversampling, a data-level method to
address the class imbalance. Specifically, we used the synthetic
minority oversampling technique-nominal continuous
(SMOTE-NC) [15] from the themis package [16]. SMOTE-NC,
a variant of the SMOTE family of algorithms, generates new
examples of the minority class by interpolating between several
minority class instances that lie relatively close to each other
[17]. SMOTE-NC is effective with mixed numerical and
categorical data. We applied SMOTE-NC with k=5 and k=3
settings, where k denotes the number of nearest neighbors used
to generate new examples of the minority class. Additionally,
we used the upSample algorithm from the caret package [18]
for random oversampling and compared it with no oversampling.
All oversampling techniques achieved equal representations of
both classes in our training data set (ie, equal number of patients
with and without the outcome in the training data set).

Performance Indicators
We assessed model performance by using area under the receiver
operating characteristic curve (AUC), sensitivity (recall), and
positive predictive value (PPV). Sensitivity (recall) allowed us
to identify whether the models were able to correctly identify
patients with the outcomes of interest. PPV provided us with
an understanding of the quality of the positive prediction made
by the model. Additionally, we have reported the area under
the precision-recall curve, sensitivity, specificity, and F1-score
in Multimedia Appendix 1. The area under the precision-recall
curve is preferred over AUC for rare outcomes, as it more
accurately reflects model performance [19]. We also evaluated
the confusion matrix during model development.

Machine Learning Models
We built 7 predictive models using R software (version 4.3.1;
R Foundation for Statistical Computing) and the tidymodels

package [20]: logistic regression, random forest, boosted trees,
multilayer perceptron (MLP), k-nearest neighbor, multivariate
adaptive regression splines (MARS), and Bayesian additive
regression trees. SDR data from 2019 were randomly split into
training (75%) and validation (25%) data sets, with no overlap
between the data sets. Since the training data set was large
(n=75,375), we did not perform cross-validation during model
training. No hyperparameter tuning was performed, as the intent
of the study was to build baseline models to understand the
problem and data set while prioritizing model simplicity and
interpretability. The trained models were then tested on unseen
data from 2020 and 2021 (ie, the model utilized 2020 data to
predict 2021 outcomes and 2021 data to predict 2022 outcomes).
Although the data sets originate from the same registry, they
reflect distinct utilization patterns across different years,
ensuring temporal independence between them.

Explainability
For top-performing models, model interpretation was determined
using model-specific variable importance scores with the vip
package [21] and permutation feature importance plots using
the DALEX package [22,23]. Additionally, for the top variables
identified through these methods, partial dependence plots
(PDPs) were generated using the DALEX package and the
unseen validation data set to visualize the relationship between
key predictor variables and the probability of the outcome
occurring.

Ethics Approval
Ethics approval was obtained from the SingHealth Centralized
Institutional Review Board prior to initiating this study
(reference: 2022/2133). As all participant data were deidentified,
a waiver for participant consent was also obtained.

Reporting Checklist
We followed the consolidated reporting guidelines for prognostic
and diagnostic machine learning modeling studies [24] (Table
S3 in Multimedia Appendix 1).

Results

Characteristics of the Data Sets
After removing patients with missing data from the registry in
2019, the training data set contained 100,500 (74.6%)
individuals of the 134,670 patients in SDR in 2019. The test
sets in 2020 and 2021 comprised 77.3% (108,886/140,859) and
80.7% (111,004/137,584) of the total SDR cohorts for the
respective years. The characteristics of the patients included in
the training-validation and 2 test data sets are described in detail
in Table 1.
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Table 1. Demographics, comorbidities, and utilization characteristics of the training and test data sets.

Test 2021-2022 (n=137,584)Test 2020-2021
(n=140,859)

Training and validationa 2019-2020
(n=134,670)

Data set description

111,004 (80.7)108,886 (77.3)100,500 (74.6)Data set size, n (% of total registry)

53,148 (47.9)52,210 (48)48,887 (48.6)Female gender, n (%)

Age on January 1 at the start of the year (years)

66.5 (12.2)66.7 (11.9)66.4 (11.8)Mean (SD)

676767Median

Ethnicity, n (%) 

76,627 (69)76,479 (70.2)71,132 (70.8)Chinese

17,144 (15.4)16,277 (15)14,903 (14.8)Malay

11,788 (10.6)11,267 (10.4)10,119 (10.1)Indian

5445 (4.9)4863 (4.5)4346 (4.3)Other

Housing type, n (%) 

10,086 (9.1)8214 (7.5)7502 (7.5)1- and 2-room public housing

24,779 (22.3)26,741 (24.6)24,976 (24.9)3-room public housing

36,540 (32.9)34,933 (32.1)32,089 (31.9)4-room public housing

29,220 (26.3)27,942 (25.7)25,769 (25.6)5-room public housing and

executive flats

6607 (6)6843 (6.3)6268 (6.2)Private condominium

3772 (3.4)4213 (3.9)3896 (3.9)Private landed housing

7294 (6.6)7290 (6.7)6641 (6.6)Lives in a rental block

Comorbidities, n (%) 

99,597 (89.7)97,149 (89.2)87,931 (87.5)Hypertension

107,638 (97)105,108 (96.5)95,679 (95.2)Hyperlipidemia

Diabetes mellitus medications, n (%)

18,426 (16.6)20,712 (19)18,125 (18)None

61,516 (55.4)64,571 (59.3)57,413 (57.1)Oral medications only

3216 (2.9)2264 (2.1)2809 (2.8)Insulin only

27,846 (25.1)21,339 (19.6)22,153 (22)Oral and insulin

Diabetes-related complications, n (%) 

30,656 (27.6)27,663 (25.4)25,097 (25)Ischemic heart disease

11,305 (10.2)10,563 (9.7)9401 (9.4)Ischemic stroke

1998 (1.8)1801 (1.7)1449 (1.4)Hemorrhagic stroke

5198 (4.7)4577 (4.2)3910 (3.9)Peripheral arterial disease

182 (0.2)173 (0.2)138 (0.1)Major lower-extremity amputation

426 (0.4)340 (0.3)339 (0.3)Minor lower-extremity amputation

3524 (3.2)3180 (2.9)2718 (2.7)Diabetic foot and peripheral

angiopathy

14,479 (13)13,116 (12.1)13,067 (13)Diabetic eye complications

54,359 (49)53,737 (49.4)49,139 (48.9)Nephropathy

Chronic kidney disease stage, n (%)

37,188 (33.5)36,603 (33.6)35,176 (35)1 (eGFRb ≥90)

45,755 (41.2)45,216 (41.5)41,705 (41.5)2 (eGFR 60-89)
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Test 2021-2022 (n=137,584)Test 2020-2021
(n=140,859)

Training and validationa 2019-2020
(n=134,670)

Data set description

12,802 (11.5)12,667 (11.6)11,563 (11.5)3A (eGFR 45-59)

7835 (7.1)7696 (7.1)6760 (6.7)3B (eGFR 30-44)

4016 (3.6)3805 (3.5)3215 (3.2)4 (eGFR 15-29)

3408 (3.1)2899 (2.7)2081 (2.1)5 (eGFR<15)

2269 (2)1903 (1.8)1400 (1.4)Dialysis

Utilization characteristics

Inpatient utilization (present year)

3.96 (13.6)3.41 (11.7)3.09 (11.3)Mean (SD)

000Median

Inpatient bed days (present year), n (%)

80,770 (72.8)81,559 (74.9)77,170 (76.8)0

7168 (6.5)6752 (6.2)6034 (6)1-2

8500 (7.7)7701 (7.1)6693 (6.7)3-6

5982 (5.4)5432 (5)4464 (4.4)7-13

4855 (4.4)4315 (4)3592 (3.6)14-29

3729 (3.4)3127 (2.9)2547 (2.5)≥30

Inpatient bed days (subsequent year)

3.22 (14)2.79 (12.2)2.39 (10.3)Mean (SD)

000Median

Inpatient bed days category (subsequent year), n (%)

89,577 (80.7)90,022 (82.7)83,759 (83.3)0

4561 (4.1)4214 (3.9)4078 (4.1)1-2

5619 (5.1)5015 (4.6)4477 (4.5)3-6

4292 (3.9)3729 (3.4)3353 (3.3)7-13

3722 (3.4)3222 (3)2740 (2.7)14-29

3233 (2.9)2684 (2.5)2093 (2.1)≥30

Emergency department utilization (present year)

0.57 (1.6)0.54 (1.4)0.53 (1.4)Mean (SD)

000Median

Emergency department visit category (present year), n (%)

75,376 (67.9)76,261 (70)71,584 (71.2)0 visits

29,671 (26.7)27,143 (24.9)23,487 (23.4)1-2 visits

4343 (3.9)3938 (3.6)3883 (3.9)3-4 visits

1403 (1.3)1358 (1.3)1348 (1.3)5-9 visits

211 (0.2)186 (0.2)198 (0.2)≥10 visits

Emergency department utilization (subsequent year)

0.48 (1.4)0.40 (1.4)0.40 (1.3)Mean (SD)

000Median

Emergency department visit category (subsequent year), n (%) 

82,269 (74.1)85,162 (78.2)78,849 (78.5)0 visits

23,273 (21)19,434 (17.9)17,794 (17.7)1-2 visits

3817 (3.4)3060 (2.8)2716 (2.7)3-4 visits
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Test 2021-2022 (n=137,584)Test 2020-2021
(n=140,859)

Training and validationa 2019-2020
(n=134,670)

Data set description

1455 (1.3)1064 (1)996 (1)5-9 visits

190 (0.2)166 (0.2)145 (0.1)≥10 visits

aThe data set was randomly partitioned into training and validation data sets in a 75% to 25% ratio (respectively), with no overlap between the 2 data
sets. n=total registry size.
beGFR: estimated glomerular filtration rate in mL/min/1.73 m2.

Across the data sets, 47.9%-48.6% of the patients were females.
The mean age was between 66.4 and 66.7 years, and the median
was consistently 67 years. The proportions by ethnicities were
consistent across the 3 data sets with approximately 70%
Chinese, 14% Malay, 10% Indian, and 4% other races. The
ethnic distributions observed closely resembled the Singaporean
population [25]. Across the data sets, most individuals lived in
public housing, with the largest proportion being 4-room public
housing (approximately 32%). Owing to the public housing
infrastructure in Singapore, approximately 6.6% of the patients
live in an apartment block with rental housing. Across the data
sets, the proportion of patients with hypertension was
87.5%-89.7%, whereas the proportion of patients with
hyperlipidemia was 95.2%-97%. The most common
diabetes-related complication was nephropathy (prevalence of
48.9%-49.4% across the data sets) followed by ischemic heart
disease (prevalence of 25%-27.6%) and then diabetic eye
complications (prevalence of 12.1%-13%). Relatedly,
65%-66.5% of the patients in the data sets had stage 2 chronic
kidney disease (CKD) and above. When contrasted with the
prevalence of nephropathy (our definition of nephropathy was

estimated glomerular filtration rate <60 mL/min/1.73 m2 or
urine albumin creatinine ratio ≥30 mg/g or urine
protein/creatinine ratio ≥0.20 g/g), it suggests that a significant
proportion of patients had stage 1 CKD and proteinuria.

The mean present year inpatient utilization across the data sets
was 3.08%-3.96%. Compared to the present year, the subsequent

year’s inpatient utilization was less. The mean present year ED
utilization was 0.53-0.57 visits per patient. Compared to the
present year, the subsequent year’s ED utilization was less. The
median utilization for present and next year’s inpatient and ED
utilization was zero across all data sets, indicating that the
utilization characteristics were extremely skewed.

Effects of Sampling Technique on Model Performance
The key model performance indices for the models using
different oversampling techniques and no oversampling are
presented in Figures 1-2 (Figures 1-2 in Multimedia Appendix
2) and Table S4 in Multimedia Appendix 1. For all the outcomes
studied, models trained with random oversampling had similar
AUC values to models trained with no oversampling, models
trained with SMOTE-NC (k=3) had lower AUC values, and
models trained with SMOTE-NC (k=5) had the lowest AUC.
With regard to sensitivity, models trained with no oversampling
had markedly lower sensitivity but higher PPVs. This indicates
that models trained with no oversampling could not correctly
identify patients with the outcomes of interest. This is further
confirmed in our analysis of the confusion matrixes of these
models trained. We observed that these models assigned almost
all the patients as not cases (ie, did not have the outcomes the
next year) and therefore were not useful. Models trained with
no oversampling and SMOTE-NC (k=5) were not included in
further analyses.
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Figure 1. Comparing between different oversampling techniques to predict inpatient bed days. A. Predicting ≥7 inpatient bed days in subsequent year.
B. Predicting ≥14 inpatient bed days in subsequent year. C. Predicting ≥30 inpatient bed days in subsequent year. AUC: area under the receiver operating
characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines; MLP:
multilayer perceptron; PPV: positive predictive value; SMOTE-NC: synthetic minority oversampling technique-nominal continuous. A higher-resolution
image of this figure is available in Multimedia Appendix 2.

JMIR AI 2024 | vol. 3 | e58463 | p.125https://ai.jmir.org/2024/1/e58463
(page number not for citation purposes)

Tan et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Comparing between different oversampling techniques to predict emergency department visits. A. Predicting ≥3 emergency department visits
in subsequent year. B. Predicting ≥5 emergency department visits in subsequent year. C. Predicting ≥10 emergency department visits in subsequent
year. AUC: area under the receiver operating characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS:
multivariate adaptive regression splines; MLP: multilayer perceptron; PPV: positive predictive value; SMOTE-NC: synthetic minority oversampling
technique-nominal continuous. A higher-resolution image of this figure is available in Multimedia Appendix 2.

Model Performance on Test Data Sets
As models trained with random oversampling and SMOTE-NC,
where k=3 had the best AUC and sensitivity, we conducted
additional analyses to evaluate their performance by testing
them on 2 test data sets of 2020-2021 and 2021-2022 (Figures

3-4, Figures 3-4 in Multimedia Appendix 2, Figures S1-S2 and
Tables S5-S6 in Multimedia Appendix 1). When trained with
random oversampling, 4 models, that is, logistic regression,
MARS, boosted trees, and MLP had consistently high AUCs
across validation and test data sets. The AUC values were higher
for outcomes reflecting higher utilization (ie, ≥30 inpatient bed
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days and ≥10 ED visits in subsequent year). These 4 models
consistently had the highest sensitivity values, with sensitivity
>0.65 for all outcomes except predicting ≥10 ED visits in the
subsequent year. This suggests that these 4 models were able
to correctly identify at least 65% of the patients with the
outcome. All models, except for random forest, had similar but
low PPVs across the 2 data sets.

When trained with SMOTE-NC (k=3), most models except for
k-nearest neighbor and Bayesian additive regression trees
models had good AUC (>0.75) across the 2 test data sets.
Models had higher AUC values for outcomes reflecting higher
utilization, that is, ≥30 inpatient bed days and ≥10 ED visits in
the subsequent year. Compared to models trained with random
oversampling, models trained with SMOTE-NC (k=3) had a

wide distribution of sensitivity values, with logistic regression
and MLP having similar and consistently high sensitivity values
for all outcomes except predicting ≥10 ED visits in the
subsequent year. Models trained with SMOTE-NC (k=3) had
a wider distribution of PPV values than models trained with
random oversampling.

When comparing the performance of models trained with the
2 oversampling techniques, we observed that random
oversampling resulted in marginally higher AUC and sensitivity
values (Figures 3-4). The narrow distribution of PPV values in
models trained with random oversampling suggests that random
oversampling resulted in more consistent quality of positive
predictions across the best performing models.
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Figure 3. Performance of models trained using random oversampling to predict inpatient bed days. A. Predicting ≥7 inpatient bed days in subsequent
year. B. Predicting ≥14 inpatient bed days in subsequent year. C. Predicting ≥30 inpatient bed days in subsequent year. AUC: area under the receiver
operating characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines;
MLP: multilayer perceptron; PPV: positive predictive value. A higher-resolution image of this figure is available in Multimedia Appendix 2.
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Figure 4. Performance of models trained using random oversampling to predict emergency department visits. A. Predicting ≥3 emergency department
visits in subsequent year. B. Predicting ≥5 emergency department visits in subsequent year. C. Predicting ≥10 emergency department visits in subsequent
year. A higher resolution version of this figure is available in Multimedia Appendix 2. AUC: area under the receiver operating characteristic curve;
BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines; MLP: multilayer perceptron;
PPV: positive predictive value.

Explainability Analyses
From our analysis, the best performing models were logistic
regression, MARS, boosted trees, and MLP that were trained
with random oversampling (herein referred to as selected
models). Model-specific variable importance scores for selected

models except MLP were obtained; the top 10 variables are
reported in Table S7 in Multimedia Appendix 1. Model-specific
variable importance scores for MLP were not available through
the vip package. Regarding the prediction of subsequent year
inpatient bed days (≥7, ≥14, ≥30), age, number of ED visits
(present year), CKD stages 4 and 5, and present year inpatient
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utilization were the most important variables. For boosted tree
and MARS, the number of ED visits (present year), CKD stage,
and age were the most important variables. Regarding the
prediction of subsequent year ED visits, the number of ED visits
(present year), CKD stage 4 and 5, mean hemoglobin A1c

(HbA1c) values, and age were the most important variables for
all models. Interestingly, the number of ED visits (present year)
was consistently the most important variable for all the models.

We also obtained permutation feature importance plots for
selected models (Figures S3-S4 in Multimedia Appendix 1).
Regarding the prediction of subsequent year inpatient bed days
(≥7, ≥14, ≥30), the permutation feature importance plots
corroborated the model-specific variable importance scores,
indicating that age, number of ED visits (present year), CKD
stage, and present year inpatient utilization were the most
important variables. Interestingly, diabetes mellitus medication
category was more important in predicting ≥30 inpatient bed
days in the subsequent year. Regarding the prediction of
subsequent year ED visits, the number of ED visits (present
year) was the dominant variable for all models. Other important
variables included age, CKD stage, and present year inpatient
utilization.

PDPs for the 8 most important variables across selected models
are illustrated in Multimedia Appendix 1. Regarding the
prediction of inpatient bed days (Figures S5-S7 in Multimedia
Appendix 1), the average prediction of outcomes increased
steadily with age for all models. For present-year ED visits, all
models demonstrated a sharp increase in average prediction
from 0 to 20 visits, with a plateau close to 1.0 (for average
prediction) after 20 visits. For present-year inpatient bed days,
the average prediction increased with more bed days, peaking
at 14-29 days for all models except MARS. For mean HbA1c

values, the average prediction increased with higher HbA1c

levels, although a U-shaped relationship was observed for
MARS, boosted trees, and MLP, with the lowest average
predictions around HbA1c levels of 6%-7%. Regarding diabetes
medication categories, patients on insulin only and those on
both oral diabetic medications and insulin had higher average
predictions than those on oral medications only or no
medications. PDPs for selected models showed that more
advanced CKD stages (CKD stage 4 and stage 5) had higher
average predictions. In most models, patients with ischemic
heart disease or peripheral artery disease also had higher average
predictions.

Regarding the prediction of ED visits ≥3 and ≥5 times (Figures
S8-S9 in Multimedia Appendix 1), the selected models showed
similar observations for age, present year ED visits, mean
HbA1c, diabetes medication categories, ischemic heart disease,
and peripheral artery disease. It is noteworthy that present-year
inpatient bed days did not significantly affect the predicted
probability of these outcomes. For the prediction of ED visits
≥10 (Figure S10 in Multimedia Appendix 1), the PDPs aligned
with the findings from both feature importance methods where
the number of present year ED visits had the largest influence
on average predictions, while other variables had smaller
influence on average predictions.

Discussion

Principal Findings
In this study, we developed machine learning models to predict
future inpatient and ED utilization by using sociodemographic
characteristics, health indicators, diabetes-related complications,
and prior utilization data from a chronic disease registry. We
detailed a systematic approach to building, validating, and
testing the models. Using this approach, we noted that
imbalanced data distribution significantly affected model
performance, often resulting in low sensitivity despite acceptable
AUC values. This finding highlights the importance of
considering multiple metrics, including AUC, sensitivity (recall),
and PPV (precision), during model selection. We found that
improved model performance can be achieved by addressing
imbalanced data distribution through oversampling. We
observed that random oversampling resulted in better model
performance than SMOTE. Among the models trained with
random oversampling, logistic regression, MARS, boosted trees,
and MLP models had the best performance. Additionally,
explainability analyses provided insights into how the best
performing models made predictions and showed that their
learned patterns were consistent with real-world knowledge,
thereby supporting the validity of the models.

Predicting Future Inpatient Bed Days and ED Visits
In our study, we used inpatient bed days and ED visits within
a calendar year as service level indicators of high health care
utilization. Service level utilization is important because our
prior research demonstrated a rising trend in diabetes-related
complications [12] and our country is experiencing persistent
bed shortages and crowded EDs [26]. In this context, service
level utilization indicators are useful to inform health
intervention programs to ease the bed crunch and overcrowded
EDs. First, patients predicted to have very high level of health
care utilization (ie, inpatient bed days ≥30 or ED visits ≥10)
could be candidates for intensive case management to identify
potential causes for prolonged admissions or frequent ED visits.
Second, patients predicted to have moderately high level of
health care utilization (ie, inpatient bed days ≥14 and <30 and
ED visits ≥5 and <10) could be candidates for multidisciplinary
(medical and social) diabetes care programs to reduce future
utilization. Finally, patients with mildly elevated health care
utilization (ie, inpatient bed days ≥7 and <14 and ED visits ≥3
and <5) could be candidates for novel care models that leverage
technological solutions such as the Mobile Inpatient Care at
Home [27].

Addressing Imbalanced Data Distribution by Using
Data Sampling Approaches
Our study highlights the importance of addressing imbalanced
data when developing machine learning models for health care
applications. We observed that class imbalance can lead to
acceptable AUC but low sensitivity—a phenomenon also noted
in related literature [28]. Our study evaluates 2 different
oversampling techniques: random oversampling and SMOTE.
When comparing random oversampling with the 2 iterations of
SMOTE, we found that random oversampling performed better
than SMOTE (k=3), which in turn performed better than
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SMOTE (k=5). This could suggest that predictive models
perform better when the synthetic minority class used for
training is similar to the actual training data. Random
oversampling duplicates existing instances, whereas SMOTE
(k=3) and SMOTE (k=5) create a new synthetic minority class
by interpolating between 3 and 5 closely related minority class
instances, respectively. It is recognized that with oversampling
techniques, models may overfit and perform poorly in other
data sets [14]. To investigate this, we tested our models on 2
additional test data sets (years 2020-2021 and 2021-2022) and
found no degradation in model performance. Our conclusions
were that because the training data were sufficiently large, it
had good quality and variety to avoid overfitting.

Machine Learning Model Performance
Among the 7 machine learning models we tested, logistic
regression, MARS, boosted trees, and MLP showed promising
performance in predicting LOS across all 3 thresholds. For
predicting ≥5 and ≥10 ED visits in the subsequent year, MARS
and logistic regression outperformed the other models.
Interestingly, logistic regression was found to be as effective
as or even superior to other machine learning models in
predicting health care utilization. These findings are noteworthy
because while some studies have shown machine learning
models to outperform traditional regression models in predicting
health care utilization [3,28], others have found that machine
learning models offered only limited improvement over
traditional logistic regression [29]. When analyzing the
model-specific variable importance scores and permutation
feature importance plots for the selected models, we observed
differences in the rankings of the important variables between
models. However, the top 5 variables were generally consistent
across selected models (Table S7 and Figures S3-S4 in
Multimedia Appendix 1). In predicting inpatient LOS at all 3
thresholds, age, number of ED visits (present year), CKD stage,
and inpatient bed days were the top 5 most important variables
across all models. For predicting ED visits at all thresholds, the
number of ED visits (present year), CKD stage, age, and mean
HbA1c values were the top 5 variables.

Additionally, explainability analyses using PDPs confirm what
is known about high health care utilizers. Age, prior utilization
in terms of ED visits and inpatient stays, and the presence of
comorbidities and diabetes-related complications such as
advanced stages of CKD, ischemic heart disease, and peripheral
artery disease are associated with increased health care
utilization. These findings suggest that current utilization is an
important predictor of future utilization—a conclusion supported
by similar studies [4,28]. Additionally, kidney disease has
emerged as a significant predictor for future health care
utilization in our cohort of patients with diabetes, as
demonstrated in a recent study involving patients from the same
population [30].

Interestingly, the U-shaped relationship between average
prediction and HbA1c values seen in many of the PDPs suggest
that tight glycemic control (HbA1c<6%) and relaxed glycemic
control (HbA1c≥8%) are associated with increased health care
utilization. This is an interesting finding because we documented
a similar U-shaped relationship previously between HbA1c and

incidence of diabetes mellitus–related complications in the SDR
[23]. Incident complications are expected to result in ED visits
or admissions. Taken together, our explainability analyses
suggest that the learned patterns are consistent with real-world
knowledge and therefore lend support to the validity of the
model.

Study Strengths, Limitations, and Future Research
Our study’s strengths include the use of a large multiethnic
cohort and easily obtainable predictors with minimal missing
data. By utilizing different thresholds of inpatient bed days and
ED visits as model outcomes, our approach allows policy makers
and program planners to target interventions based on the
predicted need. Other practitioners intending to build predictive
models for population health programs could consider a similar
systematic approach to building, validating, testing, and
understanding the models. Through this approach, we were able
to mitigate the problems associated with class imbalance by
exploring the outcomes of the 2 data sampling methods. We
also validated the models across different time frames and
demonstrated their validity on unseen data. Finally, our
explainability analyses provided reassurance that the models
were making prediction based on learned patterns consistent
with real-world knowledge. However, the absence of financial
data and the nonexploration of other class imbalance methods
such as feature selection are key limitations that could be
addressed in future studies. Our test data sets spanned the
COVID-19 pandemic, a period that may have affected
health-seeking behavior and health care utilization. However,
the consistency of our results with those from the validation
data set, which was less affected by the pandemic, suggests that
these potential anomalies did not significantly impact our
findings. Another potential limitation is the exclusion of patients
with missing data. In the context of this study, these patients
are likely to be those who are well and had minimal interaction
with the health system within that year. Given the large size of
the data set for this study and the significant class imbalance
for patients without any of the outcomes, it is likely that
excluding patients due to missing data had minimal impact on
model performance.

Although our study shortlisted 4 machine learning models with
similar performance across different outcomes, it remains
unclear which model is the most optimal. Beyond the
performance variables, we considered the confusion matrix for
each of the models and observed that these models describe
alternative courses of action, each with a different cost and
benefit attached; we will explore this in future research.
Although we have described how the results from the models
can be used in practice, we acknowledge the need for a more
integrated approach to model selection and decision-making
criteria. In this regard, we are currently exploring additional
methods to address this, specifically focusing on how to combine
the outputs of the binary classification models into a single more
comprehensive multiclass prediction model. To achieve this,
we are investigating the use of hierarchical decision models and
ensemble model approaches. These methods would allow us to
integrate the predictions from individual binary models into a
unified multiclass model, making it more applicable in
real-world scenarios. However, these additional methods and
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their applications will be detailed in a follow-up study.
Relatedly, the models that we developed are predictive and they
are unable to provide prescriptive insights. Additional tools will
be needed to be developed to profile patients and identify the
most appropriate interventions for them. Finally, since our study
uses data from a public regional health database in Singapore,
the findings may not be generalizable to other contexts.

Conclusion
We were able to apply common machine learning algorithms
to predict future health care utilization by using inpatient bed
days and ED utilization as the predicted outcomes. These
predictive models will be useful to policy makers and program
planners as they develop population health initiatives to improve
care for patients with diabetes and manage acute health care
utilization.
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ED: emergency department
HbA1c: hemoglobin A1c

HNHC: high-need, high-cost
LOS: length of stay
MARS: multivariate adaptive regression splines
MLP: multilayer perceptron
PDP: partial dependence plot
PPV: positive predictive value
SDR: SingHealth Diabetes Registry
SingHealth: Singapore Health Services
SMOTE-NC: synthetic minority oversampling technique-nominal continuous
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Abstract

The advent of large language models (LLMs) such as ChatGPT has potential implications for psychological therapies such as
cognitive behavioral therapy (CBT). We systematically investigated whether LLMs could recognize an unhelpful thought, examine
its validity, and reframe it to a more helpful one. LLMs currently have the potential to offer reasonable suggestions for the
identification and reframing of unhelpful thoughts but should not be relied on to lead CBT delivery.

(JMIR AI 2024;3:e52500)   doi:10.2196/52500
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Introduction

Large language models (LLMs) represent a significant advance
in the field of artificial intelligence (AI) and herald a
transformational change in the role of computers both personally
and professionally. LLMs, such as OpenAI’s ChatGPT and
Google’s Bard (later rebranded as Gemini), represent a new
form of generative AI. They have linguistic capabilities
comparable to humans, and they demonstrate performance
similar to specialized models for sentiment analysis and affective
computing [1]. Psychiatry and psychology, and talking therapy,
in particular, is a field with significant potential impact of LLMs.
Demand for therapists greatly outweighs supply, making the
question of how new technologies could relieve pressure on
mental health systems a pertinent one. Here we report an
evaluation of whether existing LLMs can contribute to the
delivery of cognitive behavioral therapy (CBT), and their
limitations.

CBT is a first-line treatment for common mental health
disorders, including anxiety and depression. It involves
understanding cognitive biases and challenging those thoughts.

Where other modes of psychotherapy rely on the therapist’s
individualized interpretation, CBT emphasizes systematic
changes in thinking and behavior.

Self-guided, web-based CBT has emerged as a response to the
shortage of CBT therapists, and it is increasingly recommended
as an accessible alternative [2]. These programs reduce the input
of the human therapist to a brief phone call, with patients
assigned web-based modules to complete. Although the
approach is cost-effective and scalable, it risks making the
content of web-based CBT less personalized. Since LLMs can
flexibly respond to personal circumstances, they may be
well-suited to addressing this.

AI has previously been used to augment CBT by performing
peripheral tasks. In a study of chronic pain, AI was used to select
the appropriate CBT intervention for patients each week based
on the previous week's progress [2]. The digital CBT company
Wysa [3] uses AI to select appropriate therapist-authored
responses. Mental Health America has built a website using AI
to help people identify and reframe cognitive biases as an
isolated exercise [4]. However, none of these applications have
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harnessed the generative capacity of LLMs as therapeutic
chatbots to aid patients in reframing unhelpful thoughts.

We aimed to understand whether AI could recognize an
unhelpful thought, examine its validity, and reframe it to a more
helpful one. This technique, often referred to as “catch it, check
it, change it,” requires knowledge of cognitive biases, the
linguistic ability to reframe them, and importantly, a degree of
comprehension such that the reframing meaningfully addresses
the bias [5]. If publicly available LLMs can support “Catch It,
Check It, Change It,” then they may have a valuable role in
increasing the effectiveness of digital CBT.

Methods

We explored whether OpenAI’s ChatGPT-4 and Google’s Bard
could perform the 3 stages of the “catch it, check it, change it”
technique (see Table 1). Two independent CBT therapists
currently practising in the UK’s National Health Service aided
in assessing the LLMs, rating whether they had completed the
tasks satisfactorily. The therapists each wrote their own set of
10 thoughts, ensuring they received different replies from the
LLMs. Both ChatGPT-4 and Bard responded to 20 tasks at each
stage of the study. The sessions for each therapist occurred on
June 2 and 14, 2023.

Table 1. Evaluating how large language models (LLMs) perform at the Catch It, Check It, Change It approach.

CriteriaTask for LLMInput to LLMCBTa skill

Could CBT therapists work
out which bias each vignette
illustrated?

Generate a two-sentence vignette
for each bias.

Titles of 10 cognitive biases“Catch it” means patients
can stop and notice that their
thought may be distorted.
Therapists must be able to
illustrate different distor-
tions.

Stage 1:

“Catch it”

Did LLMs identify the same
biases?

Identify which cognitive bias each
vignette represents.

Therapist-written thoughts illustrat-
ing 10 cognitive distortions, each
in the language of a patient. Each
therapist produced an independent
list of thoughts with no discussion.

“Check it” means patients
consider whether a thought
is helpful, or whether it fits
with a cognitive distortion.
Therapists must be able to
explain which distortion a
thought fits into.

Stage 2:

“Check it”

Did therapists think the new
thought addressed the bias?

Reframe the thought to overcome
the bias.

Therapist-written thoughts illustrat-
ing 10 cognitive biases as above

“Change it” means patients
can reframe their thoughts.
Therapists should be able to
suggest reframing of
thoughts that patients may
consider.

Stage 3:
“Change it”

aCBT: cognitive behavioral therapy.

Results

Table 2 shows LLM performance over the 3 tasks. Both models
demonstrated varying levels of proficiency across tasks and
therapists. Overall, ChatGPT-4 scored 44/60 and Bard scored
42/60. Both performed similarly at generating vignettes, which
clearly illustrated a cognitive bias (Stage 1: ChatGPT 13/20,
Bard 13/20), whereas ChatGPT-4 performed better at identifying
cognitive biases (Stage 2: ChatGPT 15/20, Bard 10/20). The
LLMs performed superiorly at reframing unhelpful thoughts,
with Bard achieving a near-perfect score (Stage 3: ChatGPT
16/20, Bard 19/20).

Frequently, the LLMs were only marginally incorrect.
Specifically, Bard often mentioned cognitive biases outside of
the 10 provided, using alternative labels that nonetheless
described the bias plausibly. This may reflect an inherent
limitation of CBT terminology, rather than poor model
performance. Indeed, this limitation appeared to extend to
therapists, who only demonstrated moderate inter-rater reliability
in labeling LLM-generated vignettes (Cohen κ=0.44). However,
at stage 3, therapist 2 noted several instances where the LLM
“missed the point” and, while technically improving the original
thought, did not reframe it in a way that demonstrated
understanding of the underlying cognitive bias. Prompts given
to these LLMs and examples of errors noted in the outputs are
presented in Multimedia Appendix 1.
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Table 2. Number of tasks completed correctly at each stage.

ChatGPT-4BardEvaluation stage

TotalTherapist 2 (out of 10)Therapist 1 (out of 10)TotalTherapist 2 (out of 10)Therapist 1 (out of 10)

13581367Stage 1: Catch it (How many
LLM-generated vignettes were
correctly identified by a thera-
pist?)

15871037Stage 2: Check it (How many
therapist-generated vignettes
were correctly identified by the
LLM?)

1661019910Stage 3: Change it (How many
LLM-reformulated vignettes
were considered improvements
by a therapist?)

Discussion

Our study findings suggest that LLMs should not yet be relied
on to lead CBT delivery, although LLMs show clear potential
as assistants capable of offering reasonable suggestions for the
identification and reframing of unhelpful thoughts.

LLMs are far from replacing CBT therapists, but they perform
well in some isolated tasks (eg, Bard for reframing), so it is
worthwhile exploring limited yet innovative ways to use AI to
improve patient experience and outcomes. We suggest CBT
therapists equip patients with a working knowledge of cognitive
biases, but therapists could also advise patients to consider using
LLMs to gather suggestions on reframing unhelpful thoughts
beyond sessions.
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Related Article:
 
Correction of: https://ai.jmir.org/2023/1/e44358
 

(JMIR AI 2024;3:e57869)   doi:10.2196/57869

In “Using Conversational AI to Facilitate Mental Health
Assessments and Improve Clinical Efficiency Within
Psychotherapy Services: Real-World Observational Study”
(JMIR AI 2023;2:e44358) the authors noted one error.

One author, Sruthi Viswanathan, was inadvertently omitted
from the authorship list in the original publication of the paper.
Sruthi Viswanathan has now been added to the authorship of
the published paper as the fifth author, with the degrees "BTech,
MRes" and the following affiliation:

Limbic Limited, London, United Kingdom

In accordance, the Conflict of Interest statement has also been
updated to include this author. The originally published
statement appeared as follows:

MR, KJ, JH, BC, and RH are employed by Limbic
Limited and hold shares in the company. TUH works
as a paid consultant for Limbic Limited and holds
shares in the company.

This statement has been corrected to:

MR, KJ, JH, BC, SV and RH are employed by Limbic
Limited and hold shares in the company. TUH works
as a paid consultant for Limbic Limited and holds
shares in the company.

The correction will appear in the online version of the paper on
the JMIR Publications website on March 12, 2024, together
with the publication of this correction notice. Because this was
made after submission to PubMed, PubMed Central, and other
full-text repositories, the corrected article has also been
resubmitted to those repositories.
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In “Feasibility of Multimodal Artificial Intelligence Using
GPT-4 Vision for the Classification of Middle Ear Disease:
Qualitative Study and Validation” (JMIR AI 2024;3:e58342)
the authors noted one error.

In the original author, no equal contributors were specified.
This has been changed as follows:

Masao Noda*, Hidekane Yoshimura*

*These authors contributed equally

The correction will appear in the online version of the paper on
the JMIR Publications website on July 9, 2024, together with
the publication of this correction notice. Because this was made
after submission to PubMed, PubMed Central, and other full-text
repositories, the corrected article has also been resubmitted to
those repositories.
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Abstract

Background: Although machine learning is a promising tool for making prognoses, the performance of machine learning in
predicting outcomes after stroke remains to be examined.

Objective: This study aims to examine how much data-driven models with machine learning improve predictive performance
for poststroke outcomes compared with conventional stroke prognostic scores and to elucidate how explanatory variables in
machine learning–based models differ from the items of the stroke prognostic scores.

Methods: We used data from 10,513 patients who were registered in a multicenter prospective stroke registry in Japan between
2007 and 2017. The outcomes were poor functional outcome (modified Rankin Scale score >2) and death at 3 months after stroke.
Machine learning–based models were developed using all variables with regularization methods, random forests, or boosted trees.
We selected 3 stroke prognostic scores, namely, ASTRAL (Acute Stroke Registry and Analysis of Lausanne), PLAN (preadmission
comorbidities, level of consciousness, age, neurologic deficit), and iScore (Ischemic Stroke Predictive Risk Score) for comparison.
Item-based regression models were developed using the items of these 3 scores. The model performance was assessed in terms
of discrimination and calibration. To compare the predictive performance of the data-driven model with that of the item-based
model, we performed internal validation after random splits of identical populations into 80% of patients as a training set and
20% of patients as a test set; the models were developed in the training set and were validated in the test set. We evaluated the
contribution of each variable to the models and compared the predictors used in the machine learning–based models with the
items of the stroke prognostic scores.
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Results: The mean age of the study patients was 73.0 (SD 12.5) years, and 59.1% (6209/10,513) of them were men. The area
under the receiver operating characteristic curves and the area under the precision-recall curves for predicting poststroke outcomes
were higher for machine learning–based models than for item-based models in identical populations after random splits. Machine
learning–based models also performed better than item-based models in terms of the Brier score. Machine learning–based models
used different explanatory variables, such as laboratory data, from the items of the conventional stroke prognostic scores. Including
these data in the machine learning–based models as explanatory variables improved performance in predicting outcomes after
stroke, especially poststroke death.

Conclusions: Machine learning–based models performed better in predicting poststroke outcomes than regression models using
the items of conventional stroke prognostic scores, although they required additional variables, such as laboratory data, to attain
improved performance. Further studies are warranted to validate the usefulness of machine learning in clinical settings.

(JMIR AI 2024;3:e46840)   doi:10.2196/46840

KEYWORDS

brain infarction; outcome; prediction; machine learning; prognostic score

Introduction

Background
Despite receiving the best available treatment, patients who
have had a stroke may still experience disability or, in some
cases, even face the risk of death [1,2]. Stroke clinicians try to
predict patients’ outcomes as accurately as possible because
accurate prognoses are a prerequisite for therapeutic decisions.
Various stroke prognostic scores have been developed to support
clinicians in predicting poststroke outcomes [3-8]. Nevertheless,
prognostic scores have some disadvantages: generally, they
limit the number of variables for ease of use at the bedside, and
their validity needs to be reappraised over time, as the scoring
criteria may become outdated with rapid progress in stroke care
[9].

Meanwhile, recent advances in information technology have
enabled the collection of a large amount of health information
on individual patients [10,11]. Machine learning is considered
a promising tool for improving the prediction accuracy of
clinical outcomes for individual patients with stroke because
of the ability of machine learning to deal with large and complex
data [12-24].

However, several papers questioning the incremental value of
machine learning have recently been published [25-27]. One
study reported that machine learning algorithms did not perform
better than traditional regression models for making prognoses
in traumatic brain injury and recommended replicating studies
in fields other than traumatic brain injury to ensure the
generalizability of the findings [26]. Hitherto, few studies have
directly compared the performance of data-driven models
developed using machine learning methods and regression
models based on conventional stroke prognostic scores in the
field of outcome prediction after ischemic stroke [19,20,23]. In
addition, calibration has not been adequately addressed in
previous studies, and model performance has primarily been
evaluated based on its discriminative ability [18-20].

Objectives
In this study, we aimed to examine whether machine learning
can improve the predictive performance for poststroke outcomes
beyond preexisting stroke prognostic scores. We also sought to

elucidate the pattern of variables selected by machine learning
algorithms to predict poststroke clinical outcomes. To this end,
we analyzed the data of patients with acute ischemic stroke
enrolled in a multicenter, hospital-based, prospective registry
of stroke in Japan. We used 3 stroke prognostic scores, namely,
Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score [6], preadmission comorbidities, level of consciousness,
age, and neurologic deficit (PLAN) score [7], and Ischemic
Stroke Predictive Risk Score (iScore) [4,5], to create item-based
regression models. We then compared the predictive
performance of data-driven models developed using machine
learning algorithms with that of item-based models in identical
study populations. We also examined the explanatory variables
used in data-driven models and compared them with the items
of the conventional prognostic scores.

Methods

Ethical Considerations
The study protocol was approved by the institutional review
boards of all hospitals (Kyushu University Institutional Review
Board for Clinical Research: 22086-01; Kyushu Medical Center
Institutional Review Board: R06-03; Clinical Research Review
Board of Fukuokahigashi Medical Center: 29-C-38; Fukuoka
Red Cross Hospital Institutional Review Board: 629; St Mary’s
Hospital Research Ethics Review Committee: S13-0110; Steel
Memorial Yawata Hospital Ethics Committee: 06-04-13; and
Kyushu Rosai Hospital Institutional Review Board: 21-8).
Written informed consent was obtained from all patients or their
family members.

Data Source
We used data from the Fukuoka Stroke Registry (FSR), a
multicenter, hospital-based, prospective registry of patients with
acute stroke. FSR enrolled patients with stroke hospitalized in
7 participating hospitals in Fukuoka, Japan, within 7 days of
onset (University Hospital Medical Information Network
Clinical Trial Registry: UMIN000000800). Details of the
registry have been previously published [28,29]. In FSR, clinical
data during routine stroke care in the hospitals were recorded
along with baseline information on variables such as
demographics, prior history, comorbidity, and functional level
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before stroke onset. The definitions of these variables have been
previously described [28,29].

Stroke Prognostic Scores
The conventional stroke prognostic scores were used for
comparison against data-driven prediction models. In this study,
we selected prognostic scores based on the following criteria:
they are multiitem and point-based scores using demographic
and clinical information, they were developed to predict
short-term outcomes after ischemic stroke, and they were
externally validated. Consequently, 3 stroke prognostic scores,
the ASTRAL score [6], PLAN score [7], and iScore [4,5], were
used for comparative analysis. Items of these preexisting stroke
prognostic scores were used as explanatory variables in
item-based models (Multimedia Appendix 1).

Study Populations
FSR included 10,700 consecutive patients with acute ischemic
stroke who were registered between June 2007 and May 2017.

Ischemic stroke was diagnosed based on the sudden onset of a
nonconvulsive and focal neurological deficit confirmed by brain
imaging through computed tomography, magnetic resonance
imaging, or both conducted upon admission. Of the 10,700
patients, 187 (1.7%) were lost to follow-up, and the remaining
10,513 (98.3%) were analyzed for 3 months post stroke.

Study patients were selected according to the inclusion and
exclusion criteria of preexisting stroke prognostic scores to
make the study populations identical between the item-based
and machine learning–based models (Multimedia Appendix 2).
Furthermore, we limited the study to patients with complete
data, ensuring there were no missing variables across all data
points. This approach aimed to prevent further reduction in the
number of analyzed patients owing to list-wise deletion in
regression models. The frequency of missing data is shown in
Multimedia Appendix 3. Consequently, population 1, population
2, and population 3 were included in the analysis for comparison
with the ASTRAL score, PLAN score, and iScore, respectively.
Figure 1 illustrates the patient selection in each population.

Figure 1. Flowchart for the selection of study patients. Study patients were selected according to the inclusion and exclusion criteria used in the original
studies of 3 stroke prognostic scores: population 1 for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score, population 2 for the
preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and population 3 for the Ischemic Stroke Predictive Risk
Score (iScore). Patients with missing data on explanatory variables were excluded from the analyses of data-driven models to avoid the influence of
list-wise deletion.

Study Outcomes
The study outcomes were poor functional outcome and death
at 3 months after stroke. Poor functional outcome was defined
as a modified Rankin Scale score >2 at 3 months after stroke
onset [30]. Death was defined as death from any cause within

3 months after stroke [30]. Interviewers on clinical outcomes
were blinded to the patients’ backgrounds.

Development of Predictive Models
We performed logistic regression analysis to develop item-based
models using the predictors of the ASTRAL score, PLAN score,
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and iScore as explanatory variables (Multimedia Appendix 1).
The predictors used in these models included age, time delay
from onset to admission, stroke scale score, decreased level of
consciousness, visual field defect, and abnormal glucose levels
for the ASTRAL score; age, atrial fibrillation, congestive heart
failure, cancer, preadmission dependence, decreased level of
consciousness, leg weakness, arm weakness, and aphasia or
neglect for the PLAN score; age, male sex, atrial fibrillation,
congestive heart failure, renal dialysis, cancer, preadmission
dependence, Canadian Neurological Scale score, stroke subtype,
and abnormal glucose levels for the iScore. The categorization
of predictors in the stroke prognostic scores was the same as
that used in the original study for each score.

We used regularization methods (ridge regression [RR] and
least absolute shrinkage and selection operator [LASSO]
regression models) and ensemble decision tree models (random
forest [RF] and Extreme Gradient Boosting [XGBoost]) for
data-driven models based on machine learning algorithms
[31-34]. All available variables were included in the
development of data-driven models (Multimedia Appendix 3).
The details of the model development are presented in
Multimedia Appendix 4.

Metrics of Model Performance
The discriminative ability of each model was evaluated using
the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve
(AUPRC). AUPRC was calculated because it is a useful
performance metric for unbalanced data of infrequent outcome
events, such as death [35].

The calibration of each model was assessed using a calibration
plot. Calibration plots were obtained by plotting the predicted

and observed probabilities of the clinical outcomes in the 10
risk groups estimated using each predictive model. The Brier
score was also used to assess the overall performance. The Brier

score is defined as 1/N ∑N
i=1 (pi–ai)2, (0≤BS≤1), where pi is

the predicted probability of the occurrence of an event ranging
from 0 to 1, ai indicates the event with binary outcomes (1 for
observed or 0 for not observed), and N is the number of samples.

Validation and Comparison of Models
We performed internal validation of item-based and data-driven
models after 100 repeated random splits into 80% of the patients
as a training set and 20% of patients as a test set (Figure 2). The
parameters in the training set were optimally tuned via 10-fold
cross-validation in the data-driven models. After 100 random
splits, the predictive models were developed by logistic
regression using the items of the stroke prognostic scores
(item-based model) and by machine learning using all variables
(data-driven model) in the training set. The developed
item-based and data-driven models were validated in the test
set. The data sets for both training and testing were identical
for the item-based and data-driven models. The median and
95% CI of the performance metrics, that is, AUROC, AUPRC,
and Brier score, were calculated for each model using the results
of the 100 repeated random splits. To directly compare the
performance of the item-based and data-driven models (RR,
LASSO, RF, and XGBoost), we compared the AUROC,
AUPRC, and Brier score of the data-driven models with those
of the corresponding item-based model. We repeated the
comparison 100 times and calculated the times that the AUROC,
AUPRC, and Brier score of data-driven models were better than
those of the corresponding item-based model among the 100
repetitions.
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Figure 2. Schematic diagram of the development and validation of the predictive models. All patients were randomly split into 80% of the development
cohort as training data and 20% of the validation cohort as test data, which was repeated 100 times. Among the data-driven models, predictive models
were developed based on ridge regression (RR), least absolute shrinkage and selection operator regression (LASSO), random forest (RF), and Extreme
Gradient Boosting (XGBoost) using all available data after hyperparameter tuning in the development cohort. Logistic regression was used with predictors
of stroke prognostic scores in the item-based models. The predictive models were validated using the test data of the validation cohort. In each split,
the training and test data were identical between the data-driven and item-based models. ASTRAL: Acute Stroke Registry and Analysis of Lausanne;
PLAN: preadmission comorbidities, level of consciousness, age, and neurologic deficit.

Evaluation of the Contribution of Variables
We evaluated the importance of the variables used in the
item-based and data-driven models. To assess the contribution
of each predictor to the item-based regression model, we
calculated the rate of times when the association between each
variable and clinical outcomes was statistically significant
(P<.05) after 100 random splits. In the machine learning models,
the magnitude of variable importance was evaluated in identical
populations after 100 random splits (Multimedia Appendix 4).

We calculated the AUROC of the XGBoost model using various
types of variables to assess how the addition of explanatory
variables improves the predictive performance of the data-driven
model. First, we constructed a model with age, sex, National
Institutes of Health Stroke Scale (NIHSS) score, and
preadmission modified Rankin Scale score (model 1). Then, 5
models were developed by adding items relating to preadmission
status to model 1 (model 2), items relating to clinical data on
admission to model 2 (model 3), items relating to brain imaging
data to model 3 (model 4), and items relating to laboratory data
to model 4 (model 5).

Statistical Analysis
We used the chi-square test, 2-tailed Student t test, or
Mann-Whitney U test to compare the differences in baseline
characteristics and clinical data, as appropriate [36]. Two-sided
P values <.05 were considered statistically significant.

All statistical analyses were performed using the R statistical
package (R Development Core Team). This study was conducted
in accordance with the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) initiative [37].

Results

Baseline Variables and Clinical Outcomes
The mean age of the 10,513 patients was 73.0 (SD 12.5) years,
and 59.1% (6209/10,513) of the patients were men. At 3 months
after stroke, a poor functional outcome was found in 1204
(31.4%) of 3832 patients in population 1, 2209 (35.9%) of 6154
patients in population 2, and 2540 (37.1%) of 6855 patients in
population 3. Within 3 months after stroke onset, 3%
(113/3832), 3.6% (219/6154), and 3.7% (255/6855) of the
patients died in population 1, population 2, and population 3,
respectively.

First, we investigated the differences in the predictors of
preexisting point-based stroke prognostic scores among patients
according to poststroke clinical outcomes. Consequently, almost
all variables significantly (P<.05) differed depending on the
3-month functional outcome (Table 1) and 3-month survival
status (Multimedia Appendix 5) in addition to the predictors
used in preexisting prognostic scores.
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Table 1. Baseline data according to functional outcome at 3 months.

P valuemRS 3-6 (n=4108)mRSa 0-2 (n=6405)Overall (n=10,513)

Demographics

<.00179.4 (10.4)68.9 (12.0)73.0 (12.5)Age (y), mean (SD)

<.0011952 (47.5)4257 (66.5)6209 (59.1)Men, n (%)

Risk factors, n (%)

.113347 (81.5)5138 (80.2)8485 (80.7)Hypertension

.111371 (33.4)2236 (34.9)3607 (34.3)Diabetes mellitus

<.0011570 (38.3)1173 (18.3)2743 (26.1)Atrial fibrillation

<.001544 (14.2)1717 (28.9)2261 (23.1)Smoking

Comorbid conditions, n (%)

<.001496 (12.1)423 (6.6)919 (8.7)Congestive heart failure

<.001161 (3.9)171 (2.7)332 (3.2)Kidney disease on dialysis

<.001778 (18.9)774 (12.1)1552 (14.8)Cancer

Previous history, n (%)

<.001263 (6.9)242 (4.3)505 (5.3)Previous myocardial infarction

Preadmission functional status

<.0011 (0-3)0 (0-0)0 (0-1)Preadmission mRS, median (IQR)

<.0012002 (48.7)364 (5.7)2366 (22.5)Preadmission dependence (mRS score >1), n (%)

<.001Onset-to-admission time, n (%)

453 (11)490 (7.7)943 (9)≤1 h

698 (17)771 (12)1469 (14)≤3 h

497 (12.1)644 (10.1)1141 (10.9)≤6 h

1425 (34.7)2090 (32.6)3515 (33.4)≤24 h

1035 (25.2)2410 (37.6)3445 (32.8)>24 h

<.001Stroke subtype, n (%)

395 (9.6)1724 (26.9)2119 (20.2)Small vessel occlusion

817 (19.9)1006 (15.7)1823 (17.3)Large artery atherosclerosis

1442 (35.1)1054 (16.5)2496 (23.7)Cardioembolism

742 (18.1)1404 (21.9)2146 (20.4)Other determined etiology

712 (17.3)1217 (19)1929 (18.3)Undetermined

Neurological severity, median (IQR) or n (%)

<.0018 (4-16)2 (1-4)3 (2-8)NIHSSb score

<.0011647 (40.1)291 (4.5)1938 (18.4)Severe stroke (NIHSS score >10)

Neurological deficits, n (%)

<.0012359 (57.9)770 (12.1)3129 (30)Decreased level of consciousness

<.0013037 (75)2357 (37.2)5394 (51.9)Leg weakness

<.0013114 (76.8)2520 (39.7)5634 (54.2)Arm weakness

<.0011966 (48.3)946 (14.9)2912 (27.9)Aphasia or neglect

<.001552 (13.6)447 (7.0)999 (9.6)Visual field defect

Physiological data, mean (SD)

<.00184.6 (18.6)87.9 (17.8)86.6 (18.2)SBPc, mm Hg

.01158.8 (30.3)160.4 (28.6)159.8 (29.3)DBPd, mm Hg
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P valuemRS 3-6 (n=4108)mRSa 0-2 (n=6405)Overall (n=10,513)

<.00121.7 (3.9)23.5 (3.6)22.8 (3.8)BMI, kg/m2

Laboratory data, median (IQR)

Complete blood cell count

<.0017.0 (5.7-8.9)6.7 (5.5-8.2)6.8 (5.6-8.4)WBCe (103/μL)

<.001416 (372-458)449 (411-485)436 (394-476)RBCf (104/μL)

<.00138.2 (34.6-41.9)41.1 (37.9-44.0)40.1 (36.5-43.4)Hematocrit (%)

<.00112.8 (11.4-14.1)14.0 (12.7-15.1)13.5 (12.1-14.8)Hemoglobin (g/dL)

<.00119.5 (15.8-23.6)20.6 (17.0-24.7)20.2 (16.6-24.3)Platelet (104/μL)

Liver function

.00123 (19-30)23 (19-29)23 (19-29)ASTg (U/L)

<.00115 (11-22)18 (13-25)17 (12-24)ALTh (U/L)

<.001230 (195-285)211 (181-254)219 (186-266)LDHi (U/L)

<.001250 (203-312)231 (190-284)239 (195-295)ALPj (U/L)

Kidney function

<.00117.9 (13.8-23.8)15.3 (12.6-19.0)16.0 (13.0-20.9)BUNk (mg/dL)

<.0010.8 (0.6-1.1)0.8 (0.7-1.0)0.8 (0.6-1.0)Creatinine (mg/dL)

<.00160.8 (44.8-76.5)70.2 (55.9-83.8)66.5 (51.2-81.5)eGFRl (mL/min/1.73 m2)

Glycemic control

.001124 (105-158)119 (103-154)121 (103-156)Glucose (mg/100 mL)

<.0015.9 (5.5-6.5)5.9 (5.6-6.6)5.9 (5.6-6.6)Hemoglobin A1c (%)

Inflammation

<.0013.9 (1.0-16.3)1.0 (0.4-2.9)1.5 (0.5-6.1)hsCRPm, mg/dL

Coagulation

<.0011.1 (1.0-1.1)1.0 (1.0-1.1)1.0 (1.0-1.1)PT-INRn

<.00130.1 (27.3-33.3)29.5 (27.1-32.4)29.7 (27.2-32.7)APTTo (s)

<.001315 (267-375)297 (256-349)304 (260-359)Fibrinogen (mg/dL)

<.0011.7 (0.9-4.0)0.6 (0.2-1.2)0.9 (0.4-2.0)d-dimer (μg/mL)

amRS: modified Rankin Scale.
bNIHSS: National Institutes of Health Stroke Scale.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
eWBC: white blood cell count.
fRBC: red blood cell count.
gAST: aspartate aminotransferase.
hALT: alanine aminotransferase.
iLDH: lactate dehydrogenase.
jALP: alkaline phosphatase.
kBUN: blood urea nitrogen.
leGFR: estimated glomerular filtration rate.
mhsCRP: high-sensitivity C-reactive protein.
nPT-INR: international normalized ratio of prothrombin time.
oAPTT: activated partial thromboplastin time.
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Assessment of Model Performance
AUROCs varied depending on study populations, whereas
differences between the machine learning algorithms were
minimal in the same study population and for the same outcome.
The AUROCs of data-driven models based on machine learning
were generally higher than those of item-based models for

predicting both 3-month poor functional outcome and all-cause
death (Table 2). Similarly, AUPRCs were generally higher in
data-driven models than in item-based models for predicting
both poor functional outcome and all-cause death (Table 3).
Regarding the Brier score, the data-driven models performed
better than the item-based models (Table 4).

Table 2. Area under the receiver operating characteristic curve for predicting unfavorable clinical outcomes at 3 months using item-based and data-driven

modelsa.

Data-driven models, median (95% CI)Item-based model, median (95% CI)

XGBoosteRFdLASSOcRRb

Poor functional outcome

0.86 (0.83-0.89)0.86 (0.84-0.88)0.86 (0.84-0.89)0.86 (0.83-0.89)0.83 (0.80-0.85)Population 1 (n=3832)

0.91 (0.89-0.93)0.91 (0.89-0.92)0.91 (0.90-0.93)0.91 (0.90-0.93)0.88 (0.86-0.90)Population 2 (n=6154)

0.90 (0.89-0.92)0.90 (0.88-0.91)0.90 (0.89-0.92)0.90 (0.89-0.92)0.87 (0.85-0.89)Population 3 (n=6855)

Death

0.88 (0.82-0.93)0.89 (0.81-0.93)0.87 (0.78-0.92)0.87 (0.79-0.93)0.77 (0.69-0.87)Population 1 (n=3832)

0.90 (0.86-0.93)0.90 (0.86-0.93)0.88 (0.84-0.92)0.89 (0.85-0.92)0.84 (0.80-0.89)Population 2 (n=6154)

0.89 (0.85-0.91)0.89 (0.86-0.92)0.87 (0.83-0.90)0.88 (0.84-0.91)0.82 (0.77-0.87)Population 3 (n=6855)

aThe study populations were selected according to the inclusion and exclusion criteria for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score (population 1), the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score (population 2), and the Ischemic
Stroke Predictive Risk Score (iScore; population 3).
bRR: ridge regression.
cLASSO: least absolute shrinkage and selection operator regression.
dRF: random forest.
eXGBoost: Extreme Gradient Boosting.

Table 3. Area under the precision-recall curve for predicting unfavorable clinical outcomes at 3 months using item-based and data-driven modelsa.

Data-driven models, median (95% CI)Item-based model, median (95% CI)

XGBoosteRFdLASSOcRRb

Poor functional outcome

0.75 (0.71-0.79)0.74 (0.69-0.79)0.75 (0.71-0.80)0.75 (0.71-0.79)0.71 (0.66-0.75)Population 1 (n=3832)

0.87 (0.85-0.89)0.87 (0.84-0.89)0.87 (0.85-0.90)0.87 (0.85-0.89)0.83 (0.80-0.86)Population 2 (n=6154)

0.87 (0.85-0.89)0.86 (0.84-0.88)0.87 (0.85-0.89)0.87 (0.85-0.89)0.83 (0.80-0.85)Population 3 (n=6855)

Death

0.24 (0.12-0.39)0.26 (0.13-0.44)0.17 (0.07-0.31)0.17 (0.08-0.32)0.11 (0.06-0.24)Population 1 (n=3832)

0.27 (0.16-0.35)0.29 (0.18-0.42)0.27 (0.18-0.38)0.27 (0.18-0.37)0.17 (0.11-0.25)Population 2 (n=6154)

0.28 (0.19-0.39)0.29 (0.19-0.42)0.27 (0.17-0.38)0.27 (0.16-0.36)0.18 (0.11-0.25)Population 3 (n=6855)

aThe study populations were selected according to the inclusion and exclusion criteria for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score (population 1), the preadmission comorbidities, level of consciousness, age, and Neurologic deficit (PLAN) score (population 2), and the Ischemic
Stroke Predictive Risk Score (iScore; population 3).
bRR: ridge regression.
cLASSO: least absolute shrinkage and selection operator regression.
dRF: random forest.
eXGBoost: Extreme Gradient Boosting.
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Table 4. Brier score for predicting unfavorable clinical outcomes at 3 months using item-based and data-driven modelsa.

Data-driven models, median (95% CI)Item-based model, median (95% CI)

XGBoosteRFdLASSOcRRb

Poor functional outcome

0.14 (0.12-0.15)0.14 (0.13-0.15)0.14 (0.12-0.15)0.14 (0.12-0.15)0.15 (0.14-0.17)Population 1 (n=3832)

0.11 (0.10-0.12)0.12 (0.11-0.13)0.11 (0.10-0.12)0.11 (0.10-0.12)0.13 (0.12-0.14)Population 2 (n=6154)

0.12 (0.11-0.13)0.12 (0.12-0.13)0.12 (0.11-0.13)0.12 (0.11-0.13)0.13 (0.12-0.15)Population 3 (n=6855)

Death

0.03 (0.02-0.03)0.03 (0.02-0.03)0.03 (0.02-0.03)0.03 (0.02-0.03)0.03 (0.02-0.03)Population 1 (n=3832)

0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)Population 2 (n=6154)

0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)Population 3 (n=6855)

aThe study populations were selected according to the inclusion and exclusion criteria for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score (population 1), the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score (population 2), and the Ischemic
Stroke Predictive Risk Score (iScore; population 3).
bRR: ridge regression.
cLASSO: least absolute shrinkage and selection operator regression.
dRF: random forest.
eXGBoost: Extreme Gradient Boosting.

The predictive performance of data-driven models compared
with the corresponding item-based model was examined by the
frequency of the performance metrics (AUROC, AUPRC, and
Brier score) of data-driven models, which were better than those
of the corresponding item-based model in the identical training
and test data sets after 100 repeated random splits (Table 5).
Regarding poor functional outcome, the frequency exceeded
95% for all metrics in all the data-driven models (RR, LASSO,
RF, and XGBoost), indicating that the probability of the worse
performance of data-driven models compared with the
item-based model was <5%. Regarding death, the frequency

was >95% for AUROC in all the data-driven models but did
not always attain 95% for AUPRC or Brier score.

Calibration for predicting poor functional outcome was
compared between the item-based and data-driven models (RR,
LASSO, RF, and XGBoost) in population 1 for the ASTRAL
score, in population 2 for the PLAN score, and in population 3
for the iScore. The prediction of poor functional outcome
(Figure 3) and all-cause death (Figure 4) demonstrated
concordance between the predicted and observed probabilities
in the item-based models as well as in the data-driven models.
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Table 5. Predictive performance of data-driven models versus item-based modelsa.

DeathPoor functional outcome

XGBoostRFLASSORRXGBoosteRFdLASSOcRRb

AUROCf

96979597100100100100Population 1 (n=3832)

9998100100100100100100Population 2 (n=6154)

9910099100100100100100Population 3 (n=6855)

AUPRCg

939378819899100100Population 1 (n=3832)

100999999100100100100Population 2 (n=6154)

981009898100100100100Population 3 (n=6855)

Bier score

8996708310099100100Population 1 (n=3832)

93979298100100100100Population 2 (n=6154)

9610099100100100100100Population 3 (n=6855)

aData indicate the frequency that AUROC, AUPRC, and Brier score of data-driven models (RR, LASSO, RF, or XGBoost) exceeded those of item-based
models in identical training and test sets after 100 repeated random splits.
bRR: ridge regression.
cLASSO: least absolute shrinkage and selection operator regression.
dRF: random forest.
eXGBoost: Extreme Gradient Boosting.
fAUROC: area under the receiver operating characteristic curve.
gAUPRC: area under the precision-recall curve.
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Figure 3. Calibration of item-based and data-driven models for predicting poor functional outcome. Calibration for predicting poor functional outcome
was compared between the item-based regression model and data-driven models (ridge regression [RR], least absolute shrinkage and selection operator
regression [LASSO], random forest [RF], and Extreme Gradient Boosting [XGBoost]) in population 1 for the Acute Stroke Registry and Analysis of
Lausanne (ASTRAL) score, population 2 for the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and
population 3 for the Ischemic Stroke Predictive Risk Score (iScore). The patients were categorized into 10 groups stratified by the predicted probability
of poor functional outcome in the test data. Observed probabilities (x-axis) were plotted against predicted probabilities (y-axis) in the 10 groups based
on risk stratification. The results for the first 100 random splits are presented.
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Figure 4. Calibration of item-based and data-driven models for predicting death. Calibration for predicting death was compared between the item-based
regression model and data-driven models (ridge regression [RR], least absolute shrinkage and selection operator regression [LASSO], random forest
[RF], and Extreme Gradient Boosting [XGBoost]) in population 1 for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score, population
2 for the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and population 3 for the Ischemic Stroke
Predictive Risk Score (iScore). The patients were categorized into 10 groups stratified by the predicted probability of death in the test data. Observed
probabilities (x-axis) were plotted against predicted probabilities (y-axis) in the 10 groups based on risk stratification. The results for the first 100 random
splits are presented.

Evaluation of Variables
Next, we evaluated how each variable contributed to the
predictive performance of the item-based and data-driven models
(RF and XGBoost) in population 1 (Figure 5), population 2
(Figure 6), and population 3 (Figure 7). The selected variables
differed substantially between the study populations in the
item-based models. Age, preadmission dependence, and
neurological severity of stroke were important variables in
predicting both poor functional outcome and death (Figures
5-7; left panels). Age and neurological deficit signs (arm or leg
weakness and loss of consciousness) were the most frequently
used variables for predicting poor functional outcome (Figures
5A, 6A, and 7A; middle and right panels) in RF and XGBoost.

In contrast, variables not used in the item-based models, such
as d-dimer, high-sensitivity C-reactive protein, fibrinogen, and
BMI, were the most frequently used variables by RF and
XGBoost (Figures 5B, 6B, and 7B; middle and right panels) in
predicting death.

We also investigated how the addition of variables increased
the predictive performance of XGBoost. As a result, the AUROC
for poor functional outcome did not substantially increase even
when explanatory variables other than key predictors were added
to model 1 (Figure 8; open circles). Conversely, the AUROC
for all-cause death linearly increased with the addition of other
variables to the models, particularly items from laboratory data
(Figure 8; closed circles).
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Figure 5. Comparison of variable importance between items of the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score and explanatory
variables in machine learning model in population 1. The contribution of each variable to the models in predicting poor functional outcome (A) and
death (B) is shown. The patients were selected based on the ASTRAL criteria (population 1). In item-based regression models, the percentage indicates
the rate of times when its association with clinical outcomes was statistically significant (P<.05). In machine learning models, the top 10 variables are
shown according to the magnitude of variable importance. Boxes, vertical lines in the boxes, and horizontal bars indicate IQR, median, and minimal or
maximal range, respectively. NIHSS: National Institutes of Health Stroke Scale, hsCRP: high-sensitivity C-reactive protein, LOC: loss of consciousness,
mRS: modified Rankin Scale, BMI: body mass index, WBC: white blood cell count, LDH: lactate dehydrogenase, HbA1c: hemoglobin A1c, Fib:
fibrinogen, Plt: platelet count, RBC: red blood cell count, ALP: alkaline phosphatase, Ht: hematocrit, Hb: hemoglobin, BUN: blood urea nitrogen, LDH:
lactate dehydrogenase, PT-INR: international normalized ratio of prothrombin time.
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Figure 6. Comparison of variable importance between items of the preadmission comorbidities, level of consciousness, age, and neurologic deficit
(PLAN) score and explanatory variables in machine learning model in population 2. The contribution of each variable to the models in predicting poor
functional outcome (A) and death (B) is shown. The patients were selected based on the PLAN score criteria (population 2). In item-based regression
models, the percentage indicates the rate of times when its association with clinical outcomes was statistically significant (P<.05). In machine learning
models, the top 10 variables are shown according to the magnitude of variable importance. Boxes, vertical lines in the boxes, and horizontal bars indicate
IQR, median, and minimal or maximal range, respectively. mRS: modified Rankin Scale, LOC: loss of consciousness, hsCRP: high-sensitivity C-reactive
protein, BMI: body mass index, Hb: hemoglobin, WBC: white blood cell count, Plt: platelet count, Fib: fibrinogen, RBC: red blood cell count, LDH:
lactate dehydrogenase, Ht: hematocrit, ALP: alkaline phosphatase, PT-INR: international normalized ratio of prothrombin time.
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Figure 7. Comparison of variable importance between items of Ischemic Stroke Predictive Risk Score (iScore) and explanatory variables in machine
learning model in population 3. The contribution of each variable to the models in predicting poor functional outcome (A) and death (B) is shown. The
patients were selected according to the iScore criteria (population 3). In item-based regression models, the percentage indicates the rate of times when
its association with clinical outcomes was statistically significant (P<.05). In machine learning models, the top 10 variables are shown according to the
magnitude of variable importance. Boxes, vertical lines in the boxes, and horizontal bars indicate IQR, median, and minimal or maximal range,
respectively. NIHSS: National Institutes of Health Stroke Scale, CNS: Canadian Neurological Scale, mRS: modified Rankin Scale, LOC: loss of
consciousness, hsCRP: high-sensitivity C-reactive protein, BMI: body mass index, Hb: hemoglobin, WBC: white blood cell count, Fib: fibrinogen,
RBC: red blood cell count, Plt: platelet count, Ht: hematocrit, LDH: lactate dehydrogenase, ALP: alkaline phosphatase, PT-INR: international normalized
ratio of prothrombin time.

Figure 8. Improvement of discrimination in a data-driven model by adding different types of data. The area under the receiver operating characteristic
curves (AUROCs) for predicting poor functional outcome (open circles) and death (closed circles) were compared among the 5 models, which used
different types of variables. A data-driven model was developed for each population using Extreme Gradient Boosting. Vertical bars indicate the 95th
percentile after 100 random splits. The variables used for the models were as follows: model 1: age, sex, National Institutes of Health Stroke Scale
score, and preadmission modified Rankin Scale score; model 2: model 1 plus clinical data before admission (eg, risk factors, comorbid conditions,
previous history, family history, and prestroke medication); model 3: model 2 plus clinical data on admission (eg, onset-to-admission time, ambulance
use, BMI, and physiological data); model 4: model 3 plus brain imaging data (eg, site of lesion, side of lesion, and stroke subtype); and model 5: model
4 plus laboratory data.
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Discussion

Principal Findings
This study, which analyzed comprehensive clinical data from
a multicenter, hospital-based stroke registry, yielded the
following major findings. The performance of item-based
regression models using the predictors of 3 conventional stroke
prognostic scores was fair in predicting clinical outcomes at 3
months after ischemic stroke in our cohort, despite differences
in clinical and social backgrounds from the original cohorts of
scores. Data-driven models based on machine learning
algorithms exhibited better performance when compared with
item-based models in identical study populations. The
importance of variables in RF and XGBoost appeared to differ
from that in item-based models when predicting death within
3 months. The addition of nonconventional factors, such as
laboratory data, to the XGBoost model improved its predictive
ability for 3-month mortality.

Predictive Performance of Models
Thus far, only a limited number of studies have evaluated the
predictive performance of machine learning–based models
compared with those of stroke prognostic scores [19,20,23]. All
these studies were performed in single-center registries or under
specific conditions, such as large vessel occlusion in ischemic
stroke. Furthermore, previous studies mainly focused on
AUROC for assessing predictive performance, although other
metrics, such as measures of calibration, are necessary to fully
evaluate the performance of models [38]. This study was
conducted using a multicenter registry database and several
performance metrics. Our study demonstrated that data-driven
models developed using machine learning algorithms can
perform reasonably well in predicting the 3-month clinical
outcomes of patients with acute ischemic stroke. Generally,
data-driven models performed better than conventional
prognostic scores when both were compared in identical study
populations.

This study also demonstrates that the model performance largely
depends on the study populations. The study populations varied
in terms of both size and patient characteristics, such as
prestroke dependency, time from onset to admission, and use
of thrombolytic therapy. The variability in AUROC, AUPRC,
and Brier scores between the study populations was as large as
that between the models. Moreover, the model performance
varied depending on the outcomes to be predicted: AUPRCs
were substantially decreased for the prediction of death, which
is a less frequent event than the poor functional outcome. These
findings underscore the reiterated importance of sample size,
the number of outcome events, and data quality of the study
cohorts where models are to be developed and validated
[25,39,40].

Variables in Models
In this study, age, preadmission dependence, and variables
related to neurological deficits were identified as important
predictors for the prediction of poor functional outcome in both
item-based regression models and data-driven models using RF
and XGBoost. These are well-known risk factors for poor

functional outcome and are also used for predicting death in
stroke prognostic scores [4,5,7]. However, BMI and items
related to laboratory data, such as D-dimer, high-sensitivity
C-reactive protein, and fibrinogen, were found to be the most
important variables for predicting death in RF and XGBoost.
Indeed, the association between poststroke clinical outcomes
and markers of inflammation and hypercoagulation has become
a recent research topic [41,42]. Machine learning algorithms
can be a promising tool to identify novel factors to be considered
in making prognoses for stroke because they can maximize the
use of data without arbitrary assumptions and procedures.

Clinical Implications
The ability of machine learning to derive a model that best fits
the data on a given cohort is appealing for making prognoses.
Prognostic scores with prespecified items may not fit all cohorts
because heterogeneity must exist between study cohorts in race
or ethnic groups, general health conditions, socioeconomic
status, and health care systems. In addition, stroke prognostic
scores are at risk of getting outdated over time, as advances in
stroke care continuously improve clinical outcomes in patients
with stroke [43,44]. However, our analysis suggests that the 3
conventional prognostic scores can perform sufficiently well
in our cohort, despite the fact that the original studies that
developed the scores had patients with different medical
backgrounds and during different study periods. This finding
demonstrates the robustness of outcome prediction using
regression models in terms of generalizability. Furthermore,
considering nonlinear and interaction effects might not be crucial
for outcome prediction after ischemic stroke, as the simple
regression models worked well in our study.

Point-based stroke prognostic scores are convenient and helpful
for making prompt decisions at the bedside. Generally,
prognostic scores comprise only a handful of variables on which
information can be obtained easily. This advantage in the
practicability of the prognostic scores is important in acute
stroke care settings. Machine learning algorithms require more
data than conventional prognostic scores to reach acceptable
performance levels [39], and the data required by machine
learning algorithms to realize better performance, such as
laboratory data, may not always be available, although they can
improve the predictive performance of models. Therefore,
further studies are needed to fully assess the incremental value
of machine learning–based models in daily clinical practice.

Strengths and Limitations
This study has several strengths. We assessed and compared
the predictive accuracy of prognostic scores against data-driven
models, using information from a multicenter, prospective
registry of individuals diagnosed with acute stroke. We were
able to use several variables, including laboratory data–related
items, owing to the detailed clinical data available in the registry.
Moreover, comparisons of models were made using various
performance metrics. However, this study has also several
limitations. First, the selection of patients may have led to bias,
although the inclusion and exclusion criteria were identical to
those reported in the original studies of the prognostic scores.
Second, there were missing data for the baseline variables and
clinical outcomes, which may have also led to selection bias.
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Third, the possibility of overfitting cannot be completely ruled
out, despite the predictive models constituted by the training
set being fitted to the test set. Finally, this study included only
patients with acute ischemic stroke who were hospitalized in
tertiary care centers in a restricted region of Japan.
Generalizability should be assessed in other settings and for
other diseases.

Conclusions
This study suggests that data-driven models based on machine
learning algorithms can improve predictive performance by
using diverse types of variables, such as laboratory data–related
items. The clinical outcomes of individual patients can be
automatically estimated using machine learning algorithms if

a large amount of data can be directly drawn from electronic
health records. This possibility of making automated and
personalized prognoses is an appealing property of data-driven
prediction. However, the arrangement of an appropriate
electronic infrastructure is indispensable for enabling data
collection, and the development of such infrastructure requires
time and cost. It is worth noting that conventional prognostic
scores can achieve sufficient performance in making stroke
prognoses with only a limited number of variables. In the near
future, it seems feasible to explore the improvement of
preexisting prognostic scores by incorporating novel predictors
identified by machine learning algorithms, given the significant
investment necessary to fully use machine learning.
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Abstract

Background: Health care–associated infections due to multidrug-resistant organisms (MDROs), such as methicillin-resistant
Staphylococcus aureus (MRSA) and Clostridioides difficile (CDI), place a significant burden on our health care infrastructure.

Objective: Screening for MDROs is an important mechanism for preventing spread but is resource intensive. The objective of
this study was to develop automated tools that can predict colonization or infection risk using electronic health record (EHR)
data, provide useful information to aid infection control, and guide empiric antibiotic coverage.

Methods: We retrospectively developed a machine learning model to detect MRSA colonization and infection in undifferentiated
patients at the time of sample collection from hospitalized patients at the University of Virginia Hospital. We used clinical and
nonclinical features derived from on-admission and throughout-stay information from the patient’s EHR data to build the model.
In addition, we used a class of features derived from contact networks in EHR data; these network features can capture patients’
contacts with providers and other patients, improving model interpretability and accuracy for predicting the outcome of surveillance
tests for MRSA. Finally, we explored heterogeneous models for different patient subpopulations, for example, those admitted to
an intensive care unit or emergency department or those with specific testing histories, which perform better.

Results: We found that the penalized logistic regression performs better than other methods, and this model’s performance
measured in terms of its receiver operating characteristics-area under the curve score improves by nearly 11% when we use
polynomial (second-degree) transformation of the features. Some significant features in predicting MDRO risk include antibiotic
use, surgery, use of devices, dialysis, patient’s comorbidity conditions, and network features. Among these, network features add
the most value and improve the model’s performance by at least 15%. The penalized logistic regression model with the same
transformation of features also performs better than other models for specific patient subpopulations.

Conclusions: Our study shows that MRSA risk prediction can be conducted quite effectively by machine learning methods
using clinical and nonclinical features derived from EHR data. Network features are the most predictive and provide significant
improvement over prior methods. Furthermore, heterogeneous prediction models for different patient subpopulations enhance
the model’s performance.
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Introduction

Multidrug-resistant organisms (MDROs), such as Clostridioides
difficile (CDI), multidrug-resistant gram-negative bacteria
(carbapenem-resistant Acinetobacter baumannii and
carbapenem-resistant Enterobacterales), methicillin-resistant
Staphylococcus aureus (MRSA), and vancomycin-resistant
enterococci, are among the top 10 threats to global health [1].
Health care–associated infections (HAIs) due to MDROs are
associated with increased complications, longer hospital stays,
and increased mortality. For example, Weiner-Lastinger et al
[2] report that HAIs have resulted in billions of dollars in
increased healthcare costs [3]. MRSA is one of the most
common causes of HAIs and a serious antimicrobial resistance
threat, responsible for >10,000 deaths a year in the United States
alone [4]. Similar to many other MDROs, MRSA can be easily
spread in a hospital from hospitalized patients via contact with
the health care environment (ie, shared patient rooms) and health
care workers.

Antimicrobial stewardship, which seeks to optimize antibiotic
treatment regimens, and infection prevention and control, which
involves monitoring, investigating, and managing factors related
to MDRO transmission, are the main tools for mitigating the
risks of acquisition and severe outcomes of MDROs [5].
Surveillance testing is a critical component of both antimicrobial
stewardship and infection prevention control. However, testing
is expensive and slow; current laboratory procedures typically
require at least 72 hours to report MRSA found in a patient’s
culture [6]. The delay in testing results in three problems in the
hospital: (1) colonized patients remain undetected, leading to
potential spread; (2) clinicians treat infections empirically; and
(3) increased resource use for contact precautions, leading to
both over- and undertreatment.

While several different studies have examined MRSA risk
prediction (eg, [6-13]), none to date have progressed to clinical
practice due to limitations in generalizability, sample size, and
imbalanced data (these are discussed further in the Discussion
section). In this study, we demonstrate how improving the
hospital context, particularly how patients are connected, can
improve the performance of machine learning methods for
predicting the outcomes of MRSA surveillance tests, using a
rich set of clinical and nonclinical features derived from
on-admission and throughout-stay information from a large
electronic health record (EHR) data set for patients admitted to
the University of Virginia (UVA) Hospital.

Methods

Data Set
We used patient data from the UVA Hospital during 2010-2022.
Overall, 27,612 patients in the dataset were tested for MRSA,

and 4171 (15.11%) of them were positive; these patients had
37,237 hospital encounters. The data of each patient’s visit can
be separated into two parts: (1) on-admission data and (2)
clinical event or throughout-stay data, which we have described
here:

On-admission data consist of patient demographics and visit
information. Patient demographics include information about
age, gender, race, ethnicity, country, and state. Visit information
includes admission and discharge dates, admission source,
admission type, and discharge destination.

Clinical event data represent information collected during the
visit. We considered the following event data:

• Procedure: it includes the following kinds of events during
this visit or at any time 90 days before this visit: (1)
surgeries, (2) device implant or replacement, and (3)
dialysis. For a visit, no data after the test collection are used.

• Medication: as MRSA is resistant to specific antibiotics,
we also examined prior antibiotic use. We computed the
Days on Therapy, which indicates whether a patient takes
any antibiotic on any specific day. This feature also
calculates whether a patient took any antibiotic in the last
90 days of this hospital visit.

• Comorbidity: the International Classification of Diseases,
Tenth Revision, code of a patient, which is collected from
that patient’s medical history, is used to pull comorbidity
information using the comorbidity package in R
programming language (R Foundation for Statistical
Computing). Both Charlson and Elixhauser scores are
pulled. It involves other physical conditions such as
diabetes, a history of stroke, and a history of dementia.

• MRSA laboratory test: we included both (1) clinical cultures
and blood, respiratory, and urine samples collected as part
of routine care, which typically requires 48 to 72 hours to
return results, and (2) polymerase chain reaction (PCR)
surveillance tests, which are administered to
MRSA-negative patients admitted to an intensive care unit
(ICU; per current hospital policy) or per physician request
and typically return results in <72 hours. While surveillance
tests provide positive and negative results, clinical cultures
may be sent from specimens that are not expected to yield
MRSA, even in the presence of an active MRSA infection;
therefore, a negative clinical culture result is not considered
a definite indicator of noninfection. The nares MRSA PCR
likely has equal or higher sensitivity than the nares culture
for MRSA [14]. We noted that, in general, testing is not
completely unbiased (a patient with an MRSA-positive
result admitted to an ICU would not technically need to be
screened if they are already on precautions), which might
impact the quality of the data set and the results, as we
discuss later in the Discussion section.
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We applied state-of-the-art machine learning methods to predict
the risk of MRSA infection at a given time for a patient, modeled
by the outcome of a surveillance test. The data set is split into
training (80%) and testing (20%) portions. The model is
estimated using the training data, and the hyperparameters are
chosen by cross-validation. There are many metrics to evaluate
model performance. We used receiver operating
characteristics-area under the curve (ROC-AUC) as the overall
performance metric of the model (the model evaluation metrics
are described in Multimedia Appendix 1), and a higher value
is better. For clinicians, an important objective is to reduce the
number of false-negative cases. Therefore, we also used the

false negative rate to evaluate the model performance, with
a lower value indicating a lower false-negative prediction. The
overall model performance is proportional to the ROC-AUC
score and inversely proportional to the FNR score.

Problem Statement
The d-days ahead model’s MRSA test prediction problem: using
features defined from the patient EHR data till some time (t’ =
t – d) predict the outcome of an MRSA surveillance test
performed at time t. Formally, let x(t’) denote a feature vector
for a patient defined till time t and let y(t) denote the result of
an MRSA surveillance test performed at time t. The objective
is to predict if y(t) = 1 using x(t’).

The specific questions we study are as follows:

1. How well can MRSA surveillance test results be predicted?
What machine learning methods perform well, and what
features are the most predictive?

2. Are better predictions possible for specific, meaningful
subpopulations?

3. How does the performance vary with d?
4. Does training with a biased data set (as performed in

previous work) impact the true performance?

Interesting Features
Several risk factors for MRSA have been identified in previous
studies [15,16]: (1) hospitalization within the past 6 to 12
months, (2) residing in a chronic care facility, (3) being a health
care worker, (5) being an intravenous drug user, (5) frequent
antibiotic use, (6) antimicrobial therapy within 1 year, (7) history
of endotracheal intubation, (8) underlying chronic disorder, (9)
presence of an indwelling venous or urinary catheter, (10)
history of any surgical procedure, (11) household contact with
an identified risk factor, and (12) hypoalbuminemia. We
extracted all the aforementioned features from the UVA data
set. We created patient-patient and patient-provider interaction
networks and extracted the following features from those
networks. In addition, we derived many features based on the
existing features described in the subsequent section. The total
number of features is 108, and the MRSA test outcome is the
target feature.

1. Network features: we constructed a contact network G = (V,
E) (as shown in Figure 1), in which we have patient nodes up

∈ V for each patient p and a provider node uh ∈ V for each
provider h. An edge or contact (up1, up2) ∈ E between 2 patient
nodes up1 and up2 indicates that both patients p1 and p2,

respectively, were colocated (share a common space, a hospital
unit in our case) for at least a certain period, in this case at least
900 seconds. Similarly, we defined patient-provider contacts.
For instance, in Figure 1, patient P1 and provider H1 are
colocated at time t1, which is represented as edge (up1, uh1). The
#provider incidents on patient P1 in the time interval [t1, t2] is
2, whereas in the time interval [t1, t3], it is 3. We did not use the
number of patients and providers that a patient comes into direct
contact with as a feature. Instead, we defined slightly different
features based on contacts during a time interval, which we
found to be more predictive. We take time to be in days. On the
basis of the number of contacts for a patient p or a provider h
over a period, we constructed the following features:

• MRSA α: for a patient p, Sp,t(α) = {p’: (up, up’) ∈ E, p’ is
labeled positive at time t’ ∈ {t – a, t]}, denotes the set of
patients who came in contact with p and tested positive in
the last α days. We refer to |Sp,t(α)| as MRSA α.

• Provider β: for a patient p, §p,t (β) = {h: (up, uh) ∈ E, h
visited p at time t’ ∈ (t – β, t]}. We refer to |§p,t (β)| as
Provider β.

• MRSA positive patients collocated with the patient l: at the
UVA Hospital, patients with an MRSA-positive result might
be “cohorted,” that is, they might share a room because
they have similar precautions to improve occupancy. For
a patient p, let ƒp,t(u, γ) = {p’:(up, up’) ∈ E, p’ is labeled
positive at t’ ∈ (t’ – γ,t] and is in the hospital unit u with
p}. We referred to |ƒp,t(u,γ)| as the number of patients with
colocated MRSA.

• Bed reuse Π: let Πp,t(x) = {p’: (up, up’) ∉ E, p’ is labeled
positive at time t’<t and stayed in the same bed x}. We refer
to | Πp,t(x)| as the number of times Bed x reuse.

Note that all of the aforementioned features are defined for a
particular time, t. Therefore, MRSA α and other features should
be indexed by the patient and time. To avoid notational clutter,
we omit them here when they are clear from the context. For
example, suppose t1=1, t2=2, t3=3, t4=4, and t5=5, as shown in
Figure 1. Suppose patient P2 is tested positive at time 4. Then,
for patient P1, we would have “MRSA 2” at time t=5 equal to
1, but “MRSA 2” at time t=3 equals 0. For patient P2, Provider
2 at time t=2 is 0, but Provider 2 at time t=3 is 1.

2. Length of stay: for patients p in a hospital encounter, let t1
denote the admission time and t denote the MRSA test time.
The corresponding length of hospital stay (before the MRSA
test) was computed as t–t1. For the d-days (d ≥ 0) ahead model,
we computed the corresponding length of stay (before the
MRSA test) as max{t-d-t1, 0}. Note that t-d-t1 could be negative
if the patient has not been in the hospital long enough—in this
case, we took the length of stay to be 0.

3. From the health care facility is a Boolean feature that indicates
whether the patient is admitted to the hospital from either
“skilled nursing, intermediate care, or assisted living facility”
or “long term acute care hospital.” For the d-days ahead model,
the feature is defined to be 0 if t1-d<0, where t1 is the admission
date, and 1, otherwise.
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4. δ days observation: we construct several Boolean features
based on events in the last δ days before an MRSA test time.
For a patient p in a hospital encounter, let T(e) denote the set
of times for a specific event e. We defined Boolean variable
eδ(t)={∃t1, t1∈T(e), t1<t, 0≤(t-t1)≤δ}. We considered δ=90 and
e∈{Surgery, Device implant, Antibiotic, Kidney dialysis}. For
the d-days ahead model, the feature is defined by considering
δ+d as the parameter in the aforementioned definition, instead
of δ.

5. Department-based features: we constructed the following
features associated with room stays:

• ICU: this is a Boolean value that indicates whether a patient
is admitted to an ICU.

• Emergency department (ED): this is a Boolean value that
indicates whether a patient is admitted to the ED.

As in the aforementioned features, for the d-days ahead model,
the feature is defined as 1 if the admission to ICU or ED
happened before t-d, where t is the MRSA test time.

6. PHARMCLASS_k: there are 10 PHARMCLASS (penicillins,
miscellaneous anti-infectives, cephalosporins, etc) in the data
set. Each PHARMCLASS contains a list of antibiotics. For a
patient, PHARMCLASS_k contains the number of antibiotic
days from the MRSA testing date in the last 90 days. For the
d-days ahead model, the feature is the number of antibiotic days
in the 90 days before t-d.

7. Test duration days: for a patient p with an MRSA testing date
t, we defined this feature as t-d-t’, if there exists a time t’, t(t’<t)
at which an MRSA test was performed for p; otherwise, we
defined this feature as 0.

Figure 1. Patient-patient and patient-provider interactions are shown on the timeline, where each box represents a room in the hospital, patients are
indicated by circles (marked with P) and health care providers are indicated by triangles (marked with H). Multiple patients could share a room, and a
provider might visit multiple patients over time. A network is constructed from these interaction events over time. If 2 patients share a room for a certain
period (at least for 15 min), we construct an edge between the corresponding patient nodes; similarly, if a provider visits a patient for a certain period
(at least for 15 min), we construct an edge between the corresponding patient and provider nodes.

Machine Learning Classifiers

Overview
We explored the following machine learning methods: (1)
logistic regression (LR; penalized) [17], (2) support vector
machine [18], (3) random forest [19], (4) gradient-boosted
classifiers, and (5) XGBoost. These methods have been used
extensively on EHR data, and our goal was to understand which
ones do well for the MRSA risk-prediction problems we
considered in this study. We have described these methods in
Multimedia Appendix 2 [17-19]. We also considered these
methods with products of features, that is, of the form xi(t)•xj(t)
where xi(t) and xj(t) are different components of the feature
vector x(t). We also discuss the Shapley Additive Explanations

(SHAP) technique for understanding feature importance in each
model.

Model Explainability Using SHAP
SHAP [20] is a visual feature-attribution process that has many
applications in explainable artificial intelligence. It uses a
game-theoretic methodology to measure the influence of each
feature on the target variable of a machine learning model.
Visual representations such as the one in Figure 2, referred to
as a summary plot, are used to show the importance of features.
The interpretations of this plot are as follows:

• The y-axis specifies the important features arranged from
top to bottom regarding their importance (in descending
order) to the response variable (the MRSA test result).
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• The x-axis indicates the SHAP value of the corresponding
feature. The SHAP value of a feature indicates the change
in log odds that can be used to extract the probability of
success. The color bar on the right-hand side indicates the

gradient of log odds from low to high, with the color
spectrum from blue to red.

• Each point in the SHAP plot for a feature represents an
observation of the original data set.

Figure 2. (A) Performance of models on the test data set: performance of different machine learning models on the entire University of Virginia data
set. The penalized logistic regression (LR) model with degree-2 features performs best (the receiver operating characteristics-area under the curve
[ROC-AUC] for the LR model without feature transformation to degree-2 is 0.734). (B) The most significant features in this model were identified
using Shapley Additive Explanations (SHAP). GBC: gradient boosted classifier; RF: random forest; SVC: support vector classifier.

Heterogeneous Risk-Prediction Models for Selected
Subpopulations
To improve performance, we developed heterogeneous
subpopulation-specific models as described in the subsequent
sections.

Based on Testing History

Let Kp,t∈{+1,-1} denote an MRSA test result for a patient p at
time t in a hospital encounter. The testing history Hp,t is defined

as Hj
p,t={Kp,ti:1≤i≤j, tj<tj-1<...<t1<t}. No testing history exists

for a newly admitted patient, expressed as Hp,t=ø. The testing
history, considering only the last test result, is expressed as

H1
p,t={Kp,t1}. Similarly, the testing history, considering the last

2 test results, is expressed as H2
p,t={Kp,t2}. The number of

patients with longer histories drops significantly; therefore, we
limited our experiments to the last 2 test results. Table 1 presents
the distribution of data points for the different subpopulations.

Table 1. Total number of observations and percentages of positive observations for the subpopulations based on different testing histories.

Positive observationsCurrent test result (+1)Current test result (−1)Total observationsPrevious test history

11.74324124,37127,612None

10.22115910,17911,338–1

74.6825468633409+1

9.1543543204755(–1, –1)

68.82437198635(–1, +1)

31.67152328480(+1, –1)

80.0011902961486(+1, +1)

Based on the Admission Source

Recall the Boolean feature named “From health care facility”,
which is 1 if the admission source of a patient is a health care

facility. We constructed 2 subpopulations based on whether this
feature is 0 or 1; the distributions of these subpopulations and
the percentage of positive observations in each are presented in
Table 2.

JMIR AI 2024 | vol. 3 | e48067 | p.167https://ai.jmir.org/2024/1/e48067
(page number not for citation purposes)

Kamruzzaman et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Total number of observations and percentages of positive observations for the subpopulations based on different categories.

Positive observations (%)Test result (+1)Test result (−1)Total observationsSubpopulations

Admission source

27.7662216192241Health care facility

15.50664236,19842,840Other

Department

11.52318024,43627,616ICUa

34.6788016582538EDb

21.60328311,91815,201Other

Hospital stays (days)

20.53668032,54139,221≤15

16.2823014131643>15

Antibiotic use (days)

18.56571125,06530,776≤90

21.92364912,99716,646>90

10.27729636870970

Age group (years)

15.25217612,09314,2690-50

16.75463023,00827,638≥50

aICU: intensive care unit.
bED: emergency department.

Based on Department

Recall that both ICU and ED are 2 department-based features,
which indicate whether the patient is in the ICU and ED,
respectively. The distributions of the subpopulations and the
percentage of positive observations are presented in Table 2.

Based on Hospital Stay

The feature “Length of stay” captures the number of days a
patient has been in the hospital till time t-d, where t is the MRSA
test date and d ≥ 0 is the parameter for the d-days ahead model.
On the basis of this feature, we constructed 2 subpopulations.
The first is the group of patients who have stayed in the hospital
for at most 15 days, and the second is the group of patients who
have stayed there for >15 days. The distribution of these
subpopulations and the percentage of positive observations are
presented in Table 2.

Based on Antibiotic Use

Three subpopulations were created based on the number of days
for which a patient takes an antibiotic: (1) patients who never
took any antibiotics, (2) patients who took antibiotics within
the last 90 days from the MRSA testing date, and (3) patients
who took antibiotics for more than 90 days from the MRSA
testing date. The distribution of these subpopulations and the
percentage of positive observations are presented in Table 2.

Based on Age Group

A total of 2 age group–specific patient subgroups, namely 0 to
50 and ≥50 years, are considered for the analysis. The

distribution of these subpopulations and the percentage of
positive observations are presented in Table 2.

Hierarchical Subpopulation-Based Models

Figure 3 shows the schematic architecture of the hierarchical
model. The construction steps of the hierarchical model are as
follows:

• S1: we defined a set of feature-based rules R at each level
to create mutually exclusive subpopulations:
• At level 1, the rules on the feature named ‘Age-group’

are (1) R(α)=patient subgroup of 0 to 50 years old and
(2) R(α’)=patient subgroup of more than 50 years old.
Each rule creates a patient subpopulation. The patients
in these two subpopulations are mutually exclusive,
which can be expressed as: P(α)∩P(α’)=∅

• At level 2, each age-group-specific subpopulation is
subdivided based on another feature named
“Department”. The rules on the ‘Department’ feature
are (1) R(β)=patient subgroup of ICU and (2)
R(γ)=patient subgroup of ED. Patients admitted to other
departments are not considered in this model.

• The two-level hierarchical structure creates a set of
composite rules (combining rules of each level) at the
leaf level that we call two-level rules. The rules are as
follows: (a) R(α∩β), (b) R(α∩γ), (c) R(α’∩β), and (d)
R(α’∩γ).

• S2: the training population is split based on the 2-level rules.
Each training subpopulation is trained on several machine
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learning models, and the best-performing model is used for
prediction.

• S3: each test observation is passed to the corresponding
model using the 2-level rule. The observation with

prediction is stored in a buffer. After completing all the
testing observations, the buffer is treated as the model’s
output.

Figure 3. A schematic view of the hierarchical model architecture. In the figure, Xi represents the i-th observation, y is the model prediction, α is the
patient subpopulation who are 0 to 50 years old, α' is the patient subpopulation who are more than 50 years old, β is the patient subpopulation who
admitted to intensive care unit (ICU) department, γ is the subpopulation who admitted to the emergency department (ED), and R is a feature-based rule
to aggregate data. For instance, R(α∩β) is a 0 to 50 age group patient subpopulation admitted to ICU. At level 1, the overall population is subdivided
into two subpopulations based on the feature named “Age-group.” The patient subpopulation of age group (0 to 50 years) is mutually exclusive to the
patient subpopulation of age group (>50 years). Each age group–specific subpopulation is further subdivided into the next level (level 2) based on
another feature named “Department.” The patient subpopulation of the ICU department is mutually exclusive to the ED subpopulation. The training
data are split based on the 2-level rules, and each patient subpopulation is trained using the best-fitted model. During the testing phase, each data point
passes to the appropriate model using the same 2-level rules, and the best-fitted model predicts the outcome. The outcomes of all the models are merged
back into the resultant prediction of this hierarchical model.

Data Set for d-Days Ahead Prediction
We prepared a data set to observe the change of prediction
performance to the change of d, which is discussed in the
Methods section. For each d∈{1,2,…,7}, we created a data set,
where the feature vector for a patient is generated based on the
history of that patient till date t-d, where t is the MRSA testing
date for that patient.

Ethical Considerations
The data used in the paper was obtained through institutional
review board approval and is fully anonymized. Therefore, there
are no ethical considerations.

Results

Prediction Model for the Entire Population
We applied multiple machine learning models, including
penalized LR, gradient-boosted classifier, Random Forest,
support vector classifier, and XGBoost classifier (Multimedia
Appendix 2), to the UVA Hospital MRSA patient data sets. We
used an 80% to 20% split to construct the train and test data
sets. Figure 2A shows the performance of the models. A model’s
best set of hyperparameters was computed from the training
data set using grid search and 10-fold cross-validation. Penalized
LR was the best-performing model with the corresponding
performance metrics: (1) the FNR score is 0.074, and (2) the

ROC-AUC score is 0.826. Table 3 presents other performance
metrics for this data set.

Given the same hyperparameter settings for the penalized LR
model, the model performance (ROC-AUC) dropped to 0.734
when we did not consider the product features; therefore, this
feature transformation provides a significant benefit. Using the
SHAP technique discussed in the Methods section, we extracted
the following key features from Figure 2B:

1. “AdmissionType_Urgent,” “ICU admitted,” “Provider 7,”
and “Provider 14” are the top 4 features. Recall that
“AdmissionType_Urgent” is a Boolean variable where the
value 1 indicates the patient admitted as “Urgent.” Patients
admitted as urgent have a higher likelihood of MRSA
infection prediction. Similarly, “ICU admitted” is a Boolean
feature where the value 1 indicates that the corresponding
patient is admitted to the ICU department and is more likely
to predict MRSA infection. On the other hand, “Provider
7” and “Provider 14” indicate the total number of providers
a patient contacted in the last 7 and 14 days from the testing
date. The higher value of these features is associated with
high and negative values for the target feature (MRSA test).
A high value comes from the rightmost color bar, and a
negative value comes from the x-axis.

2. A high value of “MRSA 7” (which indicates the total
number of patients with an MRSA-positive result a patient
contacted in the last 7 days from the testing date) is
associated with a high and positive value of the target
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feature (the MRSA test); this holds similarly for the “MRSA
14” feature.

3. In addition to single features, composite features also
correlate more with MRSA infection prediction. For
instance, “AdmissionType Emergency” and “MRSA 7”
together (similar to “AdmissionType Emergency” and
“MRSA 14”) are associated with high and positive values
of the target feature (the MRSA test).

4. “PHARMCLASS_4” appears to be an important feature
compared to the other PHARMCLASS features. In most
cases, this variable is associated with high and positive
values for the target feature.

The computational complexity of SHAP increases with the size
of the test data set. The best-fitted model is passed to the SHAP
explainer method, and it took 5 hours to generate the summary
plot (Figure 2B) when the test data set contains 8174
observations and 4656 features. For the same best-fitted model,
the SHAP explainer required 1 hour to generate the summary
plot when the test data set contained the same number of
observations, but the number of features was reduced to 97.
Finally, the time was the same when the number of observations
in the test data set was reduced to 817, and the number of
features was 4656.

Table 3. Performance metrics of the best-performing model for each patient subpopulation based on room allocation, admission source, hospital stay,
and antibiotic medication period.

MCCf

score

F1-scoreFNReFPRd or
fallout

PrecisionSpecificitySensitivityAUPRCcROC-AUCbModelaSubpopulation

0.4000.5100.0740.2030.4060.7970.6840.5040.826LRgOverall

0.4550.5110.0360.1740.3810.8260.7750.4280.876LRICUh

0.7490.8370.0670.1140.8000.8860.8780.8820.936 jLREDi

0.3200.4630.1100.2070.3890.7930.5740.4510.752LROther rooms

0.4050.5530.1570.1390.5710.8610.5360.5850.804LRFrom HCFk

0.4140.5190.0700.1990.4130.8010.6990.4920.831LRNot from HCF

0.4210.5270.0680.2110.4150.7890.7220.5180.837LRHospital stay
≤15 days

0.3310.4490.0860.1970.3600.8030.5960.4940.729LRHospital stay
>15 days

0.4160.5300.0790.1930.4340.8070.6810.5250.826LRAntibiotic ≤90
days

0.4530.5800.0920.1910.4960.8090.6970.5660.841LRAntibiotic >90
days

0.2750.3150.0340.2790.2010.7210.7340.3280.834LRNo antibiotic
use

0.3250.4570.0940.2230.3640.7770.6130.4820.782LRAge group (0-
50 years)

0.4080.5200.0790.1830.4280.8170.6600.5140.833LRAge group (≥50
years)

0.5070.5690.0370.1680.4400.8320.8070.4900.883HMHierarchical

modell

aThis column specifies the best-performing model.
bROC-AUC: receiver operating characteristics-area under the curve.
cAUPRC: area under the precision-recall curve.
dFPR: false positive rate.
eFNR: false negative rate.
fMCC: Matthews correlation coefficient.
gLR: penalized logistic regression.
hICU: intensive care unit.
iED: emergency department.
jThe best value for each performance metric is italicized.
kHCF: health care facility.
lFor “Hierarchical model” (last row), the highlighted metric (in italics) indicates comparatively better performance than most of the other subpopulations.
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Effect of the Imbalanced Data Set
We evaluated the performance achieved using the different
sampling techniques discussed earlier. First, as in the study by
Hartvigsen et al [8], we used a random selection-based
down-sampling technique to select majority-class observations
and balance the number of observations between the majority
and minority classes. The balanced data are split into train and
test data. The ROC-AUC score of the best-performing model
on the test data is 0.731. We used the synthetic minority
oversampling technique (SMOTE) [21] on our data set to
balance both majority and minority classes. The ROC-AUC
score of the best-performing model on the test data is 0.896.
Similar to the study by Hirano et al [9], we used SMOTE to
balance the majority and minority classes in the imbalanced
train and test data. The ROC-AUC score of the best-performing
model on the test data is 0.903. However, when we evaluated
the performance of the abovementioned models on a random
test data set, the ROC-AUC score was significantly lower at
0.701. Thus, for our problem, the biased sampling techniques
did not improve performance.

Subpopulation-Specific Results
Our models and feature engineering cannot improve the
ROC-AUC of 0.826. We now discuss the results of
subpopulation-specific models.

Testing History–Based Analysis
The best-fitted model on testing history–based subpopulations
(Table 4) showed the best performance on three subpopulations:
(1) patients with a (−1) testing history: the best-fitted model
had an ROC-AUC of 0.802; (2) patients with a (−1, −1) testing
history: the best-fitted model had ROC-AUC of 0.848 and FNR
of 0.035; (3) patients with a (+1, +1) testing history: the best
model, in terms of the area under the precision-recall curve
(AUPRC; Qi et al [22] suggested this metric for imbalanced
data) performance metric, had an AUPRC of 0.910 (Figure 4B).
The results for the other testing history–based data sets are
shown in Multimedia Appendix 3.

Figure 4C shows the significant features (using the SHAP
technique) for the (−1, −1) testing history–based subpopulations.
The topmost feature (“MRSA 14”) is a network-based feature.
Moreover, the network-based features are among the top 10
features. Among these features, “MRSA 7” and “MRSA 14”
are positively associated with MRSA infection. In addition to
the network features, the interval between the 2 MRSA tests is
also important. In addition, patient comorbidity conditions have
a significant correlation with MRSA infection.

Table 4. Performance metrics for the best-performing model for each patient subpopulation based on testing history.

MCCf

score

F1-scoreFNReFPRd or
fall out

PrecisionSpecificitySensitivityAUPRCcROC-

AUCb
ModelaTesting history

0.3110.3940.0540.2510.2760.7490.6890.4060.814LRgNone

0.2740.3300.0780.0470.4000.953 i0.2810.3310.802GBh(−1)

0.2640.7350.6150.3490.8470.6510.6490.8840.718LR(+1)

0.4040.4490.0350.1450.3320.8550.6970.4020.848LR(−1,−1)

0.2090.4410.6390.1030.8670.8970.2950.7810.613SVj(−1, +1)

0.1830.4590.6670.9690.3110.0310.8750.6140.558SV(+1, −1)

0.3080.7210.6670.2130.9160.7870.5950.9100.761LR(+1, +1)

aThe “Model” column specifies the best-performing model (LR=penalized logistic regression classifier, GB=gradient boosting, and SV=support vector).
bROC-AUC: receiver operating characteristics-area under the curve.
cAUPRC: area under the precision-recall curve.
dFPR: false positive rate.
eFNR: false negative rate.
fMCC: Matthews correlation coefficient.
gLR: logistic regression.
hGB: gradient boosting.
iThe best value for each performance metric is italicized.
jSV: support vector.
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Figure 4. Results for best-performing subpopulations based on testing history: (A) Performance (receiver operating characteristics-area under the curve
[ROC-AUC]) of different machine learning models for testing history (−1, −1), that is, the last 2 testing results are negative—penalized logistic regression
(LR) has the best performance. (B) Performance (area under the precision-recall curve [AUPRC]) of different machine learning models for testing
history (+1, +1), that is, the last 2 testing results are positive—penalized LR has the best performance. (C) Top features for (−1, −1) testing history–based
subpopulation using the LR model. GBC: gradient boosted classifier; RF: random forest; SVC: support vector classifier.

Analysis for ICU and ED Subpopulations
We developed models for other subpopulations, and the
performance of the best-fitted models for these subpopulations
is reported in Table 3. We found that the best performance is
for the ED subpopulation in terms of both ROC-AUC and
AUPRC. The ROC-AUC value for the best-fitted model is 0.936
(Figure 5A), and the AUPRC value for the best-fitted model is
0.882 (Figure 5B). Regarding the FNR, the model best performs
for the subpopulation without antibiotics. The FNR score
obtained using the best-performing model for this data set is
0.034. The subpopulation with the second-best performance is
the ICU subpopulation (Figure 6), and the corresponding FNR
score is 0.036. The results for the other subpopulations are
presented in Multimedia Appendix 4.

Figure 6B shows the significant features (using the SHAP
technique) of the best model for the ICU subpopulation. The

top 5 network-based features and the frequency of network
features in the top 20 again demonstrate the significance of the
network structure. Some of the nonnetwork features that appear
to be important are the patient’s age, use of antibiotics in the
last 90 days, use of a device in the last 90 days, test duration
days, PHARMCLASS 4, and emergency and urgent-type patient
admission.

Figure 5C shows the significant features (using the SHAP
technique) for the best-performing model for the ED
subpopulation. The top 7 features have network features. The
top influential feature for the ICU subpopulation is “MRSA
14,” whereas the top significant feature for the ED subpopulation
is “MRSA 7.” Unlike in the ICU, the patient’s gender, length
of stay, and comorbidity conditions are also crucial in addition
to network features.
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Figure 5. Results for the emergency department (ED) subpopulation that shows the best performance: (A) performance (receiver operating
characteristics-area under the curve [ROC-AUC]) of different machine learning models—penalized logistic regression (LR) has the best performance.
(B) Performance (area under the precision-recall curve [AUPRC]) of different machine learning models—penalized LR has the best performance. (C)
Top features of the LR model. GBC: gradient boosted classifier; RF: random forest; SHAP: Shapley Additive Explanations; SVC: support vector
classifier.

Figure 6. (A) Performance of different machine learning models for the intensive care unit subpopulation; the penalized logistic regression (LR) model
performs best. (B) Top features of the LR model. GBC: gradient boosted classifier; RF: random forest; SHAP: Shapley Additive Explanations; SVC:
support vector classifier.
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Hierarchical Models
The performance of this model is presented in Table 3. This
model’s ROC-AUC and FNR scores are 0.883 and 0.037,
respectively. This model performs better than most
subpopulation-based models except for the ED
subpopulation-based models.

Importance of Network Features
The best-fitted model performance on the entire data set shows
the best performance (Table 3) regarding ROC-AUC and FNR
when we use network features. The corresponding ROC-AUC
score is 0.826, and the FNR score is 0.074. Without the network
features, the ROC-AUC score for the best-fitted model is 0.714,
and the FNR score is 0.107 (Table 5).

The ROC-AUC score improved by approximately 16%, and
the FNR score improved by approximately 31% because of the
network features. The influence of network features is also

significant in the models for the ICU and ED patient
subpopulations. The performance metric ROC-AUC improved
by approximately 27% for the ICU department patient
subpopulation, and the FNR score improved by approximately
58%. For ED patient subpopulations, the performance metric
ROC-AUC improved by approximately 30%, the FNR score
improved by approximately 69%, and the AUPRC score
improved by approximately 50%.

Network features also improve the performance of the best-fitted
model for testing history–based subpopulations (Tables 3 and
6).

The ROC-AUC performance metrics for the best-fitted model
(−1) testing the history-based subpopulation improved by
approximately 11%. For (−1, −1) testing the history-based
subpopulation, the best-fitted model performance improved by
approximately 25% on the ROC-AUC score and approximately
35% on the FNR score.

Table 5. Performance metrics of the best-performing model for each patient subpopulation based on room allocation, admission source, hospital stay,
and antibiotic medication period after excluding the network features.

MCCe

score

F1-scoreFNRdFall outPrecisionSpecificitySensitivityAUPRCcAUCbModelaSubpopulation

0.2570.4150.1070.2910.3140.7090.6100.3830.714LRfOverall

0.2330.3540.0850.2400.2620.7600.5470.3110.690LRICUg

0.2870.5410.2200.2950.4960.7050.5930.5890.722LREDh

0.2430.4140.1130.3280.3080.6720.6310.3460.692LROther rooms

0.1510.3610.2200.2010.3750.7990.3480.3400.594LRFrom HCFi

0.2610.4050.0950.2960.2980.7040.6310.3670.721LRNot from HCF

0.2610.4130.1030.2880.3110.7120.6150.3810.718LRHospital stay ≤15
days

0.1330.3120.1120.4340.2090.5660.6150.2620.595LRHospital stay >15
days

0.2880.4390.1010.2790.3360.7210.6340.4020.732LRAntibiotic ≤90
days

0.2610.4570.1380.3170.3610.6830.6210.4340.707LRAntibiotic >90
days

0.1450.2650.080 j0.3040.1780.6960.5200.2360.661LRNo antibiotic use

0.2510.4020.1000.2970.2980.7030.6170.4040.715LRAge group (0-50
years)

0.2650.4010.0900.2860.2950.7140.6280.3570.721LRAge group (≥50
years)

aThe “Model” column specifies the best-performing model (LR=penalized logistic regression classifier).
bAUC: area under the curve.
cAUPRC: area under the precision-recall curve.
dFNR: false negative rate.
eMCC: Matthews correlation coefficient.
fLR: logistic regression.
gICU: intensive care unit.
hED: emergency department.
iHCF: health care facility.
jitalics.
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Table 6. Performance metrics for the best-performing model for each patient subpopulation based on testing history after excluding the network features.

MCCe

score

F1-scoreFNRdFall outPrecisionSpecificitySensitivityAUPRCcAUCbModelaTesting history

0.1530.2810.0840.3400.1870.6600.5650.2210.660LRfNone

0.0990.0580.0980.0040.4670.9960.0310.2330.723GBg(−1)

0.2240.7080.6200.3720.8210.6280.6230.8510.685LR(+1)

0.1640.2460.0540.3850.1510.6150.6630.1960.677LR(−1, −1)

0.2230.6960.5790.3850.7860.6150.6250.7970.637SVh(−1, +1)

0.0310.3640.3230.3440.3530.6560.3750.3560.507SV(+1, −1)

0.2670.7190.6670.2810.8870.7190.6050.8810.691LR(+1, +1)

aThe “Model” column specifies the best-performing model (LR=penalized logistic regression, GB=gradient boosting, and SV=support vector).
bAUC: area under the curve.
cAUPRC: area under the precision-recall curve.
dFNR: false negative rate.
eMCC: Matthews correlation coefficient.
fLR: logistic regression.
gGB: gradient boosting.
hSV: support vector.

d-Days Ahead Model Prediction
We now examine how well the test results can be predicted per
the d-days ahead model. We expected the performance to drop
as d increases, as shown in Figure 7, which shows the

ROC-AUC score of the best-fitted model (for the data set
corresponding to d-days before the test, as described in the
Methods section) versus d. Note that the performance decays
significantly with d.

Figure 7. d-days ahead prediction: performance (receiver operating characteristics-area under the curve [ROC-AUC]) of best model versus d. The
performance drops gradually with d.

Discussion

Principal Findings
Our results demonstrate that clinically relevant models can be
developed for predicting MRSA test results with high accuracy
using a combination of clinical and nonclinical features from
EHR data. In particular, features of contact networks (eg,
“MRSA 7,” “MRSA 14,” “Provider 7,” and “Provider 14”)
constructed from EHR data are quite significant in our models.

Tables 5 and 6 show the performance of the models on the same
group of data sets without considering the network features.
The empirical results establish that the network features have
a significant impact (model performance ROC-AUC improves
by > 15%) on MRSA infection prediction.

We took the simplest approach to network construction, which
views edges as unweighted, and did not consider heterogeneity
in contacts, for example, based on types of providers. It is
interesting that even the simplest approach improves
performance. While more characteristics of networks and edge
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weights could be considered and these might improve the
performance, the value of our simple approach is that it is easier
to construct and is likely more generalizable and robust because
there might be uncertainties in some of these additional
characteristics.

In addition to network features, we observed that features
associated with antibiotic use (“Antibiotic days”, “Antibiotic
days in last 90 days”, “Antibiotic days in last 90+ days”,
“PHARMCLASS_1” to “PHARMCLASS_10”, etc.), different
kinds of events in the past 90 days (eg, kidney dialysis, device
use, and any surgery), and comorbidity conditions such as
diabetes without complications (diab or diabunc),
hypothyroidism (hypothy), uncomplicated hypertension
(hypunc), the Charlson score, the Elixhauser score, the weighted
version of the Elixhauser score using the van Walraven
algorithm (wscore vw), the weighted version of the Elixhauser
score using the Agency for Healthcare Research and Quality
(AHRQ) algorithm (wscore ahrq), and the weighted version of
the Charlson score (wscore) are also predictive; many of these
have been identified as important in prior work.

The penalized LR model with degree-2 polynomial features
performs best in almost all settings, using a new class of
network-based features derived from EHR data. Our results also
showed the utility of heterogeneous models for different
subpopulations instead of just one model for the entire
population. In particular, we obtained good performance for
subpopulations in an ICU or ED and those with certain test
histories. We also observed that the performance degrades
gradually for a d-days ahead prediction.

The testing policy is fairly systematic for patients in the ICU.
Therefore, we expect the model for ICU subpopulations to be
quite robust and generalizable to data sets from other locations.
On the other hand, it is important to note that testing in the entire
patient population is generally not completely systematic and
might have biases because it is administered per physician
request. It is unclear what the impact of these biases would be
on the model’s generalizability. A mitigating factor is that the
model for the entire population is quite close to that for the ICU,
and many of the significant factors are the same. This suggests
that the model for the entire population might also be quite
robust. Future studies on other data sets are required to
determine the generalizability of these models.

Our prediction model for a patient on day t only used features
that were available for that patient before day t. This included
the network features. Therefore, if a patient was in the hospital
for <7 days, the “MRSA 7” and “Provider 7” feature values will
be 0, and if a patient was in the hospital for <14 days, the
“MRSA 14” and “Provider 14” feature values will be 0. It is
possible that the predictive model would be more informative
for patients who have a longer history in the hospital, but even
this is an important patient population from a clinical
perspective.

Finally, we noted that the simple penalized LR model seems to
work quite well when given more complex features, such as
second-degree features. It is not completely clear why this works
much better than the other methods, namely support vector
machine, random forest, gradient-boosted classifiers, and

XGBoost. One possible explanation can be because of the model
parsimony of the penalized LR. Further research on model
validation can be useful. One advantage of our analysis is that
the penalized LR method is easy to interpret.

Our models are the most useful for clinical decisions about
empiric antibiotic use. For instance, if the test prediction is
negative, a clinician could be more comfortable starting an
antibiotic treatment. If the test prediction is positive in the
context of a newly identified infection, a clinician might
consider the benefits of starting an anti-MRSA antibiotic.
Isolation precautions are known to have many adverse effects
(eg, fewer clinician visits to the room, patient depression, and
noninfectious adverse events such as blood clots), although they
help in reducing transmission. If the d-days ahead result is
negative in a current patient with a positive MRSA result, an
epidemiologist may adjust for an earlier test for clearance of
isolation precautions.

Comparison With Prior Work
Machine learning using EHR data for clinical informatics is a
very active area of research [23,24]. Diverse kinds of statistical
and machine learning methods, including deep-learning
algorithms, have been used to predict important clinical events
(eg, hypertension, diabetes, chronic obstructive pulmonary
disease, arrhythmia, asthma, gastritis, dementia, delirium,
Clostridium difficile infection, and HAIs) using EHR data
[8,9,12,13,25-29]. In the context of HAIs, risk-prediction models
have been developed for several MDROs. We have briefly
discussed examples of such studies to illustrate the types of
questions and methods that have been considered, with a focus
on MRSA.

Hartvigsen et al [8] and Hirano et al [9] studied a similar
problem, namely, predicting MRSA test outcomes, using the
Medical Information Mart for Intensive Care III and IV data
sets, respectively. These data sets are critical care data sets
comprising 12 years (2001 to 2012 and 2008 to 2019,
respectively) of patient records from the Beth Israel Deaconess
Medical Center Intensive Care Unit in Boston, Massachusetts
[11]. Hartvigsen et al [8] show high performance for the
prediction of MRSA test outcomes 1 day ahead using
subsampled data. Hirano et al [9] achieve high performance (an
ROC-AUC value of 0.89) for a slightly different patient
subpopulation using the SMOTE [21] technique for handling
data imbalance. Rhodes et al [12] consider a slightly different
question regarding MRSA infection 72 hours after admission.
They show that the Classification Tree Analysis has good
performance for the population of patients from the
Northwestern Memorial Hospital and Lake Forest Hospital. A
review by Tang et al [13] notes that penalized LR, decision tree,
and random forest are the preferred methods for antimicrobial
resistance prediction.

A significant challenge hern all MRSA risk-prediction problems
(including our study) is that the data are quite imbalanced
because the fraction of positive observations is quite small.
Consequently, the performance of most machine learning
methods can be affected. A common strategy to address this
issue has been to construct data sets using different kinds of
sampling techniques, including biased sampling [8,10] and
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SMOTE [30]. While this kind of approach can appear to have
very good performance on a similarly constructed test data set,
the true performance on an unbiased data set might be reduced
(as discussed in the study by Pencina et al [31] and in our
Results section), which impacts its performance when used in
practice. According to the study by Soltanzadeh and
Hashemzadeh [30], resolving the class distribution problem
using synthetic or biased data constructed in this manner causes
many issues such as (1) generalization problems because of
noisy samples; (2) uninformative samples; and (3) newly created
points being close to the minority class points, which often
create points around the decision boundary. Azizi et al [32] and
Kokosi and Harron [33] note that (1) the use of synthetic data
in the decision-making process and (2) the problem of attribute
disclosure are other limitations of using synthetic data.

Our study differs from prior work in 3 ways. First, we used
network features in addition to other EHR-based features in our
risk-prediction models. It has been shown that network
properties are predictive of infection risk, for example, Klein
et al [34] showed that patient degree is associated with
vancomycin-resistant enterococci risk. Similarly, Riaz et al [35]
show that local colonization pressure, which is based on the
network structure, is associated with C. difficile infection (CDI)
risk. Similarly, Miller et al [36] show that household exposure
(which can also be viewed as a network effect) increases CDI
risk. However, our work is the first to explicitly consider
EHR-based features for MRSA test prediction as a machine
learning task that can be used in a clinical setting. Second, we
identified heterogeneous models for specific patient subgroups
and showed that these have significantly better performance.
Finally, we developed our prediction models without any biased
sampling techniques.

Limitations
We have not been able to improve the ROC-AUC performance
of our models above 0.90. Data imbalance and patient diversity
could be significant reasons for this performance. As noted

earlier, MRSA infections are fairly rare, and for the problem of
MRSA test results, only about 15% of the results are positive.
We also note that there are many other notions of MRSA risk,
such as the risk of severe outcomes and MRSA acquisition,
which we study here. These notions are harder to formalize and
learn because the data sets would become even more biased
than what we consider here, and new methods are needed for
them.

While our results show that network features are the most
predictive, there might be uncertainties in inferring them from
the EHR data. We note that these (eg, the #providers within a
time interval) are not directly available in the patient’s EHR
data; we are inferring them through colocation information. It
is possible that many interactions are not recorded accurately
or the times might not be accurate. More work is needed to fully
understand the impact of these uncertainties.

Another issue is the testing bias. As discussed earlier, the entire
patient population data set has biases because testing is not very
systematic in general. This might have an impact on the model’s
performance when applied to data sets from other hospitals, and
the model would have to be retrained. However, the model
structure and specific features might still be relevant, especially
because they hold for the ICU patient subpopulation, for which
testing is more systematic.

Conclusions
Preprocessing by clustering has been useful in many
applications. One challenge in using this approach is that a
distance metric needs to be defined, which is difficult due to
the diversity of features. For instance, some features are datetime
related, some are Boolean and categorical, while others are real
valued. A possible extension is to transform the features into a
latent space, where distances can be computed. Additional
feature engineering and more advanced machine learning
methods might be useful for further improving performance. In
particular, text analysis might be helpful in further improving
the performance.
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Abstract

Background: Pancreatic cancer is the third leading cause of cancer deaths in the United States. Pancreatic ductal adenocarcinoma
(PDAC) is the most common form of pancreatic cancer, accounting for up to 90% of all cases. Patient-reported symptoms are
often the triggers of cancer diagnosis and therefore, understanding the PDAC-associated symptoms and the timing of symptom
onset could facilitate early detection of PDAC.

Objective: This paper aims to develop a natural language processing (NLP) algorithm to capture symptoms associated with
PDAC from clinical notes within a large integrated health care system.

Methods: We used unstructured data within 2 years prior to PDAC diagnosis between 2010 and 2019 and among matched
patients without PDAC to identify 17 PDAC-related symptoms. Related terms and phrases were first compiled from publicly
available resources and then recursively reviewed and enriched with input from clinicians and chart review. A computerized NLP
algorithm was iteratively developed and fine-trained via multiple rounds of chart review followed by adjudication. Finally, the
developed algorithm was applied to the validation data set to assess performance and to the study implementation notes.

Results: A total of 408,147 and 709,789 notes were retrieved from 2611 patients with PDAC and 10,085 matched patients
without PDAC, respectively. In descending order, the symptom distribution of the study implementation notes ranged from 4.98%
for abdominal or epigastric pain to 0.05% for upper extremity deep vein thrombosis in the PDAC group, and from 1.75% for
back pain to 0.01% for pale stool in the non-PDAC group. Validation of the NLP algorithm against adjudicated chart review
results of 1000 notes showed that precision ranged from 98.9% (jaundice) to 84% (upper extremity deep vein thrombosis), recall
ranged from 98.1% (weight loss) to 82.8% (epigastric bloating), and F1-scores ranged from 0.97 (jaundice) to 0.86 (depression).

Conclusions: The developed and validated NLP algorithm could be used for the early detection of PDAC.

(JMIR AI 2024;3:e51240)   doi:10.2196/51240
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Introduction

Pancreatic cancer is the third leading cause of cancer deaths in
the United States, with 50,550 estimated deaths in 2023 [1].

Pancreatic ductal adenocarcinoma (PDAC), which accounts for
90% of pancreatic cancer cases, is the most common form of
pancreatic cancer. The age- and sex-adjusted incidence has
continued to increase, reaching 13.3 per 100,000 in 2015-2019,
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and the overall 5-year survival remains poor at only 12.5% [2].
Despite technological advances, diagnosis of pancreatic cancer
remains very late, with more than 50% of patients having distant
metastases at the time of diagnosis [2-4].

Patient-reported symptoms are often the trigger for evaluation
that eventually leads to a diagnosis of pancreatic cancer [5,6].
The reported prevalence of symptoms associated with PDAC
has largely varied due to many factors, such as study design
and data sources [6-10]. Additionally, previously published
studies have been based on patient surveys [6,7] or structured
electronic health records (EHRs) [8-10]. However, structured
data can be inaccurate [11,12] and incomplete [13], especially
for signs and symptoms. On the other hand, signs and symptoms
are frequently collected and documented in the clinical notes
by care providers via free text within the EHRs. Therefore,
extracting signs and symptoms from clinical notes offers a key
opportunity for the early detection of pancreatic cancer, which
can lead to more timely interventions that improve survival.

Identification of PDAC-related symptoms from clinical notes
based on EHRs is a challenge because signs or symptoms are
typically not well-documented in a structured format within an
EHR system, and specific techniques are required for data
processing and analysis. Natural language processing (NLP), a
field of computer-based methods aimed at standardizing and
analyzing free text, processes unstructured data through
information extraction from natural language and semantic
representation learning for information retrieval, classifications,
and predictions [14]. Numerous innovative NLP applications
have been developed across various clinical domains in support
of medical research, public health surveillance, clinical decision
making, and outcome predictions [15-19]. Early NLP
applications have largely focused on rule-based approaches
[15,16], while recent NLP applications utilize state-of-the-art
machine learning [17] or deep learning approaches via
transformer learning models [18-20]. Rule-based NLP
techniques have been widely used to extract signs and symptoms
from free-text narratives in past years [21-26]. To the best of
our knowledge, we are not aware of previous studies
systematically analyzing pancreatic cancer–related symptoms
from clinical notes via NLP. The purpose of this study is to
develop and validate a comprehensive NLP algorithm and
process to effectively identify PDAC-related symptoms prior
to diagnosis within a large integrated health system.

Methods

Study Setting
Kaiser Permanente Southern California (KPSC) is an integrated
health care system providing comprehensive medical services
to over 4.8 million members across 15 large medical centers
and more than 250 medical offices throughout the Southern
California region. The demographic characteristics of KPSC
members are diverse and largely representative of the residents
in Southern California [27]. Members obtain their health
insurance through group plans, individual plans, and Medicare
and Medicaid programs and represent >260 ethnicities and >150
spoken languages. KPSC’s extensive EHR data contains
individual-level structured data (ie, diagnosis codes, procedure
codes, medications, immunization records, laboratory results,
and pregnancy episodes and outcomes) and unstructured data
(ie, free-text clinical notes, radiology reports, pathology reports,
imaging, and videos). KPSC’s EHR covers all medical visits
across all health care settings (eg, outpatient, inpatient, and
emergency department). Clinical care of KPSC members
provided by external contracted providers is captured in the
EHR through reimbursement claim requests.

Ethical Considerations
The study protocol was reviewed and approved by the KPSC
Institutional Review Board (approval no. 12849) with a waiver
of the requirement for informed consent.

Study Population Identification
This study was a nested case-control study of KPSC patients
aged 18-84 years between 2010 and 2019. Patients diagnosed
with PDAC were identified through KPSC’s cancer registry.
Patients with a history of acute or chronic pancreatitis, without
a clinic-based visit within 3 to 24 months prior to the diagnosis,
with chemotherapy or infusion treatment, or with less than 20
months of health plan enrollment or pregnancy within 2 years
prior to the diagnosis date were excluded. Among the patients
with PDAC, the date of diagnosis was defined as the index date.
For each PDAC case, up to 4 controls were selected from a
group of patients without PDAC on the index date of the
matched cases. Controls could develop PDAC 1 year after the
index date. The above study criteria identified a total of 2611
eligible patients with PDAC and 10,085 corresponding matched
patients without PDAC during the study period. The study
participant identification and NLP process is shown in Figure
1.
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Figure 1. Schematic diagram of the NLP algorithm to identify the pancreatic ductal adenocarcinoma–related symptoms. EHR: electronic health record;
NLP: natural language processing.

PDAC Symptom Selection
We initially identified 24 PDAC-related symptoms based on
literature reviews and clinicians’ input. A survey was conducted
among the Consortium for the Study of Pancreatitis, Diabetes,
and Pancreatic Cancer working group members [28] to
determine the relative importance of the 24 potential symptoms.
Based on the ranking of importance, a total of 17 symptoms
were finally selected. In this study, we considered abdominal
pain and epigastric pain as a combined symptom (abdominal
or epigastric pain) and anorexia and early satiety as a combined
symptom of (anorexia or early satiety) due to the difficulty of
distinguishing them in clinical notes or patient-provider
communications. The deep vein thrombosis (DVT) symptom
was included in our study because DVT risk is high in patients
with pancreatic cancer [29], and the symptom was further
delineated into upper and lower DVT.

PDAC Symptom Keyword Selection
First, we compiled a list of phrases or terms relevant to the 17
symptoms based on previous literature [21-23] or symptom
ontologies in the Unified Medical Language System [30]. The
list was then reviewed and enriched by the experienced study
gastroenterologist and enhanced by manual data annotation
processing (refer to “Data Annotation” subsection for details).
In addition, we used a word embedding model, Word2vec
[31,32], to capture possible relevant phrases and terms, including
misspelled terms, for each symptom. The compiled
comprehensive phrases and terms for these 17 symptoms are
summarized in Table S1 in Multimedia Appendix 1. The PDAC
symptoms can be determined by a single phrase or term except
for the DVT symptom. The DVT symptom was determined by
3 sets of terms, which included location (eg, leg or arm), feeling
or appearance (eg, pain or swollen), and laterality (eg, left or
right), rather than a single phrase or term.

Extraction and Preprocessing of Study Notes
Clinical notes and patient communication messages (telephone
or email) within 2 years prior to the index date of PDAC cases
and their matched controls (referred to as “notes” hereafter)
were extracted from the KPSC EHR system. Notes associated
with certain medical encounters (eg, surgery), note types (eg,

patient instructions or anesthesia), and department specialties
(eg, health education) were excluded from the analysis because
symptoms of interest were unlikely to be present in these notes
(Table S2 in Multimedia Appendix 1). The extracted notes were
then preprocessed through the following steps: (1) lowercase
conversion, sentence splitting, and word tokenization [33]; (2)
removal of nondigital or nonletter characters except for spaces,
periods, commas, question marks, colons, and semicolons; (3)
standardization of abbreviated words; and (4) correction of
misspelled words based on the Word2vec model supplemented
by an internal spelling correction file developed in previous
studies [23,25].

Training, Validation, and Implementation Data Sets
Our study involved 2 phases of training and validation. The first
phase used the notes of 100 randomly selected PDAC cases.
The second phase used a subset of notes from both PDAC cases
and controls. Details of the sample selection for training and
validation are summarized in Table S3 in Multimedia Appendix
1. Notes that were not used for training or validation formed
the study implementation data set.

Data Annotation
Notes from both the training and validation data sets were
manually reviewed by trained research annotators to indicate
the presence of the 17 symptoms based on the established terms
and phrases (Table S1 in Multimedia Appendix 1) and inclusion
and exclusion criteria (Table S4 in Multimedia Appendix 1).
The note annotation process was based on a computer-assisted
approach. First, notes from the training and validation data sets
were exported into a spreadsheet and the prespecified terms
(Table S1 in Multimedia Appendix 1) were highlighted. Second,
for each note, the annotators reviewed the notes to label the
presence of each of the 17 symptoms. Third, any ambiguous
notes were fully discussed during weekly study team meetings
until a consensus was reached. Cases that were difficult to
determine were reported to the study gastroenterologist for
adjudication.

A subset of the training data set in the first phase (n=2795 notes)
was double-reviewed (ie, 2 annotators independently reviewed
the same set of notes). The results from the 2 annotators were
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compared and inconsistencies between them were discussed
until a consensus was reached. If the annotators did not reach
a consensus, the note was reviewed and adjudicated by the study
gastroenterologist.

Finally, the adjudicated results were documented as the gold
standard for training and validation of the NLP algorithm.

NLP Algorithm Development
Algorithm development involved 2 phases of training. For each
phase, we used the annotated training data set to develop or
refine a rule-based computerized algorithm via an iterative
process to determine the presence of the 17 symptoms in each
note. First, the notes were analyzed based on the phrase or terms
and patterns that indicated the presence or absence of each
symptom (Table S1 in Multimedia Appendix 1). The algorithm
was then processed to search for patterns of inclusion or
exclusion to determine the status of each symptom (Table S4
in Multimedia Appendix 1). A list of negated terms (eg, “ruled
out” or “negative for”), uncertain or probable terms (eg,
“presumably”), definite terms (eg, “positive for”), history terms
(eg, “several years ago”), non-patient person terms (eg, referring
to a family member), and general description terms (eg, “please
return to ED if you have any of the following symptoms”) were
compiled from the training data sets. The compiled terms were
enriched via the repeated test-revise strategy against the chart
review results within each training subset until the algorithm
performance reached an acceptable threshold (ie, positive
predictive value [PPV]=90%). The discordant cases between
the algorithm and manually annotated results for each subset
were further reviewed and adjudicated among the annotators
and study team until a consensus was reached.

Specifically, each symptom for each note was first determined
at the sentence level based on the following criteria:

1. A sentence defaulted as “no” if any exclusion criterion in
Table S4 in Multimedia Appendix 1 was met.

2. The symptom was considered absent if the sentence met
any of the following situations:
• The sentence did not contain any defined terms listed

in Table S1 in Multimedia Appendix 1.
• The negated description was associated with defined

terms listed in Table S1 in Multimedia Appendix 1.
Examples included “patient denied vomiting/nausea,”
“ruled out jaundice,” and “no pruritus.”

• The description of the symptom did not refer to an
actual situation. For example, “return if you experience
epigastric bloating” and “glipizide side effects including
loss of appetite, nausea, vomiting, weight gain.”

• A probable or uncertain description was associated
with the symptom. For example, “patient with anxiety
and likely depression” and “patient informed that there
may be pruritis or pain.”

• The symptoms were associated with a historical term
or date relative to the clinical note date. For example,
“patient had abdominal pain two years ago” and
“patient had jaundice in 2007.”

• The symptom description was related to family history,
such as “family history: mother anxiety” and “patient
family history: daughter with depression.”

• Someone other than the patient had a symptom. For
example, “my husband is in a deep depression” and
“daughter-in-law has been stressed, poor appetite and
less sleep.”

• The symptom was described as treated by medication
during hospitalization.

• The sentence only consisted of a symptom term, so a
decision could not be reached on whether this instance
was positive for the symptom.

3. A symptom was classified as “yes” for any of the following
situations:
• The sentence contained a symptom of interest and the

symptom was marked as “yes,” “x,” or “+”. A symptom
was classified as “yes” if the response to a symptom
question was affirmative or if the symptom was marked
on the symptom list.

• The symptom was listed under the diagnosis section
(except for DVT), chief complaint section, symptom
section, and history of present illness section of the
clinical note. For example, “chief complaint: abdominal
pain,” “primary encounter diagnosis anxiety disorder,”
and “jaundice 782.4.”

• The symptom was described as treated or indicated by
medication within nonhospitalization encounters.

• The symptom was documented or reported to be present
at the time of visit or messaging. For example, “pt
complaint of 55 lb weight loss since March 2009” and
“patient here for several weeks of abdominal pain.”

• The sentence contained a definite term associated with
a symptom of interest. Examples included “positive
for fatigue and weight loss,” “patient reports anorexia,”
and “patient presents with anxiety, depression,
insomnia.”

4. The sentence-level results were then combined to form
note-level results.
• Classification at the note level was defined as “yes” if

at least 1 sentence in the note was marked “yes”.
Otherwise, it was classified as “no”.

The diagnosis of DVT itself was not considered a DVT
symptom. Additionally, the bodily location (ie, source) of pain
was considered when determining the presence of any symptom
(such as DVT, back pain, or abdominal or epigastric pain). For
example, pain radiating from the upper or lower extremity was
considered a DVT symptom, whereas pain radiating to the
upper or lower extremity was not. Similarly, pain that radiated
to the back region was not counted as back pain, and pain that
radiated to the abdomen or epigastric region was not counted
as abdominal or epigastric pain.

Performance Evaluation
The results of the NLP algorithm against the validation data set
were compared to the adjudicated chart review results notes.
For each symptom, the numbers of true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) cases
were used to estimate the sensitivity or recall, specificity, PPV
or precision, negative predictive value (NPV), and overall
F1-score, a harmonic balance measurement of PPV and
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sensitivity. Sensitivity was defined as the number of TPs divided
by the total number of symptoms ascertained by the chart
reviews (TP+FN). PPV was defined as the number of TPs
divided by the total number of symptoms identified by the
computerized algorithm (TP+FP). Specificity was defined as
the number of TNs divided by the total number of notes without
symptoms ascertained by the chart reviews (TN+FP). NPV was
defined as the number of TNs divided by the total number of
notes identified by the computerized algorithm without
symptoms (TN+FN). The F1-score was calculated as (2 × PPV
× sensitivity) / (PPV + sensitivity).

Interrater Reliability Analysis Among 2 Annotators
The agreement and kappa coefficient against the
double-annotated subset were calculated to assess the interrater
reliability among the annotators.

Discrepancy Analysis
For each symptom, discordant results between the NLP
algorithm and adjudicated chart review against the validation
data set were analyzed. Both FP and FN scenarios were
summarized in detail.

Implementation of the NLP Algorithm
The validated computerized algorithm was implemented via
Python programming on a Linux server to process the qualified

study notes with the exception of training and validation notes.
For each symptom, the process created the results of each note
at the sentence level and note level for summary analysis.

Results

Statistics of the Study Notes
A total of 408,147 and 709,789 notes were retrieved for 2611
PDAC cases and 10,085 matched controls, respectively. The
distribution of the notes and patient demographics are
summarized in Table 1. Compared to patients without PDAC,
patients with PDAC were older and more likely to be men
(PDAC cases: mean 69.2, SD 9.1 years of age and n=1328,
50.9% men; controls: mean 48.6, SD 17.2 years of age and
n=4681, 46.4% men). A total of 3,827,166 sentences and
69,455,767 word tokens were derived from notes belonging to
patients with PDAC. The corresponding numbers were
5,880,717 sentences and 102,358,031 word token for patients
without PDAC. Both the average number of notes per patient
and average words per note were higher for patients with PDAC
(notes per patient: mean 156.3, SD 138.3; words per note: mean
170.2, SD 319.2) compared to patients without PDAC (notes
per patient: mean 70.4, SD 94.1; words per note: mean 144.2,
SD 263.6).

Table 1. Description of the study population and the associated data sets.

Non-PDAC (n=10,085)PDACa (n=2611)

48.6 (17.2)69.2 (9.1)Age (years), mean (SD)

5404 (53.6)1283 (49.1)Gender: women, n (%)

4681 (46.4)1328 (50.9)Gender: men, n (%)

709,789408,147Total clinical notes, n

5,880,7173,827,166Total sentences, n

102,358,03169,455,767Total word tokens, n

70.4 (94.1)156.3 (138.3)Notes per patient, mean (SD)

8.3 (13.9)9.4 (15.7)Sentences per clinical note, mean (SD)

144.2 (263.6)170.2 (319.2)Words per clinical note, mean (SD)

aPDAC: pancreatic ductal adenocarcinoma.

Interrater Reliability of 2 Annotators
The agreement and kappa coefficient between 2 annotators for
a subset of notes (n=2795) is summarized in Table S5 in
Multimedia Appendix 1. The agreement ranged from 98.82%
(abdominal or epigastric pain) to 99.96% (upper extremity
DVT), while the kappa coefficient ranged from 0.6 (insomnia)
to 0.91 (abdominal or epigastric pain).

Validation of the NLP Algorithm
Table 2 summarizes the performance of the computerized NLP
algorithm against the adjudicated chart review results of 1000

notes based on the validation data set. In descending order, the
precision (PPV) of the algorithms ranged from 98.9% (jaundice)
to 84% (lower extremity DVT), recall (sensitivity) ranged from
98.1% (weight loss) to 82.8% (epigastric bloating), specificity
ranged from 99.9% (epigastric bloating, jaundice, and pruritus)
to 98.9% (depression), NPV ranged from 99.9% (lower
extremity DVT) to 98.1% (abdominal or epigastric pain and
back pain), and the F1-score ranged from 0.97 (jaundice) to 0.87
(depression).
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Table 2. The computerized model’s performance against the adjudicated chart review results in the validation data set (n=1000).

F1-scoreNPVf (%)Specificity
(%)

PPVe

(%)

Sensitivity
(%)

FNd (n)FPc (n)TNb (n)TPa (n)Symptoms

Gastrointestinal symptoms

0.9498.199.597.590.7164824156Abdominal or epigastric pain

0.9298.899.897.587.611290978Anorexia or early satiety

0.9099.299.794.486.48393851Dark urine

0.9098.899.998.282.811193553Epigastric bloating

0.9599.299.69793.37382097Nausea or vomitingg

0.8899.499.588.9876594940Pale stool

Systemic symptoms

0.8998.199.394.184.817688295Back pain

0.9598.999.898.191.3102883105Fatigue

0.9799.699.998.995.74190590Jaundice

0.9499.599.896.391.25294152Malaise

0.9599.899.996.493.12197027Pruritus

0.9499.899.890.298.1211886101Weight loss

Mental symptoms

0.9499.299.796.391.97391179Anxiety

0.8798.398.989.384.7151089283Depression

0.9199.499.389.991.26792562Insomnia

Vascular conditions

0.9199.999.786.4951397719Lower extremity DVTh symptom

0.8699.799.68487.53497221Upper extremity DVT symptom

aTP: true positive.
bTN: true negative.
cFP: false positive.
dFN: false negative.
ePPV: positive predicted value.
fNPV: Negative predicted value.
gHospital encounter notes were excluded with the exception of emergency notes.
hDVT: deep vein thrombosis.

Discrepancy Analysis
The discrepancy analysis is summarized in Table S6 in
Multimedia Appendix 1. The most common scenarios that
resulted in FPs were failure of exclusion of the symptoms
described in the patient medical problem list, failure of exclusion
of symptoms from instructions, failure of negation, or failure
of exclusion of a symptom from past medical history. The most
common scenarios for FNs were false negation, missing specific
terms or patterns of terms in the search list, false classification
of past history symptoms, or false exclusion of symptoms
described in relevant medication instructions.

Implementation of the NLP Algorithm
Table 3 summarizes the symptoms identified by the validated
NLP algorithms based on the implementation data set. Of the
393,003 and 708,489 notes belonging to PDAC and non-PDAC
patients, respectively, at least 1 symptom was identified in
52,803 (13.44%) and 56,552 (7.98%) notes, respectively. The
presence of symptoms ranged (in descending order) from 4.98%
(abdominal or epigastric pain) to 0.05% (upper extremity DVT)
in patients with PDAC and from 1.75% (back pain) to 0.01%
(pale stool) in the patients without PDAC.
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Table 3. Presence of symptoms identified by the computerized algorithms based on the implementation data set at the clinical note level.

Clinical notes from patients without PDAC, n (%)

(n=708,489)
Clinical notes from patients with PDACa, n (%)

(n=393,003)

Symptom

56,552 (7.98)52,803 (13.44)Any of 17 symptoms

Gastrointestinal symptoms

11,274 (1.59)19,582 (4.98)Abdominal or epigastric pain

1626 (0.23)4393 (1.12)Anorexia or early satiety

121 (0.02)1511 (0.38)Dark urine

1665 (0.24)3217 (0.82)Epigastric bloating

7429 (1.05)7754 (1.97)Nausea or vomiting

35 (0.01)875 (0.22)Pale stool

Systemic symptoms

12,416 (1.75)8407 (2.14)Back pain

9621 (1.36)7170 (1.82)Fatigue

305 (0.04)9118 (2.32)Jaundice

4162 (0.59)2984 (0.76)Malaise

622 (0.09)1872 (0.48)Pruritus

2619 (0.37)8001 (2.04)Weight loss

Mental symptoms

10,843 (1.53)3924 (1)Anxiety

10,810 (1.53)4995 (1.27)Depression

4159 (0.59)2228 (0.57)Insomnia

Vascular conditions

1465 (0.21)807 (0.21)Lower extremity DVTb symptom

719 (0.1)215 (0.05)Upper extremity DVT symptom

aPDAC: pancreatic ductal adenocarcinoma.
bDVT: deep vein thrombosis.

Discussion

In this study, we developed computerized NLP algorithms to
identify 17 symptoms that were documented prior to PDAC
diagnosis from clinical notes and patient-provider
communication emails. To our knowledge, this is the first study
to systematically identify a set of symptoms related to PDAC
using NLP. When assessed against the manually annotated
results, the algorithm achieved a reasonable performance, with
recall (sensitivity) ranging from 82.6% to 98.1% and precision
(PPV) ranging from 84% to 98.9%.

Accurate extraction of symptoms embedded in free-text notes
posed a significant challenge. First, the symptoms might be
described in various portions of the notes. For example,
symptoms might be embedded under past medical history,
review of systems, the patient’s medical problem list,
instructions, sign and symptom warnings, questionnaires,
checklists, lab orders and tests, medications, procedures,
diagnosis, or chief complaints. Second, health care providers
might copy and paste information from previous notes. In
addition, we would like to highlight some specific challenges.

First, a negated term could sometimes apply to only 1 symptom
or to multiple symptoms after negation (eg, no coughing, no
chest pain, no abdomen pain; denies nausea or vomiting,
diarrhea, constipation, abdominal pain). Second, the defined
rules might not address all scenarios. For example, one of our
defined rules for abdominal pain required the word “pain” and
the body location to be within a 5-word distance. If the words
for body location (eg, abdomen) and “pain” were separated by
more than 5 words, the sentence was marked “no” for abdominal
pain. Third, we found that some symptom terms could have
different meanings, which caused FPs. For example, the phrase
“lower bp” for back pain could also mean lower blood pressure,
and the fatigue term “exhausted” could refer to either physical
or mental exhaustion. Fourth, some exclusion criteria, as shown
in Table S3 in Multimedia Appendix 1 (eg, exclude localized
itching for pruritus), also caused potential misclassification.

The data annotation process was tedious and time-consuming.
The following lessons learned could benefit the medical research
community. First, set up a training period for chart annotators
and study investigators with medical backgrounds to review at
least several hundred notes (the same notes for all the
annotators). This step would not only allow the chart annotators
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to be trained for the process but also would identify potential
issues that might arise during the formal review process. Second,
develop a chart annotation document that would include the
detailed inclusion and exclusion criteria to be used for the
annotation. The document should define specific types of notes
(eg, mental health progress notes) or sections of the notes (eg,
“past medical history” or “history of present illness”) to be
reviewed or to be skipped. The document should also outline
rules to determine the presence or absence of the conditions of
interest. For example, if a patient experienced abdominal pain
at home but did not experience pain at the time of the visit. Such
rules are study-specific, but they need to be considered
thoroughly and documented.

Advanced transformer language models, including bidirectional
encoder representations from transformers (BERT) [20], clinical
BERT [34], BioBERT [35], and BERT for EHRs (BEHRT)
[36], have gained popularity in research involving NLP. These
NLP language models offer the advantage of contextual
understanding through embedding representations, allowing the
developed algorithms to capture the meaning and intricate
relationships within the text and enhance the accuracy of the
analysis. They have been widely used for analyzing information
from unstructured notes in the health care domain [18,19,37].
Research in this area in future work is warranted to further boost
the performance of PDAC-related symptoms, especially for
these lower performances via the rule-based approach.

Our study acknowledged several potential limitations. First, the
completeness and accuracy of the extracted symptoms depended

on the information documented in the EHR system. Incomplete
or inaccurate documentation of symptoms could lead to bias.
Second, although our training process was quite comprehensive
and included a relatively large number of notes, the rules and
lexicons built based on the training data sets were still not highly
comprehensive, as summarized in the discrepancy analysis.
Therefore, a more extensive sample could be used to enhance
the rules and lexicons if applied in other populations in the
future, especially for rare symptoms. Third, a few terms or
phrases could indicate meanings other than the symptom of
interest (eg, “patient has exhausted all conservative measures”
or “patient complaint of lower bp than usual”). Additional
contexts with these terms would be required to determine the
actual meaning. Fourth, for symptoms involving body location,
such as abdominal pain and back pain, the allowed distance
between the location and the symptom could sometimes lead
to the misclassification of TP cases. Lastly, when applied to
other health care systems and settings, the developed
computerized algorithms might require modifications due to
variations in the format and presentation of clinical notes in
different health care settings.

In conclusion, the developed computerized algorithm and
process could effectively identify relevant symptoms prior to
PDAC diagnosis based on unstructured notes in a real-world
care setting. This algorithm and process could be used to support
the early detection of pancreatic cancer if implemented within
a health care system to automatically identify patients with
PDAC-related symptoms, especially those with PDAC-specific
symptoms.
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Abstract

Background: Despite its high lethality, sepsis can be difficult to detect on initial presentation to the emergency department
(ED). Machine learning–based tools may provide avenues for earlier detection and lifesaving intervention.

Objective: The study aimed to predict sepsis at the time of ED triage using natural language processing of nursing triage notes
and available clinical data.

Methods: We constructed a retrospective cohort of all 1,234,434 consecutive ED encounters in 2015-2021 from 4 separate
clinically heterogeneous academically affiliated EDs. After exclusion criteria were applied, the final cohort included 1,059,386
adult ED encounters. The primary outcome criteria for sepsis were presumed severe infection and acute organ dysfunction. After
vectorization and dimensional reduction of triage notes and clinical data available at triage, a decision tree–based ensemble
(time-of-triage) model was trained to predict sepsis using the training subset (n=950,921). A separate (comprehensive) model
was trained using these data and laboratory data, as it became available at 1-hour intervals, after triage. Model performances were
evaluated using the test (n=108,465) subset.

Results: Sepsis occurred in 35,318 encounters (incidence 3.45%). For sepsis prediction at the time of patient triage, using the
primary definition, the area under the receiver operating characteristic curve (AUC) and macro F1-score for sepsis were 0.94 and
0.61, respectively. Sensitivity, specificity, and false positive rate were 0.87, 0.85, and 0.15, respectively. The time-of-triage model
accurately predicted sepsis in 76% (1635/2150) of sepsis cases where sepsis screening was not initiated at triage and 97.5%
(1630/1671) of cases where sepsis screening was initiated at triage. Positive and negative predictive values were 0.18 and 0.99,
respectively. For sepsis prediction using laboratory data available each hour after ED arrival, the AUC peaked to 0.97 at 12 hours.
Similar results were obtained when stratifying by hospital and when Centers for Disease Control and Prevention hospital toolkit
for adult sepsis surveillance criteria were used to define sepsis. Among septic cases, sepsis was predicted in 36.1% (1375/3814),
49.9% (1902/3814), and 68.3% (2604/3814) of encounters, respectively, at 3, 2, and 1 hours prior to the first intravenous antibiotic
order or where antibiotics where not ordered within the first 12 hours.

Conclusions: Sepsis can accurately be predicted at ED presentation using nursing triage notes and clinical information available
at the time of triage. This indicates that machine learning can facilitate timely and reliable alerting for intervention. Free-text data
can improve the performance of predictive modeling at the time of triage and throughout the ED course.

(JMIR AI 2024;3:e49784)   doi:10.2196/49784
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Introduction

Background
Sepsis is a life-threatening condition caused by severe infection
and dysregulated host response leading to acute organ
dysfunction [1]. Affecting 32 million people and contributing
to over 5 million deaths per year globally [2], sepsis is a leading
cause of death in hospitalizations in the United States and
worldwide [3,4]. Early antibiotics have been shown to improve
survival [5], while each hour of delayed antibiotic administration
has been associated with progressively increased mortality (7.6%
increase per hour in septic shock) [6]. Patients who survive
sepsis often have long-lasting health and social sequelae [7],
and sepsis is ranked among the top 3 most costly conditions to
treat in the hospital setting [8]. Accordingly, substantial efforts
have been made to identify sepsis early in the hospital course
[9]. To date, however, widely used clinical decision support
tools that use rule-based methods for detecting sepsis have been
limited by low sensitivity and specificity [10,11]. Such tools
have been unable to earn clinician trust due to limited accuracy,
false positives, and delayed alerts [12]. False positive alerts
increase the cognitive load of providers and could expose
patients to unnecessary antimicrobials. Moreover, current widely
used electronic health record–based sepsis prediction tools have
limited performance and often require several hours to elapse
to achieve reasonable predictive use [12]. For example, a recent
inpatient and intensive care unit (ICU)–based investigation of
a commonly used sepsis alerting system showed that although
existing systems can generate reasonably accurate sepsis alerts,
the median time to notification was 7 hours and, even at that
point, accuracy was limited [13]. Taken together, existing
clinical decision support systems aimed at detecting sepsis do
not provide sufficient accuracy or timeliness of sepsis prediction,
resulting in lower adoption due to a lack of clinician trust.

Machine Learning in Sepsis Prediction
Artificial intelligence (AI)–based tools may hold promise to
increase the accuracy and timeliness of sepsis prediction, which
may allow for earlier delivery of critical interventions such as
lifesaving antibiotics. Many of the most promising sepsis
predictive algorithms have been limited to use in ICU settings
[14], where patients have rich laboratory and imaging data sets
and frequent physiologic monitoring. In contrast, accurate
prediction of sepsis at initial emergency department (ED)
presentation has remained elusive. Until recently, there was a
paucity of technology that could make use of the full set of
available data, particularly free-text triage notes, at the time of
initial ED presentation. A recent study showed that sepsis
prediction at the time of triage can be significantly improved
using natural language processing (NLP) of free-text data [15].

ED Triage Assessment
When a patient presents to the ED, an initial triage assessment
is usually performed by a triage nurse. The triage assessment
includes a brief interview of the patient or those accompanying
the patient to obtain a reason for presenting to the hospital ED.
The content of this interview typically includes a very brief
recounting of the patient’s past medical history, relevant
medications, family history, and social risk factors. The triage

nurse will typically also obtain vital signs (blood pressure, heart
rate, temperature, respiratory rate, and oxygen saturation) and
pain score. Finally, the triage nurse will assign a patient a triage
acuity score. This process usually takes less than 10 minutes.
The summation of this encounter is documented in real time,
directly after the triage assessment, into the electronic medical
record and includes a listing of the vital signs, triage acuity
score, and a free-text nursing triage note.

The triage note is recorded into the electronic medical record,
typically comprising 1-3 sentences regarding why the patient
has presented to the ED and the nurse’s summative impression
of this initial assessment. This note is used as a starting point
for downstream assessments by providers in the ED. The
information contained in the triage note is useful, as it often
contains rich data that are difficult to quantify in tabular form.
This information is widely used and valued by the clinical staff.
However, in its unstructured format, it is not typically used in
clinical decision support algorithms and is often unused for
several hours until the full provider assessment. We
hypothesized that nursing triage notes, combined with other
data available at initial ED presentation, could be used to
accurately predict sepsis at the time of triage.

Goals of This Investigation
It was previously demonstrated that NLP of nursing triage notes
at ED presentation could be used to predict hospital admission
and ED resource use [16-18]. In this study, we aimed to
demonstrate that an NLP-based model could be used to predict
sepsis in adult patients based on the (1) health system sepsis
committee and (2) Centers for Disease Control and Prevention
(CDC) hospital toolkit for adult sepsis surveillance criteria [1].

Methods

Ethical Considerations
The research study protocol and procedures were reviewed and
approved by the institutional review board (STUDY00000099).

Study Design and Setting
A retrospective cohort was constructed using electronic health
record data from all 1,234,434 consecutive ED encounters
(487,296 unique patients) in 2015-2020 from 4 separate
clinically heterogeneous academically affiliated EDs. Hospital
A is a community hospital in an urban setting having a patient
volume of approximately 65,000 ED visits per year. Hospital
B is a community hospital in a suburban setting having a volume
of approximately 26,000 visits per year. Hospital C is a
quaternary care academic medical setting in a major
metropolitan area having an ED patient volume of approximately
48,000 visits per year. Hospital D is a community hospital in a
suburban setting having a volume of approximately 36,000
visits per year.

Selection of Participants
Prior studies have suggested that overwhelming viral septicemia
during the COVID-19 pandemic led to markedly increased false
positive rates of sepsis screening tools [15]. These cases
accounted for a substantial portion of ED visits during the initial
months of 2020 [19] and led to a sharp decline in ED patient
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volume [20]. Accordingly, we excluded encounters (n=94,739)
from February 1, 2020, to August 1, 2020, and patients who
had a diagnostic code of COVID-19 or positive COVID-19
laboratory test. Patients of 18 years and younger of age were
excluded from the study (n=27,238), as defining sepsis in these
patients is controversial, and they are often lost to follow-up
after they are transferred for admission to pediatric hospitals.
Patients whose date of birth or age was not available were also
excluded (n=23,434) to ensure that the remaining cohort
comprised only adult patients. We subsequently excluded
encounters with missing triage notes (n=29,637). The final
cohort of interest included 1,059,386 unique clinical encounters.

Sepsis Definition
The primary outcome of sepsis was defined as presumed severe
infection and acute organ dysfunction, based on criteria
described by the health system sepsis committee. To evaluate
model performance against verified sepsis cases, the health
system sepsis committee provided physician-reviewed sepsis
labels for 7663 patients between June 1, 2019, and October 1,
2019. These cases were oversampled into the test data set. This
definition of sepsis was projected onto the remaining data using
clinical outcome variables. For sensitivity analyses of model
performance, a secondary definition of sepsis was used, based
on the US Centers for Medicare & Medicaid Services toolkit
criteria [1]. Encounters were counted as sepsis, if they met
criteria at any time during the ED course or hospital stay.

Natural Language Processing
NLP techniques have been developed to extract meaning from
unstructured free-text data. One such technique is document
vectorization. Documents can be transformed into numerical
vectors that represent the key information they contain, allowing
them to be used by numerical machine learning (ML)
techniques.

To generate document embeddings for the nursing triage notes,
a distilled BERT (Bidirectional Encoder Representation From
Transformers) model pretrained using an unsupervised masked
language modeling objective was used as a base. Unlike models
pretrained using a causal language modeling objective such as
Generative Pre-Trained Transformer, which only consider
preceding tokens, BERT considers tokens to the right and left
of the masked word [21].

The use of large models such as BERT is constrained by the
computational resources required for training and inference.
DistilBERT [22] is a lighter and faster language model that
offers fewer constraints on computational resources, having a
depth of only 6 layers, rather than 12, and with token-type
embeddings and pooler removed. DistilBERT is trained to
replicate the behavior of BERT using “teacher-student” learning,
where BERT is the “teacher” and DistilBERT is the “student.”
This allows for knowledge distillation in the pretraining phase
while retaining 97% of language understanding and being 60%
faster.

The base DistilBERT model was fine-tuned using the free
textual data from nursing triage notes with the objective of
predicting sepsis. We evaluated several pretrained document
vectorization models, selecting the optimal one by calculating

fine-tuning performance on the training set. Nursing triage notes
concatenated with Boolean clinical variables available at the
time of triage (ie, high or low vital signs) were then passed
through the fine-tuned DistilBERT model to produce document
vectors representing the key information they contain. For the
document vectors, we selected thresholds for the numeric values
based on clinical knowledge and appended text based on the
numeric values and those thresholds. Additionally, we developed
manual mappings for known clinical abbreviations and
converted them into the text. For example, “n/v/d” became
“nausea, vomiting, and diarrhea.” The document vectors were
then passed through a principal component analysis step to
dimensionally reduce them from a length of 768 to 20
components.

Model Training and Testing
For the time-of-triage model, the triage note vectors were
combined with other clinical data, such as age, sex, and
maximum and minimum vital signs. For the prediction of sepsis
after laboratory data availability, a separate comprehensive
model was constructed that included the aforementioned
variables and additional laboratory data.

While many sepsis indicators have clear unidirectional
associations with sepsis risk (ie, heart rate, hypotension, and
lactic acid), others can be bidirectional (ie, high or low
temperature or white blood cell [WBC] count). In addition,
triage note vectors may potentially have complex relationships
with sepsis. Accordingly, a decision tree–based technique was
chosen for model training over more traditional techniques,
such as logistic regression. The combined vectors from the
training data set were used to train a decision tree–based
ensemble learning model (XGBoost [Extreme Gradient
Boosting]) [23] to predict the likelihood of sepsis. The XGBoost
model was trained to predict sepsis using the training subset
(n=950,921). Model performance was evaluated using the test
(n=108,465) subset.

Optimal hyperparameters for the time-of-triage model were
determined via grid search. The time-of-triage model was trained
using a maximum tree depth of 6, minimum child weight of 15,
minimum split loss of 15, learning rate of 0.05, subsample ratio
of 0.6, L1 regularization of 0, and L2 regularization of 1. After
Bayesian hyperparameter optimization, the comprehensive
model was trained using a maximum tree depth of 6, minimum
child weight of 13, minimum split loss of 18, learning rate of
0.015, subsample ratio of 0.63, L1 regularization of 0.27, and
L2 regularization of 1.87. We accounted for class imbalance by
scaling the positive weight parameter to the inverse of the class
distribution. Epoch-level evaluation was used to measure model
performance during training and identify failing training runs.
Heat maps to indicate word and subword importance were
generated using the integrated gradients method on the
constructed model inputs [24]. Word importance here was
calculated on words and subwords returned by the tokenization
method.

For analysis of sensitivity, specificity, and false positive rate of
the time-of-triage model, a target threshold of model prediction
score was selected based on optimizing for a maximal false
positive rate of 0.15. For the comprehensive model, we derived
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a classification threshold empirically, based on probability
scores, and subsequently applied the threshold to target a
maximum false positive rate of 0.1 at 12 hours after ED arrival.
The thresholds were selected using model output scores from
the training set and were applied to the test data set to evaluate
clinical predictive performance metrics. The comprehensive
model included known laboratory indicators of sepsis and end
organ dysfunction, such as maximum and minimum WBC count,
maximum lactic acid, minimum platelets, and maximum
bilirubin and creatinine. Comprehensive model performance
was evaluated using the test data set at every hour after ED
arrival. Model performance was also evaluated at each hospital.

Sepsis Prediction Prior to the First Intravenous
Antibiotic Order
To estimate how an AI sepsis prediction tool might impact the
ordering of antibiotics, we computed the percentage of sepsis
encounters that triggered a positive prediction of sepsis prior
to antibiotics being ordered or not having antibiotics ordered
within the first 12 hours of the encounter. To perform this
analysis, we used encounters from the test data set. A
dual-model approach was used to emulate sepsis alerting at the
time of triage and then subsequently during the ED encounter.
Sepsis prediction time was defined as the earlier of either the
time-of-triage model or comprehensive model generating a
positive prediction of sepsis.

Evaluation of Model Performances Among Clinically
Undetected Sepsis Cases
To determine how the time-of-triage and comprehensive models
may prevent missed sepsis, encounters with sepsis in the test
data set were stratified by model prediction of sepsis- versus
chart-based indicators of clinical sepsis suspicion. Predictive
performance of the model was evaluated among patients who
were septic and were or were not screened for sepsis at triage
and defined as having either of the following order in less than
30 minutes after time of triage: (1) nursing-driven sepsis
screening order set or (2) blood culture.

Results

Characteristics of the Study Patients
The total data set after exclusions consisted of 1,059,386 unique
encounters from 487,296 patients. Sepsis occurred in 35,318
encounters (incidence 3.45%). Median time from arrival to first
WBC count collection was 44.9 (IQR 26.2-79.3), 42.8 (IQR
25.6-73.3), and 44.8 (IQR 26.2-79.0) minutes across nonsepsis,
sepsis, and all encounters, respectively. Demographic
characteristics of the patients are available in Table 1. Gender,
race, and temperature were missing in 5.6% (57,082/1,059,386),
13.2% (87,284/1,059,386), and 0.2% (2034/1,059,386) of
encounters, respectively. Respiratory rate, heart rate, oxygen
saturation, and blood pressure were missing in 0.1% of
encounters. Selected examples of triage notes of encounters
where patients were septic are included in Table S1 in
Multimedia Appendix 1.
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Table 1. Demographic and clinical characteristics of patients across encounters.

Hospital DHospital CHospital BHospital ATotal

228,874 (21.6)284,794 (26.9)158,757 (15)386,961 (36.5)1,059,386 (100)Sepsisa, n (%)

9032 (3.9)12,775 (4.5)3978 (2.5)9533 (2.5)35,318 (3.3)Primary

6185 (2.7)12,688 (4.5)3541 (2.2)9128 (2.4)31,542 (3)Secondary

Age (years), mean (SD)

10,188 (4.5)23,309 (8.2)11,466 (7.2)35,421 (9.2)80,384 (7.6)18-24

58,560 (25.6)91,106 (32.0)47,283 (29.8)147,085 (38.0)344,034 (32.5)25-44

64,020 (28.0)87,113 (30.6)53,226 (33.5)123,225 (31.8)327,584 (30.9)45-64

35,969 (15.7)41,425 (14.5)19,709 (12.4)44,840 (11.6)141,943 (13.4)65-74

60,137 (26.3)41,841 (14.7)27,073 (17.1)36,390 (9.4)165,441 (15.6)≥75

Sex, n (%)

120,259 (55.6)160,710 (59.6)90,599 (60.4)208,230 (56.8)579,798 (57.8)Female

96,127 (44.4)108,611 (40.3)59,447 (39.6)158,321 (43.1)422,506 (42.2)Male

Race, n (%)

64,993 (27.6)150,454 (51.3)35,366 (21.7)301,619 (75.6)552,432 (50.6)Black

129,654 (56.6)104,290 (35.6)92,713 (56.8)53,427 (13.3)380,084 (34.8)White

8429 (3.6)10,125 (3.5)15,827 (9.7)5205 (1.3)39,586 (36.3)Other

25,798 (11.3)19,925 (7.0)14,851 (9.4)26,710 (6.9)87,284 (8.2)Unreported

Vital signs

36.8 (0.5)36.7 (0.6)36.8 (0.5)36.8 (0.5)36.8 (0.5)Temperature (°C), mean (SD)

84.8 (19.7)85.9 (19.1)84.5 (18.7)86.2 (18.1)85.6 (18.8)Heart rate (beats per minute), mean (SD)

137.9 (24.9)139.7 (28.9)137.6 (24.4)138.6 (26.9)138.6 (26.7)Systolic BPb (mm Hg), mean (SD)

77.8 (16.1)80.5 (16.0)80.2 (14.8)80.8 (14.9)80.0 (15.5)Diastolic BP (mm Hg), mean (SD)

99.0 (97-100)98.0 (97-100)98.0 (97-100)98.0 (97-100)98.0 (97-100)SpO2
c (%), median (IQR)

17.8 (5.9)18.1 (6.7)18.0 (5.9)18.2 (6.4)18.0 (6.3)Respiratory rate (breaths per minute), mean (SD)

34.6 (23.1-73.0)47.4 (32.4-90.3)40.9 (20.8-62.8)51.2 (27.3-85.0)44.8 (26.5-80.3)Time to first WBCd count (minutes), median (IQR)

aSepsis primary and secondary definitions based on the health system sepsis committee and Centers for Disease Control and Prevention hospital toolkit
for adult sepsis surveillance criteria, respectively.
bBP: blood pressure.
cSpO2: oxygen saturation.
dWBC: white blood cell.

Time-of-Triage and Comprehensive Model
Performances
Using the test data set, the time-of-triage model using
information available at initial triage for sepsis prediction
(primary criteria) demonstrated an area under the receiver
operating characteristic curve (AUC) and macro F1-score of

0.94 and 0.61, respectively (Figure 1). Sensitivity, specificity,
and false positive rate were 0.87, 0.85, and 0.15, respectively.
Positive and negative predictive values were 0.18 and 0.99,
respectively. Sample model output is available in Figure 2,
depicted as heat maps applied to words and subwords of ED
nursing triage notes to indicate positive, neutral, or negative
contributions to sepsis prediction.
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Figure 1. Receiver operating characteristic curve of sepsis prediction at the time of initial emergency department triage using free-text triage nursing
notes and clinical data available at the time of triage. AUC: area under the receiver operating characteristic curve.

Figure 2. Heat maps applied to words and subwords of a sample of emergency department nursing triage notes to indicate relative contributions to
sepsis prediction.

Incorporating data available after initial ED workup, the
comprehensive model predicted sepsis based on primary criteria
with an initial AUC, sensitivity, and specificity of 0.94, 0.72,
and 0.94 at 1 hour after ED arrival, respectively; increasing to
an AUC, sensitivity, and specificity of 0.96, 0.87, and 0.91 after
5 hours, respectively; and increasing to AUC, sensitivity, and
specificity of 0.97, 0.91, and 0.90 at 12 hours after arrival,

respectively (Figure 3). Sensitivity, specificity, and false positive
rate at 12 hours were 0.92, 0.89, and 0.11, respectively. Positive
and negative predictive values at 12 hours were 0.25 and 0.99,
respectively. Similar sepsis prediction results were obtained
using the CDC hospital toolkit for adult sepsis surveillance
criteria (Table 2) and when stratifying by hospital (Table S2 in
Multimedia Appendix 1).
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Figure 3. Sepsis predictive performance of the comprehensive model using a test data set, expressed as AUC, at each hour after emergency department
arrival. AUC: area under the receiver operating characteristic curve.

Table 2. Machine learning prediction of sepsis using data available at the time of emergency department (ED) triage (“time-of-triage” model) and all
data available after ED workup (“comprehensive” model).

Comprehensive modelTime-of-triage model

Primary sepsis criteria

0.970.94AUCa

0.670.61Macro F1

0.910.87Sensitivity

0.900.85Specificity

0.100.15False positive rate

CDCb hospital toolkit for adult sepsis surveillance

0.960.92AUC

0.640.57Macro F1

0.910.86Sensitivity

0.890.83Specificity

0.110.17False positive rate

aAUC: area under the receiver operating characteristic curve.
bCDC: Centers for Disease Control and Prevention.

Model Performances Among Clinically Undetected
Sepsis Cases
Sepsis screening initiated at triage was defined as having
chart-based indicators of sepsis screening ordered within 30
minutes of triage (see Methods section). Within the test data
set, there were 3821 encounters having sepsis. Among these,
1671 (43.7%) encounters had sepsis screening initiated at triage.
The time-of-triage model accurately predicted sepsis in 76%
(1635/2150) of sepsis cases where sepsis screening was not

initiated at triage and 97.5% (1630/1671) of cases where sepsis
screening was initiated at triage.

Model Performances Among Critical Sepsis Cases
Among patients in the test data set who had sepsis and were
ultimately placed on vasopressors or were admitted to the ICU,
the time-of-triage model predicted sepsis in 97.9% (329/336)
and 91.6% (832/908) encounters, respectively. The
comprehensive model predicted sepsis in 100% (336/336) and
95.7% (869/908) encounters, respectively.
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Sepsis Prediction Prior to the First Intravenous
Antibiotic Order
We retrospectively evaluated the time of sepsis prediction in
relation to the first intravenous antibiotic order using a
dual-model approach (“time-of-triage” followed by
“comprehensive” models). Among septic cases, sepsis was
predicted in 36.1% (1375/3814), 49.9% (1902/3814), and 68.3%
(2604/3814) of encounters at 3 hours, 2 hours, and 1 hour,
respectively, prior to the first intravenous antibiotic order or
where antibiotics were not ordered within the first 12 hours.

Model Performance Using Only the First Encounter
per Patient
To ensure that model performance was not confounded by past
encounters, we performed a sensitivity analysis using only the
first encounter per patient in the test data set (n=88,309),
excluding subsequent encounters. The time-of-triage model
predicted sepsis with an AUC, sensitivity, specificity, and false
positive rate of 0.94, 0.85, 0.86, and 0.14, respectively. The
comprehensive model predicted sepsis at 12 hours with an AUC,
sensitivity, specificity, and false positive rate of 0.97, 0.92, 0.90,
and 0.10, respectively.

Analysis of Model Feature Importance
The importance of model features was analyzed by ranking the
XGBoost feature importance scores from highest to lowest
(Figure S1 in Multimedia Appendix 1). For both the
time-of-triage (Figure S2 in Multimedia Appendix 1) and
comprehensive (Figure S3 in Multimedia Appendix 1) models,
the top features included elements of vital signs (ie, heart rate,
temperature, blood pressure, and oxygen saturation) and triage
note vectors. For the comprehensive model, the most important
features additionally included laboratory metrics such as WBC
count, creatinine, and lactic acid.

Discussion

Principal Findings
In this study, data from over 1 million patient encounters across
4 large metropolitan EDs were used to train an NLP-based ML
model to detect sepsis at the time of patient presentation to the
ED. We demonstrated that free-text nursing triage notes,
combined with clinical variables at the time of triage, could be
used to accurately predict the occurrence of sepsis at initial ED
nursing triage. Moreover, we demonstrated that sepsis could be
detected in 76% (1635/2150) of sepsis cases where sepsis
screening was not initiated at triage. Finally, the results suggest
that AI-based sepsis prediction in the ED may be able to
significantly improve the time to antibiotics, which may offer
opportunity for lifesaving intervention for patients. Notably, in
addition to triage note vectors, the variables with the highest
predictive importance were combinations of clinically relevant
vital signs (time-of-triage model) and laboratory values, such
as WBC count, creatinine, and lactic acid level (comprehensive
model). These model characteristics, as well as the ability to
map triage note word and subword relative contributions,
indicate that the models may offer meaningfully explainable
predictions to end users.

To our knowledge, this study is the largest to date to use NLP
for sepsis prediction in the ED. We also demonstrated
substantially improved accuracy compared to ML-based
techniques in prior studies. The ability to incorporate triage
notes into an ML model is advantageous for several reasons.
First, natural language allows for a broad range of history and
examination findings to be compressed into a short free-text
note rather than innumerable variables in tabular form. Second,
it allows experienced nurses to communicate an overall clinician
impression that cannot always be captured by strictly
quantitative inputs. In this study, free text from nursing triage
notes was used to train a transformer model and was combined
as input with other clinical data available at the time of initial
triage, with the aim of predicting sepsis. Our findings
demonstrate that NLP-based ML models can generate accurate
predictions of sepsis at the time of triage and throughout an ED
stay. Accordingly, the incorporation of free-text data into models
that include data from clinical workups can produce a highly
accurate prediction of sepsis.

Importance of Accurate Sepsis Prediction Tools
Existing sepsis alerting systems experience a number of
performance difficulties. One of the most widely implemented
sepsis detection systems across health systems has been shown
to have limited performance due to low sensitivity and precision
(33% and 2.4%, respectively). Low predictive performance
hinders the clinical use of such systems, despite their aim being
to prompt the initiation of lifesaving care. Further impacting
their use are high rates of false positive alerts [12]. Increased
rates of false positive alerts lead to lower trust among clinicians,
alert fatigue and dismissal, and lower adoption [25]. Recently,
the incorporation of natural language such as free-text notes
into model inputs has been shown to be promising for accurately
detecting sepsis as early as during the ED triage process [15].

Prior Studies
To our knowledge, this study is the largest to predict sepsis at
the time of ED triage evaluation using NLP-based ML. Ivanov
et al [15] reported high predictive performance for sepsis at ED
triage with a smaller sample size in 2022. While both this study
and Ivanov et al [15] present high sensitivity and specificity
and remarkably increased performance compared to traditional
screening tools for sepsis, there are important differences
between the studies. Whereas Ivanov et al [15] included
pediatric encounters, they were excluded in this study, since
significantly ill patients of 18 years or younger of age are
typically transferred to pediatric hospitals for admission and
final diagnoses are unavailable. Accordingly, we excluded these
encounters to avoid underestimation of sepsis in the pediatric
population, which could have led to type I error with increased
reliance on patient age as a predictive feature. A transformer
model was also used for the NLP step, which can account for
context and surrounding words.

Finally, our approach provides a method to present clinicians
with understandable model decision explanations, including
heat maps to indicate word importance and contribution to sepsis
prediction. We present some examples of these heat maps here.
It is important to note that the transformer architecture used in
this study assigns meaning using full sentence context, capturing
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combined subword and interword relationships, from negation
to more complex interactions. As such, these heat maps can be
instructive but offer a heavily simplified view of how the
algorithm uses triage notes. Additionally, the triage note
vectorization is only a part of our complete sepsis algorithm,
which also considers additional clinical data throughout the ED
encounter.

Limitations
There were several limitations in this study. First,
physician-reviewed sepsis labels were only available for a subset
of the data and had to be projected onto unlabeled encounters
for training purposes using clinical signals. However, model
performance was similar when evaluated on the secondary sepsis
definition provided in the CDC hospital toolkit for adult sepsis
surveillance. Second, the quality of the nursing triage notes is
dependent on the clinical skill of the triage nurses, which could
vary between EDs. Third, since the COVID-19 pandemic
resulted in significant clinical and operational changes, it will
be important to include such encounters in future prospective
studies. Fourth, no pediatric patients were included, which would
bias the model results toward an adult population. Fifth, in this

study, it was not possible to detect whether patients were
immunocompromised. This is an important subgroup of patients
to assess in future studies of ML-based sepsis prediction. Sixth,
it was not possible in this study to stratify by causal organism
of sepsis, which could affect performance characteristics.
Finally, as this study was an investigation of NLP using triage
notes, we excluded encounters having missing triage notes.

Conclusions
Using free-text and clinical data available at the time of initial
ED triage from over 1 million patient encounters and across 4
hospital-based EDs, we demonstrated that NLP-based ML
models are able to achieve high accuracy in predicting sepsis.
The implication of these results is that AI-based clinical tools
may substantially augment clinician abilities when clinical
workup data are sparse, such as at the time of initial ED triage.
Since sepsis mortality increases drastically with every passing
hour and early clinical intervention is imperative to provide
lifesaving treatment, AI-based tools using natural language data,
such as free text available in nursing triage notes, may offer
critical information to initiate treatment and prevent morbidity
and mortality.
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Abstract

Background: The COVID-19 pandemic drove investment and research into medical imaging platforms to provide data to create
artificial intelligence (AI) algorithms for the management of patients with COVID-19. Building on the success of England’s
National COVID-19 Chest Imaging Database, the national digital policy body (NHSX) sought to create a generalized national
medical imaging platform for the development, validation, and deployment of algorithms.

Objective: This study aims to understand international use cases of medical imaging platforms for the development and
implementation of algorithms to inform the creation of England’s national imaging platform.

Methods: The National Health Service (NHS) AI Lab Policy and Strategy Team adopted a multiphased approach: (1) identification
and prioritization of national AI imaging platforms; (2) Political, Economic, Social, Technological, Legal, and Environmental
(PESTLE) factor analysis deep dive into national AI imaging platforms; (3) semistructured interviews with key stakeholders; (4)
workshop on emerging themes and insights with the internal NHSX team; and (5) formulation of policy recommendations.

Results: International use cases of national AI imaging platforms (n=7) were prioritized for PESTLE factor analysis. Stakeholders
(n=13) from the international use cases were interviewed. Themes (n=8) from the semistructured interviews, including interview
quotes, were analyzed with workshop participants (n=5). The outputs of the deep dives, interviews, and workshop were synthesized
thematically into 8 categories with 17 subcategories. On the basis of the insights from the international use cases, policy
recommendations (n=12) were developed to support the NHS AI Lab in the design and development of the English national
medical imaging platform.

Conclusions: The creation of AI algorithms supporting technology and infrastructure such as platforms often occurs in isolation
within countries, let alone between countries. This novel policy research project sought to bridge the gap by learning from the
challenges, successes, and experience of England’s international counterparts. Policy recommendations based on international
learnings focused on the demonstrable benefits of the platform to secure sustainable funding, validation of algorithms and
infrastructure to support in situ deployment, and creating wraparound tools for nontechnical participants such as clinicians to
engage with algorithm creation. As health care organizations increasingly adopt technological solutions, policy makers have a
responsibility to ensure that initiatives are informed by learnings from both national and international initiatives as well as
disseminating the outcomes of their work.

(JMIR AI 2024;3:e51168)   doi:10.2196/51168
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Introduction

Background
Medical imaging has been identified by many governments as
an especially promising application for artificial intelligence
(AI) in clinical practice with the potential to enhance disease
screening, improve care outcomes, and reduce costs [1-5].
Optimizing AI capabilities requires aggregating and streamlining
access to medical imaging data for machine learning (ML)
model training and validation and contextualized mechanisms
for deployment in clinical workflows.

During England's National Health Service (NHS) response to
the COVID-19 pandemic, the digital health agency (NHSX)
created the National COVID-19 Chest Imaging Database
(NCCID). The NCCID is a “centralized UK database containing
chest X-rays (CXR), Computer Tomography (CT) and Magnetic
Resonance Images (MRI) from hospital patients” with
COVID-19 [6,7]. It was established to develop, validate, and
deploy AI and ML models for supporting the management of
patients with severe COVID-19. The creation of the NCCID
highlighted the merits and challenges of a centralized approach
for collating national imaging data [7].

The NCCID led to a proposal for a generalized national imaging
platform for the development, validation, and deployment of
AI and ML models in medical imaging. This platform was
envisaged to have three technical functions:

1. A data pipeline to facilitate the collection of data nationally
2. A trusted research environment (TRE) to provide access to

national data to build and validate new AI and ML products
3. A deployment platform to act as an “app store” for the most

up-to-date AI and ML models for users in health care
facilities

To support the safe, ethical, and effective creation and
deployment of a national imaging platform, the NHS AI Lab
developed complementary policy and regulatory initiatives,
including a cross-regulatory service to guide developers through
the regulation of their AI products [8], understanding of public
attitudes toward sharing health data for AI development, and
an Algorithmic Impact Assessment tool to identify potential
societal impacts of AI products [9].

Beyond understanding the policy and infrastructural
requirements, it is important to assess the strengths and
weaknesses of such a national approach to produce AI and ML
models for imaging that can be deployed in clinical workflows.
To make such an assessment, the NHS AI Lab analyzed
international efforts to build similar medical imaging platforms
in both private and public organizations, some of which were
associated with national efforts to diagnose and manage patients
with COVID-19. The NHS AI Lab used the outputs of the
research to understand the approaches taken and lessons learned
and inform the design of England’s national imaging platform.

Objectives
We sought to identify and understand international use cases
of and proposals for medical imaging platforms to streamline
the innovation-to-deployment journey for health AI models in

imaging. We aimed to understand how imaging for AI efforts
were structured, identify the constituent parts of the initiatives
(eg, technical aspects, users and marketplace, and
commercialization), and understand the implications of
government policy and regulation. We used this analysis of
international use cases to formulate policy recommendations
for England’s nascent national AI imaging platform.

Methods

Overview
This research was conducted by NHSX, the former digital health
agency and technology policy arm of NHS England. NHSX
was merged into the NHS England transformation directorate
in 2022. The Strategy and Policy Team at the NHS AI Lab,
which was embedded inside NHSX, led and completed the
study. This project was conducted between September 2020
and March 2021.

Phase 1: Identification and Prioritization of National
AI Imaging Platforms
We conducted a preliminary scan to identify efforts to create
national AI imaging platforms in other countries that the NHS
AI Lab could analyze in depth.

As the United Kingdom was poised to lead the G7 in 2021, we
started with fellow G7 countries: Canada, France, Germany,
Italy, Japan, and the United States of America. We then scanned
non-G7 countries known within digital health policy circles for
their digital health approaches or that had previously responded
to an NHSX survey on the use of AI by Global Digital Health
Partnership (GDHP) member countries [10]: Australia, Brazil,
China, Estonia, Hong Kong, India, Republic of Korea, Rwanda,
Singapore, Sweden, Uganda, and Uruguay. Finally, we scanned
initiatives in multilateral collaborations (World Health
Organization, International Telecommunication Union, and the
GDHP) and major private organizations (eg, GE Healthcare and
Google).

National AI imaging initiatives were identified by 2 researchers
(Abhishek Mishra and EP) through (1) a targeted Google search
for each country using [country] and the keywords AI medical
imaging platform, medical imaging data, medical AI platform,
AI radiology, or COVID-19 medical image AI; (2) a targeted
Google search for multilateral collaborations and major private
organizations using [name of organization] and the keywords
AI medical imaging platform, medical imaging data, medical
AI platform, AI radiology, or COVID-19 medical image AI; and
(3) a general search on Google, Google Scholar, Twitter, and
One HealthTech using the keywords medical imaging AI
platform, medical imaging platform, national medical imaging
AI platform, or medical imaging AI marketplace. For each
search, the first 5 pages of the results were scanned owing to
time and resource limitations.

We scored each initiative in comparison with the United
Kingdom’s context to prioritize some for the deeper dive in
phase 2. Each of the following criteria (n=4) was scored from
similar (score=3) to not similar (score=1); initiatives with the
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highest total score were deemed most similar to that of the
United Kingdom:

1. Similarity of the medical imaging platform to the United
Kingdom’s proposed initiative: medical imaging data only
versus additional health data, TRE built on top of data to
allow for model development, data consolidated in a
centralized location or alternative approaches such as
federated learning, and parallel building of deployment
platform.

2. Size of market: using the country population as a proxy —
≥50 million, 10 to 50 million, and 0 to 10 million.

3. Future trade importance to the United Kingdom: priority
markets identified by the NHS Director of AI based on
track record of digital health initiatives (note that, at the
time of the study, the United Kingdom was the Chair of the
G7, and there was strong political interest in the potential
for health AI to bolster the United Kingdom’s trade agenda).

4. Regulatory and ecosystem similarity to that of the United
Kingdom based on the following: provincial versus national
digital health organization, single-payer versus multipayer
system, and regulatory approach to AI.

Phase 2: Deep Dive Into National AI Imaging Platforms
For the prioritized initiatives, we conducted a deep dive using
the Political, Economic, Social, Technological, Legal, and
Environmental (PESTLE) factors framework. PESTLE is a
common tool used in policy analysis to gain an overview of an
industry [11].

The aims of the deep dive were to (1) identify reliable and robust
information to inform the understanding of the international use
case; (2) identify hypotheses, gaps, and insights on the AI
imaging initiatives for validation during stakeholder interviews;
and (3) inform the creation of a deductive framework for the
analysis of semistructured interviews. We also identified
stakeholders leading AI initiatives to approach for the
semistructured interviews in phase 3.

Phase 3: Semistructured Interviews
Semistructured interviews were conducted to understand each
prioritized initiative (eg, data used and intended users); its social
and political context (eg, regulatory landscape, stakeholders,
and public trust), data handling (eg, data and privacy laws),
funding sources, and commercialization; and the lessons learned
during its development. The discussion guide (Multimedia
Appendix 1) was tailored to each country’s unique imaging
platform, including the validation of any gaps or insights
identified in phase 2.

The interviews were conducted by one principal researcher
(KK) with one supporting researcher (EP). Informed consent
was obtained from interview participants, and they approved
the selected quotes for publication. The interviews lasted up to
1 hour and were audio recorded, and detailed notes were taken.
Transcription and translation services were provided by an
independent agency. Only one country (Singapore) required the
use of translation services to conduct the interview. All other
interviews were conducted in English. Both the detailed notes
and transcripts from the interviews were analyzed.

The interviews were analyzed using a deductive framework
with codes identified from the desk research deep dives
(Multimedia Appendix 2). In total, 2 researchers (KK and EP)
analyzed each interview independently and compared their
coding. Intercoder reliability (ICR) was calculated to assess the
reliability of the coding protocol and thematic analysis. ICR
was calculated by comparing the level of agreement and
disagreement across the coding for 5 pages per transcript [12].

Phase 4: Workshop With NHS AI Lab National
Imaging Platform Team
A workshop was conducted with the NHS AI Lab national AI
imaging platform team members who were conducting the
discovery phase [13]. The workshop aims were to (1) establish
top areas of interest from the perspective of the discovery team,
(2) explore why these areas are important to the team, and (3)
stimulate the discovery teams’ interest in applying the lessons
learned from other countries.

The workshop was facilitated by one principal researcher (KK)
with one supporting researcher (EP). The workshop lasted 90
minutes, and audio recordings and detailed notes were taken.
Participants (n=5) used the web-based Padlet and Jamboard
(Google) post-it and “like” functionalities. If required, the
researchers noted the participants’ points on their behalf. The
workshop audio was transcribed and analyzed.

An overview of the initiatives (n=6) from phase 2 and phase 3
was provided to the attendees using Jamboard. The countries
were treated as individual case studies rather than grouped
together because of the large degree of heterogeneity between
the countries.

A total of 8 themes from the deductive framework were used
to guide the workshop: purpose; users; organizational;
commercialization; data; incentives; building trust; and law,
policy, and regulation. Quotes from the semistructured
interviews with stakeholders (phase 3) from each initiative were
mapped to the 8 themes for discussion at the workshop.

The nominal group technique was used to identify priority
quotes and insights [14]. Participants were asked to vote on the
quotes that resonated or were of interest to them using Padlet’s
“like” functionality. Each participant had 6 votes per initiative.
Voting indicated the discovery team’s priorities and fueled
discussions.

The outputs of the deep dives, interviews, and workshop were
synthesized thematically into 8 categories with 17 subcategories.
The analysis was inspired by a user-centered design insight
format [15], which states the context and background, explains
the learning, explains the root cause (the why), and explains the
motivation behind why the learning has occurred and the
ramifications for the NHS AI Lab’s proposed national medical
AI imaging initiative.

Phase 5: Formulating Recommendations
The researchers (KK and EP) jointly synthesized all the data
gathered from phase 3 to phase 4 to formulate recommendations
for the NHS AI Lab national AI imaging initiative. This involved
drawing out themes based on the original thematic framework,
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identifying learnings pertinent to the United Kingdom, and
framing the resulting insights into actionable recommendations.

Final recommendations were presented to the Head of AI
Imaging and Director of AI at the NHS AI Lab for consideration.
The Head of AI Imaging and the national AI imaging discovery
team selected the recommendations that were relevant and
actionable for the discovery and future phases of the project.
The research team was not privy to this selection.

Ethical Considerations
Internal and external stakeholders were consulted during this
policy research and development. Informed consent was
obtained from interview and workshop participants. Per NHSX’s
standard practice, independent ethical review was not required
for this research informing policy as it poses negligible risk.

Results

Phase 1: Identified National AI Medical Imaging
Platforms
Numerous initiatives (n=34) were identified from preliminary
scanning. Most initiatives were country based (21/34, 62%),
and the remainder were from major private organizations (10/34,
29%) or multinational organizations (3/34, 9%). Some of the
initiatives (7/34, 21%) were prioritized for a deep dive: (1)
Digital Health and Discovery Platform (DHDP; Canada), (2)
national medical image database (China), (3) Hospital Authority
Data Collaboration Laboratory (HADCL; Hong Kong), (4)
Research Center for Medical Big Data (Japan), (5) AI Medical
Imaging Platform (Singapore), (6) Analytic Imaging Diagnostics
Arena (AIDA; Sweden), and (7) Medical Imaging and Data
Resource Center (MIDRC; United States).

Phases 2 and 3: Overview of Prioritized National AI
Imaging Platforms
In the following sections, we provide a brief overview of each
initiative. Multimedia Appendix 3 [16-44] provides a detailed
overview of each country’s initiative complemented with
findings from the PESTLE analysis and semistructured
interviews.

Canada: DHDP
This pan-Canadian initiative was set up to create a nationwide
framework to digitally enable research that advances
next-generation precision medicine technologies with an
emphasis on cancer and improving health outcomes for patients.
The DHDP comprises >90 consortium partners spanning
academia and the private sector. The initiative focused on
numerous types of medical data rather than solely on medical
imaging [45] and undertook novel research in federated learning
technologies that reflected Canada’s stringent attitudes toward
data privacy and sharing.

China: National Medical Image Database
In September 2020, plans were announced for the creation of a
standardized national medical image database. The Chinese
national medical image database was approved by the National
Health Commission [19] to enable hospitals to share patient
information and medical images and support the training and

development of AI technology for health care. At the time of
the study, it was unclear what technology stack the Chinese
national imaging database would use and how the initiative
would overcome issues of data digitization, cybersecurity, and
commercialization.

Hong Kong: HADCL
The HADCL was established to support the formulation of
health care policies, facilitate biotechnological research, and
improve clinical and health care services. The HADCL is the
flexible and interactive data-sharing channel of Hong Kong’s
Hospital Authority, with a growing focus on the development
of AI and ML algorithms. It is a full-service offering
encouraging researchers to partake in collaborative health data
projects in a controlled environment using the Hospital
Authority’s extensive, longitudinal data [46,47].

Japan: Research Center for Medical Big Data
Japan’s Research Center for Medical Big Data is a platform for
AI technology research and development, including a
cloud-based platform for hosting medical imaging big data and
analyzing medical images. As of 2019, the platform contained
>10 million medical images, with participation from at least 60
hospitals. In line with policy at the time of the study, the
platform’s primary user base was academia, and projects were
for research purposes only.

Singapore: AI-Enabled Medical Imaging Platform
In October 2020, the Integrated Health Information System
health laboratory issued a call for collaboration between partners
to cocreate an “AI-enabled Medical Imaging Platform” aimed
at operationalizing and exploring AI models and applications
for medical imaging. The platform will be open and vendor
neutral, thereby enabling the deployment of AI models and
products from different sources to assist with clinicians’ work.

Sweden: AIDA
AIDA is a dedicated initiative for research and innovation in
AI and medical image analysis in Sweden. The initiative brings
together academia, health care, and industry to translate
innovation into AI-based decision support solutions for imaging
diagnostics. The previous mandated creation of national
registries containing >5 TB of health data provided the
foundation for the AIDA initiative.

United States: MIDRC
The MIDRC is a multi-institutional initiative established in
response to the COVID-19 pandemic. The aim was to foster
ML innovation through the sharing of imaging and associated
clinical data regarding COVID-19 [48]. At the time of the study,
agreements for sharing relevant medical imaging data were in
the process of being signed with several sites, but no data were
being hosted on the platform.

Phases 3 and 4: Derived Themes and Insights
Stakeholders (n=16) representing 7 initiatives were approached
for interviews. Stakeholders (n=13) from 6 initiatives accepted
the interview invitations (13/16, 81% acceptance rate). The
stakeholders from participating countries were 38% (5/13) from
Canada, 8% (1/13) from Hong Kong, 23% (3/13) from Japan,
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8% (1/13) from Singapore, 8% (1/13) from Sweden, and 15%
(2/13) from the United States. Stakeholders from China (3/16,
19%) did not respond to the request for an interview.

For the interview coding, the ICR between the researchers (KK
and EP) was calculated to be 0.41, indicating moderate reliability
[12,49]. The outputs of the deep dives, interviews, and workshop
were synthesized thematically into categories (n=8) with
subcategories (n=17).

Multimedia Appendix 4 presents the categories, subcategories,
and corresponding thematic synthesis within each of the other
countries’ initiative including key insights, quotes, and learnings.

Phase 5: Recommendations

Overview
We provided 12 recommendations for the NHS AI Lab’s
proposed national AI imaging platform. Each recommendation
is grounded in the themes and insights from phase 2 to phase 4
(see Multimedia Appendix 4). The corresponding themes for
each recommendation are also provided.

Narrative
Recommendation 1: The NHS AI Lab develop a
purposeful narrative of why and how a national
medical imaging initiative is necessary, outlining
what health needs it will meet and supporting this
with demonstration of its benefit and potential

Developing a strong value proposition should be married with
demonstrable benefit. The narrative should be cross-cutting,
speaking not only to purpose but also to trust and incentives,
with transparency regarding the drivers of the initiative. Previous
work by the NHS AI Lab on behalf of the GDHP has also argued
that countries should take a “needs based” approach to AI-driven
technology development to create both maximal benefit on
health outcomes and foster buy-in and support from stakeholders
and the public [47,50].

A purposeful narrative for the NHS AI Lab’s national medical
imaging initiative will support interdisciplinary collaboration
and ensure long-term political, financial, and social support for
the initiative based on a clear understanding of its importance
and utility to the health system. An important aspect of this
narrative is to reference the value of the initiative as a social or
public good that creates public value [51].

The corresponding themes for this recommendation are (A)
demonstrable benefit of the initiative, (B) health system needs
as the primary driver, (C) community and shared purpose, and
(O) transparency and communication. transparency and
communication.

Recommendation 2: The NHS AI Lab moves away
from the language of “platform” to talking about the
national medical imaging initiative as an “initiative”
and community space for growing the United
Kingdom’s understanding and ability to use AI in
medical imaging

The United Kingdom’s national medical imaging “initiative”
should be carefully framed, using language that reflects what
is offered and conveys mindset and purpose. The connotations

of “national” in the initiative name given the involvement (or
lack thereof) of the Devolved Administrations (DAs) should be
considered. In addition, the NHS AI Lab should develop an
approach for involving the DAs.

The corresponding themes for this recommendation are (C)
community and shared purpose and (D) embracing and enabling
the central role of health care professionals.

Users and Service Offering
Recommendation 3: The NHS AI Lab develops
wraparound services to maximize engagement and
capitalize on the expertise of varied users; by
removing the need to technically upskill in AI
development while also providing opportunities for
users to do so if they wish, the initiative can broaden
participation and avoid disincentivizing users with
different and valuable areas of specialty

The NHS AI Lab should invest in wraparound services,
specifically offering tools and professional technical skills that
are tailored to fill a gap that users, such as health care
professionals, have when it comes to developing AI. It appears
from international comparators that the main draw and success
has not been the platform itself but the supportive services to
enable users to engage, collaborate, and develop AI-driven
technologies regardless of their technical expertise. Examples
include but are not limited to clinical fellowships on health data,
networking or pairing clinicians with data scientists, training
courses on what is AI and how to develop models, and low-code
and no-code AI model development tools. The NHS AI Lab
should explore opportunities to build these wraparound services
from existing programs in the digital health ecosystem.

The corresponding themes for this recommendation are (D)
embracing and enabling the central role of health care
professionals, (E) recognizing that users are not discrete groups,
and (F) importance of wraparound services.

Recommendation 4: The NHS AI Lab continues to
embrace interdisciplinary work while designing,
developing, and implementing the national medical
imaging initiative; the inherent tensions and
perspectives between disciplines are needed to deliver
on health system needs

Interdisciplinary work is central to harnessing the breadth of
expertise required to build and sustain an initiative that truly
addresses health system needs. This means embracing the central
role of health care professionals and ensuring the participation
of people who have a system view of health and social care, as
well as those with frontline experience who will be the ultimate
end users of any AI products developed on the platform.
Prioritizing user-centered design and health care professionals’
experience means that technical expertise must take an important
facilitative and instructive role to both guide and learn from
health care professionals about how to leverage AI-driven
technologies in the health system. By facilitating
interdisciplinary work, radiologists’ expertise can be applied to
shore up the quality and appropriateness of the imaging data
used. We recommend that active steps be taken to foster
collaborative working relationships across disciplines drawing
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on lessons for interdisciplinary collaboration outlined by
Blandford et al [52] and on the examples of activities run in
Sweden and Japan.

The corresponding themes for this recommendation are (B)
health system needs as the primary driver for AI development,
(D) embracing and enabling the central role of health care
professionals, and (E) recognizing that users are not discrete
groups.

Sustainability and Future-Proofing
Recommendation 5: The NHS AI Lab consider the
financial sustainability of the national medical
imaging initiative from the outset and how this maps
to the proposed commercial model

All the international comparators who did not have a clear
commercial model raised concerns about financial sustainability.
It is worth bearing in mind that demonstrable benefit does not
guarantee enduring government support with respect to funding.
We recommend that the NHS AI Lab national medical imaging
initiative considers how the work will be sustained beyond
current funding and ensures that options for commercialization
are not excluded by virtue of how the initiative is designed (ie,
data-sharing arrangements that preclude commercialization).
For the NHS AI Lab’s national medical imaging initiative to
have longevity, it is important to keep as many commercial
options on the table as possible, including generating revenue
from certain aspects of the initiative and exploring public-private
partnerships. This could include providing data subsets to fulfill
specific needs, such as validation, that can be commercialized
as a distinct offering.

The corresponding themes for this recommendation are (I)
ensure financial sustainability, (J) differing or absent commercial
models, and (L) subsetting data offerings.

Recommendation 6: The NHS AI Lab continues to
explore different commercial models for the national
medical imaging initiative with a focus on how it
might commercialize aspects of the initiative rather
than taking an all-or-none approach

Commercialization is likely necessary to ensure the financial
sustainability of the initiative. Commercial models were an
afterthought for many international comparators, who conveyed
the sense that commercialization was viewed as being in
opposition to the public good. We recommend thinking about
commercial options early on, not only from a practical
perspective of building the initiative with this in mind but also
to construct a narrative that can interweave commercialization
and private sector involvement with the public good. The NHS
AI Lab should continue working with internal teams (ie, the
NHSX Centre for Improving Data Collaboration) to ensure that
the NHS gains fair value for the public from commercial
arrangements.

The corresponding themes for this recommendation are (I)
ensure financial sustainability, (J) differing or absent commercial
models, and (N) a focus on public and social good.

Recommendation 7: The NHS AI Lab explore and
potentially adopt some of the future-proofing
mechanisms used by international comparators

Sweden and the United States exemplified ways to future-proof
data-sharing mechanisms, including specific clauses in
data-sharing agreements that granted them the power to revoke
data access or extend it to future offerings. This is important
for safeguarding against issues further down the road and
streamlining the process of setting up data-sharing agreements.
Sweden was cognizant that currently, anonymized data might
become reidentifiable with advances in data analysis and wanted
to mitigate this risk from the outset through the ability to revoke
access at any time. We also recommend that, if and where
possible, the initiative infrastructure is future-proofed and
reusable so that it will be fit for purpose in years to come and
offer benefits to other similar initiatives.

The corresponding themes for this recommendation are (M)
future-proofing mechanisms for data sharing and (N) a focus
on public and social good.

Recommendation 8: The NHS AI Lab balances the
need to deliver at pace with the up-front investment
of time and effort required to ensure that the resulting
initiative is sustainable and future-proofed

A variety of pressures to deliver at pace were identified by
international colleagues, which at times nudged countries toward
“kicking the can down the road” when it came to thorny
challenges such as commercialization. Although a certain level
of pace is necessary to demonstrate benefit and garner support,
this should be tempered to ensure an up-front investment of
time and effort that delivers sustainable returns.

The corresponding themes for this recommendation are (A)
demonstrable benefit of the national medical imaging initiative
and (G) tempering the pace of development.

Recommendation 9: The NHS AI Lab consider under
what conditions it would be acceptable and feasible
to move beyond human-in-the-loop approaches in the
national medical imaging initiative’s resultant
AI-driven technologies

All countries maintained the need for a human to be “in the
loop” to ensure the safety, accountability, and acceptability of
AI development and products. Human-in-the-loop refers to
models that require human interaction, whereby human oversight
can intervene and determine the outcome of a process or event.
However, there is an undertone that moving beyond
human-in-the-loop approaches is the future state of AI-driven
technology in health and care (in some conditions, not yet
defined). We recommend that the NHS AI Lab start considering
not only the safety and accountability of systems without
humans and when this would be deemed appropriate but also
the public perception of not having unique or individualized
care.

The corresponding themes for this recommendation are (K)
common and continuing data challenges, (O) transparency and
communication, and (P) keeping humans in the loop.
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Recommendation 10: The NHS AI Lab accounts for
the environmental impact of the national medical
imaging initiative and establishes how it aligns with
a sustainable health and social care system

No international comparators had considered the environmental
impact of their initiative or how they were positioned in relation
to delivering a sustainable health and care system. This presents
an opportunity for the United Kingdom to lead in this domain
considering the health system needs not only for now but also
for the future. We recommend that the NHS AI Lab develop an
understanding of how the national medical imaging initiative
could affect both positively and negatively an economically and
environmentally sustainable health system. This is an important
element of future-proofing the work and ensuring that it is fit
for purpose in the coming decades (note: the NHS AI Lab
strategy team has started considering how AI could contribute
to the NHS goal of reaching net zero by 2045 and to an
environmentally sustainable health and care system [53]).

The corresponding themes for this recommendation are (B)
health system needs as the primary driver and (N) a focus on
public and social good.

Policy and Regulation
Recommendation 11: The NHS AI Lab leverage its
privileged position as the guiding health technology
organization within both the civil service and the NHS
to continue advocating and driving policy and
regulatory change; the United Kingdom’s national
medical imaging initiative is a tangible use case for
uncovering the issues and providing examples of how
they could be solved

All countries recognized that their current policies and
regulations were not fit for the purpose of AI development and
implementation in clinical settings. There was a range of
mindsets regarding how to balance operating within constraints
and advocating to change them. The NHS AI Lab is uniquely
positioned within the government to drive the necessary changes
in the United Kingdom making use of existing collaborations
with regulatory bodies and DAs. We recommend that the
national medical imaging initiative, with clearly articulated and
demonstrable benefits to the health system, be used as evidence
for this advocacy work.

The corresponding themes for this recommendation are (H)
building on existing infrastructure and resources and (Q)
advocating for policy, regulatory, and legal frameworks that
are fit for purpose.

Recommendation 12: The NHS AI Lab leverage the
work already undertaken in validation of AI models
as a unique selling point for the United Kingdom’s
national medical imaging initiative

No international comparators had progressed to the deployment
and widespread adoption of AI-driven technologies developed
through their initiatives. One of the bottlenecks for this is a clear
validation process, an area in which the NHS AI Lab is well
placed to take the lead given the existing work that has been
done in this domain. We recommend that this is capitalized on
as a unique selling point for the national medical imaging

initiative to demonstrate an innovation funnel that runs smoothly
through to the deployment of assured technologies.

The corresponding themes for this recommendation are (H)
building on existing infrastructure and resources and (Q)
advocating for policy, regulatory, and legal frameworks that
are fit for purpose.

Discussion

Principal Findings
The NHS AI Lab sought to learn from countries developing
medical imaging platforms to streamline the
innovation-to-deployment journey for AI and ML algorithms
for medical imaging. The research team conducted secondary
and primary research with use cases from multiple countries to
develop a deep understanding of the approaches for structuring
a medical imaging platform program, how to set up supportive
policy and regulatory initiatives, and form relationships with
international stakeholders.

In addition to providing 12 recommendations for the NHS AI
Lab to implement, the research team identified five areas in
which the NHS AI Lab could offer a unique value proposition:

1. Galvanizing the already operating proof of concept, the
NCCID program, to demonstrate benefit and secure stable
United Kingdom government funding and support.

2. Within the new medical imaging platform, build in the
ability to validate AI and ML algorithms as well as deploy
them in health care settings. Only a few international
initiatives built in the ability to validate algorithms and
create a deployment pipeline, which is crucial for ensuring
the effectiveness of algorithms during implementation.

3. Create wraparound offerings tailored to researchers,
developers, and private companies operating in the United
Kingdom. This may include tools to facilitate the creation
of algorithms, training and workshops for upskilling,
computational power, legal and regulatory support, and
demand signaling for areas of clinical specialty in which
there is high demand for AI and ML development.

4. Consider the environmental impact and sustainability of
the medical imaging platform and the resultant carbon
output from the outset.

5. Publicly demonstrate that the NHS AI Lab has incorporated
collaborative international learnings and best practices.

Strengths
The primary strength of the project was the NHS AI Lab’s
openness to learning from other countries. Throughout our
engagement with selected countries (Canada, Hong Kong, Japan,
Singapore, Sweden, and the United States), we established that
no other initiative had conducted international landscaping to
inform strategy and implementation. Our work highlights the
benefit of not reinventing the wheel in health AI initiatives but
reaching out to build on the experience and expertise of others.

Second, the internal discovery team responsible for designing
and building the NHS AI Lab’s medical imaging platform was
engaged throughout the delivery of this project. Their
engagement culminated in the workshop to elicit feedback and
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prioritize insights, followed by the selection of final
recommendations. Often, policy and strategy research is
conducted before or separately from the team creating and
building a product. Policy and strategy research conducted in
isolation may not provide practical and usable recommendations
that can be taken forward during product development.

Limitations
We identified 3 key limitations of this project. First, no literature
review was conducted to inform the research. Owing to the
novelty of creating medical imaging platforms for AI
development, we instead decided to conduct a scan of potential
international efforts via targeted Google, Google Scholar, and
social media searches.

Second, the ICR reliability indicates some variation in coding
assignments between the 2 researchers (KK and EP). Coding
variability could be attributed to (1) the level of experience
analyzing qualitative research and (2) the depth of understanding
of the topics discussed by the interview participants. It is
important to note that the resultant ICR of 0.41 indicates
moderate reliability, which falls within tolerance as outlined by
Landis and Koch [49] and O’Connor and Joffe [12].

Third, the study did not delve into the role and importance of
postmarket monitoring or surveillance. In some interviews, it
appears that this topic was not top of mind as they were working
on initiatives that were in the beginning stages and algorithms
were not yet actively deployed into the market for clinical use.
However, since the completion of this project, the NHS AI Lab
has funded the United Kingdom Medicines and Healthcare
products Regulatory Agency to deliver several work packages,
including updating legislation to require more robust postmarket
surveillance for software as a medical device [54].

Conclusions
Policy makers and digital developers internationally are chasing
the potential for AI and ML algorithms to transform health care,
with medical imaging seen as low-hanging fruit for realizing
this ambition. Algorithms in health care are not confined to
national borders, so how this ambition is realized by each
country is particularly important. This paper outlines work
undertaken by the NHS AI Lab to ensure that the investment
in and creation of a generalized national medical imaging
platform for the innovation and deployment of AI and ML
algorithms in England is informed by international experience.

 

Acknowledgments
First, the authors would like to thank the stakeholders from each initiative for participating in this research. The authors learned
a lot from each and every one of them and value their contributions. Second, the authors would like to thank the NHS AI Lab at
NHS England, formerly at NHSX, for supporting the publication of this policy research and embedding the recommendations
into the decision-making process for England’s national imaging platform efforts. Finally, the authors would like to acknowledge
Abhishek Mishra, who supported the earlier stages of the research while in a PhD intern placement at the NHS AI Lab and was
funded by a Wellcome Trust doctoral scholarship. All research was conducted by staff members employed by or deployed to
NHSX. No external funding was received to conduct the research. DC, Director of AI at the NHS AI Lab, NHS England, is the
guarantor of the publication.

Authors' Contributions
KK conceptualized and supervised all stages of this project, including securing project resources, data curation, and project
administration. DC was the main NHSX stakeholder and lead for the conceptualization and development of the National COVID-19
Chest Imaging Database and national artificial intelligence imaging platform. KK developed the research methodology with input
from Abhishek Mishra and conducted this research alongside Abhishek Mishra and EP. EP and KK developed the discussion
guide and deductive thematic analysis coding framework for the semistructured interviews. KK was the lead interviewer, and EP
was the second interviewer and notetaker. KK and EP developed the workshop materials. KK was the lead workshop facilitator
with support from EP. Transcription and translation services were provided by Prestige Network. KK and EP completed the
thematic analysis and data synthesis. KK wrote the first draft of the manuscript. All the authors contributed to the drafting and
editing of the manuscript and have approved the final version.

Conflicts of Interest
KK and EP were working at NHSX at the time of the study. DC was employed at NHSX at the time of the study and at NHS
England at the time of writing.

Multimedia Appendix 1
Template discussion guide.
[DOCX File , 19 KB - ai_v3i1e51168_app1.docx ]

Multimedia Appendix 2
Deductive thematic and coding framework.
[DOCX File , 34 KB - ai_v3i1e51168_app2.docx ]

JMIR AI 2024 | vol. 3 | e51168 | p.210https://ai.jmir.org/2024/1/e51168
(page number not for citation purposes)

Karpathakis et alJMIR AI

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=ai_v3i1e51168_app1.docx&filename=7bf8c4e166dc981403b3c175537ad06d.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app1.docx&filename=7bf8c4e166dc981403b3c175537ad06d.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app2.docx&filename=4c10563cff9757a8eee28d1dfe24f52a.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app2.docx&filename=4c10563cff9757a8eee28d1dfe24f52a.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 3
Description of international initiatives.
[DOCX File , 42 KB - ai_v3i1e51168_app3.docx ]

Multimedia Appendix 4
Thematic synthesis.
[DOCX File , 207 KB - ai_v3i1e51168_app4.docx ]

References
1. AICan 2020 CIFAR Pan-Canadian AI strategy impact report. Canadian Institute for Advanced Research. 2020. URL: https:/

/cifar.ca/wp-content/uploads/2020/11/AICan-2020-CIFAR-Pan-Canadian-AI-Strategy-Impact-Report.pdf [accessed
2020-09-10]

2. Australia'a AI action plan. Commonwealth of Australia. 2021 Jun. URL: https://wp.oecd.ai/app/uploads/2021/12/
Australia_AI_Action_Plan_2021.pdf [accessed 2020-09-10]

3. National strategy for artificial intelligence. National Institution for Transforming India Aayog. 2018. URL: https://niti.
gov.in/sites/default/files/2019-01/NationalStrategy-for-AI-Discussion-Paper.pdf [accessed 2020-09-10]

4. Data saves lives: reshaping health and social care with data. Department of Health and Social Care, Government of UK.
2022 Jun 15. URL: https://www.gov.uk/government/publications/data-saves-lives-reshaping-health-and-social-care-with-data/
data-saves-lives-reshaping-health-and-social-care-with-data [accessed 2020-09-10]

5. HHS Artificial Intelligence (AI) strategy. US Department of Health and Human Services. 2022 Jan 10. URL: https://www.
hhs.gov/about/agencies/asa/ocio/ai/strategy/index.htm [accessed 2020-09-20]

6. National COVID-19 Chest Image Database (NCCID). NHSX & GitHub. URL: https://nhsx.github.io/
covid-chest-imaging-database/ [accessed 2020-09-01]

7. Cushnan D, Berka R, Bertolli O, Williams P, Schofield D, Joshi I, et al. Towards nationally curated data archives for clinical
radiology image analysis at scale: Learnings from national data collection in response to a pandemic. Digit Health
2021;7:20552076211048654 [FREE Full text] [doi: 10.1177/20552076211048654] [Medline: 34868617]

8. The multi-agency advisory service (MAAS) - AI regulation - NHS transformation directorate. National Health Service,
UK. URL: https://transform.england.nhs.uk/ai-lab/ai-lab-programmes/regulating-the-ai-ecosystem/
the-multi-agency-advice-service-maas/#about [accessed 2020-10-01]

9. Groves L. Algorithmic impact assessment: a case study in healthcare. Ada Lovelace Institute. 2022 Feb 8. URL: https:/
/www.adalovelaceinstitute.org/report/algorithmic-impact-assessment-case-study-healthcare/ [accessed 2022-04-30]

10. Joshi I, Morley J. Artificial Intelligence: how to get it right: putting policy into practice for safe data-driven innovation in
health and care. National Health Service X. 2019 Jan 01. URL: https://transform.england.nhs.uk/ai-lab/explore-all-resources/
understand-ai/artificial-intelligence-how-get-it-right/ [accessed 2023-11-30]

11. Aguilar FJ. Scanning the Business Environment. New York, NY: MacMillan Co; 1967.
12. O’Connor C, Joffe H. Intercoder reliability in qualitative research: debates and practical guidelines. Int J Qual Methods

2020 Jan 22;19:160940691989922 [FREE Full text] [doi: 10.1177/1609406919899220]
13. How the discovery phase works. Government Digital Service, UK. 2021 Jun. URL: https://www.gov.uk/service-manual/

agile-delivery/how-the-discovery-phase-works [accessed 2020-11-30]
14. Nominal Group Technique (NGT) - nominal brainstorming steps. American Society for Quality. 2020. URL: https://asq.

org/quality-resources/nominal-group-technique [accessed 2020-10-30]
15. Anderson N, McKhann E. How to write compelling user research insights in 6 steps. Dscout. 2020. URL: https://dscout.

com/people-nerds/writing-user-insights [accessed 2021-03-10]
16. Ip S, Liu T, Hodgett S. Machine learning and big data laws and regulations. Global Legal Insights. 2021. URL: https://www.

globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/canada [accessed 2020-10-01]
17. Innovation, science and economic development canada programs strategic innovation fund. Innovation, Science and

Economic Development Canada, Government of Canada. 2022 Dec. URL: https://ised-isde.canada.ca/site/
strategic-innovation-fund/en [accessed 2020-09-03]

18. Webster G. Full translation: China's 'new generation artificial intelligence development plan' (2017). New America. 2017
Aug 01. URL: https://www.newamerica.org/cybersecurity-initiative/digichina/blog/
full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/ [accessed 2020-09-30]

19. Feng C. China enhances smart health care with first national medical image database. South China Morning Post. 2020.
URL: https://www.scmp.com/tech/policy/article/3102534/
china-enhances-smart-health-care-first-national-medical-image-database [accessed 2020-11-30]

20. Sindermann C, Sha P, Zhou M, Wernicke J, Schmitt HS, Li M, et al. Assessing the attitude towards artificial intelligence:
introduction of a short measure in German, Chinese, and English language. Künstl Intell 2020 Sep 23;35(1):109-118 [FREE
Full text] [doi: 10.1007/s13218-020-00689-0]

JMIR AI 2024 | vol. 3 | e51168 | p.211https://ai.jmir.org/2024/1/e51168
(page number not for citation purposes)

Karpathakis et alJMIR AI

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=ai_v3i1e51168_app3.docx&filename=3f1f540ce261789d9b135220c04bef88.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app3.docx&filename=3f1f540ce261789d9b135220c04bef88.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app4.docx&filename=566eeb89d1c5973c1ac14e6109b736f7.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app4.docx&filename=566eeb89d1c5973c1ac14e6109b736f7.docx
https://cifar.ca/wp-content/uploads/2020/11/AICan-2020-CIFAR-Pan-Canadian-AI-Strategy-Impact-Report.pdf
https://cifar.ca/wp-content/uploads/2020/11/AICan-2020-CIFAR-Pan-Canadian-AI-Strategy-Impact-Report.pdf
https://wp.oecd.ai/app/uploads/2021/12/Australia_AI_Action_Plan_2021.pdf
https://wp.oecd.ai/app/uploads/2021/12/Australia_AI_Action_Plan_2021.pdf
https://niti.gov.in/sites/default/files/2019-01/NationalStrategy-for-AI-Discussion-Paper.pdf
https://niti.gov.in/sites/default/files/2019-01/NationalStrategy-for-AI-Discussion-Paper.pdf
https://www.gov.uk/government/publications/data-saves-lives-reshaping-health-and-social-care-with-data/data-saves-lives-reshaping-health-and-social-care-with-data
https://www.gov.uk/government/publications/data-saves-lives-reshaping-health-and-social-care-with-data/data-saves-lives-reshaping-health-and-social-care-with-data
https://www.hhs.gov/about/agencies/asa/ocio/ai/strategy/index.htm
https://www.hhs.gov/about/agencies/asa/ocio/ai/strategy/index.htm
https://nhsx.github.io/covid-chest-imaging-database/
https://nhsx.github.io/covid-chest-imaging-database/
https://doi.org/10.1177/20552076211048654
http://dx.doi.org/10.1177/20552076211048654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34868617&dopt=Abstract
https://transform.england.nhs.uk/ai-lab/ai-lab-programmes/regulating-the-ai-ecosystem/the-multi-agency-advice-service-maas/#about
https://transform.england.nhs.uk/ai-lab/ai-lab-programmes/regulating-the-ai-ecosystem/the-multi-agency-advice-service-maas/#about
https://www.adalovelaceinstitute.org/report/algorithmic-impact-assessment-case-study-healthcare/
https://www.adalovelaceinstitute.org/report/algorithmic-impact-assessment-case-study-healthcare/
https://transform.england.nhs.uk/ai-lab/explore-all-resources/understand-ai/artificial-intelligence-how-get-it-right/
https://transform.england.nhs.uk/ai-lab/explore-all-resources/understand-ai/artificial-intelligence-how-get-it-right/
https://journals.sagepub.com/doi/10.1177/1609406919899220
http://dx.doi.org/10.1177/1609406919899220
https://www.gov.uk/service-manual/agile-delivery/how-the-discovery-phase-works
https://www.gov.uk/service-manual/agile-delivery/how-the-discovery-phase-works
https://asq.org/quality-resources/nominal-group-technique
https://asq.org/quality-resources/nominal-group-technique
https://dscout.com/people-nerds/writing-user-insights
https://dscout.com/people-nerds/writing-user-insights
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/canada
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/canada
https://ised-isde.canada.ca/site/strategic-innovation-fund/en
https://ised-isde.canada.ca/site/strategic-innovation-fund/en
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/
https://www.scmp.com/tech/policy/article/3102534/china-enhances-smart-health-care-first-national-medical-image-database
https://www.scmp.com/tech/policy/article/3102534/china-enhances-smart-health-care-first-national-medical-image-database
https://doi.org/10.1007/s13218-020-00689-0
https://doi.org/10.1007/s13218-020-00689-0
http://dx.doi.org/10.1007/s13218-020-00689-0
http://www.w3.org/Style/XSL
http://www.renderx.com/


21. Handley L. Chinese people are the most optimistic about the impact of AI on jobs. CNBC. 2018 Feb. URL: https://www.
cnbc.com/2018/02/07/chinese-people-are-the-most-optimistic-about-the-impact-of-ai-on-jobs.html [accessed 2020-10-02]

22. Meinhardt C. The hidden challenges of China's booming medical AI market. China Business Review. 2019 Jun. URL:
https://www.chinabusinessreview.com/the-hidden-challenges-of-chinas-booming-medical-ai-market-2/ [accessed 2022-12-02]

23. Meng Q, Mills A, Wang L, Han Q. What can we learn from China's health system reform? BMJ 2019 Jun 19;365:l2349
[FREE Full text] [doi: 10.1136/bmj.l2349] [Medline: 31217222]

24. Basu M. Exclusive: Hong Kong's vision for artificial intelligence. GovInsider. 2017 Oct. URL: https://govinsider.asia/
intl-en/article/exclusive-hong-kongs-vision-for-artificial-intelligence [accessed 2020-09-15]

25. AI, machine learning and big data and regulations 2020 Hong Kong. Global Legal Insights. 2020. URL: https://www.
globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/hong-kong [accessed
2020-09-07]

26. Ng E. AXA boosts technology spending in Hong Kong as health revenues power growth. South China Morning Post. 2019
Nov. URL: https://www.scmp.com/business/companies/article/3038159/
axa-boosts-spending-ai-data-analytics-hong-kong-health-revenues [accessed 2023-11-01]

27. Moltu C, Stefansen J, Svisdahl M, Veseth M. [Withdrawn] Doing business in Hong Kong: Hong Kong trade and export
guide. Department for International Trade, Government of UK. 2015. URL: https://www.gov.uk/government/publications/
exporting-to-hong-kong/exporting-to-hong-kong [accessed 2020-09-01]

28. Mori P. Is digital health finally taking off in Japan. Intralink. 2019 Apr. URL: https://www.intralinkgroup.com/en-GB/
News/Blog/April-2019/Is-digital-health-finally-taking-off-in-Japan [accessed 2020-11-11]

29. Society 5.0. Cabinet Office, Government of Japan. 2020. URL: https://www8.cao.go.jp/cstp/english/society5_0/index.html
[accessed 2020-10-17]

30. Gagan O. Society 5.0: is infrastructure key to Japan's success? Raconteur. 2020 Mar. URL: https://www.raconteur.net/
global-business/society-5-0-infrastructure/ [accessed 2020-09-03]

31. Japan: forecast of digital healthcare market size 2026 by segment. Statista. 2020. URL: https://www.statista.com/statistics/
1030901/japan-digital-health-market-size/ [accessed 2020-09-16]

32. Raviscioni M. The medtech opportunity for Japanese companies. McKinsey. 2017 Nov. URL: https://www.mckinsey.com/
industries/life-sciences/our-insights/the-medtech-opportunity-for-japanese-companies [accessed 2020-09-27]

33. National artificial intelligence strategy: advancing our smart nation journey. Smart Nation Digital Government Office,
Singapore. 2019. URL: https://www.smartnation.gov.sg/files/publications/national-ai-strategy.pdf [accessed 2020-09-07]

34. National approach to artificial intelligence. Government Offices of Sweden. 2018. URL: https://wp.oecd.ai/app/uploads/
2021/12/Sweden_National_Approach_to_Artificial_Intelligence_2018.pdf [accessed 2020-09-10]

35. Vision for eHealth 2025. Ministry of Health and Social Affairs, and Swedish Association of Local Authorities and Regions.
URL: https://ehalsa2025.se/wp-content/uploads/2021/02/Strategy-2020-2022_eng.pdf [accessed 2020-09-08]

36. Data protected Sweden. Linklaters. 2022 Jun. URL: https://www.linklaters.com/en/insights/data-protected/
data-protected---sweden [accessed 2020-09-08]

37. Tang H. The European landscape - Sweden. AI-Med. 2020 Mar. URL: https://ai-med.io/features/
the-european-landscape-sweden/ [accessed 2020-09-11]

38. Bilboe C. Healthtech startups in Sweden and the UK with the fastest growth. Sifted. 2020 Sep. URL: https://sifted.eu/
articles/healthtech-growth-sweden-uk/ [accessed 2023-10-02]

39. Vestin E. Machine learning and big data laws and regulations. Global Legal Insights. 2020. URL: https://www.
globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/sweden [accessed 2020-09-10]

40. Lessons from application of AI to 6 year patient data from a Swedish primary care center. Strikersoft. 2020. URL: https:/
/strikersoft.com/en/News/what-can-ai-do-for-primary-care-lecture-from-vitalis/ [accessed 2020-09-09]

41. Artificial intelligence for the American people. Trump White House Archive. 2020. URL: https://trumpwhitehouse.
archives.gov/ai/ [accessed 2020-11-30]

42. Reardon S. Rise of robot radiologists. Scientific American. 2020 Feb. URL: https://www.scientificamerican.com/article/
rise-of-robot-radiologists/ [accessed 2020-09-11]

43. Caldwell A. The University of Chicago is awarded a major federal contract to host a new COVID-19 medical imaging
resource center. UChicago Medicine. 2020 Aug. URL: https://www.uchicagomedicine.org/forefront/
coronavirus-disease-covid-19/
the-university-of-chicago-is-awarded-a-major-federal-contract-to-host-a-new-covid-19-medical-imaging-resource-center
[accessed 2020-09-06]

44. The North America artificial intelligence in healthcare. GlobeNewswire. 2020 Sep. URL: https://www.globenewswire.com/
news-release/2020/10/01/2101805/0/en/
The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.
html [accessed 2020-09-30]

45. The Digital Health and Discovery Platform (DHDP). Digital Health and Discovery Platform. 2021. URL: https://www.
dhdp.ca/ [accessed 2020-09-08]

JMIR AI 2024 | vol. 3 | e51168 | p.212https://ai.jmir.org/2024/1/e51168
(page number not for citation purposes)

Karpathakis et alJMIR AI

XSL•FO
RenderX

https://www.cnbc.com/2018/02/07/chinese-people-are-the-most-optimistic-about-the-impact-of-ai-on-jobs.html
https://www.cnbc.com/2018/02/07/chinese-people-are-the-most-optimistic-about-the-impact-of-ai-on-jobs.html
https://www.chinabusinessreview.com/the-hidden-challenges-of-chinas-booming-medical-ai-market-2/
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=31217222
http://dx.doi.org/10.1136/bmj.l2349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31217222&dopt=Abstract
https://govinsider.asia/intl-en/article/exclusive-hong-kongs-vision-for-artificial-intelligence
https://govinsider.asia/intl-en/article/exclusive-hong-kongs-vision-for-artificial-intelligence
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/hong-kong
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/hong-kong
https://www.scmp.com/business/companies/article/3038159/axa-boosts-spending-ai-data-analytics-hong-kong-health-revenues
https://www.scmp.com/business/companies/article/3038159/axa-boosts-spending-ai-data-analytics-hong-kong-health-revenues
https://www.gov.uk/government/publications/exporting-to-hong-kong/exporting-to-hong-kong
https://www.gov.uk/government/publications/exporting-to-hong-kong/exporting-to-hong-kong
https://www.intralinkgroup.com/en-GB/News/Blog/April-2019/Is-digital-health-finally-taking-off-in-Japan
https://www.intralinkgroup.com/en-GB/News/Blog/April-2019/Is-digital-health-finally-taking-off-in-Japan
https://www8.cao.go.jp/cstp/english/society5_0/index.html
https://www.raconteur.net/global-business/society-5-0-infrastructure/
https://www.raconteur.net/global-business/society-5-0-infrastructure/
https://www.statista.com/statistics/1030901/japan-digital-health-market-size/
https://www.statista.com/statistics/1030901/japan-digital-health-market-size/
https://www.mckinsey.com/industries/life-sciences/our-insights/the-medtech-opportunity-for-japanese-companies
https://www.mckinsey.com/industries/life-sciences/our-insights/the-medtech-opportunity-for-japanese-companies
https://www.smartnation.gov.sg/files/publications/national-ai-strategy.pdf
https://wp.oecd.ai/app/uploads/2021/12/Sweden_National_Approach_to_Artificial_Intelligence_2018.pdf
https://wp.oecd.ai/app/uploads/2021/12/Sweden_National_Approach_to_Artificial_Intelligence_2018.pdf
https://ehalsa2025.se/wp-content/uploads/2021/02/Strategy-2020-2022_eng.pdf
https://www.linklaters.com/en/insights/data-protected/data-protected---sweden
https://www.linklaters.com/en/insights/data-protected/data-protected---sweden
https://ai-med.io/features/the-european-landscape-sweden/
https://ai-med.io/features/the-european-landscape-sweden/
https://sifted.eu/articles/healthtech-growth-sweden-uk/
https://sifted.eu/articles/healthtech-growth-sweden-uk/
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/sweden
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/sweden
https://strikersoft.com/en/News/what-can-ai-do-for-primary-care-lecture-from-vitalis/
https://strikersoft.com/en/News/what-can-ai-do-for-primary-care-lecture-from-vitalis/
https://trumpwhitehouse.archives.gov/ai/
https://trumpwhitehouse.archives.gov/ai/
https://www.scientificamerican.com/article/rise-of-robot-radiologists/
https://www.scientificamerican.com/article/rise-of-robot-radiologists/
https://www.uchicagomedicine.org/forefront/coronavirus-disease-covid-19/the-university-of-chicago-is-awarded-a-major-federal-contract-to-host-a-new-covid-19-medical-imaging-resource-center
https://www.uchicagomedicine.org/forefront/coronavirus-disease-covid-19/the-university-of-chicago-is-awarded-a-major-federal-contract-to-host-a-new-covid-19-medical-imaging-resource-center
https://www.uchicagomedicine.org/forefront/coronavirus-disease-covid-19/the-university-of-chicago-is-awarded-a-major-federal-contract-to-host-a-new-covid-19-medical-imaging-resource-center
https://www.globenewswire.com/news-release/2020/10/01/2101805/0/en/The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.html
https://www.globenewswire.com/news-release/2020/10/01/2101805/0/en/The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.html
https://www.globenewswire.com/news-release/2020/10/01/2101805/0/en/The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.html
https://www.globenewswire.com/news-release/2020/10/01/2101805/0/en/The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.html
https://www.dhdp.ca/
https://www.dhdp.ca/
http://www.w3.org/Style/XSL
http://www.renderx.com/


46. Hospital authority data sharing portal. Hospital Authority & Data Collaboration Lab. 2020. URL: https://www3.ha.org.hk/
data/DCL/Index/ [accessed 2020-09-08]

47. Karpathakis K, Murphy L, Mishra A, Joshi I. AI for healthcare: creating an international approach together. Global Digital
Health Partnership. 2020. URL: https://gdhp.health/work-streams/policy-environments/#whitepapers [accessed 2020-09-11]

48. Home page. The Medical Imaging Data Resource Center (MIDRC). 2020. URL: https://www.midrc.org/ [accessed
2023-10-02]

49. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977 Mar;33(1):159-174.
[Medline: 843571]

50. Morley J, Murphy L, Mishra A, Joshi I, Karpathakis K. Governing data and artificial intelligence for health care: developing
an international understanding. JMIR Form Res 2022 Jan 31;6(1):e31623 [FREE Full text] [doi: 10.2196/31623] [Medline:
35099403]

51. Wilson J, Herron D, Nachev P, McNally N, Williams B, Rees G. The value of data: applying a public value model to the
English national health service. J Med Internet Res 2020 Mar 27;22(3):e15816 [FREE Full text] [doi: 10.2196/15816]
[Medline: 32217501]

52. Blandford A, Gibbs J, Newhouse N, Perski O, Singh A, Murray E. Seven lessons for interdisciplinary research on interactive
digital health interventions. Digit Health 2018 Feb;4:2055207618770325 [FREE Full text] [doi: 10.1177/2055207618770325]
[Medline: 29942629]

53. Bloomfield PS, Clutton-Brock P, Pencheon E, Magnusson J, Karpathakis K. Artificial intelligence in the NHS: climate and
emissions✰,✰✰. J Clim Chang Health 2021 Oct;4:100056. [doi: 10.1016/j.joclim.2021.100056]

54. Software and AI as a medical device change programme - roadmap. Medicines & Healthcare products Regulatory Agency.
2023 Jun 14. URL: https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/
software-and-ai-as-a-medical-device-change-programme-roadmap [accessed 2020-09-12]

Abbreviations
AI: artificial intelligence
AIDA: Analytic Imaging Diagnostics Arena
DA: Devolved Administration
DHDP: Digital Health and Discovery Platform
GDHP: Global Digital Health Partnership
HADCL: Hospital Authority Data Collaboration Laboratory
ICR: intercoder reliability
MIDRC: Medical Imaging and Data Resource Center
ML: machine learning
NCCID: National COVID-19 Chest Imaging Database
NHS: National Health Service
PESTLE: Political, Economic, Social, Technological, Legal, and Environmental
TRE: trusted research environment

Edited by Y Huo; submitted 23.07.23; peer-reviewed by M Halling-Brown, Z Li; comments to author 15.08.23; revised version received
01.09.23; accepted 03.11.23; published 04.01.24.

Please cite as:
Karpathakis K, Pencheon E, Cushnan D
Learning From International Comparators of National Medical Imaging Initiatives for AI Development: Multiphase Qualitative Study
JMIR AI 2024;3:e51168
URL: https://ai.jmir.org/2024/1/e51168 
doi:10.2196/51168
PMID:

©Kassandra Karpathakis, Emma Pencheon, Dominic Cushnan. Originally published in JMIR AI (https://ai.jmir.org), 04.01.2024.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR AI, is properly cited. The complete bibliographic information, a link to the
original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

JMIR AI 2024 | vol. 3 | e51168 | p.213https://ai.jmir.org/2024/1/e51168
(page number not for citation purposes)

Karpathakis et alJMIR AI

XSL•FO
RenderX

https://www3.ha.org.hk/data/DCL/Index/
https://www3.ha.org.hk/data/DCL/Index/
https://gdhp.health/work-streams/policy-environments/#whitepapers
https://www.midrc.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=843571&dopt=Abstract
https://formative.jmir.org/2022/1/e31623/
http://dx.doi.org/10.2196/31623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35099403&dopt=Abstract
https://www.jmir.org/2020/3/e15816/
http://dx.doi.org/10.2196/15816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32217501&dopt=Abstract
https://journals.sagepub.com/doi/abs/10.1177/2055207618770325?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/2055207618770325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29942629&dopt=Abstract
http://dx.doi.org/10.1016/j.joclim.2021.100056
https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/software-and-ai-as-a-medical-device-change-programme-roadmap
https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/software-and-ai-as-a-medical-device-change-programme-roadmap
https://ai.jmir.org/2024/1/e51168
http://dx.doi.org/10.2196/51168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Framework for Ranking Machine Learning Predictions of Limited,
Multimodal, and Longitudinal Behavioral Passive Sensing Data:
Combining User-Agnostic and Personalized Modeling

Tahsin Mullick1, MEng; Sam Shaaban2, MBA; Ana Radovic3, MD, MSc; Afsaneh Doryab1, PhD
1Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA, United States
2NuRelm, Pittsburgh, PA, United States
3Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States

Corresponding Author:
Tahsin Mullick, MEng
Department of Systems and Information Engineering
University of Virginia
Olsson Hall, 151 Engineer's Way
Charlottesville, VA, 22903
United States
Phone: 1 4349245393
Email: tum7q@virginia.edu

Abstract

Background: Passive mobile sensing provides opportunities for measuring and monitoring health status in the wild and outside
of clinics. However, longitudinal, multimodal mobile sensor data can be small, noisy, and incomplete. This makes processing,
modeling, and prediction of these data challenging. The small size of the data set restricts it from being modeled using complex
deep learning networks. The current state of the art (SOTA) tackles small sensor data sets following a singular modeling paradigm
based on traditional machine learning (ML) algorithms. These opt for either a user-agnostic modeling approach, making the
model susceptible to a larger degree of noise, or a personalized approach, where training on individual data alludes to a more
limited data set, giving rise to overfitting, therefore, ultimately, having to seek a trade-off by choosing 1 of the 2 modeling
approaches to reach predictions.

Objective: The objective of this study was to filter, rank, and output the best predictions for small, multimodal, longitudinal
sensor data using a framework that is designed to tackle data sets that are limited in size (particularly targeting health studies that
use passive multimodal sensors) and that combines both user agnostic and personalized approaches, along with a combination
of ranking strategies to filter predictions.

Methods: In this paper, we introduced a novel ranking framework for longitudinal multimodal sensors (FLMS) to address
challenges encountered in health studies involving passive multimodal sensors. Using the FLMS, we (1) built a tensor-based
aggregation and ranking strategy for final interpretation, (2) processed various combinations of sensor fusions, and (3) balanced
user-agnostic and personalized modeling approaches with appropriate cross-validation strategies. The performance of the FLMS
was validated with the help of a real data set of adolescents diagnosed with major depressive disorder for the prediction of change
in depression in the adolescent participants.

Results: Predictions output by the proposed FLMS achieved a 7% increase in accuracy and a 13% increase in recall for the real
data set. Experiments with existing SOTA ML algorithms showed an 11% increase in accuracy for the depression data set and
how overfitting and sparsity were handled.

Conclusions: The FLMS aims to fill the gap that currently exists when modeling passive sensor data with a small number of
data points. It achieves this through leveraging both user-agnostic and personalized modeling techniques in tandem with an
effective ranking strategy to filter predictions.

(JMIR AI 2024;3:e47805)   doi:10.2196/47805
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Introduction

Background
Mobile and wearable sensing has garnered increasing interest
in areas of physical health [1,2], mental health [3-5], and activity
recognition [6,7]. Multimodal passive sensing accommodates
data collection without disrupting the human routine, allowing
it to be an important tool to understand human behavior.
However, passive sensing, unlike other forms of data, encounters
common fundamental challenges in mobile health studies
pertaining to physical and mental health. These challenges
include small data sets, noisy or sparse data, and sensor selection
criteria. Next, we explain these challenges and discuss how our
framework can help in alleviating them.

One of the primary challenges in passive sensing studies is small
data sets. These arise due to limitations in the sample size of
participants, the study duration, and ground truth restrictions.
In this study, we explored this challenge from the viewpoint of
studies conducted on passive sensing. Studies related to physical
health (eg, [1,2]) have investigated dietary behavior with the
help of passive sensing. Participant sample sizes in Rabbi et al
[1,2] were 17 and 16, respectively, which is a limited participant
count. This type of data limitation is even more prominent in
mental health research that relies on passive sensing. Studies
on depression [3] and schizophrenia [4], for example, had
participant sample sizes of 28 and 5, respectively. The limited
data sets in passive sensing research are also a factor of the
study duration. To understand this, we can observe the duration
of study. For example, the study duration in Rabbi et al [1,2]
was 21 and 98 days, respectively, while the study by Canzian
and Musolesi [3] lasted for 70 days and that by Difrancesco et
al [4] was limited to only 5 days. The limitation in data led
researchers away from using complex deep learning (DL)
models, as demonstrated in previous studies [1-4]. This is
because DL models have more hyperparameters and succumb
to overfitting due to memorization of the data the models are
trained on [8]. In this study, we took inspiration from the
existing work and selected specific traditional machine learning
(ML) algorithms that are less susceptible to overfitting in
small-data scenarios. However, unlike previous studies
[1-4,9-17], we also ensured that our predictions were ranked
based on 2 different modeling paradigms that further helped
circumvent overfitting and also assisted in noise removal, as
explained later.

The second challenge commonly faced when tackling passive
sensor data is that of sparsity or noise. This challenge arises due
to signal inconsistencies and noise in sensor data collection
because of software issues, data sync, or hardware problems.
Discussions of sparsity and the negative effect it has on
modeling have been previously documented [7,18-20]. These
studies have presented an overview of the passive sensing
landscape and highlighted the role signal inconsistencies can
play in predictive modeling of passively sensed data. The fact

that data are noisy, especially in the case of wearable sensors,
was mentioned by Plötz [18]. Cornet and Holden [19] reported
that a lack of sensor precision leads to sparsity, and Xu et al
[20] documented the level of noise in data that prevents
user-agnostic models from generalizing well. Our proposed
framework attempts to reduce the effect of noise by forming a
balance between predictions from user-agnostic modeling
paradigms and personalized modeling paradigms. In addition,
choosing specific ML algorithms, such as Extreme Gradient
Boosting (XGBoost), Adaptive Boosting (AdaBoost), elastic-net,
and extra-tree, and ranking predictions from them help lessen
the impact of sparsity [21-24].

Sensor selection is the third type of challenge that has not
received significant attention in passive or mobile sensing
literature. Studies have tested various feature combinations
mainly in the light of performing feature selection or feature
reduction [25]. Joshi and Boyd [26] and Altenbach et al [27],
for example, used heuristic-based convex optimization to select
sensors from an array of sensors. However, both these studies
were purely from the perspective of sensor placement. They did
not investigate which combination of sensors provided the best
outcome for prediction-based modeling and were more in favor
of wireless sensor network establishment. Mobile or wearable
devices are laced with multiple sensors, and building and
knowing which sensors create optimum models are vital
particularly to mental and physical health–related studies.
Through our framework, we present a way to test combinations
of sensor data and derive and rank predictions from among those
combinations, allowing investigators to understand which
combinations of sensor data yield the best predictions for their
passive sensing experimental setup.

All the aforementioned challenges are common to passive
sensing data sets. However, they exhibit significant presence
in mental and physical health–related studies [3,4]. Xu et al [20]
talked of the general sequence of steps researchers take to build
models and the struggles of working with passively sensed data.
A strong framework to yield the best predictions can prove to
be beneficial to the community at large and bring about greater
insight from studies conducted with small data sets.

In this paper, we present our ML modeling and ranking
framework to address these challenges. The framework is
designed to induce improved predictions for multimodal sensing.
It balances both user-agnostic and personalized modeling of
small data sets encountered often in mental and physical
health–based studies. Our framework makes the following
contributions: (1) prediction filtering and ranking through
tensor-based aggregation of small, multimodal sensing data
sets, (2) sensor combination selection to derive the best
predictions, and (3) a reduction in overfitting predictions due
to limited data and noise through ensembling of user-agnostic
and personalized modeling strategies.

Importantly, it should be noted that by the size of the data set,
we refer to the final data sets where raw sensor readings are
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aggregated into intervals to align with the sampling frequency
of ground truth data. In this work, we defined small data sets
as those comprising fewer than 1000 data points for training
ML models. Sparse or noisy data sets were those that either
consisted of many zero entries or data sets for which highly
varying sensor values were observed among different
participants in the study.

We evaluated the framework through its performance in the
context of predicting changes in depression severity in a group
of adolescent patients. The results showed the framework’s
ability to use multiple modeling approaches for providing robust
predictions in critical cases, such as mental health.

Passive sensing data for human behavior modeling are different
from other data formats, such as images, audio, or normal tabular
data. Researchers in the field of passive sensing agree that
passive sensing data have some common properties, such as
they are time series data, multimodal, longitudinal, nonlinear,
and noisy, as previously discussed [20]. Xu et al [20] also
emphasized the researcher’s need for tools that can help ease
the time lost in traversing the common pitfalls of passively
sensed data. Our work endeavors to resolve such pitfalls for
cases where passive sensing data are limited. Next, we discuss
the related work highlighting the state of the art (SOTA) in
passively sensed small, multimodal data sets.

Related Work
Despite the growing body of work using multimodal passive
sensing in physical and mental health applications [28-32], there
exists scope for improvement in small-data scenarios.

In this section, we underline what exists in the current SOTA
and why we need a ranking-based framework to address
scenarios with small data sets. Keeping in line with our
contribution, it will prove beneficial to present the current SOTA
through understanding:

• How traditional ML algorithms are applied in the context
of passive sensing

• Why complex DL models do not work well in limited data
scenarios

• How ensemble modeling has been adapted in passive
sensing studies

• What the role of data fusion is in modeling passive sensing
data

Traditional Machine Learning Algorithms Applied in
Passive Sensing
Traditional ML algorithms have been applied to passive sensing
in the space of human activity recognition (HAR) [9-11], general
health [12-15], and mental health [3,16,17]. A deeper dive into
the studies reveals some common takeaways that include the
following:

• All of them test multiple ML algorithms, followed by
selecting predictions based on the overall chosen validation
metric.

• They all follow a singular modeling strategy, resorting to
either user-agnostic or personalized modeling.

• Cross-validation (CV) is either K-fold or leave-one-out CV.

This is a repetition of steps that authors in the field make
independently and is discussed extensively in the highlighted
literature presented in Table 1. Following a single modeling
strategy is restricting as choosing to follow a user-agnostic
approach exposes the model to a greater degree of noise due to
the heterogeneity in sensor values among participants, while
solely following a personalized approach reduces data
availability further as the model learns from individuals’ data
rather than the general population data. Our endeavor through
this ranking framework is to combine both the approaches, while
using traditional ML algorithms.
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Table 1. Summary of SOTAa literature using traditional MLb for passive sensing, with special focus on CVc, the overall modeling strategy, and ML
algorithms.

ML algorithmModeling strategyCVApplicationStudy

DTe, LRf, MLPgUser agnostic10-foldHARdKwapisz et al [9]

KNNh, SVMiUser agnostic5-foldHARShukla et al [10]

RFj, SVM, KNNUser agnostic10-foldHARChen and Chen [11]

SVMUser agnostic10-foldSleepHuang et al [12]

KNN, DT, RF, SVMUser agnostic/personalizedK-fold/leave 1 outSleepMontanini et al [13]

XGBoostk, DT, RFUser agnostic5-foldParkinson’s tremorsTeng et al [14]

SVMUser agnosticK-foldBreathAzam et al [15]

SVMUser agnosticLeave 1 outDepressionCanzian and Musolesi [3]

NBl, KNN, DTUser agnostic/personalizedK-foldBipolar disorderGrunerbl et al [16]

XGBoost, DTUser agnostic10-foldDepression/anxietySaeb et al [17]

aSOTA: state of the art.
bML: machine learning.
cCV: cross-validation.
dHAR: human activity recognition.
eDT: decision tree.
fLR: linear regression.

gMLP: multilayer perceptron.

hKNN: K-nearest neighbor.

iSVM: support vector machine.
jRF: random forest.

kXGBoost: Extreme Gradient Boosting.

lNB: naive Bayes.

Limitation of Deep Learning in Small-Data Scenarios
A common replacement for traditional ML algorithms is DL.
Here, we explain why DL models are not ideal solutions for the
problem addressed in this study. DL models have gained
immense popularity in the literature [33]. Their power lies in
modeling the nonlinearity and noisy nature of passively sensed
data. DL has a toolkit of strategies to handle small data that
includes data augmentation [1], transfer learning [19], and
ensembling [29]. However, the size of a small data set in DL
studies ranges from 1000 to 10,000 training points [18]. This
is unlike the ranking framework presented in this paper, which
has been designed for data sets with fewer than 1000 data points.
Therefore, despite their superiority in modeling larger passive
sensing data sets, the performance of DL models suffers in cases
where study data are limited and in the hundreds. The
complexity of DL models results in overfitting to small data
sets [14]. In this paper, we worked to solve the problem of
limiting data by providing researchers with a reproducible way
to run multiple models and select the best predictions from
among them. By using traditional ML in conjunction with
ranked predictions from user-agnostic and personalized models,
the issue of overfitting due to model complexity is dealt with
in the proposed work.

Ensemble Learning to Build Robust Models for Passive
Sensing Data
Among the different ways of dealing with overfitting, ensemble
learning has been instrumental. Ensemble ML is a widely used
approach in passive sensing studies [14,17,34,35]. It mainly
exists in the form of boosting [6,14,17,34], bagging [14,16],
weighted ensembles [35], and max voting [36] ML algorithms.
Ensemble learning presents better results in terms of evaluation
metrics. Ensemble learners are trained using a single modeling
strategy. Therefore, they are either personalized ensembles [35],
which allows learners to derive interesting artifacts at personal
levels, or user-agnostic ensembles [14,17,34,36-38], which only
generate macrolevel information. Our contribution through the
ranking framework is to provide a balance of both macrolevel
patterns and user-specific patterns through a weighted ensemble
of both approaches. Ensembling in this manner will allow us
to reduce the noise that is picked up due to varying sensor values
among users and account for user-specific patterns through the
predictions on personalized data.

Role of Data Fusion in Passive Sensing Studies
The use of data fusion in passive sensing has seen a steady
growth due to the use of multimodal sensors in passive sensing
studies. Earlier studies were often restricted to single sensors,
which were then manipulated to obtain a handful of features.
For example, Canzian and Musolesi [3] primarily used GPS
sensor data, while Kwapisz et al [9] only opted for an
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accelerometer to base their predictive modeling. The way data
fusion is approached has a common link among the surveyed
studies in the current literature. The studies have applied
feature-level fusion [10,39-43], where fusion takes place after
feature extraction from raw signals. A single feature set is
generated and then passed on to dimensionality reduction, such
as linear discriminant analysis (LDA) [10] or principal
component analysis (PCA) [40-42]. The focus in these papers
tends to be a reduction in dimension, without trying to study
the impact of multiple distinct feature combinations. In
comparison, our contribution of feature selection focuses on

studying the relationship between each group of sensors by
creating multiple feature sets based on sensor availability. This
will allow us to select the best set of features to work with for
a specific type of study. An illustration of the difference in the
existing literature and our feature fusion approach is shown in
Figure 1 [10,39-43].

Overall, our ranking framework is motivated to aid researchers
in situations in which data sets are small, sparse, or noisy and
multimodal by taking advantage of its multiple model generation
and the balanced outcome of the best predictions.

Figure 1. (A) Data fusion approach in the current literature and (B) proposed FLMS data fusion approach, where s1-s6 represent distinct sensors and
f1-f3 represent feature set combinations, which were then fused prior to ML modeling. FLMS: framework for longitudinal multimodal sensors; LDA:
linear discriminant analysis; ML: machine learning; PCA: principal component analysis.

Methods

Ethical Considerations
The data collection was approved by the Institutional Review
Board of the University of Pittsburgh Human Research
Protections Office (STUDY18120176).

Data Description
The study used passive sensing data and is presented through
the lens of depression change prediction among adolescents.
The data set comprised 55 adolescents from 12 to 17 years old,
with an average age of 15.5 (SD 1.5) years. The AWARE app
was used to collect the participants’ smartphone and Fitbit data.
The data completeness rate for AWARE and Fitbit was, on
average, 65.11% and 30.36%, respectively. The levels of
completeness echoed the difficulty in collecting passive sensing
data. Smartphone and Fitbit data were collected from each
participant over 24 weeks.

The 9-item Patient Health Questionnaire (PHQ-9) [44] was used
to collect weekly self-reports of depression severity from the
participants. The questionnaire consists of a set of 9 questions,
which can be scored from 0 to 3, giving a score range of 0-27.
We used PHQ-9 scores as the ground truth to compare the
prediction accuracy of our models.

Relation of Sensor Data to Mental Health
Raw sensor data, including calls, location, conversation, screen
usage, Wi-Fi, steps, sleep, and heart rate, were processed, and
relevant features were extracted at daily intervals. We used
RAPIDS [45] to extract 72 features from the sensors. The
existing literature [3,46-51] shows how location [3,46,49,50,52],
calls [48,53], screen usage [46,54,55], conversations [55-58],
Wi-Fi [48,59], steps [60], and heart rate [61] can be effective
in predicting mental health behavior. Studies [3,46,49,50] have
used location sensors, such as the GPS, and shown a strong
relation to depressive symptom severity. Clinical measures,
such as the PHQ-9 [44], the PHQ-8 [62], the Hamilton Rating
Scale for Depression (HAM-D) [63], and the Hamilton Rating
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Scale for Anxiety (HAM-A) [64], have been used as target labels
for prediction using sensor-based features, establishing a proof
of association between sensor features and mental health
predictions. Studies [47,48,51,54,60] have used multimodal
sensors of smartphones that included the sensors we chose for
this study: calls, location, conversation, screen usage, Wi-Fi,
Fitbit steps, and Fitbit heart rate. In the Results section, we
further elaborate on the feature engineering from each of the
sensors. The validity of using the sensors to predict mental
health, in particular the choice of sensors, was motivated by the
aforementioned studies, which showed strong predictive
capability of sensors in the area of mental health prediction.

Framework Design and Modeling
We proposed a framework for longitudinal multimodal sensors
(FLMS) as a ranking framework to rigorously handle
longitudinal, multimodal sensor data and incorporate different
analysis and modeling strategies suited for small and sparse
time series data sets to produce better results. The FLMS
incorporates 4 stages to improve, rank, and filter data set
predictions (see Figure 1):

• Stage 1: multimodal sensor fusion to explore the data set
from multiple views and to identify the minimum number
of sensors necessary to yield a good prediction. It also
addresses sparsity.

• Stage 2: ML modeling with combined user-agnostic and
personalized approach. This stage is designed to leverage

user-agnostic and personalized predictions. The ML
algorithms used in this stage were chosen due to their
superior prediction capability in small-data scenarios and
their ability to tackle sparse data sets.

• Stage 3: tensor-based aggregation and ranking leverage
predictions from all fused combinations and modeling
strategies to calculate more robust predictions.

• Stage 4: final prediction informed by the ensemble weighted
average of both user-agnostic and personalized predictions
to reduce the effect of overfitting in small data sets. This
stage uses weights calculated via hamming distances to
prevent any modeling approach from dominating the
predictions.

A high-level view in Figure 2 illustrates how the FLMS is
different from conventional ML approaches. Observing Figure
2A, we understand that the conventional modeling strategy uses
a single algorithm with either a user-agnostic CV, where all
users are included in the training and test sets, or a personalized
CV strategy, where a single user’s data are used to derive
predictions. However, Figure 2B displays how the FLMS uses
different combinations of sensors as input data, followed by
multiple algorithms and a combination of user-agnostic and
personalized modeling. The modeling stage is followed by a
ranking of predictions and finally an ensemble of the predictions
to yield the final output.

A detailed explanation of the stages of the FLMS and their
utility is provided next.

Figure 2. (A) Conventional modeling approach and (B) proposed FLMS approach. FLMS: framework for longitudinal multimodal sensors.

Stage 1: Multimodal Sensor Fusion
Stage 1 was designed for the early fusion of sensors at a feature
level. Sensor fusions followed a combinatorial approach using

, where Z is the total number of modalities available and x

is the number of sensors to fuse. Our case study had 6-sensor
modalities that generated a set of 63 separate data sets calculated

as .

Data set preprocessing steps involved normalization and log
transforms. Imputations to fill missing feature observations
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were also conducted. The framework allowed for
implementation of the K-nearest neighbor (KNN) algorithm for
imputation, which is also the first level of defense against
sparsity. The generated data sets were in 2D tabular data format.
The sensor data were aggregated according to the granularity
of the ground truth. Our case study collected PHQ-9 scores as
an accepted depression measure. The total score range of the 9
questions was 0-27. This was collected on a weekly basis, and
thus, our daily data were aggregated in weekly intervals.

Stage 2: ML Modeling With a Combined User-Agnostic
and Personalized Approach
Stage 2 focused on modeling and predictions based on the data
sets generated in stage 1. All stage 1 data sets were run through
the modeling suite, which encompasses a series of ML
algorithms and CV strategies to help build user-agnostic and
personalized models.

The ML suite includes case-specific linear and nonlinear
algorithms. For our case study on adolescent depression, we
followed a regression-based approach, and therefore, we selected
algorithms such as linear regression (LR), elastic-net, random
forest (RF), AdaBoost, extra-tree, gradient boosting, and
XGBoost. The algorithms were chosen based on (1) their
performance in the existing literature when working with small
data and robustness to sparsity, and (2) tree-based models, which
were specifically chosen to provide added tractability for
researchers to inspect which features mainly contributed to the
models’predictive capability. The algorithms were used in each
modeling strategy. The predictions of the ML algorithms for
each time unit were stored in arrays for each participant and

later used to select the best model for each participant. The best
model selection strategy chose the model with the minimum
error (in the case of regression) or the maximum accuracy (in
the case of classification) among all algorithms. For example,
among l number of regression algorithms, the best model was
chosen as follows:

(1)

,where alg refers to the algorithm with the lowest absolute sum
error and predm(algt) is the prediction made by an algorithm l
at unit time t. The array of prediction by the best model was
retained for each respective participant.

User-Agnostic Model Building
To leverage as much data as possible, we implemented the
leave-one-participant-out (LOPO) and leave-time-unit-X-out
(LTXO) strategies. This is illustrated in Figure 3A,B.

In LOPO, we held out all data from a single participant for
validation and trained the model on other participants. This
strategy reflected the cold start case where a new user started
using the health app.

The LTXO is based on the unit of time for ground truth data
(eg, a week). For training, we held out a given time unit of all
participants and trained the model on the rest of the time units.
This strategy evaluated the impact of time-specific segments
of data on prediction. The training phase captures the similarity
and variation of data during different time units to build
user-agnostic models.

Figure 3. User-agnostic model building: (A) LOPO and (B) LTXO strategies. Algo: algorithm; LOPO: leave one participant out; LTXO: leave time
unit X out.

Personalized Model Building
The personalized modeling strategy leverages each user’s
historical and cross-time data samples in a sliding window and
the leave-one-time-unit-out approach.

For each participant, the accumulated-time-unit (ATU) strategy
built a model from Xt time units of data to predict Xt+1. For
example, the model built from weeks 1 and 2 predicted
depression in week 3. In the next iteration, the sliding window
was increased by T time units (eg, 2 weeks) to repeat the
model-building process. This process continued until the
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maximum number of time units was reached. This method
examined the forecasting capability of the framework.

The leave-one-time-unit-one-participant-out (LOTPO) strategy
trained the models on all time units of a participant across time

to predict the target label for the current time unit. For example,
for a participant with 10 weeks of data, we built a model from
data in weeks 1-5 and weeks 7-10 to predict depression in week
6. This method evaluated the feasibility of past and future data
for each participant to predict an outcome (Figure 4A,B).

Figure 4. Personalized model building: (A) LOTPO and (B) ATU strategies. Algo: algorithm; ATU: accumulated time unit; LOTPO: leave one time
unit of participant out.

Stage 3: Tensor-Based Aggregation and Ranking
The output of stage 2 was a set of best prediction matrices for
sensor fusion combinations, where each slot in the matrix
represented prediction results for a participant in a particular
time unit. We represented these predictions in the form of
Z-dimensional tensors (Figure 5), where Z is the number of
modalities being used. For example, a study with 6 modalities
and 45 users over 24 weeks was represented in tensor form as
(6, 45, 24). The tensor representation helped represent the high
dimensionality of sensor combinations.

The predicted values for each slot across tensors were then
aggregated using an aggregation function (eg, mean). This
process took advantage of the stage 2 combinations to help
reduce the error in prediction. For example, we aggregated
predictions of 6 tensors (generated from 5-sensor fusion) into
1 tensor by calculating the mean of the predictions from the 6
combinations (see Figure 3). This was done for both
user-agnostic and personalized models. The aggregated mean
was calculated using the following equation:

(2)

,where Magg is the aggregated mean, k is the total number of
sensor combinations aggregated, i is the combination number,

j is the corresponding time unit, and is the prediction across

each set of combinations. The data were now in a format where
each 2D tensor represented a particular sensor fusion prediction
set (Figure 6).

The predictions were next encoded into 0s and 1s to counter
the large variance in the regression values from the original
values. This logic can be set based on the type of ML problem
the framework is being used to address. For example, in our
case study, if the regressed change in depression score values
was 0 or negative value, we classified it as 0, and if it was
positive, we represented it as 1 (Figure 7).

The next step in this stage measured the hamming distance
between the 0-1-encoded tensor and the true labels tensor, as
shown in Figure 8. These hamming distances were then
aggregated (Du) for the respective 2D tensor as follows:

(3)

,where d(pi, ai) is the hamming distance between unit time
predictions pi and the true value ai. Based on the measured
distance, we ranked and chose the best set of predictions. This
metric helped inform the choice of weightage to associate with
a particular modeling strategy. The hamming distance helped
further reduce errors after encoding and filtered down to the
best set of predictions from each strategy.
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Figure 5. An example of tensor representation of 6-sensor fusion predictions.

Figure 6. Instance of ATU where it shows how the mean aggregated prediction set is generated according to Equation (2). ATU: accumulated time
unit; avg: average.

Figure 7. The 0-1 encoding process resolves dealing with large variances in regression values. ATU: accumulated time unit; LOPO: leave one participant
out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out.
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Figure 8. Hamming distance calculations reduce error and also determine the weight each of the 4 modeling approaches will contribute to stage 4’s
ensembled weighted average. ATU: accumulated time unit.

Stage 4: Weighted Ensemble
The final stage formed the most robust set of predictions via an
ensemble weighted average approach, where weights were
calculated based on the minimum hamming distances derived
from each modeling strategy in stage 3 (Figure 9):

(4)

,where Pij is the prediction tensor, wk is the weight based on the
minimum hamming distance, and i and j are the number of users
and time units, respectively. The data were then encoded back
to 0s and 1s. A complete version of the FLMS with all its stages
is presented in Figure 10 (see Multimedia Appendix 1 for a
higher quality image).

Figure 9. Ensemble average based on weights derived from the hamming distance to arrive at best-ranked predictions. ATU: accumulated time unit;
LOPO: leave one participant out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out.
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Figure 10. FLMS ranking overview. Algo: algorithm; ATU: accumulated time unit; avg: average; CV: cross-validation; FLMS: framework for
longitudinal multimodal sensors; LOPO: leave one participant out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out; ML:
machine learning.

Results

Stagewise Description of Framework Processing on an
Adolescent Data Set
To evaluate the performance of the proposed FLMS, we used
a depression data set of adolescents. This was a small data set,
comprising noisy, multimodal sensor values from multiple
participants—a suitable case study for our purpose of evaluating
the performance of our proposed framework. Before presenting
the experimental results, we first provide an understanding of
how the adolescent data set was processed at each stage of the
FLMS.

The passively sensed depression data set was longitudinal, with
a varying number of observations per participant. The goal was
to predict changes in the depression score. This was achieved
by passing the small set of observations through our ranking
framework, which processed, modeled, ranked, and output the
best set of overall predictions based on multiple modeling
approaches. A prediction of change in depression is difficult
and becomes even more challenging when the amount of data
provided to the ML algorithms is limited.

Stage 1 Outcome
As part of stage 1, daily data were aggregated in weekly
intervals to align with weekly ground truth values. Based on
our extensive exploratory data analysis (EDA), we set thresholds
for sparsity and adopted KNN as the imputation strategy.

Our final data set consisted of 507 data points with 72 features,
with an average of 13 weekly data points per participant. A
series of data sets were then produced from an early fusion of
6-sensor features. Each data set retained 45 (81.8%) of the 55
participants. We had to drop 11 (20%) participants as they were
missing more than 60% of their sensor data. The true depression
state of the participants was given by the PHQ-9 weekly survey.
The change in participant depression scores was calculated as
Wm – Wm–1, where Wm is the score for the m-th week; this
served as the ground truth for our analysis.

Stage 2: ML Modeling Outcome
The ML algorithms in stage 2 regressed on the change in the
depression score, with positive changes exhibiting a rise in the
depression score in that week, negative changes representing a
decrease, and 0 marking no change. The best predictive models
of depression for each participant were built and selected
following the steps in stage 2.

Stage 3: Encoding and Prediction Filtering Outcome
This led to stage 3, where after the mean aggregation, we
encoded the regressed values as our goal was to predict whether
the change in the depression score was positive, negative, or
constant, rather than determining the exact value of the change.
This step was followed by hamming distance calculations to
further rank and filter the best set of predictions.

Stage 4: Final Prediction Ensembling of Adolescent
Data
The predictions evaluated by the minimum hamming distances
entered stage 4, where we calculated the final ensemble
predictions. The predictions used weights determined by
hamming distance calculations, which enabled us to balance
between personalized and user-agnostic models. This step
completed the offline training and prediction of change in
depression in the adolescent data set.

Experiment Design and Results
In this section, we present the depression change prediction
results of the FLMS. The experiments were designed to test the
framework’s claims of reducing overfitting on a small data set,
reducing the impact of noise or sparsity, and identifying the
best combination for sensor fusion.

We conducted 3 main experiments in support of our claims:

• Experiment 1 tested FLMS predictions against singular
modeling strategies used in SOTA. This experiment
evaluated our claim regarding the advantage of the overall
framework that took steps to reduce noise and identify the
best sensor combinations versus a singular modeling
strategy.
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• Experiment 2 was a SOTA comparison test conducted to
evaluate how our prediction-ranking framework performed
in comparison to existing ML and DL approaches used in
the current literature. This comparison also substantiated
the FLMS performance to overfitting versus the existing
strategies in the literature from prediction in small-data
scenarios.

• Experiment 3 was designed to compare the FLMS
performance with that of commonly used ML algorithms
that have been shown to perform well with sparse data. It
is important to note that there is an overlap of ML
algorithms used to tackle sparsity and those used in passive
sensing studies for mental health, particularly for small data
sets.

Evaluation Metrics
The task of the FLMS is to model, rank, and output the best set
of predictions from multiple modeling approaches. The output
of the FLMS are predictions encoded as 0s or 1s (ie, binary
values). Therefore, our choice of evaluation metrics for the
framework predictions was the average accuracy, average recall,
and average F1-scores amongst users.

Experiment Metadata
The metadata pertaining to each experiment is provided at the
end of the experiments. The information included as metadata
is based on the best practices used [65] to help with
reproducibility of results. They include (1) feature preprocessing
steps, (2) modeling CV strategy, (3) ML algorithms used, (4)
random state, and (5) evaluation metrics specific to the
experiments. They are presented in the form of tables following
the corresponding results for each experiment.

Data Set Used in the Experiments
To standardize our experiments, we maintained a consistent
data set, a combination of 6-sensor feature sets that included
calls, location, screen usage, conversation, Fitbit, and Wi-Fi.
After the stages of preprocessing, missing data imputation using
the KNN strategy, and the removal of highly corelated features,
the final data set comprised 61 features and 507 data points
belonging to a total of 45 (81.8%) participants.

Feature Engineering in Experiments
Since we maintained a consistent data set for all our
experiments, feature engineering for all the experiments was
achieved through data collected from 6 sensors. As discussed
earlier, the data were collected from participants’ smartphones
using the AWARE app [66] and then passed through the
RAPIDS application programming interface (API). The features
extracted using the API are discussed in detail next.

Call Sensor Features

The calls sensor features provide a context of how frequently
the user has been in contact with someone else. Studies have
revealed that higher degrees of depression are linked to reduced
contact with social circles [48,53]. As part of call sensor
features, we extracted the total number of missed calls; the
counts of missed calls from distinct contacts, calls from the
most frequent contacts for a time segment, incoming calls, and
outgoing calls; the mean (SD), maximum, and minimum

duration of both incoming and outgoing calls; and the entropy
duration of outgoing and incoming calls, which provided an
estimate of the Shannon entropy for the duration of all calls of
a particular call type (ie, incoming, outgoing, or missed). All
the extracted features were mean-aggregated over the period of
1 week to match the ground truth.

Location Sensor Features

Location sensor features provide a contextual idea of the amount
of movement users of the sensors go through and show the
correlation to mental health [3,46,49,50]. The location data are
collected through the phones’GPS or the cellular towers around
the phones. Location has been proven to be able to predict
depressive states [3]. The features extracted from the location
sensors included the location variance calculated through the
sum of variance in longitude and latitude coordinates, the log
of the location variance, the total distance covered, and the
circadian movement [17] calculated using the Lomb-Scargle
method that maps a person’s location patterns following the
24-hour circadian cycle. The speed was also captured as a
feature, and static labeled samples were clustered and K-means
clustering was used to locate significant places visited by the
participants. In addition, location entropy was also engineered
to provide the proportion of time spent at each significant
location visited during a day.

Screen Sensor Features

Screen sensor features are a strong indicator of how engaged
users are with their phones. To capture this information, we
extracted features that includes the minimum, maximum, sum,
and mean (SD) of unlock episodes, along with the number of
all unlock episodes and minutes until the first unlock episode.
These features have been used in prior studies that proved their
correlation to depressive symptom severity [46,54,55].

Conversation Sensor Features

Conversation is yet another interesting set of features that
provide information pertaining to social interactions and has
been used in a number of studies relating to mental health
[55-58]. The computed features included the minimum,
maximum, sum, and mean (SD) of the duration of all
conversations. We also recorded the minutes of voice, silence,
and noise. The energy associated with noise, which is the
L2-norm and the sum of all energy values when noise or voice,
was inferred.

Fitbit

Fitbit offers 2 features, which we extracted based on their
application in previous studies relating to mental health
[54,60,61], and included the maximum resting heart rate
(average maximum heart rate over 1 week) and the maximum
number of steps (average step count over 1 week). These
features provided an idea of the physical movement and stress
experienced by participants.

Wi-Fi

Wi-Fi can be a good indicator of social context. We extracted
the Wi-Fi count scans that told us the number of scanned Wi-Fi
access points connected to by the phone during a time segment
and the number of unique connected devices during a time
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segment based on the hardware address. In addition, we
extracted the most scanned connected device. The use of
Wi-Fi-based features in mental health prediction have been
previously covered [48,59].

The data set used in our experiments had all the features
discussed, which were part of the 61 features. Feature
engineering helped provide a context to the data gathered from
all the smartphones and Fitbit sensors and form predictions for
ML models.

Results of Experiment 1
Experiment 1 showcased the overall performance of the FLMS
in comparison with traditional user-agnostic and personalized
models. The FLMS achieved a mean accuracy of 0.66 (SD 0.53)
and a mean recall of 0.59 (SD 0.50), which are 7% and 13%
higher than the best baseline performance achieved by ATU
modeling. Among the singular modeling approaches, the ATU,
a personalized strategy, performed best overall, with a mean
accuracy of 0.59 (SD 0.50) and a mean recall of 0.46 (SD 0.66).
The worst performances were shown by user-agnostic LOPO

and LTXO approaches, both of which had a mean accuracy of
0.45 (SD 0.80) and 0.47 (SD 0.83), respectively. These results
are presented in Table 2 and show that singular modeling
approaches used in different studies [1-4,9-17] underperform
when modeling involves small, noisy, multimodal sensor data
in comparison to our FLMS. The FLMS uses a balance of these
strategies to improve predictions.

Experiment 1 was also designed to show how the FLMS
suggests the best feature combinations for the various modeling
strategies it uses through the utility of hamming distance from
stage 3. The lowest hamming distance in stage 3 for the various
modeling approaches used is presented in Table 3. We observed
that the ATU approach led to the lowest hamming distance of
226, followed by LOTPO, with a minimum hamming distance
of 267. The highest hamming distances were those of LOPO at
350 and LTXO at 378. The lower the hamming distance, the
closer the predictions to ground truth. Based on this, we saw
that overall, 6-sensor fusion works best for this data set. The
metadata of experiment 1 are shown in Table 4.

Table 2. Experiment 1 performance of the FLMSa in comparison to singular modeling strategies.

Test F1-score, mean (SD)Test recall, mean (SD)Test accuracy, mean (SD)Type of modeling strategyModeling strategy

0.56 (0.55)0.59 (0.50)0.66 (0.53)User agnostic + personalizedFLMS

0.50 (0.57)0.46 (0.66)0.59 (0.60)PersonalizedATUb

0.32 (0.73)0.45 (0.70)0.53 (0.65)PersonalizedLOTPOc

0.40 (0.87)0.43 (0.72)0.45 (0.80)User agnosticLOPOd

0.33 (0.86)0.35 (0.81)0.47 (0.83)User agnosticLTXOe

aFLMS: framework for longitudinal multimodal sensors.
bATU: accumulated time unit.
cLOTPO: leave one time unit one participant out.
dLOPO: leave one participant out.
eLTXO: leave time unit X out.

Table 3. Experiment 1 minimum hamming distance for choosing the best sensor combination for the experiment.

Hamming distanceModeling approach in the FLMSaBest sensor fusion

226ATUb6-sensor fusion (calls + location + screen usage + conversation + Fitbit + Wi-
Fi)

267LOTPOc6-sensor fusion (calls + location + screen usage + conversation + Fitbit + Wi-
Fi)

350LOPOd1-sensor fusion (location)

378LTXOe2-sensor fusion (calls + location)

aFLMS: framework for longitudinal multimodal sensors.
bATU: accumulated time unit.
cLOTPO: leave one time unit one participant out.
dLOPO: leave one participant out.
eLTXO: leave time unit X out.
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Table 4. Experiment 1 metadata.

Experiment 1Metadata

KNNa imputation, dropping highly co-related columns, sklearn StandardScalerFeature preprocessing

FLMSc, ATUd, LOTPOe, LTXOf, LOPOgModeling CVb strategy

import XGBoosti as xgb

sklearn.linear_model import LinearRegression

sklearn.ensemble import RandomForestRegressor

sklearn.linear_model import ElasticNet

sklearn.ensemble import GradientBoostingRegressor

sklearn.ensemble import ExtraTreesRegressor

sklearn.ensemble import AdaBoostRegressor

MLh algorithms used

42Random state

Accuracy, recall, F1-scoreEvaluation metrics

aKNN: K-nearest neighbor.
bCV: cross-validation.
cFLMS: framework for longitudinal multimodal sensors.
dATU: accumulated time unit.
eLOTPO: leave one time unit one participant out.
fLTXO: leave time unit X out.
gLOPO: leave one participant out.
hML: machine learning.
iXGBoost: Extreme Gradient Boosting.

Results of Experiment 2
In experiment 2, we compared FLMS ranking results with ML
algorithms that have been used in multiple studies on
sensor-based assessment of mental health, as listed in Table 1.
The ML algorithms XGBoost and KNN were chosen based on
the popularity of their usage in the community, while the DL
algorithm was chosen to be a basic multilayer perceptron (MLP)
network and a long short-term memory (LSTM) network. These
were also the best-performing algorithms compared to other
ML algorithms in the literature on our data set. We initially
tried using K-fold validation for the SOTA algorithms, but due
to poor results, we switched to the leave-one-out strategy, which
performed relatively better. This experiment first compared the
overall performance of the FLMS with other SOTA algorithms
based on the average test accuracy, recall, and F1-score. Second,
the experiment substantiated the claim that the FLMS is better
in tackling overfitting, as shown by the mean training accuracy
versus the mean test accuracy compared to the ML algorithms
in Figure 11. The models with only the single ML algorithm
performed no better than the majority baseline approach, with

XGBoost showing a mean test accuracy 0.50 (SD 0.55) and the
KNN showing around the same mean accuracy of 0.52 (SD
0.54), as shown in Table 5. The MLP achieved higher accuracy
but a low test F1-score, indicating the model’s performance has
high false-positive and false-negative rates. The LSTM was no
different and showed a similar recall and F1-score outcomes.
The overfitting of the SOTA models is illustrated in Figure 11,
where we compared the FLMS and the rest of the algorithms
based on their respective performances using training and test
accuracies. Figure 11 shows that the FLMS had a relatively
consistent performance between a training accuracy of 68% and
a test accuracy of 66%, while XGBoost, KNN, MLP, and LSTM
models had high training accuracies but low test accuracies.
The metadata of experiment 2 are shown in Table 6.

The experiments demonstrated support for the points highlighted
in the contribution of this paper—that our ranking framework
works well with small data sets in comparison to existing
approaches and can reduce overfitting by using a
balance-weighted ensembling of user-agnostic and personalized
models.
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Figure 11. Experiment 2 shows FLMS training and test accuracies in comparison to SOTA models. The FLMS is better at adapting to overfitting
compared to the other algorithms. FLMS: framework for longitudinal multimodal sensors; KNN: K-nearest neighbor; LSTM: long short-term memory;
ML: machine learning; MLP: multilayer perceptron; SOTA: state of the art; XGBoost: Extreme Gradient Boosting.

Table 5. Experiment 2 performance of the FLMSa compared to MLb and DLc algorithms used in the current literature on adolescent data.

Test F1-score, mean (SD)Test recall, mean (SD)Test accuracy, mean (SD)Modeling strategyPredictive learning approach

0.56 (0.55)0.59 (0.50)0.66 (0.53)ATUd + LOTPOe + LOPOf

+ LTXOg

FLMS

0.28 (0.57)0.33 (0.52)0.50 (0.55)Leave 1 outXGBoosth [14,17]

0.30 (0.73)0.40 (0.61)0.52 (0.54)Leave 1 outKNNi [10,11,13,16]

0.33 (0.70)0.50 (0.71)0.55 (0.70)Leave 1 outMLPj [9]

0.35 (0.70)0.25 (0.70)0.41 (0.66)Leave 1 outLSTMk [67]

aFLMS: framework for longitudinal multimodal sensors.
bML: machine learning.
cDL: deep learning.
dATU: accumulated time unit.
eLOTPO: leave one time unit one participant out.
fLOPO: leave one participant out.
gLTXO: leave time unit X out.
hXGBoost: Extreme Gradient Boosting.
iKNN: K-nearest neighbor.
jMLP: multilayer perceptron.
kLSTM: long short-term memory.
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Table 6. Experiment 2 metadata.

Experiment 2Metadata

KNNa imputation, dropping highly co-related columns, sklearn StandardScalerFeature preprocessing

FLMSc, leave 1 outModeling CVb strategy

import XGBooste as xgb

sklearn.neural_network import MLPClassifier

sklearn.neighbors import KNeighborsClassifier

keras.layers import LSTMf

MLd algorithms used

42Random state

Accuracy, recall, F1-ScoreEvaluation metrics

aKNN: K-nearest neighbor.
bCV: cross-validation.
cFLMS: framework for longitudinal multimodal sensors.
dML: machine learning.
eXGBoost: Extreme Gradient Boosting.
fLSTM: long short-term memory.

Results of Experiment 3
Sparsity is a challenge in dealing with small data sets. The large
number of 0s or missing values can misdirect models and lead
to overfitting [68]. Therefore, it is important to handle the
problem of sparsity. Our experiment was designed specifically
for small data sets, where sparsity proves to be a challenge. To
tackle sparsity in small-data scenarios, the commonly used ML
algorithms are KNN, MLP, support vector machine (SVM),
decision tree (DT), random forest (RF), XGBoost, and AdaBoost
[21-24,69-71].

In our experiment, we showcased a comparison of the FLMS
with all the mentioned ML algorithms. We first calculated the
sparsity of the adolescent data set that comprised all 6-sensor
feature sets. The reason for continuing to use the 6-sensor feature
sets as in the prior experiment was to test the algorithms with
a data set that had a higher degree of sparsity compared to other
feature combinations with lower number of sensors. The sparsity
for this data set was calculated as the ratio of 0s to the total
number of elements in the data set and is given as follows:

(5)

The sparsity of the data set used for this experiment was 35%.
In a small data set, this is a significant amount of sparsity to
negatively impact ML algorithms.

We performed the modeling and evaluated the performance
based on F1-scores as in the case of the prediction of mental
health, the F1-score is a good reflection of how sparsity affects
the models’ judgment in detecting positive and false cases. The
models already shown in Table 4 remained, in addition to other
models that have been mentioned in the literature to perform
well on sparse data sets. Among the ML algorithms used in the
literature, the best performance was shown by the RF, with an
F1-score of 0.35, while the FLMS showed an F1-score 0.21
higher than that of the RF. Both MLP and AdaBoost performed
close to the RF, with an F1-score of 0.33. The algorithm that
performed the worst in handling sparsity was the SVM, with
an F1-score of only 0.15. This experiment highlights the fact
that due to the combination of modeling, the FLMS performs
better when dealing with highly sparse small data sets (Table
7). The metadata of experiment 3 are shown in Table 8.
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Table 7. Experiment 3 performance of the FLMSa compared to common MLb algorithms for tackling sparsity on the adolescent data set.

Test F1-score, mean (SD)Modeling strategyPredictive learning approach

0.56 (0.55)ATUc + LOTPOd + LOPOe + LTXOfFLMS

0.28 (0.57)Leave 1 outXGBoostg [14,17]

0.30 (0.73)Leave 1 outKNNh [10,11,13,16]

0.33 (0.70)Leave 1 outMLPi [9]

0.15 (0.62)Leave 1 outSVMj [12]

0.24 (0.70)Leave 1 outDTk [13]

0.35 (0.65)Leave 1 outRFl [11,13]

0.33 (0.60)Leave 1 outAdaBoostm [14]

aFLMS: framework for longitudinal multimodal sensors.
bML: machine learning.
cATU: accumulated time unit.
dLOTPO: leave one time unit one participant out.
eLOPO: leave one participant out.
fLTXO: leave time unit X out.
gXGBoost: Extreme Gradient Boosting.
hKNN: K-nearest neighbor.
iMLP: multilayer perceptron.
jSVM: support vector machine.
kDT: decision tree.
lRF: random forest.
mAdaBoost: Adaptive Boosting.

Table 8. Experiment 3 metadata.

Experiment 3Metadata

KNNa imputation, dropping highly corelated columns, sklearn StandardScalerFeature preprocessing

FLMSc, leave 1 outModeling CVb strategy

import XGBooste as xgb

from sklearn.svm import SVMf

sklearn.neural_network import MLPClassifier

sklearn.neighbors import KNeighborsClassifier

sklearn.tree import DecisionTreeClassifier

sklearn.ensemble import RandomForestClassifier

sklearn.ensemble import AdaBoostClassifier

MLd algorithms used

42Random state

F1-scoreEvaluation metrics

aKNN: K-nearest neighbor.
bCV: cross-validation.
cFLMS: framework for longitudinal multimodal sensors.
dML: machine learning.
eXGBoost: Extreme Gradient Boosting.
fSVM: support vector machine.
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Discussion

Principal Findings
Solving the problem of limited and sparse data sets is not a
singular modeling-based endeavor. It requires flexibility and a
combination of strategies to achieve predictions that can be
trusted. In this section, we discuss our ranking framework’s
overarching aims, performance, and limitations based on our
assessments.

In experiment 1, we tested the FLMS in comparison to baseline
user-agnostic and personalized models. Our framework achieved
a higher accuracy, recall, and F1-score for the predictions when
compared to singular modeling approaches, as seen in Table 2.
We also demonstrated how we arrived at the sensor combination
for the best set of predictions using hamming distances in stage
3 of the FLMS, as reflected in Table 3. In experiment 2, we
compared the FLMS with SOTA algorithms used in the literature
for predicting mental health states using sensors. The results
from this experiment showed the FLMS to perform better than
the existing algorithms in terms of accuracy, recall, and
F1-scores (Table 4). Experiment 2 also highlighted the FLMS’s
ability to reduce overfitting in comparison to the SOTA
algorithms. The FLMS showed that the training accuracy and
test accuracy did not diverge by large margins, indicating it had
not been overfitting the models. Lastly, we compared the FLMS
ranking with that of existing ML algorithms that perform well
with sparse data in experiment 3. We saw that the data set we
used in our experiments exhibited 35% sparsity, which is a
significant amount in an already small data set. The FLMS had
a higher F1-score compared to the rest of the ML algorithms.

Comparison With Previous Research
The results of baseline modeling are consistent with previous
studies [10,29] that showed superior performance when models
were personalized. The increase in accuracy shows that our
framework was able to narrow down the best set of predictions
overall.

Hamming distance results showed that in LOPO and LTXO
approaches, single-sensor deployment and a dual-sensor
combination perform equally well as 6-sensor combinations
and achieve a minimum hamming distance. This brings forth
the advantage of our framework to prioritize sensor selection
for yielding best predictions overall and for only the necessary
number of feature sets.

The results of experiment 2 provide us with further evidence of
the ranking frameworks’efficacy in balancing reliance between
both user-agnostic and personalized approaches. Despite a
higher accuracy, the recall of the FLMS does not overfit like
that of other SOTA ML algorithms. The FLMS uses weights
to balance out such effects, thus reducing the impact of
overfitting in prediction performance. The test with popular
existing ML algorithms showed that, despite the success of the

models in previous studies [9-11,13-17], they struggle when
the data set is small and noisy, as is the case of the depression
data set presented in this work. This performance result is similar
when we look at the capability of ML algorithms that are better
at handling sparsity. We found the FLMS to perform better than
those algorithms.

Overall, seeking a single user-agnostic model that fits all is an
elusive problem as most existing works suggest better
performance for specialized approaches. However, specialized
modeling does not perform well on heterogeneous data sets.
Therefore, neither user-agnostic nor personalized modeling
alone can be applicable to a specific problem area. Our
framework provides a practical way to balance the 2 approaches,
particularly for dealing with limited data sets.

Limitations and Future Directions
We encountered a few limitations with this study that can be
addressed in future work. The FLMS was tested on the case of
depression in adolescents. As such, we have not been able to
establish a lower bound on the data set size that our framework
is capable of handling.

Another area that we could not elaborate on is the computing
speed of such a framework that might be impacted if sensor
numbers rise to higher levels. Lastly, the framework was
equipped with lightweight and widely used ML algorithms.
Methods such as the generalized linear mixed model (GLMM)
for handling longitudinal data could not be tested.

Future work can address these limitations with exposure of the
framework to more multimodal, longitudinal data sets and
adapting and testing other ML algorithms. Interesting future
directions for the framework include its online adaptation and
a similarity-based cold-start solution.

Conclusion
In this study, we presented a novel prediction-ranking
framework for modeling limited noisy or sparse, multimodal,
longitudinal passive sensor data. We tested our framework on
an adolescent depression data set consisting of 45 participants
over a period of 24 weeks. The results showed that despite the
complexity and limitations of the data set, our framework is
able to provide better predictions compared to singular modeling
approaches. In experiment 1, our model achieved a 7% increase
in accuracy and a 13% increase in recall. In experiment 2 with
synthetic data, our model achieved a 5% increase in accuracy
and avoided overestimating the recall value through ensembling
predictions. The framework also showed its ability to explore
sensor combinations through feature fusion. Our tests with
existing popular SOTA algorithms showed that the models
struggle when data tend to be limited and noisy. We also tested
the FLMS with algorithms that perform well with sparsity and
found the FLMS to exhibit a better performance. In conclusion,
the FLMS can be an effective tool for passive sensing studies.
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Abstract

Background: Work characteristics, such as teleworking rate, have been studied in relation to stress. However, the use of
work-related data to improve a high-performance stress prediction model that suits an individual’s lifestyle has not been evaluated.

Objective: This study aims to develop a novel, high-performance algorithm to predict an employee’s stress among a group of
employees with similar working characteristics.

Methods: This prospective observational study evaluated participants’ responses to web-based questionnaires, including
attendance records and data collected using a wearable device. Data spanning 12 weeks (between January 17, 2022, and April
10, 2022) were collected from 194 Shionogi Group employees. Participants wore the Fitbit Charge 4 wearable device, which
collected data on daily sleep, activity, and heart rate. Daily work shift data included details of working hours. Weekly questionnaire
responses included the K6 questionnaire for depression/anxiety, a behavioral questionnaire, and the number of days lunch was
missed. The proposed prediction model used a neighborhood cluster (N=20) with working-style characteristics similar to those
of the prediction target person. Data from the previous week predicted stress levels the following week. Three models were
compared by selecting appropriate training data: (1) single model, (2) proposed method 1, and (3) proposed method 2. Shapley
Additive Explanations (SHAP) were calculated for the top 10 extracted features from the Extreme Gradient Boosting (XGBoost)
model to evaluate the amount and contribution direction categorized by teleworking rates (mean): low: <0.2 (more than 4 days/week
in office), middle: 0.2 to <0.6 (2 to 4 days/week in office), and high: ≥0.6 (less than 2 days/week in office).

Results: Data from 190 participants were used, with a teleworking rate ranging from 0% to 79%. The area under the curve
(AUC) of the proposed method 2 was 0.84 (true positive vs false positive: 0.77 vs 0.26). Among participants with low teleworking
rates, most features extracted were related to sleep, followed by activity and work. Among participants with high teleworking
rates, most features were related to activity, followed by sleep and work. SHAP analysis showed that for participants with high
teleworking rates, skipping lunch, working more/less than scheduled, higher fluctuations in heart rate, and lower mean sleep
duration contributed to stress. In participants with low teleworking rates, coming too early or late to work (before/after 9 AM),
a higher/lower than mean heart rate, lower fluctuations in heart rate, and burning more/fewer calories than normal contributed to
stress.

Conclusions: Forming a neighborhood cluster with similar working styles based on teleworking rates and using it as training
data improved the prediction performance. The validity of the neighborhood cluster approach is indicated by differences in the
contributing features and their contribution directions among teleworking levels.

Trial Registration: UMIN UMIN000046394; https://www.umin.ac.jp/ctr/index.htm

(JMIR AI 2024;3:e55840)   doi:10.2196/55840
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Introduction

Stress is an external or internal stimulus that produces a
compensatory biological response that can trigger or aggravate
many diseases or pathological conditions [1]. Notably, the
stress-depression association requires recognizing the effects
of context and personal characteristics on the existence of
stressors and understanding the progressive and dynamic
relationship between stress and depression over time [2]. This
is important because depression remains a major social issue
[3] with a high relapse rate, prolonged duration of illness [4],
and high socioeconomic impact [5]. The duration of untreated
depression is associated with worse outcomes [6]. The annual
national cost of major depressive disorder among adults aged
≥20 years in Japan in 2008 was approximately US $11 billion,
including US $6.9 billion in workplace-associated expenses [5].

Detecting and targeting depression before a formal diagnosis
can serve as an early countermeasure to depression. Therefore,
detecting stress in advance is vital because stress is a factor that
triggers depression and increases the risk of relapse [2].
Companies are placing an ever-increasing emphasis on their
employees’ mental health, including their experience of stress,
as an important topic to address. According to the Japanese
Ministry of Health, Labour and Welfare (2021), the proportion
of companies with workers taking temporary leave or retiring
due to mental health conditions has increased from 9.2% in
2020 to 10.1% in 2021 [7]. Furthermore, about 40% of
companies in Japan reported worsening employee mental health
due to the COVID-19 pandemic [8]. Therefore, in response to
this growing need, the proportion of companies conducting
stress checks on their employees has increased from 62.7% in
2020 to 65.2% in 2021 in Japan [7].

One approach is to develop stress prediction models using data
related to stress collected by wearable devices that measure
parameters such as heart rate variability [9], physical activity
[10], and sleep [11], as well as through questionnaire responses
that provide insights into physical activity [12] (eg, outings),
absenteeism (failure to report for scheduled work), and the
number of times lunch is missed [13]. However, these data are
affected by working style such as teleworking habits (eg, remote
working).

To the best of our knowledge, there is no study taking
teleworking habits into account for stress prediction even though
the relationship between teleworking and stress has been studied.
Teleworking/telecommuting can have an impact on mental
health [14,15]. However, stress is dependent not only on the
environment but also on an individual’s attributes [16,17].
Moreover, stress parameters [9,18,19] can be influenced by
various other factors. Consequently, a few studies on stress
detection have used a personalized model-based approach
[20-22].

The objective of this study was to develop a novel,
high-performance stress prediction algorithm using working
data focusing on employees’ teleworking habits.

Methods

Study Design
This prospective observational study (UMIN000046394)
evaluated participants’ responses to web-based questionnaires,
including attendance records and data collected via a wearable
device. The data were used to develop a high-performance stress
prediction algorithm based on working-style characteristics
similar to those of the prediction target person among the
participants. Data spanning 12 weeks were collected for each
employee from January 17, 2022, to April 10, 2022.

Ethical Considerations
Informed consent was obtained from employees using a
web-based consent form. This study was approved by the
Research and Ethics Committee of Shionogi & Co., Ltd
(EP21-13) and the MINS Institutional Review Board (210238),
a specified nonprofit organization. The study was conducted in
compliance with the ethical guidelines for medical and health
research involving human participants and in accordance with
the ethical principles of the Declaration of Helsinki. To
deidentify the participants, age and sex data were not collected.

Recruitment
This study enrolled 194 employees of the Shionogi Group
working in Osaka, Japan. Participants who rarely teleworked
included sales or research employees, and those who frequently
teleworked included clerical employees. Notably, neither 100%
teleworking nor teleworking other than working from home
was permitted for Shionogi Group employees. The teleworking
rate was calculated as the number of days an employee worked
from home during the 12 weeks divided by the number of days
an employee worked during the 12 weeks.

The participants, who were from different departments, worked
during standard working hours (9 AM to 5 AM Monday to
Friday); however, given the anticipated flexible time system
for data collection, participants could decide their working hours
each day and enter work start and end times into the attendance
management system in advance. Night shift workers were not
included in this study, and while there was a certain degree of
flexibility in work hours, daytime workers were encouraged not
to shift their work hours too far from the standard workday
except when necessary. There were no exclusion criteria other
than working time and region (daytime employee, working in
Osaka), thereby reducing enrollment bias.

Data Collection
Daily data collected from the Fitbit Charge4 wearable device
worn for 12 weeks (Fitbit LLC) included sleep data recorded
daily (sleep duration, sleep efficiency, sleep initiation, and end
time), activity data recorded every 15 min (number of steps
taken, distance moved, number of floors climbed or descended,
and calories burned), and heart rate per minute. Daily work shift
data collected included working hours, scheduled work start
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and end times, scheduled hours of work, work from home
(yes/no), and absence from work/leave taken (yes/no).

Weekly web-based questionnaire responses included the K6
questionnaire [23,24], which measures 6 common symptoms
of depression and anxiety, each rated on a scale between 0 and
4 (0=never, 1=a little, 2=sometimes, 3=most often, and 4=at all
times). The total score was the sum of the responses to each
question (ranging from 0 to 24), the behavioral questionnaire
(number of outings, such as commuting and social outings),
and the number of days lunch was missed. We selected the latter
2 parameters based on the premise that the number of outings
is an alternative index for exercise habits [12]. Outings could
also be used as an alternative index for UV exposure, which is
reported to be related to mental health [25,26], and skipping
lunch is reported to be related to stress [13].

Proposed Prediction Model

Step 1: Extract the Neighborhood Cluster
The participants were arranged in ascending order based on
their teleworking rate, with each participant serving as a
prediction target person. To homogenize the training data
background, a group of participants whose working style/work
characteristics were similar to those of the prediction target
person were extracted and labeled as the neighborhood cluster.

This neighborhood cluster included participants with the top 20
nearest teleworking rates (for the training data) from the
prediction target person. In some instances, when the size of
the neighborhood cluster was greater than 20 because of the
same ranking on the boundary, participants on the boundary
were randomly sampled to include only 20 participants.

Step 2: Create an Individual Model to Predict Stress
The selected neighborhood cluster was subsequently used to
train a prediction model for each prediction target person,
meaning that an “n” number of different prediction models was
created for the “n” number of targets to be included in this
analysis. Using the neighborhood cluster data extracted in Step
1, a model was created that was individually optimized for the
prediction target person. Data from the previous week were
used to predict the stress level in the following week using this
individual model. Although data for 12 weeks were collected,
only the data for 11 weeks were used in the model because the
data before week 1 (–1 week) were not collected to use the
first-week data in the model (Figure 1).

The 12-week data were split into training and test data for the
3 models. The training data comprised all 12-week data of the
neighborhood cluster plus data from the first 7 weeks for the
prediction target person. The test data comprised the last 5 weeks
of data from the prediction target person (Figure 2).

Figure 1. Prediction model. Data collected within a term shown by a blue dashed-line box are input to the prediction model, and the stress state
(negative/positive) at the timepoint shown by a red star is predicted.
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Figure 2. Twelve-week data split for comparison of the three methods.

Analysis Method

Sample Size
Considering the feasibility of an exploratory evaluation, the
number of study participants was set to 150. However, the
proportion of people with mental illness at the Shionogi Group
was estimated to be between 7% and 10%, and the expected
participation of approximately 10 patients with mental illness
was based on this value. In general, too few mental illness cases
lead to failure of analysis, whereas too many mental illness
cases (>10%) do not appropriately reflect the population. As a
screening method, we collected a stress check questionnaire
when obtaining informed consent. However, as the number of
mental illness cases was within the expected range of 7% to
10%, a formal screening was not performed. A total of 2037
weeks of data were evaluated. Data were evaluated weekly, and
the mean (SD) was calculated from each participant’s weekly
data. The mean was omitted only when data were missing for
the entire 7 days of the week, and the SD was omitted only
when data were missing for ≥6 days of the week (unbiased SD

required 2 or more data points). The K6 questionnaire scores
representing the stress index [23] were converted into binary
objective variables (negative=K6: 0-4 [class 1]; positive=K6:
5-8 [class 2], K6: 9-12 [class 3], and K6: ≥13 [class 4]).

Model Training Details
The analysis was performed using Python (version 3.8.0; Python
Software Foundation) and PyCaret (version 2.3.10). The
Extreme Gradient Boosting (XGBoost) hyperparameters were
set as follows (common in all cases): max_depth=6,
learning_rate=0.3, and n_estimators=100. These hyperparameter
values are the default configuration of PyCaret, and a
hyperparameter search was not performed. The 3 models were
compared, which included threshold adaptation. The single
model used the first 7 weeks as training data and the latter 5
weeks as test data for all participants. Proposed method 1 used
12-week data of the neighborhood cluster plus the first 7-week
data of the prediction target person as training data and the latter
5-week data of the prediction target person as test data. Both
methods used a fixed threshold of 0.5 (the default threshold of
XGBoost); an output of the stress prediction model above this
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threshold indicated high levels of stress. Proposed method 2
used 7-week data of the neighborhood cluster and the prediction
target person as training data, the latter 5-week data of the
prediction target person as test data, and the latter 5-week of
the neighborhood cluster for threshold adaptation. The
explanatory variables are the 50 features shown in Multimedia
Appendix 1, and the object variable is the binarized stress score.

The threshold was adjusted such that the true positive (TP) rate
was >0.8 using the threshold adaptation data. A value of 0.8
was the practically required TP rate. Of note, there was no
guarantee that the TP rate would be >0.8 in the test data because
the threshold was not adjusted for test data. The prediction
threshold was adjusted such that the TP rate increased to >0.8,
with the lowest false positive (FP) rate. Notably, determining
the TP rate is more important than determining the FP rate to
ensure early depression countermeasures. Thus, by setting the
value to 0.8, we could predict as many positives as possible.
The area under the receiver operating characteristic curve
(AUROC) was used to measure the performance of the models.

Data Exclusion
A total of 190 individual models were created, as 2 participants
discontinued the study, and data from 2 other participants were
missing in the latter 5 weeks and were not included in the test
data. However, the data of the latter 2 participants were available
for the first 7 weeks and were thus included in the training data
(Figure 2).

Procedure for Checking Feature Contribution
We selected figures to report the absolute amount of feature
contribution and feature contribution variability between
teleworking rates. Feature importance for the prediction was
evaluated for each individual model using XGBoost [27,28],
and the top 10 features were identified. High feature importance
was defined as the factor (50 variables shown in Multimedia
Appendix 1) with a high contribution (influence) to the
prediction. Feature importance was defined as a score calculated
based on the reduction in the objective function related to
heterogeneity (sum of squared residuals for continuous variables
and the Gini index for categorical variables) achieved by

splitting the feature value when creating decision trees
(Multimedia Appendix 2) [28].

Thereafter, the individual model was divided into 3 levels
stratified by the teleworking rate, and the top 10 feature values
for each level were extracted. Finally, Shapley Additive
Explanations (SHAP) [29] were calculated for the top 10
extracted features to evaluate their impact and contribution
direction, stratified by 3 levels of teleworking rates, as follows:
(1) low: <0.2 (mean of >4 days per week in office), (2) middle:
0.2 to <0.6 (mean of 2-4 days per week in office), and (3) high:
≥0.6 (mean of <2 days per week in office). The absolute value
of SHAP represents the contribution amount, while its positive
or negative direction on the y-axis represents the contribution
direction.

The contribution direction and impact of features were based
on “covariance of features and SHAP” divided by “SD of
features.” Any positive deviation from 0 on the y-axis was
considered to positively impact stress, and any negative
deviation was considered to negatively impact stress.

Results

Overall Findings
Data from 190/194 (97.9%) participants were included to
develop high-performance stress prediction algorithms; 2
participants discontinued the study, and data from 2 other
participants were included only in the training set. The
teleworking rate of the employees ranged between 0% and 79%.
The prediction results of the individual models were integrated
for all participants using proposed methods 1 and 2 and
compared with the results of the single model. Although the
proposed methods improved the prediction performance, the
AUC was similar for proposed methods 1 and 2. The AUC was
the highest for proposed method 1, at 0.85 (TP vs FP: 0.59 vs
0.12), followed by proposed method 2, at 0.84 (TP vs FP: 0.77
vs 0.26) and the single model method, at 0.76 (TP vs FP: 0.42
vs 0.12) (Table 1). The confusion matrix for methods 1 and 2
is presented in Figure 3.

Table 1. Comparison of prediction results of the single model method and proposed methods 1 and 2.

Proposed method 2Proposed method 1Single modelPerformance metric

0.770.590.42True positive rate

0.260.120.12False positive rate

0.840.850.76AUROCa

aAUROC: area under the receiver operating characteristic curve.
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Figure 3. Confusion matrix for methods 1 and 2. “N” represents the total number of target classes. FN: false negative; FP: false positive; TN: true
negative; TP: true positive.

Feature Importance Analysis
The top 10 features with the highest mean feature importance
ranking for each of the 3 teleworking levels are presented in
Multimedia Appendix 2. These 10 features were divided into
3 categories: activity (red), work (green), and sleep (blue). They
were then tabulated by teleworking levels, with 43.2% (n=82)
at the low level, 36.3% (n=69) at the middle level, and 20.5%
(n=39) at the high level. Among the participants with a low
teleworking rate, most features were related to sleep, followed
by activity and work. Among the participants with high
teleworking rates, most features were related to activity,
followed by sleep and work.

Analysis of Feature Contribution Direction Based on
SHAP
The contribution direction of each individual model for the top
10 extracted features was examined at each level. Although

many features were evaluated, only those with interesting
suggestions have been reported. Middle and low teleworking
rates and longer working hours contributed to higher stress
levels (Figure 4A). Irrespective of the teleworking rate, lower
activity contributed to higher stress levels (Figure 4B).

Participants with a high teleworking rate who skipped lunch
more often had higher stress levels than those with low or middle
teleworking rates. Interestingly, skipping lunch did not
contribute to stress prediction in participants with middle and
low teleworking rates (Figure 5A). Working more or less than
scheduled hours (high variation in the working hour gap)
contributed to stress, especially for those with high teleworking
rates (Figure 5B). Low fluctuations in heart rate (SD of the heart
rate) contributed to stress, particularly for those with middle or
low teleworking rates. However, high fluctuations in heart rate
were a noticeable contributor to stress in those with a high
teleworking rate (Figure 5C).

Figure 4. Analysis of the contribution direction of (A) working hours and (B) activity categorized by teleworking/telecommuting rates based on Shapley
Additive Explanations (SHAP).
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Figure 5. Analysis of the contribution direction of (A) skipping lunch, (B) working hour gap (working more or less than scheduled hours), and (C)
heart rate categorized by teleworking/telecommuting rates based on Shapley Additive Explanations (SHAP).

In participants with low teleworking rates, being late for work
or coming to work too early contributed to stress. Although the
variation was lower, a similar trend was observed for
participants with high and middle teleworking rates (Figure
6A). Having a heart rate higher or lower than the mean heart
rate contributed to stress in participants with low teleworking
rates. Although the variation was lower, a similar trend was
observed for participants with high and middle teleworking
rates (Figure 6B). Burning more or fewer calories than the mean

calorie burned contributed to stress in participants with middle
and low teleworking rates. Moreover, burning less than normal
calories was a noticeable contributor to stress in participants
with high teleworking rates (Figure 6C). In participants with a
low teleworking rate, a longer mean sleep duration contributed
to stress, whereas in those with a high teleworking rate, a lower
mean sleep duration was a noticeable contributor to stress
(Figure 6D).

Figure 6. Analysis of the contribution direction of (A) mean work start time, (B) mean heart rate, (C) daily calories burned, and (D) sleep duration
categorized by teleworking/telecommuting rates based on Shapley Additive Explanations (SHAP).

Discussion

Principal Findings
This study evaluated a novel, high-performance stress prediction
algorithm that uses data from employees to extract neighborhood

data on working styles or work characteristics similar to those
of the target person. The prediction performance of both
proposed methods was markedly improved compared with that
of the single model (baseline). A good stress prediction
performance was achieved—the AUC was the highest for
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proposed method 1 (0.85), followed by proposed method 2
(0.84) and the single model method (0.76). The level of
predictive performance achieved by the proposed models
suggested the benefits of narrowing the training data (by using
neighborhood data) based on the teleworking rate.

In a stress detection study performed by Tazarv et al [30],
per-individual models were reported to outperform single
models; however, the approach required many data points
(approximately 300 times/month) from participants. Therefore,
by selecting a neighborhood cluster, the burden on participants
was reduced. This approach alleviated user burden by reducing
the number of label requests to 7 data points for the prediction
target person. Because previous studies [20-22] did not narrow
the training data based on work style/characteristics, it is
possible to improve their prediction performance by
incorporating this approach.

The results showed that personal data from the prediction target
person are important (particularly in terms of measuring the
change from baseline) because proposed method 2 showed
prediction performance similar to that of proposed method 1.
There was almost no difference in the AUC between proposed
methods 1 and 2, suggesting that intraindividual fluctuation is
a major stressor as the participants’own data contributed greatly
to the performance prediction rather than the neighborhood
cluster data. Thus, personal data from the prediction target
person are important because a reduction in the neighborhood
cluster’s training data to 5 weeks caused no noticeable
performance deterioration. Furthermore, the validity of using
individual models is supported by the fact that there are
differences in the feature contribution depending on the
teleworking level, and the direction of the contribution changes
within each level.

For participants with low teleworking rates, most features were
related to sleep, followed by activity and work. This indicates
that the contribution of activity may be lower when working
from the office (low teleworking rates) than at other teleworking
levels because it is difficult to discriminate between regular
activity and activity due to commuting. For participants with
high teleworking rates, most features were related to activity,
followed by sleep and work. This implies that in a teleworking
environment (such as at home), baseline activity levels are
consciously assumed to be low and easier to discern than sleep
and work.

The results of SHAP suggest that some features are consistent
with intuition and common sense, contributing to its validity.
Longer working hours among participants with middle and low
teleworking rates were a marker of high stress. Low activity,
irrespective of the number of days worked from the office per
week, was a marker of high stress. Additionally, some features
showed changes in the contribution direction within teleworking
levels, suggesting the validity of the proposed method for
modeling a small group of participants.

Several features characteristic of the high teleworking group,
which tended to have the same working style among individuals
but in a completely different working environment, were
identified. Skipping lunch while working from home was likely
to be a marker of stress. This could also be attributed to the fact

that with a high degree of freedom, a person is more likely to
skip meals. In addition, biological information, such as skipping
meals/hunger, is not as easily discernible by employees as
activity, which is presumed to be low while teleworking.
Additionally, working more or less than the scheduled hours
contributed to stress, especially among those with a high
teleworking rate. This observation suggested that arriving late
or leaving early for appointments may be detected as a sign of
stress, likely due to the high psychological hurdles for arriving
late or leaving early, especially among those working from the
office. We believe that psychological hurdles are fewer when
working from home, possibly due to the higher degree of
flexibility in using the provided working hours.

Additionally, lower fluctuations in heart rate were found to
contribute to stress, especially in participants with middle and
low teleworking rates. However, a higher fluctuation in heart
rate was a noticeable contributor to stress in those with a high
teleworking rate. Although it is known that the lower the
fluctuations in heart rate, the greater the stress [9], contradictory
results were noted in the high teleworking group. The autonomic
nervous system, which consists of sympathetic and
parasympathetic nerves, regulates heart rate. During a fight or
flight response (work stress or activity in the contemporary
sense), sympathetic nerves increase the heart rate. On the other
hand, during the rest and digest state (relaxing or inactivity),
the parasympathetic nerves dominate and decrease heart rate.
It is assumed that sympathetic activation is dominant while
working from the office and parasympathetic activation is
dominant while teleworking [18]. The low fluctuations in heart
rate associated with high stress levels in the low and middle
teleworking groups could be attributed to sustained sympathetic
dominance with less time to relax while working from the office.
Similarly, high fluctuations in heart rate associated with high
stress levels in the high teleworking group could be attributed
to temporal activation of sympathetic nerves while performing
a difficult task, despite the parasympathetic predominance of
the baseline state. Additionally, a lower mean sleep duration
among participants with a high teleworking rate was a marker
of stress in this study. This result is important because we expect
that a person should get sufficient sleep when working from
home.

Similarly, several features characteristic of the low teleworking
group were identified. Coming late or too early to work was
identified as a marker of stress among those with a low
teleworking rate. These observations suggested that coming too
early may correlate with long working hours and coming late
may correlate with decreased engagement. Moreover, having a
higher or lower than mean heart rate was found to be a marker
of stress in those with a low teleworking rate. This suggests that
in terms of heart rate, an individual may respond differently to
stress while working from the office, according to the baseline
state of the autonomic nervous system with sympathetic or
parasympathetic dominance. Moreover, the variability in the
contribution of calories burned was high among those with
middle and low teleworking rates. Burning more or fewer
calories than normal among participants with middle and low
teleworking rates was a marker of stress and could be attributed
to the individual’s unique response.
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Limitations
The data used in this study (ie, wearable device, questionnaire,
and attendance data) were affected by working style and various
other factors. If the target population were to change, the results
may be different from those obtained in this study. Moreover,
age-related comorbidities and lifestyle changes were not
considered in the modeling, which can impact the outcome. In
this study, we created a neighborhood cluster based on the
teleworking rate. Therefore, it can only be applied to people
who are allowed to telework. The “neighborhood cluster” in
this study was assumed to be a “cluster with similar working
style.” For practical purposes, it is conceivable that working
styles differ greatly, even if the teleworking rate is similar (eg,
when data are obtained from multiple companies). Moreover,
responses to the questionnaires, including the K6 questionnaire,
were subjective for the participants and not necessarily accurate.
Furthermore, feature importance and SHAP only quantify the
degree to which the machine learning model uses the features
for prediction but do not consider whether the model makes
predictions with high accuracy. Thus, although the tendency to
judge that stress is high when the value of a feature is large is
correct, it cannot be confirmed that “stress increases when the

value of a feature is large.” Finally, because teleworking outside
of working from home was not allowed in the Shionogi Group,
a certain degree of participant bias may exist because certain
job functions were not permitted to telework. Therefore, the
results of this study might not be reproducible when targeting
other forms of teleworking.

Conclusion
Prediction performance was improved by forming a cluster
(neighborhood cluster) with similar working styles based on
the teleworking rate and using it as the training data. The validity
of the neighborhood cluster approach is indicated by differences
in the contributing features and their contribution directions
among teleworking levels. Further studies are required to
evaluate and improve the proposed method using data obtained
from employees of different companies. This methodology can
improve existing stress detection methods by incorporating the
idea of this research and narrowing the training data (ie,
neighborhood cluster extraction based on the teleworking rate).
This study paves the way for employers to consider and support
timely and appropriate interventions for people predicted to
experience high stress levels.
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Abstract

Background: Clinical trials are vital for developing new therapies but can also delay drug development. Efficient trial data
management, optimized trial protocol, and accurate patient identification are critical for reducing trial timelines. Natural language
processing (NLP) has the potential to achieve these objectives.

Objective: This study aims to assess the feasibility of using data-driven approaches to optimize clinical trial protocol design
and identify eligible patients. This involves creating a comprehensive eligibility criteria knowledge base integrated within electronic
health records using deep learning–based NLP techniques.

Methods: We obtained data of 3281 industry-sponsored phase 2 or 3 interventional clinical trials recruiting patients with
non–small cell lung cancer, prostate cancer, breast cancer, multiple myeloma, ulcerative colitis, and Crohn disease from
ClinicalTrials.gov, spanning the period between 2013 and 2020. A customized bidirectional long short-term memory– and
conditional random field–based NLP pipeline was used to extract all eligibility criteria attributes and convert hypernym concepts
into computable hyponyms along with their corresponding values. To illustrate the simulation of clinical trial design for optimization
purposes, we selected a subset of patients with non–small cell lung cancer (n=2775), curated from the Mount Sinai Health System,
as a pilot study.

Results: We manually annotated the clinical trial eligibility corpus (485/3281, 14.78% trials) and constructed an eligibility
criteria–specific ontology. Our customized NLP pipeline, developed based on the eligibility criteria–specific ontology that we
created through manual annotation, achieved high precision (0.91, range 0.67-1.00) and recall (0.79, range 0.50-1) scores, as well
as a high F1-score (0.83, range 0.67-1), enabling the efficient extraction of granular criteria entities and relevant attributes from
3281 clinical trials. A standardized eligibility criteria knowledge base, compatible with electronic health records, was developed
by transforming hypernym concepts into machine-interpretable hyponyms along with their corresponding values. In addition, an
interface prototype demonstrated the practicality of leveraging real-world data for optimizing clinical trial protocols and identifying
eligible patients.

Conclusions: Our customized NLP pipeline successfully generated a standardized eligibility criteria knowledge base by
transforming hypernym criteria into machine-readable hyponyms along with their corresponding values. A prototype interface
integrating real-world patient information allows us to assess the impact of each eligibility criterion on the number of patients
eligible for the trial. Leveraging NLP and real-world data in a data-driven approach holds promise for streamlining the overall
clinical trial process, optimizing processes, and improving efficiency in patient identification.
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Introduction

Background
Clinical trials are crucial for developing new therapies, but they
require significant resources and can introduce delays in drug
development, leading to increased costs [1,2]. Complex and
restrictive eligibility criteria hinder patient enrollment, impacting
target goals, timelines, and ultimately patient well-being [3-5].
This issue is particularly notable in cancer trials with poor
recruitment and high failure rates [6-8] because >80% of the
trials fail to meet their initial target accruals and timelines [6,9].
In addition, overly restrictive eligibility criteria limit the
representation of the broader patient population, reducing
real-world applicability and treatment impact [10-13].
Nonetheless, the practice of trials reusing complicated eligibility
criteria without a clear rationale is a common one [14], despite
the minimal impact on trial outcomes [15]. Liu et al [15]
demonstrated that broadening eligibility criteria using a
data-driven approach can benefit initially excluded patients. A
comprehensive and standardized eligibility criteria knowledge
base that is compatible with real-world data can address these
challenges. Such a knowledge base optimizes trial protocol
design, improves patient enrollment, enhances the reliability
and applicability of evidence synthesis, and fosters the efficient
development of new therapies. Furthermore, it enables
opportunities such as generating synthetic control arms (SCAs)
for single-arm clinical trials using electronic health records
(EHRs) [16-18].

The importance of semantically representing eligibility criteria
interoperable with EHRs has been highlighted in multiple studies
[19-21]. Converting free-text eligibility criteria to computable
formats poses challenges, addressed by a range of natural
language processing (NLP) techniques and transformer models
[22-26]. An NLP interface, Criteria2Query, enables computable
queries for eligible cohort identification using EHRs [27]. This
tool supports clinical trial knowledge base development,
enhancing EHR interoperability and scalability for efficient
eligibility criteria knowledge engineering [28]. Manually
annotated data sets such as “Chia, a large annotated corpus of
clinical trial eligibility criteria” [29] and the “Leaf Clinical
Trials corpus, the largest and most comprehensive
human-annotated corpus of publicly available clinical trials
eligibility criteria” [30] have significantly enhanced NLP model
training and the development of effective query structures.
Despite significant progress in bridging the gap between
eligibility criteria and EHRs, limitations persist in accurately
representing the granularities of eligibility criteria and real-time
eligible patient number checks [20,31,32]. Using varying
hierarchical levels of medical concepts, whether as hypernyms
or hyponyms, presents one of the challenges when aligning
eligibility criteria with EHRs; for instance, numerous trial
eligibility criteria use hypernyms, which encompass a group of

related medical concepts, such as cardiovascular disease.
Conversely, the patient problem list within the EHR specifies
particular medical conditions or diseases (hyponyms), such as
myocardial infarction. Establishing a standardized eligibility
criteria knowledge base by transforming ambiguous hypernym
concepts into computable hyponyms can enhance optimizing
trial protocol design and identifying eligible patients through
seamless integration with EHR data.

Objectives
In this study, we aim to create a standardized eligibility criteria
knowledge base that seamlessly integrates with EHRs. By using
deep learning–based NLP techniques, hypernym concepts in
eligibility criteria will be converted to their EHR-compatible
hyponyms along with their corresponding values. In addition,
the prototype user interface will be developed as a pilot study,
enabling the data-driven optimization of clinical trial protocols
and the identification of eligible patients through the integration
of the eligibility criteria knowledge base and EHRs.

Methods

Data Set
We obtained the data from ClinicalTrials.gov, specifically
industry-sponsored phase 2 or 3 interventional clinical trials
initiated between January 2013 and May 2020. A total of 3281
trials were identified: 817 (24.9%) for non–small cell lung
cancer (NSCLC), 649 (19.78%) for prostate cancer (PCa), 1057
(32.22%) for breast cancer (BCa), 447 (13.62%) for multiple
myeloma (MM), 160 (4.88%) for ulcerative colitis (UC), and
151 (4.6%) for Crohn disease (CD).

For the development of the prototype interface, we selected a
subgroup of patients (n=2775) diagnosed with NSCLC from a
previously curated cohort of patients with lung cancer. This
cohort was established using the data from Mount Sinai-Sema4
Health System data [33], and patient information was
deidentified for the purposes of this study.

Deep Learning–Based NLP Pipeline Development
Our NLP pipeline consists of 3 modules: ontology construction
and manual annotation, model training and pipeline evaluation,
and application.

Ontology Construction and Manual Annotation
To construct our ontology, we randomly selected 425 eligibility
criteria from diverse cancer trials and manually analyzed entities
and relations. This manual analysis focused on identifying
entities and their relationships. Entities were subsequently
categorized into primary and modifier groups, with detailed
examples provided in Multimedia Appendices 1 and 2. The
primary groups included demographic, diagnosis, biomarker,
disease status, prior therapy, comorbidity, laboratory test, vital,
procedure, and other medication, while the modifier groups
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included value, condition, evidence, lines of therapy, negation,
exception, grade, dose, and temporal. Any entities that did not
fall into the primary groups were classified as other observation.
Furthermore, we defined relations between the entities. The
commonly detected relationships between the primary and
modifier groups were (1) has_value_limit between demographic
(age) or vital lorlaboratory test and value, (2) has temporal
limit between comorbidity or other medication or procedure
and temporal, (3) has_negation between observation or
biomarker or prior therapy and negation, and (4) has_exception
between comorbidities or biomarker or diagnosis and exception.
Other relationships included has_dose limit, has_line of therapy
limit, has_grade_limit, has_condition, and need_evidence. The
applicability of the ontology was tested on 60 UC and CD trials.
Next, we manually annotated 246 eligibility criteria from
NSCLC trials and performed model training using Clinical
Language Annotation, Modeling, and Processing, which is an
NLP toolkit [34].

Model Training and Pipeline Evaluation
A multilayer deep learning architecture was implemented for
NLP modeling. The first step involved transforming the text
into sequential vectors of characterization during the embedding
process. These vectors were subsequently input into a
bidirectional long short-term memory network, which is an
artificial neural network designed for text classification. The
bidirectional long short-term memory network was used to
recognize patterns in both forward and backward directions
[35]. The identified patterns were then passed to the next layer,
which used a conditional random field model to compute the
prediction probability [36]. The NLP model was trained using
annotated criteria, with 80% of the manually annotated gold
standard data allocated for training. Model performance was
evaluated on a separate validation set (20%) using precision,
recall, and F1-score values:

Precision = TP / (TP + FP) (1)

Recall = TP / (TP + FN) (2)

F1-score = 2 × (Precision × Recall) / (Precision +
Recall) (3)

In equations 1 and 2, TP stands for true positives, FP for false
positives, and FN for false negatives.

The manual annotation and training processes were iteratively
performed with additional manually annotated notes until the
model achieved a F1-score of >0.8 in the test set (Multimedia
Appendix 3). To tailor the pipeline for specific cancer types, a
preannotation method using the NSCLC pipeline was
implemented for PCa, BCa, and MM for common eligibility
criteria such as laboratory test values and comorbidities. Specific
eligibility criteria such as biomarkers and treatments were
manually annotated for each cancer type: PCa with 124 trials,
BCa with 73 trials, and MM with 60 trials.

Application
The fully trained named entity recognition and relation models
were integrated and applied to annotate the remaining eligibility
criteria for the 4 types of cancer studied (BCa, MM, NSCLC,
and PCa). The output data included sentences, tokens, parts of
speech, entities, negations, and relations.

Construction of Standardized Eligibility Criteria
Knowledge Base Table
The standardized knowledge base was constructed in an
EntityGroup-AttributeName-Value format, involving 2 key
steps: attribute normalization and transforming hypernyms to
hyponyms with corresponding values.

Attribute Normalization
To normalize attributes, we used a 3-step approach. First, we
assigned a Unified Medical Language System concept unique
identifier to map synonyms of an entity, such as estrogen
receptor-positive, ER-positive, and ER+ to the Unified Medical
Language System concept unique identifier C0279754. Second,
we developed a set of rules (Table 1) to map abbreviations (eg,
CrCl to creatinine clearance) and different phrases with the
same meaning (eg, ≥1.5x ULN [where ULN stands for upper
limit of normal], greater than or equal to 1.5x ULN, and ≥1.5x
upper limit of normal) back to their original text. Finally, 2
domain experts manually curated unnormalized entities.
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Table 1. Rules for attribute normalization.

Normalized attributesRule and attributes from eligibility criteria

Rules for mapping synonyms

ASTASTa, SGOTb, aspartate aminotransferase, serum AST

ALTALTc, SGPTd, alanine aminotransferase, serum ALT

Total bilirubinTotal bilirubin, serum bilirubin, total bilirubin level, bilirubin level

HgbHgbe, hemoglobin

HbA1cHbA1c
f, hemoglobinA1c

Serum creatinineserum creatinine, creatinine, creatinine levels, creatinine level

ANCANCg, absolute neutrophil count, absolute neutrophil counts, neutrophil count, neutrophil counts,
absolute neutrophil

WBCWBCh, white blood cells, white blood cell, WBC count, white blood cell count, white blood count,
leucocytes

Plateletsplatelets, platelet, platelet count, platelet counts

CrClCrCli, creatine clearance

ALPALPj, alkaline phosphatase

ULNULNk, upper limit of normal

LLNLLNl, lower limit of normal

Rules related to unit and temporal modifier

≤less than or equal to, ≤

≥greater than or equal to, ≥

>greater than, >

<less than, <

within 4 weekswithin 4 weeks, within 28 days

within 2 weekswithin 2 weeks, within 14 days

within 3 weekswithin 3 weeks, within 21 days

within 6 monthslast 6 months, past 6 months, within 6 months, within six months

within 3 monthslast 3 months, past 3 months, within 3 months, within three months

within 2 yearswithin 2 years, last 2 years, past 2 years

within 3 yearswithin 3 years, last 3 years, past 3 years

within 5 yearswithin 5 years, last 5 years, past 5 years

103/uL109/L, 109/L, 103/uL, 103/microliter, 1000/uL, 1000/microliter, K/microliter, 103/mm3

Other miscellaneous rules

—mCase insensitive

—Remove spaces

aAST: aspartate aminotransferase.
bSGOT: serum glutamic oxaloacetic transaminase.
cALT: alanine transaminase.
dSGPT: serum glutamic pyruvic transaminase.
eHgb: hemoglobin.
fHbA1c: glycated hemoglobin.
gANC: absolute neutrophil count.
hWBC: white blood cell.
iCrCl: creatinine clearance.
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jALP: alkaline phosphatase.
kULN: upper limit of normal.
lLLN: lower limit of normal.
mNot applicable.

Transforming Hypernyms to Hyponyms Along With
Corresponding Values
To formalize hypernyms, identified in primary groups such as
laboratory test, comorbidity, biomarker, prior therapy, and
other medication, we used the following approaches: (1) for
adequate organ functionlaboratory test values, we determined
prevalent laboratory test values by analyzing the unique
laboratory test values for each test across the trials of the same
cancer type that defined the normal organ function; and (2) for
comorbidity, biomarker, prior therapy, and other medication
hypernyms, we collected all example hyponyms described across
the trials of the same cancer type.

Creation of a Prototype Interface for Enhancing Trial
Protocol Design Optimization
We developed a prototype interface using the R programming
language (R Foundation for Statistical Computing) and the Shiny

package to enhance trial protocol design optimization. The
interface allows users to simulate the number of eligible patients
based on specific criteria, including a combination of criteria
such as histology, stages, laboratory test values, performance
scores, prior line of therapy, and comorbidities. For this pilot
study, a subset of patients with NSCLC (n=2775) was selected
and deidentified. To ensure consistency and accuracy, we
standardized the sample entities found in both the eligibility
criteria knowledge base and EHRs using concept codes such as
the International Classification of Diseases; Logical Observation
Identifiers, Names, and Codes (LOINC); and normalized
medical prescription codes. In addition, we converted the
patients’absolute laboratory test values to either the upper limit
of normal (ULN) or the lower limit of normal based on the
provided normal ranges for each specific test. Tables 2 and 3
and Textbox 1 present some examples of normalized concepts
and their codes.

Table 2. Examples of normalized codes for each concept and normal range of each laboratory test.

Normal rangeLOINCa codeLaboratory test

7-561742-6ALTb (SGPTc; U/L)

10-401920-8ASTd (SGOTe; U/L)

0.1-1.21975-2Total bilirubin in serum (mg/dL)

<0.31968-7Direct (conjugated) bilirubin in serum (mg/dL)

0.6-1.2 (male), 0.5-1.1 (female)2160-0Serum creatinine (mg/dL)

97-137 (male), 88-128 (female)2164-2CrClf (mL/min)

>90 mL/min/1.73 m226499-4ANCg (cells/µL)

150,000-450,000777-3Platelets (cells/µL)

12-18718-7Hemoglobin (g/dL)

aLOINC: Logical Observation Identifiers, Names, and Codes.
bALT: alanine transaminase.
cSGPT: serum glutamic pyruvic transaminase.
dAST: aspartate aminotransferase.
eSGOT: serum glutamic oxaloacetic transaminase.
fCrCl: creatinine clearance.
gANC: absolute neutrophil count.
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Table 3. Examples of International Classification of Diseases, Tenth Revision (ICD-10), and International Classification of Diseases, Ninth Revision
(ICD-9), disease codes.

ICD-9 codesICD-10 codesDisease

428.[2-4][0-3]I50.2, I50.3, I50.4Congestive heart failure

411.1I20.0Unstable angina

410.9[0-2]I21Acute myocardial infarction

429.9I49Arrythmia

426.82I45.81Torsade de pointes

426.82I45.81Long QT syndrome

427.3[1-2]I48Atrial fibrillation and flutter

427.89R00.1Symptomatic bradycardia

401.[09]I10Uncontrolled hypertension

414.1[09]I25.3Heart aneurysm

414.01I25.1Coronary heart disease

425.[49]I42.9Cardiomyopathy

447.6I77.6Vasculitis, or angiitis

423.9I31.3Pericardial effusion

443.9I73.9Peripheral vascular disease

Textbox 1. Examples of normalized medical prescription (RxNORM) drug codes.

Drug and RxNORM code

• Bortezomib: 356733

• Carfilzomib: 1302966

• Ixazomib: 1723735

• Lenalidomide: 342369

• Pomalidomide: 1369713

The interface uses a rule-based algorithm to match patients’
EHR data with the criteria. The comprehensive rules for
matching EHR data with criteria have been described in our
previous studies [37]; for instance, we defined the following
rules to map each laboratory test in EHRs to 1 corresponding
LOINC code:

1. Mapping the laboratory test in the LOINC dictionary to the
laboratory test in the EHR, based on the popularity rank
available in the LOINC dictionary

2. Mapping the laboratory test for serum or plasma samples
in the LOINC dictionary to the laboratory test in the EHR
when the popularity rank is not available in the LOINC
dictionary

3. If one-to-one mapping is not feasible using rule 1 and rule
2, the test unit (eg, gram is preferred ovemolar) is
considered to facilitate the mapping

4. When one-to-one mapping is not attainable using rule 1,
rule 2, and rule 3, preference is given to the laboratory test
that lacks information about the method for mapping

We associated medication classes with their respective
medications; for instance, we extended the annotation
“post-menopausal not older than 60 years and taking LHRH

[luteinizing hormone–releasing hormone] agonist” to include
“post-menopausal not older than 60 years and taking goserelin,
leuprolide, or other LHRH agonists.” To achieve this, we used
both our in-house knowledge bases and standard resources, such
as the National Comprehensive Cancer Network’s Clinical
Practice Guidelines in Oncology.

Users can specify different criteria and combinations, such as
different laboratory test values with specific conditions such as
no brain metastasis to determine the number of qualified
patients. The algorithm matches each patient’s EHR data with
the selected criteria and calculates the number of matched
patients for each criterion. The performance of the interface
was evaluated by comparing it to the manual patient selection
process conducted by experienced clinical domain experts.

Ethical Considerations
This study was confirmed and approved by the Program for the
Protection of Human Subjects at the Mount Sinai School of
Medicine (IRB-17-01245)
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Results

Development of Eligibility Criteria–Specific Ontology
Our analysis of cancer clinical trials revealed that hormone
therapy was the most frequently applied modality (1470/2970,
47.37%), primarily in BCa and PCa trials, followed by targeted
therapy (753/2970, 25.35%) and immunotherapy (691/2970,
23.26%). Chemotherapy alone was used in 3.8% (113/2970) of
the clinical trials. We developed an eligibility criteria ontology
applicable to all cancer trials by manually analyzing 425
eligibility criteria (Figure 1). Entities were categorized into 10
primary groups (inside the blue dotted box) and 9 modifier
groups based on semantic types and relations. Entities falling
outside the blue dotted box were classified as other observation.

The inclusion criteria mainly involved entities in the
demographic, diagnosis, laboratory test, and vital groups, while
the exclusion criteria commonly included entities in the
comorbidity, procedure, and other medication groups. Entities
in the biomarker, prior therapy, and disease status groups
appeared in both the inclusion and exclusion criteria.
Relationships originated from the primary groups and terminated
in the modifier groups, except for the has outcome relationship,
which started and ended in the primary group (Figure 1). To
assess the applicability of the cancer eligibility criteria ontology
in a different disease context, we conducted a manual analysis
of 60 trials related to UC and CD. For reference, the computable
formats of the manually annotated 485 trials can be found in
Multimedia Appendices 4-8.

Figure 1. Clinical trial eligibility criteria ontology. Primary entities are grouped inside the blue dotted box. Modifier entities are placed outside the
blue dotted box. The relationship between the primary entities and modifier entities always starts at a primary entity and ends at a modifier entity. LOT:
line of therapy.

NLP Pipeline Quality Metrics
To evaluate the quality of our NLP pipeline, we computed
precision, recall, and F1-score measures. For the primary group

entities, the average scores were 0.91 (precision), 0.79 (recall),
and 0.83 (F1-score). Table 4 presents the range of precision,
recall, and F1-score values of 17 primary group entities.
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Table 4. Performance scores of customized natural language processing pipeline for each entity in the primary groups.

F1-scoreRecallPrecisionPrimary group and attribute group::name

Demographic

0.9600.9231.000Demographic::age

0.9310.8701.000Demographic::gender

Diagnosis

1.0001.0001.000Diagnosis::histology

0.8001.0000.667Diagnosis::stage

Biomarker

0.8890.8001.000Biomarker::biomarker

Disease status

0.7090.6840.737Clinical status::disease status

Prior therapy

0.9190.8950.944Prior therapy::chemotherapy

0.8800.7861.000Prior therapy::targeted therapy

0.8390.7880.897Prior therapy::immunotherapy

0.6820.6820.682Prior therapy::radiotherapy

0.7270.5711.000Prior therapy::adjuvant therapy

0.6670.5001.000Prior therapy::neoadjuvant therapy

Comorbidity

0.8000.7620.842Comorbidity::disease

Laboratory test

0.8440.8180.871Laboratory test::test

Vital

1.0001.0001.000Vital::vital

Procedure

0.7500.6001.000Procedure::procedure

Other medication

0.7620.7270.800Other medication::medication

Eligibility Criteria Attribute Extraction and
Classification
The integrated named entity recognition and relation model
extracted 9090 NSCLC, 7427 PCa, 10,217 BCa, 6803 MM,
1565 CD, and 1586 UC entities along with their attribute
relations. After normalization and manual curation processes,
the eligibility criteria knowledge base for each disease type was
established in the EntityGroup-AttributeName-Value format
(Multimedia Appendices 9-14). The number of unique
EntityGroup-AttributeName-Value combinations varied across
disease types, with 494 from 817 NSCLC trials, 471 from 649
PCa trials, 525 from 1057 BCa trials, 389 from 447 MM trials,
231 from 160 UC trials, and 230 from 151 CD trials. Notably,
UC and CD trials had a smaller number of unique
EntityGroup-AttributeName-Value combinations compared to
cancer trials, indicating the presence of more complicated
eligibility criteria in cancer trials.

Figure 2 and Table 5 show the distribution of
EntityGroup-AttributeName-Value combinations in each primary
group from different diseases and provide examples. The
laboratory test, prior therapy, and comorbidity groups exhibited
a high number of EntityGroup-AttributeName-Value
combinations, followed by the biomarker and other medication
groups. Variations were observed between solid cancers and
hematologic cancers, with higher numbers of
EntityGroup-AttributeName-Value combinations in solid cancer
types for prior therapy and biomarker, while laboratory test
and comorbidity were comparable. The diagnosis group
exhibited varying numbers of EntityGroup-AttributeName-Value
combinations across all 4 cancer types (BCa, MM, NSCLC,
and PCa). EntityGroup-AttributeName-Value in the biomarker,
diagnosis, and prior therapy groups were specified per
indication, while shared EntityGroup-AttributeName-Value
were found in other primary groups.
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Figure 2. Distribution of attributes in the 10 primary groups as well as the other observation group extracted from the eligibility criteria of 4 different
cancer types and 2 different autoimmune diseases. BCa: breast cancer; CD: Crohn disease; MM: multiple myeloma; NSCLC: non–small cell lung cancer;
PCa: prostate cancer; UC: ulcerative colitis.

Table 5. The number of attributes for 10 primary groups along with examples.

Example attributes: group, name, value (with or without condition)Number of attributesPrimary group

MMdPCacBCabNSCLCa

Demographic, age, ≥18 y5101211Demographic

Stage, TNMe system, T2bf4173118Diagnosis

Biomarker, HER2g mutation, L755Ph14427249Biomarker

Disease status, relapsed, yes9131111Disease status

LOTi, prior LOT, ≥25093108114Prior therapy

Cardiovascular disease, arrhythmia, yes (≤3 mo)1089796105Comorbidity

Test, ASTj, ≤2.5x ULNk119110103103Laboratory test

Vital, ECOGl, ≥218212218Vital

Procedure, organ transplantation, yes8666Procedure

Other medication, use of anticoagulants, warfarin (<4 wk)46454545Other medication

aNSCLC: non–small cell lung cancer.
bBCa: breast cancer.
cPCa: prostate cancer.
dMM: multiple myeloma.
eTNM: tumor, nodes, metastasis.
fT2b: a moderately advanced tumor in terms of size and extent but not the most advanced stage; specific implications can vary based on the type of
cancer being described.
gHER2: human epidermal growth factor receptor 2.
hL755P: a reference to a specific mutation in the HER2 gene, with “L” standing for leucine, “755” being the position of the amino acid in the protein,
and “P” standing for proline.
iLOT: line of therapy.
jAST: aspartate aminotransferase.
kULN: upper limit of normal.
lECOG: Eastern Cooperative Oncology Group.
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Transformation of Umbrella Terms Into Computable
Attributes With Representative Values

Overview

The conversion of hypernym concepts into computable attributes
along with their corresponding values was carried out. Table 6
provides some examples of converted attributes and their
corresponding values for each hypernym. All lists can be found
in Multimedia Appendices 9-14.
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Table 6. Examples of hypernym concepts (entity and subgroup entity in eligibility criteria) used in eligibility criteria and converted hyponyms along
with their corresponding values.

Corresponding valuesEntity and subgroup entity in eligibility criteria and converted attribute

Adequate organ function

Normal hepatic function

≤2.5x ULNbASTa

≤2.5x ULNALTc

≤1.5x ULNTotal bilirubin

Normal renal function

≤1.5x ULNCreatinine

Normal hematologic function

≥1500 cells/uLANCd

≥100,000 cells/uLPlatelets

≥9 mg/dLHemoglobin 

Comorbidities

Second malignancy

Yes, with exceptionsAll cancers

Infectious disease

YesHIV

YesHBVe 

YesHCVf 

YesTBg 

Cardiovascular disease

YesCHFh

YesMIi 

YesAngina 

YesArrhythmia 

Autoimmune disease

YesUCj

YesCDk 

YesSystemic lupus erythematosus 

YesRheumatoid arthritis 

YesSystemic sclerosis 

YesGraves disease 

YesGuillain-Barré syndrome 

YesAntiphospholipid syndrome 

YesSjogren syndrome 

 Biomarker

EGFRl mutation sensitive to TKIm

YesExon 19 deletion

YesExon 21 L858R 

YesExon 21 L861Q 
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Corresponding valuesEntity and subgroup entity in eligibility criteria and converted attribute

YesExon 18 G719C 

YesExon 18 G719X 

YesAmplification 

EGFR mutation resistant to TKI

YesExon 20 T790M

YesExon 20 C797S 

YesExon 20 S768I 

YesExon 20 insertion 

Mismatch repair deficient

YesMSH2, MSH6, MLH1, PMS2, or EXO1 gene mutation

YesMLH1 hypermethylation

Prior therapy (targeted)

First-generation EGFR inhibitor

YesGefitinib

YesErlotinib 

YesVandetanib 

Second-generation EGFR inhibitor

YesAfatinib 

YesDacomitinib 

YesPoziotinib 

YesTesevatinib 

Third-generation EGFR inhibitor

YesOsimertinib 

YesLazertinib 

YesRociletinib 

YesTarloxotinib 

Proteasome inhibitor

YesBortezomib based 

YesCarfilzomib based 

YesIxazomib based 

YesOprozomib based 

Prior therapy (hormone)

First-generation antiandrogen

YesBicalutamide

YesNilutamide 

YesFlutamide 

Second-generation antiandrogen

YesAbiraterone 

YesEnzalutamide 

YesDarolutamide 

YesApalutamide 

Androgen deprivation therapy

YesLeuprolide 
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Corresponding valuesEntity and subgroup entity in eligibility criteria and converted attribute

YesGoserelin 

YesDegarelix 

5-α reducing agent

YesFinasteride 

YesDutasteride 

YesMegestrol acetate 

Other medication

Current use of antibiotics

YesRifabutin

YesClarithromycin 

YesAzithromycin 

YesImipenem 

Current use of antiarrhythmic agents

YesPropafenone 

Yes Procainamide 

aAST: aspartate aminotransferase.
bULN: upper limit of normal.
cALT: alanine transaminase.
dANC: absolute neutrophil count.
eHBV: hepatitis B virus.
fHCV: hepatitis C virus.
gTB: tuberculosis.
hCHF: congestive heart failure.
iMI: myocardial infarction.
jUC: ulcerative colitis.
kCD: Crohn disease.
lEGFR: epidermal growth factor receptor.
mTKI: tyrosine kinase inhibitor.

Adequate Organ Function
Adequate organ function criteria were defined using various
laboratory tests. Normal ranges and eligible values for alanine
transaminase (ALT)/aspartate aminotransferase (AST), total
bilirubin, serum creatinine, creatinine clearance, absolute
neutrophil count, platelets, and hemoglobin were determined.

Representative values for adequate organ/hematologic function
included ≤2.5x ULN for ALT/AST, ≤1.5x ULN for total
bilirubin/serum creatinine, ≥1500 cells/uL for absolute
neutrophil count, ≥100,000 cells/uL for platelets, and ≥9 ng/dL
for hemoglobin. Figures 3A-3H display the laboratory test value
range and trial counts for each value in BCa and NSCLC clinical
trials. The trends observed are similar in both cancer types.
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Figure 3. Clinical trial counts with each unique laboratory test value defining normal organ function. (A-B) Alanine transaminase (ALT) and aspartate
aminotransferase (AST): normal ranges from ≤1x upper limit of normal (ULN) to ≤3x ULN, with exceptions for liver diseases (eg, liver metastasis and
Gilbert syndrome [GS]) allowing values of up to ≤5x ULN. (C) Total bilirubin: normal ranges from ≤1x ULN to ≤2.5x ULN, with exceptions for liver
diseases (eg, liver metastasis and GS) allowing values of up to ≤3x ULN. (D) Serum creatinine: normal ranges from ≤1x ULN to ≤2.5x ULN. (E)
Creatinine clearance: normal ranges from ≥30 to ≥60 mL/min. (F) Hemoglobin: normal ranges from ≥8.0 to ≥11.0 ng/dL. (G) Absolute neutrophil count
(ANC): normal ranges from ≥750 to ≥1500 cells/uL. (H) Platelets: normal ranges from ≥50,000 to ≥100,000 cells/uL. BCa: breast cancer; NSCLC:
non–small cell lung cancer. For a higher-resolution version of this figure, see Multimedia Appendix 15.

Comorbidities
The presence of comorbidities is a common exclusion criterion
in clinical trials; however, natural language descriptions of
comorbidities, such as “uncontrollable cardiovascular diseases,”
“pulmonary diseases,” and “autoimmune diseases,” can be

ambiguous and need domain knowledge to interpret them. We
analyzed the hypernyms and their corresponding hyponyms
used in BCa trial eligibility criteria. Figure 4 shows the collected
hyponyms for each comorbidity class. The presence of second
primary malignancies was excluded in almost all trials.
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Figure 4. The heat map graph illustrates the number of clinical trials with each example hyponym for the hypernym comorbidities. Of note, the exception
of atopy is mentioned as an autoimmune disease. The group does not include exceptions of other malignancies such as in situ cervical cancer, noninvasive
bladder cancer, curative basal or squamous in situ prostate cancer, in situ breast cancer, or resected skin cancer other than melanoma. CD: Crohn disease;
CHF: congestive heart failure; CNS: central nervous system; COPD: chronic obstructive pulmonary disease; DVT/PE: deep vein thrombosis/pulmonary
embolism; HBV: hepatitis B virus; HCV: hepatitis C virus; MI: myocardial infarction; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus;
T1D: type 1 diabetes; T2D: type 2 diabetes; TB: tuberculosis; UC: ulcerative colitis.

Prior Therapy, Other Medication, and Biomarker
By combining all examples of each hypernym, we broke down
these hypernyms into actual medication and mutation hyponyms;
for instance, we collected procainamide or propafenone for
current use of antiarrhythmic medication. Similarly, we
collected epidermal growth factor receptor (EGFR) exon 20
T790M, T797S, S768I, or insertion for EGFR mutations resistant
to EGFR inhibitors.

Development of a Prototype Interface for the
Optimization of Protocol Design
Our study investigated the impact of various criteria on the
number of eligible patients. We developed a prototype interface
that uses real-world patient information. Using a subset of
deidentified cohorts of patients with NSCLC (n=2775), we
deployed an eligibility criteria knowledge base that we had
constructed in the interface. Figure 5A displays the selected
criteria list, Figure 5B shows the corresponding patient number,
and Figure 5C illustrates the distribution of patient numbers in
each group.
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Figure 5. Screenshots from a prototype interface. (A-B) The selected criteria list and the corresponding number of patients. (C) The distribution of
patient numbers in each group. (D) Displayed are eligible patient numbers after sequentially incorporating criteria such as non-squamous histology and
stage III and IV, with the further inclusion of aspartate aminotransferase (AST) and alanine transaminase (ALT) laboratory test values of either ≤2.5x
upper limit of normal (ULN) or ≤1.0x ULN. (E) The influence of Eastern Cooperative Oncology Group (ECOG) performance status as an additional
criterion. Displayed are eligible patient numbers after introducing ECOG scores of 0 to 2 or 0 to 1, with histology, stage, and ALT/AST laboratory test
values (<2.5x ULN) as fixed criteria. ANC: absolute neutrophil count; CrCl: creatinine clearance; EGFR: epidermal growth factor receptor; NSCLC:
non–small cell lung cancer; PD-1 ab: programmed cell death protein-1. For a higher-resolution version of this figure, see Multimedia Appendix 16.

Sequentially incorporating criteria such as nonsquamous
histology and stages III and IV criteria, we identified 2166
(78.05%) and 426 (15.35%) eligible patients, respectively, from
the total pool of 2775 patients with NSCLC. The inclusion of
AST and ALT ≤2.5x ULN criteria yielded 363 (13.08%) eligible
patients from the pool of 2775 patients. Limiting AST and ALT
to ≤1.0x ULN resulted in a decreased number of eligible patients
(315/2775, 11.35%; Figure 5D). In addition, we explored the
influence of Eastern Cooperative Oncology Group (ECOG)
performance status as an additional criterion. With histology,
stage, and ALT/AST laboratory test values (<2.5x ULN) as
fixed criteria, by introducing ECOG scores of 0 to 2 or 0 to 1,
we identified 194 (6.99%) and 151 (5.44%) eligible patients,
respectively, from the pool of 2775 patients (Figure 5E).

Patient-matching performance was evaluated using precision,
recall, and F1-score performance metrics across specific clinical
attributes. The average F1-score, computed across 10 attributes
from 8 domains (other primary malignancy, congestive heart
failure, squamous NSCLC, organ/tissue transplantation,
platelets, programmed death-1 antibody therapy, programmed
cell death protein-1 or programmed cell death program-ligand
1 positive, stage groups, prior LOT [line of therapy], and
ECOG), was 0.94 (range 0.82-1.00 [37]).

Discussion

Principal Findings
The challenge of achieving a high success rate in clinical trials
is an ongoing issue [38,39]. Our study demonstrates the

feasibility of a data-driven approach to optimize trial protocols
and efficiently identify eligible patients by constructing a
comprehensive, EHR-interoperable eligibility criteria knowledge
base and integrating EHR data. To accomplish this, we analyzed
3281 clinical trials using our customized deep learning NLP
model. We extracted all entities with their attributes and
converted the hypernym concepts used in eligibility criteria to
EHR-compatible hyponyms along with their corresponding
values. We also evaluated the feasibility of optimizing the trial
protocol design on the interface we developed. This interface
offers an efficient and effective approach for assessing the
number of eligible patients across various combinations of
eligibility criteria such as different laboratory test values as well
as combinations that account for vital signs.

We developed an eligibility criteria–specific ontology by
manually scrutinizing 425 eligibility criteria to be used as a
reference for manual annotation during NLP model training.
Accurately identifying intricate semantic relationships among
entities within eligibility criteria is crucial for constructing an
appropriate ontology for precise information extraction,
including temporal, arithmetic values, Boolean values, and
negation modifiers [31]. Our customized NLP pipeline based
on the eligibility criteria–specific ontology that we created
enabled us to efficiently extract all pertinent attributes across
different modalities and diseases, allowing for a more accurate
definition of the trial population. To determine the applicability
of our ontology generated using cancer clinical trials to other
disease domains, we compared the concepts and relations in
clinical trials of inflammatory bowel diseases. We observed
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very similar trends, suggesting that our eligibility
criteria–specific ontology can be extended to other types of
disease trials.

Moreover, the corpus of 485 manually annotated and
standardized trials in a computable format can be used in eligible
patient identification in EHRs.

Liu et al [28] conducted a thorough analysis of 352,100 clinical
trials across various disease domains and constructed a
knowledge base of clinical trial eligibility criteria. Their
comprehensive knowledge base and user-friendly interface
showcased the potential of advanced NLP techniques in
enhancing eligibility criteria analysis and retrieval. Fang et al
[40] also adopted a data-driven approach to optimizing clinical
trial eligibility criteria in the context of Alzheimer disease and
pancreatic cancer domains. Building upon these efforts, our
study aimed to further narrow the gap between eligibility criteria
and EHRs in multicancer domains, specifically in representing
the granularities of eligibility criteria for identifying eligible
patients and optimizing protocol designs. This was achieved by
transforming hypernyms in the criteria into EHR-compatible
hyponyms. We found that most of the primary groups include
umbrella terms such as prior therapy (eg, proper prior therapy
for actionable mutations) and biomarker (eg, EGFR
inhibitor–resistant mutations). Our study also addressed the
challenge of standardizing ambiguous clinical concepts in
eligibility criteria for EHR interoperability and patient matching.
To overcome this challenge, we converted hypernyms to the
Entity-Attribute-Value format using prevailing values across
different cancer types and modality therapies. We believe that
our EHR-interoperable standardized eligibility criteria
knowledge base and interface, integrating real-world EHR data,
have the potential to improve the automatic screening system.
This improvement has the potential to significantly reduce
manual extraction efforts. Moreover, specific, computable
criteria reduce ambiguity in patient identification and enable
the inclusion of a broader range of patients who may qualify
for the trial but could be excluded when using more general
terms. This can increase patient trial enrollment, ultimately
improving the overall success rate of trials. Notably, patients
who were given the option to participate in a trial by their
physicians demonstrated a significantly higher participation
rate of 55% [41] compared to the current average of 5% to 8%
among patients with cancer [42,43]. The implementation of our
hypernym/hyponym semantic terminology model can likewise
improve the effectiveness of information retrieval from EHRs
and other clinical databases in the context of real-world evidence
studies.

Certain criteria such as histology, stage, previous treatment, or
biomarker are difficult to modify, while others such as vital
signs or laboratory test values can be adjusted during the
protocol design [15]. Our study revealed the impact of
modifying laboratory test values while keeping other criteria
constant, resulting in fluctuations in the number of eligible
patients. Our findings, which demonstrate both the number of
trials for different laboratory test value ranges and eligible
patient numbers, offer insights for optimizing future protocol
design and refining patient selection criteria. Seeking future
collaboration with clinicians to conduct a direct comparison

between the patient identification results by clinical domain
experts and those generated by our prototype holds promise for
a more comprehensive and informative evaluation of the
prototype’s performance and its potential to enhance patient
identification for clinical trials. Furthermore, a careful
examination of the cases identified by the prototype can provide
an understanding of the nature of false positives and false
negatives. This will provide insights into how the prototype
may differ in its patient identification results compared to
manual extraction. Our eligibility criteria knowledge base can
also be leveraged for generating SCAs using EHRs. SCAs,
derived from real-world evidence, are regarded as substitutes
for experimental control arms in trials [16-18]. The integration
of SCAs into single-arm trial data or replacing traditional control
arms with SCAs can alleviate the burden of target accrual in
trials with low eligible patient numbers, such as rare disease or
oncology trials with specific biomarkers. The Food and Drug
Administration’s approval of the palbociclib inhibitor for male
patients with metastatic BCa based on real-world evidence
demonstrates the potential and relevance of SCAs in improving
trial design and outcomes [44].

Limitations
Our study has several limitations to consider. First, we focused
on a limited scope, analyzing only 4 different cancer types and
exploring extendibility in the context of inflammatory bowel
diseases. Future studies should encompass a wider range of
cancer types and disease domains for a more comprehensive
analysis. Second, while most attributes were well defined, some
umbrella terms lacked clear examples in other cancer types,
potentially affecting result accuracy. Further manual annotation
using knowledge bases could enhance the precision of the
attribute tables. Third, our data set may be biased because we
solely included industry-sponsored trials, potentially limiting
the generalizability of our findings. In addition, the NLP training
and test data sets in this study can display similarities owing to
the shared attributes among different cancer trials, which
heightens concerns regarding potential overfitting. Fourth, we
did not address entity logic, and establishing the logic between
entities would enhance cohort definition accuracy. Fifth and
last, our interface feasibility testing was limited to small cohorts
of patients with NSCLC, and the generalizability of our findings
to other populations or disease conditions may vary.
Furthermore, we did not perform a quantitative evaluation of
the accuracy of matched patients although domain experts
checked whether the patient information matched the eligibility
criteria manually. While our model serves as a valuable
illustration of how NLP can contribute to the design of trials
across different diseases, we fully acknowledge the
indispensable role of clinicians and biomedical researchers in
ensuring the integrity of trial criteria. Clinical trials vary in their
objectives, encompassing assessments of treatment end points,
effectiveness, and other specific goals. The process is far more
nuanced than merely adjusting laboratory test values because
such modifications can have a substantial impact on the pool
of eligible patients. Therefore, a comprehensive approach,
considering both the clinical and biomedical aspects, is
imperative for robust trial design.

JMIR AI 2024 | vol. 3 | e50800 | p.264https://ai.jmir.org/2024/1/e50800
(page number not for citation purposes)

Lee et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conclusions
Our study using an EHR-executable eligibility criteria
knowledge base and real-world patient information provides

valuable insights into the influence of different criteria on the
number of eligible patients during the protocol design. The
findings highlight the potential of using a data-driven approach
that incorporates NLP and EHRs in clinical research.
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Clinical trial counts with each unique laboratory test value defining normal organ function. (A-B) Alanine transaminase (ALT)
and aspartate aminotransferase (AST): normal ranges from ≤1x upper limit of normal (ULN) to ≤3x ULN, with exceptions for
liver diseases (eg, liver metastasis and Gilbert syndrome [GS]) allowing values of up to ≤5x ULN. (C) Total bilirubin: normal
ranges from ≤1x ULN to ≤2.5x ULN, with exceptions for liver diseases (eg, liver metastasis and GS) allowing values of up to
≤3x ULN. (D) Serum creatinine: normal ranges from ≤1x ULN to ≤2.5x ULN. (E) Creatinine clearance: normal ranges from ≥30
to ≥60 mL/min. (F) Hemoglobin: normal ranges from ≥8.0 to ≥11.0 ng/dL. (G) Absolute neutrophil count (ANC): normal ranges
from ≥750 to ≥1500 cells/uL. (H) Platelets: normal ranges from ≥50,000 to ≥100,000 cells/uL. BCa: breast cancer; NSCLC:
non–small cell lung cancer.
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Screenshots from a prototype interface. (A-B) The selected criteria list and the corresponding number of patients. (C) The
distribution of patient numbers in each group. (D) Displayed are eligible patient numbers after sequentially incorporating criteria
such as non-squamous histology and stage III and IV, with the further inclusion of aspartate aminotransferase (AST) and alanine
transaminase (ALT) laboratory test values of either ≤2.5x upper limit of normal (ULN) or ≤1.0x ULN. (E) The influence of
Eastern Cooperative Oncology Group (ECOG) performance status as an additional criterion. Displayed are eligible patient numbers
after introducing ECOG scores of 0 to 2 or 0 to 1, with histology, stage, and ALT/AST laboratory test values (<2.5x ULN) as
fixed criteria. ANC: absolute neutrophil count; CrCl: creatinine clearance; EGFR: epidermal growth factor receptor; NSCLC:
non–small cell lung cancer; PD-1 ab: programmed cell death protein-1.
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CD: Crohn disease
ECOG: Eastern Cooperative Oncology Group
EGFR: epidermal growth factor receptor
EHR: electronic health record
LOINC: Logical Observation Identifiers, Names, and Codes
MM: multiple myeloma
NLP: natural language processing
NSCLC: non–small cell lung cancer
PCa: prostate cancer
SCA: synthetic control arm
UC: ulcerative colitis
ULN: upper limit of normal
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Abstract

Background: There are a wide range of potential adverse health effects, ranging from headaches to cardiovascular disease,
associated with long-term negative emotions and chronic stress. Because many indicators of stress are imperceptible to observers,
the early detection of stress remains a pressing medical need, as it can enable early intervention. Physiological signals offer a
noninvasive method for monitoring affective states and are recorded by a growing number of commercially available wearables.

Objective: We aim to study the differences between personalized and generalized machine learning models for 3-class emotion
classification (neutral, stress, and amusement) using wearable biosignal data.

Methods: We developed a neural network for the 3-class emotion classification problem using data from the Wearable Stress
and Affect Detection (WESAD) data set, a multimodal data set with physiological signals from 15 participants. We compared
the results between a participant-exclusive generalized, a participant-inclusive generalized, and a personalized deep learning
model.

Results: For the 3-class classification problem, our personalized model achieved an average accuracy of 95.06% and an F1-score
of 91.71%; our participant-inclusive generalized model achieved an average accuracy of 66.95% and an F1-score of 42.50%; and
our participant-exclusive generalized model achieved an average accuracy of 67.65% and an F1-score of 43.05%.

Conclusions: Our results emphasize the need for increased research in personalized emotion recognition models given that they
outperform generalized models in certain contexts. We also demonstrate that personalized machine learning models for emotion
classification are viable and can achieve high performance.

(JMIR AI 2024;3:e52171)   doi:10.2196/52171

KEYWORDS

affect detection; affective computing; deep learning; digital health; emotion recognition; machine learning; mental health;
personalization; stress detection; wearable technology

Introduction

Stress and negative affect can have long-term consequences for
physical and mental health, such as chronic illness, higher
mortality rates, and major depression [1-3]. Therefore, the early
detection and corresponding intervention of stress and negative
emotions greatly reduces the risk of detrimental health
conditions appearing later in life [4]. Since negative stress and

affect can be difficult for humans to observe [5-7], automated
emotion recognition models can play an important role in health
care. Affective computing can also facilitate digital therapy and
advance the development of assistive technologies for autism
[8-13].

Physiological signals, including electrocardiography (ECG),
electrodermal activity (EDA), and photoplethysmography (PPG),
have been shown to be robust indicators of emotions [14-16].
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The noninvasive nature of physiological signal measurement
makes it a practical and convenient method for emotion
recognition. Wearable devices such as smartwatches have
become increasingly popular, and products such as Fitbit have
already integrated the sensing of heart rate, ECG, and EDA data
into their smartwatches. The accessibility of wearable devices
indicates that an emotion recognition model using biosignals
can have practical applications in health care.

The vast majority of research in recognizing emotions from
biosignals involves machine learning models that are
generalizable, which means that the models were trained on one
group of subjects and tested on a separate group of subjects
[17-28]. Prior studies emphasize the need for personalized or
subject-dependent models [18,29,30], and some investigations,
albeit few, analyze personalized models [31,32]. Both
generalized and personalized models have potential benefits;
for example, generalized models can train on more data than
personalized models, and personalized models do not need to
address the problem of inter-subject data variance [33].
However, it is still unclear how personalized models compare
against generalized models in many contexts.

We present 1 personalized and 2 generalized machine learning
approaches for the 3-class emotion classification problem
(neutral, stress, and amusement) on the Wearable Stress and
Affect Detection (WESAD) data set, a publicly available data
set that includes both stress and emotion data [18]. The two
generalized models are trained using participant-inclusive and
participant-exclusive procedures. We compare the performance
of these 3 models, finding that the personalized machine learning
approach consistently outperforms the generalized approach on
the WESAD data set.

Methods

Overview
To classify physiological data into the neutral, stress, and
amusement classes, we developed a machine learning framework
and evaluated the framework using data from the WESAD data
set. Our machine learning framework consists of data
preprocessing, a convolutional encoder for feature extraction,
and a feedforward neural network for supervised prediction
(Figure 1). Using this model architecture, we compared
generalized and personalized approaches to the 3-class emotion
classification task (neutral, stress, and amusement).

Figure 1. Overview of our model architecture for the 3-class emotion classification task. FNN: feedforward neural network; SiLU: sigmoid linear unit.

Data Set
We selected WESAD, a publicly available data set that combines
both stress and emotion annotations. WESAD consists of
multimodal physiological data in the form of continuous
time-series data for 15 participants and corresponding
annotations of 4 affective states: neutral, stress, amusement,
and meditation. However, we only considered the neutral, stress,
and amusement classes since the objective of WESAD is to
provide data for the 3-class classification problem, and the
benchmark model in WESAD ignores the meditation state as
well. Our model incorporated data from 8 modalities recorded

in WESAD: ECG, EDA, electromyogram (EMG), respiration,
temperature, and acceleration (x, y, and z axes). In the data set,
measurements for each of the 8 modalities were sampled by a
RespiBAN sensor at 700 Hz to enforce uniformity, and data
were collected for approximately 36 minutes per participant.

Preprocessing and Partitioning
Each data modality was normalized with a mean of 0 and an
SD of 1. We used a sliding window algorithm to partition each
modality into intervals consisting of 64 data points, with a 50%
overlap between consecutive intervals. We ensured that all 64
data points within an interval shared a common annotation,
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which allowed us to assign a single affective state to each
interval. The process of normalization, followed by a sliding
window partition, is illustrated in Figure 1. These intervals were
partitioned into training, validation, and testing sets.

For the personalized model, we partitioned the training,
validation, and testing sets as follows: each participant in the
data set had their own model that was trained, validated, and
tested independently of other participants. For each affective
state (neutral, stress, and amusement), we allocated the initial
70% of intervals with that affective state for training, the next

15% for validation, and the final 15% for testing. This
guaranteed that the relative frequencies of each affective state
were consistent across all 3 sets. Simply using the first 70% of
all intervals for the training data would skew the distribution
of affective states, given the nature of the WESAD data set.
Furthermore, our partitioning of intervals according to sequential
time order rather than random selection helped prevent
overfitting by guaranteeing that 2 adjacent intervals with similar
features would be in the same set. The partitioning of training,
validation, and testing sets for the personalized model is shown
in Figure 2.

Figure 2. A comparison of different generalized and personalized approaches to the 3-class emotion classification task. The participant-exclusive
generalized model mimics generalized approaches used in other papers. The participant-exclusive generalized model shown in the figure differs from
what we use in this paper.

Standard generalized models partition the training, validation,
and testing sets by participant [18]. We denote these standard
models as participant-exclusive generalized models, as shown
in Figure 2. Through this partitioning method, it is impossible
to compare the performances of generalized and personalized
models since they are solving two separate tasks. Therefore, we
present a modified participant-exclusive generalized model that
solves the same task as the personalized model. The testing set
for our participant-exclusive generalized model consisted of the
last 15% of intervals for each affective state for 1 participant.
The training set consisted of the first 70% of intervals for each
affective state for all participants except the 1 participant in the
testing set, and the validation set consisted of the next 15% of
intervals for all participants except the 1 participant in the testing
set. The training and testing sets for this approach contained
data from mutually exclusive sets of participants; this is where
the name of the model, participant-exclusive, is derived from.
Since the testing sets for the participant-exclusive generalized
and personalized models are equivalent, it is possible to compare
generalized and personalized approaches. This
participant-exclusive generalized model served as our first
generalized model baseline.

A second generalized model baseline was created, called the
participant-inclusive generalized model. Like the testing sets

for the participant-exclusive generalized and personalized
models, the testing set for this model contained the last 15% of
intervals for each affective state for a single participant. The
training set consisted of the first 70% of intervals for each
affective state for all participants, and the validation set
consisted of the next 15%. The set of participants in the training
and testing sets overlapped by 1 participant—the subject in the
testing set—which is why this model is called the
participant-inclusive generalized model. This is illustrated in
Figure 2.

Model Architecture
The model architecture consisted of an encoder network
followed by a feedforward head, which is shown in Figure 1.
A total of 8 channels, representing the 8 modalities we used
from WESAD, served as input into an encoder network, which
was modeled after the encoder section of U-Net [34]. The
encoder network had 3 blocks, with each block consisting of
two 1D convolutional layers (kernel size of 3) followed by 1D
max pooling (kernel size of 2). The output of each convolution
operation was passed through a sigmoid linear unit (SiLU)
activation function. Between each block, we doubled the number
of channels and added a dropout layer (15%) to reduce
overfitting. The output of the encoder was flattened and passed
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through 2 fully connected layers with SiLU activation to produce
a 3-class probability distribution. Table 1 shows the
hyperparameters that determine the model structure. These were

consistent between the participant-exclusive generalized,
participant-inclusive generalized, and personalized models.

Table 1. Hyperparameters relating to model structure.

ValueHyperparameter

3Encoder depth (number of blocks), n

15Dropout rate, %

2Number of fully connected layers, n

3Convolutional kernel size, n

2Max pooling kernel size, n

SiLUaActivation function

aSiLU: sigmoid linear unit.

Model Training
We trained the 2 generalized baseline models and the
personalized model under the same hyperparameters to
guarantee a fair comparison. Both models were trained with
cross-entropy loss using AdamW optimization. All models were
written using PyTorch [35]. Within 1000 epochs, models with
the lowest validation loss were saved for testing. A Nvidia
GeForce RTX 4090 GPU was used for training. A separate
personalized model was trained for each of the 15 participants.
The participant-exclusive generalized model was trained 15
times, and the participant-inclusive generalized model was
trained once. For model comparison, all models were tested on
each of the 15 participants.

Ethical Considerations
This study did not require institutional review board (IRB)
review because we exclusively used a commonly analyzed
publicly available data set. We did not work with any human
subjects.

Results

For the 3-class emotion classification task (neutral, stress, and
amusement), Tables 2 and 3 illustrate the accuracy and F1-score
of the personalized and generalized models when tested on each
of the 15 participants. We include F1-score, a balanced
evaluation metric consisting of the harmonic mean of precision

and recall, to accommodate for the imbalanced class distribution
in WESAD [18]. In order to guarantee a fair comparison
between the models, they had the same random seeds for model
initialization, and their architecture and hyperparameters were
the same. The accuracy and F1-score for the personalized model
exceeded those of the participant-inclusive generalized model
for all participants except participant 1, and the personalized
model outperformed the participant-exclusive generalized model
in terms of accuracy and F1-score for all participants. The
personalized models for participants 1 and 2 also indicate subpar
performance compared to other participants, which we address
in the Discussion section.

Table 4 shows the average and SD of the accuracies and
F1-scores across all participants for the 3 models. We achieved
an average accuracy of 95.06%, 66.95%, and 67.65% for the
personalized, participant-inclusive generalized, and
participant-exclusive generalized models, respectively. We also
achieved an average F1-score of 91.72%, 42.50%, and 43.05%
for the personalized, participant-inclusive generalized, and
participant-exclusive generalized models, respectively.
Observing the error margins in Table 4, the differences in
accuracy and F1-score between the personalized model and both
generalized models are statistically significant. As shown in
Table 5, we evaluated the P values between each model type
for accuracy and F1-score through pairwise 2-tailed t tests to
determine statistical significance.
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Table 2. A comparison of model accuracy between the personalized and generalized models.

Model accuracy, %Participant

Participant-exclusive generalized modelParticipant-inclusive generalized modelPersonalized model

53.9482.6968.361

81.9167.1282.322

82.8182.8199.993

82.3182.8699.904

74.6782.9498.025

54.0354.5799.576

83.2382.05100.007

53.7053.72100.008

51.8351.86100.009

79.8582.0593.6910

62.1160.86100.0011

53.6053.5398.3412

65.3553.2699.8113

53.5453.47100.0014

81.9160.4385.8315

Table 3. A comparison of F1-score between the personalized and generalized models.

F1-score, %Participant

Participant-exclusive generalized modelParticipant-inclusive generalized modelPersonalized model

23.3661.9158.141

58.5344.5558.882

62.0562.0599.983

61.5061.9599.874

54.7461.9996.875

23.5924.9499.356

62.0961.16100.007

23.2923.38100.008

22.8922.85100.009

59.2361.0494.2910

40.1538.27100.0011

26.9026.7997.4012

44.6324.4799.7513

24.0923.93100.0014

58.7138.2671.2815

Table 4. Average accuracy and F1-score of models across all participants.

F1-score, mean (SD [%])Accuracy, mean (SD [%])Model type

91.72 (15.33)95.06 (9.24)Personalized

42.50 (17.37)66.95 (13.76)Participant-inclusive generalized

43.05 (17.20)67.65 (13.48)Participant-exclusive generalized
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Table 5. P values of accuracy and F1-score comparisons between model types.

P value for F1-scoreP value for accuracyModel comparison

P<.001P<.001Personalized versus participant-inclusive generalized

P<.001P<.001Personalized versus participant-exclusive generalized

.88.81Participant-inclusive generalized versus participant-exclusive generalized

Discussion

Principal Findings
We demonstrated that a personalized deep learning model
outperforms a generalized model in both the accuracy and
F1-score metrics for the 3-class emotion classification task. By
establishing two generalized model baselines through the
participant-inclusive and participant-exclusive models, we
created an alternative approach to the standard generalization
technique of separating the training and testing sets by
participant, and as a result, we were able to compare
personalized and generalized approaches. Our personalized
model achieved an accuracy of 95.06% and an F1-score of
91.72%, while our participant-inclusive generalized model
achieved an accuracy of 66.95% and an F1-score of 42.50% and
our participant-exclusive generalized model achieved an
accuracy of 67.65% and an F1-score of 43.05%.

Our work indicates that personalized models for emotion
recognition should be further explored in the realm of health
care. Machine learning methods for emotion classification are
clearly viable and can achieve high accuracy, as shown by our
personalized model. Furthermore, given that numerous wearable
technologies collect physiological signals, data acquisition is
both straightforward and noninvasive. Combined with the
popularity of consumer wearable technology, it is feasible to
scale emotion recognition systems. This can ultimately play a
major role in the early detection of stress and negative emotions,
thus serving as a preventative measure for serious health
problems.

Comparison With Previous Work

Generalized Models
The vast majority of prior studies using WESAD developed
generalized approaches to the emotion classification task.
Schmidt et al [18], the pioneers of WESAD, created several
feature extraction models and achieved accuracies up to 80%
for the 3-class classification task. Huynh et al [22] developed
a deep neural network, trained on WESAD wrist signals, to
outperform past approaches by 8.22%. Albaladejo-González et
al [36] achieved an F1-score of 88.89% using an unsupervised
local outlier factor model and 99.03% using a supervised
multilayer perceptron. Additionally, they analyzed the transfer
learning capabilities of different models between the WESAD
and SWELL-KW (SWELL knowledge work) [37] data sets.
Ghosh et al [38] achieved 94.8% accuracy using WESAD chest
data by encoding time-series data into Gramian Angular Field
images and employing deep learning techniques. Bajpai et al
[39] investigated the k-nearest neighbor algorithm to explore
the tradeoff between performance and the total number of

nearest neighbors using WESAD. Through federated learning,
Almadhor et al [40] achieved 86.82% accuracy on data in
WESAD using a deep neural network. Behinaein et al [41]
developed a novel transformer approach and achieved
state-of-the-art performance using only one modality from
WESAD.

Personalized Models
Sah and Ghasemzadeh [30] developed a generalized approach
using a convolutional neural network using 1 modality from
WESAD. For the 3-class classification problem, they achieved
an average accuracy of 92.85%. They used the
leave-one-subject-out (LOSO) analysis to highlight the need
for personalization. Indikawati and Winiarti [31] directly
developed a personalized approach for the 4-class classification
problem in WESAD (neutral, stress, amusement, and
meditation). Using different feature extraction machine learning
models, they achieved accuracies ranging from 88%-99% for
the 15 participants. Liu et al [32] developed a federated learning
approach using data from WESAD with the goal of preserving
user privacy. In doing so, they developed a personalized model
as a baseline, which achieved an average accuracy of 90.2%.
Nkurikiyeyezu et al [42] determined that personalized models
(95.2% accuracy) outperform generalized models (42.5%
accuracy) for the stress versus no-stress task. By running
additional experiments to further understand how personalized
models compare to generalized models for the 3-class emotion
classification task and by developing participant-inclusive and
participant-exclusive versions of the generalized models, our
work concretely demonstrates how personalization outperforms
generalization and thus supports the conclusions of
Nkurikiyeyezu et al [42].

Limitations and Future Work
As shown in Tables 2 and 3, the performance of our personalized
model deteriorates for participants 1 and 2. To analyze the lack
of performance improvement of the personalized model for
these 2 participants, we visualized the means and SDs of the
different modalities for each emotion class. In Figures 3-5, we
illustrate notable deviations in modality means and SDs for
participants 1 and 2 compared to other participants. While the
analysis of these modalities reveals important information about
the nature of the WESAD data set, it still remains difficult to
pinpoint the exact data set features that caused the performance
decline in the personalized model for these 2 participants. This
is another limitation: since we do not use a feature extraction
model, we cannot assign a feature importance (eg, Gini
importance) to individual features like Schmidt et al [18] do.
We also analyzed the emotion class balances for each
participant, which are included in Table 6, to see if anomalies
existed in the class distributions for certain participants.
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However, based on the ranges of the class distributions, class balance likely had minimal effect on the performance decline.

Figure 3. Deviations of mean and SD for participants 1 and 2 for neutral class modalities.

Figure 4. Deviations of mean and SD for subjects 1 and 2 for stress class modalities. EMG: electromyogram.
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Figure 5. Deviations of mean and SD for subjects 1 and 2 for amusement class modalities.

Table 6. Ranges of emotion class distributions per participant.

Range, %Emotion class

51.8-54.0Neutral

29.0-31.8Stress

16.3-17.4Amusement

Our participant-inclusive and participant-exclusive generalized
models do not outperform previously published generalized
models on the WESAD data set (eg, Schmidt et al [18] achieved
up to 80% accuracy while we achieved 66.95% accuracy with
our participant-inclusive model). This discrepancy can be
attributed to a deliberate choice in our methodology: instead of
maximizing our generalized models’ performance with
hyperparameter tuning, we simply opted for a consistent set of
hyperparameters across the personalized and generalized models
because our primary objective was to evaluate their relative
performance. While hyperparameter tuning might yield higher
results in practice, differing hyperparameters between our
models would introduce additional variables that make it
difficult to determine the role that personalization and
generalization play in model performance.

Given the variations between participants, one approach to
improving generalized model performance is adding embedding
representations for each participant or participant-specific
demographic data as additional features as a method of
distinguishing individual participants in generalized models.
However, to prevent overfitting to participant-specific features
like demographic data, data sets with significantly more
participants would need to be created, given the small sample
size of the WESAD data set.

One limitation that personalized models may encounter during
training is the cold start problem, given that personalized models
receive less data than generalized models. Moreover, despite
the accuracy improvement in personalized models, developing
a model for each participant may be costly and unscalable: data
must be labeled specifically per participant, and enough data
must be provided to the model to overcome the cold start
problem (notably, however, even though the cold start problem
should theoretically put our personalized model at a
disadvantage, the WESAD data set provided enough data for

our personalized model to outperform our generalized model).
Both of these limitations can be addressed by a self-supervised
learning approach to emotion recognition.

A self-supervised learning approach follows a framework used
by natural language processing models such as the Bidirectional
Encoder Representations from Transformers (BERT) model
[43]. A model first pretrains on a large set of unlabeled data
across numerous participants. Then, the pretrained model is
fine-tuned to a small amount of labeled, participant-specific
data. The pretraining phase eliminates the burden of manual
labeling because all data are unlabeled, as well as the cold start
problem because large amounts of data can be provided. The
fine-tuning phase requires only a small amount of user-specific
labeled data to perform accurately, and studies have already
begun exploring the tradeoffs between the number of labels and
model accuracy in WESAD using self-supervised or
semisupervised approaches [44,45].

Finally, to expand beyond the WESAD data set, it is valuable
to reproduce results on additional physiological signal data sets
for emotion analysis, such as the Database for Emotion Analysis
using Physiological Signals (DEAP) [46] and Cognitive Load,
Affect, and Stress (CLAS) [47]. Data from WESAD were
collected under controlled laboratory environments, which may
not generalize to the real world. Therefore, analyzing emotions
in a real-world context through data sets such as K-EmoCon
[48], which contain physiological data collected in naturalistic
conversations, may be useful. Emotions in the K-EmoCon data
set were categorized into 18 different classes, so exploring this
data set could also help us better assess the benefits of
personalization for a broader range of emotions. A major goal
of this approach is to provide support for personalized digital
interventions for neuropsychiatry, which could benefit a variety
of applications, such as video-based digital therapeutics for
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children with autism to predict the child’s affective state as part of the therapeutic process [49-52].

 

Acknowledgments
The project described was supported by grant U54GM138062 from the National Institute of General Medical Sciences (NIGMS),
a component of the National Institutes of Health (NIH), and its contents are solely the responsibility of the author and do not
necessarily represent the official view of NIGMS or NIH. The project was also supported by a grant from the Medical Research
Award fund of the Hawai’i Community Foundation (grant MedRes_2023_00002689).

Conflicts of Interest
None declared.

References
1. Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression.

Am J Psychiatry 1999;156(6):837-841 [FREE Full text] [doi: 10.1176/ajp.156.6.837] [Medline: 10360120]
2. Chiang JJ, Turiano NA, Mroczek DK, Miller GE. Affective reactivity to daily stress and 20-year mortality risk in adults

with chronic illness: findings from the national study of daily experiences. Health Psychol 2018;37(2):170-178 [FREE Full
text] [doi: 10.1037/hea0000567] [Medline: 29154603]

3. Leger KA, Charles ST, Almeida DM. Let it go: lingering negative affect in response to daily stressors is associated with
physical health years later. Psychol Sci 2018;29(8):1283-1290 [FREE Full text] [doi: 10.1177/0956797618763097] [Medline:
29553880]

4. Jorm AF. Mental health literacy: empowering the community to take action for better mental health. Am Psychol
2012;67(3):231-243. [doi: 10.1037/a0025957] [Medline: 22040221]

5. Mauss IB, Cook CL, Cheng JYJ, Gross JJ. Individual differences in cognitive reappraisal: experiential and physiological
responses to an anger provocation. Int J Psychophysiol 2007;66(2):116-124. [doi: 10.1016/j.ijpsycho.2007.03.017] [Medline:
17543404]

6. Jordan AH, Monin B, Dweck CS, Lovett BJ, John OP, Gross JJ. Misery has more company than people think: underestimating
the prevalence of others' negative emotions. Pers Soc Psychol Bull 2011;37(1):120-135 [FREE Full text] [doi:
10.1177/0146167210390822] [Medline: 21177878]

7. Lane RD, Smith R. Levels of emotional awareness: theory and measurement of a socio-emotional skill. J Intell 2021;9(3):42
[FREE Full text] [doi: 10.3390/jintelligence9030042] [Medline: 34449662]

8. el Kaliouby R, Picard R, Baron-Cohen S. Affective computing and autism. Ann N Y Acad Sci 2006;1093:228-248. [doi:
10.1196/annals.1382.016] [Medline: 17312261]

9. D'Alfonso S, Lederman R, Bucci S, Berry K. The digital therapeutic alliance and human-computer interaction. JMIR Ment
Health 2020;7(12):e21895 [FREE Full text] [doi: 10.2196/21895] [Medline: 33372897]

10. Washington P, Wall DP. A review of and roadmap for data science and machine learning for the neuropsychiatric phenotype
of autism. Annu Rev Biomed Data Sci 2023;6:211-228 [FREE Full text] [doi: 10.1146/annurev-biodatasci-020722-125454]
[Medline: 37137169]

11. Washington P, Park N, Srivastava P, Voss C, Kline A, Varma M, et al. Data-driven diagnostics and the potential of mobile
artificial intelligence for digital therapeutic phenotyping in computational psychiatry. Biol Psychiatry Cogn Neurosci
Neuroimaging 2020;5(8):759-769 [FREE Full text] [doi: 10.1016/j.bpsc.2019.11.015] [Medline: 32085921]

12. Voss C, Schwartz J, Daniels J, Kline A, Haber N, Washington P, et al. Effect of wearable digital intervention for improving
socialization in children with autism spectrum disorder: a randomized clinical trial. JAMA Pediatr 2019;173(5):446-454
[FREE Full text] [doi: 10.1001/jamapediatrics.2019.0285] [Medline: 30907929]

13. Washington P, Voss C, Kline A, Haber N, Daniels J, Fazel A, et al. SuperpowerGlass: a wearable aid for the at-home
therapy of children with autism. Proc ACM Interact Mob Wearable Ubiquitous Technol 2017;1(3):1-22. [doi:
10.1145/3130977]

14. Rainville P, Bechara A, Naqvi N, Damasio AR. Basic emotions are associated with distinct patterns of cardiorespiratory
activity. Int J Psychophysiol 2006;61(1):5-18. [doi: 10.1016/j.ijpsycho.2005.10.024] [Medline: 16439033]

15. Nummenmaa L, Glerean E, Hari R, Hietanen JK. Bodily maps of emotions. Proc Natl Acad Sci U S A 2014;111(2):646-651
[FREE Full text] [doi: 10.1073/pnas.1321664111] [Medline: 24379370]

16. Jang EH, Park BJ, Park MS, Kim SH, Sohn JH. Analysis of physiological signals for recognition of boredom, pain, and
surprise emotions. J Physiol Anthropol 2015;34(1):25 [FREE Full text] [doi: 10.1186/s40101-015-0063-5] [Medline:
26084816]

17. Domínguez-Jiménez JA, Campo-Landines KC, Martínez-Santos JC, Delahoz EJ, Contreras-Ortiz SH. A machine learning
model for emotion recognition from physiological signals. Biomed Signal Process Control 2020;55:101646. [doi:
10.1016/j.bspc.2019.101646]

JMIR AI 2024 | vol. 3 | e52171 | p.278https://ai.jmir.org/2024/1/e52171
(page number not for citation purposes)

Li & WashingtonJMIR AI

XSL•FO
RenderX

https://ajp.psychiatryonline.org/doi/full/10.1176/ajp.156.6.837
http://dx.doi.org/10.1176/ajp.156.6.837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10360120&dopt=Abstract
https://europepmc.org/abstract/MED/29154603
https://europepmc.org/abstract/MED/29154603
http://dx.doi.org/10.1037/hea0000567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29154603&dopt=Abstract
https://europepmc.org/abstract/MED/29553880
http://dx.doi.org/10.1177/0956797618763097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29553880&dopt=Abstract
http://dx.doi.org/10.1037/a0025957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22040221&dopt=Abstract
http://dx.doi.org/10.1016/j.ijpsycho.2007.03.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17543404&dopt=Abstract
https://europepmc.org/abstract/MED/21177878
http://dx.doi.org/10.1177/0146167210390822
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21177878&dopt=Abstract
https://www.mdpi.com/resolver?pii=jintelligence9030042
http://dx.doi.org/10.3390/jintelligence9030042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34449662&dopt=Abstract
http://dx.doi.org/10.1196/annals.1382.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17312261&dopt=Abstract
https://mental.jmir.org/2020/12/e21895/
http://dx.doi.org/10.2196/21895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33372897&dopt=Abstract
https://www.annualreviews.org/doi/abs/10.1146/annurev-biodatasci-020722-125454?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1146/annurev-biodatasci-020722-125454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37137169&dopt=Abstract
https://europepmc.org/abstract/MED/32085921
http://dx.doi.org/10.1016/j.bpsc.2019.11.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32085921&dopt=Abstract
https://europepmc.org/abstract/MED/30907929
http://dx.doi.org/10.1001/jamapediatrics.2019.0285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30907929&dopt=Abstract
http://dx.doi.org/10.1145/3130977
http://dx.doi.org/10.1016/j.ijpsycho.2005.10.024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16439033&dopt=Abstract
https://www.pnas.org/doi/abs/10.1073/pnas.1321664111?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1073/pnas.1321664111
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24379370&dopt=Abstract
https://jphysiolanthropol.biomedcentral.com/articles/10.1186/s40101-015-0063-5
http://dx.doi.org/10.1186/s40101-015-0063-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26084816&dopt=Abstract
http://dx.doi.org/10.1016/j.bspc.2019.101646
http://www.w3.org/Style/XSL
http://www.renderx.com/


18. Schmidt P, Reiss A, Duerichen R, Marberger C, Van Laerhoven K. Introducing WESAD, a multimodal dataset for wearable
stress and affect detection. 2018 Presented at: ICMI '18: Proceedings of the 20th ACM International Conference on
Multimodal Interaction; October 16-20, 2018; Boulder, CO p. 400-408. [doi: 10.1145/3242969.3242985]

19. He C, Yao YJ, Ye XS. An emotion recognition system based on physiological signals obtained by wearable sensors. In:
Yang C, Virk GS, Yang H, editors. Wearable Sensors and Robots: Proceedings of International Conference on Wearable
Sensors and Robots 2015. Singapore: Springer; 2017:15-25.

20. Ramzan M, Dawn S. Fused CNN-LSTM deep learning emotion recognition model using electroencephalography signals.
Int J Neurosci 2023;133(6):587-597. [doi: 10.1080/00207454.2021.1941947] [Medline: 34121598]

21. Vijayakumar S, Flynn R, Murray N. A comparative study of machine learning techniques for emotion recognition from
peripheral physiological signals. 2020 Presented at: 2020 31st Irish Signals and Systems Conference (ISSC); June 11-12,
2020; Letterkenny, Ireland. [doi: 10.1109/issc49989.2020.9180193]

22. Huynh L, Nguyen T, Nguyen T, Pirttikangas S, Siirtola P. StressNAS: affect state and stress detection using neural architecture
search. 2021 Presented at: UbiComp/ISWC '21 Adjunct: Adjunct Proceedings of the 2021 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on
Wearable Computers; September 21-26, 2021; Virtual p. 121-125. [doi: 10.1145/3460418.3479320]

23. Hsieh CP, Chen YT, Beh WK, Wu AYA. Feature selection framework for XGBoost based on electrodermal activity in
stress detection. 2019 Presented at: 2019 IEEE International Workshop on Signal Processing Systems (SiPS); October
20-23, 2019; Nanjing, China. [doi: 10.1109/sips47522.2019.9020321]

24. Garg P, Santhosh J, Dengel A, Ishimaru S. Stress detection by machine learning and wearable sensors. 2021 Presented at:
IUI '21 Companion: 26th International Conference on Intelligent User Interfaces - Companion; April 14-17, 2021; College
Station, TX p. 43-45. [doi: 10.1145/3397482.3450732]

25. Lai K, Yanushkevich SN, Shmerko VP. Intelligent stress monitoring assistant for first responders. IEEE Access
2021;9:25314-25329 [FREE Full text] [doi: 10.1109/access.2021.3057578]

26. Siirtola P. Continuous stress detection using the sensors of commercial smartwatch. 2019 Presented at: UbiComp/ISWC
'19 Adjunct: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2019 ACM International Symposium on Wearable Computers; September 9-13, 2019; London,
United Kingdom p. 1198-1201. [doi: 10.1145/3341162.3344831]

27. Bobade P, Vani M. Stress detection with machine learning and deep learning using multimodal physiological data. 2020
Presented at: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA); July
15-17, 2020; Coimbatore, India. [doi: 10.1109/icirca48905.2020.9183244]

28. Kumar A, Sharma K, Sharma A. Hierarchical deep neural network for mental stress state detection using IoT based
biomarkers. Pattern Recognit Lett 2021;145:81-87. [doi: 10.1016/j.patrec.2021.01.030]

29. Schmidt P, Reiss A, Dürichen R, Van Laerhoven K. Wearable-based affect recognition: a review. Sensors (Basel)
2019;19(19):4079 [FREE Full text] [doi: 10.3390/s19194079] [Medline: 31547220]

30. Sah RK, Ghasemzadeh H. Stress classification and personalization: getting the most out of the least. ArXiv Preprint posted
online on July 12 2021. [doi: 10.48550/arXiv.2107.05666]

31. Indikawati FI, Winiarti S. Stress detection from multimodal wearable sensor data. IOP Conf Ser Mater Sci Eng
2020;771(1):012028 [FREE Full text] [doi: 10.1088/1757-899X/771/1/012028]

32. Liu JC, Goetz J, Sen S, Tewari A. Learning from others without sacrificing privacy: simulation comparing centralized and
federated machine learning on mobile health data. JMIR Mhealth Uhealth 2021;9(3):e23728 [FREE Full text] [doi:
10.2196/23728] [Medline: 33783362]

33. Ahmad Z, Khan N. A survey on physiological signal-based emotion recognition. Bioengineering (Basel) 2022;9(11):688
[FREE Full text] [doi: 10.3390/bioengineering9110688] [Medline: 36421089]

34. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Navab N,
Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III. Cham, Switzerland:
Springer; 2015:234-241.

35. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. PyTorch: an imperative style, high-performance deep
learning library. 2019 Presented at: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); December
8–14, 2019; Vancouver, BC.

36. Albaladejo-González M, Ruipérez-Valiente JA, Gómez Mármol F. Evaluating different configurations of machine learning
models and their transfer learning capabilities for stress detection using heart rate. J Ambient Intell Humaniz Comput
2023;14(8):11011-11021 [FREE Full text] [doi: 10.1007/s12652-022-04365-z]

37. Koldijk S, Sappelli M, Verberne S, Neerincx MA, Kraaij W. The SWELL knowledge work dataset for stress and user
modeling research. 2014 Presented at: ICMI '14: Proceedings of the 16th International Conference on Multimodal Interaction;
November 12-16, 2014; Istanbul, Turkey p. 291-298. [doi: 10.1145/2663204.2663257]

38. Ghosh S, Kim S, Ijaz MF, Singh PK, Mahmud M. Classification of mental stress from wearable physiological sensors using
image-encoding-based deep neural network. Biosensors (Basel) 2022;12(12):1153 [FREE Full text] [doi:
10.3390/bios12121153] [Medline: 36551120]

JMIR AI 2024 | vol. 3 | e52171 | p.279https://ai.jmir.org/2024/1/e52171
(page number not for citation purposes)

Li & WashingtonJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.1145/3242969.3242985
http://dx.doi.org/10.1080/00207454.2021.1941947
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34121598&dopt=Abstract
http://dx.doi.org/10.1109/issc49989.2020.9180193
http://dx.doi.org/10.1145/3460418.3479320
http://dx.doi.org/10.1109/sips47522.2019.9020321
http://dx.doi.org/10.1145/3397482.3450732
https://ieeexplore.ieee.org/document/9348878
http://dx.doi.org/10.1109/access.2021.3057578
http://dx.doi.org/10.1145/3341162.3344831
http://dx.doi.org/10.1109/icirca48905.2020.9183244
http://dx.doi.org/10.1016/j.patrec.2021.01.030
https://www.mdpi.com/resolver?pii=s19194079
http://dx.doi.org/10.3390/s19194079
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31547220&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2107.05666
https://iopscience.iop.org/article/10.1088/1757-899X/771/1/012028/pdf
http://dx.doi.org/10.1088/1757-899X/771/1/012028
https://mhealth.jmir.org/2021/3/e23728/
http://dx.doi.org/10.2196/23728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33783362&dopt=Abstract
https://www.mdpi.com/resolver?pii=bioengineering9110688
http://dx.doi.org/10.3390/bioengineering9110688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36421089&dopt=Abstract
https://link.springer.com/article/10.1007/s12652-022-04365-z
http://dx.doi.org/10.1007/s12652-022-04365-z
http://dx.doi.org/10.1145/2663204.2663257
https://www.mdpi.com/resolver?pii=bios12121153
http://dx.doi.org/10.3390/bios12121153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36551120&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


39. Bajpai D, He L. Evaluating KNN performance on WESAD dataset. 2020 Presented at: 2020 12th International Conference
on Computational Intelligence and Communication Networks (CICN); September 25-26, 2020; Bhimtal, India. [doi:
10.1109/cicn49253.2020.9242568]

40. Almadhor A, Sampedro GA, Abisado M, Abbas S, Kim YJ, Khan MA, et al. Wrist-based electrodermal activity monitoring
for stress detection using federated learning. Sensors (Basel) 2023;23(8):3984 [FREE Full text] [doi: 10.3390/s23083984]
[Medline: 37112323]

41. Behinaein B, Bhatti A, Rodenburg D, Hungler P, Etemad A. A transformer architecture for stress detection from ECG.
2021 Presented at: ISWC '21: Proceedings of the 2021 ACM International Symposium on Wearable Computers; September
21-26, 2021; Virtual p. 132-134. [doi: 10.1145/3460421.3480427]

42. Nkurikiyeyezu K, Yokokubo A, Lopez G. The effect of person-specific biometrics in improving generic stress predictive
models. ArXiv Preprint posted online on December 31 2019. [doi: 10.48550/arXiv.1910.01770]

43. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
ArXiv Preprint posted online on May 24 2019. [doi: 10.48550/arXiv.1810.04805]

44. Khan N, Sarkar N. Semi-supervised generative adversarial network for stress detection using partially labeled physiological
data. ArXiv Preprint posted online on October 27 2022. [doi: 10.48550/arXiv.2206.14976]

45. Islam T, Washington P. Personalized prediction of recurrent stress events using self-supervised learning on multimodal
time-series data. ArXiv Preprint posted online on July 07 2023. [doi: 10.48550/arXiv.2307.03337]

46. Koelstra S, Muhl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T, et al. DEAP: a database for emotion analysis using
physiological signals. IEEE Trans Affect Comput 2012;3(1):18-31. [doi: 10.1109/t-affc.2011.15]

47. Markova V, Ganchev T, Kalinkov K. CLAS: a database for cognitive load, affect and stress recognition. 2019 Presented
at: 2019 International Conference on Biomedical Innovations and Applications (BIA); November 8-9, 2019; Varna, Bulgaria.
[doi: 10.1109/bia48344.2019.8967457]

48. Park CY, Cha N, Kang S, Kim A, Khandoker AH, Hadjileontiadis L, et al. K-EmoCon, a multimodal sensor dataset for
continuous emotion recognition in naturalistic conversations. Sci Data 2020;7(1):293 [FREE Full text] [doi:
10.1038/s41597-020-00630-y] [Medline: 32901038]

49. Daniels J, Schwartz JN, Voss C, Haber N, Fazel A, Kline A, et al. Exploratory study examining the at-home feasibility of
a wearable tool for social-affective learning in children with autism. NPJ Digit Med 2018;1(1):32 [FREE Full text] [doi:
10.1038/s41746-018-0035-3] [Medline: 31304314]

50. Daniels J, Haber N, Voss C, Schwartz J, Tamura S, Fazel A, et al. Feasibility testing of a wearable behavioral aid for social
learning in children with autism. Appl Clin Inform 2018;9(1):129-140 [FREE Full text] [doi: 10.1055/s-0038-1626727]
[Medline: 29466819]

51. Kalantarian H, Jedoui K, Washington P, Tariq Q, Dunlap K, Schwartz J, et al. Labeling images with facial emotion and
the potential for pediatric healthcare. Artif Intell Med 2019;98:77-86 [FREE Full text] [doi: 10.1016/j.artmed.2019.06.004]
[Medline: 31521254]

52. Kalantarian H, Jedoui K, Washington P, Wall DP. A mobile game for automatic emotion-labeling of images. IEEE Trans
Games 2020;12(2):213-218 [FREE Full text] [doi: 10.1109/tg.2018.2877325] [Medline: 32551410]

Abbreviations
BERT: Bidirectional Encoder Representations from Transformers
CLAS: Cognitive Load, Affect, and Stress
DEAP: Database for Emotion Analysis using Physiological Signals
ECG: electrocardiography
EDA: electrodermal activity
EMG: electromyogram
LOSO: leave-one-subject-out
PPG: photoplethysmography
SiLU: sigmoid linear unit
SWELL: Smart Reasoning for Well-being at Home and at Work
SWELL-KW: SWELL knowledge work
WESAD: Wearable Stress and Affect Dataset

JMIR AI 2024 | vol. 3 | e52171 | p.280https://ai.jmir.org/2024/1/e52171
(page number not for citation purposes)

Li & WashingtonJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.1109/cicn49253.2020.9242568
https://www.mdpi.com/resolver?pii=s23083984
http://dx.doi.org/10.3390/s23083984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37112323&dopt=Abstract
http://dx.doi.org/10.1145/3460421.3480427
http://dx.doi.org/10.48550/arXiv.1910.01770
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.48550/arXiv.2206.14976
http://dx.doi.org/10.48550/arXiv.2307.03337
http://dx.doi.org/10.1109/t-affc.2011.15
http://dx.doi.org/10.1109/bia48344.2019.8967457
https://doi.org/10.1038/s41597-020-00630-y
http://dx.doi.org/10.1038/s41597-020-00630-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32901038&dopt=Abstract
https://doi.org/10.1038/s41746-018-0035-3
http://dx.doi.org/10.1038/s41746-018-0035-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304314&dopt=Abstract
https://europepmc.org/abstract/MED/29466819
http://dx.doi.org/10.1055/s-0038-1626727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29466819&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0933-3657(18)30259-8
http://dx.doi.org/10.1016/j.artmed.2019.06.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31521254&dopt=Abstract
https://europepmc.org/abstract/MED/32551410
http://dx.doi.org/10.1109/tg.2018.2877325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32551410&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by K El Emam, B Malin; submitted 25.08.23; peer-reviewed by S Pandey, M Zhou, G Vos; comments to author 19.09.23;
revised version received 19.02.24; accepted 23.03.24; published 10.05.24.

Please cite as:
Li J, Washington P
A Comparison of Personalized and Generalized Approaches to Emotion Recognition Using Consumer Wearable Devices: Machine
Learning Study
JMIR AI 2024;3:e52171
URL: https://ai.jmir.org/2024/1/e52171 
doi:10.2196/52171
PMID:38875573

©Joe Li, Peter Washington. Originally published in JMIR AI (https://ai.jmir.org), 10.05.2024. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR AI,
is properly cited. The complete bibliographic information, a link to the original publication on https://www.ai.jmir.org/, as well
as this copyright and license information must be included.

JMIR AI 2024 | vol. 3 | e52171 | p.281https://ai.jmir.org/2024/1/e52171
(page number not for citation purposes)

Li & WashingtonJMIR AI

XSL•FO
RenderX

https://ai.jmir.org/2024/1/e52171
http://dx.doi.org/10.2196/52171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38875573&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Sample Size Considerations for Fine-Tuning Large Language
Models for Named Entity Recognition Tasks: Methodological Study

Zoltan P Majdik1, PhD; S Scott Graham2, PhD; Jade C Shiva Edward2, MA; Sabrina N Rodriguez3, BS; Martha S

Karnes4, PhD; Jared T Jensen2, MA; Joshua B Barbour5, PhD; Justin F Rousseau6,7, MD, MMSc
1Department of Communication, North Dakota State University, Fargo, ND, United States
2Department of Rhetoric & Writing, The University of Texas at Austin, Austin, TX, United States
3Department of Neurology, The Dell Medical School, The University of Texas at Austin, Austin, TX, United States
4Department of Rhetoric & Writing, University of Arkansas Little Rock, Little Rock, AR, United States
5Department of Communication, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
6Statistical Planning and Analysis Section, Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
7Peter O’Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, United States

Corresponding Author:
S Scott Graham, PhD
Department of Rhetoric & Writing
The University of Texas at Austin
Parlin Hall 29
Mail Code: B5500
Austin, TX, 78712
United States
Phone: 1 512 475 9507
Email: ssg@utexas.edu

Abstract

Background: Large language models (LLMs) have the potential to support promising new applications in health informatics.
However, practical data on sample size considerations for fine-tuning LLMs to perform specific tasks in biomedical and health
policy contexts are lacking.

Objective: This study aims to evaluate sample size and sample selection techniques for fine-tuning LLMs to support improved
named entity recognition (NER) for a custom data set of conflicts of interest disclosure statements.

Methods: A random sample of 200 disclosure statements was prepared for annotation. All “PERSON” and “ORG” entities
were identified by each of the 2 raters, and once appropriate agreement was established, the annotators independently annotated
an additional 290 disclosure statements. From the 490 annotated documents, 2500 stratified random samples in different size
ranges were drawn. The 2500 training set subsamples were used to fine-tune a selection of language models across 2 model
architectures (Bidirectional Encoder Representations from Transformers [BERT] and Generative Pre-trained Transformer [GPT])
for improved NER, and multiple regression was used to assess the relationship between sample size (sentences), entity density
(entities per sentence [EPS]), and trained model performance (F1-score). Additionally, single-predictor threshold regression
models were used to evaluate the possibility of diminishing marginal returns from increased sample size or entity density.

Results: Fine-tuned models ranged in topline NER performance from F1-score=0.79 to F1-score=0.96 across architectures.

Two-predictor multiple linear regression models were statistically significant with multiple R2 ranging from 0.6057 to 0.7896
(all P<.001). EPS and the number of sentences were significant predictors of F1-scores in all cases ( P<.001), except for the
GPT-2_large model, where EPS was not a significant predictor (P=.184). Model thresholds indicate points of diminishing marginal
return from increased training data set sample size measured by the number of sentences, with point estimates ranging from 439
sentences for RoBERTa_large to 527 sentences for GPT-2_large. Likewise, the threshold regression models indicate a diminishing
marginal return for EPS with point estimates between 1.36 and 1.38.

Conclusions: Relatively modest sample sizes can be used to fine-tune LLMs for NER tasks applied to biomedical text, and
training data entity density should representatively approximate entity density in production data. Training data quality and a
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model architecture’s intended use (text generation vs text processing or classification) may be as, or more, important as training
data volume and model parameter size.

(JMIR AI 2024;3:e52095)   doi:10.2196/52095

KEYWORDS

named-entity recognition; large language models; fine-tuning; transfer learning; expert annotation; annotation; sample size;
sample; language model; machine learning; natural language processing; disclosure; disclosures; statement; statements; conflict
of interest

Introduction

Background
Named entity recognition (NER) has many applications in
biomedical and clinical natural language processing (NLP). As
its core function, NER identifies and categorizes specific terms
or phrases representing people, places, organizations, and other
entities. It has been used to identify or extract named entities
in free-text clinical notes and reports in the secondary analysis
of electronic health records [1,2]. NER has also been used alone
or as part of an NLP pipeline to detect protected health
information in order to deidentify clinical text for secondary
analysis [3,4]. Additionally, NER has been used to identify and
classify medications [5,6], specific disease and clinical condition
entities [7], and laboratory tests [8] into existing taxonomies
for purposes of secondary research, cohort generation, or clinical
decision support [9-12]. While NER solutions have a long
history of applications in NLP and clinical NLP domains, their
effectiveness has recently been enhanced through the addition
of large language models (LLMs) in relevant data parsing
pipelines. LLMs have become an integral part of research
pipelines in fields as diverse as digital humanities [13],
computational social science [14], bioinformatics, applied ethics,
and finance.

LLMs, such as GPT-3, have demonstrated remarkable
performance across a variety of tasks. For instance, the
GPT-3.5–powered LLM application ChatGPT performed close
to or at the passing threshold of 60% accuracy on the United
States Medical Licensing Exam (USMLE) without the
specialized input of human trainers [15]. Widely available
models, such as Google’s Bidirectional Encoder Representations
from Transformers (BERT) or OpenAI’s Generative Pre-trained
Transformer (GPT) series, are trained, bidirectionally or
unidirectionally, on large volumes of generic textual data,
designed to represent a wide array of common language use
contexts and scenarios [16]. In specialized use contexts, these
generic models often fail to accurately classify information
because the language structures that require classification—their
words, syntax, semantic context, and other textual or lexical
signatures—are sparsely represented in the data that were used
to train the generic model [17,18]. Some language models, such
as ElutherAI’s GPT-J-6B, are trained on open-source language
modeling data sets curated from a mix of smaller open web
crawl data sets alongside more technical papers from
PubMedCentral and arXiv and can offer improved classification
accuracy for technical applications [19]. Nevertheless,
specialized tasks often require fine-tuning of general-purpose
LLMs. Fine-tuning provides a way of overcoming the limitations

of generic LLMs by augmenting their training data with data
selected to more accurately reflect the target domains toward
which a model is fine-tuned. The fine-tuning process updates
the model’s parameters—the weights that affect which
connections between the nodes and layers of a neural network
become activated—and so helps a model permanently learn.
Unlike practices, such as prompt engineering, that leave the
underlying language model untouched, fine-tuning changes the
model itself, yielding a new model optimized for the specific
use case.

However, fine-tuning LLMs to perform technical, specialized
tasks is expensive, because the target domain of a fine-tuned
model is usually complex and technical—otherwise, fine-tuning
would not be necessary—and it requires annotators with some
degree of domain-level expertise, which comes with potentially
significant financial and time costs. Indeed, one study of NER
annotation speed found it can take between 10 and 30 seconds
per sentence for experts to annotate named entities [8]. The
gold-standard annotated BioSemantics corpus is composed of
163,219 sentences, which implies an optimal annotation time
of over 11 weeks at 40 hours per week (453.39 h) [20]. This
estimate, of course, excludes the time required for annotator
training and interannotator reliability assessments, and because
fine-tuning adjusts many or all of the model’s parameters, it
consumes computational resources. Time and power
consumption for fine-tuning scales with training data size
[21,22] and with the size of the underlying model that is
computed. As of the date of writing, for example, it would be
unrealistic to fine-tune very large models such as GPT-4.

These limitations notwithstanding, it is increasingly recognized
that long-standing presumptions about sufficiently large training
data sets are likely substantially inflated [23]. We suspect this
comes from a research and development environment dominated
by a significant focus on promulgating new models that can
claim to be state-of-the-art (SOTA) based on some preidentified
benchmark. In a research environment dominated by so-called
“SOTA chasing,” ever larger data sets are often required to eke
out minor performance improvements over the previous
benchmarks. Notably, development teams from disciplines with
generally small research budgets have found that fine-tuning
can result in substantial performance improvements from
relatively small amounts of expert-annotated data [13,24] or
from a combination of prelearning and transfer learning followed
by a brief fine-tuning phase [25]. In one case, significant
improvements over the baseline were derived from training
samples as small as 50 lemmas [13]. Despite the growing
recognition that smaller gold-standard training sets can provide
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substantial performance improvements, there is little in the way
of actionable guidance for sample size and sample curation.

The primary goal of this study is to establish some initial
baselines for sample size considerations in terms of training set
size and relevant entity density for NER applications in
specialized technical domains. To that end, we have conducted
a fine-tuning experiment that compares the performance
improvements resulting from 2500 randomly selected training
data sets stratified by size. These training sets were used to
fine-tune 4 distinct language models to perform NER in a highly
specific language domain: the identification of 2 internal
components (conflict sources and conflict targets) in conflicts
of interest (COI) disclosures. The results presented below
indicate that only relatively small samples are required for
substantial improvement. They also demonstrate a rapidly
diminishing marginal return for larger sample sizes. In other
words, while larger and larger sample sizes may be useful for
“SOTA chasing,” their value for fine-tuning LLMs shrinks
beyond a certain threshold, which we estimate below. These
findings provide actionable guidance about how to select and
generate fine-tuning samples by attending to issues of relevant
token density. As such, they should have great value for NER
applications that rely on them.

Literature Review
During our initial review of the literature, we were unable to
locate any widely accepted, evidence-based guidance on
appropriate sample sizes for training data in NER fine-tuning
experiments. Therefore, to evaluate the state of the field, we
conducted a literature search focused on identifying existing
practices. We searched PubMed for prior relevant work to
determine current sample size conventions in NER fine-tuning.
We used a simple search strategy “(“named entity recognition”
OR “entity extraction”) AND (fine tuning OR transfer learning)
AND (annotat*),” which returned 138 relevant papers. We
reviewed each of these papers and extracted information related
to human-annotated NER training sets. Specifically, for each
paper, we assessed if a human-annotated training set was used,
and if so, we extracted data on sample units, sample size, and
any available sample size justification. In cases where authors
described the size of human-annotated training sets on multiple
levels (eg, number of documents, number of sentences, and
number of entities), we prioritized units that would most
effectively guide prospective sampling. This emphasis meant
that we prioritized sentences (as they are comparable across
document types and identifiable without annotation) over
documents (which vary widely in length) or entities (which
cannot be assessed until after annotation). In cases where
multiple human-annotated samples were used, we noted the
largest reported sample as indicative of the researchers’ sense
of the sample necessary to conduct the research in its entirety.

Additionally, for each paper that made use of a human-annotated
training set, we sought to identify any possible justifications
for the chosen sample size. We anticipated that common
justifications might include (1) collecting a sample sufficient
to achieve target performance, (2) collecting a sample consistent
with or larger than prior work, or (3) collecting a sample
appropriate given relevant power calculations.

Of the papers surveyed, the majority (93/138, 67.4%) reported
the use of human-annotated NER training data. The remaining
(45/138, 32.6%) papers used only computational approaches to
curate training data sets. Notably, many papers reported using
a mix of human-annotated and computationally-annotated
training sets or performing multiple experiments with different
training sets. As long as any given paper used at least 1
human-annotated training set, it was included in the tally.
Reported sample units varied quite widely across papers with
many reporting only the number of documents used. Document
types were similarly variable and specific to research contexts.
For example, several papers reported training sample sizes as
the number of clinical notes, number of published abstracts, or
number of scraped tweets. In contrast, some papers reported
sample size using non-context-specific measures such as
sentences, entities, or tokens. Given this variety, we classified
sample units as belonging to 1 of 6 common categories: clinical
notes or reports, sentences, abstracts or papers, entities, tokens,
or others. The most commonly used sample unit was clinical
notes or reports (34/93, 37%) followed by sentences and papers
or abstracts (21/93, 23%). Sample size ranges also varied widely
by unit type, as would be expected. The smallest clinical notes
or reports sample used a scant 17 documents [26], but this was
likely a larger sample than the smallest reported sentence sample
size of 100 [27]. Among the papers reporting nondocument type
specific sample units, human-annotated data sets ranged from
1840 tokens to 79,401 tokens (mean 42,121 tokens); from 100
entities to 39,876 entities (mean 15,957 entities); and from 100
sentences to 360,938 sentences (mean 26,678 sentences). Details
on the sample size range by sample type are available in Table
1. Complete details on each paper’s approach to sample size
are available in Multimedia Appendix 1.

Of the 93 papers that used human-annotated NER training data,
only 3 (3%) papers provided an explicit justification for the
chosen sample size. In each case, the justification for the sample
size was based on a reference to prior relevant work and
determined to be as large or larger than a sample used in the
previously published work [28-30]. Ultimately, the wide range
of sample reporting practices and the broad lack of attention to
sample size justification indicate a strong need for explicit
sample selection guidance for fine-tuning NER models. This
paper contributes to addressing this need.
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Table 1. Unit types, number of papers by type, and sample size means and ranges.

Sample size, rangeSample size, meanPapers (n=93), n (%)Unit type

17-509870934 (37)Clinical notes or reports

20-7000196621 (23)Abstracts or papers

100-360,93826,67821 (23)Sentences

47-25,67859799 (10)Other

100-39,87615,9575 (5)Entities

1840-79,40142,1213 (3)Tokens

Methods

Overview
The primary aim of this study was to evaluate sample size
considerations for fine-tuning LLMs for domain- and
context-specific NER tasks. Specifically, the goal was to
evaluate how changes in retraining data set sizes and token
density impact overall NER performance. To accomplish this
task, we used stratified random samples of training sets to create
2500 fine-tuned instances of RoBERTa_base, GatorTron_base,
RoBERTa_large, and GPT-2_large. In what follows, we describe
(1) the data and target NER task, (2) the gold-standard
annotation protocol, (3) the fine-tuning approach, and (4) our
sample feature analysis.

Data Description and Context
We selected COI disclosures in biomedical literature as a highly
domain-specific, technical language context suitable for the
goals of this paper. In recent years, significant research efforts
have been devoted to studying the effects of financial COI on
the biomedical research enterprise [31-33], finding that COI is
associated with favorable findings for sponsors [31], increased
rates of “spin” in published reports [34], increased likelihood
of trial discontinuation or nonpublication [35], editorial and
peer reviewer biases [36], and increased adverse events rates
for developed products [37]. Unfortunately, as compelling as
this body of evidence is, a recent methodological review of
research in this area indicates that most studies treat COI as a
binary variable (present or absent) rather than quantifying COI
rates or disaggregating COI types [32]. This limitation in the
available evidence is, no doubt, driven in part by the data
structures of COI reporting. When COI are reported, they are
generally reported in unstructured or semistructured text. COI
disclosure statements can also be quite long, as individual
authors frequently receive and report multiple lines of funding
from a wide variety of granting agencies and corporate sponsors.
Ultimately, the lack of tabular data structures for COI makes it
difficult to extract appropriate information [38] such as the
sources and recipients of funding, the precise links between
COI sources and recipients, or the quantity and degree of COI
in a given disclosure statement.

These limitations notwithstanding, there has been some recent
research leveraging informatics techniques, including NER, to
transform text disclosure statements into tabular data [18,37].
Recently developed systems leverage NER to identify authors
and sponsors as “PERSONs” and “ORGs,” respectively.

Secondary processing makes use of regular expressions to parse
the types of relationships reported between each NER-identified
PERSON and ORG. Since NER-tagging in this context is
focused on identifying canonical entity types, applying these
tools to COI disclosure statements may seem relatively
straightforward at the outset. However, variances in reporting
formats and the lack of specific training data on relevant entities
present a number of challenges. In the first case, author
identification is stymied by different journal guidelines for
rendering author names. For example, a disclosure statement
for Rudolf Virchow might be rendered as “Rudolf Virchow,”
“Virchow,” “Dr. Virchow,” or “RLCV.” Likewise, pretrained
NER models have not been found to offer high-quality,
out-of-the-box performance for pharmaceutical company names
[18]. Variations in incorporation type (Inc, LLC, GmbH, etc)
typically induce entity boundary issues, and multinational
companies often report national entity names (eg, Pfizer India),
leading standard NER models to assign inappropriate
geopolitical entity tags. Finally, effective NER on COI
disclosure statements is also challenged by the atypical
distribution of relevant tokens. It is not uncommon for a single
sentence in a disclosure to have a dozen author names or a dozen
company names, for example, when a disclosure statement lists
all authors who have the same COI (eg, “such-and-such authors
are employed at MSD”). These atypical sentence structures also
occur when a single author has many COIs to disclose, as in,
“RLCV receives consulting fees from MSD, Pfizer, GSK,
Novartis, and Sanofi.”

To more clearly demonstrate these limitations, we provide the
following authentic example from a COI disclosure statement
published in a 2018 issue of the World Journal of
Gastrointestinal Oncology [39]. The following shows the NER
tagging performance of RoBERTa_base without fine-tuning:

Sunakawa Y[ORG] has received honoraria from
Taiho Pharmaceutical[ORG], Chugai Pharma[ORG],
Yakult Honsha[ORG], Takeda[ORG], Merck
Serono[ORG], Bayer Yakuhin[ORG], Eli Lilly
Japan[ORG], and Sanofi[ORG]; Satake H[ORG]
has received honoraria from Bayer[ORG], Chugai
Pharma[ORG], Eli Lilly Japan[ORG], Merck
Serono[ORG], Takeda[ORG], Taiho
Pharmaceutical[ORG] and Yakult Honsha[ORG];
Ichikawa W[ORG] has received honoraria from
Chugai Pharma[ORG], Merck Serono[ORG], Takeda
Pharmaceutical[ORG], and Taiho
Pharmaceutical[ORG]; research funding from Chugai

JMIR AI 2024 | vol. 3 | e52095 | p.285https://ai.jmir.org/2024/1/e52095
(page number not for citation purposes)

Majdik et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Pharma[ORG], Takeda Pharmaceutical[ORG], and
Taiho Pharmaceutical[ORG].

Furthermore, the following shows the NER tags provided by
the human annotation team:

Sunakawa Y[PERSON] has received honoraria from
Taiho Pharmaceutical[ORG], Chugai Pharma[ORG],
Yakult Honsha[ORG], Takeda[ORG], Merck
Serono[ORG], Bayer Yakuhin[ORG], Eli Lilly
Japan[ORG], and Sanofi[ORG]; Satake H[PERSON]
has received honoraria from Bayer[ORG], Chugai
Pharma[ORG], Eli Lilly Japan[ORG], Merck
Serono[ORG], Takeda[ORG], Taiho
Pharmaceutical[ORG] and Yakult Honsha[ORG];
Ichikawa W[PERSON] has received honoraria from
Chugai Pharma [ORG], Merck Serono[ORG], Takeda
Pharmaceutical[ORG], and Taiho
Pharmaceutical[ORG]; research funding from Chugai
Pharma[ORG], Takeda Pharmaceutical[ORG], and
Taiho Pharmaceutical[ORG].

It is evident that the base LLM classifier makes critical errors
that make mapping COI relationships between researchers,
funding streams, and funding sources impossible. In the above
example, a base-trained classifier mistakenly tags PERSONs
as ORGs; elsewhere, we have seen the opposite, where
non–fine-tuned classifiers mistakenly identify companies, such
as Novartis or Eli Lilly, as PERSONs. General purpose language
models (such as BERT and GPT-3) are not well-suited to the
NER task of classifying and linking named authors and disclosed
payors (pharmaceutical companies, nonprofit foundations,
federal funders, etc) because of challenges that arise from the
aforementioned lack of standardized disclosure conventions for
author names. Likewise, another challenge arises because these
models are not well-trained on biomedical companies, nonprofit
entities, and federal funders. In this study, as well as earlier
research, we found that pharmaceutical companies—frequently
named after founding families—are often tagged as PERSONs
rather than ORGs. Finally, the linguistic signature of COI
disclosure statements is distinctive: COI statements deploy
semicolons in nonstandard ways. For large research teams, a
single disclosure sentence can cover the length of a long
paragraph, and grammatical conventions that govern the
relationship between subjects, direct objects, and indirect objects
are often elided or circumvented in favor of brevity, which
makes linking authors to payors and payors to type of payment
challenging. At the same time, the linguistic conventions used
for disclosure statements vary between and even within journals,
rendering rule-based NER approaches unfeasible. As such, the
task of identifying and linking authors to payors and payment
types in COI statements is an ideal use case for fine-tuning
parameter-dense language models based on gold-standard human
annotated COI statements.

Data Sources and Preprocessing
The data used for fine-tuning COI-relevant NER tags in this
study come from COI disclosure statements drawn from 490
papers published in a diverse range of biomedical journals. The
selected disclosure statements were randomly sampled from a
preexisting data set of 15,374 statements with artificial

intelligence–identified COI [40]. The original data set was
created by extracting all PubMed-indexed COI statements in
2018. At the time of download, there were 274,246 papers with
a COI-statement field in the PubMed XML file. The substantial
majority of these are statements of no conflict disclosure, and
thus collected statements were analyzed using a custom machine
learning–enhanced NER system that can reliably identify
relationships between funding entities and named authors
[18,37]. The sample used in this study was drawn from the
population of COI statements with artificial
intelligence–confirmed conflict disclosures.

Two annotators independently tagged named entities in the
collected COI statements as either people (PERSON) or
organizations (ORG). The PERSON tag was applied to all
named authors, regardless of the format of the name. This
included initials with and without punctuation, for example,
“JAD” or “J.A.D” as well as full names “Jane A. Doe” or names
with titles “Dr. Doe.” ORG tags were applied to named
pharmaceutical companies, nonprofit organizations, and funding
agencies. To ensure that NER tagging was consistent, a random
sample of 200 COI statements was tagged by both annotators
and assessed for interannotator agreement using interclass
correlation coefficient for unit boundaries and Cohen κ for entity
type agreement. The raters had 98.3% agreement on unit
boundaries (interclass correlation coefficient=0.87, 95% CI
0.864-0.876). For named entities with identical unit boundaries,
the classification (PERSON or ORG) agreement was 99.6%
(κ=0.989). After this high degree of interrater reliability was
established, the annotators independently annotated the
remaining COI statements. Prior to training the language model,
a third rater reconciled the few annotation disagreements in the
initial interrater reliability sample.

Model Fine-Tuning and Analysis
A subset (147/490, 30%) of the annotated disclosure statements
was reserved to serve as an evaluation set. The remaining 343
statements were used to generate 2500 training sets for
subsequent experimentation. Each set was created by randomly
selecting an N size in 5 preidentified strata of 40 possible sample
sizes, at the statement level. The strata included size ranges of
1-40, 41-80, 81-120, 121-160, and 161-200. Once each N size
was selected, a random sample of COI statements at that N size
was derived. We created 500 random samples within each
stratum.

We fine-tuned 4 commonly used language models using the
open-source spaCy NLP library (version 3.2.1, running on
Python version 3.9.7). To ensure the repeatability of results and
to make the fine-tuning process as accessible as possible to
research teams, we used spaCy’s default configuration settings
for NER. The selected models included RoBERTa_base,
GatorTron_base, RoBERTa_large, and GPT-2_large; for the
latter 3, we used the spacy-transformers package to access these
models through Hugging Face’s transformers library. These
models were selected to provide a range of parameter sizes
(125M to 744M) and to allow for a comparison between
language models trained on general use, as well as on biomedical
texts specifically. Fine-tuning was performed on spaCy’s
pretrained transformer pipeline, with only the transformer and
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NER pipeline components enabled in the configuration file. All
fine-tuning processes were run on a high-performance
computing cluster at North Dakota State University’s Center
for Computationally Assisted Science and Technology, using
AMD EPYC central processing units and NVIDIA graphics
processing units. Preprocessing and tokenization were done
using spaCy’s built-in tokenizer; training runs were optimized
with the Adam algorithm, with decay rates of 0.9 (beta1) and
0.999 (beta2) and a learning rate of 0.01. For each training run,
spaCy was set to check NER classifications against the test set
after every 200 iterations within an epoch, to generate language
models at regular intervals during the training process, and to
stop whenever additional training steps failed to improve the
classification metrics. We then extracted the highest-scoring
language model from each set, for a total of 2500 fine-tuned
language models.

Each of the 2500 retraining sets was subsequently categorized
by sample size (measured in the number of sentences) and
relevant entity density (entities per sentence [EPS]). Sentence
boundaries were determined using the sentencizer in the R
tidytext (0.3.4) library [41]. Sentences were used to provide a
more regularized comparator as disclosure statements vary
widely in length. We also focus on sentences as opposed to
tokens since the number of sentences in a sample can be
identified prospectively (ie, prior to annotation). Multiple
regression was used to assess the linear relationship between
sample size (number of sentences), entity density (EPS), and
trained model F1-score. Additionally, we used single-predictor
threshold regression models for the number of sentences and
EPS to evaluate the possibility of diminishing marginal returns
from increased sample size or taken density [42]. Threshold
regression offers an effective way to model and evaluate
nonlinear relationships, and as the term suggests, to identify
any threshold effects. Multiple threshold models are available,
and our approach relies on a hinge model that can be expressed
as follows:

All statistical tests were performed in R (version 4.2.2; The R
Foundation) and the threshold modeling was performed using
the R chngpt package [43].

Ethical Considerations
This study does not include human subjects research (no human
subjects experimentation or intervention was conducted) and
so does not require institutional review board approval.

Results

The 2500 sets ranged from 1 to 200 disclosure statements with
an average of 100 (SD 57.42). The number of sentences in each
fine-tuning set ranged from 5 to 1031, with an average of 525.2
(SD 294.13). The tagged entity density ranged from 0.771 to
1.72 EPS, with an average of 1.34 (SD 0.14). Fine-tuned model

performance on NER tasks ranged from F1-score=0.3 to
F1-score=0.96. The top F1-score for each architecture was 0.72
for GPT-2_large, 0.92 for GatorTron_base, 0.94 for
RoBERTa_base, and 0.96 for RoBERTa_large. Data set and
model descriptive statistics are available in Table 2.

Multiple linear regressions were used to assess and compare
the relationship between the independent variables (number of
sentences and EPS) and the overall model performances
(measured by F1-score) for each architecture. EPS and number
of sentences predictors correlate weakly (Pearson r=0.28,
P<.001), and diagnostic tests for multicollinearity indicate that
the variables do not violate the Klein rule of thumb and have a
low variance inflation score (1.11) and high tolerance (0.9) [44].

All models were statistically significant with multiple R2 ranging
from 0.6057 to 0.7896 (all P<.001). EPS and the number of
sentences were significant predictors of F1-scores in all cases
(P<.001), except for the GPT-2_large model, where EPS was
not a significant predictor (P=.184). Standardized regression
coefficients and full model results are available in Table 3.

This study focuses primarily on total sentences as our measure
of data size. This is because the number of sentences can be
identified prospectively (prior to annotation) and is comparable
across data sets with different document lengths. However, it
should be noted that other measures of sample size are similarly
predictive of F1-scores. The total number of relevant entities
per training data set correlates very closely with the number of
sentences (Pearson r=0.998, P<.001). This high collinearity
makes it inadvisable to fit regression models with both
predictors. We did, however, fit a series of models with EPS
and a number of relevant entities as predictors. In all cases, the
results were quite similar to those reported in Table 3. Specific
values are available in Multimedia Appendix 2. It is notable

that, in all cases, the multiple R2 for models with EPS and the
number of relevant entities as predictors are lower than the
counterpart models with EPS and number of sentences.
Subsequent pairwise ANOVA, however, indicates that there
are no significant differences in model fit. ANOVA P values
were 0.85 for RoBERTa_base, 0.74 for GatorTron_base, 0.93
for RoBERTa_large, and 0.53 for GPT-2_large.

Threshold regression models were also used to assess the
possibility of diminishing marginal returns on training data sizes
and EPS for each model and model architecture. All threshold
models indicate that there was a diminishing marginal return
from increased training data set sample size measured by number
of sentences. Point estimates ranged from 439 for
RoBERTa_large to 527 for GPT-2_large. Likewise, the
threshold models indicate a diminishing marginal return for
EPS with point estimates between 1.36 and 1.38. Complete
threshold regression results are available in Table 4. Single
predictor plots are available in Figure 1, with technical threshold
model plots shown in Multimedia Appendix 2.
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Table 2. Descriptive statistics of training sets and model performance.

Value, mean (SD)Value, rangeDescriptive statistics

100.0 (57.42)1-200Number of disclosure statements

712.9 (405.94)4-1402Number of tokens

525.2 (294.13)5-1031Number of sentences

1.34 (0.14)0.771-1.72Entities per sentence

0.81(0.13)0.43-0.94RoBERTa_base F1-score

0.84 (0.13)0.37-0.92GatorTron_base F1-score

0.84 (0.14)0.44-0.96RoBERTa_large F1-score

0.58 (0.12)0.30-0.72GPT-2_large F1-score

Table 3. Standardized multiple linear regression results by architecture.

Multiple R2P valuebF test (df)βsentβEPS
aModel (parameters)

0.6197<.0012034 (22, 497)0.78c0.04cRoBERTa_base (125M)

0.6417<.0012236 (22, 497)0.79c0.05cGatorTron_base (345M)

0.6057<.0011918 (22, 497)0.76c0.05cRoBERTa_large (355M)

0.7896<.0014685 (22, 497)0.89c–0.01GPT-2_large (774M)

aEPS: entities per sentence.
bIndividual predictor P values for Beta_sent were <.001 for all models. P values for Beta_EPS were <.001 in all cases except for the GPT-2_large model
where EPS was not a significant predictor (P=.184)
cPredictor results are significant at the P<.01 level.

Table 4. Threshold regression point estimates and 95% confidence intervals for number of sentences and EPSa by architecture.

EPS threshold, estimate (95% CI)Number of sent threshold, estimate (95% CI)Model (parameters)

1.36 (1.35-1.37)448 (437-456)RoBERTa_base (125M)

1.36 (1.36-1.38)448 (409-456)GatorTron_base (345M)

1.36 (1.35-1.38)439 (409-451)RoBERTa_large (355M)

1.38 (1.36-1.38)527 (511-540)GPT-2_large (774M)

aEPS: entities per sentence.
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Figure 1. Single predictor plots for the number of sentence (left) and EPS (right). Fit with a generalized additive model. EPS: entities per sentence.

Discussion

Principal Findings
Our review of the available literature on human-annotated
training data for NER fine-tuning indicates that there is a strong
need for useful guidance on requisite sample sizes. Reported
sample units and sizes vary widely, providing little foundation
for prospective approaches to sample curation. Given the
significant time and costs associated with gold-standard
annotation, it is critical that researchers and practitioners can
effectively determine appropriate samples before fine-tuning
neural network language models. The results of the experiment
presented here provide initial actionable guidance for the
development of gold-standard annotated training sets for NER
fine-tuning in highly specific, specialized domains. Specifically,
they indicate that contrary to common assumptions,
transformer-based language models can be optimized for new
tasks using relatively small amounts of training data.
Furthermore, the results presented here indicate that NER
fine-tuning is subject to threshold effects whereby there are
diminishing marginal returns from increased sample sizes. Our
data revealed that a scant 439 sentences were sufficient to reach
that threshold with RoBERTa_large. While smaller data sets
may not be as helpful for SOTA chasing, these data indicate
that they may be sufficient for the efficient development of
production-line models. These findings are consistent with the
growing multidisciplinary body of literature demonstrating the
efficacy of smaller sample sizes for fine-tuning [13,23,24].
Additionally, we note that given prior estimates for NER
annotation rates, a sample of approximately 450 sentences would
take between 74 and 225 minutes to annotate [8].

Importantly, the data provided here also indicate that neither
model size nor content area–specific foundational training data
may be essential for maximizing performance, but that model
architecture is. RoBERTa_base, GatorTron_base, and

RoBERTa_large all achieved comparable performance levels
in terms of maximum F1-score with similarly low training
sample sizes. GPT-2_large, despite being the largest model
tested, showed the worst performance on our NER tasks. On
the one hand, neither finding is surprising. The foundational
paper by Devlin et al [16] on the BERT transformer architecture
suggests that BERT’s capacity for fine-tuning for NLP tasks,
such as classification, is better compared with GPT-based
models, and a recent Microsoft Research paper argues that
general-language models, such as GPT-4, can perform as well
or better on domain-specific language tasks—specifically as
they relate to medicine—than models trained on language
specific to that domain [45]. But where the latter study focused
on a very LLM built with reinforcement learning from human
feedback and designed to be responsive to prompting, we found
that for smaller—and therefore more tunable—models,
fine-tuning with domain-specific texts yields significant
performance improvements. For domain-specific NER tasks,
then, architecture differences may matter most: decoder-based
unidirectional architectures may be better suited for sentence
generation, while encoder- or decoder-based bidirectional
architectures better capture sentence-level contexts that are
essential to NER tasks.

The results presented here also indicate that there are similar
threshold effects for token density. That is, selecting or
synthetically creating specifically token-rich samples may not
improve model performance. Unlike the sample size data that
indicate a diminishing marginal return, the hinge model for
token density shows a substantial decrease in overall
performance after the EPS threshold is achieved. We note that
these threshold point estimates and narrow 95% CIs converge
on the average EPS (1.34) of the 2500 training sets, and this
suggests that the relevant entity density of training data needs
to approximate the relevant entity density of testing and
production-line data.
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This finding is especially relevant given the increasing interest
in artificial training data generated by LLMs. While the insights
presented here indicate that fine-tuning training data can be
much smaller than generally anticipated, high-quality small
training data sets still require adequate funding and time to pay,
train, and deploy human annotators. In response, some research
seeks to leverage LLMs as sources of training data for
subsequent fine-tuning of smaller neural network models [46].
This is an intriguing line of research worthy of further scrutiny.
However, it is notable that our findings about relevant token
density suggest that artificially generated data must mirror real
data in terms of token density. If the token density is too low
or too high, we can expect to see reduced model performance
when compared with naturally derived training data and
high-quality expert annotation.

While these findings provide an important initial foundation
for fine-tuning sample size considerations in NER applications,
the specifically identified thresholds may not apply to markedly
different NER use cases. This study focused on fine-tuning
PERSON and ORG tags, entity types that are well-represented
across the heterogeneous data sources that are used to train
LLMs. Bioinformatics use cases that focus on entity types that
are more unique to biomedical contexts (eg, symptoms,
chemicals, diseases, genes, and proteins) or that require
generating new entity categories may require larger training
samples to optimize LLM performance. Additionally, this study
focuses on semistructured natural language (disclosure
statements). While we would expect similar guidelines to apply
for NER in other semistructured biomedical contexts (eg,
research papers, clinical notes, abstracts, and figure or image
annotations), the threshold guidance here may not apply well
to less formalized linguistic contexts.

Conclusion
The emergence of LLMs offers significant potential for
improving NLP applications in biomedical informatics, with
research demonstrating the advantages of fine-tuned,
domain-specific language models for health care applications

[47] and environmental costs [22]. However, given the novelty
of these solutions, there is a general dearth of actionable
guidelines on how to efficiently fine-tune language models. In
the context of NER applications, this study demonstrates that
there is a general lack of consensus and actionable guidance on
sample size selection concerns for fine-tuning LLMs. Training
sets reporting units and sample size varied widely in the
published literature, with samples ranging from 100 sentences
to 35,938 sentences for training sets. Additionally,
human-annotated training set sample sizes are seldom justified
or explained. In the rare cases where sample size is discussed
explicitly, justifications focus narrowly on simple size
comparisons to previously published efforts in a similar domain.
In this context, biomedical informatics researchers could benefit
from actionable guidelines about sample size considerations for
fine-tuning LLMs.

The data presented here provide sample size guidance for
fine-tuning LLMs drawn from an experiment on 2500
gold-standard human annotated fine-tuning samples.
Specifically, the data demonstrate the importance of both sample
sizes as measured in the number of sentences and relevant token
density for training data curation. Furthermore, the findings
indicate that both sample size and token density can be subject
to threshold limitations where increased sample size or token
density do not confer additional performance benefits. In this
study, sample sizes of greater than 439-527 sentences failed to
produce meaningful accuracy improvements. This suggests that
researchers interested in levering LLMs for NER applications
can save considerable time, effort, and funding, which has been
historically devoted to producing gold-standard annotations.
The data presented here also indicate that the relevant token
density of training samples should reliably approximate the
relevant token density of real-world cases. This finding has
important ramifications for the production of synthetic data
which may or may not effectively approximate real-world cases.
The findings presented here can directly inform future research
in health policy informatics and may also be applicable to a
wider range of health and biomedical informatics tasks.
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Abstract

Background: Breastfeeding benefits both the mother and infant and is a topic of attention in public health. After childbirth,
untreated medical conditions or lack of support lead many mothers to discontinue breastfeeding. For instance, nipple damage and
mastitis affect 80% and 20% of US mothers, respectively. Lactation consultants (LCs) help mothers with breastfeeding, providing
in-person, remote, and hybrid lactation support. LCs guide, encourage, and find ways for mothers to have a better experience
breastfeeding. Current telehealth services help mothers seek LCs for breastfeeding support, where images help them identify and
address many issues. Due to the disproportional ratio of LCs and mothers in need, these professionals are often overloaded and
burned out.

Objective: This study aims to investigate the effectiveness of 5 distinct convolutional neural networks in detecting healthy
lactating breasts and 6 breastfeeding-related issues by only using red, green, and blue images. Our goal was to assess the applicability
of this algorithm as an auxiliary resource for LCs to identify painful breast conditions quickly, better manage their patients through
triage, respond promptly to patient needs, and enhance the overall experience and care for breastfeeding mothers.

Methods: We evaluated the potential for 5 classification models to detect breastfeeding-related conditions using 1078 breast
and nipple images gathered from web-based and physical educational resources. We used the convolutional neural networks
Resnet50, Visual Geometry Group model with 16 layers (VGG16), InceptionV3, EfficientNetV2, and DenseNet169 to classify
the images across 7 classes: healthy, abscess, mastitis, nipple blebs, dermatosis, engorgement, and nipple damage by improper
feeding or misuse of breast pumps. We also evaluated the models’ ability to distinguish between healthy and unhealthy images.
We present an analysis of the classification challenges, identifying image traits that may confound the detection model.

Results: The best model achieves an average area under the receiver operating characteristic curve of 0.93 for all conditions
after data augmentation for multiclass classification. For binary classification, we achieved, with the best model, an average area
under the curve of 0.96 for all conditions after data augmentation. Several factors contributed to the misclassification of images,
including similar visual features in the conditions that precede other conditions (such as the mastitis spectrum disorder), partially
covered breasts or nipples, and images depicting multiple conditions in the same breast.

Conclusions: This vision-based automated detection technique offers an opportunity to enhance postpartum care for mothers
and can potentially help alleviate the workload of LCs by expediting decision-making processes.

(JMIR AI 2024;3:e54798)   doi:10.2196/54798
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Introduction

Background
The benefits of breastfeeding for both the mother and baby,
such as lower gastrointestinal infections in the child, more rapid
maternal weight normalization after birth, and prolonged
amenorrhea for the mother, are just a few examples of why
physicians recommend breastfeeding for at least 6 months [1-5].
Breastfeeding rates are on the rise in the United States, with
83.2% of newborn infants being breastfed in 2019, thanks to
increased education and promotion of its benefits [6]. Despite
the compelling evidence, many families struggle to continue
breastfeeding. Although 95% of mothers initiate breastfeeding,
the continuation rate drops to <41% and <19% for exclusive
breastfeeding at 3 and 6 months, respectively [7]. Parents who
breastfeed may face issues, such as low milk supply, fatigue,
medical problems, difficulties with feeding techniques or pain,
and lack of social support [8-10].

Lactation consultant (LC) professionals specialize in
breastfeeding, milk supply, breast and nipple issues, breast milk
management, and prenatal education. LCs ensure a mother’s
smooth and painless transition into breastfeeding and increase
the possibility of continued breastfeeding through 6 months or
longer [11,12]. The availability of international board-certified
LCs (IBCLCs) globally is limited. In 2021, there were 3.6
million births in the United States and only 18,500 LCs with
IBCLC certification, a rate of 194 babies per LC a year. In low-
and middle-income countries such as Brazil, for instance, there
were 2.6 million births in the same year but only 154 certified
LCs, resulting in a rate of 16,883 babies per LC per year. The
high demand for LCs, coupled with geographic and financial
barriers, underscores the need for better tools to improve access
to specialized lactation services, especially in less urbanized
areas where such resources are scarce, leading to decreased
breastfeeding support [13-20].

Another issue is professional availability itself, as LCs often
combine their practice with midwife nursing, splitting their time
between prenatal visits, attending births, lactation consultations,
and managing their patients, which can lead to professional
exhaustion, burnout, and emotional stress [21-23]. Moreover,
the predominantly independent practice of LCs outside the
United States, without the support of clinics with sophisticated
patient management and triage systems, further complicates
their time management and patient organization [22,24].

Supporting LCs Through Tele-Lactation Services
Tele-lactation services facilitate text, audio, and video
communication. This enables LCs to consult with patients from
any location, reduces travel time, helps balance their workload,
increases their availability to receive new patients, and provides
quicker responses to their patients [20]. Complementing
tele-lactation services, patient triaging using information systems
allow LCs to prioritize in-person visits for severe cases requiring

physical assessment, while less critical cases can be handled
remotely [25,26]. Prior research suggests that LCs would benefit
from time-saving tools for efficient patient information delivery
while focusing on mitigating prolonged interactions, helping
alleviate the burden on these professionals with a load of patients
[22,27]. As LCs often follow up with their patients up to weeks
after birth to ensure positive breastfeeding outcomes, an
easy-to-access system to monitor patient progress is essential
for effective patient triage, facilitating consultation scheduling,
holding remote consultations, or providing reassurance.
However, LCs’ current access to remote consultation systems
lacks patient triaging tools and is not time efficient, indicating
an area in need of development.

Our work proposes a novel method for the identification of
breastfeeding-related conditions using convolutional neural
networks (CNNs). We evaluated a self-curated data set
containing 7 different breastfeeding conditions on 5 distinct
CNN models. The assessment of breast conditions is vital as
pain and discomfort experienced during breastfeeding is a major
barrier faced by parents who want to continue breastfeeding
their child. About 80% of mothers are estimated to experience
nipple pain and fissures, while 20% are estimated to experience
mastitis [28,29]. Our pipeline incorporates automatic detection
of visually discernible painful breastfeeding-related conditions,
such as nipple cracks and fissures related to poor latching and
positioning; skin conditions, such as dermatitis, eczema, thrush,
or herpes; and risk of mastitis spectrum issues, such as
engorgement, abscess, and nipple blebs. The CNN model is
used for automatic detection of breast conditions, which can
benefit the triaging of remote lactation patients for faster and
more efficient patient response based on their conditions.

Our work evaluated 5 distinct CNN models’ ability to
differentiate between healthy and various unhealthy breast
conditions (including breast abscesses, dermatoses,
engorgement, mastitis, nipple blebs, and nipple damage) by
performing both multiclass and binary evaluations on 1078
breast images. We evaluated the model’s performance using
the data set with and without data augmentation techniques.
The data were divided into training, validation, and testing sets,
using k-fold cross-validation for robustness. Performance
evaluation on the best model includes an average area under
the curve (AUC) of 0.93 for all conditions after data
augmentation and precise detection of healthy breasts (precision
of 84.4%) and unhealthy breasts (average precision of 66%, SD
12.8%) for 6 conditions. For binary classification, we achieved,
with the best model, an average AUC of 0.96 for all conditions
after data augmentation and precise detection of healthy breasts
(precision of 93.8%) and unhealthy breasts (precision of 83.5%).
The breast images have been curated from perinatal education
resources such as images and video recordings under various
lighting, environments, and image-taking conditions, where we
examined potential issues around how the images are taken and
their impacts on performance. Finally, we provide insights into
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future designs of user interfaces and guidance needed for the
proper application of the system.

Related Work

Lactating Care Pipeline: In-Person, Remote, and Hybrid
Health care providers introduce breastfeeding options to
expectant mothers, including educational materials in print or
web-based, during prenatal care. The initiation of breastfeeding
after delivery is timed according to the type of birth. Many
hospitals worldwide follow the United Nations Children’s Fund
and World Health Organization baby-friendly initiative,
prioritizing maternal and infant health and supporting mothers
facing challenges [30,31]. After a child’s birth, families often
seek breastfeeding support from LCs, who typically offer
hands-on consultations from birth until support is no longer
required [18]. They conduct visual and physical evaluations of
both mother and baby, assessing the baby’s internal mouth
structure, breast and nipple anatomy, and milk supply and
ensuring proper attachment or repositioning of the baby to
prevent nipple fissures. LCs may also introduce laser therapy
as a treatment option for damaged nipples from breast pump
misuse or issues with baby attachment [8]. The immersive
approach of LCs is crucial for providing personalized and
effective lactation support to mothers and infants.

Remote Lactation Care
The widespread adoption of smartphone communication apps,
particularly WhatsApp (Meta Platforms, Inc), has transformed
public health facilities, including family clinics in
limited-income countries, offering various patient services such
as appointment scheduling, health guidance, and vaccine
campaign notifications [32-34]. WhatsApp has become a popular
communication tool between LCs and patients, facilitating
breastfeeding education and family support during the neonatal
period [35,36]. During the COVID-19 pandemic, LCs
transitioned to telehealth consultations using established
smartphone apps such as WhatsApp, Instagram (Meta Platforms,
Inc), and Facebook (Meta Platforms, Inc). LCs adapted their
approach to maintain quality care despite resource limitations
in remote consultations [37,38]. Similar to other practices
requiring physical evaluation, LCs reimagined their methods
when shifting from in-person to remote consultations, using
communication and social media apps to reach and educate
parents while having broader visibility in their community
[37,39].

Remote lactation care presents challenges, including limited
visibility during video calls, communication difficulties, and
technical issues [18,40,41]. Despite challenges, remote care
offers benefits, reducing the mother’s sense of isolation,
enabling faster feedback, and promoting effective
communication and patient engagement for improved
independent learning [17,18,22]. These benefits positively
impact mothers’ intentions in exclusive breastfeeding for up to
6 months and reduce the risk of breastfeeding cessation at 3
months by 25% [42].

Hybrid Lactation Care
Previous research showed that fully remote consultations work
well for cases where geographic distance, transportation issues,
or patient disease prevent in-person meetings between patients
and providers. LCs often conduct remote consultations from
their workplaces, including personal offices, clinics, or hospitals,
especially when they are also midwives with on-call
responsibilities [37]. They provide consultations for patients
before birth, after birth, and in emergency cases where the
mother is facing breastfeeding challenges [22]. Depending on
the nature of the consultation, in-person or remote visits are
chosen to meet the patient’s specific needs. In summary, remote
care complements in-person care, being a valuable resource for
mothers seeking guidance, reassurance, and confidence,
particularly in the absence of a supportive home environment
[38].

LCs, especially those who are also midwives, have limited time
availability due to demanding schedules and receiving numerous
remote messages from patients daily, some requiring higher
priority attention [22,43]. Manually sorting through patient
messages to determine priority can be time consuming and
inconvenient for mothers with urgent needs. Our work proposes
a computer vision–based system to triage breast conditions,
facilitating telehealth and assisting LCs in identifying patients
who require immediate responses in remote settings.

Issues Associated With Breastfeeding
Breastfeeding pain is one of the reasons associated with
breastfeeding cessation, which can be caused by issues such as
poor attachment of the baby onto the breast, physical conditions
of the mother or baby, misuse of breast pumps, oversupply of
breast milk, and even environmental conditions [44]. These
issues, if left untreated in the first few days after birth, can
persist for weeks and pose a threat to breastfeeding continuity
beyond 6 months. Some conditions can be fully mitigated when
the mother receives orientation and education on the topic. In
contrast, other conditions can be alleviated and managed for a
better experience for the mother in the case of physical
conditions, including nipple physiology, baby tongue-tie, jaw
clenching, and excessive milk supply [28,45].

This study concentrates on conditions leading to breastfeeding
pain and potential interruption. The first condition is the mastitis
spectrum disorder, where about 20% of mothers who breastfeed
may face it during their time breastfeeding. This disorder starts
with the overproduction of milk and breast engorgement, which
can cause milk passage obstruction in the form of galactoceles
and nipple blebs. When not properly treated, a case of milk bleb
or galactocele can evolve into phlegmon, bacterial, or
inflammatory mastitis, which may require patients to treat it
with medications and sometimes medical procedures to drain
the inflammation fluids from the breast in case it becomes an
abscess [46,47]. Conditions associated with mastitis are painful
and include symptoms such as redness in the breast,
influenza-like symptoms, hardened skin surface in the location
of the milk blockage, formation of blisters in the nipple, and
even blood in the milk [29,48].
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The second condition is nipple damage caused by improper
latching and positioning from the infant, excessive pressure
from breast pumping devices, infant tongue-tie or palate
abnormality, infant’s arrhythmic milk expression, and even
infant biting or jaw clenching [9,44]. Considering the cause of
nipple damage, 80% of mothers are expected to face some level
of nipple issues during breastfeeding, which, if not treated, may
cause an average of 35% of these mothers to cease breastfeeding
before 1 month [28,45]. Nipple damage is painful and may be
visible or invisible. When visible, it can present features at the
skin surface, such as fissures, cracks, pus, blood, scarring, or
crusting. Some skin dermatoses, such as thrush, herpes, eczema,
and psoriasis, are also responsible for discomfort and pain during
breastfeeding. These conditions can be caused by friction,
weather, and temperature changes and using medications or
ingredients that can make the skin prone to these disorders.
Dermatoses conditions present on both breast and nipple and
can have visible features such as scarring, crusting formations,
redness, and thickened skin regions [44]. Our research
incorporates breast and nipple images from the following
disorders: breast abscess, dermatoses, breast engorgement,
inflammatory and bacterial mastitis, nipple blebs, and nipple
damage.

Current Research Supporting Lactating Mothers
Extensive literature has highlighted the efficacy of deep learning
in assessing breast images, helping detect malignant and benign
breast tumors for both lactating and nonlactating women [49-54].
This has helped improve the precision of breast ultrasound and
mammogram examinations, involving the use of medical
imaging previously taken in medical facilities to enhance the
evaluation of breast-related illnesses and allow better accuracy
in diagnosis for medical personnel [53]. However, these studies
relied on images gathered from specialized equipment found
only in health care facilities. They did not extend their evaluation
to external body images, focusing primarily on aiding health
care practitioners in diagnosis. Our work diverges from previous
contributions by primarily focusing on using external breast
images gathered from personal devices, such as smartphones
or cameras from lactating patients, to identify
breastfeeding-related conditions in the early stages and evaluate
the necessity of further examination and medical intervention.

In the context of breastfeeding disorders, there is a lack of
research regarding using deep learning algorithms to evaluate
real breast images and identify abnormalities such as mastitis,
nipple fissures, dermatoses, and abscesses. To illustrate,
literature addressing the early prediction of mastitis mainly
originates from agricultural studies, in which the risk of mastitis
is constantly assessed to prevent a reduction in animal milk
production, which significantly impacts the dairy industry
[55,56]. This shows a need for research to adapt these
technologies for detecting and preventing breastfeeding
disorders in humans. Our study is crucial in settings where
access to medical professionals and LCs is limited, as it can
help prevent breastfeeding cessation, promote maternal-infant
bonding, and improve the overall health and well-being of
mothers and infants.

Methods

In this section, we detail the data set collection process,
including inclusion and exclusion criteria, data sources, and the
characteristics of the images. The section also discusses the
artificial intelligence (AI) algorithms used in the study, including
the models and their training and validation process, and
performance metrics used during evaluation.

Ethical Considerations
This study was approved by the University of California, San
Diego Institutional Review Board (801,904). We did not
incorporate any personally identifiable data from the participants
into this research.

Data Set Collection

Overview
This study used a breast image data set (refer to Textbox 1 and
Table 1), a compilation of physical and digital images
specifically curated to train and validate our deep learning
model’s ability to distinguish between healthy and unhealthy
lactating breasts. The data set includes images categorized
according to their respective conditions: healthy lactating breast;
nipple injuries due to various causes; nipple blebs due to plugged
ducts; breast or nipple with signs of dermatoses; and breasts
with engorgement, mastitis, or abscess.
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Textbox 1. Data set description.

Description

• Data set size

• 393.7 MB (each image: minimum 0.015, average 0.360, and maximum 3.575 MB)

• Dimensions (pixels)

• Width (minimum 68, average 606, and maximum 2448)

• Height (minimum 68, average 607, and maximum 2448)

• Number of images

• 1078

• Number of classes

• 7

• Number of unique subjects

• 586

• Number of images per class

• Abscess: 115

• Dermatoses: 123

• Engorgement: 63

• Mastitis: 180

• Nipple bleb: 82

• Nipple damage: 197

• Healthy: 318

• Visual features per class

• Abscess: swelling and redness, area with palpable fluid collection, and pus

• Dermatoses: rash, discoloration, flaky skin, uneven skin tone, crusting, and redness

• Engorgement: swelling, redness, skin stretched and shiny, and enlarged nipple

• Mastitis: red patches on breast or nipple, swelling, and pus or blood discharge

• Nipple bleb: small white or yellow bumps on nipple or areola, similar to a blister

• Nipple damage: nipple swelling, redness, peeling or flaking skin, bleeding, and shape differences

• Healthy: regular breast and nipple color, may have visible veins

• Number of images per source

• Physical: 178 (eg, books, magazines, and articles)

• Physician websites: 366

• YouTube: 65 (eg, educational channels on women’s health)

• Other: 469 (eg, received by lactation consultants; international board-certified lactation consultant’s Instagram, Google Images, and Flickr;
support groups mediated by lactation consultants on social media; and other educational websites)
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Table 1. Number of images per skin tone per class (FSTa [57]).

Not classifiedbFST VIFST VFST IVFST IIIFST IIFST IClass name

28148203528Abscess

23313483717Dermatoses

104301864Engorgement

04111516944Mastitis

2236818169Nipple bleb

4551115225940Nipple damage

5212821929061Healthy

774467106269312203Total per FST

aFST: Fitzpatrick skin type.
bNot classified due to the absence of breast tissue around the nipple in the image.

Data Inclusion and Exclusion Criteria
To be included in the data set, images must meet the following
criteria: (1) the image must be in red, green, and blue (RGB)
format, either as PNG or JPEG; (2) it must visually have at least
1 of the 7 conditions; (3) the breast or nipple should be visible;
(4) the image should be hosted in a trustworthy source (ie, from
medical professionals such as physicians, midwife nurses, and
IBCLCs), in which the image must have a word or description
identifying its condition among the 7 classes to be included as
its label; and (5) the visual condition present in the image and
the label provided describing the condition should match. Images
were excluded from the data set if (1) the breast or nipple were
from nonlactating female patients; (2) the condition described
on the label and the visual features of the image did not match;
(3) the breast or nipple was not visible in the image; and (4) the
image did not have any label describing it. A board-certified
nurse practitioner (ie, Certified Nurse Practitioner, Advanced
Registered Nurse Practitioner, or IBCLC) with >15 years of
experience performed a final review of the data set to ensure
that images and labels had no discrepancies.

Data Source
We collected images from diverse sources such as
breastfeeding-related books, articles, web-based blogs for
mothers and physicians, YouTube videos from educative
organizations, and social media platforms (eg, Instagram,

Facebook, and Twitter) of certified health care providers who
would have educative resources for mothers. To ensure diversity
in geographic and racial representation, we conducted image
searches using multiple languages (eg, English, Portuguese,
Spanish, French, and Chinese) and used search engines adjusted
for other countries.

The images were obtained from a diverse group of female
patients with several skin colors and breast and nipple sizes,
with unstandardized image sizes, orientations, backgrounds,
and light sources. In total, the data set consisted of 1078 images,
with 318 images of healthy breasts, 115 images of breast
abscesses, 123 images of dermatoses, 63 images of breast
engorgement, 180 images of mastitis, 82 images of nipple blebs,
and 197 images of nipple damage. As shown in Figure 1 and
Table 1, a healthy lactating breast presented a uniform color,
was free of redness, and had no signs of discharge. Nipples were
expected to exhibit a variety of shapes, including flat, protruded,
or inverted, and to vary in size. In engorgement, images showed
breast and nipple swelling, skin stretched and shiny, and some
light redness due to high milk production. For nipple blebs or
nipple damage, signs of laceration, blood, blisters, and redness
were expected. Mastitis showed swelling, redness, and discharge
of pus or blood in the nipple. Abscess shared similarities with
mastitis but involved worsened redness and pus in the infected
region and may display signs of rupture. Finally, dermatosis
images contained signs of skin rash, breast or nipple uneven
skin tone, and crusting.

Figure 1. Example images from the testing set that were correctly classified and show features of each breastfeeding-related condition: (A) abscess,
(B) dermatoses, (C) engorgement, (D) mastitis, (E) nipple bleb, (F) nipple damage, and (G) healthy.

AI Algorithms
We examined the performance of 5 CNNs commonly used in
computer vision problems: Visual Geometry Group model with
16 layers (VGG16) [58], Resnet50 [59], InceptionV3 [60],
EfficientNetV2 [61], and DenseNet169 [62]. All models were

built with the PyTorch library for image classification, in which
the models had all layers frozen except for the last layer, which
was replaced with a fully connected layer adapted to the number
of classes—2 for binary classification and 7 for the multiclass
task. All models were trained for 100 epochs using the AdamW
optimizer with a learning rate of 3e-4, weight decay of 0.1, and
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batch size of 20. We chose 100 epochs because it was a
converging point where the accuracy no longer increased or
decreased. For the loss functions, we applied Binary
Cross-Entropy with Logits Loss for binary classification tasks,
and for multiclass tasks, we used Cross-Entropy Loss, both
fine-tuned with class weights to strategically adjust for class
imbalances by proportionally penalizing misclassifications in
less represented classes. These models were evaluated using
stratified k-fold cross-validation with 10 folds. To ensure the
robustness of our cross-validation process, we reset any learned
parameters by initializing the models from scratch at the
beginning of each fold. Instead of using the entire image data
set to train the model, we did feature extraction to optimize the
training process (detailed in the Feature Extraction section). We
compared the performance of the 5 models across the same data
and keep the hyperparameters the same: learning rate, weight
decay, batch size, and number of epochs.

Data Set Preprocessing
Before using the images as inputs for the deep learning models,
the images were manually cropped to ensure they were
deidentified and had no irrelevant content, such as unrelated
body areas, clothes, jewelry, identifiable tattoos, or backgrounds,
enhancing the model’s accuracy and performance. The images
were cropped in a 1:1 ratio to prevent image flattening or
warping during resizing and loss of important features. Most
images have breast and nipple tissue concentrated in the center
of the image, thereby focusing the model’s evaluation on the
most relevant areas. Our image preprocessing guidelines
followed similar works in dermatology for AI disease detection
and telehealth applications [63-65], which aim to objectively
show the area of interest for optimized detection and reduce
risks of poorly triaged images.

After cropping the images in a 1:1 ratio and before entering the
deep learning pipeline, we applied some standard
transformations in the data, starting with image resizing. In this
paper, we trained, validated, and tested our data set using 5
different models. Notably, 4 of the chosen models (VGG16,
Resnet50, EfficientNetV2, and DenseNet169) specified the
input images to be resized to 224×224 pixels, and the
InceptionV3 model required input images to be resized to
299×299 pixels. Therefore, we proceeded with the image

resizing according to each model’s requirements. The last
transformation step incorporates normalization of the images,
a procedure where the pixel intensity values are standardized
across the data set. To help the models generalize better for our
data set, we calculated the mean and SD of all images in the
data set to use in the normalization process instead of using the
ImageNet data set pretrained parameters, inspired by the
previous work involving skin disease classification [66].

Data Set Augmentation
In the process of curating the data set, we recognized that the
number of images per class was constrained, given the
complexity of gathering images and variability in the clinical
features of each class. We implemented data augmentation
techniques to mitigate these limitations, reduce the risk of
overfitting, and enrich the data set. These techniques artificially
expanded the data set by generating realistic transformations of
the existing images. We implemented the following 6 data
augmentations that were previously used in data sets involving
skin lesions [63,67]: center zoom, random rotation, brightness,
shear, vertical flip, and horizontal flip. Samples of augmentation
are shown in Figure 2. Before data augmentation, our data set
consisted of 1078 images. After the augmentation, the data set
consisted of 6478 images. The detailed number of samples
before and after augmentation is shown in Table 2.

We evaluated our data set before and after data augmentation.
In the original data set, the 1000 images were allocated for
training and validation, split using stratified k-fold
cross-validation [68] with 10 folds. In this process, 90%
(900/1000) of the data are used for training and 10% (100/1000)
for validation within each fold, as described in Figure 3. The
stratified k-fold maintains the proportion of images in each class
in both train and validation splits, making sure each fold will
be representative of the overall data set. The remaining 78
images were completely excluded from these folds and reserved
exclusively for final testing to assess the model’s performance
on unseen data. After augmenting the original data set, we
expanded it to 6000 images for training and validation.
Similarly, we increased our test set to 468 images to maintain
consistency with the expanded training data, ensuring the
model’s evaluation on unseen examples remains robust.

Figure 2. Samples of augmented data: (A) original, (B) brightness, (C) center zoom, (D) horizontal flip, (E) rotation, (F) shear, and (G) vertical flip.
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Table 2. Detailed number of samples in the data set.

Test samples (aug-
mented), n

Train samples (aug-
mented), n

Test samples, nTrain samples, nData set and classes

7-class data set

426487108Abscess

486908115Dermatoses

48330855Engorgement

5410269171Mastitis

42450775Nipple bleb

5411289188Nipple damage

180172830288Healthy

Binary data set

240394240657Unhealthya

228205838343Healthya

aUnhealthy class combines the classes abscess, dermatoses, mastitis, nipple bleb, and nipple damage, while the healthy class combines healthy and
engorgement, all from the 7-class data set.

Figure 3. Graphical diagram of stratified k-fold cross-validation on a 7-class data set.

Feature Extraction
We performed feature extraction using 5 models pretrained on
the ImageNet data set. This process helped to reduce the number
of computational resources necessary for processing the data
set by transforming images into numerical features, without
losing relevant information. The models were set to evaluation
mode, in which the feature maps are extracted from the final
convolutional layers. These maps were then processed through
adaptive pooling and flattened into 1D arrays. The extracted
features were saved and used as input for the model classifiers.

Training and Evaluation
As previously mentioned in the AI Algorithms section, a total
of 5 CNNs were trained on the data set. We proposed 4 tasks
in this study, which evaluates the CNNs in the following data
sets: (1) multiclass not augmented, (2) multiclass augmented,
(3) binary not augmented, and (4) binary augmented. As
described in Table 2, we performed an additional 2 evaluations
considering a binary model to assess the models’ capacity to
differentiate between healthy and unhealthy images. The
unhealthy class consolidates 5 of the previous conditions:
abscess, dermatoses, mastitis, nipple bleb, and nipple damage.

The healthy class consolidates the original healthy and
engorgement conditions. For this binary evaluation, we included
engorgement images in the healthy condition because it is not
inherently indicative of disease and often resolves without
medical intervention. Furthermore, engorgement shares visual
characteristics with healthy breast conditions, which might not
be distinguishable at an early, nonproblematic stage. All models
underwent k-fold cross-validation, where we collected
performance metrics from each fold and computed their average.
We assessed the models’ performance for the multiclass and
binary data sets using the same metrics: accuracy, precision,
recall, F1-score, and the receiver operating characteristic AUC
(ROC-AUC).

Results

Overview
We collected 1078 unique breast images from the web and
physical resources, 1000 images as part of the training and
validation set, and 78 images as part of the testing set. The
augmented data set has 6000 images for training and validation
and 468 images for testing. In the Multiclass Image Detection
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Evaluation section, we show evaluation results from the
multiclass and binary data sets, which we evaluated before and
after data augmentation. There was no hyperparameter tuning
between each fold, and all models had the same optimizer,
learning rate, weight decay, and batch size.

Multiclass Image Detection Evaluation
We evaluated 5 CNNs on their ability to distinguish between
healthy and 6 breastfeeding-related issues. Table 3 presents the
aggregated evaluation metrics for each model sorted based on
the test accuracy. The precision, recall, F1-score, and overall
area under the ROC-AUC are reported as weighted averages to
account for the class imbalance within the data sets, ensuring
that each class contributes to the final metric in proportion to
its prevalence. For each fold in the cross-validation, a separate
test set was used to evaluate the model, and the metrics
presented are the mean of these evaluations. The best-performing
model was Resnet 50, as it managed to contain the best testing
accuracy, followed by VGG16 and EfficientNetV2 on a small
performance difference. With a similar weighted average setting,
in a one-versus-rest fashion, the models achieved an overall
ROC-AUC of 0.934 for VGG16, 0.929 for Resnet50, 0.912 for
InceptionV3, 0.908 for Densenet169, and 0.872 for
EfficientNetV2. The detailed ROC-AUC per class for each
model is shown in Figure 4.

When applying data augmentation to the multiclass model, we
provided a wider variety of images to help the model better
generalize from the training data while not altering the original
class distribution. In Figure 5 and Table 4, we show the results
across the CNNs after data augmentation, where most of the
models showed improved metrics, with Resnet50 being the
leading model. The models achieved a ROC-AUC of 0.934 for

Resnet50, 0.912 for VGG16, 0.909 for Densenet169, 0.898 for
InceptionV3, and 0.893 for EfficientNetV2.

Looking into the performance of the best model, the Resnet50
with the augmented data set, we can look closer at the metrics
per class of this CNN. Table 5 shows the results for 10-fold
cross-validation, in which the model had an overall consistent
performance across the iterations. Figure 6 presents the
aggregated confusion matrix for the Resnet50 model, in which
we consolidated the predictions across all 10 iterations applied
to the augmented data set. We achieved this aggregation by
taking the median predicted class for each instance over the
multiple folds, synthesizing a singular prediction representing
the consensus of the model’s behavior across the test set.

Out of the 468 images used in the testing set, the model could
correctly classify 341 images. The total images correctly
classified by category are as follows: abscess (24/42;
accuracy=57%), dermatoses (43/48; accuracy=90%),
engorgement (25/48; accuracy=52%), mastitis (26/54;
accuracy=48%), nipple bleb (30/42; accuracy=71%), nipple
damage (41/54; accuracy=76%), and healthy (152/180;
accuracy=84%). The remaining images that were incorrectly
classified happened throughout visually similar conditions and
the conditions that can precede each other. Table 6 summarizes
the selected model’s performance per class on the augmented
test set. The model had difficulty categorizing between
abscesses, which had false positives on dermatoses and mastitis
for 12% (5/42) and 19% (8/42) of the images, respectively.
Breast engorgement had false positives on mastitis and healthy
breasts for 15% (7/48) and 33% (16/48) of the images,
respectively. Mastitis had false positives in abscess (12/54,
22%), nipple damage (9/54, 17%), and healthy breasts (6/54,
11%). About 21% (9/42) of the nipple bleb images were
confused as nipple damage.

Table 3. Average evaluation metrics for the trained models on the not augmented data set (sorted based on performance).

Test set metricsValidation accuracyTraining accuracyData set and model

F1-scoreRecallPrecisionAccuracy

7-class data set

0.637 a0.623 a0.6750.608 a0.7370.907Resnet50

0.6000.5890.6740.6040.6780.818VGG16b

0.5930.5820.6580.6040.6260.779EfficientNetV2

0.6220.6070.680 a0.5740.7270.903InceptionV3

0.5720.5960.6590.5070.771 a0.932 aDenseNet169

aItalicized items represent the best metric.
bVGG16: Visual Geometry Group model with 16 layers.
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Figure 4. Performance of the 5 convolutional neural networks on the 7-class data set: (A) Resnet50, (B) Visual Geometry Group model with 16 layers
(VGG16), (C) EfficientNetV2, (D) InceptionV3, and (E) DenseNet169. AUC: area under the curve.

Figure 5. Performance of the 5 convolutional neural networks on the 7-class augmented data set: (A) Resnet50, (B) InceptionV3, (C) EfficientNetV2,
(D) Visual Geometry Group model with 16 layers, (E) DenseNet169. AUC: area under the curve.
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Table 4. Average evaluation metrics for the trained models on the augmented data set (sorted based on performance).

Test set metricsValidation accuracyTraining accuracyData set and model

F1-scoreRecallPrecisionAccuracy

7-class augmented data set

0.713 a0.715 a0.717 a0.672 a0.907 a0.953Resnet50

0.6490.6370.6920.6170.8440.920InceptionV3

0.59990.5860.6500.6020.8080.803EfficientNetV2

0.5630.5610.6440.5850.8010.755VGG16b

0.5530.6110.6390.5060.8890.954 aDenseNet169

aItalicized items represent the best metric.
bVGG16: Visual Geometry Group model with 16 layers.

Table 5. Results of 10-fold cross-validation for the augmented data set on Resnet50.

F1-scoreRecallPrecisionAccuracy10-fold iterations

0.6990.6990.7050.699Iteration 1

0.7120.7140.7150.714Iteration 2

0.7090.7090.7130.709Iteration 3

0.7270.7290.7300.729Iteration 4

0.7160.7180.7190.718Iteration 5

0.7300.7330.7340.733Iteration 6

0.7180.7200.7220.720Iteration 7

0.7060.7070.7110.707Iteration 8

0.7050.7070.7070.707Iteration 9

0.7130.7200.7150.720Iteration 10

Figure 6. Aggregated confusion matrix for the Resnet50 model for the augmented data set with example images from the augmented data set that were
correctly and incorrectly classified across all folders.
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Table 6. Summary of the detection results per class: accuracy, precision, recall, F1-score, and support (ie, number of samples per class) using the
Resnet50 architecture.

SupportF1-scoreRecallPrecisionAccuracyClass

420.5780.5710.5850.571Abscess

480.8040.8950.7290.895Dermatoses

480.5750.5200.6410.520Engorgement

540.4810.4810.4810.481Mastitis

540.7790.7140.8570.714Nipple bleb

540.7190.7590.6830.759Nipple damage

1800.8440.8440.8440.844Healthy

Binary Image Detection Evaluation
To improve the accuracy of our clinical predictions and reduce
the chances of incorrect results, we simplified our data set of 7
categories to just 2: healthy and unhealthy. The unhealthy
category now includes 5 conditions: abscess, dermatoses,
mastitis, nipple bleb, and nipple damage. The healthy category
now includes the original healthy conditions and engorgement.
Engorgement shares many visual similarities with healthy breast
conditions, which made it difficult for the multiclass models to
identify engorgement accurately. As presented previously, 33%
(16/48) of the images of engorgement were classified as healthy.
Table 7 presents the aggregated evaluation metrics for 5 models
sorted based on the test accuracy.

The accuracy is reported as a balanced score to address class
imbalance, ensuring that each class contributes equally to the
final metric. Precision, recall, and F1-score are reported for the
positive class, with the positive class label specified. For each
fold in the cross-validation, we used a separate test set to
evaluate the model, and the reported metrics are the average of
these evaluations. The best-performing model was the VGG16,
which contained the best testing accuracy, followed by Resnet50
and InceptionV3. The models achieved an overall ROC-AUC
of 0.977 for VGG16, 0.966 for Resnet50, 0.935 for InceptionV3,
0.921 for EfficientNetV2, and 0.910 for Densenet169. The
detailed ROC-AUC for the not augmented and augmented data
set is shown in Figures 7A and 7B, respectively.

When applying data augmentation to the binary model, we
provided a wider variety of images to help the model better
generalize from the training data while not altering the original
class distribution. In Table 8, we show the results across the
CNNs after data augmentation, where most of the models

showed improved metrics, with Resnet50 being the leading
model. The models achieved a ROC-AUC of 0.962 for
Resnet50, 0.956 for VGG16, 0.931 for EfficientNetV2, 0.929
for InceptionV3, and 0.915 for Densenet169.

Looking into the performance of the best model, the Resnet50
with the augmented data set, we can look closer at the metrics
per class of this CNN. Table 9 shows the results for 10-fold
cross-validation, in which the model had an overall consistent
performance across the iterations. Figure 8 presents the
aggregated confusion matrix for the Resnet50 model, in which
we consolidated the predictions across all 10 folds applied to
the augmented data set. This aggregation was achieved by taking
the median predicted class for each instance over the multiple
folds, synthesizing a singular prediction representing the
consensus of the model’s behavior across the test set.

Out of the 468 images used in the testing set, the model could
correctly classify 411 images. The total images correctly
classified by category are as follows: unhealthy (228/240;
accuracy=95%, precision=83.5%, recall=95% and
F1-score=89%) and healthy (183/228; accuracy=80.3%,
precision=94%, recall=80% and F1-score=86.5%). The
remaining images that were incorrectly classified presented
redness (ie, for engorgement cases misclassified as unhealthy;
26/228), and incomplete images (ie, too close or nipple and
breast not fully visible; 12/228). Discussion

The issues that caused model misclassification included (1)
wrong positioning of the breast in the image, (2) common visual
features in the images between the classes, (3) a lack of variety
of images belonging to specific cases in the data set due to
variety limitations, and (4) presence of an extraneous object in
the frame. Figure 1 presents the correct prediction from the 7
classes.
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Table 7. Average evaluation metrics for the trained models on the not augmented binary data set (sorted based on test accuracy).

Test set metricsValidation accuracyTraining accuracyData set and model

F1-scoreRecallPrecisionAccuracy

Binary data set

0.859 b0.760 b0.9900.877 b0.8770.901VGG16a

0.8170.7150.9540.8320.8720.923Resnet50

0.8120.7020.9630.8380.8450.906InceptionV3

0.7690.6290.991 b0.8110.8310.866EfficientNetV2

0.6880.5290.9900.7610.880 b0.935 bDenseNet169

aVGG16: Visual Geometry Group model with 16 layers.
bItalicized items represent the best metric.

Figure 7. Model performance on the binary data set: (A) without augmentation and (B) with augmentation. AUC: area under the curve; VGG16: Visual
Geometry Group model with 16 layers.

Table 8. Average evaluation metrics for the trained models on the augmented binary data set (sorted based on performance).

Test set metricsValidation accuracyTraining accuracyData set and model

F1-scoreRecallPrecisionAccuracy

Binary augmented data set

0.865 a0.801 a0.941 a0.877 a0.933 a0.952 aResnet50

0.8020.6880.9410.8320.8970.877VGG16b

0.8070.7150.9270.8310.8930.920InceptionV3

0.7910.6660.975 a0.8250.8910.885EfficientNetV2

0.7130.5700.9520.7710.9270.946DenseNet169

aItalicized items represent the best metric.
bVGG16: Visual Geometry Group model with 16 layers.
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Table 9. Results of 10-fold cross-validation for the augmented binary data set on Resnet50.

F1-scoreRecallPrecisionAccuracyIteration of 10-fold

0.7020.5570.9480.769Iteration 1

0.6840.5310.9600.761Iteration 2

0.7370.6010.9510.791Iteration 3

0.7180.5700.9700.782Iteration 4

0.7270.5960.9320.782Iteration 5

0.7170.5790.9430.778Iteration 6

0.7450.6230.9280.793Iteration 7

0.6950.5440.9610.767Iteration 8

0.7130.5660.9630.778Iteration 9

0.7000.5480.9690.771Iteration 10

Figure 8. Aggregated confusion matrix for the Resnet50 model for the augmented data set with example images from the augmented data set that were
correctly and incorrectly classified across all folders.

Image Quality
When examining misclassification results in our image data set
study, we found many image quality issues that likely
contributed to the model’s diminished performance. In the
example images from the testing set, Figures 9A-9C demonstrate
good image samples that allow a complete evaluation of the
breast’s condition and, therefore, can be used for the model’s
evaluation. These images fully or almost entirely show the
nipple at a distance that allows diagnosis and does not show
information about the person’s surroundings or extraneous
objects that the model might misinterpret. In Figures 9D and
9E, the main issue in both examples is the lack of nipple or
breast presence or only partial presence, making it difficult for
the model to assimilate them with breast figures; even if there
are signs of mastitis or engorgement in both images, the image
is incomplete. For Figures 9F and 9G, the presence of hands or
fingers, nail polish, and partially occluded areas with extraneous
objects also affects the model interpretation, especially because
we did not train the model with such extra components.

Other issues noted in the preprocessing phase were causing
issues in training and validation loss as well as false positive
and negative detections. For example, having the image of both
breasts instead of one affect prediction accuracy, especially in
cases where one breast has a different condition compared to
the other. The model did not have a large variety of images
showing both breasts. Therefore, we improved the training and
test results metrics once we separated the breasts into different
figures. In addition, we encountered classification problems
with extracted images that show some background components,
such as clothes surrounding the breast, breast pumps, or
segments of the baby’s face or hands. The issues were corrected
for these cases by cropping the image to the area of interest. If
an object was too similar, such as a hand or a baby, we manually
applied blurriness filters in the area and removed saturation so
that only the breast is recognizable. Images with low resolution
also affect the model’s performance, especially if they are
originally smaller than the size determined by the data
augmentation algorithm and were stretched later. Some images
that belonged to this case and were misclassified had their size
manually corrected afterward, and the model properly classified
them afterward.
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Figure 9. Example images from the testing set. (A), (B), and (C) High-quality images, with a full view of the breast and nipple. (D) Image in which
the full breast does not appear, making it hard to classify which condition it belongs to. (E) Although the condition is clear and the full breast is visible,
the nipple is pixelated in the photo, altering the original features that the model is not used to. (F) and (G) Partially occluded breasts, and the presence
of nail polish in the color of the wound also impacts the model’s performance in those cases. The examples of low-quality data provide details about
how to improve data acquisition for future development.

Visual Similarities Between Conditions
Conditions that present common features and can cause
confusion in the diagnosis are mastitis, engorgement, and
healthy. Mastitis shows redness throughout the entire breast,
showing little skin tone differences and making breasts appear
fuller. Some of these features are commonly found in breast
engorgement. However, there are fewer signs of intensified
redness, sometimes no redness at all, but there may be visible
veins and stretched nipples, making them visually similar to
healthy ones. Due to the limited availability of images of breast
engorgement for a separate class and the fact that engorgement
is not necessarily an issue but can become mastitis when not
alleviated, the model classified some engorged breasts as
mastitis. When we included engorgement in the healthy class
for the binary classification, we still got images misclassified
as unhealthy, showing how transition conditions should be
followed more closely.

This highlights the need for (1) increasing the engorgement data
set; (2) working closely with LCs to investigate the need to
categorize conditions that can be a problem but indicate false
positive cases of more serious issues; and (3) exploring the
possibility of using these conditions that have higher errors as
a base for following patient condition progression, where there
is a transition between conditions for improving or worsening
a patient’s situation.

Lack of Variety of Images Belonging to Specific Cases
in the Data Set
For the case of Figure 10A, the engorged breast occurs in an
inverted nipple, showing its center lighter and misclassifying

it as a nipple bleb. Another example of misclassification includes
conditions that occur together, which is the case in Figure 10B,
showcasing a breast abscess concentrated behind the nipple and
with signs of nipple damage. Such an example was one of the
very few occurrences of simultaneous conditions in the data set
and emphasized the reality that LCs have patients with similar
cases, bringing the need to think about systems that (1) recognize
multiple conditions or (2) decide between the most severe one
for patient priority. Figure 10C is a case of granulomatous
mastitis that was classified as nipple damage due to the presence
of nipple scarring, highlighting the fewer occurrences of such
a specific case in the data set.

In addition, Figures 10C and 10D show breasts in the conditions
of engorgement and nipple damage, respectively. For Figure
10D, due to the proximity and nature of the nipple damage with
a blood blister, the reflection on the dot suggests that it could
be a nipple bleb, also misclassifying the image. These
misclassified images with distinct features can also be complex
to classify for humans, mainly because some of these conditions
rarely occur. Given the nature of the images and the lack of
images publicly available with the variety of cases across
different skin tones, breasts, and nipple sizes, we believe that
working with more images involving rare disorders and
providing more data augmentation alternatives can improve the
model’s classification significantly. In addition, Figure 10D
highlights the issue with image angle and proximity. The picture
was taken too close to the breast, having a higher chance of
misclassification.

Figure 10. Images incorrectly classified due to data set variety limitations: (A) an engorged breast with an inverted nipple classified as nipple bleb,
(B) breast with an abscess but also has nipple damage, (C) breast with granulomatous mastitis classified as nipple damage, and (D) nipple damage
classified as nipple bleb.

Limitations
Our findings emphasize the need for improvement in several
areas. As demonstrated in our evaluation, naturalistic images
captured by users have several image quality issues that can
impede the classification system from proper functioning. Thus,

future systems must implement a user interface to properly
guide parents in taking pictures to input the AI triaging system.
This system should provide basic guidelines around how to
frame the breast such that no occlusion is present; not use the
finger to point out parts of interest; and ensure the camera
framing can see the entire breast so that the nipple, areola, and
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breast tissue are all visible. Previous works explore the
importance of implementing guidelines for image assessment
of external diseases, such as in dermatology disease assessments,
and its benefits for better professional evaluation and higher
accuracy in diagnosing conditions [64,65,69]. Guidelines may
be implemented as a set of easy instructions, and more advanced
systems could provide immediate image quality feedback.

Moreover, our system only uses RGB images to triage
breastfeeding-related conditions, not incorporating patient input
regarding pain onset, location, symptoms, and pain levels. These
are critical data for diagnosing with higher accuracy and
providing more effective feedback to patients experiencing
breastfeeding-related pain [70]. Furthermore, automating patient
responses [71-73] and using large language models [74] can
help categorize issues based on their problem description and
image inputs, streamlining the care process and ensuring prompt
patient attention.

Finally, the most significant limitation of this work is how this
evaluation was limited in having a properly balanced data set
to help achieve close-to-perfect performance scores from the
model. Despite these limitations, we addressed imbalance issues
and proved it possible to obtain satisfactory results in detecting
and differentiating the conditions we tested.

Applications and Future Work
This study showcases the potential for high-accuracy
breastfeeding-related condition detection to manage postpartum
challenges better. In addition, we demonstrate the feasibility of
implementing patient support and condition triaging for
smartphone-based apps by using deep learning RGB image
recognition. The model can be integrated into a telehealth
pipeline for postpartum lactation care, helping LCs classify and
organize patients based on the severity of their condition or the
level of certainty regarding their health concerns. In addition,
the system can help track patient disease progression and aid
newly qualified LCs by providing faster decision-making
support.

The evaluation will serve as a baseline for performing a
co-design study with mothers and LCs to evaluate the system
requirements regarding data gathering and privacy concerns
regarding sensitive data sharing. Understanding the benefits of
such a system and recognizing its challenges is essential for
building effective tools that will meet patients’ and health care
providers’ needs. Furthermore, a comprehensive approach is

needed to determine the threshold for flagging a patient as
unhealthy in the AI-mediated lactation care system, combining
quantitative measures (eg, image detection and pain assessment)
with clinical expertise. These improvements will allow this
work to compose applications for (1) patient self-assessment
tools for actionable feedback for breastfeeding pain, (2) reliably
identifying cases that require immediate attention and flagging
them for LCs, and (3) enabling timely interventions and
improved patient outcomes in lactation care. Future work could
envision a fully developed hybrid remote consultation system
where patients answer questions for the assessment stage, and
images are shared between the patient and provider to visualize
the severity of the issue before care is provided. Integrating
visual information and pain assessment in remote consultations
enhances the diagnostic process and enables LCs to deliver
tailored care promptly [75] and help overcome burnout from
these professionals.

Conclusions
This study demonstrates the feasibility of AI-mediated detection
of breast conditions for lactating women. We took the first step
in this domain by using RGB breast images to triage healthy
from unhealthy breasts in mastitis spectrum disease conditions
such as nipple blebs, engorgement, abscess, and mastitis; nipple
damage caused by poor breastfeeding techniques, breast pumps,
and other conditions; and dermatoses caused by a variety of
conditions. We implemented 5 distinct CNN models to classify
images from 2 different data sets, identifying 7 breast conditions
and distinguishing between healthy and unhealthy conditions.
The evaluation of the models based on our data set demonstrated
the feasibility of using CNNs to classify and intervene with
patients who seek remote guidance and management of their
symptoms. Although this model’s performance was good, it
can be improved by increasing the variety of images and
conditions in the data set and implementing the best practices
for image posing for proper image classification, leaving
significant room for improvement. The feasibility of this work
is the initial step toward building tele-lactation services with
better data for LCs. We hope our work will inspire future
exploration to apply technologies to help lactation support
research that can reach more people globally and investigate
ideas beyond laboratory settings. This will allow a more
comprehensive understanding of breast health for postpartum
mothers and empower them to take proactive steps in
maintaining their well-being.
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Abstract

Background: Type 2 diabetes (T2D) is a significant global health challenge. Physicians need to assess whether future glycemic
control will be poor on the current trajectory of usual care and usual-care treatment intensifications so that they can consider
taking extra treatment measures to prevent poor outcomes. Predicting poor glycemic control from trends in hemoglobin A1c

(HbA1c) levels is difficult due to the influence of seasonal fluctuations and other factors.

Objective: We sought to develop a model that accurately predicts poor glycemic control among patients with T2D receiving
usual care.

Methods: Our machine learning model predicts poor glycemic control (HbA1c≥8%) using the transformer architecture,
incorporating an attention mechanism to process irregularly spaced HbA1c time series and quantify temporal relationships of past
HbA1c levels at each time point. We assessed the model using HbA1c levels from 7787 patients with T2D seeing specialist
physicians at the University of Tokyo Hospital. The training data include instances of poor glycemic control occurring during
usual care with usual-care treatment intensifications. We compared prediction accuracy, assessed with the area under the receiver
operating characteristic curve, the area under the precision-recall curve, and the accuracy rate, to that of LightGBM.

Results: The area under the receiver operating characteristic curve, the area under the precision-recall curve, and the accuracy
rate (95% confidence limits) of the proposed model were 0.925 (95% CI 0.923-0.928), 0.864 (95% CI 0.852-0.875), and 0.864
(95% CI 0.86-0.869), respectively. The proposed model achieved high prediction accuracy comparable to or surpassing LightGBM’s
performance. The model prioritized the most recent HbA1c levels for predictions. Older HbA1c levels in patients with poor glycemic
control were slightly more influential in predictions compared to patients with good glycemic control.

Conclusions: The proposed model accurately predicts poor glycemic control for patients with T2D receiving usual care, including
patients receiving usual-care treatment intensifications, allowing physicians to identify cases warranting extraordinary treatment
intensifications. If used by a nonspecialist, the model’s indication of likely future poor glycemic control may warrant a referral
to a specialist. Future efforts could incorporate diverse and large-scale clinical data for improved accuracy.

(JMIR AI 2024;3:e56700)   doi:10.2196/56700
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Introduction

Type 2 diabetes (T2D) affects an estimated 529 million people
globally [1]. Hemoglobin A1c (HbA1c) serves as an indicator of
poor glycemic control, reflecting the average blood glucose
levels over 1 to 2 months. An increase in HbA1c of 1 percentage
point worsens cardiovascular disease risk by 1.2 times and
mortality risk by 1.14 times [2]. According to the American
Diabetes Association Standards of Care in Diabetes [3], target
HbA1c levels are set at 7% for many adults who are nonpregnant
and 8% for patients with limited life expectancy or where the
harms of treatment are greater than the benefits.

Physicians need to identify early signs of impending poor
glycemic control in patients with T2D and act early to intensify
treatment, via a combination of pharmacological and lifestyle
interventions, to avoid poor outcomes. There are costs to
intensified treatment, including side effects, so it is prudent to
delay intensification until it is warranted by disease progression.
Factors associated with poor glycemic control include age,
duration of T2D treatment, treatment, race or ethnicity, and
family history [4-7]. External factors such as seasonal variations
affecting HbA1c levels [8] complicate accurate glycemic control
prediction.

People with T2D receive care from primary care physicians,
not T2D specialists, in many areas including the United States,
Europe [9], and Japan [10]. For example, two-thirds of people
with T2D in Japan receive care from primary care physicians
[10]. These nonspecialists may struggle to predict a patient’s
glycemic control. In Japan, approximately 60% of surveyed
patients with T2D treated by nonspecialists experienced poor
glycemic control (HbA1c≥8%), with around 30% seeing
worsened levels the following year, according to a survey on
T2D treatment practices by primary care physicians [10].

Physicians regularly adjust a T2D patient’s treatment,
intensifying treatment when the clinical indications lead them
to predict poor glycemic control. Despite this usual care,
including treatment intensification, some patients still experience
poor glycemic control. From 2015 to 2018, a total of 49.5% of
US community-dwelling adults with diabetes had HbA1c≥7%
and 24.6% had HbA1c≥8% [11]. A tool predicting poor glycemic
control while under usual care, including usual-care treatment
intensifications, could enhance treatment outcomes. It could
alert physicians early enough to enable intensified modification
of treatment, improving treatment outcomes for patients and
increasing referrals to specialists when warranted by disease
progression.

Machine learning (ML) has demonstrated success in predicting
patient symptoms, including forecasting the onset of T2D [12]
and predicting complications [13], and it is a promising approach
to predicting poor glycemic control, although to our knowledge
it has not previously been applied to this task. Glycemic control
data are in general irregularly spaced, reflecting the variability
in patient care appointment dates, with updates to outpatient

electronic health records (EHRs) occurring before and after
clinical visits. Irregularly spaced data require preprocessing
techniques such as interpolation, denoising autoencoders, and
self-supervised learning [14-17]. Processing data with irregular
intervals may hurt predictive performance [18], requiring careful
consideration in developing artificial intelligence models.

Although ML models may provide good prediction performance,
they often operate as “black boxes,” with opaque reasoning and
associated poor interpretability that makes it difficult for both
physicians and patients to understand the logical process guiding
decision-making [19]. To allow the interpretation of ML models,
so that they are more acceptable to physicians [20,21] and
patients [22], explainable artificial intelligence (XAI) has been
studied [23]. It attempts to clarify temporal relationships of
symptoms at each time point toward temporal interpretability
based on patient trajectories [24,25], and this has been actively
researched in the computer science field [26].

Since its introduction in 2017, the transformer model has
excelled in various time-series predictive tasks, solidifying its
position as a core technology across multiple fields [27-32].
The transformer model incorporates an attention mechanism
simplifying the extraction of temporal relationships and setting
it apart from other models [33-35]. The attention mechanism
allows a model to selectively focus on different data points in
the input sequence, assigning varying degrees of importance to
each data point. Applied to the problem of predicting poor
glycemic control, the attention mechanism can process
irregularly spaced HbA1c time series and quantify temporal
relationships of past HbA1c levels at each time point, following
a model-specific approach in XAI [36].

This study aims to develop an ML tool that accurately and
interpretably predicts poor glycemic control (HbA1c≥8%) using
irregularly spaced HbA1c levels over the past year, in support
of preventing T2D complications by enabling timely
intensification of treatment. Although the treatment guidelines
generally target an HbA1c level of 7% or lower [3], higher levels
are common in diabetes patients. In our clinical experience,
levels of 8% and higher are a cause of great concern and trigger
more intensive intervention. Accordingly, we have set 8% HbA1c

as the threshold for defining poor glycemic control.

Given the absence of prior studies in this specific area, we set
target accuracy to be the receiver operating characteristic (ROC)
area under the curve (AUC)>0.9 and precision-recall
(PR)–AUC>0.8 based on our clinical endocrinology experience
with diabetes treatment. These values are commonly used as a
benchmark for good prediction accuracy in the ML field [37]
and are consistent with the ROC-AUCs of past diabetes-related
ML tasks ranging from 0.819 to 0.934 [38-42].

Drawing on our team’s prior work in self-management support
for T2D treatment [43] and predicting treatment discontinuations
[44,45], we designed this task with the hope of overcoming
barriers to implementing ML in clinical practice, believing it
could significantly advance T2D diagnosis and treatment.
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We hypothesize that an ML model can predict poor glycemic
control in patients with T2D under usual care. Our specific
research question is whether a transformer-based model,
incorporating temporal relationships of HbA1c levels, can
accurately and interpretably predict instances of poor glycemic
control (HbA1c≥8%). Our approach is novel in how it overcomes
challenges posed by irregularly spaced HbA1c time series.

Methods

Data Sets and Preprocessing
All data were collected from EHRs at the University of Tokyo
Hospital, which included 7787 patients who visited the hospital
and had diagnostic codes indicative of T2D. The data were
recorded in the EHRs between January 1, 2006, and December
31, 2015. The data, including treatment decisions and outcomes,
were reflective of care by T2D specialists. Only HbA1c levels
were used in the ML model.

ML Models
Given the irregularly spaced data, we organized the data into
Monday-to-Sunday weeks and quantized the data to a single
value per week, using the average in the case of multiple
measurements and treating weeks with no values as having
missing values [46]. This approach allowed the ML model to
treat irregularly spaced data spanning N years as regularly
spaced data consisting of N×365/7 (rounded up to the nearest
integer) values, that is, we treat all data as weekly data. We did
not perform preprocessing, including interpolation, on missing
values in the regularly spaced data. No normalization, outlier
removal, or dimensionality reduction were performed on the
HbA1c levels. Typical ML models such as LightGBM address

missing values via interpolation or replacement before learning.
In contrast, we adopted an approach that ignores and skips
missing values.

We designed a transformer model (Table 1) that takes as input
an irregularly spaced time series of HbA1c levels spanning over
the past year or more and outputs a binary assessment of poor
glycemic control (HbA1c≥8%) within the subsequent year. The
model incorporates 2 types of attention layers: self-attention,
designed to extract temporal relationships from past irregularly
spaced HbA1c levels, and cross-attention, used to predict poor
glycemic control based on these temporal relationships. The
self-attention weights are optimized through self-supervised
learning. This involves the task of predicting the next HbA1c

level using a time series of weekly spaced past HbA1c levels
with missing values, where the past levels are used as both input
and output. We use an attention mask mechanism that
completely ignores missing values by setting their self-attention
weight to 0, allowing us to learn using values with irregular
spacing due to missing values as is. This is similar to the process
of padding in language models. The cross-attention weights are
optimized through supervised learning. This involves the task
of predicting the class representing the likelihood of future poor
glycemic control using the latent variables transformed by
self-attention from the past HbA1c time series. We used causal
masking in both learning tasks to prevent the model from
referencing future data, ensuring that the model makes
predictions considering the causal relationship between past
symptoms and future symptoms. Conceptually, given that we
constrained the model to improve interpretability, we expect a
slightly lower prediction accuracy than that of an unconstrained
model (Figure 1), and 1 goal is to minimize this interpretability
penalty.

Table 1. Model details (transformer architecture).

ValueConfigure

4Encoder layers including self-attention blocks, n

4Decoder layers including cross-attention blocks, n

4Heads in the attention, n

128Transformer hidden size, n

512Transformer feedforward neural network hidden size, n

AdamOptimizer method

Focal LossLoss function

1×10–4Learning rate

512Batch size, n

20,000 (no early stopping)Iterations, n

Python (version 3.11) and PyTorch (version
2.2.0)

Library
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Figure 1. Conceptual trade-off between prediction accuracy and interpretability, for a given level of computational complexity.

This model makes a yes or no decision on future poor glycemic
control, with a threshold as a free variable allowing a tradeoff
among true or false negatives or positives. We set the threshold
to maximize the F1-score (the harmonic mean of the ROC and
PR values) using training data, resulting in a tool that made a
binary prediction as to whether or not, in the next year, glycemic
control will be poor. The training data include treatment
intensification by specialists making their own assessments of
likely future glycemic control. As such, the predicted poor
glycemic control occurs despite any usual-care intensification
of treatment prescribed by the attending specialist physicians.
In other words, a prediction of poor glycemic control indicates
a case likely warrants special attention and intervention, as
usual-care intensification of treatment is predicted to be
insufficient.

Temporal Data Usage
Our analysis sought to determine the length of the HbA1c time
series needed to achieve the target accuracy. Training and testing
were separated by period using the well-established time series
prediction accuracy evaluation method [47]. We used as a
reference the date on which a patient took an HbA1c test in 2013.
We used the HbA1c time series for the N years before the
reference date as training input and the occurrence or absence
of poor glycemic control (HbA1c≥8%) within 1 year from the
reference date as the training output. Then, we tested the
resulting model using the same procedure, but for the following
year, 2014, selecting an appropriate choice for N, the length of
training data. We evaluated the predictive performance of the
resulting model using 7 years of test data, sliding the reference
dates from 2007 to 2013, using the rolling-origin procedure
[47].

The training input or output period and the testing output period
do not overlap, and therefore there was no leakage into
predictive evaluation. Data for a given patient will in general
have some time samples in the training data and some in the
test data, but since patient identification is not an input to the
model, the model does not identify specific patients.

Statistical Methods
We analyzed the characteristics of patients in the data set using
means, SDs, and frequency counts. We performed all statistical
analyses using custom Python code. We used the Python
(version 3.11) and PyTorch (version 2.2) libraries for developing
the transformer model, the Numpy (version 1.26) and Pandas
(version 2.2) libraries for managing data sets, and the scikit-learn
(version 1.4) library for evaluating predictive accuracy.

We compared our model with an established ML method
recognized for high accuracy. There were no studies directly
addressing our task, but validations on similar T2D prediction
tasks favored LightGBM [48,49], making it our chosen reference
for comparisons. While LightGBM is acknowledged for its
superior predictive performance, it is not inherently
interpretable. The model’s complexity and intricate decision
tree paths make it difficult to provide a straightforward
interpretation of its predictions. Our reference LightGBM model
takes as input equally spaced HbA1c data and outputs a binary
assessment of poor glycemic control (HbA1c≥8%).

We compared the transformer model and LightGBM using the
evaluation metrics of ROC-AUC, PR-AUC, accuracy rate, and
F1-score, with 95% CI using the bootstrap method.
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Ethical Considerations
This study was approved by the Institutional Review Board of
the University of Tokyo School of Medicine (10705-(3)) and
was conducted per the Declaration of Helsinki. This was a
retrospective, noninterventional database study without patient
involvement. Confidentiality was safeguarded by the University
of Tokyo Hospital. According to the Guidelines for
Epidemiological Studies of the Ministry of Health, Labour and
Welfare of Japan, written informed consent was not required.
Information about this study was available to patients on a
website, and patients have the right to cease registration of their
data at any time [50].

Results

Patient Data
We analyzed 7787 patients (Table 2). Although specialist
physicians were providing usual care and prescribing treatment
intensifications based on their clinical judgment, 57.83%
(n=4504) of patients had an HbA1c over 8% at least once. The
number of HbA1c tests per year was 7.7 (SD 2.8). In other words,
the missingness level of weekly spaced past HbA1c levels for a
year was 1 – 7.7 / ROUNDUP(365/7) = 85.5%. The age group
with the highest number of individuals is the aged 70-80 years
category, comprising 2347 people, accounting for 30.14% of
the patients. In addition to diabetes, more than 45% of patients
had diseases such as essential (primary) hypertension,
hypertensive heart disease, pure hypercholesterolemia, and
astigmatism. Each patient had multiple records, leading to
323,825 records used in our analysis.
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Table 2. Characteristics of patients.

Patients (n=7787)Records (n=323,825)Characteristics

Feature used in the model

HbA1c
a

—b7.1 (1.1)Mean (SD)

4103 (52.69)42,495 (13.12)<6%, n (%)

6666 (85.6)137,968 (42.61)6%-7%, n (%)

5770 (74.1)89,875 (27.75)7%-8%, n (%)

4504 (57.84)53,487 (16.52)≥8%, n (%)

—7.7 (2.8)Tests per year, mean (SD)

Features not used in the model

Gender

4726 (60.7)193,976 (59.9)Male, n (%)

3061 (39.3)129,849 (40.1)Female, n (%)

Age (years)

67.5 (13.6)—Mean (SD)

1 (0.01)—10-20, n (%)

58 (0.74)—20-30, n (%)

255 (3.27)—30-40, n (%)

585 (7.51)—40-50, n (%)

1006 (12.92)—50-60, n (%)

2058 (26.43)—60-70, n (%)

2347 (30.14)—70-80, n (%)

1322 (16.98)—80-90, n (%)

149 (1.91)—90-100, n (%)

6 (0.08)—100-110, n (%)

Top 10 most common diseases

5495 (70.57)—E14: unspecified diabetes mellitus, n (%)

5023 (64.5)—I10: essential (primary) hypertension, n (%)

3715 (47.71)—E11: hypertensive heart disease, n (%)

3661 (47.01)—E780: pure hypercholesterolemia, n (%)

3636 (46.69)—H522: astigmatism, n (%)

3490 (44.82)—E785: hyperlipidemia, unspecified, n (%)

3353 (43.06)—K590: constipation, n (%)

2937 (37.72)—K210: gastro-esophageal reflux disease with esophagitis, n (%)

2756 (35.39)—K295: chronic gastritis, unspecified, n (%)

Top 10 most common medicines

2541 (32.63)—Metformin hydrochloride, n (%)

2177 (27.96)—Sitagliptin phosphate hydrate, n (%)

2036 (26.15)—Glimepiride, n (%)

1641 (21.07)—Pioglitazone hydrochloride, n (%)

1597 (20.51)—Insulin glargine (genetical recombination), n (%)

1458 (18.72)—Rosuvastatin calcium, n (%)
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Patients (n=7787)Records (n=323,825)Characteristics

1430 (18.36)—Voglibose, n (%)

1323 (16.99)—Atorvastatin calcium hydrate, n (%)

1277 (16.4)—Insulin aspart (genetical recombination), n (%)

1187 (15.24)—Vildagliptin, n (%)

aHbA1c: hemoglobin A1c.
bNot applicable.

Prediction Performance for HbA1c Time Series
Lengths
We assessed using different lengths of past HbA1c time series
(Table 3) as both training and test inputs to the model to
determine the most effective period for predicting poor glycemic
control. Extending the input period beyond 1 year did not yield
a statistically significant difference within a 95% CI (Figures

2 and 3). This study’s objectives of achieving ROC-AUC>0.9
and PR-AUC>0.8 were attainable with just 1 year of past HbA1c

time series. Comparing prediction accuracy with LightGBM
revealed no significant differences within the 95% CI, indicating
nearly equivalent performance between the transformer and
LightGBM. As a result, we settled on a final model that is based
on using 1 year of prior data for training.

Table 3. Test data set size for the evaluation of various hemoglobin A1c (HbA1c) time series lengths.

Weekly spaced data with values
in input data, mean (SD)

Records per pa-
tient, mean (SD)

Patients, nT/R, %Records with poor
glycemic control (T), n

Records (R), nLength of past
HbA1c time series

7.3 (2.7)5.5 (2.7)466126.7681825,5641

13.2 (5.6)5.5 (2.7)467226.7682725,5942

18.8 (8.6)5.5 (2.7)467626.7683125,6113

24.1 (11.8)5.5 (2.7)467826.7683125,6184

28.9 (15.1)5.5 (2.7)467826.7683225,6215

Figure 2. Predictive performance using ROC-AUC as a measure for various HbA1c time series lengths using test data reference dates in 2014. HbA1c:
hemoglobin A1c; ROC-AUC: area under the receiver operating characteristic curve.
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Figure 3. Predictive performance using PR-AUC as a measure for various HbA1c time series lengths using test data reference dates in 2014. HbA1c:
hemoglobin A1c; PR-AUC: area under the precision-recall curve.

Prediction Performance Over the Full Data Set
We assessed whether the resulting model, using 1 year of prior
data for training, could consistently achieve the target accuracy
over the available 7 years of test data (Table 4). Despite some
fluctuation in prediction accuracy, the target was achieved over
the entire 7-year period (Figures 4 and 5). The ROC-AUC (95%
confidence limits) for transformer was 0.925 (95% CI

0.923-0.928; Figure 6), compared to LightGBM’s 0.920 (95%
CI 0.918-0.923), and the PR-AUC (95% confidence limits) for
transformer was 0.864 (95% CI 0.852-0.875; Figure 7),
compared to LightGBM’s 0.857 (95% CI 0.846-0.868). The
average accuracy rate (95% confidence limits) for the
transformer was 0.864 (95% CI 0.860-0.869), comparable to
LightGBM’s 0.861 (95% CI 0.857-0.865).

Table 4. Test data set size for the evaluation of various hemoglobin A1c (HbA1c) time series lengths.

Weekly spaced data with values
in input data, mean (SD)

Records per pa-
tient, mean (SD)

Patients, nT/R, %Records with poor
glycemic control (T), n

Records (R), nYear of the test da-
ta

8 (2.9)7 (3.1)322131.9717622,5202007

8.1 (2.9)6.8 (3.1)362630.3751724,7752008

8 (2.9)6.6 (3)297332.3844426,1442009

7.8 (2.9)6.4 (3)426031.4852127,1242010

7.7 (2.8)6.1 (3)437728.8768726,6612011

7.5 (2.7)6 (2.9)441226.4694426,2592012

7.4 (2.7)5.7 (2.8)453328.1728125,9452013

7.3 (2.7)5.5 (2.7)466126.7681825,5642014
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Figure 4. Predictive performance over time using ROC-AUC as a measure using test data reference dates ranging from 2008 to 2014. ROC-AUC: area
under the receiver operating characteristic curve.

Figure 5. Predictive performance over time using PR-AUC as a measure using test data reference dates ranging from 2008 to 2014. PR-AUC: area
under the precision-recall curve.
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Figure 6. Predictive performance over time using ROC curve as a measure using test data reference dates ranging from 2008 to 2014. AUC: area under
the curve; FPR: false positive rate; HbA1c: hemoglobin A1c; ROC: receiver operating characteristic; TPR: true positive rate.

Figure 7. Predictive performance over time using PR curve as a measure using test data reference dates ranging from 2008 to 2014. AUC: area under
the curve; HbA1c: hemoglobin A1c; PR: precision-recall.
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Interpretability
The proposed model extracts temporal relationships from past
irregularly spaced HbA1c levels using self-attention and
determines the contribution of each HbA1c level to the prediction
of glycemic control using cross-attention. An example of the
extracted results is shown in Figure 8.

Figures 9-11 plot the average values of HbA1c levels,
self-attention weights, and cross-attention weights for 4 groups:
true positives with transformer and true positives with
LightGBM, true negatives with transformer and true negatives
with LightGBM, true positives with transformer and false
negatives with LightGBM, and false negatives with transformer
and true positives with LightGBM. The group with true positive

results in both models had an average HbA1c level of 8% or
higher, whereas the group with true negative results in both
models had an average HbA1c level of less than 7%. The weight
of older self-attention was larger in the former group, and the
weight of recent cross-attention was smaller in the latter group.
The group containing true positives by transformer and false
negatives with LightGBM had an average HbA1c level of around
7.5%, had a smaller recent self-attention weight than the other
groups, and had a similar trend of cross-attention weights as
the group of true negatives with both models. The group that
was false negative with transformer and true positive with
LightGBM tended for HbA1c to fall from the 8% range to the
7% range, and both recent self-attention and cross-attention
were greater than other groups.

Figure 8. Example of HbA1c levels, self-attention weights, and cross-attention weights. HbA1c: hemoglobin A1c.

Figure 9. Average levels of HbA1c time series. HbA1c: hemoglobin A1c.
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Figure 10. Average weight of self-attention.

Figure 11. Average weight of cross-attention.

Discussion

Evaluation of the Predictive Accuracy
Our results show that, despite usual care by specialist physicians,
poor glycemic control was common, affecting 57.83%
(4504/7787) of patients. By highlighting cases with a high
likelihood of poor glycemic control despite normal treatment
intensifications, the proposed model provides new information
to physicians, identifying patients who may benefit from
extraordinary treatment intensification.

Balancing high predictive accuracy with interpretability is vital
for acceptance by patients and physicians. The proposed model
achieved impressive predictive accuracy, with ROC-AUC above
0.9, PR-AUC above 0.8, and an overall accuracy of 0.864. For
physicians, ROC-AUC above 0.9 suggests excellent
performance in distinguishing between patients who will have
poor glycemic control and patients who will have good glycemic

control. Similarly, PR-AUC above 0.8 indicates excellent
performance in providing accurate prediction while minimizing
false positives. LightGBM, a widely respected model in ML,
serves as a benchmark. The proposed model slightly surpassed
the performance of LightGBM, implying that the proposed
model can offer physicians a reliable tool for predicting poor
glycemic control.

Accuracy did not increase with longer training data lengths.
The model achieved accurate predictions with just 1 year of
training data, suggesting that recent glycemic control plays a
dominant role in prediction outcomes. However, the actual
future glycemic control is influenced by factors not accounted
for in the current model, such as medications, exercise, diet,
and other lifestyle factors.

While the proposed model demonstrated comparable predictive
accuracy to LightGBM within this experiment’s scope, further
improvement may be possible with extensive training data.
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Transformer models, known for power-law characteristics,
benefit from scale-ups [51], and expanding this study to multiple
hospitals could explore potential performance enhancements
and test the applicability of the power-law in the medical field.

Interpretability
The cross-attention weights were very similar for the group that
was true positive in both models and the group that was true
positive in transformer and false negative in LightGBM. This
suggests that the proposed model consistently made predictions
by capturing sufficient features, while the benchmark LightGBM
might have captured extraneous features. On the other hand,
when the proposed model performed worse than LightGBM,
as observed in the group of false negatives with the transformer
and true positives with LightGBM, it appears that the
cross-attention strongly responded to the decreasing trend in
HbA1c, leading to a prediction failure. These prediction failures
accounted for only 0.30% (77/25,564) of cases.

Limitations
Our study has notable limitations. First, the data were sourced
from past records at a single hospital, limiting generalizability.
We have not confirmed prediction accuracy for new patients,
as we used a rolling origin procedure. While we separated the
data into training and testing sets based on time duration, some
patients still overlap between these sets. While this approach is
useful for assessing the model’s performance within the hospital
where it is trained, it poses challenges when applying a model
trained in one hospital to another. The intensification of
treatment may depend on factors specific to individual patients,
the treatment strategies of individual physicians and hospitals,
guidelines, and varying treatment trends across countries.
Further work is needed to verify the extent to which the model
needs to be customized for different environments.

Second, ML reflects majority characteristics, potentially limiting
applicability to diverse patient populations. In the data set used
in the experiment, as shown in Table 2, 40% of patients have
7 diseases, and patient characteristics are biased. Prediction
failure analysis needs to be further scrutinized, including versus
patient characteristics. We should examine this issue by
comparing prediction accuracy for each patient cluster.

Third, the model uses only HbA1c levels as inputs. We
incorporated prescription and other laboratory tests as
explanatory variables during preliminary validation, but both
our proposed model and LightGBM did not show improved
predictive accuracy. Future work should further explore
incorporating clinical data beyond HbA1c. EHRs contain patient
history represented in categorical, numeric, text, and images
that are still underused. We should devise model designs based

on cutting-edge multimodal modeling using the transformer
[52-54].

Fourth, the interpretability of the model expresses temporal
relationships numerically, lacking readability. To enhance clarity
and visualization of the information that physicians require, it
is essential to solidify the user interface or user experience
concepts. There is a need for further consultation with physicians
to determine an interface that would effectively communicate
interpretability. Additionally, to increase the interpretability of
this method, an approach that combines it with traditional XAI
technologies [36] such as SHAP and LIME should be
investigated.

Fifth, this was a backward-looking study, using past data, and
the essential next phase is to assess the model’s predictive
capabilities in clinical practice. There is a need for a careful
exploration of the model’s effectiveness in real clinical
scenarios.

Future Research Direction
Our ultimate goal is to improve the treatment outcomes of
diabetes. Merely predicting poor glycemic control alone cannot
achieve this goal. By providing predictive results to physicians
and reinforcing treatment, we can demonstrate the value of the
predictions. Future research could focus on improving
predictions by incorporating additional clinical data beyond
HbA1c levels. Exploring the applicability of the model in diverse
populations will help assess its generalizability and
institution-specific variations. Implementing the model in
clinical practice for real-time predictions, possibly through
randomized controlled trials, would elucidate its impact on
clinical decision-making and patient outcomes. Moreover,
expanding the scope to predict the impact of treatment changes
as well [55] could further enhance the model’s utility in diabetes
management.

Conclusions
The proposed model addresses the challenge of identifying
patients with T2D who will have poor glycemic control,
increasing the risk of complications, despite usual care by
specialist physicians. The model achieves highly accurate
predictions, with an accuracy of 0.864, and provides good
interpretability from the irregularly spaced HbA1c values
commonly observed in clinical settings. The model balances
desirable predictive accuracy and interpretability in clinical
practice, enhancing the acceptability of ML. Future efforts
should focus on further improving accuracy and interpretability
by incorporating additional features beyond HbA1c and
validating large clinical data sets.
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Abstract

Background: Machine learning techniques are starting to be used in various health care data sets to identify frail persons who
may benefit from interventions. However, evidence about the performance of machine learning techniques compared to conventional
regression is mixed. It is also unclear what methodological and database factors are associated with performance.

Objective: This study aimed to compare the mortality prediction accuracy of various machine learning classifiers for identifying
frail older adults in different scenarios.

Methods: We used deidentified data collected from older adults (65 years of age and older) assessed with interRAI-Home Care
instrument in New Zealand between January 1, 2012, and December 31, 2016. A total of 138 interRAI assessment items were
used to predict 6-month and 12-month mortality, using 3 machine learning classifiers (random forest [RF], extreme gradient
boosting [XGBoost], and multilayer perceptron [MLP]) and regularized logistic regression. We conducted a simulation study
comparing the performance of machine learning models with logistic regression and interRAI Home Care Frailty Scale and
examined the effects of sample sizes, the number of features, and train-test split ratios.

Results: A total of 95,042 older adults (median age 82.66 years, IQR 77.92-88.76; n=37,462, 39.42% male) receiving home
care were analyzed. The average area under the curve (AUC) and sensitivities of 6-month mortality prediction showed that
machine learning classifiers did not outperform regularized logistic regressions. In terms of AUC, regularized logistic regression
had better performance than XGBoost, MLP, and RF when the number of features was ≤80 and the sample size ≤16,000; MLP
outperformed regularized logistic regression in terms of sensitivities when the number of features was ≥40 and the sample size
≥4000. Conversely, RF and XGBoost demonstrated higher specificities than regularized logistic regression in all scenarios.

Conclusions: The study revealed that machine learning models exhibited significant variation in prediction performance when
evaluated using different metrics. Regularized logistic regression was an effective model for identifying frail older adults receiving
home care, as indicated by the AUC, particularly when the number of features and sample sizes were not excessively large.
Conversely, MLP displayed superior sensitivity, while RF exhibited superior specificity when the number of features and sample
sizes were large.

(JMIR AI 2024;3:e44185)   doi:10.2196/44185
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Introduction

Frailty is a syndrome characterized by an increased vulnerability
to adverse health outcomes, including falling, hospitalization,
physical decline, and mortality [1]. Frailty should be detected
as early as possible since it is potentially preventable and
treatable [2]. In community settings, timely identification of
frailty allows the implementation of early interventions that
could reduce care costs and improve the “ability of older persons
to age in place” [3]. In clinical and long-term care settings,
identifying frail older adults could facilitate more individualized
and tailored health care planning [4,5]. Therefore, efficient and
accurate clinical tools are pivotal to the early identification of
frailty among at-risk older adults.

Numerous methods have been applied to measure frailty. A
recent systematic review identified 21 conceptual definitions
and 59 operational definitions of frailty from 68 studies [6].
This review concluded that definitions of frailty can be classified
into 3 categories focusing on different dimensions. The first is
represented by the Cardiovascular Health Study (CHS) Index
based on Fried’s “frailty phenotype” model, which focuses on
the physical dimensions of frailty [7-10]. The second category
is represented by the Frailty Index, originally proposed by
Rockwood and Mitnitski [11,12], which considers frailty as a
syndrome capturing the accumulative gradient of deficits. This
category of definitions covers other dimensions of frailty,
including cognitive, psychological, nutritional, and social factors
[11,13]. The third category considers the social dimension of
frailty, which has a significant relationship with undesirable
adverse health outcomes [14-16]. Despite differences in
theoretical frameworks adopted by different frailty measures,
existing frailty indices are typically constructed by summing
up the number of deficits or scores of assessment items using
equal weighting. Arguably, different deficits from various
domains may impact overall frailty status differently, and these
differences should be considered when measuring frailty. In
addition to accounting for the multifactorial nature of frailty, a
successful definition of frailty [12] must demonstrate satisfactory
criterion validity. Since frailty is noncontroversially linked with
vulnerability, a valid measure of frailty must accurately predict
adverse outcomes, such as death, institutionalization,
hospitalization, physical decline, and falls. Mortality is the most
objective measure that is less susceptible to measurement error
and, thus, is the most widely used outcome for assessing the
predictive validity of frailty measures [9,17-20].

Routinely collected data from health information systems have
become increasingly available in recent years, and clinical big
data analytics featured by machine learning techniques are
ever-evolving [21-23]. In contrast to conventional regression
approaches, classifiers used in machine learning, such as random
forest (RF), support vector machines, and neural networks, have
the advantages of learning and generating predictions by
examining large-scale databases of complex clinical information
[18,20,24-26]. Therefore, it is reasonable to hypothesize that

applying machine learning techniques to large-scale data
collected from health information systems can improve the
accuracy of mortality prediction for identifying frail older
persons who may benefit from early interventions. However,
the literature remains unclear whether machine learning
techniques can outperform conventional regression models in
identifying frail older adults [18,19,27].

In this study, we used routinely collected health information of
people receiving home care in New Zealand from
interRAI-Home Care (interRAI-HC) assessment to examine the
performance of various machine learning classifiers in mortality
prediction for identifying frailty. In this study, we conducted a
simulation study to address the following research questions:
(1) does the performance of machine learning models exceed
that of the interRAI-HC Frailty Scale, which was developed
using conventional regression models [28], in identifying frailty?
(2) what are the performances of different machine learning
models? and (3) what are the effects of sample size, number of
features, and the ratio of training to test data on predictive
accuracy?

Methods

Data Source and Participants
In this retrospective observational study, we used deidentified
health information routinely collected from older adults assessed
using the interRAI-HC assessment (version 9.1). The
interRAI-HC assessment was developed by a network of health
researchers in over 35 countries [29]. interRAI assessments are
mandatory in aged residential care and home and community
services for older people living in the community in New
Zealand. Our participants were from all 20 District Health
Boards in New Zealand and included all community-dwelling
older adults who were receiving public-funded home care or
assessed for long-term aged residential care. Trained interRAI
assessors collect comprehensive health information on older
adults, including their demographic, clinical, psychosocial, and
functional details. The interRAI-HC assessment embeds over
100 potential deficits of older adults that can be used to identify
frailty. Table S1 in Multimedia Appendix 1 summarizes the
variables used for identifying frail older adults. Ethnicity was
not included to increase generalizability beyond New Zealand.

We included adults 65 years of age or older for whom at least
1 interRAI-HC assessment had been completed between January
1, 2012, and December 31, 2016. Only the most recent
interRAI-HC assessment (defined as the index assessment) of
each individual within this period was used in the analysis and
the date of the most recent assessment was defined as the index
date. The individuals were followed from the index date until
the date of death or December 31, 2019, whichever came first.

Ethical Considerations
The University of Auckland Human Participant Ethics
Committee provided ethics approval for this study (023801).
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Measures

Outcomes
Outcomes of interest were 6-month and 12-month mortality.
Mortality data were retrieved from the Ministry of Health
Mortality Dataset that contains information of all registered
deaths in New Zealand. These two-time points were chosen
because (1) older adults receiving home care are associated with
a higher risk of mortality and shorter survival compared with
their counterparts who are not receiving home care and (2) these
are outcomes commonly used in previous studies examining
the association between frailty and mortality [30-33] and few
previous studies using interRAI data [34-36].

Features Used in Machine Learning Models
Features of interest included 138 interRAI-HC assessment items
covering 11 broad domains, demographics, cognition,
communication and vision, mood and behavior, psychosocial
well-being, functional status, continence, disease diagnoses,
health conditions, oral and nutrition status, and skin conditions.
Table S1 in Multimedia Appendix 1 presents the details of
features used to identify frail older individuals.

Assessment items that had a missing percentage of over 10%
were excluded from this study. Multiple interRAI-HC
assessment variables with a response indicating that the activity
did not occur during the assessment were considered missing,
and the missing data imputation was implemented for these
responses.

Established Frailty Scales (Benchmark)
The interRAI-HC Frailty Scale was used as the benchmark for
evaluating the predictive performance of machine learning
algorithms. The interRAI-HC Frailty Scale was developed and
validated using assessments collected from multiple and diverse
countries worldwide [28]. Table S2 in Multimedia Appendix 1
summarizes the variables used in constructing the interRAI-HC
Frailty Scale.

Machine Learning and Logistic Regression Models
We applied 3 state-of-the-art machine learning models and
regularized logistic regression to predict 6-month and 12-month
mortality using the features available from interRAI-HC. The
RF is a machine learning algorithm that uses decision trees [37].
The RF provides highly accurate predictions with a very large
number of input variables [38]. The eXtreme Gradient Boosting

(XGBoost) is an optimized algorithm designed to implement
parallel tree boosting that can predict results extremely
efficiently and accurately based on its scalability and efficiency
in all scenarios [39]. Multilayer perceptron (MLP) is one of the
most popular paradigms of artificial neural networks. MLP
decreases the output error by adjusting the weights of predictive
variables through an iterative learning process [40].

Regularized logistic regression is a variant of logistic regression
using regularization to prevent overfitting and improve the
performance of logistic regression. Two popular types of
regularized logistic regressions are Least Absolute Shrinkage
and Selection Operator (LASSO) regularization with the L1
penalty [41] and Ridge regularization with the L2 penalty [42].

In this study, we implemented hyperparameter tuning to
regularize logistic regression (hereafter referred to as logistic
regression), RF, MLP, and XGBoost by performing a
randomized grid search using all home care (HC) assessment
items. The best hyperparameters for each classifier were
determined by 10-fold cross-validation (Table S5 in Multimedia
Appendix 1). We used iterative imputation [43] to handle the
missing values and the default threshold of 0.5 was used in
training [27]. We conducted a sensitivity analysis to compare
the performance of the models with and without imputation in
selected conditions, that is, only the minimum and maximum
sample sizes and the number of features were selected for
comparison due to the expensive computation power required.

The preliminary results suggested that our data are imbalanced,
as the majority of individuals survived within 6 or 12 months.
We therefore rebalanced the training data (but not the test data)
using random oversampling [44], while keeping the test data
unchanged. Our primary findings are presented with the results
obtained after rebalancing the data. The results using the original
imbalanced data set can be found in Multimedia Appendix 1.
Specifically, to initiate the hyperparameter tuning process, we
performed hyperparameter tuning using grid search. For each
combination of hyperparameters, within each iteration of the
10-fold cross-validation loop, we applied oversampling to the
training set, and the model was trained on the oversampled
training set using the current combination of hyperparameters.
The model’s performance was evaluated on the validation set.
After all combinations of hyperparameters have been evaluated,
we selected the combination that gave the best average
performance. The process of data preprocessing, training,
prediction, and evaluation is illustrated in Figure 1.
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Figure 1. Illustration of the process of data preprocessing, training, prediction, and evaluation.

Simulation Design
We conducted a Monte Carlo simulation to compare the
performance of different machine learning methods and logistic
regression under different experimental conditions, characterized
by different sample sizes, the number of features, and training
test split ratios. There were 72 experimental conditions for each
model (4 sample sizes, 6 feature numbers, and 3 training test
split ratios). Each of these conditions was repeated 1000 times
to assess their variability. We used sample sizes equaling 1000,
4000, 16,000, and 95,042; the number of features equaling 10,
20, 30, 40, 80, and 138; and training test split ratios equaling
7:3, 8:2, and 9:1 in our simulation. We selected these sample
sizes and feature numbers because they are commonly
encountered in existing studies on frailty measurement
[17,19,45-48] and are values that are testable using the current
database. The training split ratios are widely used in studies
using machine learning [18,27,36,49,50]. We chose a limited
number under each domain to keep the simulations to a
manageable scale.

Evaluation of Model Performance
We randomly split the data into a training sample and a test
sample with different training test ratios. We evaluated model
performances using the test sample. The discrimination ability
of each classifier was measured by the area under the curve
(AUC) [51], sensitivity, (also referred to as the true positive
rate), and specificity (also known as the true negative rate) as

the primary criteria because these are criteria widely accepted
by the clinicians. Since frailty is reversible and may be
attenuated by noninvasive interventions such as exercise,
reduction of polypharmacy, and adequate nutrition [52], high
sensitivity is viewed as more important than high specificity in
this context if a trade-off needs to be made. F1-score [53],
accuracy and precision (also called positive predictive value)
[47,54,55] were also constructed and assessed to allow
comparisons with studies that reported only these outcomes.
Note, that as each experimental condition was repeated 1000
times to address the potential impact of randomization, we
computed the mean and SDs of all performance indices across
1000 replications. The 95% CI for the performance metrics was
computed from 1000 runs for each scenario.

Results

We included 95,042 older adults after excluding 4676
individuals who were younger than 65 years of age and 51
individuals with incorrect records (eg, the date of death was
earlier than the assessment date, invalid date of birth, or an
incorrect assessment date). Table 1 summarizes the
characteristics of study subjects, stratified by whether the person
died within 6 months. About half of the subjects were aged
between 80 and 89 years (80-84 years: n=21,947, 23.09%; 85-89
years: n=23,906, 25.15%). Women accounted for 57,580
(60.58%) of the sample, and 83,590 (87.95%) were European.
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A total of 12,401 (13.05%) subjects died within 6 months
following the index assessment. Table S19 in Multimedia
Appendix 1 documents the characteristics of the study subjects,
stratified by whether the person died within 1 year.

Table S4 in Multimedia Appendix 1 presents the results of the
sensitivity analysis comparing the performance of the models
with and without imputation. The findings suggest that the data
imputation was necessary as the imputed data set outperformed
the unimputed data set in most of the conditions tested.

After comparing the performance of penalty terms none, L1,
and L2, the LASSO regression regularization (L1) and Ridge
regularization (L2) were used in 6-month and 12-month
mortality prediction, respectively. We compared the average
AUC of each classifier as the number of features increased for
6-month mortality prediction (Figure 2). Overall, the
performance of all methods improved considerably as the
number of features increased. Specifically, in most scenarios,
when the number of features increased to 30, four classifiers
demonstrated significantly higher AUC than the interRAI-HC
Frailty Scale. LASSO regression generally demonstrated higher
or comparable AUC than RF, MLP, and XGBoost. However,
in the specific scenario where the sample size was 95,042 and
the number of features was 40 or less, MLP showed a slightly
better average AUC than LASSO regression. In addition, when
the sample size was 95,042, and the number of features
increased to 138, XGBoost achieved the highest average AUC
of 0.79 (95% CI 0.79-0.80).

Figure 3 shows the average sensitivities across all experimental
conditions. The 3 machine learning classifiers and LASSO
regression had lower sensitivities than the interRAI-HC frailty
scale when the sample size was 1000. As the sample size
increased to 4000 and the number of features increased to 20,
MLP and LASSO regression outperformed the benchmark scale
with the highest average sensitivity of 0.77 (95% CI 0.72-0.79)
observed in MLP when the sample size was 95,042, and the
number of features was 138. Meanwhile, all classifiers
demonstrated higher average specificities than the interRAI-HC

Frailty Scale in all scenarios (Figure 4). The RF and XGBoost
demonstrated higher specificities than LASSO regression, with
RF achieving the highest average specificities of 0.98 (95% CI
0.98-0.98) when the sample size was 95,042 and the number of
features was 138.

Based on the simulation results, it was observed that the test
size ratios did not have a significant impact on the average AUC,
sensitivities, and specificities, as shown in Figure 5. The
12-month and 6-month mortality predictions were comparable
(Figures S1-S4 in Multimedia Appendix 1). However, the
overall performance of logistic regression on the 12-month
mortality prediction was worse than the 6-month prediction.
Compared to the 6-month mortality prediction, machine learning
classifiers performed slightly better average sensitivities and
worse average AUCs and specificities on 12-month mortality
prediction. Tables S5-S18 and S20-S33 in Multimedia Appendix
1 summarize AUC, sensitivity, specificity, F1-score, accuracy,
and precision.

Our simulation was also conducted on the imbalanced data set,
and we observed a similar result in terms of average AUCs.
Regularized logistic regression had a higher AUC than
XGBoost, MLP, and RF, especially when the number of features
was less than or equal to 80 and the sample size was less than
or equal to 16,000. However, as the number of features and
sample sizes increased, XGBoost slightly outperformed
regularized logistic regression. In terms of sensitivities,
regularized logistic regression significantly outperformed
machine learning classifiers in all scenarios, while machine
learning classifiers had higher specificities than regularized
logistic regression in all scenarios. Additionally, the findings
for 12-month and 6-month mortality prediction were similar.
However, machine learning classifiers performed slightly better
in average sensitivities, but worse in average AUCs and
specificities for 12-month mortality prediction compared to
6-month mortality prediction. Multimedia Appendix 1 has been
included to summarize the results of the imbalanced data set
(Tables S34-S62 and Figures S9-S12 in Multimedia Appendix
1).
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Table 1. Sample characteristics of 6-month mortality.

6-month survived (n=82,641)6-month deceased (n=12,401)HCa (N=95,042)Characteristics

Age (years)

5213 (6.31)693 (5.59)5906 (6.21)65-69, n (%)

8558 (10.36)1065 (8.59)9623 (10.12)70-74, n (%)

13,514 (16.35)1770 (14.27)15,284 (16.08)75-79, n (%)

19,285 (23.34)2662 (21.47)21,947 (23.09)80-84, n (%)

20,594 (24.92)3312 (26.71)23,906 (25.15)85-89, n (%)

12,210 (14.77)2160 (17.42)14,370 (15.12)90-94, n (%)

2940 (3.56)654 (5.27)3594 (3.78)95-99, n (%)

327 (0.40)85 (0.69)412 (0.43)≥100, n (%)

82.52 (7.59)83.59 (7.71)82.66 (7.61)Mean (SD)

Gender, n (%)

51,218 (61.98)6362 (51.30)57,580 (60.58)Female

31,423 (38.02)6039 (48.70)37,462 (39.42)Male

Ethnicity, n (%)

72,462 (87.68)11,128 (89.73)83,590 (87.95)European

4591 (5.56)730 (5.89)5321 (5.60)Maori

2681 (3.24)267 (2.15)2948 (3.10)Pacific Island

2107 (2.55)197 (1.59)2304 (2.42)Asian

327 (0.40)25 (0.20)352 (0.37)Middle eastern or Latin American or African

473 (0.57)54 (0.44)527 (0.55)Other ethnicity

Marital status, n (%)

71,465 (86.48)10,936 (88.19)82,401 (86.70)Married or civil union or de facto

3947 (4.78)539 (4.35)4486 (4.72)Never married

1876 (2.27)240 (1.94)2116 (2.23)Widowed

5316 (6.43)683 (5.51)5999 (6.31)Separated or divorced

37 (0.04)3 (0.02)40 (0.04)Others

aHC: home care.

Figure 2. Average AUCs of classifiers and frailty scale for 6-month mortality prediction on balanced data set. AUC: area under the curve; HC: home
care; LR: logistic regression; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.
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Figure 3. Average sensitivities of classifiers and frailty scale for 6-month mortality prediction on balanced data set. HC: home care; LR: logistic
regression; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.

Figure 4. Average specificities of classifiers and frailty scale for 6-month mortality prediction on balanced data set. HC: home care; LR: logistic
regression; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.

Figure 5. Average AUCs, sensitivities, and specificities of frailty scales for 6-month mortality prediction by test sizes on balanced data set. AUC: area
under the curve; LR: logistic regression; MLP: multilayer perceptron; XGBoost: extreme gradient boosting.
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Discussion

Principal Findings
In this retrospective study of older adults with the mandated
standardized interRAI-HC assessment in New Zealand, we
performed a series of simulations to evaluate the role of machine
learning classifiers, features, and sample sizes on mortality
prediction in identifying frail older individuals. We found that
in most scenarios, particularly when dealing with large sample
sizes and large numbers of features, 4 classifiers demonstrated
significantly higher AUCs and sensitivities compared to the
interRAI-HC Frailty Scale. All classifiers showed higher average
specificities than the interRAI-HC Frailty Scale across all
scenarios. Our simulation results showed that the predictive
performance differed significantly by using different numbers
of randomly selected features, varied sample sizes, and
performance measures. Compared to machine learning
classifiers, that is, RF, MLP, and XGBoost, logistic regressions
provided higher average AUCs on 6-month mortality prediction
when the number of features and sample sizes were not
excessive. Even with a high number of features and very large
samples, only slight improvements in average AUCs were
observed in MLP and XGBoost. However, when the number
of features and sample sizes were large, MLP demonstrated
superior sensitivity, whereas RF exhibited superior specificity.

Interpretation in the Light of the Published Literature
In recent years, machine learning techniques have started to be
used in various large-scale health care data sets to develop
predictive algorithms for various adverse health outcomes,
including hospitalization, mortality, and frailty in different
populations [18,20,24,56]. For example, a recent study showed
that by using only 10 or 11 features and 592 study subjects, the
machine learning classifier support vector machines identified
frail older adults with over 75% accuracy [45]. Another study
also showed that by using 16 features, the machine learning
classifier gradient boosting achieved 90% AUC on 30-day
mortality prediction in patients with heart failure [19]. However,
due to limitations in sample size and the number of available
features, no study has systematically examined the role of
methodological and database factors in the performance of
various machine learning techniques. To our knowledge, our
study is the first to use high-quality health care data of older
adults receiving home care to investigate the performance of
machine learning classifiers in identifying frail persons
compared to an existing clinical scale and conventional logistic
regressions. It is also the first to elucidate to what extent the
performance is associated with the choice of classifier, sample
size, and the number of features.

Contrary to our hypothesis, the application of machine learning
classifiers did not improve the performance of mortality
prediction for identifying frail older adults, as evaluated by
AUC. This finding indicates that regularized logistic regression
can perform sufficiently well and save computational resources
when a well-structured, high-quality data source is used. One
possible explanation for this result could be the nature of the
features, as most of the items used to identify frail older adults
are binary. Another reason may be the high reliability of

interRAI-HC data [21,57]. In a previous study that also used
machine learning to predict frailty status, logistic regression
demonstrated comparable or higher performance in various
scenarios [27]. This previous study suggested that the tree-based
classifiers performed better if the data set was of low quality
and contained bad features, and that MLP could generally show
a greater performance if the data set is large enough and has
complex structure with many layers. In our study, the reason
why MLP did not show superior performance on average AUCs
could be due to only 1 hidden layer being used.

On the other hand, when the number of features and sample
sizes were large, machine learning models demonstrated better
performance than logistic regression on both sensitivity and
specificity. Specifically, MLP exhibited superior sensitivity,
which means that it was more effective at accurately identifying
frail older adults receiving home care and were at high risk of
adverse health outcomes. In contrast, RF demonstrated superior
specificity, which means that it was better at correctly
identifying those who were not at high risk of adverse health
outcomes. In the context of frailty, where interventions such as
exercise, reduction of polypharmacy, and adequate nutrition
can attenuate and even reverse the condition [52], high
sensitivity is considered more important than high specificity
if a trade-off between the 2 measures is required.

Our study revealed that the RF and XGBoost classifiers had
significantly lower sensitivities and higher specificities than
logistic regression, while MLP had higher sensitivities and lower
specificities. This finding is consistent with previous studies on
identifying frailty. For example, a study using various machine
learning methods to develop predictive models for frailty
conditions in older individuals based on an administrative health
database [18] observed lower sensitivities and higher
specificities for RF when predicting urgent hospitalization, and
higher sensitivities and lower specificities for MLP when
predicting various health outcomes, including mortality, fracture,
and preventable hospitalization. Another similar study that
developed a validated case definition of frailty using machine
learning classifiers [27] found significantly lower sensitivities
and higher specificities for XGBoost and RF compared to
logistic regression on balanced data using the default threshold.
These findings collectively suggest that identifying frailty using
machine learning techniques remains challenging and future
research is warranted to investigate the performance of machine
learning models in other populations and care settings.

Implications for Research, Policy, and Practice
We did not identify any machine learning classifier that
performed consistently better than the others. The best classifier
differed across experimental conditions. Our results demonstrate
that the advantages of using machine learning techniques to
identify frail older adults become more apparent as the sample
size and number of features increase. The logistic regression
demonstrated higher or comparable AUC compared to machine
learning classifiers in most scenarios. This differs from previous
studies that show that machine learning classifiers outperformed
logistic regression or its variants in predicting adverse health
outcomes [18,20,24-26]. With a sample size of 95,042 and 138
features, Ridge logistic regression achieved an average AUC
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of 0.77 for 12-month mortality prediction. A logistic
regression-based model developed by a previous study using
interRAI-HC assessments of older persons in the New Zealand
cohort targeting older individuals with complex comorbidities
achieved an average AUC slightly higher (<0.01) than our result
for 12-month mortality prediction [36]. The previous study used
a slightly larger sample size of 104,436 and used a feature
selection process to include only the features contributing over
1% to the performance. This may imply that a larger sample
size and a feature selection process could further improve the
predictive performance of logistic regression.

Strengths and Limitations
Our study used data collected from the interRAI instruments,
standardized assessment instruments that have been developed
by a collaborative network of health care professionals [21].
The interRAI instruments have been adopted in several
jurisdictions to improve the quality of care for long-term care
recipients, including Canada, Finland, Belgium, Italy, and Hong
Kong. Therefore, the findings from this study may inform the
identification of frail older adults for early interventions in
similar care settings using interRAI assessments.

Our study has limitations. First, a successful measure of frailty
should demonstrate satisfactory criterion validity against various
adverse outcomes such as mortality, disability, hospitalization,
and nursing home placement. Our study considered only
mortality; therefore, it did not examine the accuracy of machine
learning algorithms in predicting other adverse outcomes.
Furthermore, we considered only 6- and 12-month mortality,
resulting in an imbalanced data set that may yield higher
specificity when using machine learning algorithms. It is also
unclear whether the results can be extrapolated to other time
intervals, such as 2 and 3 years. Further studies are needed to
evaluate the prediction power of frailty against other critical
outcomes. Second, the samples used in this study were limited
to older adults receiving home care in New Zealand and most

participants were Europeans. Future studies are warranted to
assess the generalizability of this study’s findings. Third, we
applied only 3 machine learning classifiers, chosen because
they demonstrated better performance in several previous
studies. The performance of other machine learning algorithms
compared to regularized logistic regression was not investigated.
Therefore, our conclusions are limited to the 3 algorithms
examined. Fourth, calibration was not performed when training
a machine learning classifier due to its additional computational
costs, which may have affected the evaluation of model
performance. The purpose of this study is to examine the impact
of sample size and feature selection on the overall performance
of each classifier in identifying frailty in older adults, rather
than focusing on probability estimation or the quality of
explanations provided by each model. It is worth noting that a
recently published study [58] found that uncalibrated RF and
XGBoost models performed similarly or even better than
calibrated models in terms of accuracy and AUC. Therefore,
the impact of calibration on our findings may not be severe.
Finally, comparing the main features that affect the performance
of different algorithms may improve the understanding of the
construct of frailty. However, since the features in our simulation
design were randomly selected across 1000 replications, the
most important features identified from each run-in condition
were not directly comparable. Therefore, we did not carry out
further investigation on feature importance under different
conditions.

Conclusions
Machine learning classifiers demonstrate considerable variability
in prediction performance when assessed using different metrics.
Regularized logistic regression is a reliable model for identifying
frail older adults receiving home care, as indicated by the AUC,
especially when the number of features and sample sizes are
not excessively large. Conversely, MLP shows superior
sensitivity, while RF demonstrates superior specificity when
the number of features and sample sizes is large.

 

Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplementary experiments: features and results.
[DOCX File , 2598 KB - ai_v3i1e44185_app1.docx ]

References
1. Kulmala J, Nykänen I, Hartikainen S. Frailty as a predictor of all-cause mortality in older men and women. Geriatr Gerontol

Int 2014;14(4):899-905. [doi: 10.1111/ggi.12190] [Medline: 24666801]
2. Rodríguez-Mañas L, Féart C, Mann G, Viña J, Chatterji S, Chodzko-Zajko W, et al. Searching for an operational definition

of frailty: a Delphi method based consensus statement: the frailty operative definition-consensus conference project. J
Gerontol A Biol Sci Med Sci 2013;68(1):62-67 [FREE Full text] [doi: 10.1093/gerona/gls119] [Medline: 22511289]

3. Romero-Ortuno R, Walsh CD, Lawlor BA, Kenny RA. A frailty instrument for primary care: findings from the Survey of
Health, Ageing and Retirement in Europe (SHARE). BMC Geriatr 2010;10:57 [FREE Full text] [doi:
10.1186/1471-2318-10-57] [Medline: 20731877]

4. Hubbard RE, Peel NM, Samanta M, Gray LC, Fries BE, Mitnitski A, et al. Derivation of a frailty index from the interRAI
acute care instrument. BMC Geriatr 2015;15:27 [FREE Full text] [doi: 10.1186/s12877-015-0026-z] [Medline: 25887105]

JMIR AI 2024 | vol. 3 | e44185 | p.339https://ai.jmir.org/2024/1/e44185
(page number not for citation purposes)

Pan et alJMIR AI

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=ai_v3i1e44185_app1.docx&filename=b75339970fa016db5d33964d0ae3f9f5.docx
https://jmir.org/api/download?alt_name=ai_v3i1e44185_app1.docx&filename=b75339970fa016db5d33964d0ae3f9f5.docx
http://dx.doi.org/10.1111/ggi.12190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24666801&dopt=Abstract
https://europepmc.org/abstract/MED/22511289
http://dx.doi.org/10.1093/gerona/gls119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22511289&dopt=Abstract
https://bmcgeriatr.biomedcentral.com/articles/10.1186/1471-2318-10-57
http://dx.doi.org/10.1186/1471-2318-10-57
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20731877&dopt=Abstract
https://bmcgeriatr.biomedcentral.com/articles/10.1186/s12877-015-0026-z
http://dx.doi.org/10.1186/s12877-015-0026-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25887105&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


5. Kaehr E, Visvanathan R, Malmstrom TK, Morley JE. Frailty in nursing homes: the FRAIL-NH Scale. J Am Med Dir Assoc
2015;16(2):87-89. [doi: 10.1016/j.jamda.2014.12.002] [Medline: 25556303]

6. Sobhani A, Fadayevatan R, Sharifi F, Kamrani AA, Ejtahed H, Hosseini RS, et al. The conceptual and practical definitions
of frailty in older adults: a systematic review. J Diabetes Metab Disord 2021;20(2):1975-2013 [FREE Full text] [doi:
10.1007/s40200-021-00897-x] [Medline: 34900836]

7. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype.
J Gerontol A Biol Sci Med Sci 2001;56(3):M146-M156 [FREE Full text] [doi: 10.1093/gerona/56.3.m146] [Medline:
11253156]

8. Xue QL. The frailty syndrome: definition and natural history. Clin Geriatr Med 2011;27(1):1-15 [FREE Full text] [doi:
10.1016/j.cger.2010.08.009] [Medline: 21093718]

9. Kojima G, Iliffe S, Walters K. Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing
2018;47(2):193-200 [FREE Full text] [doi: 10.1093/ageing/afx162] [Medline: 29040347]

10. Fried LP, Cohen AA, Xue QL, Walston J, Bandeen-Roche K, Varadhan R. The physical frailty syndrome as a transition
from homeostatic symphony to cacophony. Nat Aging 2021;1(1):36-46 [FREE Full text] [doi: 10.1038/s43587-020-00017-z]
[Medline: 34476409]

11. Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci
2007;62(7):722-727 [FREE Full text] [doi: 10.1093/gerona/62.7.722] [Medline: 17634318]

12. Rockwood K. What would make a definition of frailty successful? Age Ageing 2005;34(5):432-434 [FREE Full text] [doi:
10.1093/ageing/afi146] [Medline: 16107450]

13. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal
2001;1:323-336 [FREE Full text] [doi: 10.1100/tsw.2001.58] [Medline: 12806071]

14. Makizako H, Shimada H, Tsutsumimoto K, Lee S, Doi T, Nakakubo S, et al. Social frailty in community-dwelling older
adults as a risk factor for disability. J Am Med Dir Assoc 2015;16(11):1003.e7-1003.e11. [doi: 10.1016/j.jamda.2015.08.023]
[Medline: 26482055]

15. Teo N, Gao Q, Nyunt MSZ, Wee SL, Ng TP. Social frailty and functional disability: findings from the Singapore longitudinal
ageing studies. J Am Med Dir Assoc 2017;18(7):637.e13-637.e19. [doi: 10.1016/j.jamda.2017.04.015] [Medline: 28648903]

16. Bunt S, Steverink N, Olthof J, van der Schans CP, Hobbelen JSM. Social frailty in older adults: a scoping review. Eur J
Ageing 2017;14(3):323-334 [FREE Full text] [doi: 10.1007/s10433-017-0414-7] [Medline: 28936141]

17. Ravaglia G, Forti P, Lucicesare A, Pisacane N, Rietti E, Patterson C. Development of an easy prognostic score for frailty
outcomes in the aged. Age Ageing 2008;37(2):161-166 [FREE Full text] [doi: 10.1093/ageing/afm195] [Medline: 18238805]

18. Tarekegn A, Ricceri F, Costa G, Ferracin E, Giacobini M. Predictive modeling for frailty conditions in elderly people:
machine learning approaches. JMIR Med Inform 2020;8(6):e16678 [FREE Full text] [doi: 10.2196/16678] [Medline:
32442149]

19. Ju C, Zhou J, Lee S, Tan MS, Liu T, Bazoukis G, et al. Derivation of an electronic frailty index for predicting short-term
mortality in heart failure: a machine learning approach. ESC Heart Fail 2021;8(4):2837-2845 [FREE Full text] [doi:
10.1002/ehf2.13358] [Medline: 34080784]

20. Parikh RB, Manz C, Chivers C, Regli SH, Braun J, Draugelis ME, et al. Machine learning approaches to predict 6-month
mortality among patients with cancer. JAMA Netw Open 2019;2(10):e1915997 [FREE Full text] [doi:
10.1001/jamanetworkopen.2019.15997] [Medline: 31651973]

21. Hirdes JP, Ljunggren G, Morris JN, Frijters DHM, Soveri HF, Gray L, et al. Reliability of the interRAI suite of assessment
instruments: a 12-country study of an integrated health information system. BMC Health Serv Res 2008;8:277 [FREE Full
text] [doi: 10.1186/1472-6963-8-277] [Medline: 19115991]

22. Murdoch TB, Detsky AS. The inevitable application of big data to health care. JAMA 2013;309(13):1351-1352. [doi:
10.1001/jama.2013.393] [Medline: 23549579]

23. Fragidis LL, Chatzoglou PD. Implementation of a nationwide electronic health record (EHR). Int J Health Care Qual Assur
2018;31(2):116-130. [doi: 10.1108/IJHCQA-09-2016-0136] [Medline: 29504871]

24. Vaid A, Somani S, Russak AJ, De Freitas JK, Chaudhry FF, Paranjpe I, et al. Machine learning to predict mortality and
critical events in a cohort of patients with COVID-19 in New York City: model development and validation. J Med Internet
Res 2020;22(11):e24018 [FREE Full text] [doi: 10.2196/24018] [Medline: 33027032]

25. Liu J, Wu J, Liu S, Li M, Hu K, Li K. Predicting mortality of patients with acute kidney injury in the ICU using XGBoost
model. PLoS One 2021;16(2):e0246306 [FREE Full text] [doi: 10.1371/journal.pone.0246306] [Medline: 33539390]

26. Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest
model. Int J Med Inform 2019;125:55-61. [doi: 10.1016/j.ijmedinf.2019.02.002] [Medline: 30914181]

27. Aponte-Hao S, Wong ST, Thandi M, Ronksley P, McBrien K, Lee J, et al. Machine learning for identification of frailty in
Canadian primary care practices. Int J Popul Data Sci 2021;6(1):1650 [FREE Full text] [doi: 10.23889/ijpds.v6i1.1650]
[Medline: 34541337]

28. Morris JN, Howard EP, Steel KR. Development of the interRAI home care frailty scale. BMC Geriatr 2016;16(1):188
[FREE Full text] [doi: 10.1186/s12877-016-0364-5] [Medline: 27871235]

JMIR AI 2024 | vol. 3 | e44185 | p.340https://ai.jmir.org/2024/1/e44185
(page number not for citation purposes)

Pan et alJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.jamda.2014.12.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25556303&dopt=Abstract
https://europepmc.org/abstract/MED/34900836
http://dx.doi.org/10.1007/s40200-021-00897-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34900836&dopt=Abstract
https://academic.oup.com/biomedgerontology/article/56/3/M146/545770?login=false
http://dx.doi.org/10.1093/gerona/56.3.m146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11253156&dopt=Abstract
https://europepmc.org/abstract/MED/21093718
http://dx.doi.org/10.1016/j.cger.2010.08.009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21093718&dopt=Abstract
https://academic.oup.com/ageing/article/47/2/193/4508819?login=false
http://dx.doi.org/10.1093/ageing/afx162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29040347&dopt=Abstract
https://europepmc.org/abstract/MED/34476409
http://dx.doi.org/10.1038/s43587-020-00017-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34476409&dopt=Abstract
https://academic.oup.com/biomedgerontology/article/62/7/722/581897?login=false
http://dx.doi.org/10.1093/gerona/62.7.722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17634318&dopt=Abstract
https://academic.oup.com/ageing/article/34/5/432/40406?login=false
http://dx.doi.org/10.1093/ageing/afi146
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16107450&dopt=Abstract
https://doi.org/10.1100/tsw.2001.58
http://dx.doi.org/10.1100/tsw.2001.58
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12806071&dopt=Abstract
http://dx.doi.org/10.1016/j.jamda.2015.08.023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26482055&dopt=Abstract
http://dx.doi.org/10.1016/j.jamda.2017.04.015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28648903&dopt=Abstract
https://europepmc.org/abstract/MED/28936141
http://dx.doi.org/10.1007/s10433-017-0414-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28936141&dopt=Abstract
https://academic.oup.com/ageing/article/37/2/161/40810?login=false
http://dx.doi.org/10.1093/ageing/afm195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18238805&dopt=Abstract
http://hdl.handle.net/2318/1741011
http://dx.doi.org/10.2196/16678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32442149&dopt=Abstract
https://europepmc.org/abstract/MED/34080784
http://dx.doi.org/10.1002/ehf2.13358
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34080784&dopt=Abstract
https://europepmc.org/abstract/MED/31651973
http://dx.doi.org/10.1001/jamanetworkopen.2019.15997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31651973&dopt=Abstract
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-8-277
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-8-277
http://dx.doi.org/10.1186/1472-6963-8-277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19115991&dopt=Abstract
http://dx.doi.org/10.1001/jama.2013.393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23549579&dopt=Abstract
http://dx.doi.org/10.1108/IJHCQA-09-2016-0136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29504871&dopt=Abstract
https://www.jmir.org/2020/11/e24018/
http://dx.doi.org/10.2196/24018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33027032&dopt=Abstract
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246306
http://dx.doi.org/10.1371/journal.pone.0246306
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33539390&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2019.02.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30914181&dopt=Abstract
https://europepmc.org/abstract/MED/34541337
http://dx.doi.org/10.23889/ijpds.v6i1.1650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34541337&dopt=Abstract
https://bmcgeriatr.biomedcentral.com/articles/10.1186/s12877-016-0364-5
http://dx.doi.org/10.1186/s12877-016-0364-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27871235&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


29. Hirdes JP, van Everdingen C, Ferris J, Franco-Martin M, Fries BE, Heikkilä J, et al. The interRAI suite of mental health
assessment instruments: an integrated system for the continuum of care. Front Psychiatry 2020;10:926 [FREE Full text]
[doi: 10.3389/fpsyt.2019.00926] [Medline: 32076412]

30. Corsonello A, Lattanzio F, Pedone C, Garasto S, Laino I, Bustacchini S, et al. Prognostic significance of the short physical
performance battery in older patients discharged from acute care hospitals. Rejuvenation Res 2012;15(1):41-48 [FREE Full
text] [doi: 10.1089/rej.2011.1215] [Medline: 22004280]

31. Afilalo J, Lauck S, Kim DH, Lefèvre T, Piazza N, Lachapelle K, et al. Frailty in older adults undergoing aortic valve
replacement: the FRAILTY-AVR study. J Am Coll Cardiol 2017;70(6):689-700 [FREE Full text] [doi:
10.1016/j.jacc.2017.06.024] [Medline: 28693934]

32. Campo G, Maietti E, Tonet E, Biscaglia S, Ariza-Solè A, Pavasini R, et al. The assessment of scales of frailty and physical
performance improves prediction of major adverse cardiac events in older adults with acute coronary syndrome. J Gerontol
A Biol Sci Med Sci 2020;75(6):1113-1119 [FREE Full text] [doi: 10.1093/gerona/glz123] [Medline: 31075167]

33. Espaulella J, Arnau A, Cubí D, Amblàs J, Yánez A. Time-dependent prognostic factors of 6-month mortality in frail elderly
patients admitted to post-acute care. Age Ageing 2007;36(4):407-413 [FREE Full text] [doi: 10.1093/ageing/afm033]
[Medline: 17395620]

34. Abey-Nesbit R, Bergler U, Pickering JW, Nishtala PS, Jamieson H. Development and validation of a frailty index compatible
with three interRAI assessment instruments. Age Ageing 2022;51(8):afac178 [FREE Full text] [doi: 10.1093/ageing/afac178]
[Medline: 35930721]

35. Kerminen H, Huhtala H, Jäntti P, Valvanne J, Jämsen E. Frailty index and functional level upon admission predict hospital
outcomes: an interRAI-based cohort study of older patients in post-acute care hospitals. BMC Geriatr 2020;20(1):160
[FREE Full text] [doi: 10.1186/s12877-020-01550-7] [Medline: 32370740]

36. Pickering JW, Abey-Nesbit R, Allore H, Jamieson H. Development and validation of multivariable mortality risk-prediction
models in older people undergoing an interRAI home-care assessment (RiskOP). EClinicalMedicine 2020;29-30:100614
[FREE Full text] [doi: 10.1016/j.eclinm.2020.100614] [Medline: 33437945]

37. Sternberg SA, Schwartz AW, Karunananthan S, Bergman H, Clarfield AM. The identification of frailty: a systematic
literature review. J Am Geriatr Soc 2011;59(11):2129-2138. [doi: 10.1111/j.1532-5415.2011.03597.x] [Medline: 22091630]

38. Biau G. Analysis of a random forests model. J Mach Learn Res 2012;13:1063-1095 [FREE Full text]
39. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. New York, NY, US: Association for Computing Machinery;

2016 Presented at: Kdd'16: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and
Data Mining; August 13-17, 2016; San Francisco, California, USA p. 785-794. [doi: 10.1145/2939672.2939785]

40. Colombet I, Ruelland A, Chatellier G, Gueyffier F, Degoulet P, Jaulent M. Models to predict cardiovascular risk: comparison
of CART, multilayer perceptron and logistic regression. Proc AMIA Symp 2000:156-160 [FREE Full text] [Medline:
11079864]

41. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc, Ser B, Methodol 1996;58(1):267-288. [doi:
10.1111/j.2517-6161.1996.tb02080.x]

42. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970;12(1):55-67.
[doi: 10.1080/00401706.1970.10488634]

43. Altukhova O. Choice of method imputation missing values for obstetrics clinical data. Procedia Comput Sci 2020;176:976-984
[FREE Full text] [doi: 10.1016/j.procs.2020.09.093]

44. Viloria A, Pineda Lezama OB, Mercado-Caruzo N. Unbalanced data processing using oversampling: machine learning.
Procedia Comput Sci 2020;175:108-113 [FREE Full text] [doi: 10.1016/j.procs.2020.07.018]

45. Ambagtsheer RC, Shafiabady N, Dent E, Seiboth C, Beilby J. The application of artificial intelligence (AI) techniques to
identify frailty within a residential aged care administrative data set. Int J Med Inform 2020;136:104094. [doi:
10.1016/j.ijmedinf.2020.104094] [Medline: 32058264]

46. Williamson T, Aponte-Hao S, Mele B, Lethebe BC, Leduc C, Thandi M, et al. Developing and validating a primary care
EMR-based frailty definition using machine learning. Int J Popul Data Sci 2020;5(1):1344 [FREE Full text] [doi:
10.23889/ijpds.v5i1.1344] [Medline: 32935059]

47. Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J
Mach Learn Technol 2011;2:37-63 [FREE Full text]

48. Kiely DK, Cupples LA, Lipsitz LA. Validation and comparison of two frailty indexes: the MOBILIZE Boston study. J Am
Geriatr Soc 2009;57(9):1532-1539 [FREE Full text] [doi: 10.1111/j.1532-5415.2009.02394.x] [Medline: 19682112]

49. Hadanny A, Shouval R, Wu J, Gale CP, Unger R, Zahger D, et al. Machine learning-based prediction of 1-year mortality
for acute coronary syndrome. J Cardiol 2022;79(3):342-351 [FREE Full text] [doi: 10.1016/j.jjcc.2021.11.006] [Medline:
34857429]

50. Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, et al. Prediction of in-hospital mortality in
emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med
2016;23(3):269-278 [FREE Full text] [doi: 10.1111/acem.12876] [Medline: 26679719]

51. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2006;27(8):861-874. [doi: 10.1016/j.patrec.2005.10.010]

JMIR AI 2024 | vol. 3 | e44185 | p.341https://ai.jmir.org/2024/1/e44185
(page number not for citation purposes)

Pan et alJMIR AI

XSL•FO
RenderX

https://europepmc.org/abstract/MED/32076412
http://dx.doi.org/10.3389/fpsyt.2019.00926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32076412&dopt=Abstract
https://europepmc.org/abstract/MED/22004280
https://europepmc.org/abstract/MED/22004280
http://dx.doi.org/10.1089/rej.2011.1215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22004280&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0735-1097(17)37815-4
http://dx.doi.org/10.1016/j.jacc.2017.06.024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28693934&dopt=Abstract
https://academic.oup.com/biomedgerontology/article/75/6/1113/5487930?login=false
http://dx.doi.org/10.1093/gerona/glz123
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31075167&dopt=Abstract
https://academic.oup.com/ageing/article/36/4/407/40319?login=false
http://dx.doi.org/10.1093/ageing/afm033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17395620&dopt=Abstract
https://academic.oup.com/ageing/article/51/8/afac178/6653477?login=false
http://dx.doi.org/10.1093/ageing/afac178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35930721&dopt=Abstract
https://bmcgeriatr.biomedcentral.com/articles/10.1186/s12877-020-01550-7
http://dx.doi.org/10.1186/s12877-020-01550-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32370740&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2589-5370(20)30358-8
http://dx.doi.org/10.1016/j.eclinm.2020.100614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33437945&dopt=Abstract
http://dx.doi.org/10.1111/j.1532-5415.2011.03597.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22091630&dopt=Abstract
https://www.jmlr.org/papers/volume13/biau12a/biau12a.pdf
http://dx.doi.org/10.1145/2939672.2939785
https://europepmc.org/abstract/MED/11079864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11079864&dopt=Abstract
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1080/00401706.1970.10488634
https://www.sciencedirect.com/science/article/pii/S1877050920319918?via%3Dihub
http://dx.doi.org/10.1016/j.procs.2020.09.093
https://www.sciencedirect.com/science/article/pii/S1877050920316975?via%3Dihub
http://dx.doi.org/10.1016/j.procs.2020.07.018
http://dx.doi.org/10.1016/j.ijmedinf.2020.104094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32058264&dopt=Abstract
https://europepmc.org/abstract/MED/32935059
http://dx.doi.org/10.23889/ijpds.v5i1.1344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32935059&dopt=Abstract
https://arxiv.org/abs/2010.16061
https://europepmc.org/abstract/MED/19682112
http://dx.doi.org/10.1111/j.1532-5415.2009.02394.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19682112&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0914-5087(21)00316-6
http://dx.doi.org/10.1016/j.jjcc.2021.11.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34857429&dopt=Abstract
https://europepmc.org/abstract/MED/26679719
http://dx.doi.org/10.1111/acem.12876
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26679719&dopt=Abstract
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://www.w3.org/Style/XSL
http://www.renderx.com/


52. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, et al. Frailty consensus: a call to action. J Am Med
Dir Assoc 2013;14(6):392-397 [FREE Full text] [doi: 10.1016/j.jamda.2013.03.022] [Medline: 23764209]

53. Sasaki Y. The truth of the F-measure. Teach tutor mater 2007;1(5):1-5 [FREE Full text]
54. Accuracy (trueness and precision) of measurement methods and results. ISO. 1998. URL: https://www.iso.org/standard/

79066.html [accessed 2024-01-09]
55. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers

on imbalanced datasets. PLoS One 2015;10(3):e0118432 [FREE Full text] [doi: 10.1371/journal.pone.0118432] [Medline:
25738806]

56. Jones A, Costa AP, Pesevski A, McNicholas PD. Predicting hospital and emergency department utilization among
community-dwelling older adults: statistical and machine learning approaches. PLoS One 2018;13(11):e0206662 [FREE
Full text] [doi: 10.1371/journal.pone.0206662] [Medline: 30383850]

57. Hogeveen SE, Chen J, Hirdes JP. Evaluation of data quality of interRAI assessments in home and community care. BMC
Med Inform Decis Mak 2017;17(1):150 [FREE Full text] [doi: 10.1186/s12911-017-0547-9] [Medline: 29084534]

58. Löfström H, Löfström T, Johansson U, Sönströd C. Investigating the impact of calibration on the quality of explanations.
Ann Math Artif Intell 2023:1-18 [FREE Full text] [doi: 10.1007/s10472-023-09837-2]

Abbreviations
AUC: area under the curve
CHS: Cardiovascular Health Study
HC: home care
interRAI-HC: interRAI-Home Care
LASSO: Least Absolute Shrinkage and Selection Operator
MLP: multilayer perceptron
RF: random forest
XGBoost: extreme gradient boosting

Edited by K El Emam, B Malin; submitted 09.11.22; peer-reviewed by C Bian, JR Medina, D Han; comments to author 02.07.23;
revised version received 22.07.23; accepted 01.01.24; published 31.01.24.

Please cite as:
Pan C, Luo H, Cheung G, Zhou H, Cheng R, Cullum S, Wu C
Identifying Frailty in Older Adults Receiving Home Care Assessment Using Machine Learning: Longitudinal Observational Study on
the Role of Classifier, Feature Selection, and Sample Size
JMIR AI 2024;3:e44185
URL: https://ai.jmir.org/2024/1/e44185 
doi:10.2196/44185
PMID:

©Cheng Pan, Hao Luo, Gary Cheung, Huiquan Zhou, Reynold Cheng, Sarah Cullum, Chuan Wu. Originally published in JMIR
AI (https://ai.jmir.org), 31.01.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in JMIR AI, is properly cited. The complete bibliographic information, a
link to the original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

JMIR AI 2024 | vol. 3 | e44185 | p.342https://ai.jmir.org/2024/1/e44185
(page number not for citation purposes)

Pan et alJMIR AI

XSL•FO
RenderX

https://europepmc.org/abstract/MED/23764209
http://dx.doi.org/10.1016/j.jamda.2013.03.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23764209&dopt=Abstract
https://nicolasshu.com/assets/pdf/Sasaki_2007_The%20Truth%20of%20the%20F-measure.pdf
https://www.iso.org/standard/79066.html
https://www.iso.org/standard/79066.html
https://dx.plos.org/10.1371/journal.pone.0118432
http://dx.doi.org/10.1371/journal.pone.0118432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25738806&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0206662
https://dx.plos.org/10.1371/journal.pone.0206662
http://dx.doi.org/10.1371/journal.pone.0206662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30383850&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-017-0547-9
http://dx.doi.org/10.1186/s12911-017-0547-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29084534&dopt=Abstract
https://link.springer.com/article/10.1007/s10472-023-09837-2
http://dx.doi.org/10.1007/s10472-023-09837-2
https://ai.jmir.org/2024/1/e44185
http://dx.doi.org/10.2196/44185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Development of Lung Cancer Risk Prediction Machine Learning
Models for Equitable Learning Health System: Retrospective Study

Anjun Chen1, PhD; Erman Wu2, MD; Ran Huang2, MS; Bairong Shen2, PhD; Ruobing Han3, MA; Jian Wen4, PhD;

Zhiyong Zhang1, PhD; Qinghua Li4, MD, PhD
1School of Public Health, Guilin Medical University, Guilin, China
2West China Hospital, Chengdu, China
3Guilin Medical University, Guilin, China
4Department of Neurology, Guilin Medical University Affiliated Hospital, Guilin, Guangxi, China

Corresponding Author:
Qinghua Li, MD, PhD
Department of Neurology
Guilin Medical University Affiliated Hospital
15 Lequn Road
Guilin, Guangxi, 541000
China
Phone: 86 15878361508
Email: qhli1999@glmc.edu.cn

Abstract

Background: A significant proportion of young at-risk patients and nonsmokers are excluded by the current guidelines for lung
cancer (LC) screening, resulting in low-screening adoption. The vision of the US National Academy of Medicine to transform
health systems into learning health systems (LHS) holds promise for bringing necessary structural changes to health care, thereby
addressing the exclusivity and adoption issues of LC screening.

Objective: This study aims to realize the LHS vision by designing an equitable, machine learning (ML)–enabled LHS unit for
LC screening. It focuses on developing an inclusive and practical LC risk prediction model, suitable for initializing the ML-enabled
LHS (ML-LHS) unit. This model aims to empower primary physicians in a clinical research network, linking central hospitals
and rural clinics, to routinely deliver risk-based screening for enhancing LC early detection in broader populations.

Methods: We created a standardized data set of health factors from 1397 patients with LC and 1448 control patients, all aged
30 years and older, including both smokers and nonsmokers, from a hospital’s electronic medical record system. Initially, a
data-centric ML approach was used to create inclusive ML models for risk prediction from all available health factors. Subsequently,
a quantitative distribution of LC health factors was used in feature engineering to refine the models into a more practical model
with fewer variables.

Results: The initial inclusive 250-variable XGBoost model for LC risk prediction achieved performance metrics of 0.86 recall,
0.90 precision, and 0.89 accuracy. Post feature refinement, a practical 29-variable XGBoost model was developed, displaying
performance metrics of 0.80 recall, 0.82 precision, and 0.82 accuracy. This model met the criteria for initializing the ML-LHS
unit for risk-based, inclusive LC screening within clinical research networks.

Conclusions: This study designed an innovative ML-LHS unit for a clinical research network, aiming to sustainably provide
inclusive LC screening to all at-risk populations. It developed an inclusive and practical XGBoost model from hospital electronic
medical record data, capable of initializing such an ML-LHS unit for community and rural clinics. The anticipated deployment
of this ML-LHS unit is expected to significantly improve LC-screening rates and early detection among broader populations,
including those typically overlooked by existing screening guidelines.

(JMIR AI 2024;3:e56590)   doi:10.2196/56590
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Introduction

Lung Cancer–Screening Challenges
Lung cancer (LC) is the second most common cancer and the
leading cause of cancer deaths worldwide [1]. It accounted for
an estimated 2.2 million new cases and 1.8 million deaths in
2020. Screening for early detection of LC is a crucial strategy
to combat this deadly disease [2]. LC-screening guidelines
recommend that heavy smokers aged 50-80 years undergo LC
screening [3]. Clinical trials have shown about a 20% reduction
in LC mortality due to screening with low-dose computed
tomography [4].

However, nonsmoking adults and individuals younger than 50
years are often excluded from LC-screening guidelines, despite
representing a significant percentage of patients with LC
worldwide [5,6]. Statistical risk prediction models, such as
PLCOm2012, have been used to recommend LC screening for
smokers [7]. The subsequent PLCOall2014 model included
nonsmokers in risk evaluation [8], but its impact on screening
uptake was unclear. In addition, the adoption of LC screening
is low; for instance, only about 5% of the at-risk population in
the United States has undergone LC screening [9].

There have been numerous research efforts to overcome these
challenges, but their results were inconclusive and unsatisfactory
[10]. Researchers have proposed individualized risk-based
screening approaches for both smokers and nonsmokers [11].
In 2018, the PLCO model developer reviewed several traditional
risk prediction models and suggested that the including
biomarkers might help identify individuals who could benefit
from LC screening [12]. The PanCan study demonstrated that
selecting participants for LC screening based on risk modeling
could identify patients with early-stage LC [13]. A recent
systematic review concluded that further research is needed to
optimize risk-based LC screening [14]. Concurrently, an updated
evidence report for the US Preventive Services Task Force
indicated that screening high-risk individuals with low-dose
computed tomography could reduce LC mortality but might
also lead to false positives, resulting in unnecessary tests and
invasive procedures [15].

As electronic medical records (EMRs) become prevalent in
hospitals, several machine learning (ML) models have been
developed using EMR data for LC risk prediction. Kaiser
researchers used a small set of preselected variables to identify
patients with early-stage LC from routine clinical and laboratory
data [16,17]. Stanford researchers developed an ML model to
predict the 1-year risk of incident LC using more than 33,000
features from EMR data [18]. Deep learning with convolutional
neural networks applied to EMR data from 2 million patients
produced a high-performance LC risk prediction model [19].
However, the widespread deployment of these models for
risk-based LC screening is yet to be determined.

The Learning Health System Approach
Over a decade ago, the US National Academy of Medicine
(NAM) identified some major shortcomings in the current
clinical evidence generation enterprise and proposed the vision
of learning health systems (LHS) to address these issues [20-22].

First, many guidelines are primarily based on clinical trials with
narrow scopes, failing to fully represent real-world scenarios.
For instance, the exclusion of nonsmokers and younger
populations from the LC guidelines might be a result of these
narrow scopes. Second, the slow dissemination of evidence
from discovery to clinical practice contributes to the low
adoption rate of LC screening. To address these significant
challenges, NAM envisions transforming health systems into
LHS to bring necessary structural changes to health care. One
of the most significant system-level changes in LHS is that
embedding clinical research becomes into routine clinical
delivery, facilitating more efficient generation of real-world
evidence from real-world data (RWD) of patients and faster
dissemination of new evidence to practices. Efficient evidence
generation also necessitates innovations in clinical trial
methodologies, such as pragmatic clinical trials [23,24].

We believe that NAM’s LHS vision points in the right direction
to address the exclusivity, bias, and adoption issues of LC
screening. In pursuing sustainable, long-term solutions for
inclusive screening and increased screening rates, we believe
that system-level innovations are essential. We have focused
on two interdependent considerations: (1) more inclusive
intervention: exploring data-centric, risk-based LC-screening
recommendations instead of blunt exclusions of certain
demographic groups; and (2) broader access to the intervention:
applying ML-based artificial intelligence (AI) to enable doctors
in community and rural primary care to conduct routine
risk-based LC screening. Our goal is to assess whether
identifying at-risk individuals anywhere using the LHS approach
can help close the gap in LC-screening disparities.

These considerations necessitate at least two innovations: (1) a
new ML-enabled LHS unit that can continuously improve ML
models and thus enhance risk prediction services. Our first
ML-enabled LHS (ML-LHS) simulation study using synthetic
patient data demonstrated performance improvement of LC risk
prediction ML models over time [25]. (2) ML models that are
inclusive in terms of patient populations and practical for use
in low-resource clinics. Previously, by applying a data-centric
EMR ML approach and feature engineering based on a
quantitative distribution of health factors derived from EMR
data [26]. we successfully developed an inclusive and practical
ML model for predicting the risk of nasopharyngeal cancer [27].

Aims
This study aimed to design an equitable ML-LHS unit for LC
screening and to develop an inclusive and practical LC risk
prediction model suitable for initializing the LC-screening
ML-LHS unit. The future deployment of this new LC ML-LHS
unit will aid in implementing risk-based LC screening across
populations broader than those currently covered by existing
LC-screening guidelines, thereby improving both patient
coverage and LC-screening rate.
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Methods

Hybrid EMR ML Pipeline for Inclusive and Practical
LC ML Model
We designed a hybrid EMR ML pipeline to create an inclusive
and practical ML model for LC risk prediction (see Figure 1).
In step 1, data related to all health factors associated with LC
are collected from the EMR. Common ML algorithms, such as

XGBoost, are then used to train risk prediction models using
these data. In step 2, a patient graph is constructed using all
health factors in the EMR, which produces a quantitative LC
health factor distribution. In step 3, feature engineering, based
on the health factor distribution, refines the model into a more
practical one with fewer variables. The recently published
patient graph analysis method is used to generate this
quantitative distribution of health factors from hospital EMR
data [26].

Figure 1. Hybrid EMR ML pipeline for developing inclusive and practical machine learning models for lung cancer risk prediction. The inclusive ML
model uses as many health factor variables from EMR as possible. In contrast, the practical ML model uses a small number of variables that are readily
available in low-resource clinics. The quantitative distribution of health factor distribution, derived from real-world patient data, aids in refining the
features of the inclusive model to formulate the practical model. EMR: electronic medical record; ML: machine learning.

Standardized Patient Data Collection
Deidentified patient medical records were generated from the
hospital’s EMR and relevant databases, covering the period
from January 2018 to June 2021. These data sets were securely
stored on a data server managed by the hospital’s informatics
department. The data set encompassed about 1 million patients
and 7 million outpatient and inpatient encounters. The records
excluded all fields containing personal information, such as
patient names, birth dates, personal IDs, contact details, and
addresses. Original hospital identifiers for patients and
encounters were replaced by random numbers, not linked to the
patients.

Due to the absence of applicable codes for diagnoses in the
EMR, Chinese synonyms for LC were used to identify patients
with LC. The targeted data set included 1397 patients with LC
aged 30 years and older. In addition, 1448 patients aged 30
years and older with no LC were randomly selected to form the
background or control data set. We maintained similar numbers
of patients in the target and control groups to preserve class
balance. However, data standardization, being time-consuming,
limited the number of patients in the final structured data set.

Based on our experience in building multiple models from EMR,
the minimal number is approximately 1000 target patients and
1000 background patients.

Deidentified records of outpatient and inpatient visits, diagnoses,
laboratory tests, and procedures were imported into a custom
data collection tool on the data server. This tool automatically
extracted laboratory test data for storage in a MongoDB
database, provided by MongoDB Inc. Our researchers manually
curated data from patient record texts and entered them into the
database. Data were categorized into 9 categories: disease and
condition, symptom, medical history, observation, laboratory
test, procedure, medication, treatment, and other risk factors.
To overcome the lack of coding and standardization in the
records, practical rules were established to ensure consistency
in data collection. Synonyms were automatically converted to
local “standard terms” with corresponding local codes,
culminating in local “standard data.” For each patient with LC,
only those data leading to the final diagnosis of LC were
collected, forming a patient diagnosis journey (PDJ) object
comprising 1 or multiple encounters. For each background
patient, all encounters within the 3.5-years period were included.
When exporting PDJ data to a comma-separated values file for
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analysis, only the most recent data for each health factor in the
PDJ were selected.

EMR ML for Inclusive LC Risk Prediction Models
All continuous numeric data in the profiles were converted to
categorical data. For example, age ranges were established as
30-50, 50-70, and more than 70 years; drinking levels were
categorized as 0-2, and >2 drinks per day; and smoking levels
were divided into 0, 1-20, and >20 cigarettes per day. Laboratory
test results had predefined categorized such as normal or
abnormal, true or false, positive or negative, and high, medium,
or low. After this conversion, profiles of patient with LC
encompassed more than 58,000 data items and 2066 codes,
while background patient profiles comprised more than 46,000
data items and 1298 codes. Subsequently, the profile data were
structured into a horizontal table for ML, labeling patients with
LC as “1” and background patients as “0.”

Codes were organized based on the number of associated
patients with LC. Various sets of codes, exceeding a cutoff of
10 patients with LC, were selected by different criteria for ML.
For the LC risk prediction study, all codes related to cancer
diseases, procedures, medications, and treatments were omitted.
In addition, diagnostic imaging procedures commonly used for
patients with cancer but not for background patients were also
excluded.

In developing ML models, we used the XGBoost Python library
[28]. XGBoost is known for parallel tree boosting and its
efficient management of missing data. The Python library
scikit-learn from Scikit-learn.org was used for all other ML
tasks [29]. The free Jupyter Notebook tool was used to conduct
ML experiments [30]. The Pandas library was used for reading
and writing comma-separated values files and manipulating
data tables. The data set was divided into training (60%), tunning
(20%), and validating (20%) subsets. Using the default
hyperparameters, the XGBoost classifier was fitted with the
training and tunning sets, and the resulting model was
independently validated by the validation data set [31]. The
model’s effectiveness in risk prediction was evaluated using
key metrics such as recall, precision, area under the receiver
operating characteristic curve (AUROC), and accuracy. Receiver
operating characteristic (ROC) curve and reliability (or
calibration) curve were drawn by calling the corresponding
Scikit-learn functions.

By comparing the performances of models built from different
variable sets, an inclusive variable set was established. Using
this set, XGBoost was compared with 3 other commonly used
algorithms: random forest (RF), support vector machines (SVM),
and k-nearest neighbors (KNN). These algorithms were executed
using Scikit-learn classifiers with default parameters. The main
reason for evaluating only the common algorithms is because
they are promising in delivering the initial acceptable
performance required by our LHS design, and their deployment
is easier and cost-efficient. Only if this test fails will we test
more complex algorithms like neurol networks.

Building Practical ML Prediction Models
In the final refinement step of our hybrid ML pipeline, a
quantitative distribution of LC health factors was generated

directly from the same EMR data through patient graph analysis
[32]. In the patient graph, health factors are connected to patients
with LC and background patients with no LC. The difference
in the number of connections to patients with LC versus patients
with no LC, called the “connection delta ratio” (CDR), was
calculated for each health factor. Sorting the health factors by
CDR in descending order provided a quantitative distribution
of the health factors. Most of the top health factors with a CDR
above a threshold were verified as LC risk factors or were
correlated with LC in a literature review. This distribution laid
the groundwork for grouping risk factors, selecting only 1
representative factor from each group for the ML model. For
instance, pains at different body sites were combined into a
single “pain” factor. Data for each variable group were also
consolidated, considering the representative variable for the
group as true if any of the variables in the group was true.

The following criteria were applied to select a small number of
variables for the practical variable set: (1) ensuring that the
number of essential variables remained fewer than 30 while
achieving key prediction performance metrics (recall, precision,
and accuracy) above 80%; (2) using consolidated variables
based on the risk factor distribution wherever feasible; (3)
minimizing the number of required laboratory tests; and (4)
using imaging observations obtainable through simple chest
radiographs. The rationale for these empirical criteria is to make
the deployment and adoption of the model more practical in
low-resource clinical settings, where data for only a small
number of variables may be available. However, the LHS
starting model should strike a balance between a minimal
number of variables and acceptable performance metrics. We
tested and compared feature selections using XGBoost. After
determining a practical set, we ran RF, SVM, and KNN
algorithms for comparison. All models were trained and
evaluated using the default parameters of the classifiers. The
XGBoost base model used the following default
hyperparameters: scale_pos_weight = 1, n_estimators = 500,
max_depth = 6, eta = 0.3, gamma = 0, reg_lambda = 1.0,
early_stopping_rounds = 5, and eval_metric = 'logloss'.

Ethical Considerations
This retrospective study of EMR patient data received approval
from the Institutional Review Board of Guilin Medical
University Affiliated Hospital (number QTLL202139). Prior
to data usage, our research team underwent training in patient
data security and privacy policy of the hospital.

Results

Design of ML-LHS Unit for LC Screening
To improve patient inclusivity and adoption in LC screening,
we designed a novel ML-enabled LHS unit for LC screening
within a clinical research network (CRN). The CRN is led by
a central hospital and participated by numerous clinics in
surrounding communities and rural areas. The central hospital
is tasked with developing an inclusive and practical LC risk
prediction ML model to initialize the LHS unit and providing
an AI tool online for clinic use. Primary physicians in these
clinics are responsible for routinely using the AI tool to assess
LC risk in all patient populations in the CRN. At-risk patients
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are recommended for LC screening. The hospital also
continuously updates models with new patient data, validates
models, and deploys improved models for predictive services.

Inclusive LC Risk Prediction ML Models
A total of 2845 patients, comprising 1397 patients with LC and
1448 patients with no LC, were selected from the EMR of a
Chinese hospital. The cohort consisted of 60.8% (1731/2845)
men and 39.2% (1114/2845) women. Agewise, 19.6%
(557/2845) patients were between 30 and 50 years of age, 58.1%
(1654/2845) were between 50 and 70 years of age, and 22.0%
(625/2845) were older than 70 years. Within the patient group
with LC, 19.8% (277/2845) had a history of smoking, while
80.2% (1120/2845) did not. Since the data set includes a
significant number of patients outside the typical LC-screening
guideline–recommended demographic, which usually targets
heavy smokers aged 50-80 years, the resulting LC risk prediction
models were more inclusive, encompassing a broader patient
population aged 30 years and older, regardless of smoking status.

To develop an LC risk prediction XGBoost model with default
settings, we compared different sets of top-ranked health factors
(including diseases, symptoms, medical histories, laboratory
tests, observations, and other risk factors) from a list of more
than 2000 factors, sorted by each factor’s prevalence in patients
with LC. As the number of variables exceeded 200, key model
performance metrics plateaued, reaching 0.85 for recall, 0.90
for precision, 0.88 for AUROC, and 0.88 for accuracy (Table
1 and Figure 2). Consequently, a set of 250 variables was
selected as the inclusive variable set (denoted as “iv250”).

Using the iv250 set and default parameters, we compared
XGBoost with other common algorithms such as RF, SVM,
and KNN. Table 2 demonstrates that XGBoost and SVM
achieved similarly high performance levels, with 0.86 for recall,
0.90 for precision, 0.89 for AUROC, and 0.89 for accuracy.
The ROC curve and the reliability curve of the iv250 XGBoost
model are shown in Figure 3.

Table 1. Performance metrics of the XGBoost lung cancer risk prediction models with different numbers of variables.

Number of variablesMetricsa

3002502001501005040302010

0.8870.8620.8580.8370.8160.8010.7940.7940.7550.734Recall

0.8900.9140.9030.9040.8580.8560.8420.8300.8490.802Precision

0.8890.8910.8840.8750.8420.8350.8240.8170.8110.778AUROCb

0.8890.8910.8840.8750.8420.8350.8240.8170.8120.779Accuracy

aThe XGBoost machine learning base models were configured with default settings.
bAUROC: area under the receiver operating characteristic curve.

Figure 2. Trends in performance metrics of XGBoost lung cancer risk prediction models with varying numbers of variables. Base models were trained
using default settings. ROC-AUC: area under the receiver operating characteristic curve.
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Table 2. Comparison of machine learning model performance using different algorithms for lung cancer risk prediction with default parametersa.

K-nearest neighborsSupport vector machinesRandom forestXGBoostAlgorithm

The inclusive 250-variable set (iv250)

0.6670.8870.8720.862Recall

0.7150.9090.8750.914Precision

0.7030.9000.8750.891AUROCb

0.7030.9000.8750.891Accuracy

The inclusive and practical 29-variable set (pv29)

0.6490.7480.8160.805Recall

0.8320.8580.8300.825Precision

0.7600.8130.8260.819AUROC

0.7610.8140.8260.819Accuracy

aAll machine learning base models used default settings.
bAUROC: area under the receiver operating characteristic curve.

Figure 3. ROC and reliability curves of XGBoost models for lung cancer risk prediction. Models were trained with the default settings. (A) ROC curve
for the inclusive model using 250 variables (iv250). (B) Reliability curve for iv250. (C) ROC curve for the practical model using 29 variables (pv29).
(D) Reliability curve for pv29. ROC: receiver operating characteristic.
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Practical LC Risk Prediction ML Models
For practical application in clinics, the models underwent further
refinement through feature engineering based on the quantitative

distribution of LC health factors. This refinement led to the
development of a concise and practical set of 29 variables,
termed “pv29.” Table 3 presents the details of the pv29
variables.

Table 3. List of the 29 variables used in the inclusive and practical machine learning models for lung cancer risk prediction.

Health factor termLocal codeCategory

EmphysemaC-572430Disease

Lung inflammationC-654730Disease

BronchitisC-897420Disease

Smoking historyC-902187History

Albumin/globulin ratioC-602395Laboratory test

HematocritC-320164Laboratory test

Non–small cell lung cancer–associ-
ated antigen

C-952408Laboratory test

Carcinoembryonic antigenC-023789Laboratory test

FibrinogenC-945807Laboratory test

Lymphocyte ratioC-609483Laboratory test

Platelet distribution widthC-346250Laboratory test

Hemoglobin concentrationC-965710Laboratory test

GlobulinC-546207Laboratory test

Alkaline phosphataseC-015328Laboratory test

High-sensitivity C-reactive proteinC-963520Laboratory test

Neuron-specific enolaseC-573086Laboratory test

Carbohydrate antigen 153C-284309Laboratory test

Urine proteinC-507246Laboratory test

Lung nodulesC-598214Observation

Pleural effusionC-825049Observation

AtelectasisC-567942Observation

GenderC-504168Risk factor

AgeC-928456Risk factor

CoughC-546879Symptom

Chest painC-984012Symptom

Shortness of breathC-943817Symptom

Coughing up bloodC-152064Symptom

Chest tightnessC-275809Symptom

PainC-549780Symptom

Table 2 compares the key performance metrics of the base
models (XGBoost, RF, SVM, and KNN) using the pv29 variable
set with default settings. The pv29 XGBoost and RF models
demonstrated comparable performance, achieving 0.80 recall,
0.82 precision, 0.82 AUROC, and 0.82 accuracy. Figure 3
illustrates the ROC and reliability curves of the pv29 XGBoost
model. Considering other requirements, including dealing with
sparse data in EMRs and compute time, the pv29 XGBoost
model was selected as the initial model for the LC risk prediction
in initialization of the ML-LHS unit, aimed at the future

implementation of risk-based LC-screening recommendations
in broader populations.

Discussion

Principal Findings
This study introduces a novel ML-LHS unit approach, aiming
to offer sustainable and inclusive LC-screening solutions for
all at-risk populations in both urban and rural areas within a
CRN. To initiate this LC ML-LHS unit, we developed an
inclusive and practical XGBoost model for LC risk prediction
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using hospital EMR data. This enables risk-based LC screening
in broader patient populations aged 30 years and older,
regardless of smoking status. Using 29 variables, accessible
even in low-resource clinics, the ML model achieved LC risk
prediction with performance metrics of 0.80 recall, 0.82
precision, 0.82 AUROC, and 0.82 accuracy. Because most of
the 29 variables were verified as risk factors or correlated factors
for LC in literature, these model outputs are highly plausible.
If an end user provides values for the 29 variables to the
XGBoost model, the model will return a probability (0%-100%)
of LC risk. More than 50% indicates a high risk of having LC,
while below 50% indicates a low risk.

Future Direction: Implementing LC ML-LHS CRN
Considering the challenges in LC screening, such as
low-screening adoption and inadequate coverage for nonsmokers
and younger patients, exploring risk-based screening strategies
is vital [11,33-35]. Following the present study, a future
direction involves externally validating the LC risk prediction
model. If validated, we plan to deploy the LC ML-LHS unit
across a CRN, which will continuously monitor, rebuild the
model, validate the new model, and deploy the improved model
in so-called “LHS learning cycles.” Once operational, this
innovative LHS unit could improve LC-screening rates and
early detection in hospitals, community clinics, and rural areas.

Moreover, the ML-LHS CRN is well suited to screen for rare
genetic mutations associated with LC, such as the ROS-1
mutation. If certain mutations are identified, personalized and
precision medicine may be recommended by a doctor to the
patient. Since the pv29 LC model does not contain the genetic
mutations as variables, the LHS would need to integrate a large
language model (LLM) into the prediction module for treatment
prediction task. The top general-purpose LLMs, such as
OpenAI’s ChatGPT 4 and Google Gemini 1.5, have shown high
accuracy in making medical predictions in our and many other
studies without requiring structured data input [36,37].
Enhancing AI applicability through cooperation of structured
data ML model and natural language LLMs presents an exciting
future research direction.

Furthermore, screening is just the beginning of a patient’s
diagnostic journey in an equitable LHS. Future research should
also investigate on how AI, particularly generative AI, and LHS
can effectively follow up with high-risk patients, educate
patients for shared decision-making, and remind patients to
underdo diagnostic tests in time for early detection of LC.
Simultaneously, LHS will coordinate primary care physicians
and specialists to provide the appropriate diagnostics tests, such
as image tests (computed tomography, positron emission
tomography–computed tomography, and magnetic resonance
imaging), pathology tests, and biopsies for final diagnosis.
Future studies should also determine when to recommend
molecular and genetic testing for achieving personalized and
precision treatment.

Future Direction: Applying the ML-LHS Approach
to Other Diseases
The vision of NAM’s LHS emphasizes using RWD to generate
real-world evidence. As EMRs are a primary source of RWD,

they can be used to develop inclusive and practical ML models
for risk predictions of various diseases. Another promising
future research direction is applying the ML-LHS unit approach
proposed in this study to other preventable diseases and building
LHS units in routine health care delivery, aimed at delivering
more inclusive predictive screening in underserved populations.

We identify the biggest challenge of applying ML or AI in
disease screening for all populations as the difficulty of
deployment. ML models requiring a large number of variables
may be deployed in hospitals, but they may not be usable in
small clinics because the required data cannot be collected there.
This study proposes a promising solution to this deployment
problem: design a novel ML-enabled LHS unit and strike a
balance of minimal variables and acceptable performance for
the starting ML model of the LHS. Reducing the number of
variables in a practical model usually reduces mode performance
compared with the inclusive mode. Setting 80% recall, precision,
and accuracy as the acceptance bar, this study of the LC model
and previous study of the nasopharyngeal cancer model
demonstrated that it is possible to reduce the number of variables
to below 30 [27].

For feature engineering, a common method is to use the feature
importance list from the ML model. To meet the requirements
of reducing variables to a minimal while keeping performance
metrics above an acceptable level in starting up an ML-LHS
unit, we have proposed an alternative approach that uses a
quantitative distribution of health factors generated directly
from EMR data by the patient graph CDR method in previous
studies [26,27,32]. This study demonstrated again the
effectiveness of the new feature selection approach of using
health factor distribution from the CDR method in developing
inclusive and practical ML models.

Limitations and Responsible AI
This study, however, has limitations. The EMR data presented
issues with bias and missing data [38,39], which could
potentially lead to biased models. For instance, smoking status
and family history of LC were underreported in our data set.
Significant efforts were made to understand and address these
data biases, excluding variables where potential bias was
identified. Despite these efforts, some biases may remain
undetected and unmitigated. We also used algorithms such as
XGBoost, known for effectively handling missing data. The
lack of standardized structured data in EMRs made data
collection labor-intensive. Reducing variables for practicality
might risk overfitting in a small data set, though this issue should
diminish as the ML-LHS unit continuously accumulates more
data through its prediction service [40].

To further address these data bias issues as well as ML or AI
application inequities, ML-LHS CRN will emphasize
responsible AI development in future research [41]. First, CRN
will strive to include more clinics from communities and rural
areas surrounding the lead hospital, providing access to a
broader population for AI-based LC screening. Second, the ML
model will be frequently updated with new data from all
patients, particularly including underserved populations, to
continuously make the ML data set more representative and
less biased. Third, a governance committee should be established
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to review the development and use of the ML models to ensure
high ethical standards, including protection of data safety and
patient privacy, minimizing potential bias in data and
algorithmic decision-making. Fourth, because mistakes or errors
in AI prediction may cause harm or even deadly consequences,
AI will be used only as a new information source for medical
professionals or patients to make health care decisions.

Conclusions
This study devised an innovative ML-LHS unit for a CRN to
sustainably offer inclusive LC screening to all at-risk

populations. For initializing such an ML-LHS unit serving
community and rural clinics, we developed an inclusive and
practical XGBoost model from hospital EMR data. Future
deployment of the LC ML-LHS unit is expected to significantly
improve LC-screening rates and early detection in broader
populations, including those typically overlooked by existing
LC-screening guidelines, such as nonsmokers and younger
patients.
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Abstract

Background: Opioid use disorder (OUD) is a critical public health crisis in the United States, affecting >5.5 million Americans
in 2021. Machine learning has been used to predict patient risk of incident OUD. However, little is known about the fairness and
bias of these predictive models.

Objective: The aims of this study are two-fold: (1) to develop a machine learning bias mitigation algorithm for sociodemographic
features and (2) to develop a fairness-aware weighted majority voting (WMV) classifier for OUD prediction.

Methods: We used the 2020 National Survey on Drug and Health data to develop a neural network (NN) model using stochastic
gradient descent (SGD; NN-SGD) and an NN model using Adam (NN-Adam) optimizers and evaluated sociodemographic bias
by comparing the area under the curve values. A bias mitigation algorithm, based on equality of odds, was implemented to
minimize disparities in specificity and recall. Finally, a WMV classifier was developed for fairness-aware prediction of OUD.
To further analyze bias detection and mitigation, we did a 1-N matching of OUD to non-OUD cases, controlling for socioeconomic
variables, and evaluated the performance of the proposed bias mitigation algorithm and WMV classifier.

Results: Our bias mitigation algorithm substantially reduced bias with NN-SGD, by 21.66% for sex, 1.48% for race, and 21.04%
for income, and with NN-Adam by 16.96% for sex, 8.87% for marital status, 8.45% for working condition, and 41.62% for race.
The fairness-aware WMV classifier achieved a recall of 85.37% and 92.68% and an accuracy of 58.85% and 90.21% using
NN-SGD and NN-Adam, respectively. The results after matching also indicated remarkable bias reduction with NN-SGD and
NN-Adam, respectively, as follows: sex (0.14% vs 0.97%), marital status (12.95% vs 10.33%), working condition (14.79% vs
15.33%), race (60.13% vs 41.71%), and income (0.35% vs 2.21%). Moreover, the fairness-aware WMV classifier achieved high
performance with a recall of 100% and 85.37% and an accuracy of 73.20% and 89.38% using NN-SGD and NN-Adam, respectively.

Conclusions: The application of the proposed bias mitigation algorithm shows promise in reducing sociodemographic bias,
with the WMV classifier confirming bias reduction and high performance in OUD prediction.

(JMIR AI 2024;3:e55820)   doi:10.2196/55820
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Introduction

Background
Opioid use disorder (OUD) and opioid overdose (OD) continue
to remain a major public health crisis in the United States. OUD
significantly contributes to overdoses, and >81,000 individuals
lost their lives because of OD from April 2021 to April 2022
[1-3]. Meanwhile, the COVID-19 pandemic has worsened the
ongoing OUD and OD epidemic [4]. In addition, the economic
burden of OUD in the United States is overwhelming, with an
estimated annual cost exceeding US $786 billion in 2018 [1].
Therefore, it is critical to design interventions to facilitate an
informed prescribing practice and monitoring of opioids to
reduce the prevalence of OUD and subsequent drug overdose
deaths.

Previous studies have used conventional regression-based
methods to identify the significant predictors of OUD and OD
[5-16]. More recently, machine learning (ML) methods have
shown great potential in developing reliable predictive tools for
identifying individuals at higher risk of OUD and OD [17]. ML
methods can handle the complex nonlinear relationship among
predictors and outcomes and perform well on imbalanced data
[18]. Using different features as inputs, ML can predict the risk
of developing OUD and OD with higher predictive accuracy
[19,20]. Previous studies have developed random forests
[16,21-24], decision trees [22,24], gradient boosting
[16,23,25,26], neural networks (NNs) [5,16,27,28], and long
short-term memory networks [24,28,29] to predict OUD and
OD with impressive predictive performance.

Prior studies also reported that the risk of OUD or OD varies
based on several individual-level protected sociodemographic
features [30-32], potentially causing user-related bias. For
instance, economically disadvantaged areas present higher levels
of opioid use compared to other areas. Studies have highlighted
significant sex differences in OUD in the United States, with
women experiencing higher rates of prescription opioid use and
faster progression to dependency compared to men [33,34]. In
addition, opioid prescribing is 2 times more likely for White
individuals than Black individuals in the United States [35,36],
attributed to physicians’ practice biases [37]. Therefore, the
real-world data describing OUD patterns often include biases
caused by users. These biases, alongside potential sampling or
algorithmic biases, could cause unfair and biased outcomes,
leading to suboptimal model performance and inequalities in
patient care [38].

Objectives
In this study, we aim to address the limitations of prior studies,
including the lack of attention to (1) detecting and analyzing
the fairness and bias in the ML or deep learning (DL) models
for predicting OUD and (2) proposing methods to mitigate bias
for different protected attributes. Using the data provided by
the National Survey on Drug Use and Health (NSDUH) for
2020, we developed an NN model to detect the bias for different
sociodemographic features [39,40]. We then propose an
algorithm based on equality of odds (EO) to mitigate the bias
while ensuring reasonable predictive performance (ie, accuracy
and recall). Finally, we create a fairness-aware weighted

majority voting (WMV) classifier that considers the predicted
classes using the optimal thresholds for different
sociodemographic features and outputs the most frequent class.
To show the effectiveness of the proposed methods, we also
evaluate their performance by developing several ML
algorithms, including logistic regression (LR), linear support
vector machine (SVM), and SVM–radial basis function
(SVM-RBF).

Methods

Data and Sample
We used the 2020 NSDUH survey data that was conducted
using an independent multistage area probability design [41].
The study sample included a community-based
noninstitutionalized population aged ≥12 years, with information
on clinical characteristics, sociodemographic factors, and
substance use. The final data included 32,893 individuals with
2892 variables for public use.

Features and Outcome Variable
We selected the features based on the prior research identifying
predictors of OUD [42-52]. The sociodemographic features
included sex, marital status, working condition (whether
someone works ≥35 h/wk), race (Black, White, and other racial
groups), and income (<US $20,000 per year and other groups).
We also included a history of using different types of
prescription opioids [42] (eg, oxycodone, oxymorphone,
hydrocodone, hydromorphone, fentanyl, morphine, codeine,
methadone, tramadol, and buprenorphine), use of heroin, history
of receiving alcohol or drug treatment, diabetes [43], chronic
bronchitis [44], cirrhosis of the liver [45], hepatitis B or C
[46,47], kidney disease [48], asthma [49], AIDS [50], cancer
[51], depression [52], and BMI [53,54]. A total number of 26
features were included in the proposed ML and DL models.
After one-hot encoding, there were a total of 44 features,
including BMI. These features are presented in Multimedia
Appendix 1.

As an outcome variable, we used whether an individual has
developed OUD, which is defined as the dependence, misuse,
and abuse of opioids [55]. To train the classifiers, we used
stratified 80:20 train-test splitting. Of the 26,314 individuals,
the training set included 26,148 (99.37%) and 166 (0.63%)
individuals belonging to non-OUD and OUD classes,
respectively. Moreover, of the 6579 individuals, there were
6538 (99.38%) non-OUD and 41 (0.62%) OUD individuals in
the test set.

Classifiers
To perform this prediction task, we primarily developed and
evaluated 3 well-known ML or DL models: LR [56], SVM [57],
and NN [58]. We first designed an NN model consisting of 4
layers, in which the first layer takes 44 features as inputs, the
2 hidden layers include 1000 neurons, and the last layer consists
of 1 neuron for making predictions. We implemented this NN
model using the TensorFlow library in Python created by Abadi
et al [59] using minibatch stochastic gradient descent (SGD)
and the Adam optimizer, using the default learning rate of 0.001.
Minibatch SGD was chosen to optimize the convergence speed
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and computational efficiency, as it balances the stability of
full-batch gradient descent and the high variance of SGD,
enabling more robust learning [60]. The Adam optimizer was
used for its adaptive learning rate properties, which adjust the
learning rate for each parameter individually. This optimizer
combines the benefits of AdaGrad and RMSProp, making it
effective for handling sparse gradients and nonstationary
objectives [61]. A batch size of 64 was used to leverage
parallelism on modern hardware, thus reducing computational
time and improving scalability. The NNs were trained for 20
epochs using the binary cross-entropy loss function with
balanced class weighting to address any class imbalance in the
data set, ensuring that the model is not biased toward the
majority class and performs well on minority class instances.

As noted before, we also trained ML classifiers to test the
performance of the proposed methods. To train the LR classifier,
we fitted intercept and used the balanced class weighting to
prevent overfitting or underfitting. To train the SVM classifiers,
we used a C value of 1 with balanced class weighting. The
default γ value for the RBF kernel in the SVM-RBF classifier
was calculated according to equation 1:

(1)

Notably, we used recall, specificity, and accuracy to assess the
performance of all these models.

Bias Detection Based on the Area Under the Curve
Values
We largely followed the study by Fletcher et al [39] to detect
both the algorithmic and sampling bias for each of the
sociodemographic features (ie, sex, marital status, working
condition, race, and income) based on the area under the curve
(AUC) value. We computed the AUC values for each category
of a sociodemographic feature, where any difference in the AUC
values identified the presence of algorithmic bias. This type of
bias is the result of internal model specifications and features
[39].

Sampling bias detection and mitigation are critical in ensuring
the fairness and effectiveness of ML models, especially in the
context of global health. As discussed in the study by Fletcher
et al [39], sampling bias arises when the data used to train an
ML model does not adequately represent the actual proportions
found in the real world. This can lead to models that perform
poorly on minority groups and introduce unfairness into the
decision-making process. The methodology for detecting
sampling bias involves creating homogenous test groups for
each demographic category and comparing the model’s
performance. By examining the AUC and the variability of
model performance across these groups, the biases caused by
sampling can be identified. For instance, if a model trained
predominantly on data from one demographic group consistently
underperforms when applied to another group, this indicates
the presence of sampling bias. Such disparities highlight the
model’s inability to generalize well across diverse populations,
which is a fundamental flaw in its design. In our study, we

systematically tested for sampling bias by examining the
model’s performance across different demographic groups.

To detect the sampling bias, we first created training sets
consisting of different compositions of individuals belonging
to each sociodemographic group. We then computed and plotted
the models’ AUC value for each category based on a fixed-size
test set. A significant fluctuation in the models’ AUC values
with respect to the change in the structure of the training sets
indicated the presence of the sampling bias for a
sociodemographic feature [39].

In this study, we analyzed 5 sociodemographic features,
including sex, marital status, working condition, race, and
income, to detect the algorithmic bias. The categories included
male individuals and female individuals, those who have never
been married and other groups related to marital status, those
who work ≥35 hours per week and other groups associated with
working condition, Black and White race, and those who have
an income of <US $20,000 per year and others. To detect the
sampling bias, we created a test set of fixed size for each
sociodemographic feature: sex: 5984 (2992 male individuals
and 2992 female individuals), marital status: 5648 (2824 from
never been married and 2824 from other groups), working
condition: 5296 (2648 from working ≥35 hours and 2648 from
other groups), race: 1280 (640 Black race and 640 from White
race), and income: 2000 (1000 from income <US $20,000 and
1000 from other groups). These test sets were created based on
the main test set used during model development (6579/32,893,
20% of the whole data).

To further enhance the validity of the proposed predictive model,
we implemented a detailed 1-N matching process, in which we
controlled for a variety of socioeconomic variables, including
BMI, sex, marital status, working condition, race, and income,
to achieve a balanced comparison between OUD and non-OUD
cases. To ensure robust matching, we used a 1-N matching
strategy with n=158, meaning each OUD case was matched
with 158 non-OUD cases. This number was calculated based
on the proportion of OUD-negative to OUD-positive cases in
the 2020 NSDUH data used in this study. Following 1-N
matching, the training set included 26,164 non-OUD and 166
OUD individuals. Similarly, 6542 individuals belonged to the
non-OUD class in the test set and 41 were in the OUD class.
Accordingly, we implemented the same sampling and
algorithmic bias detection approaches on the matched data to
comprehensively analyze the existence of bias in the predictive
models. This extensive matching allowed us to control potential
confounders and provide a more accurate data set for our
analysis.

The Proposed Method for Bias Mitigation
To propose a method for bias mitigation, we considered a
fairness definition called EO [62], which is measured based on
the difference between the specificity and recall or sensitivity
values. This approach is grounded in the study by Hardt et al
[62], in which their framework introduces a robust criterion for
measuring and removing discrimination based on protected
attributes, emphasizing that fairness can be optimized post hoc
through threshold adjustments. They proposed that any learned
predictor can be adjusted to achieve nondiscrimination by
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modifying its thresholds, ensuring that the predictor’s true
positive rates (recall) and false positive rates (1–specificity) are
independent of the protected attribute, thereby satisfying the
EO criterion. This framework suggests that EO can be achieved
without altering the underlying complex training pipeline of the
predictor. Instead, a simple postprocessing step is sufficient,
which is both practical and efficient. This method is robust to
changes in class distribution and ensures that the model remains
fair by balancing the sensitivity and specificity across different
groups. By focusing on minimizing the difference between
recall and specificity, we ensure that our model does not favor
one group over another, thereby maintaining fairness and
robustness in our predictions. The postprocessing adjustment
of thresholds allows us to achieve these fairness criteria without
compromising the utility of the model, providing a balanced
approach to bias mitigation. Equation 2 demonstrates the
formula of EO,

(2)

where G denotes the group being analyzed and y represents the
output class. This is equivalent to balancing the recall and
specificity values of both groups and considering them equal.

To achieve the EO, we change the classification threshold [62]
so that the difference between the recall and specificity is
minimized. To address the decreased performance measures
(ie, recall and accuracy) because of the threshold moving, we
define minimum values for recall and accuracy to ensure that
they are above a certain value while changing the classification
threshold (70% for recall and 50% for accuracy). We tested the
threshold values in the range (0, 100) and identified the optimal
one where the recall and accuracy constraints are satisfied and
the difference between specificity and recall is minimum.
Algorithm 1 (Textbox 1) presents the details of the proposed
bias mitigation method. The input is a trained ML or DL model
for OUD prediction, and the output is an optimal threshold value
based on which the classifications are performed.

Textbox 1. Algorithm 1.

Input: A trained machine learning (or deep learning)–based model for the prediction of opioid use disorder.

Output: An optimal threshold value.

Begin

1 Z_Values = []

2 th_Values = []

3 th ← 0

4 i ← 0

5 While th ≤ 100 do

6 Calculate the overall recall and accuracy of the model.

7 If recall ≥0.7 and accuracy ≥ 0.5 then

8 Calculate x1 and x2 (specificity values), and y1 and y2 (recall values)

9 Calculate 

10 Append (Z_Values, Z)

11 Append (th_Values, th)

12. th ← th + 0.1

13 For i = 1 to 1001 do

14 if Z_Values[i] = Min(Z_Values) then

15 Best_Threshold th_Values[i]

End

The Proposed WMV Classifier
Algorithm 1 (Textbox 1) will output different classification
thresholds for each sociodemographic feature. Therefore, we
may achieve different outputs or classes for a given individual
using those thresholds. However, in most cases, we need to
have a predictive model that takes into account the bias-related
issues for multiple sociodemographic features and predicts OUD
for a given individual such that the bias is mitigated to the
greatest extent. In this regard, we propose a WMV classifier,

which yields a class based on the classifications by each
threshold according to equation 3,

P = w1 × pc1 + w2 × pc2 + ... + wn × pcn (3)

where P is representative of the final probability, pci shows the
class predicted (ie, 0 and 1) using the threshold for a
sociodemographic feature I, and wi shows the weight assigned
to feature i. To assign a weight to each feature, we calculate the
proportion of differences between recall and specificity to gain
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a value in the range [0,1] and acquire the final probability using
equation 3.

Ethical Considerations
This study did not require approval from an institutional ethics
board or review committee as it did not involve any human
participants or identifiable personal data. The study used
publicly available, anonymized data sets that are confidential
and only used for statistical purposes per federal law.

Results

Overview
We considered the NN models trained with SGD and Adam
optimizers (NN) model using SGD [NN-SGD] and NN model
using Adam [NN-Adam]) as the main classifiers and reported
results that we obtained for bias detection and mitigation for
predicting OUD. We also described the results for 3 ML
classifiers (ie, LR, linear SVM, and SVM-RBF) in Multimedia
Appendix 2.

Individual Characteristics
The individuals in the training (26,314/32,893, 80%) and test
(6579/32,893, 20%) samples had similar sociodemographic and

clinical features (Multimedia Appendix 1). The mean BMI of
individuals was 25.58 (95% CI 25.49-25.68; SD 6.68), 54%
(17,763/32,893) of individuals were female, and 46%
(15,130/32,893) had developed OUD. While the least used
opioid was oxymorphone (95/32,893, 0.29%), the most
commonly used opioids were hydrocodone (3495/32,893,
10.63%), followed by oxycodone (2147/32,893, 6.53%) and
codeine (2014/32,893, 6.12%). In addition, approximately 4.87%
(1602/32,893) of individuals had the experience of receiving
drug treatments. In total, 28.82% (9482/32,893) of individuals
had a history of depression, followed by asthma (3934/32,893,
approximately 11.96%) and diabetes (1848/32,893, 5.62%). In
addition, >36.93% (12,146/32,893) of individuals were married,
and approximately 40.77% (13,409/32,893) of individuals
worked for ≥35 hours per week. In addition, approximately
9.19% (3025/32,893) of individuals were Black, 64.94%
(21,362/32,893) were White, and the rest belonged to other
races (8506/32,893, 25.86%). Furthermore, while approximately
14.95% (4917/32,893) of individuals had an income of <US
$20,000 per year, almost 85.05% (27,976/32,893) earned >US
$20,000 yearly. Table 1 summarizes the sociodemographic
features used in the study.

Table 1. The details of sociodemographic variables in the study (N=32,893)a.

OUD (n=207, 0.63%)Non-OUDb (n=32,686,
99.37%)

TotalSociodemographic variables

Sex, n (%)

106 (51.21)15,024 (45.96)15,130 (46)Male

101 (48.79)17,662 (54.04)17,763 (54)Female

Marital status, n (%)

45 (21.74)12,101 (37.02)12,146 (36.93)Married

2 (1)659 (2.02)661 (2.01)Widowed

44 (21.26)2569 (7.86)2613 (7.94)Divorced or separated

106 (51.21)14,346 (43.89)14,452 (43.94)Never been married

Working condition, n (%)

53 (25.6)13,356 (40.86)13,409 (40.77)>35 hours per week

25 (12.08)4619 (14.13)4644 (14.12)<35 hours per week

Race, n (%)

149 (71.98)21,213 (64.9)21,362 (64.94)White

17 (8.21)3008 (9.2)3025 (9.2)Black

41 (19.81)8465 (25.9)8506 (25.86)Other racial groups

Income (US $), n (%)

66 (31.88)4851 (14.84)4917 (14.95)<$20,000

141 (68.12)27,835 (85.16)27,976 (85.05)Other income groups

25.16 (9.83)25.59 (8.82)25.59 (8.82)BMI (kg/m2), mean (SD)

aFor marital status and working conditions, we excluded those not answering the questionnaire or those who legitimately skipped the question, as
described in the National Survey on Drug Use and Health data dictionary.
bOUD: opioid use disorder.
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Performance of the Classifiers
Figure 1 shows the receiver operating characteristic (ROC) and
precision-recall (PR) curves of the trained ML or DL classifiers
for OUD prediction. As shown in Figure 1, while the SVM-RBF
classifier has the highest ROC/AUC (AUC 97.13%, 95% CI
93.53%-100%), NN-Adam performs best in terms of PR/AUC
(AUC 38.29%, 95% CI 37.11%-39.46%). Moreover, the
NN-Adam outperforms the NN-SGD (ROC/AUC 85.66%, 95%
CI 78.36%-92.95%; ROC/PR 7.10%, 95% CI 6.48%-7.72%)
and NN-Adam (ROC/AUC 96.57%, 95% CI 92.67%-100.00%;
ROC/PR 38.29%, 95% CI 37.11%-39.46%).

Figure 2 shows the ROC and PR curves of the ML or DL
classifiers for OUD prediction after matching. As shown in
Figure 2, the SVM-RBF classifier has the highest ROC/AUC
(AUC 97.13%, 95% CI 93.53%-100%), while LR has the highest
PR/AUC (AUC 28.70%, 95% CI 27.60%-29.79%). Moreover,
while NN-SGD outperforms NN-Adam in terms of ROC/AUC,
NN-Adam has a higher PR/AUC (NN-SGD: ROC/AUC 94.95%,
95% CI 90.27%-99.63%; ROC/PR 18.13%, 95% CI:

17.20%-19.06%; NN-Adam: ROC/AUC 92.47%, 95% CI
86.86%-98.07%; ROC/PR 23.25%, 95% CI 22.23%-24.27%).

Figure S1 in Multimedia Appendix 2 reports the confusion
matrices of NN models. While the NN-SGD correctly classifies
only 22% (9/41) of the individuals who have developed OUD,
the NN-Adam correctly classifies 71% (29/41) of individuals.
Moreover, the NN-SGD misclassifies 0.54% (35/6538) of the
individuals who have not developed OUD, whereas the
NN-Adam misclassifies 2.68% (175/6538) of individuals.
Overall, the NN-SGD and NN-Adam achieve a recall of 21.95%
and 70.73%, a specificity of 99.46% and 97.32%, and an
accuracy of 98.98% and 97.16%, respectively.

The confusion matrices of the ML classifiers, including LR,
linear SVM, and SVM-RBF, are presented in Figure S2 in
Multimedia Appendix 2. All these classifiers have an
accuracy/specificity of >92% and an AUC of >96%. Moreover,
the linear SVM classifier has the highest recall of 82.93%,
followed by LR and SVM-RBF with 80.49% and 26.83%,
respectively.

Figure 1. The receiver operating characteristic and precision-recall curves of the classifiers. (A) The receiver operating characteristics curve of the
classifiers, (B) precision-recall curve of the classifiers. AUC: area under the curve; LR: logistic regression; NN: neural network; RBF: radial basis
function; SGD: stochastic gradient descent; SVM: support vector machine.
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Figure 2. The receiver operating characteristic and precision-recall curves of the classifiers after matching. (A) The receiver operating characteristics
curve of the classifiers, (B) precision-recall curve of the classifiers. AUC: area under the curve; LR: logistic regression; NN: neural network; RBF:
radial basis function; SGD: stochastic gradient descent; SVM: support vector machine.

1-N Matching
The standardized mean difference and variance ratio before and
after matching for different sociodemographic groups are
presented in Table 2.

JMIR AI 2024 | vol. 3 | e55820 | p.360https://ai.jmir.org/2024/1/e55820
(page number not for citation purposes)

Yaseliani et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. The details of 1-N matching (N=158).

Variance ratioSMDaStatus

Race

White

0.88960.1526Before matching

0.98690.0188After matching

Black

0.9065–0.0351Before matching

0.8979–0.0385After matching

Other

0.8317–0.1453Before matching

1.01410.0060After matching

Income

<US $20,000 per year

1.72670.4106Before matching

0.9913–0.0178After matching

Sex

Male

1.01080.1049Before matching

1.00450.0069After matching

Marital status

Married

0.7332–0.3400Before matching

1.01800.0094After matching

Widowed

0.4867–0.0866Before matching

0.9863-0.0019After matching

Divorced or separated

2.32240.3862Before matching

1.05340.0324After matching

Never married

1.01950.1467Before matching

1.0053–0.0077After matching

Working condition

Working ≥35 hours per week

0.7921–0.3279Before matching

1.05200.0391After matching

Other groups of working condition

0.8793–0.0608Before matching

1.02120.0069After matching

BMI

1.2435–0.0464Before matching

1.02440.0169After matching
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aSMD: standardized mean difference.

Bias Detection (Algorithmic Bias)
Figures 3 and 4 demonstrate the ROC curves for these
abovementioned sociodemographic groups after training the
NN-SGD and NN-Adam, respectively. Tables 3 and 4 show the
performance metrics using the default threshold (50%) with P
values for the difference between the specificity and recall.

According to Table 3, there is a high difference between the
AUC values for both groups related to each of the 5
sociodemographic features, and the algorithmic bias was present
in the NN-SGD [39]. Furthermore, the P values with 95% CI
indicate that there is a statistically significant difference between
specificity and recall values using various thresholds in the
range (0, 100).

According to Table 4, the difference between AUC values for
sociodemographic groups is high for all 5 sociodemographic
features. Moreover, the accuracy and specificity values are
notably high for all groups, and recall values are >57% (except
for the Black race, which is 33.33%), which shows the high
performance of the model in correctly identifying those with
OUD. Similar to the NN-SGD, the P values are quite significant,
and algorithmic bias is present in the NN-Adam.

The results of detecting algorithmic bias using LR, linear SVM,
and SVM-RBF classifiers are presented in Figures S3-S5 in

Multimedia Appendix 2, respectively. Tables S1-S3 in
Multimedia Appendix 2 also show the performance of these
classifiers for sociodemographic features. All the classifiers
indicate algorithmic bias. Moreover, while the SVM-RBF
classifier indicates the highest bias for race, LR and linear SVM
classifiers show a higher bias for sex and marital status.

Figures 5 and 6 demonstrate the ROC curves for
sociodemographic groups after doing 1-N matching for the
NN-SGD and NN-Adam, respectively. Tables 5 and 6 show the
performance metrics using the default threshold (50%) with P
values for the difference between the specificity and recall.

According to Table 5, there is a high difference between the
AUC values for each sociodemographic feature, highlighting
the existence of algorithmic bias in the NN-SGD [39].
Furthermore, there is a statistically significant difference
between specificity and recall values according to P values.

According to Table 6, the difference between AUC values for
sociodemographic groups is high for all 5 sociodemographic
features. Moreover, the accuracy and specificity values are
>53% for all groups, except for the Black race, demonstrating
the high performance of the model in correctly identifying those
with OUD. Furthermore, the P values are statistically significant,
indicating the existence of algorithmic bias in the NN-Adam.

Figure 3. The receiver operating characteristic (ROC) curves for various groups related to sociodemographic features using the neural network model
using stochastic gradient descent (with area under the curve [AUC] and 95% CI values). Values were calculated based on the test sample (6579 individuals:
41 developed opioid use disorder [OUD] and 6538 did not develop OUD). (A) ROC curve for sex, (B) ROC curve for marital status, (C) ROC curve
for working conditions, (D) ROC curve for race, and (E) ROC curve for income.
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Figure 4. The receiver operating characteristic (ROC) curves for various groups related to sociodemographic features using the neural network model
using Adam (with area under the curve [AUC] and 95% CI values). Values were calculated based on the test sample (6579 individuals: 41 developed
opioid use disorder [OUD] and 6538 did not develop OUD). (A) ROC curve for sex, (B) ROC curve for marital status, (C) ROC curve for working
condition, (D) ROC curve for race, and (E) ROC curve for income.

Table 3. The performance metrics of the neural network model using stochastic gradient descent using the default threshold (50%).

P valueDifferencebAUCaAccuracySpecificityRecallSociodemographic groups

<.00122.74Sex

82.4299.1799.607.14Male

87.3098.8399.3529.63Female

<.0013.07Marital status

82.8398.8099.2523.53Never been married

87.6199.1299.6220.83Other groups of marital status

<.00114.40Working condition

92.9799.4799.7711.11Working ≥35 hours

81.9398.6599.2625.00Other groups of working condition

<.00128.08Race

99.0799.0799.5527.59White

98.6098.6099.060.00Black

<.00129.93Income

84.9097.7298.700.00An income of <US $20,000

85.2299.2199.6029.03Other groups of income

aAUC: area under the curve.
bDifference between recall and specificity values.

JMIR AI 2024 | vol. 3 | e55820 | p.363https://ai.jmir.org/2024/1/e55820
(page number not for citation purposes)

Yaseliani et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. The performance metrics of the neural network model using Adam using the default threshold (50%).

P valueDifferencebAUCaAccuracySpecificityRecallSociodemographic groups

<.00121.31Sex

97.4997.5097.6957.14Male

95.8396.8797.0277.78Female

<.00110.40Marital status

97.8196.8596.9876.47Never been married

95.7197.3997.5866.67Other groups of marital status

<.0019.71Working condition

97.6997.6797.7377.78Working ≥35 hours

95.8296.8297.0568.75Other groups of working con-
dition

<.00146.57Race

97.6696.9597.0779.31White

94.3397.3697.6633.33Black

<.00115.38Income

97.4394.5494.6880.00An income of <US $20,000

96.4297.6397.8067.74Other groups of income

aAUC: area under the curve.
bDifference between recall and specificity values.

Figure 5. The receiver operating characteristic (ROC) curves for various groups related to sociodemographic features were used using the neural
network model using stochastic gradient descent after matching (with area under the curve [AUC] and 95% CI values). Values were calculated based
on the test sample (6583 individuals: 41 developed opioid use disorder [OUD] and 6542 did not develop OUD). (A) ROC curve for sex, (B) ROC curve
for marital status, (C) ROC curve for working conditions, (D) ROC curve for race, and (E) ROC curve for income.
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Figure 6. The receiver operating characteristic (ROC) curves for various groups related to sociodemographic features were used using the neural
network model using Adam after matching (with area under the curve [AUC] and 95% CI values). Values were calculated based on the test sample
(6583 individuals: 41 developed opioid use disorder [OUD] and 6542 did not develop OUD). (A) ROC curve for sex, (B) ROC curve for marital status,
(C) ROC curve for working condition, (D) ROC curve for race, and (E) ROC curve for income.

Table 5. The performance metrics of the neural network model using stochastic gradient descent using the default threshold (50%) after matching.

P valueDifferencebAUC aAccuracySpecificityRecallSociodemographic groups

<.0012.02Sex

92.9497.4797.6750.00Male

96.1097.4697.8451.85Female

<.00113.02Marital status

95.0697.5497.7458.82Never been married

94.8397.3897.7745.83Other groups of marital status

<.00119.91Working condition

96.6197.6697.8466.67Working ≥35 hours

94.4397.4097.7246.88Other groups of working condition

<.00160.16Race

95.3197.2197.4658.62White

84.3398.5199.000.00Black

<.0013.42Income

94.5496.3396.5450.00An income of <US $20,000

95.4898.0298.3551.61Other groups of income

aAUC: area under the curve.
bDifference between recall and specificity values.
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Table 6. The performance metrics of the neural network model using Adam using the default threshold (50%) after matching.

P valueDifferencebAUCaAccuracySpecificityRecallSociodemographic groups

<.0012.82Sex

92.6596.6396.8057.14Male

92.3495.7996.1059.26Female

<.00111.12Marital status

95.7596.5896.7464.71Never been married

90.3395.8496.1654.17Other groups of marital status

<.00125.25Working condition

97.7295.9096.0077.78Working ≥35 hours

90.7496.3296.6053.13Other groups of working condi-
tion

<.00167.63Race

95.7295.7195.9065.52White

76.7497.5298.010.00Black

<.0015.40Income

93.3693.9994.1460.00An income of <US $20,000

92.5497.3297.6058.06Other groups of income

aAUC: area under the curve.
bDifference between recall and specificity values.

Bias Detection (Sampling Bias)
Figures 7 and 8 demonstrate the trend of AUC values based on
the structure of the training set using the NN-SGD and
NN-Adam, respectively.

We observed significant fluctuations in AUC values for all the
demographic groups, especially using the NN-SGD, indicating
the presence of sampling bias for all sociodemographic features.

The detection of sampling bias for ML classifiers (ie, LR and
SVM) is presented in Figures S6-S8 in Multimedia Appendix
2. The LR and linear SVM classifiers demonstrate a significant

sampling bias for all sociodemographic features. In addition,
while the SVM-RBF classifier did not show any significant
sampling bias for sex, marital status, and working condition, it
indicated a notable bias for race and income.

Figures 9 and 10 demonstrate the trend of AUC values based
on the structure of the training set using the NN-SGD and
NN-Adam after matching, respectively.

We observed significant variations in AUC values, especially
using the NN-SGD after matching, highlighting the existence
of sampling bias for all sociodemographic features.
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Figure 7. The trend of area under the curve (AUC) values for sociodemographic features using the neural network model using stochastic gradient
descent: (A) the trend for sex, (B) the trend for marital status, (C) the trend for working conditions, (D) the trend for race, and (E) the trend for income.

Figure 8. The trend of area under the curve (AUC) values for sociodemographic features using the neural network model using Adam: (A) the trend
for sex, (B) the trend for marital status, (C) the trend for working conditions, (D) the trend for race, and (E) the trend for income.
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Figure 9. The trend of area under the curve (AUC) values for sociodemographic features using the neural network model using stochastic gradient
descent after matching: (A) the trend for sex, (B) the trend for marital status, (C) the trend for working conditions, (D) the trend for race, and (E) the
trend for income.

Figure 10. The trend of area under the curve (AUC) values for sociodemographic features using the neural network model using Adam after matching:
(A) the trend for sex, (B) the trend for marital status, (C) the trend for working conditions, (D) the trend for race, and (E) the trend for income.

JMIR AI 2024 | vol. 3 | e55820 | p.368https://ai.jmir.org/2024/1/e55820
(page number not for citation purposes)

Yaseliani et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Bias Mitigation
The details of implementing the bias mitigation algorithm,
including the optimal threshold and performance metrics, are
presented in Tables 7 and 8.

We observed that the recall values for all 5 sociodemographic
groups have increased compared to the original NN-SGD using
the default threshold of 50%. A similar increase in recall was
observed compared to the original NN-Adam, except for
working ≥35 hours and income groups. However, the specificity
and accuracy values have decreased for all these groups. Most
importantly, the difference between specificity and recall values
has decreased for all groups, except the marital status and
working condition using the NN-SGD. The reason why the
difference has not decreased for the marital status and working
condition is that the algorithm enforces the model to have a
recall of ≥70% and an accuracy of ≥50%, and thus, it could not
find such a threshold after searching all the available options
in the range [0,100]. These bias improvements using NN-SGD
and NN-Adam for different sociodemographic features are as
follows, respectively: sex (21.66% vs 16.96%), marital status
(0.00 vs 8.87%), working condition (0.00 vs 8.45%), race
(1.48% vs 41.62%), and income (21.04% vs 0.20%).

The improvement in performance of other ML classifiers after
implementing our proposed bias mitigation algorithm is
presented in Tables S4-S6 in Multimedia Appendix 2. The

results indicate that the algorithm is able to mitigate the bias
for all sociodemographic features and improve the recall of the
model at the same time. It is notable that using LR and linear
SVM classifiers, the recall values did not improve for working
condition and income, whereas using the SVM-RBF classifier,
the recall values improved for all features. The details regarding
the improvements gained by this algorithm are presented in
Table S7 in Multimedia Appendix 2.

The details of implementing the bias mitigation algorithm after
matching, including the optimal threshold and performance
metrics, are presented in Tables 9 and 10.

We observed that the recall values for marital status, working
condition, and race have increased compared to the original
NN-SGD after matching using the default threshold of 50%. A
similar increase in recall was observed compared to the original
NN-Adam, except for working >35 hours as one of the working
condition groups. By contrast, sex and income groups achieved
higher specificity and accuracy after matching compared to the
original NN-SGD and NN-Adam with a 50% threshold. Notably,
the difference between specificity and recall values has
decreased for all groups. These bias improvements using
NN-SGD and NN-Adam after matching for different
sociodemographic features are as follows, respectively: sex
(0.14% vs 0.97%), marital status (12.95% vs 10.33%), working
condition (14.79% vs 15.33%), race (60.13% vs 41.71%), and
income (0.35% vs 2.21%).

Table 7. The details of implementing bias mitigation for the neural network model using stochastic gradient descent.

DifferenceaAccuracySpecificityRecallOptimal thresholdSociodemographic conditions

1.08 b18.40Sex

59.1258.9985.71 cMale

58.6358.4385.19Female

3.6924.10Marital status

87.0787.1376.47Never been married

89.2589.3575.00Other groups of marital status

15.2224.50Working condition

94.9195.0166.67Working >35 hours

84.9085.0071.88Other groups of working condition

26.6018.40Race

58.8558.6489.66White

62.2762.2566.67Black

8.8917.30Income

45.2844.8390.00An income of <US $20,000

51.0250.8287.10Other groups of income

aDifference between recall and specificity after bias mitigation.
bItalicized values indicate an improvement compared to the initial values (50% threshold).
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Table 8. The details of implementing bias mitigation for the neural network model using Adam.

DifferenceaAccuracySpecificityRecallOptimal thresholdSociodemographic conditions

4.35 b22.70Sex

95.7395.8178.5Male

94.2794.3781.48Female

1.530.60Marital status

65.6465.43100Never been married

67.1766.96100Other groups of marital status

1.2635.40Working condition

96.6896.7577.78Working >35 hours

95.7095.8478.13Other groups of working condition

4.955.90Race

90.1590.1196.55White

88.6688.61100Black

15.1845.60Income

94.3494.4880An income of <US $20,000

97.2497.4067.74Other groups of income

aDifference between recall and specificity after bias mitigation.
bItalicized values indicate an improvement compared to the initial values (50% threshold).

Table 9. The details of implementing bias mitigation for the neural network model using stochastic gradient descent after matching.

DifferenceaAccuracySpecificityRecallOptimal thresholdSociodemographic conditions

1.88 b52.10Sex

97.6597.8550.00Male

97.4997.8851.85Female

0.075.80Marital status

50.5150.26100.00Never been married

50.6950.33100.00Other groups of marital status

5.1212.50Working condition

89.2789.2788.89Working ≥35 hours

85.5685.5487.50Other groups of working condition

0.038.10Race

73.5673.39100.00White

73.5573.42100.00Black

3.0752.60Income

96.7496.9650.00An income of <US $20,000

98.0998.4251.61Other groups of income

aDifference between recall and specificity after bias mitigation.
bItalicized values indicate an improvement compared with the initial values (50% threshold).
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Table 10. The details of implementing bias mitigation for the neural network model using Adam after matching.

DifferenceaAccuracySpecificityRecallOptimal thresholdSociodemographic conditions

1.85 b66.60Sex

97.6897.8850.00Male

97.4997.8851.85Female

0.7918.60Marital status

88.3688.3688.24Never been married

88.3088.3187.50Other groups of marital status

9.9233.80Working condition

93.2493.3377.78Working ≥35 hours

94.0694.2268.75Other groups of working condition

25.9219.90Race

88.2888.2789.66White

91.0791.2066.67Black

3.1968.00Income

96.7997.0050.00An income of <US $20,000

98.2598.5851.61Other groups of income

aDifference between recall and specificity after bias mitigation.
bItalicized values indicate an improvement compared with the initial values (50% threshold).

The Proposed WMV Classifier
As mentioned before, we created a WMV classifier and
presented its confusion matrices using the NN-SGD and
NN-Adam in Figure 11. The feature weights were calculated
based on the difference between recall and specificity values
using equation 3 based on the default threshold of 50% (Tables
1 and 2). These weights assigned to NN-SGD and NN-Adam
for different features are as follows, respectively: sex (0.23 vs
0.21), marital status (0.03 vs 0.10), working condition (0.15 vs
0.09), race (0.29 vs 0.45), and income (0.30 vs 0.15).

The recall of the WMV classifier is >85% using the NNs trained
with both optimizers. In addition, while the specificity and
accuracy of this classifier using the NN- SGD are approximately
59%, these values are >90% using the NN-Adam. Compared
with the NN-SGD and NN-Adam, the WMV classifier has a
significantly higher recall; however, the NNs perform better
regarding specificity and accuracy because the WMV classifier
uses modified thresholds to mitigate the prediction bias. Overall,
this WMV classifier that considers the bias issues for all the
sociodemographic features has demonstrated satisfactory
performance using the NNs trained with SGD and Adam
optimizers and can be used for sufficiently accurate and
fairness-aware prediction of OUD in individuals.

The weights assigned to each feature and the confusion matrices
of the WMV classifier using the ML classifiers are presented
in Table S8 and Figure S9 in Multimedia Appendix 2,
respectively. According to the results, the recall values of the

WMV classifier are higher compared to all the original ML
classifiers (>92%). Besides, the specificity and accuracy values
are sufficiently high for the WMV classifier using all the ML
classifiers (>75%).

Figure 12 shows the confusion matrices of the WMV classifier
using the NN-SGD and NN-Adam after matching. The feature
weights were calculated based on the difference between recall
and specificity values using equation 3 based on the default
threshold of 50% (Tables 3 and 4). These weights assigned to
NN-SGD and NN-Adam for different features are as follows,
respectively: sex (0.02 vs 0.03), marital status (0.13 vs 0.10),
working condition (0.20 vs 0.23), race (0.61 vs 0.60), and
income (0.03 vs 0.05).

The recall of the WMV classifier is >85% using the NNs trained
with both optimizers. In addition, while the specificity and
accuracy of this classifier using the NN-SGD are approximately
73%, these values are >89% using the NN-Adam. Compared
to the NN-SGD and NN-Adam, the WMV classifier has a
significantly higher recall; however, the NNs have higher
specificity and accuracy because the WMV classifier uses
thresholds for bias mitigation. Overall, this WMV classifier can
be used as a fairness-aware predictor of OUD in real-world
applications, guiding clinicians in fair and accurate
decision-making.

Table 11 demonstrates the performance of different models,
including NN-SGD, NN-Adam, and WMV classifiers before
and after 1-N matching.
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Figure 11. The confusion matrix of the weighted majority voting classifier using neural networks (NNs): (A) NN model using stochastic gradient
descent and (B) NN model using Adam.

Figure 12. The confusion matrix of the weighted majority voting classifier using neural networks (NNs) after matching: (A) NN model using stochastic
gradient descent and (B) NN model using Adam.
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Table 11. The performance of different classifiers before and after matching.

PrecisionAccuracySpecificityRecallStatus

NN-SGDa

20.4598.9899.4621.95Before matching

12.5097.4697.7551.22After matching

NN-Adamb

14.2297.1697.3270.73Before matching

9.3896.2296.4558.54After matching

WMVc (NN-SGD)

1.2858.8541.3185.37Before matching

2.2773.2073.04100.00After matching

WMV (NN-Adam)

5.6090.2190.2092.68Before matching

4.8189.3889.4185.37After matching

aNN-SGD: neural network model using stochastic gradient descent.
bNN-Adam: neural network model using Adam.
cWMV: weighted majority voting.

Discussion

Principal Findings
According to the results, the proposed bias mitigation algorithm
performs well in reducing the bias and producing fairer results
for individuals in different sociodemographic groups. However,
there is always a trade-off between the bias and the accuracy
and specificity of the model. Although the recall values have
improved for all sociodemographic groups and the bias has been
remarkably mitigated, the accuracy and specificity values have
dropped for all these features. Notably, although we could
mitigate the bias to a larger extent by solely changing the
threshold to minimize the difference, we applied threshold
values for accuracy (50%) and recall (70%) so that the overall
performance of the model would remain satisfactory. This
depends on the user preferences and the importance of bias
compared to the model performance in a real-world setting.

The achievements of the proposed bias mitigation algorithm
and WMV classifier represent a significant advancement in the
field of ML for health care, particularly in addressing fairness
and equity in predicting OUD. In the context of health
applications, where demographic disparities can lead to unequal
treatment outcomes, the ability of this algorithm to substantially
reduce bias while enhancing recall is crucial. By trying to
equalize recall and specificity across all sociodemographic
groups, the algorithm ensures that individuals at risk are equally
identified across the groups, which is vital for early and fair
intervention and treatment. Compared to existing methods
[39,63,64], this approach offers a more rigorous solution
considering the performance threshold for both accuracy and
recall at the same time. Thus, the classifier maintains an overall
satisfactory performance, which is essential in real-world clinical
settings where both fairness and accuracy are critical for patient
outcomes and sacrificing the performance for achieving fairness

is not desirable. These improvements provide a clearer
understanding of the impact of the work in real-world health
care applications. In addition, unlike many methods that might
only mitigate bias for a single feature at a time [39,63,64], our
proposed approach mitigates bias for all sociodemographic
features, and then, all the results are incorporated into a WMV
classifier, making it more viable for deployment in diverse
health care environments. Overall, the proposed algorithm and
classifier represent a meaningful step forward in creating fairer
and more effective ML models for predicting outcomes, such
as OUD, thereby potentially improving health equity and
treatment efficacy in clinical practice.

The application of the proposed bias mitigation algorithm could
be extended far beyond the OUD prediction presented in this
study. For example, in the realm of racial bias, the algorithm
can be applied to predictive models for cardiovascular disease,
ensuring that both Black and White patients receive both equal
and accurate risk assessments, thereby improving early detection
and treatment for Black patients who might otherwise be
overlooked [64]. Similarly, Black women experience a 3 times
higher likelihood of mortality from pregnancy-related causes
compared to their White counterparts [65], where a biased model
could underdiagnose or misdiagnose African Americans, leading
to inadequate treatment and poorer health outcomes. In
addressing sex bias in heart disease prediction, the algorithm
can adjust thresholds to enhance both equality and accuracy for
women, ensuring their symptoms are not dismissed and they
receive timely care [64]. Moreover, in tackling socioeconomic
bias, the algorithm can be used in models predicting the risk of
chronic disease, ensuring that individuals from lower-income
backgrounds are equally and accurately assessed, leading to
equitable health care interventions [66]. In the case of diabetes,
where African American populations have higher rates of
diabetes compared to non-Hispanic White individuals [67], a
biased predictive model might fail to identify at-risk individuals
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in these minority groups, resulting in delayed diagnosis and
treatment. Furthermore, women are more likely to be diagnosed
with depression because of societal and sex norms [68],
necessitating bias mitigation in predictive models. By addressing
these biases while preserving a high performance, the proposed
algorithm promotes fairness and improves the reliability of
health outcomes predictions across diverse patient populations,
making it a valuable tool for enhancing health equity and
preventing complications such as cardiovascular issues and
eventually death.

After implementing the bias mitigation algorithm, we proposed
the WMV classifier to classify the inputs based on the proposed
thresholds for sex, marital status, working condition, race, and
income. Although this classifier works based on the
classification performed for each feature, one may prefer to use
the threshold for sex if it is more important than other
sociodemographic features in a particular study. This could be
the case for other features as well, depending on the user
preferences and the type and nature of the study being
performed.

In this study, we used SGD and Adam to train the NN models.
The reason why we used these 2 optimizers is that we could
obtain different bias mitigation results. For example, although
the NN-SGD could perform better in mitigating the sex bias
compared to NN-Adam (21.66% vs 19.96%), the NN-Adam
better mitigated the race bias (41.62% vs 1.48%). Accordingly,
one could prefer to use a specific hyperparameter based on the
nature of the study and user preferences. For instance, if sex is
a more important feature than race in a certain case, Adam
optimizer would be a better choice compared to SGD. Overall,
we chose the NN-Adam as the final best classifier as it could
mitigate the bias for all 5 sociodemographic features and have
a higher predictive performance after developing the WMV
classifier.

In this study, we observed that the precision is lower than the
recall in the WMV classifier. While precision is an important
metric that indicates the proportion of true positive predictions
among all positive predictions, recall holds higher importance
and utility in clinical decision-making [69]. Recall measures
the ability of the model to correctly identify all relevant cases,
in this instance, true positives among those who actually have
OUD. Missing a true positive (ie, a false negative) can have
severe consequences, potentially delaying critical treatments or
interventions. Therefore, a higher recall ensures that most
patients with the condition are identified, even in the presence
of high false positives. This trade-off is critical in clinical
practice, where the cost of misclassifying a patient at high risk
of OUD outweighs the cost of additional testing or follow-up
for misclassifying an actual non-OUD patient. Hence, despite
the lower precision, the higher recall of our model provides
greater overall utility in ensuring patient safety and effective
clinical outcomes.

We analyzed the effectiveness of the proposed algorithm using
several ML models, including LR, linear SVM, and SVM-RBF.
Other ML models exist, such as random forests and decision
trees, which could potentially classify OUD with high predictive
performance. However, these models do not assign probability

values to the output classes, and the proposed algorithm cannot
be used to mitigate their potential bias.

Limitations
This study used the 2020 NSDUH data, with most cases
belonging to the non-OUD class and <1% to the OUD class.
While it is important to acknowledge this data limitation and
contextualize it within the body of research, we used 2
techniques, including class weighting and 1-N matching, to
address the class imbalance problem. The experiments following
the 1-N matching demonstrated the existence of bias, which
was mitigated using the proposed bias mitigation algorithm.
Moreover, it is notable that several previous studies have
successfully applied ML to predict OUD [5,16,18,19]. Despite
being highly imbalanced and including much less positive OUD
cases than negative ones, many studies have demonstrated the
remarkable potential of ML models for OUD prediction [19].
For example, Hasan et al [18] and Lo-Ciganic et al [16] used
credible, real-world claims data to predict OUD with high
performance despite their notably high imbalance. Similarly,
Han et al [5] used NSDUH data to predict OUD among the US
population. These studies demonstrate that, although the data
are significantly imbalanced, ML can be effectively used to
predict OUD, providing valuable insights and aiding in early
intervention strategies.

Although the proposed algorithm works well in removing the
bias, some limitations exist in this study. The algorithm can
noticeably reduce the bias for a single variable (such as sex)
and propose an optimal threshold. However, it cannot suggest
a single threshold that best mitigates the bias for a group of
variables. Moreover, although we demonstrated the existence
of bias for demographic features with multiple groups, our
algorithm can consider only 2 different groups at the same time.
Furthermore, although we included race as a sociodemographic
feature, the number of individuals belonging to the Black race
who had developed OUD was very low compared to the White
race (3 vs 29), which could degrade the generalization of the
classifiers. Therefore, including more individuals from the Black
race could improve the reliability of the classifiers in real-world
applications.

The proposed bias mitigation algorithm, although effective in
reducing bias for OUD prediction, can introduce new forms of
bias or overlook specific subpopulations. For instance, within
racial categories, specific ethnic subgroups, such as Native
Americans or recent immigrants, could be overlooked. These
groups might have unique cultural or socioeconomic factors
affecting their risk of OUD, leading to biased outcomes if these
variations are not captured [70]. Similarly, young adults and
older adults might experience OUD differently because of
distinct life stages and associated risk factors. Young adults
might be more susceptible to peer pressure and experimental
substance use, while older adults may have chronic pain issues,
leading to prolonged opioid prescriptions [71]. If the model
does not adequately capture these age-specific differences,
predictions could be less accurate for these groups. In addition,
certain groups considered vulnerable such as individuals who
have been incarcerated or those experiencing homelessness
might not be adequately represented in the survey data. These
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populations often have higher rates of substance use disorders
and face different risk factors compared to the general
population. Their exclusion or underrepresentation can result
in a model that does not generalize well to these groups, leading
to biased predictions. Despite these potential drawbacks, the
model offers significant advantages. Systematic adjustment of
classification thresholds for existing sociodemographic features
ensures balanced predictive performance across different
demographic groups, reducing discrimination and improving
fairness.

The development and implementation of the WMV classifier
enhances the applicability of the proposed bias mitigation
algorithm, allowing for tailored threshold adjustments based on
the importance of specific sociodemographic features in different
studies. This flexibility ensures that the algorithm can be adapted
to various contexts, addressing specific fairness concerns as
needed. While the WMV classifier performed well in the
accurate prediction of OUD, its reliance on proportional
importance might not fully capture real-world complexities,
such as the interplay between various sociodemographic and
health factors. For example, the importance of income might
be overestimated, ignoring how low socioeconomic status
intersects with other factors such as access to health care and
social support networks, thus affecting the model’s accuracy
for people from different socioeconomic backgrounds.
Educational attainment, geographic location, employment status,
occupation types, and housing stability also influence OUD risk
and may not be fully accounted for, potentially skewing results
and introducing new biases. Continuous evaluation and
refinement are necessary to ensure that the model addresses
these complexities, minimizing new biases and ensuring
equitable outcomes across all populations.

Conclusions
The OUD is the result of irregular opioid use, which is a
significant cause of deaths worldwide. The ML models have
great potential in OUD prediction; however, these models are
prone to bias because of the existence of sociodemographic
features. In this study, we proposed a bias mitigation algorithm
based on EO. This algorithm works based on the threshold
moving to achieve an optimal threshold, minimizing the

difference between the specificity and recall values for
sociodemographic groups. In addition, this algorithm considers
the threshold for the overall recall and accuracy to ensure that
the model performs well in OUD prediction. Finally, we
proposed a WMV classifier that makes predictions based on
the optimal thresholds for all sociodemographic features. The
results suggest that the proposed algorithm achieves 21.66%,
1.48%, and 21.04% bias improvement for sex, race, and income
using the NN-SGD. The algorithm using the NN-Adam shows
an improvement of 16.96%, 8.87%, 8.45%, 41.62%, and 0.20%
for sex, marital status, working condition, race, and income,
respectively. This algorithm was also able to increase the recall
of these classifiers at the same time. In addition, the WMV
classifier achieved recall values of 85.37% and 92.68%,
specificity values of 58.69% and 90.20%, and accuracy values
of 58.85% and 90.21% using NN-SGD and NN-Adam,
respectively. This WMV classifier has the potential to be used
as a fairness-aware OUD predictor in a real-world setting. The
results of the proposed bias mitigation algorithm and WMV
classifier for 3 ML classifiers, including LR, linear SVM, and
SVM-RBF, also prove the effectiveness of these methods in
bias mitigation and fairness-aware prediction of OUD.

Although this study has achieved its research goals, the
recommendations for future research work are as follows. First,
the bias mitigation algorithm can be extended by developing a
method that considers groups of sociodemographic variables
and suggests an optimal global threshold. Second, the algorithm
can be extended by developing an approach for mitigating the
bias and selecting a threshold value for multigroup
sociodemographic features instead of focusing on 2 groups
simultaneously. Third, the performance of the bias mitigation
algorithm may improve by training the NNs with different
hyperparameters, such as the learning rate and optimizer. Fourth,
more balanced data containing a higher proportion of samples
belonging to the minority class and other sociodemographic
features can be used to develop fairness-aware predictive models
for real-world applications. Fifth, the proposed methods can be
used in other medical applications, including but not limited to
disease detection, disease classification, and treatment response
prediction.

 

Conflicts of Interest
None declared.

Multimedia Appendix 1
The details of variables used in the study.
[DOCX File , 31 KB - ai_v3i1e55820_app1.docx ]

Multimedia Appendix 2
The performance of the proposed bias mitigation algorithm using machine learning classifiers.
[DOCX File , 1067 KB - ai_v3i1e55820_app2.docx ]

References

JMIR AI 2024 | vol. 3 | e55820 | p.375https://ai.jmir.org/2024/1/e55820
(page number not for citation purposes)

Yaseliani et alJMIR AI

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=ai_v3i1e55820_app1.docx&filename=cb976bb62d3504133debd4c6b075168e.docx
https://jmir.org/api/download?alt_name=ai_v3i1e55820_app1.docx&filename=cb976bb62d3504133debd4c6b075168e.docx
https://jmir.org/api/download?alt_name=ai_v3i1e55820_app2.docx&filename=0438dd9b3baaf66e672941bb6c49f261.docx
https://jmir.org/api/download?alt_name=ai_v3i1e55820_app2.docx&filename=0438dd9b3baaf66e672941bb6c49f261.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


1. Hasan MM, Faiz TI, Modestino AS, Young GJ, Noor-E-Alam M. Optimizing return and secure disposal of prescription
opioids to reduce the diversion to secondary users and black market. Socio Econ Plan Sci 2023 Apr;86:101457 [FREE Full
text] [doi: 10.1016/j.seps.2022.101457]

2. U.S. overdose deaths in 2021 increased half as much as in 2020 – but are still up 15%. Centers for Disease Control and
Prevention. URL: https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/202205.htm [accessed 2024-04-29]

3. Understanding the opioid overdose epidemic. Centers for Disease Control and Prevention. URL: https://www.cdc.gov/
opioids/basics/epidemic.html [accessed 2024-04-29]

4. Xia Z, Stewart K. A counterfactual analysis of opioid-involved deaths during the COVID-19 pandemic using a spatiotemporal
random forest modeling approach. Health Place 2023 Mar;80:102986 [FREE Full text] [doi:
10.1016/j.healthplace.2023.102986] [Medline: 36774811]

5. Han DH, Lee S, Seo DC. Using machine learning to predict opioid misuse among U.S. adolescents. Prev Med 2020
Jan;130:105886. [doi: 10.1016/j.ypmed.2019.105886] [Medline: 31705938]

6. Ciesielski T, Iyengar R, Bothra A, Tomala D, Cislo G, Gage BF. A tool to assess risk of de novo opioid abuse or dependence.
Am J Med 2016 Jul;129(7):699-705.e4 [FREE Full text] [doi: 10.1016/j.amjmed.2016.02.014] [Medline: 26968469]

7. Dufour R, Mardekian J, Pasquale M, Schaaf D, Andrews GA, Patel NC. Understanding predictors of opioid abuse: predictive
model development and validation. Am J Pharm Benefits 2014;6:208-216 [FREE Full text]

8. Edlund MJ, Martin BC, Fan MY, Devries A, Braden JB, Sullivan MD. Risks for opioid abuse and dependence among
recipients of chronic opioid therapy: results from the TROUP study. Drug Alcohol Depend 2010 Nov 01;112(1-2):90-98
[FREE Full text] [doi: 10.1016/j.drugalcdep.2010.05.017] [Medline: 20634006]

9. Hylan TR, Von Korff M, Saunders K, Masters E, Palmer RE, Carrell D, et al. Automated prediction of risk for problem
opioid use in a primary care setting. J Pain 2015 Apr;16(4):380-387 [FREE Full text] [doi: 10.1016/j.jpain.2015.01.011]
[Medline: 25640294]

10. Ives TJ, Chelminski PR, Hammett-Stabler CA, Malone RM, Perhac JS, Potisek NM, et al. Predictors of opioid misuse in
patients with chronic pain: a prospective cohort study. BMC Health Serv Res 2006 Apr 04;6:46 [FREE Full text] [doi:
10.1186/1472-6963-6-46] [Medline: 16595013]

11. Rice JB, White AG, Birnbaum HG, Schiller M, Brown DA, Roland CL. A model to identify patients at risk for prescription
opioid abuse, dependence, and misuse. Pain Med 2012 Sep 01;13(9):1162-1173. [doi: 10.1111/j.1526-4637.2012.01450.x]
[Medline: 22845054]

12. White AG, Birnbaum HG, Schiller M, Tang J, Katz NP. Analytic models to identify patients at risk for prescription opioid
abuse. Am J Manag Care 2009 Dec;15(12):897-906 [FREE Full text] [Medline: 20001171]

13. Turk DC, Swanson KS, Gatchel RJ. Predicting opioid misuse by chronic pain patients: a systematic review and literature
synthesis. Clin J Pain 2008;24(6):497-508. [doi: 10.1097/AJP.0b013e31816b1070] [Medline: 18574359]

14. Thornton JD, Dwibedi N, Scott V, Ponte CD, Ziedonis D, Sambamoorthi N, et al. Predictors of transitioning to incident
chronic opioid therapy among working-age adults in the United States. Am Health Drug Benefits 2018 Feb;11(1):12-21
[FREE Full text] [Medline: 29692877]

15. Skala K, Reichl L, Ilias W, Likar R, Grogl-Aringer G, Wallner C, et al. Can we predict addiction to opioid analgesics? A
possible tool to estimate the risk of opioid addiction in patients with pain. Pain Physician 2013;16(6):593-601 [FREE Full
text] [Medline: 24284844]

16. Lo-Ciganic WH, Huang JL, Zhang HH, Weiss JC, Wu Y, Kwoh CK, et al. Evaluation of machine-learning algorithms for
predicting opioid overdose risk among Medicare beneficiaries with opioid prescriptions. JAMA Netw Open 2019 Mar
01;2(3):e190968 [FREE Full text] [doi: 10.1001/jamanetworkopen.2019.0968] [Medline: 30901048]

17. Chiew CJ, Liu N, Wong TH, Sim YE, Abdullah HR. Utilizing machine learning methods for preoperative prediction of
postsurgical mortality and intensive care unit admission. Ann Surg 2020 Dec;272(6):1133-1139 [FREE Full text] [doi:
10.1097/SLA.0000000000003297] [Medline: 30973386]

18. Hasan MM, Young GJ, Patel MR, Modestino AS, Sanchez LD, Noor-E-Alam M. A machine learning framework to predict
the risk of opioid use disorder. Mach Learn Appl 2021 Dec;6:100144 [FREE Full text] [doi: 10.1016/j.mlwa.2021.100144]

19. Garbin C, Marques N, Marques O. Machine learning for predicting opioid use disorder from healthcare data: a systematic
review. Comput Methods Programs Biomed 2023 Jun;236:107573. [doi: 10.1016/j.cmpb.2023.107573] [Medline: 37148670]

20. Tseregounis IE, Henry SG. Assessing opioid overdose risk: a review of clinical prediction models utilizing patient-level
data. Transl Res 2021 Aug;234:74-87 [FREE Full text] [doi: 10.1016/j.trsl.2021.03.012] [Medline: 33762186]

21. Ellis RJ, Wang Z, Genes N, Ma'ayan A. Predicting opioid dependence from electronic health records with machine learning.
BioData Min 2019 Jan 29;12(1):3 [FREE Full text] [doi: 10.1186/s13040-019-0193-0] [Medline: 30728857]

22. Wadekar AS. Understanding opioid use disorder (OUD) using tree-based classifiers. Drug Alcohol Depend 2020 Mar
01;208:107839. [doi: 10.1016/j.drugalcdep.2020.107839] [Medline: 31962227]

23. Lo-Ciganic WH, Donohue JM, Yang Q, Huang JL, Chang C, Weiss JC, et al. Developing and validating a machine-learning
algorithm to predict opioid overdose in Medicaid beneficiaries in two US states: a prognostic modelling study. Lancet Digit
Health 2022 Jun;4(6):e455-e465 [FREE Full text] [doi: 10.1016/S2589-7500(22)00062-0] [Medline: 35623798]

JMIR AI 2024 | vol. 3 | e55820 | p.376https://ai.jmir.org/2024/1/e55820
(page number not for citation purposes)

Yaseliani et alJMIR AI

XSL•FO
RenderX

https://doi.org/10.1016/j.seps.2022.101457
https://doi.org/10.1016/j.seps.2022.101457
http://dx.doi.org/10.1016/j.seps.2022.101457
https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/202205.htm
https://www.cdc.gov/opioids/basics/epidemic.html
https://www.cdc.gov/opioids/basics/epidemic.html
https://europepmc.org/abstract/MED/36774811
http://dx.doi.org/10.1016/j.healthplace.2023.102986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36774811&dopt=Abstract
http://dx.doi.org/10.1016/j.ypmed.2019.105886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31705938&dopt=Abstract
https://europepmc.org/abstract/MED/26968469
http://dx.doi.org/10.1016/j.amjmed.2016.02.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26968469&dopt=Abstract
https://www.researchgate.net/publication/288798643_Understanding_predictors_of_opioid_abuse_Predictive_model_development_and_validation
https://europepmc.org/abstract/MED/20634006
http://dx.doi.org/10.1016/j.drugalcdep.2010.05.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20634006&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1526-5900(15)00049-8
http://dx.doi.org/10.1016/j.jpain.2015.01.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25640294&dopt=Abstract
https://bmchealthservres.biomedcentral.com/articles/10.1186/1472-6963-6-46
http://dx.doi.org/10.1186/1472-6963-6-46
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16595013&dopt=Abstract
http://dx.doi.org/10.1111/j.1526-4637.2012.01450.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22845054&dopt=Abstract
https://www.ajmc.com/pubMed.php?pii=12508
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20001171&dopt=Abstract
http://dx.doi.org/10.1097/AJP.0b013e31816b1070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18574359&dopt=Abstract
https://europepmc.org/abstract/MED/29692877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29692877&dopt=Abstract
http://www.painphysicianjournal.com/linkout?issn=&vol=16&page=593
http://www.painphysicianjournal.com/linkout?issn=&vol=16&page=593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24284844&dopt=Abstract
https://europepmc.org/abstract/MED/30901048
http://dx.doi.org/10.1001/jamanetworkopen.2019.0968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30901048&dopt=Abstract
https://europepmc.org/abstract/MED/30973386
http://dx.doi.org/10.1097/SLA.0000000000003297
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30973386&dopt=Abstract
https://doi.org/10.1016/j.mlwa.2021.100144
http://dx.doi.org/10.1016/j.mlwa.2021.100144
http://dx.doi.org/10.1016/j.cmpb.2023.107573
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37148670&dopt=Abstract
https://europepmc.org/abstract/MED/33762186
http://dx.doi.org/10.1016/j.trsl.2021.03.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33762186&dopt=Abstract
https://biodatamining.biomedcentral.com/articles/10.1186/s13040-019-0193-0
http://dx.doi.org/10.1186/s13040-019-0193-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30728857&dopt=Abstract
http://dx.doi.org/10.1016/j.drugalcdep.2020.107839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31962227&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2589-7500(22)00062-0
http://dx.doi.org/10.1016/S2589-7500(22)00062-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35623798&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


24. Dong X, Deng J, Rashidian S, Abell-Hart K, Hou W, Rosenthal RN, et al. Identifying risk of opioid use disorder for patients
taking opioid medications with deep learning. J Am Med Inform Assoc 2021 Jul 30;28(8):1683-1693 [FREE Full text]
[doi: 10.1093/jamia/ocab043] [Medline: 33930132]

25. Warren D, Marashi A, Siddiqui A, Eijaz AA, Pradhan P, Lim D, et al. Using machine learning to study the effect of
medication adherence in Opioid use disorder. PLoS One 2022 Dec 15;17(12):e0278988 [FREE Full text] [doi:
10.1371/journal.pone.0278988] [Medline: 36520864]

26. Annis IE, Jordan R, Thomas KC. Quickly identifying people at risk of opioid use disorder in emergency departments:
trade-offs between a machine learning approach and a simple EHR flag strategy. BMJ Open 2022 Sep 14;12(9):e059414
[FREE Full text] [doi: 10.1136/bmjopen-2021-059414] [Medline: 36104124]

27. Afshar M, Sharma B, Bhalla S, Thompson HM, Dligach D, Boley RA, et al. External validation of an opioid misuse machine
learning classifier in hospitalized adult patients. Addict Sci Clin Pract 2021 Mar 17;16(1):19 [FREE Full text] [doi:
10.1186/s13722-021-00229-7] [Medline: 33731210]

28. Dong X, Wong R, Lyu W, Abell-Hart K, Deng J, Liu Y, et al. An integrated LSTM-HeteroRGNN model for interpretable
opioid overdose risk prediction. Artif Intell Med 2023 Jan;135:102439 [FREE Full text] [doi: 10.1016/j.artmed.2022.102439]
[Medline: 36628797]

29. Dong X, Deng J, Hou W, Rashidian S, Rosenthal RN, Saltz M, et al. Predicting opioid overdose risk of patients with opioid
prescriptions using electronic health records based on temporal deep learning. J Biomed Inform 2021 Apr;116:103725
[FREE Full text] [doi: 10.1016/j.jbi.2021.103725] [Medline: 33711546]

30. Sanger N, Bhatt M, Shams I, Shahid H, Luo C, Tam SL, et al. Association between socio-demographic and health functioning
variables among patients with opioid use disorder introduced by prescription: a prospective cohort study. Pain Physician
2018 Nov;21(6):E623-E632 [FREE Full text] [Medline: 30508993]

31. Parlier-Ahmad AB, Martin CE, Radic M, Svikis DS. An exploratory study of sex and gender differences in demographic,
psychosocial, clinical, and substance use treatment characteristics of patients in outpatient opioid use disorder treatment
with buprenorphine. Transl Issues Psychol Sci 2021 Jun;7(2):141-153 [FREE Full text] [doi: 10.1037/tps0000250] [Medline:
34541257]

32. Altekruse SF, Cosgrove CM, Altekruse WC, Jenkins RA, Blanco C. Socioeconomic risk factors for fatal opioid overdoses
in the United States: findings from the mortality disparities in American Communities Study (MDAC). PLoS One
2020;15(1):e0227966 [FREE Full text] [doi: 10.1371/journal.pone.0227966] [Medline: 31951640]

33. Lee CW, Lo YT, Devi S, Seo Y, Simon A, Zborovancik K, et al. Gender differences in preoperative opioid use in spine
surgery patients: a systematic review and meta-analysis. Pain Med 2020 Dec 25;21(12):3292-3300. [doi: 10.1093/pm/pnaa266]
[Medline: 32989460]

34. Back SE, Payne RL, Wahlquist AH, Carter RE, Stroud Z, Haynes L, et al. Comparative profiles of men and women with
opioid dependence: results from a national multisite effectiveness trial. Am J Drug Alcohol Abuse 2011 Sep 22;37(5):313-323
[FREE Full text] [doi: 10.3109/00952990.2011.596982] [Medline: 21854273]

35. Olsen Y, Daumit GL, Ford DE. Opioid prescriptions by U.S. primary care physicians from 1992 to 2001. J Pain 2006
Apr;7(4):225-235 [FREE Full text] [doi: 10.1016/j.jpain.2005.11.006] [Medline: 16618466]

36. Pletcher MJ, Kertesz SG, Kohn MA, Gonzales R. Trends in opioid prescribing by race/ethnicity for patients seeking care
in US emergency departments. JAMA 2008 Jan 02;299(1):70-78. [doi: 10.1001/jama.2007.64] [Medline: 18167408]

37. Anderson KO, Green CR, Payne R. Racial and ethnic disparities in pain: causes and consequences of unequal care. J Pain
2009 Dec;10(12):1187-1204 [FREE Full text] [doi: 10.1016/j.jpain.2009.10.002] [Medline: 19944378]

38. Fahse T, Huber V, van Giffen B. Managing bias in machine learning projects. In: Ahlemann F, Schütte R, Stieglitz S,
editors. Innovation Through Information Systems: Volume II: A Collection of Latest Research on Technology Issues.
Cham, Switzerland: Springer; 2021:94-109.

39. Fletcher RR, Nakeshimana A, Olubeko O. Addressing fairness, bias, and appropriate use of artificial intelligence and
machine learning in global health. Front Artif Intell 2020;3:561802 [FREE Full text] [doi: 10.3389/frai.2020.561802]
[Medline: 33981989]

40. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic
health record data. JAMA Intern Med 2018 Nov 01;178(11):1544-1547 [FREE Full text] [doi:
10.1001/jamainternmed.2018.3763] [Medline: 30128552]

41. National survey on drug use and health (NSDUH): population data. Substance Abuse and Mental Health Association
(SAMHSA). URL: https://www.datafiles.samhsa.gov/dataset/national-survey-drug-use-and-health-2020-nsduh-2020-ds0001
[accessed 2024-04-29]

42. Opioids. Johns Hopkins Medicine. URL: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/opioids#:~:
text=Opioids%20are%20a%20class%20of,pain%20medicine%20and%20illegal%20drugs [accessed 2024-04-29]

43. Nalini M, Khoshnia M, Kamangar F, Sharafkhah M, Poustchi H, Pourshams A, et al. Joint effect of diabetes and opiate
use on all-cause and cause-specific mortality: the Golestan cohort study. Int J Epidemiol 2021 Mar 03;50(1):314-324 [FREE
Full text] [doi: 10.1093/ije/dyaa126] [Medline: 32810213]

JMIR AI 2024 | vol. 3 | e55820 | p.377https://ai.jmir.org/2024/1/e55820
(page number not for citation purposes)

Yaseliani et alJMIR AI

XSL•FO
RenderX

https://europepmc.org/abstract/MED/33930132
http://dx.doi.org/10.1093/jamia/ocab043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33930132&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0278988
http://dx.doi.org/10.1371/journal.pone.0278988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36520864&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=36104124
http://dx.doi.org/10.1136/bmjopen-2021-059414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36104124&dopt=Abstract
https://ascpjournal.biomedcentral.com/articles/10.1186/s13722-021-00229-7
http://dx.doi.org/10.1186/s13722-021-00229-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33731210&dopt=Abstract
https://europepmc.org/abstract/MED/36628797
http://dx.doi.org/10.1016/j.artmed.2022.102439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36628797&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(21)00054-X
http://dx.doi.org/10.1016/j.jbi.2021.103725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33711546&dopt=Abstract
http://www.painphysicianjournal.com/linkout?issn=&vol=21&page=E623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30508993&dopt=Abstract
https://europepmc.org/abstract/MED/34541257
http://dx.doi.org/10.1037/tps0000250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34541257&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0227966
http://dx.doi.org/10.1371/journal.pone.0227966
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31951640&dopt=Abstract
http://dx.doi.org/10.1093/pm/pnaa266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32989460&dopt=Abstract
https://europepmc.org/abstract/MED/21854273
http://dx.doi.org/10.3109/00952990.2011.596982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21854273&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1526-5900(05)00961-2
http://dx.doi.org/10.1016/j.jpain.2005.11.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16618466&dopt=Abstract
http://dx.doi.org/10.1001/jama.2007.64
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18167408&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1526-5900(09)00775-5
http://dx.doi.org/10.1016/j.jpain.2009.10.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19944378&dopt=Abstract
https://europepmc.org/abstract/MED/33981989
http://dx.doi.org/10.3389/frai.2020.561802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33981989&dopt=Abstract
https://europepmc.org/abstract/MED/30128552
http://dx.doi.org/10.1001/jamainternmed.2018.3763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30128552&dopt=Abstract
https://www.datafiles.samhsa.gov/dataset/national-survey-drug-use-and-health-2020-nsduh-2020-ds0001
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/opioids#:~:text=Opioids%20are%20a%20class%20of,pain%20medicine%20and%20illegal%20drugs
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/opioids#:~:text=Opioids%20are%20a%20class%20of,pain%20medicine%20and%20illegal%20drugs
https://europepmc.org/abstract/MED/32810213
https://europepmc.org/abstract/MED/32810213
http://dx.doi.org/10.1093/ije/dyaa126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32810213&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


44. Vozoris NT, Wang X, Fischer HD, Bell CM, O'Donnell DE, Austin PC, et al. Incident opioid drug use and adverse respiratory
outcomes among older adults with COPD. Eur Respir J 2016 Sep 13;48(3):683-693 [FREE Full text] [doi:
10.1183/13993003.01967-2015] [Medline: 27418553]

45. Rogal S, Youk A, Agbalajobi O, Zhang H, Gellad W, Fine MJ, et al. Medication treatment of active opioid use disorder in
veterans with cirrhosis. Am J Gastroenterol 2021 Jul 01;116(7):1406-1413 [FREE Full text] [doi:
10.14309/ajg.0000000000001228] [Medline: 33811202]

46. Rosenthal ES, Silk R, Mathur P, Gross C, Eyasu R, Nussdorf L, et al. Concurrent initiation of Hepatitis C and Opioid use
disorder treatment in people who inject drugs. Clin Infect Dis 2020 Oct 23;71(7):1715-1722 [FREE Full text] [doi:
10.1093/cid/ciaa105] [Medline: 32009165]

47. Johansson ED, Nunez M. Acute Hepatitis B surge: opioid epidemic implication and management challenges. Open Forum
Infect Dis 2020 Jun;7(6):ofaa190 [FREE Full text] [doi: 10.1093/ofid/ofaa190] [Medline: 32550238]

48. Owsiany MT, Hawley CE, Triantafylidis LK, Paik JM. Opioid management in older adults with chronic kidney disease: a
review. Am J Med 2019 Dec;132(12):1386-1393 [FREE Full text] [doi: 10.1016/j.amjmed.2019.06.014] [Medline: 31295441]

49. Naik R, Goodrich G, Al-Shaikhly T, Joks R. Prevalence of long term opioid use in patients with asthma and allergic rhinitis.
J Allergy Clin Immunol 2018 Feb;141(2):AB218. [doi: 10.1016/j.jaci.2017.12.690]

50. Cunningham CO. Opioids and HIV infection: from pain management to addiction treatment. Top Antivir Med 2018
Apr;25(4):143-146 [FREE Full text] [Medline: 29689538]

51. Ganguly A, Michael M, Goschin S, Harris K, McFarland DC. Cancer pain and Opioid use disorder. Oncology (Williston
Park) 2022 Sep 07;36(9):535-541 [FREE Full text] [doi: 10.46883/2022.25920973] [Medline: 36107782]

52. Tumenta T, Ugwendum DF, Chobufo MD, Mungu EB, Kogan I, Olupona T. Prevalence and trends of Opioid use in patients
with depression in the United States. Cureus 2021 May 28;13(5):e15309 [FREE Full text] [doi: 10.7759/cureus.15309]
[Medline: 34221762]

53. Stokes A, Lundberg DJ, Hempstead K, Berry KM, Baker JF, Preston SH. Obesity and incident prescription Opioid use in
the U.S., 2000-2015. Am J Prev Med 2020 Jun;58(6):766-775 [FREE Full text] [doi: 10.1016/j.amepre.2019.12.018]
[Medline: 32229057]

54. Stokes A, Lundberg DJ, Sheridan B, Hempstead K, Morone NE, Lasser KE, et al. Association of obesity with prescription
opioids for painful conditions in patients seeking primary care in the US. JAMA Netw Open 2020 Apr 01;3(4):e202012
[FREE Full text] [doi: 10.1001/jamanetworkopen.2020.2012] [Medline: 32239222]

55. Opioid use disorder. Johns Hopkins Medicine. URL: https://www.hopkinsmedicine.org/health/conditions-and-diseases/
opioid-use-disorder [accessed 2024-04-29]

56. Hoffman JI. Logistic regression. In: Hoffman JI, editor. Biostatistics for Medical and Biomedical Practitioners. Cambridge,
MA: Academic Press; 2015:601-611.

57. Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A. A comprehensive survey on support vector machine
classification: applications, challenges and trends. Neurocomputing 2020 Sep;408:189-215 [FREE Full text] [doi:
10.1016/j.neucom.2019.10.118]

58. Penm J, Chaar B, Moles R, Penm J. Predicting ASX health care stock index movements after the recent financial crisis
using patterned neural networks. In: Wehn CS, Hoppe C, Gregoriou GN, editors. Rethinking Valuation and Pricing Models:
Lessons Learned from the Crisis and Future Challenges. Cambridge, MA: Academic Press; 2023:599-610.

59. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning. In:
Proceedings of the 12th USENIX conference on Operating Systems Design and Implementatio. 2016 Presented at: OSDI
'16; November 2-4, 2016; Savannah, GA p. 265-283 URL: https://dl.acm.org/doi/10.5555/3026877.3026899

60. Ruder S. An overview of gradient descent optimization algorithms. arXiv Preprint posted online September 15, 2016 [FREE
Full text] [doi: 10.1017/9781108699211.008]

61. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Proceedings of the 2015 International Conference on
Learning Representations. 2015 Presented at: ICLR '15; May 7-9, 2015; San Diego, CA p. 1-7 URL: https://dblp.org/rec/
journals/corr/KingmaB14.html

62. Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning. In: Proceedings of the 30th International
Conference on Neural Information Processing Systems. 2016 Presented at: ICNIPS '16; December 5-10, 2016; Barcelona,
Spain p. 3323 URL: https://dl.acm.org/doi/10.5555/3157382.3157469

63. Sivarajkumar S, Huang Y, Wang Y. Fair patient model: mitigating bias in the patient representation learned from the
electronic health records. J Biomed Inform 2023 Dec;148:104544. [doi: 10.1016/j.jbi.2023.104544] [Medline: 37995843]

64. Li F, Wu P, Ong HH, Peterson JF, Wei WQ, Zhao J. Evaluating and mitigating bias in machine learning models for
cardiovascular disease prediction. J Biomed Inform 2023 Feb;138:104294 [FREE Full text] [doi: 10.1016/j.jbi.2023.104294]
[Medline: 36706849]

65. Working together to reduce black maternal mortality. Centers for Disease Control and Prevention. URL: https://www.
cdc.gov/healthequity/features/maternal-mortality/index.html#:~:text=Racial%20Disparities%20Exist,structural%20
racism%2C%20and%20implicit%20bias [accessed 2024-04-29]

JMIR AI 2024 | vol. 3 | e55820 | p.378https://ai.jmir.org/2024/1/e55820
(page number not for citation purposes)

Yaseliani et alJMIR AI

XSL•FO
RenderX

http://erj.ersjournals.com/cgi/pmidlookup?view=long&pmid=27418553
http://dx.doi.org/10.1183/13993003.01967-2015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27418553&dopt=Abstract
https://europepmc.org/abstract/MED/33811202
http://dx.doi.org/10.14309/ajg.0000000000001228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33811202&dopt=Abstract
https://europepmc.org/abstract/MED/32009165
http://dx.doi.org/10.1093/cid/ciaa105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32009165&dopt=Abstract
https://europepmc.org/abstract/MED/32550238
http://dx.doi.org/10.1093/ofid/ofaa190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32550238&dopt=Abstract
https://europepmc.org/abstract/MED/31295441
http://dx.doi.org/10.1016/j.amjmed.2019.06.014
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31295441&dopt=Abstract
http://dx.doi.org/10.1016/j.jaci.2017.12.690
https://europepmc.org/abstract/MED/29689538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29689538&dopt=Abstract
https://www.cancernetwork.com/view/journal-cancer-pain-and-opioid-use-disorder
http://dx.doi.org/10.46883/2022.25920973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36107782&dopt=Abstract
https://europepmc.org/abstract/MED/34221762
http://dx.doi.org/10.7759/cureus.15309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34221762&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0749-3797(20)30043-X
http://dx.doi.org/10.1016/j.amepre.2019.12.018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32229057&dopt=Abstract
https://europepmc.org/abstract/MED/32239222
http://dx.doi.org/10.1001/jamanetworkopen.2020.2012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32239222&dopt=Abstract
https://www.hopkinsmedicine.org/health/conditions-and-diseases/opioid-use-disorder
https://www.hopkinsmedicine.org/health/conditions-and-diseases/opioid-use-disorder
https://doi.org/10.1016/j.neucom.2019.10.118
http://dx.doi.org/10.1016/j.neucom.2019.10.118
https://dl.acm.org/doi/10.5555/3026877.3026899
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
http://dx.doi.org/10.1017/9781108699211.008
https://dblp.org/rec/journals/corr/KingmaB14.html
https://dblp.org/rec/journals/corr/KingmaB14.html
https://dl.acm.org/doi/10.5555/3157382.3157469
http://dx.doi.org/10.1016/j.jbi.2023.104544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37995843&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(23)00015-1
http://dx.doi.org/10.1016/j.jbi.2023.104294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36706849&dopt=Abstract
https://www.cdc.gov/healthequity/features/maternal-mortality/index.html#:~:text=Racial%20Disparities%20Exist,structural%20racism%2C%20and%20implicit%20bias
https://www.cdc.gov/healthequity/features/maternal-mortality/index.html#:~:text=Racial%20Disparities%20Exist,structural%20racism%2C%20and%20implicit%20bias
https://www.cdc.gov/healthequity/features/maternal-mortality/index.html#:~:text=Racial%20Disparities%20Exist,structural%20racism%2C%20and%20implicit%20bias
http://www.w3.org/Style/XSL
http://www.renderx.com/


66. Juhn YJ, Ryu E, Wi CI, King KS, Malik M, Romero-Brufau S, et al. Assessing socioeconomic bias in machine learning
algorithms in health care: a case study of the HOUSES index. J Am Med Inform Assoc 2022 Jun 14;29(7):1142-1151
[FREE Full text] [doi: 10.1093/jamia/ocac052] [Medline: 35396996]

67. Chow EA, Foster H, Gonzalez V, McIver L. The disparate impact of diabetes on racial/ethnic minority populations. Clin
Diabetes 2012 Jul 16;30(3):130-133. [doi: 10.2337/diaclin.30.3.130]

68. Depression in women: understanding the gender gap. Mayo Clinic. 2019. URL: https://www.mayoclinic.org/diseases-condi
tions/depression/in-depth/depression/art-20047725 [accessed 2024-04-29]

69. Hicks SA, Strümke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P, et al. On evaluation metrics for medical
applications of artificial intelligence. Sci Rep 2022 Apr 08;12(1):5979 [FREE Full text] [doi: 10.1038/s41598-022-09954-8]
[Medline: 35395867]

70. Burlew K, McCuistian C, Szapocznik J. Racial/ethnic equity in substance use treatment research: the way forward. Addict
Sci Clin Pract 2021 Aug 05;16(1):50 [FREE Full text] [doi: 10.1186/s13722-021-00256-4] [Medline: 34353373]

71. Schepis TS, Wastila L, Ammerman B, McCabe VV, McCabe SE. Prescription opioid misuse motives in US older adults.
Pain Med 2020 Oct 01;21(10):2237-2243 [FREE Full text] [doi: 10.1093/pm/pnz304] [Medline: 31816076]

Abbreviations
AUC: area under the curve
DL: deep learning
EO: equality of odds
LR: logistic regression
ML: machine learning
NN: neural network
NN-SGD: neural network model using stochastic gradient descent
NSDUH: National Survey on Drug Use and Health
OD: opioid overdose
OUD: opioid use disorder
PR: precision-recall
RBF: radial basis function
ROC: receiver operating characteristic
SGD: stochastic gradient descent
SVM: support vector machine
WMV: weighted majority voting

Edited by K El Emam, B Malin; submitted 25.12.23; peer-reviewed by S Matsuda, D Harris; comments to author 11.05.24; revised
version received 22.06.24; accepted 29.06.24; published 20.08.24.

Please cite as:
Yaseliani M, Noor-E-Alam M, Hasan MM
Mitigating Sociodemographic Bias in Opioid Use Disorder Prediction: Fairness-Aware Machine Learning Framework
JMIR AI 2024;3:e55820
URL: https://ai.jmir.org/2024/1/e55820 
doi:10.2196/55820
PMID:

©Mohammad Yaseliani, Md Noor-E-Alam, Md Mahmudul Hasan. Originally published in JMIR AI (https://ai.jmir.org), 20.08.2024.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR AI, is properly cited. The complete bibliographic information, a link to the
original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

JMIR AI 2024 | vol. 3 | e55820 | p.379https://ai.jmir.org/2024/1/e55820
(page number not for citation purposes)

Yaseliani et alJMIR AI

XSL•FO
RenderX

https://europepmc.org/abstract/MED/35396996
http://dx.doi.org/10.1093/jamia/ocac052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35396996&dopt=Abstract
http://dx.doi.org/10.2337/diaclin.30.3.130
https://www.mayoclinic.org/diseases-conditions/depression/in-depth/depression/art-20047725
https://www.mayoclinic.org/diseases-conditions/depression/in-depth/depression/art-20047725
https://doi.org/10.1038/s41598-022-09954-8
http://dx.doi.org/10.1038/s41598-022-09954-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35395867&dopt=Abstract
https://ascpjournal.biomedcentral.com/articles/10.1186/s13722-021-00256-4
http://dx.doi.org/10.1186/s13722-021-00256-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34353373&dopt=Abstract
https://europepmc.org/abstract/MED/31816076
http://dx.doi.org/10.1093/pm/pnz304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31816076&dopt=Abstract
https://ai.jmir.org/2024/1/e55820
http://dx.doi.org/10.2196/55820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Traditional Machine Learning, Deep Learning, and BERT (Large
Language Model) Approaches for Predicting Hospitalizations From
Nurse Triage Notes: Comparative Evaluation of Resource
Management

Dhavalkumar Patel1*, MSc; Prem Timsina1, PhD; Larisa Gorenstein2, MD; Benjamin S Glicksberg3, PhD; Ganesh

Raut1, MSc; Satya Narayan Cheetirala1, MSc; Fabio Santana1, BSc; Jules Tamegue1, BSc; Arash Kia1, MD; Eyal

Zimlichman4,5, MD; Matthew A Levin6,7,8, MD; Robert Freeman1, PhD; Eyal Klang3*, MD
1Institute for Healthcare Delivery Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
2Division of Diagnostic Imaging, Sheba Medical Center, Tel-Aviv University, Tel Aviv, Israel
3Division of Data-Driven and Digital Medicine (D3M), Icahn School of Medicine at Mount Sinai, New York, NY, United States
4Hospital Management, Sheba Medical Center, Tel-Aviv University, Tel Aviv, Israel
5ARC Innovation Center, Sheba Medical Center, Tel-Aviv University, Tel Aviv, Israel
6Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
7Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
8Windreich Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
*these authors contributed equally

Corresponding Author:
Dhavalkumar Patel, MSc
Institute for Healthcare Delivery Science
Icahn School of Medicine at Mount Sinai
2nd Floor
150 East 42nd Street
New York, NY, 10017
United States
Phone: 1 (212) 523 5555
Email: pateldhaval021@hotmail.com

Abstract

Background: Predicting hospitalization from nurse triage notes has the potential to augment care. However, there needs to be
careful considerations for which models to choose for this goal. Specifically, health systems will have varying degrees of
computational infrastructure available and budget constraints.

Objective: To this end, we compared the performance of the deep learning, Bidirectional Encoder Representations from
Transformers (BERT)–based model, Bio-Clinical-BERT, with a bag-of-words (BOW) logistic regression (LR) model incorporating
term frequency–inverse document frequency (TF-IDF). These choices represent different levels of computational requirements.

Methods: A retrospective analysis was conducted using data from 1,391,988 patients who visited emergency departments in
the Mount Sinai Health System spanning from 2017 to 2022. The models were trained on 4 hospitals’data and externally validated
on a fifth hospital’s data.

Results: The Bio-Clinical-BERT model achieved higher areas under the receiver operating characteristic curve (0.82, 0.84, and
0.85) compared to the BOW-LR-TF-IDF model (0.81, 0.83, and 0.84) across training sets of 10,000; 100,000; and ~1,000,000
patients, respectively. Notably, both models proved effective at using triage notes for prediction, despite the modest performance
gap.

Conclusions: Our findings suggest that simpler machine learning models such as BOW-LR-TF-IDF could serve adequately in
resource-limited settings. Given the potential implications for patient care and hospital resource management, further exploration
of alternative models and techniques is warranted to enhance predictive performance in this critical domain.
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Introduction

Efficient and effective patient triage within the emergency
department (ED) plays a pivotal role in enhancing treatment
outcomes and optimizing care delivery [1-3]. This process
involves rapidly identifying patients who require immediate
hospitalization upon their arrival. One of the resources for
making these predictions are nurse triage notes, which provide
a wealth of in-depth information about the patient’s condition
at presentation [4,5].

In the field of health care, machine learning has opened up new
avenues for potential improvement in such complex
classification tasks, thereby augmenting clinical decision-making
processes [6,7]. The recent developments in deep learning and
natural language processing (NLP) techniques have further
broadened this potential, bringing a new realm of possibilities
for enhancing medical decision-making capabilities.

Among these advanced algorithms is the Bidirectional Encoder
Representations from Transformers (BERT) model [8]. BERT
has shown excellent performance in numerous NLP tasks [9]
and has inspired the development of more specialized versions
tailored to particular fields, such as the Bio-Clinical-BERT
model, which was designed to cater to the biomedical field [10].

The focus of this study is to delve into the potential of a
fine-tuned Bio-Clinical-BERT model and compare it against a
simpler, robust, and more traditional approach, mainly, the
bag-of-words (BOW) logistic regression (LR) model
complemented by the term frequency–inverse document
frequency (TF-IDF) method. We also evaluated other
approaches including the extreme gradient boosting (XGBoost)
classifier and Word-2-Vec (W2V) embedding with bidirectional
long short-term memory (Bi-LSTM) network. The primary
objective of our research is to gauge the efficacy of these 2
methods in predicting hospital admissions using nurse triage
notes.

While it is true that Bio-Clinical-BERT could potentially offer
improved accuracy in its predictions, it should be noted that it
also requires a substantial investment in terms of computational
resources. It necessitates the use of specialized hardware and
demands a certain level of software expertise to operate
effectively. On the other hand, the LR model paired with the
TF-IDF method is more resource efficient and enjoys wide
acceptance in the field of text classification due to its simplicity
and effectiveness.

We hypothesized that the Bio-Clinical-BERT model may surpass
the performance of the BOW-LR model combined with the
TF-IDF approach in the task of predicting triage outcomes.
However, we also speculated that the incremental gains in
performance might not necessarily justify the additional

demands imposed by the large deep learning model in terms of
computational resources and technical know-how. To test this
hypothesis, we have undertaken an extensive study using over
1 million nurse triage notes collected from a large health system.

The fundamental contribution of this paper is a comparison
between these techniques for predicting hospital admission,
which reflect different levels of computational requirements
and cost implications. Our comparison not only looks at the
accuracy of these models but also weighs the trade-offs between
predictive accuracy and computational efficiency, a
consideration that is often overlooked but is of prime importance
in real-world settings when implementing models. Specifically,
health systems may be able to use insights from this study to
make informed decisions on which methodology may be right
for their circumstances, with a clearer understanding of the
limitations of each. Our aim is to equip health care practitioners,
researchers, and decision makers with insights that could
potentially aid in enhancing hospital resource management and
improve the quality of patient care.

Methods

Data Sources and Study Design
For the construction and testing of our models, we used an
extensive dataset from the Mount Sinai Health System (MSHS).
This is a diverse health care provider based in New York City.
In this study, the dataset included ED records spanning a 5-year
period from 2017 to 2022. This dataset was gathered from 5
different MSHS hospitals, covering a broad range of population
groups and diverse urban health settings.

These 5 participating hospitals provided a rich source of data
for our study, representing different communities in New York
City. The hospitals include Mount Sinai Hospital, a health care
institution located in East Harlem, Manhattan; Mount Sinai
Morningside, situated in Morningside Heights, Manhattan;
Mount Sinai West, operating in Midtown West, Manhattan;
Mount Sinai Brooklyn, a community-focused health facility
located in Midwood, Brooklyn; and Mount Sinai Queens (MSQ),
based in Astoria, Queens. The dataset used for our study was
compiled using the Epic Electronic Health Records software,
a tool that aids in efficient data collection, management, and
analysis. The dataset was made available by the diligent work
of the Mount Sinai Hospital Clinical Data Science team.

Model Development and Evaluation
In the development and testing of our models, we leveraged
data from 4 hospitals for training, validation, and
hyperparameter tuning processes. We elected to use a distinct
dataset from MSQ for external testing to ensure our model’s
generalizability.

JMIR AI 2024 | vol. 3 | e52190 | p.381https://ai.jmir.org/2024/1/e52190
(page number not for citation purposes)

Patel et alJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.2196/52190
http://www.w3.org/Style/XSL
http://www.renderx.com/


The internal training and validation cohort underwent a
procedure involving 5-fold cross-validation. Each fold contained
10,000 records, which were used for hyperparameter tuning.
For the external dataset, we experimented with training sets of
varying sizes: 10,000; 100,000; and roughly 1,000,000 patients,
which represent the complete 4-hospital cohort. Subsequently,
testing was carried out on 20% of these cohorts’ sizes, taken
from the MSQ hospital cohort.

Our study involved several models: Bio-Clinical-BERT and
BOW-LR models using TF-IDF features. For further
subanalyses using different machine and deep learning models,
we also evaluated XGBoost with BOW and Bi-LSTM with a
W2V pretrained embedding layer derived from bioclinical data
(BioWordVec_PubMed_MIMICIII_d200).

As a final subanalysis experiment, for the BERT model, we
also experimented with up-sampling of the minority class to
ensure balanced data representation, enhancing the stability and
accuracy of our model predictions.

These models were used to predict hospitalization outcomes
from nurse triage notes. For Bio-Clinical-BERT, we adhered
to text preprocessing and tokenization guidelines as outlined
on the Hugging Face website [11].

For BOW-XGBoost, we evaluated 3 different numbers of
estimators. Other XGBoost hyperparameters were set to default
values, including a learning rate of 0.3, maximum depth of 6,
and minimum child weight of 1.

For W2V-Bi-LSTM, the network is comprised of a Bi-LSTM
layer (256 hidden units), preceded by a pretrained embedding
200-dimensions W2V layer, with a fully connected layer
followed by a sigmoid activation function.

Further details on hyperparameter selection are elucidated in
the Hyperparameter Tuning Results section. For
BOW-LR-TF-IDF, we followed a similar methodology outlined
in our previous publication [12], covering both text
preprocessing and hyperparameter selection processes.

BERT is a model designed for NLP tasks. It learns from the
context of both preceding and following words, making it
“bidirectional.” This model is pretrained on large corpora and
can be fine-tuned for specific tasks.

The BOW model is a simple technique in NLP. It represents
text data by counting the frequency of each word, disregarding
the order in which they appear. Each unique word forms a
feature, and the frequency of the word represents the value of
that feature. However, this method can overlook context and
semantics due to its simplicity.

TF-IDF is a numerical statistic that reflects how important a
word is to a document in a collection. It is a combination of 2
metrics: term frequency, which is the number of times a word
appears in a document, and inverse document frequency, which
diminishes the weight of common words and amplifies the
weight of rare words across the entire dataset. This helps in
reducing the impact of frequently used words and highlights
more meaningful terms.

XGBoost is an advanced gradient boosting framework known
for its efficiency and performance in structured data
classification and regression. It builds multiple decision trees
sequentially to correct previous errors, excelling in handling
diverse data types and preventing overfitting.

Bi-LSTM is an artificial neural network that processes data in
both directions to capture past and future context. This enhances
its sequence understanding, making it suitable for text
classification, sentiment analysis, and machine translation.

Study Population
The demographic for this study included adult patients aged 18
years and older. These were patients who made ED visits within
the specified 5-year period from 2017 to 2022 across the 5
participating MSHS hospitals.

Outcome Definition
The primary outcome for our study was to ascertain our models’
effectiveness in predicting hospitalization. This prediction was
based on 2 main types of data: tabular electronic health records
and nurse triage notes.

Model Evaluation and Comparison
To assess the performance of our models, we used various
metrics such as area under the receiver operating characteristic
curve (AUC), sensitivity, specificity, and precision. These
metrics allowed us to thoroughly evaluate the
Bio-Clinical-BERT [10] and BOW-LR models with TF-IDF
features, as well as compare their capabilities in predicting
hospitalization from nurse triage notes.

Ethical Considerations
This study, being retrospective in nature, was reviewed and
approved by an ethical institutional review board committee
from the MSHS (protocol: STUDY-18-00573). The institutional
review board committee deemed that due to the retrospective
nature of the study, the requirement for informed consent was
waived.

Statistical Analysis
Our statistical analyses were conducted using Python (version
3.9.12; Python Software Foundation). We presented continuous
variables as median (IQR) and categorical variables as
percentages for better interpretability. To identify words linked
to hospital admission within nurse triage notes, we calculated
the odds ratio (OR) and mutual information (MI) [12]. Statistical
tests such as the chi-square test and 2-tailed Student t test were
used for comparing categorical and continuous variables,
respectively. A P value <.05 was considered statistically
significant. For evaluating our models, receiver operating
characteristic (ROC) curves were plotted, and metrics including
AUC, sensitivity (recall), specificity, and positive predictive
value (precision) were derived.

Technical Architecture
The technical experiments involved in this study were conducted
within a controlled hospital infrastructure that used an
On-Premises Centos Linux environment in conjunction with
Azure Cloud infrastructure. For the BOW-TF-IDF experiments,
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we elected to use the Centos Linux OS. In contrast, the BERT
experiment was conducted using a Standard_NC6 GPU instance
on Azure Cloud. This instance came with one 16-GB GPU and
6 vCPUs and incurred a cost of approximately US $80 during

the training phase. Figure 1 offers a detailed depiction of the
fundamental technical architecture used for training the BERT
and LR-TF-IDF models, across multiple patient datasets.

Figure 1. Process flow of multiple patient datasets passing through 2 different models with GPU and non-GPU instances. BERT: Bidirectional Encoder
Representations from Transformers; LR: logistic regression; TF-IDF: term frequency–inverse document frequency.

Results

Patient Population and Data
Our study incorporated data from 1,745,199 patients drawn
from the MSHS. Upon the exclusion of patients aged <18 years,

we had 1,391,988 participants in the study. These patients visited
the ED between 2017 and 2022. Table 1 presents a summary
of the patient characteristics.

The median number of words per triage note was 19.0 (IQR
12.0-31.0). Top 10 words associated with the highest MI score
regarding hospital admission are outlined in Table 2.

Table 1. Demographic distribution in the study.

P valueMSQ (n=281,716)4 hospitals (MSH, MSM,
MSW, and MSB; n=1,110,272)

All patients (includes MSHa,

MSMb, MSWc, MSBd, and

MSQe; N=1,391,988)

Demographics

<.00145.0 (30.0-75.0)48.0 (32.0-75.0)47.0 (31.0-75)Age (years), median (IQR)

<.001Sex, n (%)

141,140 (50.1)586,224 (52.8)727,363 (52.3)Female

140,576 (49.9)524,048 (47.2)664,625 (47.7)Male

<.001Race, n (%)

45,696 (16.22)382,898 (34.5)428,594 (30.79)Black

77,622 (27.56)265,457 (23.92)343,079 (24,65)White

158,398 (56.22)461,917 (41.58)620,315 (44,56)Other

aMSH: Mount Sinai Hospital.
bMSM: Mount Sinai Morningside.
cMSW: Mount Sinai West.
dMSB: Mount Sinai Brooklyn.
eMSQ: Mount Sinai Queens.
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Table 2. Odds ratios (OR) and mutual information (MI) values for words linked to admission to hospital wards, sorted by highest MI values.

P valueMI for admissionOR for admissionWord

<.00116.43.6Sent

<.00115.81.6Pta

<.001152.3Per

<.00112.71.3Of

<.00111.52.2Home

<.00110.82.2EMSb

<.00110.83.6Weakness

<.0018.91.4Chest

<.0018.82.1SOBc

<.0017.92.1BIBAd

aPt: patient.
bEMS: emergency medical services.
cSOB: shortness of breath.
dBIBA: brought in by ambulance.

Hyperparameter Tuning Results
A hyperparameter tuning process was performed. The best
hyperparameters were identified for each model based on their
performance during the 5-fold cross-validation on the training
validation set. The results of the BERT hyperparameter tuning
process can be found in Table 3.

The results of the W2V-LSTM model hyperparameter tuning
are presented in Table 4.

The results of XGBoost hyperparameter tuning are presented
in Table 5.

Table 3. BERTa hyperparameter tuning in the internal training and validation cohorts using 5-fold experiments.

Value, mean (SD)EpochLearning rateMax lengthBatch size

0.78 (0.01)—2×10–5—b64

0.80 (0.01)—2×10–5—128

0.80 (0.01)32×10–5128128

0.79 (0.01)—2×10–564256

0.79 (0.01)—3×10–5—64

0.79 (0.01)—3×10–5—128

0.78 (0.01)33×10–5128128

0.78 (0.01)—3×10–564256

0.79 (0.01)—5×10–5—64

0.80 (0.01)—5×10–5—128

0.79 (0.01)35×10–5128128

0.79 (0.01)—5×10–564256

aBERT: Bidirectional Encoder Representations from Transformers.
bNot applicable.
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Table 4. W2Va-LSTMb hyperparameter tuning in the internal training and validation cohorts using 5-fold experiments.

AUCc, meanEpochsLearning rateBatch size

0.768510−316

0.7951010−316

0.7651510−316

0.750510−416

0.7811010−416

0.7981510−416

0.797510−332

0.7971010−332

0.7771510−332

0.756510−432

0.7281010−432

0.7481510−432

0.661510−364

0.8061010−364

0.7951510−364

0.693510−464

0.7671010−464

0.7751510−464

aW2V: Word-2-Vec.
bLSTM: long short-term memory.
cAUC: area under the receiver operating characteristic curve.

Table 5. XGBoosta hyperparameter tuning in the internal training and validation cohorts using 5-fold experiments.

ValueTrees

0.80 (0.01)100

0.81 (0.01)200

0.80 (0.01)1000

aXGBoost: extreme gradient boosting.

Model Performance
After training the Bio-Clinical-BERT and LR-TF-IDF models
on the 4 hospitals’ data, we evaluated their performance on the
held-out test data from MSQ. The AUC values were calculated
for each model. The Bio-Clinical-BERT model achieved AUCs
of 0.82, 0.84, 0.85, while the LR-TF-IDF model had AUCs of
0.81, 0.83, 0.84 for training on 10,000; 100,000; and ~1,000,000
patients, respectively.

Figure 2 shows the ROC and AUC comparisons between the 2
models. The Bio-Clinical-BERT model consistently
outperformed the LR-TF-IDF model in terms of AUC across
the different training set sizes (10,000; 100,000; and ~1,000,000
patients), albeit by a small margin.

In addition to the AUC comparisons, we also calculated other
performance metrics, such as sensitivity, specificity, and
precision, for both models (Table 6 and Table 7).
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Figure 2. Receiver operating characteristic curves (ROC) of the 2 models tested on increasing training sample sizes. AUC: area under the receiver
operating characteristic curve; BERT: Bidirectional Encoder Representations from Transformers; LR: logistic regression; MSQ: Mount Sinai Queens;
TF-IDF: term frequency–inverse document frequency.

Table 6. Metrics for the training and testing (external) cohorts for the Bio-Clinical-BERTa model.

F1-scorePrecisionSpecificitySensitivityAUCb scoreTraining data size

0.490.360.740.760.8210,000

0.510.390.770.740.84100,000

0.500.670.960.390.851,000,000

aBERT: Bidirectional Encoder Representations from Transformers.
bAUC: area under the receiver operating characteristic curve.
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Table 7. Metrics for the training and testing (external) cohorts for the LRa-TF-IDFb model.

F1-scorePrecisionSpecificitySensitivityAUCc scoreTraining Data Size

0.500.400.800.660.8110,000

0.500.370.740.750.83100,000

0.530.420.800.710.841,000,000

aLR: logistic regression.
bTF-IDF: term frequency–inverse document frequency.
cAUC: area under the receiver operating characteristic curve.

The metrics for the XGBoost and W2V-Bi-LSTM models are
presented in Tables 8 and 9. The probability cutoff values for
these metrics were calculated using the Youden index. These

results further demonstrated the superior performance of the
Bio-Clinical-BERT model compared to the LR-TF-IDF model.

Further subanalysis for the BERT cohort using up-sampling of
the minority class is presented in Table 10.

Table 8. Metrics for the training and testing (external) cohorts for the W2Va-Bi-LSTMb model.

F1-scorePrecisionSpecificitySensitivityAUCc scoreTraining data size

0.410.590.950.320.7810,000

0.460.520.920.420.81100,000

0.520.620.940.460.841,000,000

cW2V: Word-2-Vec.
cBi-LSTM: bidirectional long short-term memory.
cAUC: area under the receiver operating characteristic curve.

Table 9. Metrics for the training and testing (external) cohorts for the XGBoosta model.

F1-scorePrecisionSpecificitySensitivityAUCb scoreTraining data size

0.330.690.970.210.7610,000

0.390.730.980.270.81100,000

0.450.690.970.330.821,000,000

aXGBoost: extreme gradient boosting.
bAUC: area under the receiver operating characteristic curve.

Table 10. Metrics for the training and testing (external) cohorts for BERTa with up-sampling of the minority class.

F1-scorePrecisionSpecificitySensitivityAUCb scoreTraining data size

0.430.300.580.810.7910,000

0.480.340.680.810.84100,000

0.540.410.780.750.851,000,000

aBERT: Bidirectional Encoder Representations from Transformers.
bAUC: area under the receiver operating characteristic curve.

Discussion

In this study, we compared the performance of several predictive
models, including Bio-Clinical-BERT and LR-TF-IDF, in
predicting hospitalizations based on nurse triage notes. The
findings of our study suggest that while Bio-Clinical-BERT
does marginally outperform LR-TF-IDF in this predictive task,
the difference in their performance is relatively minor.

Such results echo the findings of previous studies in the field,
which have often found BERT-based models to have a slight

edge over more traditional methods such as LR-TF-IDF in
various NLP tasks [13,14]. However, the marginal difference
observed in our study suggests that, given certain limitations
such as constraints on hardware, software expertise, or budget,
hospitals might lean toward simpler methods. The rationale
behind such a choice would lie in the ease of implementing
these simpler methods, as well as their relatively less demanding
computational requirements.

The comparison of different models in the biomedical domain
has been the focus of numerous previous studies. For instance,
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Chen et al [15] conducted an assessment of transformer-based
ChatGPT models in tasks such as reasoning and classification.
Their study found that fine-tuning remained the most effective
approach for 2 central NLP tasks. However, it is interesting to
note that the basic BOW model managed to deliver comparable
results to the more complex language model prompting. It
should be noted that the creation of effective prompts required
a substantial resource investment.

In another study, Xavier and Chen [16] compared 3 different
model types for a multiclass text classification task, which
involved the assignment of protocols for abdominal imaging
computed tomography scans. These models spanned a range
from conventional machine learning and deep learning to
automated machine learning builder workflows. While the
automated machine learning builder boasted the best
performance with an F1-score of 0.85 on an unbalanced dataset,
the tree ensemble machine learning algorithm was superior on
a balanced dataset, delivering an F1-score of 0.80.

A further study delved into the evaluation of machine learning
multiclass classification algorithms’performance in classifying
proximal humeral fractures using radiology text data [17].
Several statistical machine learning algorithms were performed,
with a BERT model showcasing the best accuracy of 61%. In
another relevant study conducted by Ji et al [18], various models
pretrained with BERT were compared for medical code
assignment based on clinical notes. Interestingly, it was found
that simpler artificial neural networks could sometimes
outperform BERT in certain scenarios. This study, among others,
offers further support to our recommendation for hospitals with
limited resources to consider simpler, less resource-demanding
methods for achieving comparable predictive performance.

In the specific task of predicting hospitalization, both methods
in our study effectively leveraged the rich information found
within nurse triage notes. This finding aligns with those from
other studies [19-21]. For instance, a study by Zhang et al [19]
that evaluated LR and neural network modeling approaches in
predicting hospital admission or transfer after initial ED triage
presentation found that the patient’s free-text data regarding
referral improved overall predictive accuracy. Similarly, Raita
et al [20] used machine learning models to predict ED outcomes
and demonstrated superior performance in predicting
hospitalization.

The results of our study carry practical implications for health
care organizations. The ability to predict hospitalization from
nurse triage notes could lead to improvements in patient care
by facilitating efficient resource allocation, optimizing bed
management, and improving patient flow.

The choice between the use of Bio-Clinical-BERT and simpler
methods, such as LR-TF-IDF, should be influenced by the
specific context of the organization, including factors such as
available computational resources, software expertise, and
desired model performance.

Our study is not without limitations. For instance, the data used
for our study are specific to MSHS hospitals, which might not
be representative of other health care systems, potentially
limiting the generalizability of our findings. Despite using
multisite data, representing the diverse New York City
population, and an external validation site for our final analysis,
we acknowledge the need for further studies with more diverse
datasets, including those that are open source such as the
Medical Information Mart for Intensive Care (MIMIC) dataset.
We also recognize that we did not explore the potential of
combining both methods and other potential techniques that
could enhance these models’performance. The BOW technique
by nature does not consider context, which could have hindered
performance. There is the possibility that more advanced deep
learning models could have achieved a bigger difference in
AUC performance compared to the shallow model. Moreover,
the field of NLP is advancing fast, and some methodologies
were not explored. Also, our study focused on comparative
analysis using the Youden index, which may have caused several
metrics to be lower than previous publications, such as the
F1-score. Despite this, the models demonstrated high specificity,
suggesting potential for clinical use. Further exploration of
thresholding methods is necessary to enhance model
applicability and performance in real-world settings.

Future research could focus on the exploration of BERT models
that are pretrained and trained from scratch on a site’s entire
textual data. Although such an approach may demand significant
resources and be computationally intensive, it might yield better
performance by capturing the unique characteristics and
language patterns of a specific health care setting. The
exploration of other pretrained language models or more
advanced natural language processing techniques could also
pave the way for the development of more effective
hospitalization prediction methods based on nurse triage notes.

In conclusion, our study demonstrates that while the
Bio-Clinical-BERT model does marginally outperform the
LR-TF-IDF model in predicting hospitalization from nurse
triage notes, the difference is small enough to suggest that
simpler methods might be viable for hospitals with limited
resources. More research is needed to identify alternative
methods that can enhance these models’ performance in
predicting hospitalization, ultimately improving patient care
and hospital resource management.

Through an investigation of the Bio-Clinical-BERT and
LR-TF-IDF models’ performance, our study contributes to the
growing body of literature in the field of NLP and machine
learning in health care. It emphasizes the importance of
considering the trade-offs between model complexity and
performance when deploying predictive tools in clinical settings,
highlighting that sometimes, simpler methods can prove as
effective as more complex ones.
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AUC: area under the receiver operating characteristic curve
BERT: Bidirectional Encoder Representations from Transformers
Bi-LSTM: bidirectional long short-term memory
BOW: bag-of-words
ED: emergency department
LR: logistic regression
MI: mutual information
MIMIC: Medical Information Mart for Intensive Care
MSHS: Mount Sinai Health System
MSQ: Mount Sinai Queens
NLP: natural language processing
OR: odds ratio
ROC: receiver operating characteristic
TF-IDF: term frequency–inverse document frequency
W2V: Word-2-Vec
XGBoost: extreme gradient boosting
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Abstract

Background: Lung disease is a severe problem in the United States. Despite the decreasing rates of cigarette smoking, chronic
obstructive pulmonary disease (COPD) continues to be a health burden in the United States. In this paper, we focus on COPD in
the United States from 2016 to 2019.

Objective: We gathered a diverse set of non–personally identifiable information from public data sources to better understand
and predict COPD rates at the core-based statistical area (CBSA) level in the United States. Our objective was to compare linear
models with machine learning models to obtain the most accurate and interpretable model of COPD.

Methods: We integrated non–personally identifiable information from multiple Centers for Disease Control and Prevention
sources and used them to analyze COPD with different types of methods. We included cigarette smoking, a well-known contributing
factor, and race/ethnicity because health disparities among different races and ethnicities in the United States are also well known.
The models also included the air quality index, education, employment, and economic variables. We fitted models with both
multiple linear regression and machine learning methods.

Results: The most accurate multiple linear regression model has variance explained of 81.1%, mean absolute error of 0.591,
and symmetric mean absolute percentage error of 9.666. The most accurate machine learning model has variance explained of
85.7%, mean absolute error of 0.456, and symmetric mean absolute percentage error of 6.956. Overall, cigarette smoking and
household income are the strongest predictor variables. Moderately strong predictors include education level and unemployment
level, as well as American Indian or Alaska Native, Black, and Hispanic population percentages, all measured at the CBSA level.

Conclusions: This research highlights the importance of using diverse data sources as well as multiple methods to understand
and predict COPD. The most accurate model was a gradient boosted tree, which captured nonlinearities in a model whose accuracy
is superior to the best multiple linear regression. Our interpretable models suggest ways that individual predictor variables can
be used in tailored interventions aimed at decreasing COPD rates in specific demographic and ethnographic communities. Gaps
in understanding the health impacts of poor air quality, particularly in relation to climate change, suggest a need for further
research to design interventions and improve public health.

(JMIR AI 2024;3:e58455)   doi:10.2196/58455
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chronic obstructive pulmonary disease; COPD; cigarette smoking; ethnic and racial differences; machine learning; multiple linear
regression; household income; practical model
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Introduction

Background
Lung disease is a severe problem in the United States. According
to the Centers for Disease Control and Prevention (CDC),
asthma is responsible for at least 3000 deaths per year and
chronic obstructive pulmonary disease (COPD) is responsible
for at least 150,000 deaths per year. COPD is a progressive lung
disease, encompassing chronic bronchitis and emphysema,
which is characterized by airflow limitation and breathing
difficulties. Asthma and COPD can co-occur (asthma-COPD
overlap), with increased risk of mortality [1] and diminished
disease-related quality of life [2]. This is from a variety of
factors, some under individual control, such as cigarette
smoking, and others not under individual control, such as
ambient air pollution.

Cigarette smoking has been trending downward in recent years,
thanks in part to public health advertisement campaigns.
Nevertheless, air quality can be dangerously poor at times,
which exacerbates lung health problems [3], and the impacts
can be particularly acute in populations considered vulnerable.
Technologically, there are tools that help individuals avoid poor
air quality. For example, there are mobile phone apps that track
air quality. They notify their owners on days when air quality
is dangerously poor, advising them to stay indoors or avoid
strenuous outdoor exercise. The effectiveness of such apps is
ambiguous thus far [4,5].

The rest of the paper is organized as follows. We first review
prior work regarding the possible factors contributing to COPD
in adults. We then describe our methods, including data sources
for the variables of interest and descriptive statistics. Following
this, we will describe and interpret the results of our multiple
linear regression (MLR) and machine learning (ML) models.
We conclude by describing the overall research contributions
as well as limitations and future directions.

Prior Work
There is substantial literature on factors contributing to COPD,
including a wide variety of environmental, economic, and
demographic variables; the etiology of COPD is multifactorial,
with smoking being the most well-known contributing factor.
Furthermore, the combination of environmental pollutants and
cigarette smoke has shown synergistic effects, accelerating the
decline in lung function and worsening COPD [6,7]. In addition,
occupational exposures, for example, to coal dust, arsenic, or
diesel fumes, or to home exposures, such as gas stoves, wood
stoves, kerosene heaters, and fireplaces, contribute to overall
COPD outcomes. When combined with persistent ambient air
pollution, the risk and severity of COPD will likely increase
[8].

Pollutants and copollutants are associated with decreased lung
function and can lead to COPD. The loss can range from mild,
such as allergies, to severe, that is, mortality. Air quality varies
widely throughout the United States because of pollutants and
copollutants, and climate change may be worsening it,
particularly for populations considered vulnerable [9]. Health
disparities due to poor quality air and other stressors are well

known [10-12]. Ambient air pollution in poorer neighborhoods
tend to be exacerbated by additional copollutants, heat stress,
and aeroallergens. Air quality index (AQI) includes the totality
of pollutants and copollutants.

ML methods have been applied increasingly to public health
and medical problems. For example, ML has been used to
support the public health response to COVID-19 through
surveillance, case identification, contact tracing, and evaluating
interventions [13]. ML methods have been used as a supportive
tool to recognize cardiac arrest in emergency calls [14]. In that
study, Zicari et al [14] developed a general protocol with a
collaborative team to ensure that the ML tool was domain- and
context-sensitive as well as abiding by ethical guidelines, thus
obtaining trustworthiness. ML has been also used to improve
early and accurate stroke recognition during emergency medical
calls [15].

ML methods have been used to study COPD, in particular. For
example, ML methods have been used to develop a prediction
system using lifestyle data, environmental factors, and patient
symptoms for the early detection of acute exacerbations of
COPD within a 7-day window [16]. Another study on acute
exacerbations of COPD compared several ML methods and
found that a decision tree classifier was best for assessing patient
severity and guiding treatment strategy [17]. In another study,
to improve mortality prediction from COPD, a random forest
was used to identify the most important imaging features [18].
Gradient boosted trees (GBTs) have been used to predict lung
function values from computed tomography images obtained
from patients with COPD and those without COPD [19]. Deep
learning has been effective in analyzing images diagnostic of
COPD [20]. Finally, research using a generalized linear model
found a complex relationship between rural living and
COPD-related outcomes in US veterans [21]. Thus, a variety
of ML models have been successfully applied for use in public
health scenarios in general and COPD in particular. The one
that ultimately works best in a given situation depends on many
factors.

Different races and ethnicities may have different baseline rates
of disease due to various factors, including historical
misdiagnosis and mistreatment of various racial or ethnic groups,
which leads to differential outcomes [22]. There may be
outcome, equity, and counseling differences by gender as well
as race or ethnicity in the diagnosis and treatment of COPD
[23,24].

We had three general expectations of COPD in our models:

1. Cigarette smoking will have the highest impact on COPD
rates.

2. AQI will have a strong impact on COPD rates.
3. There will be differences in COPD rates based on racial or

ethnic demographics.

Methods

Overview
This paper used MLR and ML methods to predict COPD at the
core-based statistical area (CBSA) level [25]. At the time of
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this study, there were 388 metropolitan and 541 micropolitan
statistical areas in the United States. The data sources were
obtained from data repositories of 3 official US agencies,
specifically from the CDC. We gathered, integrated, and checked
them for data quality. By combining different variables from
this variety of data sources, we aimed to obtain a uniquely high

accuracy model, while simultaneously reducing biases or flaws
that may be attributable to individual data sources. We further
checked for missing values (ie, NULL or NA) in every variable.
We checked for data correctness by checking the plots of the
distributions for every variable, looking for impossible or
outlying values. Table 1 shows the data sources used.

Table 1. Data sources.

ReferenceSource

[26]National Center for Health Statistics

[27]Chronic Disease Indicators data

[28]US Chronic Disease Indicator, stratification values

Data were collected for all CBSAs that were available from
2016 to 2019. All data obtained from the CDC were contributed
voluntarily at the individual level and aggregated to remove all
personally identifiable information [29].

The COPD rates are for 2019, whereas all the predictor variables
are averaged over the timespan from 2016 to 2018. As such,
the models obtained are predictive over time. The data collection
result was 517 (56%) of the 929 CBSAs, with proportionally
more from the 388 metropolitan statistical areas than from the
541 micropolitan statistical areas. The response variable is the

percentage of the CBSA having COPD. We modeled all factors
as random variables directly contributing to COPD, which is
measured as the proportion (percentage) of the population
having COPD. Race or ethnicity was also modeled as percentage
of the population rather than as categorical variables. All
variables in Table 2 are averaged as mean, except for household
income, which was averaged as median.

In Figure 1, we observe that some variables (ie, population,
gross domestic product [GDP], GDP per capita, and median
household income) are skewed in their distribution.

Table 2. Main variables and descriptive statistics and average within core-based statistical areas.

Values, rangeValues, mean (SD)Values, median (IQR)Years

7351-6,633,096191,892 (408,308)96,811 (48,763-180,484)2016-2018Population (n)

447,355-3,218,209,69564,223,036 (212,975,821)13,126,907 (2,562,704-
39,046,120)

2016-2018GDPa (US $)

27,842-119,33254,736 (11,319)52,632 (46,867-60,494)2016-2018Median household income (US $)

16.86-4731.50253.77 (479)100.07 (47.83-277.17)2016-2018GDP per capita (US $)

9.00-95.0038.02 (10)38.67 (34.00-43.00)2016-2018Air quality index

8.41-29.5917.29 (3)17.12 (15.33-19.28)2016-2018Smoking rate

3.87-35.5614.36 (4)13.80 (10.92-17.12)2016-2018Poverty rate (all ages)

1.97-20.934.71 (2)4.52 (3.67-5.43)2016-2018Unemployment rate

8.77-65.7524.22 (8)22.91 (17.94-27.96)2016-2018Education rate

22.1-10084.6 (0.129)87.6 (78.6-92.8)2016-2018White (%)

0.3-1009.3 (0.124)4 (1.5-12.5)2016-2018Black (%)

0.1-45.92 (0.044)0.7 (0.4-1.7)2016-2018AI or ANc (%)

0.2-42.82.8 (0.041)1.6 (0.9-3)2016-2018Asian (%)

0.0-12.90.3 (0.01)0.1 (0.1-0.2)2016-2018NH or PId (%)

0.9-95.513.3 (0.164)7 (3.9-14.9)2016-2018Hispanic (%)

3.2-156.871 (1.511)6.7 (5.7-7.9)2019COPDb rate (%)

aGDP: gross domestic product.
bCOPD: chronic obstructive pulmonary disease.
cAI or AN: American Indian or Alaska Native.
dNH or PI: Native Hawaiian or Pacific Islander.
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Figure 1. Population, gross domestic product (GDP), GDP per capita, and median household income.

Therefore, we made a log transformation of these variables (ie,
logPopl, logGDP, logGDPpc, and logHHI) to make them less

skewed, and we show a heat map of correlations of them with
the other variables in Figure 2.

Figure 2. Correlations among main variables. COPD: chronic obstructive pulmonary disease; GDP: gross domestic product.

We see a range of correlations, from very negative (green) to
negative (orange) to positive (purple) to very positive (pink).
In the rightmost column, we see the correlations between the
response variable, COPD rate, and the other variables, ranging

from very positive (smoking rate) to moderately positive
(poverty and unemployment rates) to moderately negative
(education and logged household income) to slightly negative
(log of GDP, log of population, log of GDP per capita, and
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AQI). Given these correlations, we are likely to find good
predictive models, but we need to check for multicollinearity
in any linear model that we identify.

To understand and model COPD, one has to consider the
consistently largest contributing factor: cigarette smoking.
Research tends to either control for cigarette smoking or exclude
it entirely. In this paper, we chose to include cigarette smoking,
accounting for it in our models, but also to examine other factors
to compare the magnitudes of influence among the various

factors. We aimed to model a variety of factors, including
cigarette smoking, to arrive at the model that predicts COPD
with the greatest accuracy.

Statistical Analysis

Overview
Our MLR baseline model in R (version 4.2.3) yielded the output
in Table 3, which is sorted by absolute value of the t value, from
high to low.

Table 3. Multiple linear regression.

P valuet test (df=503)SEEstimate

<.00111.0652.93032.4000(Intercept)

<.00116.6350.0150.2570Smoking_Rate

<.001−10.6380.264−2.8100Log_HH_Income

<.001−10.2490.234−2.3900Hispanic_percentage

<.001−6.6270.005−0.0334Education_Rate

<.001−3.7260.778−2.9000AI_or_AN_percentagea

<.001−3.5580.356−1.2700Black_percentage

<.001−3.5584.430−15.8000NH_or_PI_percentageb

.0342.1260.0350.0741Log_GDP

.04−2.0600.358−0.7380White_percentage

.0471.9930.0230.0456Unemployment_Rate

.0471.9881.2502.4800Asian_percentage

.1051.6260.0550.0899Log_Population

.9220.0980.0030.0003Air_Quality_Index

aAI_or_AN: American Indian or Alaska Native.
bNH_or_PI: Native Hawaiian or Pacific Islander.

The model has residual SE 0.658 on 503 df. The multiple R2 is

0.8152 and adjusted R2 is 0.8105. The F-statistic is 170.7 on 13
and 503 df (P<.001). The variance inflation factors were
checked, with all values <5 indicating low multicollinearity.

There are 7 predictors of high statistical significance: smoking
rate, Black percentage, Native Hawaiian or Pacific Islander
percentage, American Indian or Alaska Native percentage,
education rate, Hispanic percentage, and log of household
income. Smoking rate has a positive association with COPD,
with every additional percentage increase associated with a
0.257% increase in the COPD rate. The other 6 highly
significant predictors have a negative association. Every
percentage increase in the log of household income lowers the
COPD rate by 2.81%. The Hispanic percentage is nearly as
strong; every percentage increase corresponds to a drop of
2.39% in COPD rate. American Indian or Alaska Native is a
bit stronger in its coefficient estimate; every percentage point
increase corresponds to a drop of 2.9% in COPD rate. Every
percentage point increase in Native Hawaiian or Pacific
Islanders corresponds to a drop of 15.8%, which is much
stronger. Every percentage point increase in Black percentage
corresponds to a drop of 1.27% in COPD rate. Education rate
has a strongly statistically significant relationship, but a small

percentage point impact: every percentage increase corresponds
to a decrease of 0.0334% in COPD rate. The remaining 4
predictors—White percentage, GDP (logged), unemployment
rate, and Asian percentage—are far less statistically significant
and, therefore, should be interpreted with caution.

Linear models are simpler than ML models, and they are
sometimes perfectly adequate for explaining a phenomenon.
They are easier to interpret, communicate, and implement as
new policy. They make statistical assumptions, which can be
verified. Linear regression is certainly a good place to start.
However, we argue that one should not stop there because an
ML model can capture substantial variance from nonlinear
relationships (if there are any) in the data and thus produce a
more accurate model. By capturing additional variance, the
model can capture subtler effects and relationships due to
interactions, context, and tipping points. This is crucial because
public health practice tends to use simple if-then rules, that is,
decision trees. ML models can add nuance to those decision
trees based on the captured nonlinearities. Although an adjusted

R2 of 0.8105 looks quite strong, we can perhaps do better with
ML methods [18-21].

The 7 ML methods evaluated in this paper are lasso regression,
ridge regression, generalized additive model, support vector
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machine, artificial neural network, random forest, and GBT.
These methods were selected for their known strengths in
minimizing errors of bias or errors of variance, that is, their
ability to fit data well on test data without overfitting. They also
represent the range of algorithms commonly used in ML
prediction, from methods established in classical statistics to
more modern methods derived from computer science. They
are commonly used because they are accurate and well
understood. Trying a variety of methods is a common practice
because the different methods make different statistical
assumptions, which may enhance or inhibit optimal
performance. All methods were available as R packages for R
(version 4.2.3). We summarize each method in terms of its main
pros and cons:

Lasso Regression (L1 Regularization)
Lasso regression is an MLR method that incorporates
regularization to perform variable selection. It minimizes the
sum of squared errors between predicted and actual values,
while adding a penalty term based on the absolute value of
coefficients multiplied by a tuning parameter. Doing so shrinks
some coefficients to exactly 0, effectively performing feature
selection by excluding less important variables from the model.
This reduces model complexity and minimizes multicollinearity.
This is a standard refinement of MLR (R package glmnet).

Ridge Regression (L2 Regularization)
Ridge regression is an MLR technique that adds a penalty term
to the objective function to reduce the coefficients of less
important predictors and guard against overweighting the most
important predictors. While it retains all predictors in the model,
ridge regression can help improve the robustness of the model
in the presence of correlated predictors by reducing
multicollinearity. This is a standard refinement of MLR (R
package ridge).

Generalized Additive Model
The generalized additive model is a nonparametric
generalization of MLR, which allows for nonlinear terms and
coefficient regularization while maintaining interpretability.
Each term is a function of Xn rather than simply a numeric
coefficient multiplied with Xn. As with MLR, all the terms are
added together. Although overfitting can occur, regularization
and cross-validation help to minimize it (R package mgcv).

Support Vector Machine
Support vector machine is a technique that transforms the data
into a high-dimensional variable space using a kernel function,
fitting a function that best fits the data while allowing a certain
margin of error (epsilon) and maintaining robustness against
outliers. Epsilon tubes can provide a visual representation of
the model’s uncertainty. Points within the tube are considered
well predicted, while those outside represent errors. A
regularization parameter controls the trade-off between accuracy
and complexity (R package e1071).

Artificial Neural Network
Artificial neural network is a generalization of MLR with hidden
layers of nodes between input and output nodes; it may result
in overfitting. Depending on the number of hidden layers, nodes

per layer, and the activation function used to convert inputs to
outputs, an arbitrarily complex model can be fit. This can be
thought of as a simplified version of a human brain, in which
input and output nodes are separated by ≥1 layers of hidden
nodes. Prediction error causes the weights of the hidden nodes
to be adjusted until minimal error is achieved (R package
neuralnet).

Random Forest
Random forest is an ensemble technique to fit a large number
of a bootstrap-sampled aggregation (bagging) of trees by
considering a random subset of variables at each tree split.
Intuitively, a random forest is a blending of a large number of
decision trees, the “wisdom of the forest.” The random subset
of variables restriction is done to prevent strong variables from
dominating the weaker variables. A random forest tends to
perform very well but is difficult to interpret (R package
RandomForest).

Gradient Boosted Trees
GBT is an ensemble of sequential trees that focuses on the errors
of the previous tree. It is able to find interaction effects
implicitly. It uses gradient descent search to rapidly minimize
error via an arbitrary, differentiable loss function. It uses many
trees to help ensure that the local minimum error found is the
global minimum. Intuitively, this builds a strong predictive
model by combining many weak models, each correcting the
errors of the previous one (R package XGBoost).

Our ML approach followed best practices. We randomly
partitioned the data set into train (311/517, 60%), cross-validate
(103/517, 20%), and test (103/517, 20%) subsets. We checked
for outliers, multicollinearity, and target leakage to ensure valid
models [30].

Ethical Considerations
This research did not involve human subjects at the individual
level and therefore did not require institutional review board
approval. Our data were collected from CDC sources at the
level of CBSA. All sources were free of personal identifying
information, because the CDC is legally required to ensure the
protection of the data. All data were collected and aggregated
in a non–personal identifying information manner. The results
of our analysis do suggest communicating with different racial
and ethnic groups differently, tailoring the implications directly
to patients as well as indirectly to their families, communities,
and health care providers in a race- or ethnicity-sensitive
manner.

Results

In Table 4, we describe the results of the ML models of COPD
by various accuracy metrics. For the accuracy metrics, we used
3 standard measures of predictive accuracy in addition to

variance explained (adjusted R2): root mean square error
(RMSE), mean absolute error (MAE), and symmetric mean
absolute percentage error (SMAPE) [31,32]. We performed a
grid search over all the main numeric parameters for a given
method to find the optimal combination of parameter values
[33]. A grid search tries all combinations of parameters from a
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minimum to a maximum value by some step size. Those
minimum, maximum, and step sizes are determined from typical

default values and best practices. The best metrics in Table 4
are indicated by italics.

Table 4. Machine learning models versus multiple linear regression.

Symmetric mean absolute percent-
age error

Mean absolute errorRoot mean square errorAdjusted

R2
Method

TestCVTrainTestCVTrainTestCVaTrain

6.9566.5436.4730.456 b0.4450.4330.5570.5980.5500.857Gradient boosted tree
(XGBoost, loss func-
tion=least squares, learning
rate=0.05, and maximum
tree depth=10)

6.9896.4436.5150.4620.4340.4350.5560.5580.5550.858Support vector machine
(Nystroem kernel and loss
function=Poisson de-
viance)

7.3396.8196.3150.4790.4620.4200.5960.6140.5340.836Random forest (maximum
trees=500, maximum
depth=none, and maximum
leaves=100)

7.1826.9286.8560.4680.4670.4550.5800.6090.6010.845Neural network (2 layers:
512, 512 units; regulariza-
tion via random dropout
rate=0.05 and activation
function=prelu)

7.2127.5027.6190.4880.5080.5150.6210.6580.6290.822Generalized additive mod-
el (learning rate=0.3, max-
imum bins=100, and loss
function=least squares)

7.9867.3466.9860.5270.4830.4670.6410.6180.5890.810Ridge regression

8.8248.5448.4250.5970.5930.5850.7240.7780.7500.758Lasso regression

9.6668.4037.2050.5910.5480.4740.7490.6990.6200.811Multiple linear regression

aCV: cross-validation.
bValues in italics represent the best metrics.

The ML methods were superior to MLR on most metrics.

Support vector machine was the best on adjusted R2 and RMSE,
slightly superior to GBT, but GBT was superior by a larger
margin on MAE and SMAPE. Therefore, we chose GBT as the
best overall method. In Multimedia Appendix 1, we show the
variable importance plot for the GBT model. Variable
importance plots are a common first way to peer inside a
“black-box method” and understand the relative importance of
the variables used within it [34].

The top five variables in terms of impact were (1) smoking rate
and (2) household income, followed by (3) American Indian or
Alaska Native percentage, (4) education rate, and (5)
unemployment rate. Black percentage was sixth, Hispanic
percentage was seventh, and there was only a small impact from
the remaining variables: White percentage, AQI, Asian

percentage, Native Hawaiian or Pacific Islander percentage,
population, and GDP. Relative to the MLR, smoking rate,
household income, education rate, and Black percentage
remained the same in terms of rank importance. Hispanic
percentage dropped from third to seventh rank; American Indian
or Alaska Native percentage rose from fifth to third rank; and
unemployment rate rose sharply, from 10th to 5th in importance.
Native Hawaiian or Pacific Islander percentage dropped sharply,
from 7th to 11th in rank.

Figure 3 shows the lift plot, and Figure 4 shows the predictive
residual plot. The lift plot shows observations sorted by
predicted value deciles. The ratio of the observed outcome to
the expected outcome was calculated and plotted. The predictive
residual plot shows the differences between observed and
predicted values.
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Figure 3. Lift plot showing chronic obstructive pulmonary disease rate as a function of 10 decile bins; predicted values are in blue and actual values
are in red. COPD: chronic obstructive pulmonary disease.

Figure 4. Prediction residuals.

In addition to the variable importance plot, other plots were
used to gain an understanding of ML models: local interpretable
model-agnostic explanations (LIME) models and SHAP
(Shapley additive explanations) plots [35-37]. We chose SHAP
plots because they are based on a cooperative game-theoretical
foundation, showing every combination of the variables in the
model and how they work together to predict the outcome
variable. Figure 5 shows the SHAP plot for all the GBT’s
variables.

The top 5 variables (smoking rate, household income, American
Indian or Alaska Native percentage, education rate, and
unemployment rate) have substantially more impact on COPD
percentage than the remaining variables. We show the top 5
variables as well as the next 4 as individual SHAP plots of the
GBT in Figure 6. All 9 plots show significant nonlinearities.

Smoking had the greatest impact: as the smoking rate increased,
the COPD rate also rose substantially, following a steeply
curved, nearly exponential relationship. Median household
income had the second highest impact, an almost linear (and
negative) relationship. The greater the household income, the
lower the COPD rate. This could indicate better insurance
coverage, better health care access, higher quality health care
(ie, prevention or treatment), lower occupational exposure, or
lower home exposure (eg, gas stoves). The next variable was
American Indian or Alaska Native percentage, indicating a
negative but nonlinear relationship with COPD rate: a steep
drop followed by a gradual tapering. This represents a significant
protective influence shown for the American Indian or Alaska
Native community, which has not yet been noted in the
literature.
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Figure 5. SHAP (Shapley additive explanations) values for all features (variables). AI: American Indian; AN: Alaska Native; GDP: gross domestic
product; NH: Native Hawaiian; PI: Pacific Islander.

Figure 6. SHAP (Shapley additive explanations) plots for the 9 most important variables. AI: American Indian; AN: Alaska Native.

The next variable, education rate had a negative, curvilinear
relationship. The more educated the population, the lower the
COPD rate. The explanation could be similar to that of income:
better insurance coverage or health care access, better quality
of health care, lower occupational exposure, or lower home
exposure [38]. The next variable was unemployment rate, with
a sharply positive but flat relationship with COPD rate. The

next variable was Black percentage, with an initial positive
relationship with COPD rate but then a reversal to a negative,
linear relationship.

The next variable, Hispanic percentage, showed a negative linear
relationship with COPD rate. This represents a significant
protective influence shown for people in the Hispanic
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community, which is consistent with the literature [39-45]. The
next variable was White percentage, showing a slightly negative
relationship with COPD rate. Finally, the last variable was AQI
(higher value being worse), which shows an initial positive
relationship with COPD rate, peaking around 38. This may be
a critical point, after which people take precautions not to be
exposed to the low-quality air.

Discussion

Principal Findings
We had three general expectations, which were largely met:

1. The impact of cigarette smoking was the largest in all
models.

2. The AQI had an impact in the best ML model, but it was
smaller than expected.

3. There were substantial racial or ethnic differences,
particularly among American Indian or Alaska Native,
Black, and Hispanic communities.

Consistent with the literature, we found that smoking remains
the most significant risk factor for COPD, with research
consistently demonstrating a strong association between
smoking status and COPD prevalence. In our MLR, we found
that smoking rate is the strongest predictor of COPD rate. We
found the same result in our GBT but also found that the
smoking rate has a curvilinear, almost exponential, relationship
with COPD. The Rotterdam study, a large-scale
population-based cohort study, found that current and former
smokers had a substantially higher risk of developing COPD
compared to never smokers [46]. A nationwide population-based
cohort study in South Korea demonstrated that smoking
cessation after COPD diagnosis was associated with lower
all-cause and cause-specific mortality [47].

Notably, 3 of the 4 next most important variables, in terms of
impact in our GBT, are socioeconomic variables: household
income (rank 2), education rate (rank 4), and unemployment
rate (rank 5). In the MLR, we found that household income
(logged) had the second highest impact. In the GBT, household
income had the second highest impact, but the tipping point
was around US $40,000, after which higher income had a linear,
negative relationship with COPD. Education rate had a strongly
negative, curvilinear relationship with COPD. Unemployment
rate had a sharply positive relationship with COPD, but then
peaked at 5% unemployment, after which it plateaued.

These results are largely consistent with the literature on
socioeconomic factors and smoking behavior, suggesting an
indirect relationship with COPD via smoking. A study
examining smoking among adolescents in 6 European cities
found that disposable income was positively associated with
smoking [48]. Conversely, lower socioeconomic status was
associated with higher COPD prevalence because in addition
to lower education and income, there may be environmental
pollutants, occupational hazards, or barriers to COPD screening,
diagnosis, and treatment [49]. In contrast with the literature,
our SHAP plots show mostly nonlinear relationships with
COPD. Household income showed a tipping point at US

$40,000, after which the negative relationship with COPD was
nearly linear.

Ethnic or racial variables accounted for 3 of the top 7 variables
in the GBT: American Indian or Alaska Native percentage (rank
3), Black percentage (rank 6), and Hispanic percentage (rank
7). The greater the size of those minority populations, the lower
the COPD rate. Our SHAP plots show significant tipping points
(nonlinearities) for American Indian or Alaska Native percentage
and Black percentage and a mostly linear relationship for
Hispanic percentage. Consistent with the literature, all 3
variables show a strongly negative association with COPD.

The regression and GBT models show that in addition to
strongly protective impacts for lower cigarette smoking and
higher household income, there are protective impacts for larger
American Indian or Alaska Native and Hispanic populations as
well as a nonlinear impact on larger Black populations. Higher
education rate and lower unemployment rate are also protective,
whereas AQI shows mixed effects. These results have
implications for private health care practitioners, public health
care officials, and health care policy makers who aim to reduce
COPD rates. Such policies and programs should not assume
high digital literacy [50,51]. System designers could use SMS
text messaging, social media, and interactive voice response
systems. This would be appropriate for those with lower
household income or lower education levels. To design
culturally appropriate visual cues and messaging to different
racial or ethnic groups, members of the various communities
should be included in the design process [52,53]. In sum, the
user interface should exhibit high ease-of-use—using
gamification, storytelling, and peer support—consistent with
cultural norms.

Several studies have identified ethnic and racial disparities in
COPD prevalence and risk among smokers. One study found
that racial and ethnic minority individuals, particularly African
Americans and Hispanics, had a lower prevalence of airflow
obstruction than non-Hispanic White individuals, even after
adjusting for smoking status and other risk factors [54]. This
finding was supported by another study that observed lower
COPD risk in ethnic minority groups compared to White
individuals, despite similar smoking intensities [55]. A larger
minority population means a larger peer support network for
prevention and cessation of smoking and a larger peer
community to recommend COPD screening, diagnosis, and
treatment, which is particularly useful in a health care system
that has implicit racial or ethnic bias [50,56].

There are varying levels of patient trust and implicit bias in
health care practitioners themselves [57], which contributes to
health outcome differences. From a population communication
perspective, messaging regarding the risks of
COPD—particularly the avoidance or cessation of cigarette
smoking—should be sensitive to community context, engaging
trusted local authorities to optimize the chances of patient
engagement [58]. Health care practitioners could partner with
trusted local authorities and community leaders regarding
smoking prevention and cessation as well as respiratory health
in general to decrease COPD risk. Health care practitioners and
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educators should communicate to different populations in
culturally sensitive ways [59,60].

Educational materials and behavior change strategies may need
to be customized according to different risk factors, beliefs,
preferences, and technographics of different subpopulations
[50,51]. On a basic level, people with lower levels of education
or household income could be directed via phone geolocation
to their local health care and to their community leaders for
in-person guidance and support. Local leaders could then inform
them about local smoking cessation programs and apps or
websites that monitor air quality in their community. Trusted
local authorities are helpful entry points in those communities,
after which peer support and network effects spread the
information.

AQI was not significant in the MLR, but it was significant in
the GBT, albeit not as strongly as we expected. It could be that
the AQI is more of a diffuse, macrolevel environmental factor
that fluctuates over time, making some CBSAs worse on
average, but with wide volatility, for example, as weather and
wind directions change [61,62]. Therefore, AQI could have
more of an indirect or interaction effect with other variables.
Combining campaigns on smoking prevention with campaigns
on air quality could create a holistic public health strategy,
particularly—as our findings suggest—in communities
considered vulnerable, that is, communities with lower
education, higher unemployment, and lower household income.
Subsidies for households in communities considered vulnerable
to convert to more efficient, cleaner home heating and cooling
methods would improve their home’s air quality at a lower cost
[63]. Research suggests that engaging communities in targeting
their air quality issues can lead to more positive outcomes in
both air quality and public health [64-66].

There is a small but growing body of research that uses ML
models in health care and medicine. There is recognition that
the models can be highly accurate, but there is no consensus
yet on how to interpret the results in a way that meshes
seamlessly with clinical practice. The following examples
provide an overview.

Elshawi et al [67] compared model-agnostic explanations using
2 techniques, LIME and Shapley values, to interpret a ML model
for predicting hypertension risk. LIME uses small subsets of
the data, which may be idiosyncratic, to provide intuitive
explanations, that is, rules. Shapley values are more theoretically
sound and global, using all the available data, and are, therefore,
less idiosyncratic than LIME, but they do not provide LIME’s
simple, linear explanations [67].

Hakkoum et al [68] conducted an extensive literature review of
ML interpretability in medicine published between 1994 and
2020. The review found that there was no consensus on
evaluation metrics or frameworks to assess the quality and utility
of the interpretability methods [68]. The highest performing
ML models did not translate easily into clinical rules.

Meng et al [69] reviewed the interpretability and fairness
evaluation of deep learning models on MIMIC-IV data set, a
large, publicly available benchmark for developing and
evaluating the interpretability of high-performing ML models

that use sensitive demographic features. The review found that
existing interpretation methods, for example, variable
importance rankings, provide partial explanations without fully
elucidating the model’s complex decision logic.

In sum, there is no consensus on the best way to interpret
high-performing ML models in health care. There are always
trade-offs between accuracy and interpretability or
explainability. We chose to use Shapley values because they
represent the frontier in explainability, and they are similar to
interpreting a multiple regression, interpreting 1 variable at a
time, without the assumptions of linear models. In addition,
Shapley values allow for nonlinear relationships between each
independent (predictor) variable and the dependent variable.
Variable importance plots in conjunction with Shapley values
help us to identify the most important variables and characterize
their relationships with COPD.

Our best MLR model had variance explained of 81.1%, MAE
of 0.591, and SMAPE of 9.666. Our best ML model was the
GBT, with variance explained of 85.7%, MAE of 0.456, and
SMAPE of 6.956. The GBT explains most of the
variance—4.6% more than the best MLR—with far less
predictive error. The GBT’s SMAPE (6.956) was 28% lower
than that of the MLR’s SMAPE (9.666). Similarly, the GBT’s
RMSE was 26% lower than the MLR’s RMSE, and its MAE
was 23% lower than that of the MLR. Real-world predictive
accuracy should be similar to that found in the test data set
because the test data were never used in the GBT’s model
development.

Our GBT performed strongly on the test data, with very little
performance deterioration on the test data versus performance
on the training and validation data. This demonstrates that the
GBT model does not overfit the data. To interpret the GBT, we
used a variable importance plot [34,70,71] and SHAP plots
[72,73]. SHAP plots are useful for interpreting the strength of
the pairwise relationships between predictor variable and COPD
rate, showing the added nuances of the curvilinear plots. By
doing so, we rendered transparent the “black-box model”
[74-76], thus preserving interpretability and actionability, in
addition to adding nonlinear nuance.

Limitations and Future Directions
This research has a few limitations. The data were obtained
from 517 (56%) of the 929 CBSAs. We assumed that this was
an adequate sample and that the remaining CBSAs that did not
report the data were similar to those that did. Alternatively, it
could be that the CBSA that did not report COPD rates did so
because the rates were low, that is, COPD was not considered
a major problem by the local public health officials. Data
covering additional demographic variables, such as gender and
age, in addition to occupational exposures and physical exercise,
could be gathered [77-79]. Future research could develop
separate models stratified by demographic variables such as
race or ethnicity, assuming there are sufficient data for each
categorical class. There could also be geopolitical variations in
terms of population density as well as demographics,
psychographics [80], and technographics [81,82].

JMIR AI 2024 | vol. 3 | e58455 | p.401https://ai.jmir.org/2024/1/e58455
(page number not for citation purposes)

Kamis et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Future data collection could focus on understanding racial or
ethnic disparities. By collecting data more intensively from the
minority populations, we could go deeper into understanding
how their rates of COPD drop so dramatically. Is it related to
active peer recommendations for better self-care in a
predominantly White health care system and population? Is it
related to successfully tailored smoking prevention or cessation
programs? Data pertaining to answering these more specific
questions could be collected to enhance our understanding of
how best to tailor communications to different demographic or
ethnographic groups.

All our models were structured as direct effects. We applied
MLR and ML methods with data from CBSAs, which have
significant variation in terms of health care access and quality.
Using these models as a foundation, we should recognize the
interconnectedness (ie, direct, indirect, and interactive) of
pollutants and copollutants to fully understand COPD’s complex
etiology. Future research could model interaction, moderating,
or mediating effects, perhaps with a structural equation model,
to identify the direct and indirect effects of COPD, for example,
showing how asthma may lead to COPD or to asthma-COPD
overlap [77].

There are many research knowledge gaps in the health impacts
of extreme air pollution, including the effects of interactions
between temperature and air pollution on respiratory health due
to climate change [83]. Future research directions could focus
on modeling the direct and indirect links between environmental
exposures and COPD. On the basis of those results, we could
design interventions, such as air quality warning systems, to
mitigate their impact. The findings would underscore the
opportunities for public health regulations, public-private sector
partnerships, private company entrepreneurship, and global
initiatives to reduce environmental exposures.

Greenhouse gas emissions may exacerbate overall air quality
[84-88], contributing indirectly to COPD. Future research could
collect data on new, additional variables pertaining to climate
change [89]. Wildfires, which are increasingly common, produce
more carcinogens in the air, including high levels of particulate
matter. This can directly decrease air quality or copollute with
other ambient pollutants [90]. These problems have been shown
to increase the odds of lung cancer [91], and it is plausible that
they can also contribute to COPD.

The association between COPD and environmental pollutants,
including tropospheric ozone, nitrogen dioxide, sulfur dioxide,

and occupational exposures, has been extensively investigated
[8,91-94]. Coarse, fine, and ultrafine particulate matter have
been studied extensively and linked to systemic oxidative stress,
inflammation [95], atherosclerosis [96], and mortality [97] in
the United States [98,99] and China [100-102]. Tropospheric
ozone exposure by itself has been linked to impaired lung
function and increased COPD-related hospital admissions
[103-105]. Similarly, elevated levels of nitrogen dioxide and
sulfur dioxide, which are common in cities and industrial work
sites, have been linked to an increased risk of COPD in the
general population [106,107] and older adults [108]. In sum,
data pertaining to ambient pollution, for example, particulate
matter, sulfur dioxide, and carbon monoxide, could be useful
additional copollutant data to include in future models
[6,86-88,91,109-111].

Conclusions
Our novel contributions in this paper include the following: (1)
integration of multiple publicly available CDC data sources,
(2) development of highly accurate models using linear and
nonlinear methods, and (3) interpretation of the variable impacts
for the best model. Smoking was the number 1 variable
impacting the COPD rate, which was expected. Household
income was the second most influential predictor variable. Four
economic factors spanned the full range of influence, from large
(household income) to moderate (education rate) to small
(unemployment rate and GDP). The race or ethnicity variable
also had a range of impacts, from moderately high (American
Indian or Alaska Native percentage) to moderate (Black or
Hispanic percentage) to small (White, Asian, or Native Hawaiian
or Pacific Islander percentage).

This research demonstrates the power of ML methods in general
and a GBT, which produced a highly accurate model of COPD
rates. The computational complexity of a GBT enables it to
obtain high accuracy, but health care policy makers may be
reluctant to adopt it unless they can obtain a rule-based
explanation. Furthermore, clinicians typically want to be able
to explain, justify, and communicate results to others in an
intuitive manner. Finally, there may be legal, auditing, or
regulatory requirements concerning transparency. If the method
is audited, and it cannot be clearly explained, there may be
serious legal or financial consequences [72]. Consequently, it
is important to have explainable models to open the “black box,”
rendering them interpretable and actionable [75,76]. This
research shows that it is possible to do so.
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LIME: local interpretable model-agnostic explanations
MAE: mean absolute error
ML: machine learning
MLR: multiple linear regression
RMSE: root mean square error
SHAP: Shapley additive explanations
SMAPE: symmetric mean absolute percentage error
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Abstract

Background: Widespread misinformation in web resources can lead to serious implications for individuals seeking health
advice. Despite that, information retrieval models are often focused only on the query-document relevance dimension to rank
results.

Objective: We investigate a multidimensional information quality retrieval model based on deep learning to enhance the
effectiveness of online health care information search results.

Methods: In this study, we simulated online health information search scenarios with a topic set of 32 different health-related
inquiries and a corpus containing 1 billion web documents from the April 2019 snapshot of Common Crawl. Using state-of-the-art
pretrained language models, we assessed the quality of the retrieved documents according to their usefulness, supportiveness,
and credibility dimensions for a given search query on 6030 human-annotated, query-document pairs. We evaluated this approach
using transfer learning and more specific domain adaptation techniques.

Results: In the transfer learning setting, the usefulness model provided the largest distinction between help- and harm-compatible
documents, with a difference of +5.6%, leading to a majority of helpful documents in the top 10 retrieved. The supportiveness
model achieved the best harm compatibility (+2.4%), while the combination of usefulness, supportiveness, and credibility models
achieved the largest distinction between help- and harm-compatibility on helpful topics (+16.9%). In the domain adaptation
setting, the linear combination of different models showed robust performance, with help-harm compatibility above +4.4% for
all dimensions and going as high as +6.8%.

Conclusions: These results suggest that integrating automatic ranking models created for specific information quality dimensions
can increase the effectiveness of health-related information retrieval. Thus, our approach could be used to enhance searches made
by individuals seeking online health information.

(JMIR AI 2024;3:e42630)   doi:10.2196/42630

KEYWORDS

health misinformation; information retrieval; deep learning; language model; transfer learning; infodemic

Introduction

In today’s digital age, individuals with diverse information
needs, medical knowledge, and linguistic skills [1] turn to the

web for health advice and to make treatment decisions [2]. The
mixture of facts and rumors in online resources [3] makes it
challenging for users to discern accurate content [4]. To provide
high-quality resources and enable properly informed
decision-making [5], information retrieval systems should
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differentiate between accurate and misinforming content [6].
Nevertheless, search engines rank documents mainly by their
relevance to the search query [7], neglecting several health
information quality concerns. Moreover, despite attempts by
some search engines to combat misinformation [8], they lack
transparency in terms of the methodology used and performance
evaluation.

Health misinformation is defined as health-related information
that is inaccurate or misleading based on current scientific
evidence [9,10]. Due to the lack of health literacy for
nonprofessionals [11] and the rise of the infodemic phenomenon
[12]—the rapid spread of both accurate and inaccurate
information about a medical topic on the internet [13]—health
misinformation has become increasingly prevalent online.
Topics related to misinformation, such as “vaccine” or “the
relationship between coronavirus and 5G” have gained scientific
interest across social media platforms like Twitter and Instagram
[14-16] and among various countries [17]. Thus, the
development of new credibility-centered search methods and
assessment measures is crucial to address the pressing challenges
in health-related information retrieval [18].

In recent years, numerous approaches have been introduced in
the literature to categorize and assess misinformation according
to multiple dimensions. Hesse et al [19] proposed 7 dimensions
of truthfulness, which include correctness, neutrality,
comprehensibility, precision, completeness, speaker
trustworthiness, and informativeness. On the other hand, van
der Linden [20] categorized an infodemic into 3 key dimensions:
susceptibility, spread, and immunization. Information retrieval
shared tasks, such as the Text Retrieval Conference (TREC)
and the Conference and Labs of the Evaluation Forum (CLEF),
have also started evaluating quality-based systems for health
corpora using multiple dimensions [21,22]. The CLEF eHealth
Lab Series proposed a benchmark to evaluate models according
to the relevance, readability, and credibility of the retrieved
information [23]. The TREC Health Misinformation Track 2021
proposed further metrics of usefulness, supportiveness, and
credibility [24]. These dimensions also appear in the TREC
Health Misinformation Track 2019 as relevancy, efficacy, and
credibility, respectively. Additionally, models by Solainayagi
and Ponnusamy [25] and Li et al [26] incorporated similar
dimensions, emphasizing source reliability and the credibility
of statements. These metrics represent some of the initial efforts
to quantitatively assess the effectiveness of information retrieval
engines in sourcing high-quality information, marking a shift
from the traditional query-document relevance paradigm [27,28].
Despite their variations, these information quality metrics focus
on the following 3 main common topics: (1) relevancy (also
called usefulness or informativeness) of the source to the search
topic, (2) correctness (also called supportiveness or efficacy)
of the information according to the search topic, and (3)
credibility (also called trustworthiness) of the source.

Thanks to these open shared tasks, several significant
methodologies have been developed to improve the search for
higher-quality health information. Although classical
bag-of-words–based methods outperform neural network
approaches in detecting health-related misinformation when
training data are limited [29], more advanced approaches are

needed for web content. Specifically, research has proven the
effectiveness of a hybrid approach that integrates classical
handcrafted features with deep learning [18]. Further to this,
multistage ranking systems [30,31], which couple the system
with a label prediction model or use T5 [32] to rerank Okapi
Best Match 25 (BM25) results, have been proposed. Particularly,
Lima et al [30] considered the stance of the search query and
engaged 2 assessors for an interactive search, integrating a
continuous active learning method [33]. This approach sets a
baseline of human effort in separating helpful from harmful
web content. Despite their success, these models often do not
take into account the different information quality aspects in
their design.

In this study, we aimed to investigate the impact of
multidimensional ranking on improving the quality of retrieved
health-related information. Due to its coverage of the main
information quality dimensions used in the scientific literature,
we followed the empirical approach proposed in the TREC 2021
challenge, which considers usefulness, supportiveness, and
credibility metrics, to propose a multidimensional ranking
model. Using deep learning–based pretrained language models
[34] through transfer learning and domain adaption approaches,
we categorized the retrieved web resources according to different
information quality dimensions. Specialized quality-oriented
ranks obtained by reranking components were then fused [32]
to provide the final ranked list. In contrast to prior studies, our
approach relied on the automatic detection of harmful (or
inaccurate) claims and used a multidimensional information
quality model to boost helpful resources.

The main contributions of this work are 3-fold. We propose a
multidimensional ranking model based on transfer learning and
showed that it achieves state-of-the-art in automatic (ie, when
the query stance is not provided) quality-centered ranking
evaluations. We investigated our approach in 2 learning
settings—transfer learning (ie, without query relevance
judgments) and domain adaptation (ie, with query relevance
judgments from a different corpus)—and demonstrated that
they are capable of identifying more helpful documents than
harmful ones, obtaining +5% and +7% help and harm
compatibility scores, respectively. Last, we investigated how
the combination of models specialized in different information
dimensions impacts the quality of the results, and our analysis
suggests that multidimensional aspects are crucial for extracting
high-quality information, especially for unhelpful topics.

Methods

In this section, we introduce our search model based on
multidimensional information quality aspects. We first describe
the evaluation benchmark. We then detail the implementation
methodology and describe our evaluation experiments using
transfer learning and domain adaptation strategies.

TREC Health Misinformation Track 2021 Benchmark

Benchmark Data Set
To evaluate our approach, we used the TREC Health
Misinformation Track 2021 benchmark [35] organized by the
National Institute of Standards and Technology (NIST) [36].
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The TREC Health Misinformation Track 2021 benchmark
simulates web searches for specific health issues and
interventions against a collection of English web documents
[37]. For each topic, the benchmark annotates the quality of the
retrieved web documents using a pooling approach, in which
the top retrieved documents by systems participating in the
challenge are evaluated according to their usefulness,
correctness, and credibility and subsequently labeled as helpful
or harmful. In this context, helpful documents are defined as
those supportive of helpful treatments or that try to dissuade
the reader from using unhelpful treatments, while harmful
documents encourage the use of unhelpful treatments or dissuade
the reader from using helpful treatments [24]. See Table S1 in
Multimedia Appendix 1 for more detail on the annotation.

Health-Related Topics
A topic in the TREC Health Misinformation Track 2021
benchmark consists of a health issue, an intervention, a query

that connects the corresponding intervention to the health
problem, and a description that resembles the web search
question using natural language. NIST only provided
assessments for 35 of the initial 50 topics. Among the assessed
topics, 3 were further excluded due to the absence of harmful
documents. Consequently, the benchmark consisted of 32 topics:
14 labeled as helpful and 18 labeled as unhelpful. For these
queries, a total of 6030 query-document pairs were
human-annotated according to different scales of usefulness,
correctness, and credibility scores. A “helpful topic” refers to
an intervention beneficial for treating a health issue, while an
“unhelpful topic” indicates an ineffective intervention. The
stance is supported by evidence from a credible source. Table
1 presents examples of the queries and descriptions of helpful
and unhelpful topics.

Table 1. Examples of helpful and unhelpful topics with query and description.

StanceDescriptionQueryNumber

HelpfulCan vitamin b12 and sun exposure together help treat vitiligo?vitamin b12 sun exposure vitiligo106

UnhelpfulIs a tepid sponge bath a good way to reduce fever in children?tepid sponge bath reduce fever children102

Web Corpus
We used the Colossal Clean Crawled Corpus (C4), a collection
of English-language web documents sourced from the public
Common Crawl web scrape [38]. The corpus comprises 1 billion
English documents from the April 2019 snapshot. To illustrate

the contradictory nature of the web information within the
corpus, in Table 2, we present 2 documents relevant to topic
102: “tepid sponge bath reduce fever in children.” Although an
article advises against the intervention (“Do Not Use Sponging
to Reduce a Fever”), another article advises it could be a viable
option (“Sponging is an option for high fevers”).

Table 2. Examples of useful but contradictory documents for Topic 102: “Is a tepid sponge bath a good way to reduce fever in children?”.

Article 2Article 1Article information

en.noclean.c4-train.00001-of-07168.126948en.noclean.c4-train.07165-of-07168.96468Doc ID

2019-04-23T20:13:31Z2019-04-25T18:00:17ZTime stamp

[...] Sponging With Lukewarm Water: Note: Sponging is an
option for high fevers, but not required. It is rarely needed.
When to Use: Fever above 104° F (40° C) AND doesn’t come
down with fever meds. Always give the fever medicine at least
an hour to work before sponging. How to Sponge: Use luke-
warm water (85 - 90° F) (29.4 - 32.2° C). Sponge for 20-30
minutes. If your child shivers or becomes cold, stop sponging.
[...]

[...] Do Not Use Sponging to Reduce a Fever. It is not rec-
ommended that you use sponging to reduce your child’s
fever. There is no information that shows that sponging or
tepid baths improve your child’s discomfort associated with
a fever or an illness. Cool or cold water can cause shivering
and increase your child’s temperature. Also, never add rub-
bing alcohol to the water. Rubbing alcohol can be absorbed
into the skin or inhaled, causing serious problems such as a
coma. [...]

Text

https://childrensclinicofraceland.com/https://patiented.solutions.aap.org/URL

Quality-Based Multidimensional Ranking Conceptual
Model

Phases
The quality-based multidimensional ranking model proposed
in this work is presented in Figure 1A. The information retrieval
process can be divided into 2 phases: preprocessing and
multidimensional ranking. In the preprocessing phase, for a

given topic j, ND documents were retrieved based on their
relevance (eg, using a BM25 model) [39]. In the
multidimensional ranking phase, we further estimated the quality
of the retrieved subset of documents according to the usefulness,
supportiveness, and credibility dimensions. In the following
sections, we describe the multidimensional ranking approach
and its implementation using transfer learning and domain
adaption. We then describe the preprocessing step, which can
be performed based on sparse or dense retrieval engines.
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Figure 1. Quality-based multidimensional ranking models: (A) general pipeline, (B) supportiveness model for the transfer learning approach. BERT:
Bidirectional Encoder Representations from Transformers; C4: Colossal Clean Crawled Corpus; NIST: National Institute of Standards and Technology.

Multidimensional Ranking
To provide higher-quality documents at the top ranks, we
proposed using a set of machine learning models trained to
classify documents according to the usefulness, supportiveness,
and credibility dimensions. For the initial rank list obtained in
the preprocessing phase (see details in the following sections),
the documents were reranked in parallel according to the
following strategies for usefulness, supportiveness, and
credibility.

Usefulness

The usefulness dimension is defined as the extent to which the
document contains information that a search user would find
useful in answering the topic’s question. In this sense, it defines
how pertinent a document is to a given topic. Thus, to compute
the usefulness of retrieved documents, topic-document similarity
models based on pretrained language models, such as
Bidirectional Encoder Representations from Transformers
(BERT)–base [40], mono-BERT-large [41], and ELECTRA
[42], could be used. Given a topic-document pair, the language
model infers a score that gives the level of similarity between
the 2 input text passages. Although bag-of-words models, such
as BM25, provide a strong baseline for usefulness, they do not
consider word relations by learning context-sensitive
representations as is the case with the pretrained language
models, which are used to enhance the quality of the original
ranking [28].

Supportiveness

The supportiveness dimension defines whether the document
supports or dissuades the use of the treatment in the topic’s
question. Therefore, it defines the stance of the document on
the health topic. In this dimension, documents are identified
under 3 levels: (1) supportive (ie, the document supports the
treatment), (2) dissuasive (ie, the document refutes the
treatment), and (3) neutral (ie, the document does not contain
enough information to make the decision) [35]. To compute the
supportiveness of a document to a given query, the system
should be optimized so that documents that are either supportive,
if the topic is helpful, or dissuasive, if the topic is unhelpful,
are boosted to the top of the ranking list, which means that
correct documents are boosted and misinforming documents
are downgraded.

Credibility

The credibility dimension defines whether the document is
considered credible by the assessor, that is, how trustworthy
the source document is. To compute this dimension, the content
of the document itself could be used (eg, leveraging language
features, such as readability [43]), which is assessable using the
Simple Measure of Gobbledygook index [44]. Moreover,
document metadata could be also used, such as incoming and
outcoming links, which can be calculated with link analysis
algorithms [45], and URL addresses considered to be trusted
sources [46].
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Transfer Learning Implementation
To implement the multidimensional ranking model in scenarios
in which relevance judgments are not available, we proposed
multiple (pretrained) models for each of the quality dimensions
using transfer learning.

Usefulness

In this reranking step, we created an ensemble of pretrained
language models—BERT-base, mono-BERT-large, and
ELECTRA—all fine-tuned in the MS MARCO [47] data set.
Each model then predicted the similarity between the topic and
the initial list of retrieved documents. Their results were finally
combined using reciprocal rank fusion (RRF) [32].

Supportiveness

In this reranking step (Figure 1B), we created an ensemble of
claim-checking models—robustly optimized BERT approach
(RoBERTa)–Large [48], BioMedRoBERTa-base [49], and
SciBERT-base [50]—which were fine-tuned on the FEVER
[51] and SciFact [52] data sets. Claim-checking models take a
claim and a document as the information source and validate
the veracity of the claim based on the document content [53].
Most claim-checking models assume that document content is
ground truth. Since this is not valid in the case of web
documents, we added a further classification step that evaluates
the correctness of the retrieved documents. We used the top-k
assignments [44] provided by the claim-checking models to
define whether the topic should be supported or refuted. The
underlying assumption is that a scientific fact is defined by the
largest number of evidence available for a topic. A higher rank
is then given to the correct supportive or dissuasive documents,
a medium rank is given to the neutral documents, and a lower
rank is given to the incorrect supportive or dissuasive
documents. The rank lists obtained for each model were then
combined using RRF.

Credibility

In this step, we implemented a random forest classifier trained
on the Microsoft Credibility data set [54] with a set of
credibility-related features, such as readability, openpage rank
[45], and the number of cascading style sheets (CSS). The data
set manually rated 1000 web pages with credibility scores
between 1 (“very noncredible”) and 5 (“very credible”). We
converted these scores for a binary classification setting—that
is, scores of 4 and 5 were considered as 1 or credible, and scores
of 1, 2, and 3 were considered as 0 or noncredible. For the
readability score, we relied on the Simple Measure of
Gobbledygook index [44], which estimates the years of
education an average person needs to understand a piece of
writing. Following Schwarz and Morris [54], we retrieved a
web page’s PageRank and used it as a feature to train the
classifier. We further used the number of CSS style definitions
to estimate the effort for the design of a web page [55]. Last, a
list of credible websites scrapped from the Health On the Net
search engine [46] for the evaluated topics was combined with
the baseline model to explore better performance. The result of
the classifier was added to the unitary value of the Health On
the Net credible sites [46].

Domain Adaptation Implementation
To implement the multidimensional ranking model in scenarios
in which relevance judgments are available, we compared
different pretrained language models—BERT, BioBERT [56],
and BigBird [57]—for each of the quality dimensions using
domain adaptation. In this case, each model was fine-tuned to
predict the relevance judgment of a specific dimension (ie,
usefulness, supportiveness, and credibility). Although the input
size was limited to 512 tokens for the first 2 models, BigBird
allows up to 4096 tokens.

We used the TREC 2019 Decision Track [33] benchmark data
set to fine-tune our specific quality dimension models. The
TREC 2019 Decision Track benchmark data set contains 51
topics evaluated across 3 dimensions: relevance, effectiveness,
and credibility. Adhering to the experimental design set by [58],
we mapped the 2019 and 2021 benchmarks as follows. The
relevance dimension (2019) was mapped to usefulness (2021),
with highly relevant documents translated as very useful and
relevant documents as useful. The effectiveness dimension
(2019) was mapped to supportiveness (2021), with effective
labels reinterpreted as supportive and ineffective as dissuasive.
The credibility dimension (2019) was directly mapped to
credibility (2021) using the same labels.

The 2019 track uses the ClueWeb12-B13 [59,60] corpus, which
contains 50 million pages. More details on the TREC 2019
Decision Track [33] benchmark are provided in Table S2 in
Multimedia Appendix 1.

In the training phase, the language models received as input
were the pair topic-document and a label for each dimension
according to the 2019-2021 mapping strategy. At the inference
time, given a topic-document pair from the TREC Health
Misinformation Track 2021 benchmark, the model would infer
its usefulness, supportiveness, or credibility based on the
dimension on which it was trained.

Preprocessing or Ranking Phase
In the preprocessing step, which is initially executed to select
a short list of candidate documents for the input query, a BM25
model was used. This step was performed using a bag-of-words
model due to its efficiency. For the C4 snapshot collection, 2
indices were created, one using standard BM25 parameters and
another fine-tuned using a collection of topics automatically
generated (silver standard) from a set of 4985 indexed
documents. For a given document, the silver topic was created
based on the keyword2query [61] and doc2query [41] models
to provide the query and description content, respectively. Using
the silver topics and their respective documents, the BM25
parameters of the second index were then fine-tuned using grid
search in a known-item search approach [62] (ie, for a given
silver topic, the model should return in the top-1 the respective
document used to generate it). The results of these 2 indices
were fused using RRF.

Evaluation Metric
We followed the official TREC evaluation strategy and used
the compatibility metric [46] to assess the performance of our
models. Contrary to the classic information retrieval tasks, in
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which the performance metric relies on the degree of relatedness
between queries and documents, in quality retrieval, harmful
documents should be penalized, especially if they are relevant
to the query content. In this context, the compatibility metric
calculates the similarity between the actual ranking R provided
by a model and an ideal ranking I as provided by the query
relevance annotations. According to Equation 1, the
compatibility is calculated with the rank-biased overlap (RBO)
[63] similarity metric, which is top-weighted, with greater
weight placed at higher ranks to address the indeterminate and
incomplete nature of web search results [64]:

where the parameter p represents the searcher's patience or
persistence and is set to 0.95 in our experiments and K is the
search depth and is set to 1000 to bring pK-1 as close to 0 as
possible. As shown in Equation 2, an additional normalization
step was added to accommodate short, truncated ideal results,
so when there are fewer documents in the ideal ranking than in
the actual ranking list, it does not influence the compatibility
computation results:

To ensure that helpful and harmful documents are treated
differently, even if both might be relevant to the query content,
the assessments were divided into “help compatibility” (help)
and “harm compatibility” (harm) metrics. To evaluate the ability
of the system to separate helpful from harmful information, the
“harm compatibility” results were then subtracted from the
“help compatibility” results, which were marked as “help-harm
compatibility” (help-harm). Overall, the more a ranking is
compatible with the ideal helpful ranking, the better it is.
Conversely, the more a ranking is compatible with the ideal
harmful ranking, the worse it is.

Experimental Setup
The BM25 indices were created using the Elasticsearch
framework (version 8.6.0). The number of documents ND

retrieved per topic in the preprocessing step was set to 10,000
in our experiments. The pretrained language models were based
on open-source checkpoints from the HuggingFace platform
[65] and were implemented using the open-source PyTorch
framework. The language models used for the usefulness
dimension and their respective HuggingFace implemations were
BERT base (Capreolus/bert-base-msmarco), BERT large
(castorini/monobert-large-msmarco-finetune-only), and
ELECTRA (Capreolus/electra-base-msmarco). The language
models used for the supportiveness dimension were RoBERTa
base (allenai/biomed_roberta_base), RoBERTa large
( r o b e r t a - l a r g e ) ,  a n d  S c i B E R T
(allenai/scibert_scivocab_uncased). For the credibility
dimension, we used the random forest algorithm of the
scikit-learn library. In the domain adaptation setup, we
partitioned the 2019 labeled data set into training and validation
sets using an 80%:20% split ratio; the latter was used to select
the best models. We then fine-tuned BioBERT

(dmis-lab/biobert-base-cased-v1.1) with a batch size of 16,

learning rate of 1-5, and 20 epochs with early stopping set at 5
and utilizing the binary cross-entropy loss, which was optimized
using the Adam optimizer. The BigBird model
(google/bigbird-roberta-base) was fine-tuned with a batch size
of 2, keeping all the other settings the same as the BioBERT
model. All language models were fine-tuned using a single
NVIDIA Tesla V100 graphics card with 32 GB of memory (see
Multimedia Appendix 2 for more details). Results are reported
using the compatibility and normalized discounted cumulative
gain (nDCG) metrics. For reference, they were compared with
the results of other participants of the official TREC Health
Misinformation 2021 track, which have submitted runs for the
automatic evaluation (ie, without using information about the
topic stance). The code repository is available at [66].

Ethical Considerations
No human participants were involved in this research. All data
used to build and evaluate the deep language models were
publicly available and open aceess.

Results

Performance Results
In Table 3, we present the performance results of our
quality-based retrieval models using the TREC Health
Misinformation 2021 benchmark. Helpful compatibility (help)
considers only helpful documents of the relevant judgment,
while harmful compatibility (harm) considers only harmful
documents and help-harm considers their compatibility
difference (see Table S1 in Multmedia Appendix 1 for further
detail). Additionally, we show the nDCG scores calculated using
helpful (help) documents or harmful (harm) documents of the
relevant judgment. The helpfulT, unhelpfulT, and allT terms
denote helpful topics, unhelpful topics, and all topics,
respectively. HU, HS, and HC rankings represent the combination
of the preprocessing (HP) results with the rerankings results for
usefulness (HU’), supportiveness (HS’), and credibility (HC’),
respectively. For reference, we show our results compared with
the models participating in the TREC Health Misinformation
Track 2021: Pradeep et al [31] used the default BM25 ranker
from Pyserini. Their reranking process incorporated a mix of
mono and duo T5 models as well as Vera [67] on different topic
fields. Abualsaud et al [68] created filtered collections that focus
on filtering out nonmedical and unreliable documents, which
were then used for retrieval with Anserini’s BM25. Schlicht et
al [69] also used Pyserini’s BM25 ranker and Bio Sentence
BERT to estimate usefulness and RoBERTa for credibility. The
final score was a fusion of these individual rankings.
Fernández-Pichel et al [70] used BM25 and RoBERTa for
reranking and similarity assessment of the top 100 documents,
trained an additional reliability classifier, and merged scores
using CombSUM [71] or Borda Count. Bondarenko et al [72]
used Anserini’s BM25 and PyGaggle’s MonoT5 for 2 baseline
rankings, then reranked the top 20 from each using 3
argumentative axioms on seemingly argumentative queries.
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Table 3. Performance results for the quality-based retrieval models.

CompatibilitynDCGaModel

Help-harm ↑Harm ↓Help ↑Harmc ↓Helpb ↑

all  unhelpfulT
fhelpfulT

eallTallTallTallT
d

–0.022–0.1620.1580.1440.1220.3600.516BM25g [39]

0.043–0.1060.234h0.1530.195h0.3780.602Pradeep et al [31]

0.040–0.0670.1790.1230.1640.185h0.302Abualsaud et al [68]

0.018–0.0890.1570.1030.1210.3090.438Schlicht et al [69]

0.008–0.1130.1630.1550.1630.3630.603hFernández-Pichel et al [70]

–0.015–0.1440.1500.1440.1290.2260.266Bondarenko et al [72]

Transfer learning

0.056h–0.022h0.1560.087h0.142j0.3240.538jHU
i

0.038–0.0490.1510.0920.1300.315j0.477HU + HS
k

0.042–0.0570.169j0.0950.1370.3200.484HU + HS + HC
l

Domain adaptation

0.029–0.0630.1460.1000.1280.3270.510H U

0.019–0.0500.1080.0890.1080.3190.482HU + HS

0.037–0.0480.1470.0940.1310.3250.502HU + HS + HC
l

anDCG: normalized discounted cumulative gain.
bHelp: results considering only helpful documents in the relevance judgment.
cHarm: results considering only harmful documents in the relevance judgment.
dallT: all topics.
ehelpfulT: helpful topics.
funhelpfulT: unhelpful topics.
gBM25: Best Match 25.
hBest performance.
iHU: usefulness model.
jBest performance among our models.
kHS: supportiveness model.
lHC: credibility model.

Our approach provides state-of-the-art results for automatic
ranking systems in the transfer learning setting, with help-harm
compatibility of +5.6%. This result was obtained with the
usefulness model (HU), which is the combination of
preprocessing and usefulness reranking. It outperformed the
default BM25 model [39] by 7% (P=.04) and the best automatic
model from the TREC 2021 benchmark (Pradeep et al [31]) by
1%. In this case, although the help and harm compatibility
metrics individually exhibited statistical significance (P=.02
and P=.01, respectively), the improvement in help-harm
compatibility compared with the best automatic model was not
statistically significant (P=.70). The usefulness model also stood
out by achieving the best help and harm compatibility metrics
among our models (14.2% and 8.7%, respectively; P=.50).
Notice that, for the latter metric, the closest to 0, the better the
performance. Interestingly, the usefulness model attained the

highest nDCG score on help for all topics as well (P=.03). The
combination of usefulness, supportiveness, and credibility
models (HU + HS + HC) provided the best help-harm (+16.9%)
for helpful topics among our models (HU: P=.40; HU + HS:
P=.04).

Meanwhile, when calculating nDCG scores on harm, the
combination of usefulness and supportiveness model (HU + HS)
in the transfer learning and domain adaption settings
outperformed the other model combinations (P=.50), indicating
a different perspective of the best-performing model. Last,
differently from what would be expected, in the domain adaption
setting, the performance was poorer than the simpler transfer
learning approach (2% decrease on average for the compatibility
metric; P=.02). See Table S4 in Multimedia Appendix 3 for
more information about using nDCG as a metric in a
multidimensional evaluation.
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Performance Stratification by Quality Dimension
In Table 4, we show the help, harm, and help-harm compatibility
scores for the individual quality-based reranking models, which
disregarded the preprocessing step (prime index). Additionally,

we provide the nDCG scores for a more comprehensive view
of the models’ performance. HP represents the preprocessing,
and HU’, HS’, and HC’ stand for rerankings for usefulness,
supportiveness, and credibility, respectively.

Table 4. Performance results for the individual ranking models.

CompatibilitynDCGaSetting and model

Help-harm ↑Harm ↓Help ↑Harmc ↓Helpb ↑

allTunhelpfulT
fhelpfulT

eallTallTallTallT
d

0.015–0.0720.127h0.1110.126h0.3410.538hHP
g

Transfer learning

0.036–0.0200.1060.0800.1150.2640.438HU’i,j

0.002–0.0130.0210.0240.0260.102h0.140HS’j,k

–0.003–0.0320.0330.0350.0310.1130.131HC’j,l

Domain adaptation

0.039h–0.0080.0990.0380.0770.2770.436HU’

0.0140.003h0.0300.015h0.0300.2510.368HS’

0.014–0.0550.1040.0640.0790.2960.443HC’

anDCG: normalized discounted cumulative gain.
bHelp: results considering only helpful documents in the relevance judgment.
cHarm: results considering only harmful documents in the relevance judgment.
dallT: all topics.
ehelpfulT: helpful topics.
funhelpfulT: unhelpful topics.
gHp: preprocess.
hBest performance.
iHU’: usefulness model.
jUnlike HU, HS, and HC,HU’, HS’, and HC’ rankings are not combined with Hp.
kHS’: supportiveness model.
lHC’: credibility model.

In the transfer learning setting, the usefulness model (HU’)
achieved the highest help-harm compatibility (+3.6%; P=.20).
The preprocessing model gave the best help compatibility
(+12.7%; HU’: P=.70; HS’ and HC’: P<.001). Additionally, the
preprocessing model yielded the highest nDCG score for help
(HU’: P=.10; HS’ and HC’: P<.001). On the other hand, the
preprocessing model showed the highest harm compatibility
(+11.1%; HU’: P=.33; HS’ and HC’: P<.01). The combination
of the preprocessing and usefulness models (ie, HU=+5.6%)
improved the preprocessing model by 4.1% (from +1.5% to
+5.6% on the help-harm compatibility; P=.06). For harm
compatibility, the supportiveness model (HS’) achieved the best
performance among the individual models (+2.4%; Hp: P<.001;
Hu’: P=.03; HC’: P=.34).

In the domain adaptation setting, the usefulness model (HU’)
reached help-harm compatibility of +3.9%, similarly
outperforming the other models (P=.32). The supportiveness

model (HS’) achieved the best performance on harm
compatibility (+1.5%; P=.07) and on help-harm compatibility
for unhelpful topics (+0.3%; P=.50). Notice that +0.3% is the
only positive help-harm compatibility for harmful topics
throughout all the individual and combined models on both
settings including the preprocessing step. Last, in the domain
adaption setting, the performance of individual models was
better than the simpler transfer learning approach (1% increase
on average for the compatibility metric; P=.19).

Reranking of the Top-N Documents
To further illustrate the effectiveness of the supportiveness and
credibility dimensions, in Figure 2, we reranked only the top-n
documents using the results of the usefulness model (HU) as the
basis. As we can see in Table 4, the overall effectiveness of the
supportiveness (HS’) and credibility (HC’) models were
considerably lower than that of the usefulness (HU’) model. The
reason is that the relevance judgments were created using a
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hierarchical approach: Only useful documents were further
considered for supportiveness and credibility evaluations. As
we reranked the documents in supportiveness and credibility
dimensions without taking this hierarchy into account, their
results might not be optimal. For example, low-ranking
documents (ie, not useful) could have high credibility and,
during the reranking process, could be boosted to the top ranks.
Thus, we applied the supportiveness (HS’) and credibility (HC’)
models to the usefulness model (HU) results to rerank the top
10, 20, 50, 100, and 1000 documents, obtaining 2 new rankings,
which were combined using RRF.

As the reranking depth increased from 10 to 1000, we observed
a decrease in both help and harm compatibility. This suggests

that both helpful and harmful documents were downgraded due
to the inclusion of less useful but potentially supportive or
credible documents. In the transfer learning setting, as the
reranking depth increased, the help-harm compatibility
decreased until the depth reached 100. Beyond this point, we
observed a slight increase at the depth of 1000. In the domain
adaptation setting, the help-harm compatibility increased above
+6% when the reranking depth was between 20 and 50. This
implies that, following the procedure of human annotation, by
considering only the more useful documents, the supportiveness
and credibility dimensions can help retrieve more helpful than
harmful documents.

Figure 2. Compatibility performance for the top 10, 20, 50, 100, and 1000 reranking depths taking the results of usefulness as the basis.

Quality Control
One of the advantages of the proposed multidimensional model
is that we can optimize the results according to different quality
metrics. In Figure 3, we show how the compatibility
performance varies by changing the weight of the specific
models (HP, HU’, HS’, and HC’). We normalized the score of
the individual models to the unit and combined them linearly
using a weight for 1 model between 0 and 2 while fixing the
weight for the other 3 models at 0.33. For example, to see the
influence of HP in the final performance, we fixed the weights
of HU’, HS’, and HC’ at 0.33 and varied the weight of HP

between 0 and 2. With weight 0, the reference model did not
account for the final rank, while with weight 2, its impact was
twice the sum of the other 3 models.

In the transfer learning setting, when we increased the weight
of preprocessing and usefulness models, the help-harm
compatibility increased to the best performance (+4.1% and
+5.6%) then decreased slightly. For the supportiveness and

credibility dimensions, the help-harm compatibility began to
decrease once the weight was added. These results imply that
the compatibility decreases with the weight addition regardless
of whether it is helpful compatibility, harmful compatibility, or
the difference between the 2.

In the domain adaptation setting, when we increased the weight
of preprocessing, supportiveness, and credibility models
individually, the help-harm compatibility increased then
converged to +6.6%, +5.9%, and +4.8%, respectively. For the
usefulness model, the help-harm compatibility decreased once
the weight was added until it converged to +4.4%. It is worth
noticing that, by combining the rankings linearly, the help-harm
compatibility obtained from the domain adaptation setting may
exceed the results we obtained when performing ranking
combination with RRF (+3.7%), as well as the state-of-the-art
result (+5.6%) in the transfer learning setting. The highest
help-harm compatibility scores for each weighting combination
were +6.6%, +6.8%, +6.5%, and +5.9% when varying the
weights of HP, HU’, HS’, and HC’, respectively.
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Figure 3. Compatibility in the transfer learning approach (A-C) and compatibility in the domain adaptation approach (D-F), all with weights added to
specific models.

Model Interpretation
To semantically explain the variation of help-harm
compatibility, we set the search depth    to 10. The help, harm,
and help-harm compatibility of the 3 models are shown in Table
5. The help-harm compatibility was 1 when only helpful
documents were retrieved in the top 10. Conversely, the
help-harm compatibility was –1 when only harmful documents
were retrieved in the top 10. A variation of 10% in the help or
harm compatibility corresponded roughly to 1 helpful document
exceeding the number of harmful documents retrieved in the
top 10. Overall, the results show that retrieving relevant
documents for health-related queries is hard, as, on average,

only 1.5 of 10 documents were relevant (helpful or harmful) to
the topic. In addition, we interpreted that the 3 models retrieved,
on average, twice the number of helpful documents as harmful
documents. Particularly, HU had, on average, around 1 more
helpful than harmful document in the top 10, of the 1.5 relevant
documents retrieved. We also present the same analysis results
for the domain adaptation setting, which also implies that, when
the rankings were combined with RRF, the transfer learning
approach outperformed the domain adaptation approach. See
more details about the average compatibility for all the topics
as the search depth K varied in Figure S1 in Multimedia
Appendix 3.

JMIR AI 2024 | vol. 3 | e42630 | p.418https://ai.jmir.org/2024/1/e42630
(page number not for citation purposes)

Zhang et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 5. Help, harm, and help-harm compatibility with search depth set to 10 for the transfer learning setting and domain adaptation setting.

Help-harm ↑Harmb ↓Helpa ↑Setting and model

Transfer learning

0.065d0.047d0.112dHU
c

0.0380.0500.088HU + HS
e

0.0440.0560.099HU + HS + HC
f

Domain adaptation

0.0340.0600.094H U

0.0030.0700.074HU + HS

0.0110.0760.087HU + HS + HC

aHelp: results considering only helpful documents in the relevance judgment.
bHarm: results considering only harmful documents in the relevance judgment.
cHU: usefulness model.
dBest performance.
eHS: supportiveness model.
fHC: credibility model.

Discussion

We propose a quality-based multidimensional ranking model
to enhance the usefulness, supportiveness, and credibility of
retrieved web resources for health-related queries. By adapting
our approach in a transfer learning setting, we showed
state-of-the-art results in the automatic quality ranking
evaluation benchmark. We further explored the pipeline in a
domain adaptation setting and showed that, in both settings, the
proposed method can identify more helpful than harmful
documents, as measured by +5% and +7% help-harm
compatibility scores, respectively. By combining different
reranking strategies, we showed that multidimensional aspects
have a significant impact on retrieving high-quality information,
particularly for unhelpful topics.

The quality of web documents is biased in terms of topic stance.
For all models, helpful topics achieve higher help compatibility,
while unhelpful topics achieve higher harm compatibility. The
implication is that web documents centered around helpful
topics are more likely to support the intervention and are helpful.
On the other hand, web documents focusing on unhelpful topics
present an equal chance of being supportive or dissuasive on
the intervention and are helpful or harmful. Among other
consequences, if web data are used to train large language
models without meticulously crafted training examples using
effective data set search methods [73], as the one proposed here,
they are likely to further propagate health misinformation.

Automatic retrieval systems tend to find more helpful
information on helpful topics with the information biased toward
helpfulness and find more harmful information on unhelpful
topics with the information slightly biased toward harmfulness.
The help-harm compatibility ranged from +2.3% to +15.3% for
helpful topics and from –5.7% to +0.2% for unhelpful topics.
The difference shows that, for the improvement of
quality-centered retrieval models, it is especially important to

focus on unhelpful topics. Moreover, although specialized
models might provide enhanced effectiveness, their combination
is not straightforward. In our experiments, we showed that
supportiveness and credibility models should be applied only
in the top 20 to 50 retrieved documents to achieve optimal
performance.

Finding the correct stance automatically is another key
component of the automatic model. Automatic models show
the ability to prioritize helpful documents, resulting in positive
help-harm compatibility. However, they are still far from
state-of-the-art manual models, with help-harm compatibility
scores ranging from +20.8% [68] to +25.9% [31]. We
acknowledge that the help-harm compatibility can improve
significantly with the correct stance given. This information is
nevertheless unavailable in standard search environments; thus,
the scenario analyzed in this work is more adapted to real-world
applications.

This work has certain limitations. In the domain adaptation
setting, we simplified the task to consider 2 classes within each
dimension for the classification due to the limited variety
available in the labeled data set. Alternatively, we could add
other classes from documents that have been retrieved.
Moreover, the number of topics used to evaluate our models
was limited (n=32), despite including 6030 human-annotated,
query-document pairs, and thus reflects only a small portion of
misinformation use cases.

To conclude, the proliferation of health misinformation in web
resources has led to mistrust and confusion among online health
advice seekers. Automatic maintenance of factual discretion in
web search results is the need of the hour. We propose a
multidimensional information quality ranking model that utilizes
usefulness, supportiveness, and credibility to strengthen the
factual reliability of health advice search results. Experiments
conducted on publicly available data sets show that the proposed
model is promising, achieving state-of-the-art performance for
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automatic ranking in comparison with various baselines
implemented on the TREC Health Misinformation 2021
benchmark. Thus, the proposed approach could be used to
improve online health searches and provide quality-enhanced

information for health information seekers. Future research
could explore more granular classification models for each
dimension, and a model simplification could provide an
advantage for real-world implementations.
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Abstract

Background: Abdominal auscultation (i.e., listening to bowel sounds (BSs)) can be used to analyze digestion. An automated
retrieval of BS would be beneficial to assess gastrointestinal disorders noninvasively.

Objective: This study aims to develop a multiscale spotting model to detect BSs in continuous audio data from a wearable
monitoring system.

Methods: We designed a spotting model based on the Efficient-U-Net (EffUNet) architecture to analyze 10-second audio
segments at a time and spot BSs with a temporal resolution of 25 ms. Evaluation data were collected across different digestive
phases from 18 healthy participants and 9 patients with inflammatory bowel disease (IBD). Audio data were recorded in a daytime
setting with a smart T-Shirt that embeds digital microphones. The data set was annotated by independent raters with substantial
agreement (Cohen κ between 0.70 and 0.75), resulting in 136 hours of labeled data. In total, 11,482 BSs were analyzed, with a
BS duration ranging between 18 ms and 6.3 seconds. The share of BSs in the data set (BS ratio) was 0.0089. We analyzed the
performance depending on noise level, BS duration, and BS event rate. We also report spotting timing errors.

Results: Leave-one-participant-out cross-validation of BS event spotting yielded a median F1-score of 0.73 for both healthy
volunteers and patients with IBD. EffUNet detected BSs under different noise conditions with 0.73 recall and 0.72 precision. In
particular, for a signal-to-noise ratio over 4 dB, more than 83% of BSs were recognized, with precision of 0.77 or more. EffUNet
recall dropped below 0.60 for BS duration of 1.5 seconds or less. At a BS ratio greater than 0.05, the precision of our model was
over 0.83. For both healthy participants and patients with IBD, insertion and deletion timing errors were the largest, with a total
of 15.54 minutes of insertion errors and 13.08 minutes of deletion errors over the total audio data set. On our data set, EffUNet
outperformed existing BS spotting models that provide similar temporal resolution.

Conclusions: The EffUNet spotter is robust against background noise and can retrieve BSs with varying duration. EffUNet
outperforms previous BS detection approaches in unmodified audio data, containing highly sparse BS events.

(JMIR AI 2024;3:e51118)   doi:10.2196/51118
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Introduction

There are various diagnostic tools to assess bowel motility,
including questionnaires, ultrasound, and endoscopic
examinations [1,2]. However, there is a lack of computational
tools to monitor digestion continuously across the
gastrointestinal tract. Abdominal examinations using a
stethoscope (ie, auscultation of the bowel) is a common clinical
practice to interpret bowel sounds (BSs) [3]. While BSs could
help examiners perform diagnoses [4,5], auscultation is mostly
done for a few minutes only [6]. However, BSs occur sparsely
over time, have varying patterns, and often exhibit low volume.
Previous investigations (eg, [7]) recommended recording BSs
with multiple sensors and over longer periods to maximize the
amount of BS observations. Craine et al [8] reported that
changes in BS occurrences across different digestive phases
were statistically different in patients with irritable bowel
syndrome and Crohn disease (CD). Later studies (eg, [9])
showed that digestion analysis based on BSs could support
bowel motility assessment as well as monitoring food intake.
For instance, an increased number of BS events could indicate
bowel hyperactivity, caused by, for example, gastroenteritis or
inflammatory bowel disease (IBD) [6]. Yao and Tai [10]
recorded BSs across patients with CD, patients with ulcerative
colitis (UC), and healthy controls. The authors reported that
patients with CD showed the highest BS peak frequency, while
patients with UC had the highest BS event count per unit time.
Consequently, spotting BS occurrences in continuous audio
could provide important information to assess digestion. To
date, however, the clinical assessment based on BS remains
qualitative and lacks quantification of BS characteristics [11].
For all of the aforementioned applications, short manual
auscultation is considered challenging, as it provides examiners
with insufficient information on dynamic bowel conditions.

Various wearable prototypes were proposed to record BSs in
healthy volunteers and patients with digestive disorders (eg,
[12,13]). Study protocols were primarily designed to observe
BSs under controlled laboratory settings, that is, while
participants laid down and rested, to minimize noise artifacts.
The large amount of audio data that could be recorded by
wearable systems renders a manual analysis infeasible.

Previous studies (eg, [14]) have attempted to reduce the amount
of audio data to be manually analyzed with segment-based
approaches that detected audio sections containing BS events.
Moreover, methods were proposed to improve BS event
detection and ease expert examination, by determining the onset
and offset of the BS patterns in audio data streams (eg, [9,15]).
Nevertheless, most algorithms were tested on balanced data sets
or selected subsets of the recordings only, from dozens of
minutes to a few hours. However, when collecting data with a
wearable device, the BS ratio of relevant events, for example,
BSs versus other surrounding sounds, largely influences retrieval
performance, which reflects a basic problem in pattern spotting
[16]. Specifically, in naturalistic, unmodified audio data, BS
events appear sparsely and their low amplitude compared with
other body sounds, for example, lung sounds, hampers BS
spotting. For example, Ficek et al [15] reported that temporal

sparsity of BSs could increase the false-positive rate. Previous
studies have shown that BSs can vary in duration, from dozens
of milliseconds to a few seconds [17,18]. Hence, the key
challenge is to spot BS events, embedded in a large amount of
irrelevant audio data, commonly referred to as the NULL class.
To spot very short BS events (ie, those <100 ms), detection
algorithms need to maximize temporal resolution, which is
usually done by minimizing the sliding window size used to
inspect the data stream. However, reducing the sliding window
size removes context from the audio data, and thus may not
improve recognition performance for BSs far shorter than 1
second.

In this paper, we present a BS spotting method based on a deep
neural network (DNN) model. Our DNN model spots BS events
by analyzing a continuous data stream recorded with a wearable
device at 10-second audio segments. Using a multiscale
approach, we can retrieve BS event onset and offset at a
temporal resolution, that is, the smallest prediction duration, of
25 ms. Our approach is inspired by the way humans perform
auscultation: particularly, for BS shorter than 1 second, experts
would listen to the audio data surrounding the BS event to obtain
an acoustic context. We evaluated our spotting approach on
continuous BS recordings collected across different digestive
phases, including sedentary activities and food intake. Unlike
previous studies, we tested our approach on audio data having
natural BS temporal distribution, that is, no resampling was
applied to our data set.

The paper provides the following contributions:

• We present a DNN-based method for BS spotting in
continuous data streams. Our model achieves a temporal
resolution of 25 ms through a multiscale approach.

• We evaluate our model on 136 hours of annotated audio
data recorded from 18 healthy participants and 9 patients
with an IBD, in total including more than 11,000 annotated
BS events. To spot BS events, we do not discern between
healthy controls and patients with IBD, but focus on
common BS acoustic properties across the different bowel
conditions.

• We analyze spotting errors over the unmodified audio data
streams. In addition, we analyze our model’s performance
under various signal-to-noise ratios (SNRs), for different
BS event durations, and by varying the temporal sparsity
of BS events (ie, BS ratio).

Methods

Overview
Here, we describe the DNN model proposed for BS detection.
Subsequently, we detail the spotting procedure, the BS
evaluation study, and our evaluation methods.

Efficient-U-Net Model
Figure 1 illustrates the Efficient-U-Net (EffUNet) DNN model
architecture. The proposed model was based on UNet [19] and
EfficientNet [20] models, hence the name EffUNet. In total,
EffUNet has approximately 18.1 million parameters.
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Figure 1. (A) Architecture of the proposed Efficient-U-Net (EffUNet) for bowel sound (BS) spotting. The model took an audio spectrogram as an input
and extracted relevant features with EfficientNet-B2 during the encoding (green boxes). Subsequently, features were decoded, that is, upsampled and
concatenated with higher-resolution features to locate them on the original spectrogram (orange boxes). Finally, the obtained 2D features were converted
to a BS detection mask by applying average pooling along the frequency dimension and a Softmax operation to the obtained 1D temporal maps.
Spectrogram frames with highest BS class probability were identified as containing BS. (B) Inside out of the smart T-shirt showing the embedded
electronics. Microphones and the wearable computer were protected and isolated by 3D printed covers. Microphones CH2, CH3, and CH7 (white circles)
were used during BS annotation. (C and D) Illustration and time-frequency representation of 2 expert-annotated BS events in the continuous data stream
collected from 1 study participant with very different BS event duration. batchnorm: batch normalization; Conv: convolution; dw: depthwise; pw:
pointwise; ReLU: rectified linear unit; transp: transposed; up-conv: transposed convolution.

UNet is a convolutional neural network (CNN) that was
originally proposed for biomedical image segmentation [19].
The model name is given by its U-shaped architecture, which
is composed of an encoder followed by a decoder network. The
encoder extracts relevant features from the DNN input, and the
decoder generates a segmentation mask by upsampling features
from the encoder’s last layer and concatenating them with
higher-resolution features extracted from the encoder’s earlier
layers. Each block of the decoder is therefore composed of a
2×2 transposed convolution (up-conv), followed by two 3×3
convolutions. Upsampling restores the original input resolution,
and the concatenation improves the localization of the extracted
features. A final convolutional layer classifies each input point,

for example, each time-frequency bin of audio spectrogram Fk,

with . We based our approach on the UNet architecture
because of its high classification resolution compared with the
input data size (ie, it could classify images by pixels). Other
common CNN architectures (eg, [21]) usually provide 1
prediction per input data, for example, predict object presence
in an image, thus omitting other relevant information, such as
the object location in the image. In audio processing,
architectures similar to UNet have been used mainly for
source-separation tasks [22].

In computer vision segmentation tasks, the model output is
usually a 2D map with the same dimensions as the input data.
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In our work, EffUNet takes an audio spectrogram as an input
and returns a binary detection mask in the time domain. To
obtain a 1D mask, we applied an average pooling along the
frequency dimension and a Softmax function to the model
output. EffUNet thus classified each spectrogram time bin Fk

as containing either BS or non-BSs (NBSs). Thus, the spotting
temporal resolution corresponds to the audio spectrogram frame
length.

As an encoder, several CNN architectures were used and tested
in computer vision to improve model performance (eg, residual
network [21]). In our work, we used EfficientNet [20] as an
encoding model. Similar architectures based on combined
EfficientNet and UNet were already proposed in computer vision
tasks with promising results (eg, [23]). EfficientNet architectures
were introduced to improve image classification performance
while reducing the amount of model parameters. The simpler
architecture compared with other common CNNs makes
EfficientNet suitable for mobile and edge computing
applications. In EfficientNet, convolution operations are
performed by a bottleneck block: (1) an inverted bottleneck
(1×1) convolution, (2) a depthwise (3×3) convolution to extract
features, and (3) a pointwise (1×1) convolution to linearly
combine the features. Similarly, to standard convolutional layers,
a batch normalization layer and a linear layer with rectified
linear unit activation are applied after each convolution. In
addition, residual connections are added between bottleneck
blocks. Different EfficientNet configurations are available with
compound scaling, that is, simultaneous increase of features
count, number of layers, and input data resolution. We selected
the EfficientNet-B2 configuration for our detection model. The
EfficientNet-B2 architecture was already used in audio tagging
tasks with promising performance [24].

EffUNet Spotting Procedure

Data Preprocessing and Training Pipeline
From audio data, log-Mel spectrograms were extracted to train
and evaluate EffUNet. Here, we detail the data preprocessing
and training pipeline, including transfer learning and data
augmentation. Subsequently, we describe the spotting
implementation.

Audio Preprocessing
Recordings were filtered with a high-pass biquadratic filter
(cutoff: 60 Hz) to remove signal offset. Subsequently, recordings
were split into nonoverlapping audio segments Si with duration
δ=10 seconds. Each audio channel was preprocessed for BS
spotting independently. We defined each audio segment Si as
a set of samples:

where is a time series sample.

Each audio segment was converted to a log-Mel spectrogram
using 128 frequency bins, a sliding 25-ms window, and a stride
length of 10 ms. As described in the “Efficient-U-Net Model”
section, the 25-ms window corresponds to the spotting temporal
resolution of EffUNet. Hanning windowing was applied to the

sliding windows. Each resulting spectrogram had 128 Mel bins
and 998 frames. According to EfficientNet-B2 pretraining [24],
we zero-padded the spectrogram along the time axis to obtain
1056 time bins. The obtained spectrograms were standardized.

For every Si, we defined the audio spectrogram time bins Fk as
follows:

where  is a time series sample. The sliding window duration
γ=25 ms·fS and the stride length σ=10 ms·fS in all time series
samples.

Every annotated BS event ej can be denoted as a set of time
series samples as follows:

where tj,s and tj,e are the onset and offset of BS event ej in time
series samples, respectively.

For model learning, BS manual annotations were converted to
audio spectrogram ground truth masks according to the approach
outlined by Ficek et al [15]: a spectrogram frame Fk was defined

as containing BSs (Fk,BS) if the time overlaps between the
spectrogram frame and a BS event ej was ≥50%. Thus, for set
Fk,BS:

where =0.5 is the temporal overlap and | · | is the set
cardinality. Otherwise, the spectrogram frame was denoted as
containing NBSs (Fk,NBS), that is, the NULL class. We define

supersets of all spectrogram frames as Fk,BS FBS and

Fk,NBS FNBS. Therefore, for each audio segment Si, we obtained
from EffUNet a binary mask Mi denoted as Fk. As with the
log-Mel spectrograms, we zero-padded the binary masks Mi

along the time axis to obtain 1×1056 time bin masks.

Transfer Learning
The EffUNet encoder, that is, EfficientNet-B2, was initialized
with pretraining weights from AudioSet [25]. AudioSet is to
date the largest audio data set, containing over 500 audio classes
with over 2 million 10-s audio clips (ie, >5000 hours of audio
data). AudioSet contains sound examples from daily living,
including, among others, speech, environmental sounds, and
BSs. We believe that pretraining on a large variety of sounds
could improve the spotting robustness against background noise
and other artifacts. As both AudioSet and the BS recordings of
our study were sampled at the same frequency (ie, 16 kHz), the
pretrained encoder feature extraction was compatible with our
BS data. Nevertheless, because no onset and offset of audio
events were originally provided in AudioSet, no pretraining
could be applied to our EffUNet decoder. Therefore, the decoder
weights were initialized with He initialization [26].
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Training and Data Augmentation
EffUNet training parameters were selected according to the
Pretraining, Sampling, Labeling, and Aggregation pipeline [24].
After model initialization, EffUNet was trained for 25 epochs
using an imbalanced batch size of 32 and an initial learning rate

of 1 × 10−4. The learning rate was subsequently reduced with
a decay of 0.85 for each epoch, starting from the sixth epoch.

Adam optimizer [27] was used with weight decay of 5 × 10−7,
β1=0.95, β2=0.999. We used the following loss function for
optimization:

where is the cross-entropy loss [28] calculated between the

prediction and the ground truth y, and is the dice loss
[29]. While the cross-entropy loss maximizes the model
performance to classify single spectrogram time bins, the dice
loss maximizes the similarity between the predicted binary mask
and the ground truth (ie, expert BS annotation).

During the training, the input audio spectrograms were randomly
transformed to improve the model generalization. On each batch,
time-frequency masking [30] was applied to up to 24 frequency
bins and up to 10% of the time bins. In addition, spectrograms
were randomly shifted along the time axis with a maximum
shift of +10 or –10 time bins. Random white noise with

magnitude in the range [0, 0.1) was also added to the input
spectrogram. For the evaluation, we selected the model weights
obtained at the end of the training.

Spotting Implementation
The binary masks Mi obtained from EffUNet were converted

to onset/offset predictions of BS events. Spotted BS events 
were described as follows:

where is a time series sample, and Di,BS is the set of N

consecutive overlapping audio spectrogram time bins that
were detected as containing BSs.

Evaluation Study and Data Preprocessing

Study Protocol
The study involved 27 participants (13 females, aged 21-69

years; clothing sizes: S-XL; and BMI 17.2-32.2 kg/m2). Among
the 27 individuals, 9 were patients with IBD. Table 1 illustrates
the population characteristics of our data set. After signing
written consent, participants were invited to the laboratory in
the morning before breakfast.

Table 1. Characteristics of the population included in this study.

TotalHealthyIBD remissionIBD activityCDcUCbIBDaCohort

271836369Participants, n

Sex, n

141125213Male

13711156Female

28 (21-69)28 (21-56)47 (45-58)33 (23-69)39 (39-47)36 (23-69)39 (23-69)Age (years), median (range)

22.5 (17.2-
32.2)

22.3 (17.1-
32.2)

26.0 (18.4-26.1)24.4 (17.9-
25.3)

24.6 (24.2-
26.1)

22.8 (17.9-
26.0)

24.6 (17.9-
26.2)

BMI (kg/m2), median (range)

aIBD: inflammatory bowel disease.
bUC: ulcerative colitis.
cCD: Crohn disease.

A smart T-shirt (GastroDigitalShirt) [31] was used to record
BSs from 8 embedded digital miniature microphones
(SPH0645LM4H-B; Knowles) aligned on the abdomen.
Microphones were positioned according to the 9-quadrant
reference abdominal map and arranged to follow the digestive
process. For example, the first channel was placed on the
esophagus, the second channel on the stomach. A belt-worn
computer collected and saved all microphone channels at fs=16
kHz. A tight-fitting design and various sizes were used to ensure
comfort and optimal skin attachment. The fabric was based on
elastane, thus highly stretchable. The cloth cut was based on a
compression T-shirt to minimize noise artifacts as a result of
motion. Different cloth cuts for females and males were prepared
to fit all body shapes and provide optimal comfort. Figure 1
shows our wearable prototype and the embedded electronics.

Participants were asked to put on the smart T-shirt and audio
was continuously recorded from 1 hour before breakfast (fasting
phase) to 1 hour after breakfast (postprandial phase). To avoid
abnormal bowel motility stimulation, induced by, for example,
physical movements [32], participants laid down and quietly
relaxed when there was no meal intake or other activity. They
were recommended to read a book, watch or listen to multimedia
on a tablet, or sleep. Although participants were relaxing, they
could move on the lounge chair, if desired. Moreover,
participants were required to stand up and sit down as per the
study protocol, so motion artifacts could be included in the
recording. While eating breakfast, participants sat at a table and
were allowed to talk to the study personnel or move freely
around the room. The audio was continuously recorded during
the whole session. Participants were allowed to drink water
throughout the recording and could pause it anytime for a break
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(eg, to visit the toilet). Along with BSs, other sound events could
be captured (ie, NULL class data). For instance, conversations
between participants and study personnel and other
environmental sounds from the room surroundings, for example,
traffic as well as activities and voices outside the recording
room, could be recorded. In addition, voluntary body position
adjustments and eating or drinking could introduce noise
artifacts.

Upon completing the recording protocol, study participants
were asked to rate the T-shirt’s comfort and usability to confirm
that it could be worn for the recording duration. The assessment
was based on the wearable comfort assessment questionnaire
[33]. The study participants reported no discomfort caused by
the embedded electronics.

BS Annotation
Recordings were annotated by pairs of raters through audio and
visual inspection of the raw audio data using Audacity (The
Audacity Team). Annotations were sample specific, that is, no
quantization of the BS events’ onset/offset was performed. An
example of annotated BS events with different durations is
presented in Figure 1. For raters to identify BS events with
varying durations and amplitudes in the recordings, view time
resolution in Audacity had to be adjusted. On average, each
rater required 8-12 hours to label 1 hour of recording, depending
on event rate (ie, the number of BSs per unit time) and noise
level. As a result of the time-consuming annotation process,
only a subset of the recordings was annotated by more than 1
rater to evaluate interrater agreement (see below). The remaining
data were labeled by 1 of the raters and the annotations were
checked by the other rater. Among all participants, audio data
from the sensors positioned on the stomach (CH2) and the small
intestine above the navel (CH3) were annotated (see Figure 1
for a sensor map). As IBD usually affects the distal part of the
gastrointestinal tract, in the patient group and in some

individuals from the healthy group, an additional microphone
placed on the distal part of the large intestine (CH7) was
included in the annotation to evaluate our spotting approach
with additional BS patterns. Because of SNR limitations, the
channel located at the large intestine could not be annotated for
all participants. The annotation was performed on each recording
channel separately because BSs could be recorded at 1 or more
locations depending on the sound propagation across the
abdomen. The position of annotated audio channels on the
T-shirt is shown in Figure 1.

Based on BS features reported in the literature [17,18], as well
as preliminary auscultation sessions, and early annotation
reviews, labeling guidelines were selected and agreed upon
between raters: BS duration had to be 18 ms or more, and
consecutive BS events with sound-to-sound interval less than
100 ms were marked as a single event. Noisy or BSs not visible
in the audio signal were labeled as tentative.

Cohen κ interrater agreement was used to evaluate the
annotation quality. Two raters labeled the first 30 minutes of
recordings from 8 healthy participants and 9 patients. After the
agreement evaluation for each participant’s recording, a label
review session was conducted to discuss and revise any BSs
with disagreement. If an agreement of κ<0.6, indicating slight
to moderate disagreement, was observed for a participant data
set, then the agreement score was recalculated based on an
additional 10 minutes of the participant’s recording after the
review and revision. Overall, in the healthy group and the patient
group, agreement on nontentative BS annotations was
substantial, with Cohen κ of 0.70 and 0.75, respectively. As the
data imbalance between BSs and NBSs increases, the maximum
achievable agreement between raters decreases. Therefore,
agreements are deemed fair to good beyond chance for scores
between 0.40 and 0.75 [34]. Figure 2 illustrates the interrater
agreement per study group.

Figure 2. (A) Interrater agreement per study group. The evaluation was performed on a subset of the study participants. Overall, the agreement on the
nontentative bowel sound (BS) annotations was substantial. (B) Amount and duration distribution of BS annotated per participant. Most BSs are short
(median duration 223 ms).

Overall, 11,482 BSs plus 3801 tentative BSs were annotated
on approximately 136 hours of audio. The annotated BSs had
a total duration of 1.22 hours, with 52.39 minutes recorded from
the healthy group and 20.71 minutes recorded from the patient
group. Of the total nontentative annotated BSs, 3215 were
observed at the stomach, 5667 at the small intestine, and 2600
at the large intestine. Because of the noisy signal patterns that
could affect the spotting performance, tentative BSs were not
included in the analysis and, therefore, were considered NBSs

(ie, belonging to the NULL class). The quantity and duration
of annotated BSs across all participants are shown in Figure 2.
As reported by previous studies [17,18], BS event duration
ranges from 18 ms to a few seconds. However, most annotated
BSs have a very short duration (<500 ms).
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Evaluation Methods

Validation Method
Leave-one-participant-out (LOPO) cross-validation (CV) was
used to evaluate spotting performance: audio data from all but
1 participant were used to train the DNN, and its performance
was evaluated on the excluded participant’s data. Performance
statistics were obtained from the results of each validation set.

Evaluation Metrics
Precision and recall (PR) metrics and F1-score were used to
evaluate spotting performance across all testing data. Metrics
were calculated using a samplewise approach based on Mesaros
et al [35], that is, model predictions and BS annotations were
compared sample-by-sample: ti,S=1 (fS≈0.06 ms). Thus, our
evaluation approach was independent of the spotting algorithm
resolution. Furthermore, we compared directly with BS
annotations without considering their spotting frame–adjusted
versions.

We analyzed spotting detection errors with the 2-class segment
error metric [36]. False-positive FPi were marked as merge
errors if they connected 2 consecutive events ej, overfill errors
if FPi occurred at the beginning or end of an event ej, and
insertion errors otherwise. False-negative FNi were marked as
fragmentation errors if FNi occurred within 1 event ej, underfill
errors if they occurred at the beginning or end of an event ej,
and deletion errors otherwise. For each LOPO fold, we derived
the overall detection timing errors as time duration.

Model performance statistics were described using median and
IQR values. IQR was determined as the difference between
quartile Q1 (ie, the mid value between the median and the
minimum) and quartile Q3 (ie, the mid value between the
maximum and the median). We further evaluated spotting
performance by analyzing PR metrics over SNR as follows:

where θS is an SNR threshold applied to audio segments Si. For
each Si, SNR was computed in the log-decibel scale as the ratio

between the signal power of ej Si and the background noise
in Si.

Moreover, we analyzed PR metrics over BS duration. To
estimate TPi, FPi, and FNi depending on BS duration, we only

considered annotated events ej and detected event so that |ej|

≥ θD and , where θD was a BS duration threshold.

Retrieval generalization was additionally evaluated by analyzing
PR over event rate. Event rate was defined as BS events per
time unit according to Amft [16]. To compare our model
performance with related work, we converted event rate to BS
ratio (ie, the ratio between spectrogram time bins containing
BSs and total time bins) as follows:

For each validation fold, we swept the BS ratio from 0.00001
to 0.60 by randomly sampling K from Fk,BS and J from Fk,NBS

so that BS ratio=K/(K+J), thus corresponding to bootstrap
samples according to the count of validation folds. For each
selected BS ratio, we calculated the corresponding event rate
per hour of recording. Although models were not retrained on
the selected BS ratios, the analysis provides insights into the
performance at different class imbalance levels. We show that
spotting performance depends on the BS ratio and compared
our results with published works in the literature, which mostly
focused on artificially balanced data sets.

Comparison With Prior Work
We examined the performance of existing models for BS
detection on our data set. For comparison purposes, we focused
on spotting models with similar temporal resolution.
Segment-based spotting approaches, such as those described
by [37], were excluded from our comparison because of their
distinct design scope, which does not include providing BS
event onset/offset. Among recent works, the convolutional
recurrent neural network (CRNN) by Ficek et al [15], the CNN
by Wang et al [9], and the CNN by Kutsumi et al [38] offer the
highest temporal resolution. The CRNN training pipeline,
originally evaluated in a data set of 53 minutes, could not be
scaled to our substantially larger data set, as the CRNN
optimization did not converge on our highly imbalanced data
set. The CNN by Kutsumi et al [38] could not be reimplemented
as it lacked methodological information (see the “Discussion”
section). We, therefore, reimplemented and trained the CNN
by Wang et al [9] for 30 epochs using an initial learning rate of
0.001 and a balanced batch size of 128. Adadelta optimizer with

a weight decay of 10–7 and a decay rate of 0.95 was used to
optimize the cross-entropy loss function. Unlike our EffUNet
model, the CNN takes as input a log-Mel spectrogram extracted
from 60 ms nonoverlapping audio segments using a 50-ms
sliding window (preprocessed with Hanning windowing) and
a stride length (σ) of 5 ms. The CNN classified each spectrogram
as either containing BSs or not. We split our data accordingly
and assigned each 60-ms audio segment to either the BS or the
NBS class using Equation 4. We could not follow the labeling
approach proposed by Wang et al [9] because the authors
manually annotated each 60-ms audio segment individually
rather than the continuous data stream. The acquired audio data
were preprocessed by applying a high-pass filter with a cutoff
of 80 Hz. According to the authors, spectrograms were
standardized and no data augmentation was used during the
training. To directly compare the results with EffUNet, the CNN
was evaluated using LOPO CV.

Ethics Approval
The study was approved by the Ethics Commission of the
Friedrich-Alexander Universität Erlangen-Nürnberg (protocol
number 73_20 B).
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Results

BS Ratio and F1-Scores

Based on the annotated 11,482 BS events, we obtained a BS
ratio of approximately 0.0089 for the data set. Figure 3 shows

F1-scores across all participants and for each study group.
EffUNet achieved the largest F1-score in the healthy group. For
both groups, a median F1-score of 0.73 was obtained. Although
the patient group yields the lowest IQR, an outlier with an
F1-score of approximately 0.50 was identified.

Figure 3. (A) Box plots of F1-scores across all participants and study groups. For both groups, a median F1-score of 0.73 was obtained; however, the
patient group showed the lowest IQR. (B) Precision and recall (PR) over signal-to-noise ratio (SNR) analysis. The number of bowel sound (BS) events
considered for each threshold is also shown. When the SNR is >4 dB, more than 80% of BSs were detected by Efficient-U-Net, with a precision in the
range of 77%-86%. (C) PR over BS duration analysis. The number of BS events considered for each threshold is also shown. Even when including very
short BSs in the analysis, our model could detect events with nearly 75% PR. (D) PR over BS ratio. Dots and error bars show median and IQR,
respectively. In our data set, the BS ratio is only 0.0089. Nevertheless, 73% of BSs were recognized with 72% precision. Most studies in the literature
were performed on a balanced data set. If the BS ratio was >0.05, our model would detect BSs with precision >83%.

Table 2 shows the median PR of our spotting model for all study
groups. The BS spotting achieved identical median precision
scores for both the healthy and patient groups. However, BSs

recorded from patients proved more challenging to detect,
resulting in a lower median recall compared with the healthy
group.

Table 2. Spotting performance for all study groups. While Efficient-U-Net shows the same median precision for both study groups, the median recall
was higher for healthy individuals than for patients.

F1-score, median (IQR)Recall, median (IQR)Precision, median (IQR)Study group

0.73 (0.13)0.75 (0.19)0.80 (0.19)Healthy

0.73 (0.09)0.66 (0.14)0.80 (0.23)Patients

0.73 (0.11)0.73 (0.18)0.80 (0.19)All

PR metrics and F1-score per participant and BS ratio are shown
in Figure 4. Overall, BSs were sparser in the patient group than
in the healthy group, with a peak BS ratio of 0.015 versus 0.032.
Regardless of the BS temporal distribution, EffUNet achieved
an F1-score above 60%, except for an outlier in the patient
group. In participants, where F1-score dropped to approximately

60%, the performance decrease was mainly a result of a drop
in precision, while most BSs could be retrieved. Figure 4 also
shows PR metrics per sensor location. For all locations, EffUNet
yielded comparable median and IQR for precision. The median
recall was similar for all sensor locations, while recall IQR was
largest on the large intestine.
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Timing errors using the 2-class segment error analysis across
the study groups are shown in Table 3. For both healthy
participants and patients, insertion and deletion timing errors
were the largest, whereas fragmentation and merge errors were

the lowest. Besides per-participant timing error medians and
IQR, the timing error totals are shown. The total errors over the
136 hours of data were 15.54 minutes for insertions and 13.08
minutes for deletions.

Figure 4. (A) Precision and recall (PR) metrics and F1-score per study participant. Bowel sound (BS) ratios per participant recording are indicated.
Participants whose sensor on the large intestine was annotated are marked by an asterisk. Overall, BSs were sparser in the patient group than in the
healthy group, with a peak BS ratio of 0.015 versus 0.032. The F1-score was above 60%, except in individuals in whom performance decreased due to
a precision drop. (B) PR metrics comparison across the different sensor positions. For all locations, Efficient-U-Net yielded comparable median and
IQR for precision. The median recall was similar for all sensor locations, while the recall IQR was largest on the large intestine.

Table 3. Spotting timing errors per participant and totals using 2-class segment error analysis. Overall, insertion and deletion errors showed the largest
timing deviations for both healthy and patient groups, whereas fragmentation and merge errors showed the smallest deviations. On our data set of
approximately 84 hours for the healthy group and 52 hours for the patient group, 52.4 and 20.7 minutes were annotated as bowel sounds, respectively.

UnderfillOverfillMergeFragmentationDeletionInsertionStudy group

Per-participant summed spotting errors (seconds), median (IQR)

7.2 (14.8)4.2 (9.4)0.5 (1.4)1.1 (3.4)24.0 (35.2)15.2 (13.0)Healthy

7.4 (21.6)3.6 (7.4)0.7 (0.8)1.1 (3.3)20.8 (57.5)13.1 (14.1)Patients

7.4 (15.4)4.1 (7.0)0.5 (1.0)1.1 (3.4)21.9 (36.5)14.6 (13.0)All

Total per-participant summed spotting errors (minutes), median

3.73.10.40.87.913.3Healthy

1.80.90.10.35.22.3Patients

5.64.00.51.113.115.5All

Figure 3 shows PR metrics over SNR. Annotated BS events
considered within each SNR threshold θS bin are indicated. Our
model detected BSs under different noise conditions with 0.73
recall and 0.72 precision. When BSs are louder than background
noise, that is, SNR>4 dB, more than 83% of BSs were
recognized, with precision in the range between 77% and 86%.

PR metrics over BS duration are shown in Figure 3. Even when
including very short BSs in the analysis, our EffUNet model

could detect events with nearly 75% recall and precision.
EffUNet recall dropped below 60% for BS duration of 1.5
seconds or more, probably because of fragmented predictions
that were removed by the duration analysis procedure, that is,
BS event duration below θD (see the “Evaluation Metrics”
section for details).

Figure 3 shows PR metrics over different BS ratios. At our data
set’s BS ratio of 0.0089, 73% of the BSs were recognized with
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72% precision. Most studies in the literature were performed
on a balanced data set. If the BS ratio of our data set was over
0.05, our model would detect BSs with precision greater than
83%.

Comparison With Prior Work
Table 4 shows a comparison of the proposed model with other
methods from related work. Our approach was developed and
tested on a large data set of 136 hours of recordings. Unlike
other studies, the model was tested on the full, highly
imbalanced data set. Despite a window of 10 seconds being fed

to EffUNet during the detection, our multiscale approach can
detect BSs with a temporal resolution of 25 ms. The CNN
proposed by Wang et al [9] yielded a recall of 90% when tested
on a balanced data set of approximately 11 minutes in total. On
our substantially larger and highly imbalanced data set, however,
the CNN model of Wang et al [9] only yielded a median
precision of 5% (IQR 0.07) and a median recall of 74% (IQR
0.07). Optimization of the model proposed by Wang et al [9]
to deal with imbalanced data may be feasible, but is beyond the
scope of this work.

Table 4. Comparison of our model performance with other methods proposed in the literature. Stated performances were those provided by the
corresponding articles.

RecallPrecisionTemporal resolu-
tion

Recording conditionsBowel
sound ratio

Evaluation data set
size

Model

0.860.5810 msNocturnal recording, clinic0.0246N/AbCRNNa [15]

0.770.8310 msNocturnal recording, clinic0.15≈11 minutesCRNN [15]

0.90N/A60 msQuiet room0.50≈15 minutesCNNc [9]

0.750.71100 msN/AN/A2.4 hoursCNN [38]

≈0.99≈0.941 secondHouse rooms0.45≈5 hoursLSTMd [39]

0.500.925 secondsAnechoic chamber, synthetic
noise

0.50≈81 minutesAutoencoder [37]

0.980.976 secondsNeonatal intensive care unit0.5049 minutesEnsemble CNN [40]

0.700.8110 secondsLaboratory room0.1584 hoursCNN + Attention [14]

0.730.8025 msLaboratory/clinical room0.0089≈136 hoursEfficient-U-Net (this work)

aCRNN: convolutional recurrent neural network.
bN/A: not applicable.
cCNN: convolutional neural network.
dLSTM: long short-term memory neural network.

Discussion

Principal Findings
Acoustic abdominal monitoring requires physicians to analyze
BSs across different digestive phases to detect gastrointestinal
disorders. Our data set comprises approximately 2 hours of
continuous audio data for each of the 27 participants. We
recorded various phases of digestion, from the fasting stage to
the food ingestion and consequent postprandial phase. To
evaluate the potential of our model in a realistic scenario, the
BS natural temporal distribution was left unaltered, that is, no
class resampling was applied to the data set. In addition, various
activities that are typical of free living were recorded in the
study, for example, eating or transition movements (ie, getting
up/laying down). While participants laid in a relaxed position
for part of the recording session to minimize motion-induced
peristalsis stimulation [32], their actions were not constrained
(eg, they could grab a bottle and drink water if desired). In
particular, participants were allowed to freely move and talk
during breakfast. Moreover, as the recording room was not
acoustically isolated from the surroundings, various noise
sources could be captured in the recording besides the artifacts
introduced by the participant movements (see the “Study
Protocol” section). We believe that our recording setting and

data amount can be considered as a realistic representation of
common activities and sedentary lifestyles. While we suggested
a sedentary behavior for participants to obtain nonstimulated
BS distributions (as discussed earlier), future work could
evaluate BS spotting under different conditions, such as specific
physical activities, sports, and stress. If necessary, these
activities could be conveniently filtered out using basic detection
methods, such as those based on accelerometer data.

Spotting Temporal Resolution
BS spotting requires a temporal resolution in the millisecond
scale to detect very short events (<100 ms). Previous studies
have attempted to maximize the temporal resolution by
minimizing the sliding window applied to inspect the audio data
(eg, [9,41]). When recording BSs with wearable devices,
however, the temporal sparsity of BS events could increase as
a result of sensor displacements or noise artifacts. As the
acoustic context decreases with sliding window duration,
false-positive cases may increase, thus limiting spotting
performance. Our multiscale approach can analyze continuous
recordings with a temporal resolution of 25 ms while retaining
10 seconds of acoustic context in the spotting by the audio
segment Si.
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Comparison Between Healthy and Patients With IBD
Our DNN model EffUNet can detect BSs with a median
precision of 80% and a median recall of 73%. Although the
median F1-score for healthy participants and patients was the
same, BS spotting was more challenging in patients, as the
difference in the median recall of 66% versus 75% indicates
(Table 2). The patient group included individuals with different
IBDs and varying levels of inflammation activity, which may
explain the greater variability of acoustic patterns in BSs,
compared with the healthy group. Our results warrant further
data recordings from patients with IBD. A nested validation set
could be used to analyze model hyperparameters. In this work,
however, our focus was to maximize trainset size and minimize
model bias. Thus, we used LOPO CV without early stopping
criteria during training and other training parameters were
chosen according to the Pretraining, Sampling, Labeling, and
Aggregation pipeline [24]. The F1-score was above 60% for all
patients, except for 1 outlier (P22; see Figures 3 and 4), where
the performance of EffUNet dropped to approximately 50% as
a result of the reduced recall. As the F1-score of EffUNet
showed an IQR of 0.14 across all patients, we attribute the
performance drop for P22 to a reduced recording quality: Less
than 100 annotated BS events across all channels were
documented (BS ratio=0.0028). Analysis of the false-positive
rate showed that EffUNet spotted events that were marked by
the raters as tentative BSs because of their noisy patterns. If
tentative BSs had been included in the evaluation for P22, the
model’s precision would have increased from 52% to 83%.
However, tentative events were not considered in our analysis
because of their noisy acoustic patterns and were labeled as
NBSs. Thus, assigning tentative annotations to NBSs, that is,
the NULL class, may have increased overall insertion errors
and thus contributed to a conservative performance estimation.
Further investigations on data collection and preprocessing, for
example, adaptive noise filtering [12], could improve signal
quality and consequently spotting performance as well.

Spotting Performance Under Different Noise
Conditions
Compared with other studies, where BSs were recorded using
a skin-taped sensor [42], our work used garment-embedded
microphones. Continuous data collection with wearable devices
could further decrease the signal amplitude as a result of
accidental sensor displacement and motion artifacts.
Nevertheless, our approach can spot BSs with recall greater
than 73% regardless of the noise level (Figure 3). In addition,
our precision over SNR analysis demonstrated that our model
was robust against background noise, as more than 70% of
predictions corresponded to ground truth events even when
SNR=–20 dB. In particular, for low SNR conditions, empirical
threshold–based BS detection methods could fail, as reported,
for example, by Sato et al [41]. We attribute EffUNet’s reduced
number of false positives to the encoder’s pretraining on
AudioSet. EfficientNet-B2 was originally trained to detect sound
events in audio clips of duration δ=10 seconds [24]. In the
experiments on AudioSet, EfficientNet-B2 achieved an average
precision of ≈0.44 for classifying 527 sound classes. The
pretraining on a large variety of noise sources could have

improved the modeling of the NBS class, and thus, model
precision. However, AudioSet does not provide strong audio
labels (ie, event onset/offset), and therefore, no pretraining could
be applied to the EffUNet decoder.

Spotting Timing Errors
Previous studies on sound event detection (eg, [36]) highlighted
that common pattern recognition evaluation metrics are
insufficient to describe error types in continuous data. For
instance, a model could return a fragmented prediction of a
ground truth event or could recognize multiple events in 1
prediction. Previous work on BS spotting rarely analyzed
detection errors besides the false-positive rate. As missed BSs
will decrease the number of BS events per unit time, diagnostic
approaches based on BS event count thresholding (eg, [8]) may
fail to identify IBD. Furthermore, timing errors may affect the
diagnosis of gastrointestinal disorders. Fragmentation or merge
errors could alter natural BS acoustic characteristics (ie, spectral
and temporal features), which were explored in previous studies
to classify digestive dysfunctions (eg, IBD [43]) or to detect
digestive events (eg, migrating motor complex [44]). Our
analysis of detection errors (Table 3) showed that the
performance of the EffUNet model was mainly impacted by
insertions (ie, false positives) and deletions (ie, missed BSs).
In 136 hours of audio data, 19.56 minutes of background noise
were wrongly detected as BSs, because of either insertion or
overfill errors. Insertion errors were largest in the healthy group
(13.28 minutes out of 84 hours of audio data), probably because
of the larger group size compared with the patient group, and
consequently more variable background noise. Of the 1.22 hours
of audio annotated as BSs, 18.56 minutes were not recognized
because of deletion and underfill errors. Deletion errors were
largest in the patient group (5.15 minutes out of the annotated
20.71 minutes), as confirmed by the lower recall compared with
the healthy group (66% vs 75%). Nevertheless, our training loss
(Equation 5) could minimize fragmentation and merge errors
(ie, EffUNet returned prediction onset/offset according to our
annotation approach). Overall, overfill and underfill errors were
4.01 and 5.56 minutes, respectively, and peaked in the healthy
group. As BS annotations were converted to a binary mask to
train EffUNet (Equation 4), we hypothesize that further
improvements on the input data preprocessing (eg, spectrogram
sliding window size γ and stride length σ) could improve the
detection temporal resolution, thus minimizing overfill and
underfill errors.

Spotting Performance Over BS Event Duration
As described by previous studies [17,18], BSs present acoustic
patterns of variable duration. In our study, BS length varied
from 18 ms to 6.29 seconds, which created a challenging
spotting task. To detect very short events (ie, <100 ms), previous
work typically used a sliding window with a duration no more
than the BS length (eg, [15,41]). Because of the constrained
data included in the window, a spotter thus has limited
information available to spot BSs. As for human experts,
spotting performance could decrease when context information
from the surrounding audio scene diminishes. By contrast, a
larger sliding window could decrease temporal resolution, and
thus yield coarse event onset/offset prediction (eg, [45]). In our
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work, we propose a multiscale approach: The data stream is
first split into 10-second audio segments Si, and for each Si, a
binary mask Mi is generated. While analyzing Si with duration
  =10 seconds at a time, EffUNet can detect BSs with a temporal
resolution of 25 ms. Our approach could be potentially applied
to other spotting tasks where events have a varying duration
(eg, gesture recognition [46]). Our analysis on recall versus
event duration ej showed a decrease in recall for long BSs (>1
second; Figure 3). As, in our analysis, the duration threshold

θD was applied to events ej as well as predictions , we
hypothesize that predictions for longer events could have been
affected by underfill or fragmentation errors and, consequently,
filtered out during the analysis. Long BS events have been
previously described as a sequence of single and multiple bursts
interrupted by silence periods. In our BS annotation approach
(see the “BS Annotation” section), silence periods between
consecutive bursts of a maximum 100 ms were accepted.
Therefore, some parts of a long BS (>1 second) could have been
rejected by EffUNet as noise. Additional postprocessing on

spotting results (eg, merging nearby detected events ) or
alternative loss functions (eg, based on dice loss [29]) could
improve the retrieval of long BSs (>1 second). For instance,
scaling factors could be explored when combining the
cross-entropy loss with the dice loss during EffUNet training.
In this work, no weighting was applied when calculating the
loss during backpropagation (Equation 5).

Spotting Performance for Different Event Rates
Previous studies have already introduced shallower DNNs than
EffUNet to spot BSs in the data streams, demonstrating
promising results (eg, [9,15]). However, the previously reported
models were trained and tested on limited, partially selected
data subsets, often with a BS ratio of 0.50 (ie, class balance
between BSs and NBSs; Table 4). When spotting BS events in
continuous recordings that are collected in daily settings,
however, a substantial BS versus NULL class imbalance must
be expected (see Figures 2-4). Algorithm evaluations on a
balanced data set could therefore overestimate performance for
a BS ratio <<0.50. The difference can be seen between Wang
et al’s [9] original report and the analysis of their CNN on our
data set. However, Wang et al’s [9] CNN was designed for
balanced BS detection, which limits a direct comparison with
EffUNet in our study. In our data set, BSs were highly sparse,
with BS ratios less than 0.035 across all participants,
corresponding to event rates of approximately 100-300
events/hour. With event sparsity, the spotting challenge increases
[16], especially when training and evaluating the spotter on
different class imbalances. Despite the high class imbalance,
however, EffUNet could retrieve BSs with a recall of 73% and
a precision of 72%. By contrast, Ficek et al [15] reported a
precision of 83% at a BS ratio of 0.15, but yielded a precision
of 58% for a BS ratio of 0.0246. If our data set had a BS ratio
of 0.15 (approximately 1400 events/hour), the precision of our
DNN would reach an estimated 92% (Figure 3).

Spotting Performance Over Sensor Location
We compared PR metrics across different sensor locations
(Figure 4). EffUNet yielded comparable median recall across

all locations, although recall IQR was largest at the large
intestine. As performance median and IQR were comparable
for all sensors, we hypothesized that the higher recall IQR could
be due to abnormal BS patterns that are more likely to occur in
the large intestine. Although the sensor data from the large
intestine were annotated only for a subset of the study
participants, performance was not affected by the data imbalance
across channels.

Limitations
While our wearable prototype design allowed us to capture BSs
with multiple sensors, no sensor fusion was applied as in [12,37].
Previous experiments by Ranta et al [47] showed that the
abdomen can be acoustically modeled as an absorbent material,
and thus BS intensity depended on sensor distance. Our data
annotation confirmed that not all BS events were captured by
all channels. Given past analyses on abdominal sound
propagation, we decided to minimize the model complexity and
designed a single-channel spotting model. Further investigations
on abdominal sound propagation may improve BS source
localization and estimate the relationship between BSs and
bowel movements. For instance, the EffUNet architecture could
be extended to analyze multichannel recordings and locate BS
sources. Preliminary studies on BS source location [47],
however, suggested that further basic analyses on sound
propagation in the abdominal cavity are needed. BS source
localization would be beneficial for patients with IBD, for
example, to locate inflammation sites noninvasively based on
abnormal BS patterns and related digital biomarkers.

Although our analysis compared EffUNet spotting performance
across study populations with different gastrointestinal
conditions (healthy volunteers and patients with IBD), the
impact of false positives on BS-based clinical gastrointestinal
assessment was not evaluated. Future studies should investigate
methods for digestive disorder recognition. Based on the spotting
method proposed in this work, a fully automated and
noninvasive approach for digestive disorder analysis may be
feasible.

The usability and comfort of the wearable prototype were not
analyzed in depth in this work. A full user comfort study is
beyond the scope of this analysis. Nevertheless, we carefully
considered user comfort during the T-shirt implementation,
especially because our investigation involved patients and the
longest recordings analyzed thus far. While participants did not
express complaints about the wearing comfort, which confirms
the efficacy of our approach, further research could explore
design optimizations supported by a focused wearability
assessment.

Our study encompassed 2 hours of annotated audio from 2-3
channels for each of the 27 participants, resulting in 136 hours
of labeled data. To the best of our knowledge, our data set is
the largest annotated BS data set reported to date. Our results
justify further studies with even larger data sets. Although BSs
were recorded across different digestive phases, further
investigations should include data collected from extended
monitoring periods, such as over multiple days, and in less
constrained settings, such as in a home setting. This approach
would better facilitate the correlation of physiological digestive
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processes with BS acoustic properties and enable the
investigation of noise effects.

Comparison With Prior Work
The goal of our work was to design and evaluate an approach
to deal with imbalanced BS data gathered from body-worn
microphone sensors. Therefore, when comparing EffUNet with
previous studies, we focused our analysis on models with similar
scope (ie, BS spotting with maximized temporal spotting
resolution). As reported by Ficek et al [15], data scarcity and
missing annotations as a result of labor-intensive audio recording
inspection are well-known challenges in the field of BS analysis.
Open BS data sets are inexistent so far, which may be due to
privacy concerns associated with raw audio recordings.
Moreover, BSs are often collected in different recording settings,
using various wearable devices and following varying recording
protocols. Consequently, benchmarking our EffUNet directly
against past BS spotting models is challenging. We excluded
architectures that are similar to EffUNet but were not designed
for BS detection (eg, UNet [19]). According to Table 4, only 3
methods achieved spotting resolution below 100 ms. The CRNN
by Ficek et al [15] could not be scaled to our much larger data
set. Further, the CNN proposed by Kutsumi et al [38] could not
be included in our comparison, because it lacked methodology
details that are required to reimplement the model (eg, training
optimizer and dropout layer parameters). Nevertheless, we
reimplemented the CNN by Wang et al [9]. Compared with
EffUNet, the CNN is a shallower network, with approximately
62,000 parameters versus approximately 18.1 million EffUNet.
Our model outperformed the CNN by Wang et al [9] not only
in temporal spotting resolution (25 ms of EffUNet vs 60 ms of

the CNN), but also in spotting performance on highly
imbalanced data (80% median precision of EffUNet vs 5%
median precision of the CNN). Using EfficientNet for our model
encoder allowed us to leverage pretraining to increase model
robustness against noise, as shown in [14]. Further work may
investigate whether less complex models than EffUNet could
be optimized for natural, imbalanced data. Moreover, our
analysis of related work (Table 4) provides a comparison of
recent advances in BS spotting, showing how our work
outperforms previous studies in dealing with data imbalance
and temporal spotting resolution.

Conclusions
We presented a multiscale BS spotting model based on the
EffUNet architecture, to detect BSs in continuous audio data
streams. AudioSet pretraining was applied to the EffUNet
encoder to improve model robustness against noise. We
evaluated our model using 136 hours of audio data collected
from 18 healthy participants and 9 patients with IBD. Our
experiments demonstrated that EffUNet can detect BSs with a
median F1-score of 73% in recordings where BS events were
highly sparse (BS ratio of 0.0089). With EffUNet, BSs of
varying durations and under different noise conditions could
be identified with a precision of 72%. Our EffUNet analysis
surpassed previous approaches not only in terms of evaluation
data size and temporal sparsity of BS events but also achieved
one of the highest temporal resolutions. Using our approach,
future analyses of BSs obtained from wearable abdominal
monitoring systems could be automated without requiring
manual audio data annotation.
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Abstract

Background: Digital diabetes prevention programs (dDPPs) are effective “digital prescriptions” but have high attrition rates
and program noncompletion. To address this, we developed a personalized automatic messaging system (PAMS) that leverages
SMS text messaging and data integration into clinical workflows to increase dDPP engagement via enhanced patient-provider
communication. Preliminary data showed positive results. However, further investigation is needed to determine how to optimize
the tailoring of support technology such as PAMS based on a user’s preferences to boost their dDPP engagement.

Objective: This study evaluates leveraging machine learning (ML) to develop digital engagement phenotypes of dDPP users
and assess ML’s accuracy in predicting engagement with dDPP activities. This research will be used in a PAMS optimization
process to improve PAMS personalization by incorporating engagement prediction and digital phenotyping. This study aims (1)
to prove the feasibility of using dDPP user-collected data to build an ML model that predicts engagement and contributes to
identifying digital engagement phenotypes, (2) to describe methods for developing ML models with dDPP data sets and present
preliminary results, and (3) to present preliminary data on user profiling based on ML model outputs.

Methods: Using the gradient-boosted forest model, we predicted engagement in 4 dDPP individual activities (physical activity,
lessons, social activity, and weigh-ins) and general activity (engagement in any activity) based on previous short- and long-term
activity in the app. The area under the receiver operating characteristic curve, the area under the precision-recall curve, and the
Brier score metrics determined the performance of the model. Shapley values reflected the feature importance of the models and
determined what variables informed user profiling through latent profile analysis.

Results: We developed 2 models using weekly and daily DPP data sets (328,821 and 704,242 records, respectively), which
yielded predictive accuracies above 90%. Although both models were highly accurate, the daily model better fitted our research
plan because it predicted daily changes in individual activities, which was crucial for creating the “digital phenotypes.” To better
understand the variables contributing to the model predictor, we calculated the Shapley values for both models to identify the
features with the highest contribution to model fit; engagement with any activity in the dDPP in the last 7 days had the most
predictive power. We profiled users with latent profile analysis after 2 weeks of engagement (Bayesian information
criterion=−3222.46) with the dDPP and identified 6 profiles of users, including those with high engagement, minimal engagement,
and attrition.

Conclusions: Preliminary results demonstrate that applying ML methods with predicting power is an acceptable mechanism to
tailor and optimize messaging interventions to support patient engagement and adherence to digital prescriptions. The results
enable future optimization of our existing messaging platform and expansion of this methodology to other clinical domains.

Trial Registration: ClinicalTrials.gov NCT04773834; https://www.clinicaltrials.gov/ct2/show/NCT04773834

International Registered Report Identifier (IRRID): RR2-10.2196/26750
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Introduction

Over 80 million US adults have prediabetes, a metabolic
condition that places individuals at risk for progression to type
2 diabetes and its related complications [1]. Evidence-based
strategies for diabetes prevention have primarily focused on
nonpharmacologic interventions such as diabetes prevention
programs (DPPs), which are comprehensive behavior change
curricula concentrating on physical activity and dietary
modification. Such programs can be as effective as medication
in preventing the progression of diabetes in at-risk populations
[2]. Increasingly, DPP behavioral curricula have been adapted
to digital platforms (digital DPPs [dDPPs]), which have
demonstrated comparable effectiveness in achieving weight
loss, hemoglobin A1c reduction, and other critical
diabetes-related health outcomes while offering improvements
in accessibility, convenience, and personalization [3]. Yet,
limited patient engagement with digital interventions presents
a significant barrier to translating evidence-based digital
behavioral interventions such as the dDPP into pragmatic,
scalable solutions [4-8].

To address this critical patient engagement issue, various
technologies and interventions have been developed to provide
targeted support to patients using digital health apps to improve
engagement and sustained use [9]. Potential solutions include
mobile-based feedback and reminder tools, app-based coaching,
social networking, and gamification. More recent strategies
have also leveraged machine learning (ML) and big data
analytics to deploy more advanced tools, such as engagement
algorithms and artificial intelligence (AI)–driven chatbots. ML
solutions can provide (1) more nuanced patient segmentation
or phenotyping; (2) more precise, tailored interventions, with
enhanced ability to respond dynamically to changes in individual
trends; and (3) improved resource alignment by intervention
implementers, as automated processes (eg, chatbots) can free
up human capital for more appropriate tasks [10]. Moreover,
AI-driven chatbots (AI chatbots), conversational agents that
mimic human interaction through written, oral, and visual
communication channels with a user [1,2], have demonstrated
efficacy in health-behavior change interventions among a large
and diverse population [3-6,11-13].

Prior work from this team involved developing a personalized
automatic messaging system (PAMS) that leveraged an
evidence-based engagement algorithm to deliver tailored
behavior change theory–supported SMS text messaging to
support users engaging with a commercial app-based dDPP.

The study returned promising results compared with average
users, demonstrating engagement in various dDPP features (eg,
weight tracking and physical activity logins) [12]. To expand
on the previous investigation, improved features of the next
generation of PAMS include an ML-based patient engagement
prediction algorithm to identify dDPP digital engagement
phenotypes and to guide and further personalize the messaging
intervention. This paper describes the ML model designed to
predict characteristics and behavioral patterns of dDPP user
types (eg, those highly engaged with exercise but not uploading
the meals or those messaging their coach but not participating
in weigh-ins) based on their activity patterns within a dDPP
app, with a particular focus on motivating users at risk for low
engagement and nonengagement with the dDPP (ie, patient
digital engagement phenotypes).

Methods

Overview
The logic diagram in Figure 1 illustrates, from left to right, the
overall framework for optimizing patient engagement with a
dDPP [14]. In this study, we completed 2 activities (developing,
validating, and testing ML models and studying model outputs
with latent profile analysis [LPA]) and identified future activities
toward optimization. The drivers behind this optimization
initiative stem from low levels of patient engagement with
dDPPs and other wellness-based mobile apps. We used the daily
and weekly data sets provided by the dDPP vendor (inputs) to
develop, validate, and test an ML model for each data set (first
activity). On the basis of the performance metrics from the daily
and weekly models, we identified the highest contributing
feature for each model using Shapley values (first outputs).
These features were fed into the LPA (second activity) to
determine the number of participant usage profiles (second
outputs). The goodness of fit derived from the LPA validated
the phenotypes formed from the LPA (direct outcome). This
integration of ML and statistical learning processes would
inform how we identify digital engagement phenotypes for the
dDPP study set (in the dashed red box) and, therefore, design
content for a more personalized messaging platform (second
direct outcome). Ultimately, the desired long-term outcomes of
the profiling process are increased patient engagement with the
dDPP and a reduction in clinical outcomes related to hemoglobin
A1C and weight (indirect outcomes). The process rests on the
assumptions that the dDPP data accurately reflect digital
behavioral patterns and that people from the vendor-provided
data are representative of people in the study data set.
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Figure 1. Logic diagram of the research methodology to integrate machine learning (ML) into participant profiling, including the input data sets; the
methods applied to the data sets; and the intermediary, direct, and indirect outputs. dDPP: digital diabetes prevention program.

Participants
Study participants were users with prediabetes who enrolled in
a commercial dDPP app (our dDPP research vendor), including
nonpatient (“vendor”) users and institution-based patients
(“study” participants of this dDPP intervention) [11]. Eligible
participants are at least 18 years old, have a BMI of at least 25

kg/m2 (22 kg/m2 if self-identified as Asian), have a diagnosis
of prediabetes (either by International Classification of
Diseases, Tenth Revision code, problem list, or a hemoglobin
A1c level of 5.7%-6.4% in the last 12 months), and are deemed
safe to engage in light physical exercise and weight loss by their
primary care physician. For institutional study participants
enrolled in the current clinical trial of this dDPP intervention,
patients are excluded if they have a prior diagnosis of diabetes,
have any end-stage illness with a prognosis within 6 months,
are non-English speakers (as the dDPP program is currently
only available in English), or are unable to send or receive SMS
text messages [4]. Recruited patients were identified via
electronic health record review and contacted through
multichannel methods (eg, patient portal, email, in-clinic
recruitment, and clinician referral).

The Data

Data Sourcing
Data for the evaluation were sourced from a commercial dDPP
vendor and a patient cohort of an academic health center. We
used 2 deidentified data sets (weekly and daily data) of eligible
retail users for the initial training, validation, and testing of the
ML models. These data sets aggregate and present user
information on a weekly or daily basis and capture all features
recorded by the dDPP app, including per user or patient: meals
logged, steps logged, exercises logged, messages shared with
the dDPP coach and other dDPP patients using the app, app
log-ins, and the number of dDPP articles read. These activities
were the same as those used for generating the adherence
algorithm in our previous research. In addition to the

vendor-provided data sets, for a later testing phase, we use an
existing data set of data collected from dDPP patients who are
part of this dDPP study and exposed to the PAMS intervention.

Weekly dDPP Vendor Data Set
Data include detailed information about all the features collected
for our dDPP app partners, such as meals logged, steps logged,
exercises logged, messages shared with the dDPP coach and
other dDPP patients using the app, app log-ins, and the number
of dDPP articles read during each week. All users have more
than 5 weeks of engagement records, and we used only 1 year’s
worth of dDPP engagement data per user.

Weekly dDPP Institutional Study Data Set
The 2 data sets (weekly dDPP vendor data set and weekly dDPP
study data set) have the same data structure. The same data
fields are collected for commercial users and the dDPP patients,
but the only difference is on the behavioral level because the
patients’ data are potentially affected by the message
intervention (PAMS). All data were used for the validation of
the weekly ML model.

Daily dDPP Vendor Data Set
In addition to the activity records in the weekly data, we had
access within the daily data set to calorie consumption data,
meal logs, and color codes assigned to each food item as
reported by the users. Users with less than 7 days of engagement
records were excluded from the cohort, and we used only 1
year’s worth of dDPP engagement data per user.

Outcomes
First, we built binary classification ML models to predict
whether a participant will engage in the next week or the next
day with the dDPP based on their previous short- and long-term
activity in the app. For the weekly model, we used the vendor
data set to train and validate retrospectively to predict general
activity (engagement in any activity). We prospectively
validated the weekly model using the institutional study data
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set. For the daily models, we predicted 5 outcomes: general
activity, physical activities (steps and exercises recorded on the
app), in-app lessons (article reading), social activities (group
posts and coach messages in the app), and weigh-ins in the app.
Second, we identified the variables from the daily overall
activity model of the vendor’s participants that provide the most
predictive power for engagement. Third, we evaluated whether
these predictive variables could generate profiles of a
participant’s behavior that can be targeted with motivational
messaging.

Predictors
We built model predictors from users’ demographic data and
collected in-app activities. These activities include steps taken,
exercises, meal logs, weigh-in records, in-app messaging and
group activities, and in-app article reading. For the weekly data
set, short-term activity profiles were built from the week before
the evaluation week and up to 4 weeks before the evaluation
week. Long-term activity profiles were summarized and
constructed from the first week of program enrollment up to
the evaluation week. Short-term activity profiles were built from
the day before and within 7 days before the evaluation day for
the daily data set. Similarly, long-term activity profiles were
summarized and constructed from the first day of program
enrollment up to the evaluation day. The day of the week and
national holidays were also captured as predictors. In total, 43
predictors were used to build weekly models, and 49 predictors
were used to build daily models.

Sample Size
The sample sizes for user weekly and daily data sets directly
from the dDPP vendor were determined by the convenience of
the dDPP vendor and assumed to be representative of the
academic health center’s study sample. The study sample size
was determined by the number of participants already recruited
and actively involved in the original dDPP study as of December
2021 [4].

Missing Data
Because this paper aims to predict participant engagement with
the dDPP, missing data among in-app activities were treated as
a participant not engaging in either overall activity (ie, no
observations for a particular day or a week for any activity) or
specific within-dDPP activities (eg, a participant not recording
meals or reading any articles). Missing participant weight was
logged as a participant not weighing themselves for the dDPP,
and we ignored the magnitude of weight due to individual
non-dDPP factors contributing to weight outcomes. No
participant had a missing age due to age being a requirement
for enrollment into the dDPP. Participants who did not record
their ideal body weight at the beginning of dDPP engagement
had this observation recorded as a 0, as the lack of goal
recording for weight could have clinical implications (eg, weight
is not the primary utilization goal for the participant, or the
participant is not comfortable with setting a weight goal). No
participant had a missing initial BMI recorded. One participant
was missing gender identification, so their observations were
removed from the data set.

Statistical Analysis Methods

Data Split
All data sets were split into a 70% training set, a 15% validation
set, and a 15% test set based on users. Observations of any user
only existed in 1 set to prevent potential data leak and
unintended bias.

Gradient-Boosted Forest Algorithm
We use the gradient-boosted forest algorithm, a robust regression
tree approach that includes multiple simple decision trees to
iteratively refine the performance of the model by minimizing
the difference between the expected and expert-labeled outcomes
[15,16]. Forest-based algorithms provide 2 fundamental benefits.
First, they allow for nonlinear interactions between covariates
to impact the prediction of the dependent variable, as opposed
to using a Least Absolute Shrinkage and Selection Operator
(LASSO) or a ridge regression model. Second, forest-based
algorithms do not require a priori function structure to define
the relationship between the covariates and the outcome. For
example, we do not need to theoretically assume whether a
particular engagement type (eg, steps) interacts with another
type (eg, exercise logging). We used gradient boosting to allow
for prediction despite the sparsity of the data, as users may
engage with one activity but not others on a given day or have
no activity (ie, all observations as 0). The values defining
engagement included binary predictors, large integers (eg,
calories and steps), and values between 0 and 1 (eg, the portion
of engagement throughout enrollment). These models aimed to
identify that the sub-behaviors that create the most predictive
power for engagement with the dDPP were trained with η=0.1
for 1000 rounds with early stopping.

Metrics
The area under the receiver operating characteristic curve
(AUROC), the area under the precision-recall curve (AUPRC),
and the Brier score statistics measured the performance of the
model. To estimate the CIs of the evaluation metrics for the ML
models, we performed bootstrapping with 200 iterations on the
test set. In each iteration, a random sample of the test set, with
replacement, was drawn with the same size as the original test
set. The ML model was then evaluated on this bootstrapped
sample, and the performance metrics mentioned above were
recorded. The process was repeated for 200 iterations, resulting
in a distribution of performance metrics from which the 95%
CIs were calculated, providing a robust estimate of the
performance and variability of the model. In addition, Shapley
values were calculated to reflect the feature importance of each
model.

Engagement Profiling
A person-centered approach to messaging can help motivate
individuals to complete goal-oriented behaviors like engagement
with a lifestyle management app [17]. This approach involves
(1) tailoring delivery based on the person’s behavior profile
within the app and (2) focusing messaging on targetable
behaviors to motivate users to complete small, manageable
actions toward their goal (ie, the goal gradient hypothesis in
decision-making) [18]. We performed an LPA on the
participants in the daily data set to determine the subgroups of
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participants’ behaviors. LPA identifies latent clusters of
individuals based on continuous variables [19]. The
contributions of multiple variables (ie, the facets that explain
the unobserved profile of a user) contribute to the outcome
experienced by a user. We used the covariates with the highest
global mean Shapley values from the gradient-boosted forest
model for the LPA for 2 reasons. First, these variables offer the
most explanatory power behind the probability of engagement
with the dDPP, allowing us not to assume a priori the behaviors
that contribute to the usage of the dDPP. Second, profiling users
of a digital app such as this dDPP can be more complicated than
traditional approaches to consumer profiling, given the
interaction between a user’s health and app engagement. To
determine the minimum usage data after enrollment into a dDPP
to start profiling participants, we conducted LPAs after 2 weeks
and iteratively added days until 3 weeks of engagement. We
used the profiles from the timestamp with the lowest Bayesian
information criterion (BIC), the established goodness-of-fit
metric for LPA. We used the mclust package in RStudio (version
2022.12.0+353; Posit Software, PBC) to run the LPAs [20].

Development Versus Validation
We validated the weekly model prospectively using the weekly
dDPP study data set. Detailed information about this data set
is under the subsection “Participants” [15,16].

Ethical Considerations
In this DPP research, ethical standards and the protection of
human participants are emphasized. The study is committed to
adhering to regulations outlined in 45 CFR Part 46, ensuring
the rights and welfare of participants. The NYU Langone Health
institutional review board (IRB) played a crucial role in
reviewing and approving the research, informed consent forms,
and recruitment materials before participant enrollment
(i20-01548). The informed consent process is described as an
ongoing dialogue, emphasizing clear communication,

comprehension, and the right to withdraw without adverse
consequences. The consent forms, including verbal consent and
a key information sheet, were submitted to the IRB for approval.
Confidentiality measures are robust, complying with the Health
Insurance Portability and Accountability Act (HIPAA), and a
Certificate of Confidentiality from the National Institutes of
Health was obtained. Data security is maintained through
password protection, and research data are stored securely. The
research emphasizes that stored data will only be used for this
study, with no plans for future use in subsequent research.
Overall, the research underscores the importance of ethical
conduct, participant consent, and stringent confidentiality
measures in the research process.

Moreover, the research underscores the importance of ethical
conduct, rigorous IRB oversight, and robust confidentiality
measures to safeguard the rights and well-being of study
participants. Additionally, it highlights the meticulous
documentation of the informed consent process and the secure
handling of research data, ensuring compliance with regulations
and promoting participant trust and privacy.

Results

Participants
Table 1 details the descriptive statistics for the 3 preprocessed
data sets, including weekly and daily data for the dDPP user
(dDPP vendor data sets) and the weekly data for the dDPP
patients (dDPP study data). For the vendor-provided data sets,
users engage with the app 54.2% (208,142/384,025) of the times
in the weekly data compared with 38.9% (274,200/704,242) of
the times in the daily data. The average engagement within
individual activities is similar. “Steps taken” had the highest
percentage of all activities in both data sets. For study data, the
engagement percentage was higher (92.1%, 1253/1361), which
could be attributed to the effects of PAMS messages.
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Table 1. Descriptive statistics of users (N=12,262).

Daily dDPP vendor data (dDPP
vendor users, n=2159)

Weekly dDPP study data (dDPP
study patients, n=50)

Weekly dDPPa vendor data (dDPP
vendor users, n=10,053)Characteristic

326.2 days27.22 weeks38.2 weeksProgram length

N/AN/Ab47.6 (11.4)Age (years), mean (SD)

Sex, n (%)

N/AN/A1267 (12.6)Male

N/AN/A8786 (87.4)Female

274,200/704,242 (38.9)1253/1361 (92.1)208,142/384,025 (54.2)Engagement of any activity, n/N
(%)

244,823/704,242 (34.8)1086/1361 (79.8)208,142/384,025 (54.2)Engagement of steps taken, n/N (%)

49,683/704,242 (7.1)349/1361 (25.6)77,957/384,025 (20.3)Engagement of exercises, n/N (%)

100,449/704,242 (14.3)924/1361 (67.9)137,865/384,025 (35.9)Engagement of meals logged, n/N
(%)

71,596/704,242 (10.2)523/1361 (38.4)137,481/384,025 (35.8)Engagement of weigh-ins, n/N (%)

79,272/704,242 (11.2)573/1361 (42.1)118,280/384,025 (30.8)Engagement of article reading, n/N
(%)

45,113/704,242 (6.4)100/1361 (7.3)24,578/384,025 (6.4)Engagement of group posts, n/N (%)

adDPP: digital diabetes prevention program.
bN/A: not applicable.

Weekly Model (for Any Activity) Development and
Performance
We trained and tested the model to predict “any activity” (ie,
the probability of the subsequent interaction with the dDPP
based on whether the user interacted with any of the features
of the dDPP app, such as exercise, meal, and weigh-ins) on the
weekly dDPP vendor data set. The weekly model reported an
AUROC of 0.97 (95% CI 0.97-0.97), an AUPRC of 0.98 (95%
CI 0.98-0.98), and a Brier score of 0.061 (95% CI 0.060-0.063)

in the test set (Figure 2). Because we also aimed to identify how
individual variables contribute to predictions by the model, we
calculated the Shapley value, which is the average marginal
contribution of a variable to a model across the different
combinations of including the variable in the model (eg,
nonlinear contributions and splitting a forest into different
branches with the variable). The Shapley value method has
become the preferred technique for feature attribution in ML
models, thanks to its robust and reliable performance [21].

Figure 2. AUROC (left) and AUPRC (right) performance metrics of the “any activity” weekly model in the test set of the weekly vendor data set
(58,210 engagement records). The calibration plot shows that the model is well calibrated. AUPRC: area under the precision-recall curve; AUROC:
area under the receiver operating characteristic curve.
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Figure 3 displays the distribution of the 10 covariates with the
highest calculated global mean Shapley value (ie, which
variables have the strongest predictive power, regardless of
negative or positive impact, on the user’s engagement with the
dDPP). A higher magnitude of the Shapley value (ie, further
from 0) indicates the strength of the variable in the model to
predict a user’s engagement with the dDPP. A positive Shapley
value indicates that the user is more likely to engage with the
dDPP because of the variable (ie, a positive predictor). A

negative Shapley value suggests that the patient is less likely
to engage with the dDPP due to the variable (ie, a negative
predictor). More purple values indicate a higher mean for the
covariate of the individual (eg, a more purple “exercise
frequency” dot indicates that the user logged for nonstep
physical activity more than other users did). The covariates with
the most contribution to model prediction were those of
short-term behaviors.

Figure 3. Shapley values of top 10 features in the “any activity weekly model.” Each dot on the plot represents an engagement record and is colored
according to the value of the corresponding feature from high (purple) to low (yellow). Features are ranked in descending order from top to bottom on
the y-axis (ie, variables with the highest contribution to the model are on the top), with global mean Shapley values of each feature annotated next to
them.

We tested our model using the weekly dDPP institutional study
data set (prospective clinical data). The model achieved an
AUROC of 0.92 (95% CI 0.89-0.94), an AUPRC of 0.99 (95%
CI 0.99-0.99; Figure 4), and a Brier score of 0.072 (95% CI
0.063-0.081), suggesting high predictive power and operational
potential for refining PAMS using this method. After analyzing
the weekly dDPP study data set, we detected that this data set

would be imbalanced because the prediction of the subsequent
week’s activity would be based on whether a user engaged with
any app activity, rather than a particular activity, within the
dDPP, seen by the 92.1% engagement ratio, and the sample size
was too low to yield unbiased testing results. Regardless of the
limitation of the research data set, this analysis was proper in
confirming the effectiveness of the weekly model.
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Figure 4. AUROC (left) and AUPRC (right) performance metrics of any activity weekly model in the weekly study data set (1361 engagement records).
AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve.

Daily Model (for Any Activity) Development and
Performance
We expanded a proportion of the weekly data set into a daily
(more detailed) format and trained 5 new models. Figure 5
illustrates the ML model fit in the test set of the daily data set.
Figure 6 displays the distribution of the covariates with the

strongest predictive power (ie, the highest global mean Shapley
value). Like the weekly model, engagement with any activity
in the dDPP in the last 7 days had the most predictive power (a
global mean Shapley value of 2.638). However, in contrast to
the weekly model, features associated with long-term activity
also had strong predictive power in the model.

Figure 5. AUROC (left) and AUPRC (right) performance metrics of the “any activity” daily model in the test set of the daily vendor data set (106,950
engagement records). AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve.
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Figure 6. Shapley values of top 10 features in the “any activity” daily model. Each dot on the plot represents an engagement record and is colored
according to the value of the corresponding feature from high (purple) to low (yellow). Features are ranked in descending order from top to bottom on
the y-axis. Average Shapley values of each feature are annotated next to them on the y-axis.

Although the daily model for “any activity” returned a high
AUROC and AUPRC, we aimed to generate predictions on
each specific activity to inform our user profiling (digital
engagement phenotypes) and consequently elevate the message
personalization. Therefore, we developed 4 ML models,
focusing on daily engagement with each key type of activity
for a dDPP (physical activity, lessons, social activity, and
weigh-ins). Table 2 displays the model fits for each of these

“submodels.” For each activity, the model indicates highly
predictive behavioral patterns among users. The “physical
activity” and “social activity” daily models had higher AUROC
performance with slightly lower AUPRC than the other daily
models. All daily models show higher levels of calibration (a
highest Brier score of 0.051) than the weekly model (a Brier
score of 0.061).

Table 2. Performance metrics of each daily activity model in the test set.

Weigh-insSocial activity (group posts
and coach messages)

Lessons (article reading)Physical activity (exercis-
es and steps)

Any app activityModel fit met-
rics

0.94 (0.94-0.94)0.98 (0.98-0.98)0.99 (0.99-0.99)0.98 (0.98-0.98)0.99 (0.99-0.99)AUROCa (95%
CI)

0.65 (0.63-0.66)0.74 (0.73-0.75)0.91 (0.91-0.92)0.74 (0.72-0.75)0.98 (0.98-0.98)AUPRCb (95%
CI)

0.051 (0.050-0.052)0.02 (0.023-0.024)0.027 (0.026-0.028)0.025 (0.025-0.026)0.037 (0.036-0.038)Brier score
(95% CI)

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.

Engagement Profiling Development and Performance
We profiled participants with their daily engagement data using
LPA after 2 weeks of dDPP enrollment. To determine the
optimal time to start profiling participants, we iteratively added
1 day of engagement and created profiles until 3 weeks after

their enrollment in the dDPP. After 2 weeks of daily engagement
data, profiling participants had the strongest LPA model fit
(BIC=−3222.46), followed by the model fit from profiling with
3 weeks of data (BIC=−2903.19). The LPA model fits for 15
to 20 days of engagement were significantly worse (ie, higher
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BIC values) and, therefore, are not reported. The
best-performing LPA model was ellipsoidal (there is some
correlation between variables), had equal volume (the variances
are equal across identified profiles), had variable distributions

between profiles (ie, the number of people per profile vary),
and consisted of 6 profiles. Table 3 reports the mean engagement
for each variable within and across the profiles of participants.

Table 3. Mean engagement by profile and across profiles for key engagement variables.

Mean engage-
ment across
profiles (SD)

Subbehavior variable mean (SE)Key engagement
variables

Profile 6 (n=8)Profile 5 (n=82)Profile 4 (n=20)Profile 3 (n=107)Profile 2 (n=91)Profile 1 (n=16)

0.752 (0.401)0.814 (0.222)0.115 (0.236)0.747 (0.243)1.000 (0)0.992 (0.0450.969 (0.085)Any activity rate
(last 7 days)

0.797 (0.318)0.698 (0.244)0.365 (0.292)0.605 (0.262)0.979 (0.049)0.998 (0.013)0.942 (0.105)Long-term activity
rate

2555 (3495)1622 (2447)0 (0)1378 (1293)3646 (3461)3909 (3968)2572 (4661)Steps taken rate
(last 7 days)

0.172 (0.208)0.241 (0.175)0.0471 (0.131)0.0362 (0.043)0.265 (0.208)0.139 (0.139)0.507 (0.310)Long-term weigh-
in rate

0.392 (0.444)0.00305 (0.297)0.00305 (0.028)0.0252 (0.112)0.690 (0.399)0.397 (0.416)0.906 (0.256)Recent meal rate

0.740 (0.359)0.609 (0.303)0.285 (0.295)0.566 (0.292)0.956 (0.068)0.998 (0.013)0.438 (0.345)Long-term step
rate

0.425 (0.386)0.116 (0.076)0.0951 (0.145)0.0543 (0.127)0.669 (0.349)0.463 (0.339)0.856 (0.249)Long-term meal
log rate

1.160 (1.689)0.372 (1.061)0 (0)3.021 (0.923)2.85 (1.644)0.278 (0.704)2.01 (1.549)Article reading rate
(last 7 days)

The LPA identified attrition (users in profile 5 who showed
consistently low engagement across variables) and behaviors
that show points of continued engagement for users. Users in
profile 6, for example, had a close-to-average engagement with
the dDPP from weigh-ins with the app and logging steps, which
are behaviors that require one-time interactions with the dDPP,
given Bluetooth connections between smart devices and the
dDPP. In contrast, users in profile 3 were highly engaged, as
they consistently engaged more than the average user.
Messaging to users in profile 3 should, therefore, differ from
messaging to users in profile 5, given the differences in their
efforts toward the dDPP. Users in profile 4 had a
lower-than-average engagement with the dDPP but showed the
highest engagement with the learning materials across all users.
Clusters 1 and 2 showed similarly high short- and long-term
engagements but differed in engagement with the dDPP. Users
in profile 1 read more educational materials provided in the
dDPP, whereas users in profile 2 were more consistent in taking
steps.

Discussion

Summary
The literature suggests the app of different ML algorithms to
predict digital and traditional medication adherence and diverse
intervention outcomes. Positive results of these studies support
and validate the feasibility of applying ML methods to predict
user engagement in digital health apps such as a dDPP to
improve patient adherence to digital therapeutics and,
consequently, health outcomes. In concordance with the
literature, we applied the most suitable algorithm for our data

set (gradient-boosted forest), yielded highly accurate results for
predicting digital adherence, and identified variables with the
strongest contribution to our outcome to understand digital
behaviors [22-26]. This paper described 2 ML models developed
using weekly and daily dDPP engagement data. First, using the
weekly dDPP vendor data set, we developed a weekly ML
model, which was validated using the collected data from this
dDPP study. On the basis of past activity patterns, the model
yielded high precision and recall and accurately predicted patient
engagement for the next week. However, a model trained with
weekly patient data can only predict weekly engagement,
limiting our ability to gain detailed insight into a patient’s
behavior. Because an ideal model should be robust to different
dynamics in patients’ engagement data, we then developed a
daily ML model using the daily dDPP vendor data set, which
incorporates additional attributes, including the type of meals
logged per day and calories. The daily model also yielded high
precision and recall values. This finding supports using such
models to anticipate behavior, focusing on identifying low
engagement to intervene before attrition.

In addition to calculating precision and recall for our models,
we calculated the Shapley values for both types of models
(weekly and daily) to further analyze and identify which
variables contribute the most to overall prediction. Results from
the Shapley values revealed that short-term frequency of activity
engagement was the most informative feature in the daily and
weekly data analyses, meaning that users were more likely to
form and stick to short-term behavioral patterns than long-term
patterns in the dDPP. This finding is consistent with a previous
study on predicting exercise and steps [27]. Because of user
propensity to engage in short-term behaviors, we considered
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the daily model for individual activities best suited to develop
engagement profiles. Using variables with high Shapley values
from the daily model, we successfully created distinct digital
engagement phenotypes of dDPP users. This allows for further
research into developing infrastructure for tailored messaging
to increase and maintain engagement with active users and
intervene against attrition for inactive users. Specifically,
identifying high engagement, minimal engagement, and attrition
with early dDPP use lends itself to determining individuals
facing barriers to dDPP engagement and improving dDPP
implementation. Identifying strengths and weaknesses within
behavior phenotypes through our profiling methods can also
inform what specific behaviors (ie, low-engagement behaviors)
need to be targeted in messaging for a user’s success in using
the dDPP.

Contributions and Implications
By leveraging digital behavioral usage data, we showed that
we can successfully create digital engagement phenotypes,
allowing for the future tailoring of digital health interventions
based on patient needs. The methods used can extend beyond
the prevention of metabolic disease, as an ML model
incorporating behavioral usage variables can characterize
prevention, maintenance, and wellness in other domains such
as mental health, treatment adherence, and addiction prevention.

Limitations
The weekly data sets posed limitations to maximizing patient
engagement through integrating ML into PAMS. A model
trained using weekly data is limited to predict weekly dDPP
engagement (limited scope of dDPP engagement). The weekly
ML model did not provide enough granularity to be robust to
different dynamics of app engagement (eg, a sudden drop in
engagement in 1 week due to vacation or a suddenly busy day

where the user does not log information). The high sensitivity
in a weekly engagement model to unexpected changes in usage
could, therefore, negatively impact the type of messaging and
timely motivation delivered to the patient. Consequently, we
shifted the prediction cycle for engagement by moving from a
model based on weekly behavior to one based on daily behavior.

Data showed that the short-term frequency of various activities
was the most informative feature, but the results could mean
that our model is vulnerable to short-term disruption of user
behavioral patterns. Consequently, although the weekly
data-based and daily data-based models were sufficient to prove
the feasibility of using ML approaches for predicting patient
engagement, further development is needed to refine these
models and include extra patient information. Improvements
include (1) understanding potential errors in the model and data
sets (eg, data set size; using vendor data sets is an imperfect
representation of other dDPP interventions) and (2) reviewing
initial hypotheses about the data set and the choice of algorithms.
To build the refined model, we would benefit from more detailed
data. In this case, we would need to replan attributes and test
other ML algorithms to perform further model improvements.

Future Directions
With feasibility established, the next steps include creating user
engagement phenotypes linked to personalized messaging
interventions using behavior-based approaches to best motivate
users to engage with the dDPP. We will also need to engineer
the forest model and profile analysis to evolve as users change
their engagement throughout participating in the dDPP so that
messaging remains personalized to meet the users’ needs.
Ultimately, this study demonstrated the potential value of ML
and digital phenotyping to enhance the ability of digital behavior
change interventions to predict engagement and personalize the
interventions to maximize clinical impact.
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Abstract

Background: Brief message interventions have demonstrated immense promise in health care, yet the development of these
messages has suffered from a dearth of transparency and a scarcity of publicly accessible data sets. Moreover, the researcher-driven
content creation process has raised resource allocation issues, necessitating a more efficient and transparent approach to content
development.

Objective: This research sets out to address the challenges of content development for SMS interventions by showcasing the
use of generative artificial intelligence (AI) as a tool for content creation, transparently explaining the prompt design and content
generation process, and providing the largest publicly available data set of brief messages and source code for future replication
of our process.

Methods: Leveraging the pretrained large language model GPT-3.5 (OpenAI), we generate a collection of messages in the
context of medication adherence for individuals with type 2 diabetes using evidence-derived behavior change techniques identified
in a prior systematic review. We create an attributed prompt designed to adhere to content (readability and tone) and SMS
(character count and encoder type) standards while encouraging message variability to reflect differences in behavior change
techniques.

Results: We deliver the most extensive repository of brief messages for a singular health care intervention and the first library
of messages crafted with generative AI. In total, our method yields a data set comprising 1150 messages, with 89.91% (n=1034)
meeting character length requirements and 80.7% (n=928) meeting readability requirements. Furthermore, our analysis reveals
that all messages exhibit diversity comparable to an existing publicly available data set created under the same theoretical
framework for a similar setting.

Conclusions: This research provides a novel approach to content creation for health care interventions using state-of-the-art
generative AI tools. Future research is needed to assess the generated content for ethical, safety, and research standards, as well
as to determine whether the intervention is successful in improving the target behaviors.

(JMIR AI 2024;3:e52974)   doi:10.2196/52974
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Introduction

Overview
Health care interventions involving written communication play
a pivotal role in disseminating critical information to patients
and promoting positive health outcomes. However, the process
of crafting effective health care content has historically been
labor-intensive, time-consuming, and often lacks the necessary
uniformity and transparency required for rigorous research and
development.

We propose the application of generative artificial intelligence
(AI) technologies to address the pressing need for efficient and
transparent content creation in health care interventions. In
particular, we focus on harnessing the capabilities of pretrained
large language models (LLMs), which are sophisticated AI
systems designed to understand and generate human-like text
(refer to subsection Generative AI With LLMs). By using these
rapidly growing technologies, we aim to assist researchers in
the content creation process, making it more accessible,
systematic, and adaptable. As a tangible example, we introduce
the first publicly available data set of AI-generated brief
messages tailored for individuals with type 2 diabetes,
specifically targeting medication adherence, a critical aspect of
diabetes management. Notably, our data set of 1150 messages
also stands as the current largest data set of health care
intervention messages publicly available. Furthermore, we make
our source code replicable and accessible to the research
community while providing a comprehensive breakdown of our
design process. In doing so, we seek to use generative AI to
pave the way for a new era of health care intervention content
development, one characterized by transparency, efficiency,
and scientific rigor. Our main contributions are as follows:

1. Present a generative AI approach to content creation in brief
message health care interventions

2. Illustrate the process of prompt engineering for content
design within a particular theoretical framework

3. Provide the first publicly available data set of AI-generated
intervention messages and release the source code as a
resource for future research.

Mobile Health Interventions
In the ever-growing landscape of health care, effective
communication is essential to enhancing preventive measures
and developing intervention strategies that improve public health
outcomes. Each year, a great number of new intervention studies
are added to the health care literature [1,2]. However, with the
growth in the quantity of interventions often comes an increase
in their technical complexity, especially in the area of mobile
health (mHealth). Many of these interventions are delivered
through proprietary apps or other nonstandardized platforms,
which complicates their integration into future programs and
often causes their results to be obfuscated by the unique specifics
of their deployment. This not only makes them challenging to
apply elsewhere but also ensures that their development is both
time-consuming and resource-intensive [3]. In addition, while
research into mHealth has boomed in the last decade, studies
suggest that the overall success rate of most mHealth
interventions is not exactly clear, despite the strong interest and

obvious potential such interventions have [4,5]. Ensuring that
these interventions are feasible, effective, and sustainable, is
vital for preventing unnecessary research waste.

Within the sphere of mHealth interventions, there is growing
evidence supporting the success of text-message–based
programs (also known as SMS) in modifying health behaviors
[6-9]. With >97% of Americans currently owning some type
of cell phone and the prevalence of smartphone ownership
having increased from 35% to 85% in the last 10 years [10],
text messaging has become a staple mode of communication
for most people in the modern world. Using a platform already
embedded in most individuals’ routines, text messages eliminate
the need for additional equipment or substantial behavior
change. This universal reach and familiarity not only enhances
patient engagement but also bridges the gap for underserved
communities, thus playing a pivotal role in reducing health
disparities [11-13]. Their omnipresent nature, readership and
engagement advantage, and the ability to mirror the
conversational tone of in-person counseling all underscore the
unique value of text messaging in contemporary health
interventions [14,15].

Content Creation for Health Care
Content has been described as “the central driver of behavior
change” in interventions [16], and its thoughtful incorporation
through modalities like text [17,18], imagery [19,20], and other
media [21,22], is key to effective intervention design. For brief
message interventions in particular, textual content serves not
only as a vessel for information, but also as the critical and
emotional linchpin motivating behavior change. When we
consider interventions designed to induce change, clarity in the
content creation process becomes indispensable. It provides a
coherent road map for both practitioners and researchers,
ensuring that the outcomes of the intervention—successful or
not—can be understood, dissected, and refined. Furthermore,
a transparent process of content creation not only bolsters the
effectiveness of an intervention but also builds trust within the
broader scientific community, allowing for constructive
critiques, replication of studies, and meaningful advancements
in the field.

The conventional SMS intervention development pipeline,
shown in Figure 1, consists of the following parts: 1) formative
research into the problem setting, behavior, and target
population; 2) the establishment of the chosen theoretical
framework and development of content; 3) a necessary review
of the created content for quality assurance, safety, and research
standards, as well as a pretest to gauge initial user feedback on
the messages; and finally, a revision of messages based on
accumulated feedback [23]. In this study, we address the second
step of intervention design—the creation of content within a
scientific and theoretical framework—due to its complexity and
implication for specialists outside the traditional research team.
Content designers can be used to greatly enhance the quality
and efficacy of content for health care interventions; however,
their involvement is often limited due to monetary, time, and
resource constraints on the research team. Consequently,
researchers are frequently tasked with taking on the roles of
content designers themselves.
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Figure 1. Text messaging program development pipeline (reproduced from from Abroms et al [23], which is published under Creative Commons
Attribution 4.0 International License [24]).

However, despite the involvement of the research team in
content design and the critical importance of content, there
exists a conspicuous opacity surrounding the creation of content
in health care interventions. Numerous published works fall
short in delineating the intricacies of their content creation
processes while simultaneously withholding disclosure of their
final message data sets, leaving a void in our understanding of
how preliminary findings or formative research become
translated into the finalized intervention—an omission that has
led to the development process being described as a black box
[25]. This lack of transparency is especially concerning given
the tendency of some researchers to view text messaging as the
intervention itself rather than just the means of delivery [26].
In those instances where the message creation process is
disclosed, it often reveals a narrow involvement, typically
limited to a few individuals within the intervention team [23,27].
Their varied levels of expertise in content design and differing
perceptions of what constitutes “good content” can, as a result,
lead to vast inconsistencies in outcomes that could be mistakenly
attributed to other metrics like participant demographics, study
duration, message volume, or the theoretical techniques used
instead of the more crucial variable: the nature and quality of
the content itself. In addition, this limited participation in content
drafting tends to perpetuate familiar methodologies, sidelining
innovative approaches that could potentially address persistent
challenges like medication adherence [28]. Such exclusions not
only hinder academic progress but could also inadvertently
reduce the efficacy of interventions. When the
foundation—content creation—is not soundly built with a clear
and shared understanding of its underpinnings, it runs the risk
of diluting the potential positive outcomes of the intervention.
As brief message interventions continue to increase in number,

complexity, and scope, the need for innovative and transparent
approaches to content creation grows even greater.

Generative AI With LLMs
Faced with the complexities and opacity of content creation,
generative AI offers a promising solution to unveiling this
enigmatic “black box.” Recent advancements in the development
of LLMs using the transformer architecture [29] have brought
about a revolutionary change in natural language processing.
Unlike earlier models that process text sequentially, transformer
models use a technique known as “self-attention” to analyze
and draw connections between different parts of input data
simultaneously. By converting text into corresponding numerical
representations called embeddings, transformers can process
language data with exceptional accuracy and speed.
Furthermore, being pretrained on vast corpora of web-text data,
these LLMs are not only equipped to simulate human
conversations but also excel as versatile tools across a spectrum
of nuanced tasks, such as question answering, writing support,
translation, coding, and more [30-37].

Though the concept of data generation using LLMs is not novel
in itself [38-40], the accessibility and enhanced generative
capabilities of contemporary large-scale pretrained models like
those in the GPT series have magnified their impact and
broadened their potential applications [41,42]. With up to
hundreds of billions of parameters [32,43], these models excel
at rapidly generating vast quantities of contextually appropriate
content, streamlining the traditionally painstaking process of
manual drafting while simultaneously enhancing adaptability
across diverse domains and sectors.

An integral aspect of effective LLM use lies in the art and
science of prompt engineering. A prompt is any input given to
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an LLM that influences the nature of the LLM’s output [44].
Prompts are often given as sets of instructions or requests that
establish the rules and guidelines of the conversation. Through
prompt engineering, the context of the conversation can be
strategically structured to direct the LLM to process relevant
information and shape the desired form and content of its output
[45]. This process is pivotal in refining and enhancing the
capabilities of generative models and allows for the generation
of more precise and relevant responses, which is especially
imperative in complex fields like health care where the accuracy
of information is essential.

Prompt engineering for LLMs is appropriate for the preliminary
design of health care interventions for many reasons. First,
LLMs can rapidly generate vast amounts of content, effectively
reducing both the time and costs typically required for
intervention development. This efficiency may allow researchers
to allocate resources more appropriately, diverting their energies
toward other critical aspects of the project while enabling the
exploration of diverse content approaches that were previously
considered daunting or impractical. Moreover, LLMs serve as
a vital aid to researchers who may not have an extensive
background in content design. By providing large amounts of
well-written, contextually tailored content, these models offer
a structured foundation that researchers can then build upon and
further customize during the content review process while
avoiding the overwhelm of “blank page paralysis” commonly
inherent to creative tasks [46].

Perhaps most significantly for health care intervention research,
the application of generative AI introduces a revolutionary level
of transparency into the content creation process. By leveraging
generative AI models as configurable tools, researchers gain
access to a more standardized and reproducible approach for
content design. This is primarily enabled through the adjustment
of key parameters, such as the “temperature” setting, which are
essential for tailoring the models’ outputs to specific needs
[47,48]. A lower temperature results in more predictable and
conservative outputs, while a higher temperature allows for
increased variability and creativity in responses. Such
configurability not only ensures reproducibility and accessibility
but also allows for the establishment of standardized writing
styles for health care interventions by minimizing the influence
of tone, style, and other confounding variables. With a clearer
understanding of the content generation process, researchers
are better able to create content at scale, refine content with
confidence, and make informed decisions that ultimately
enhance the overall efficacy and impact of health care
interventions.

Medication Adherence for Type 2 Diabetes
We have chosen the setting of medication adherence for people
with type 2 diabetes for our case study on the use of generative
AI in health care interventions. Diabetes mellitus currently
affects more than 415 million individuals worldwide, with an
overwhelming 90% of these instances being attributed to type
2 diabetes [49,50]. Type 2 diabetes is often managed through
a combination of dietary modifications, increased physical
activity, and the consistent use of oral glucose-lowering
medications. However, while oral antidiabetic medications are

often critical to the management of type 2 diabetes, poor
adherence to these medications is alarmingly common, with
studies suggesting an average adherence rate of only 58%
[51,52]. Recent attempts to address this issue have produced
mixed results. Notably, a comprehensive review [53] of 182
randomized controlled trials focusing on interventions to
improve medication adherence revealed that the evidence
supporting their efficacy is largely unconvincing, despite many
randomized controlled trials included in the review being
extremely time- and resource-intensive. Consequently, such
methods are challenging to scale and integrate into routine
clinical settings. The paradoxical observation is that the
increased complexity and costs of in-person, counseling-style
intervention design might not directly lead to better adherence
rates, resulting in a pressing need for more innovative,
cost-effective, and scalable strategies.

In light of these concerns, SMS-based interventions have
emerged as a promising avenue. These brief messaging
interventions have previously demonstrated efficacy in
promoting various health care behaviors [9,54-57]. Specifically
in the domain of type 2 diabetes, interventions based exclusively
on messaging [58-60] have shown encouraging results in
enhancing medication adherence, though these findings are
drawn from a limited number of trials and are not uniformly
conclusive [61]. Furthermore, a limitation echoed in these
studies is the notable absence of explicit theoretical frameworks
guiding the interventions. For these SMS-based interventions
to realize their full potential, it is paramount that they are
founded on solid theoretical and technical bases, as adopting
such an approach ensures that the behavioral mechanisms
driving adherence are addressed effectively.

Behavior Change Techniques
Described as the “active ingredients” of an intervention,
behavior change techniques (BCTs) epitomize the most
fundamental, replicable, and observable elements designed to
modify the processes that regulate behavior [62,63]. To translate
these strategies into a unified language, a taxonomy
encompassing 93 BCTs organized into 16 groups was developed
to guide behavior change interventions [64]. This standardization
not only aids in replicating and optimizing strategies across
various health behaviors but also enhances the comparability
of research outcomes. By establishing which techniques are
most effective under specific conditions, the taxonomy serves
as a valuable resource for researchers and practitioners to select
evidence-based approaches tailored to improving behavioral
outcomes specific to their patient populations.

However, despite the taxonomy’s pivotal role in unifying
terminology and subsequently facilitating more comprehensive
correlations across behavior change interventions, the
application of these BCTs in the realm of message-focused
diabetes self-management research remains limited. Among the
93 BCTs outlined in the version 1 taxonomy, only a fraction
has been used in published reports for this particular setting
[65,66], despite evidence suggesting that interventions using
more BCTs typically exert more substantial behavioral effects
than those with fewer BCTs [67].
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In light of this discrepancy, a comprehensive systematic review
of systematic reviews was undertaken to quantitatively pinpoint
various BCTs associated with medication adherence across
chronic physical health conditions and qualitatively assess them
in the context of type 2 diabetes [68]. Overall, the systematic
review identified 46 BCTs pertinent to medication adherence
in type 2 diabetes that can be used to develop direct messages
for mobile devices to improve adherence among patients while
simultaneously breaking down the various theoretical constructs
(ie, variables from theories targeted by interventions) and
mechanisms underlying specific behavioral strategies (ie,
techniques not exclusively anchored to one theory but
incorporated in interventions due to their predictive value in
behavior). Therefore, from this systematic review, there emerges
a robust theoretical foundation ripe for practical applications
and explicitly suitable for crafting a bank of messages tailored
for medication adherence among patients with type 2 diabetes.

Methods

Overview
This paper describes the use of generative AI to develop
messages for patients with type 2 diabetes. When using
generative AI for nuanced content creation tasks, understanding
the context, requirements, and restrictions of the desired content
becomes pivotal before initiating the development of a prompt.

Context, Requirements, and Restrictions

Background
This section outlines the key theoretical and technical
considerations of our study. Theoretically, we base our content
on a preexisting systematic review and widely recognized
content design standards to ensure appropriate selection of BCTs
and address health disparities through standardized tone and
readability. Technically, our focus is on the necessary constraints
of SMS delivery systems and the use of a BCT database, which
combines findings from the systematic review with fields from
the BCT taxonomy to be used conjointly for prompt
construction. The following subsections provide detailed insights
into each of these aspects.

Problem Setting
Our setting is based on a rapid systematic review [68]
identifying the theoretical constructs and behavioral strategies
associated with medication adherence in people with type 2
diabetes and mapping them onto the BCT version 1 taxonomy
[64]. The review was done in 2 stages: first, the quantitative
review examined interventions and predictors of medication
adherence, and second, the qualitative review focused on
patients’ perceptions, beliefs, and decision-making related to
medication adherence specifically for type 2 diabetes. Through
this review, 20 theoretical constructs, 19 behavioral strategies,
and 46 BCTs were identified as suitable for the content of brief
messages to be delivered through mobile devices, which serves
as a strong theoretical and scientific underpinning for
determining the BCTs and communication objectives used in
the content.

Note that the selection of elements used as a theoretical
framework in this case study serves as a mere illustration of
how one could transform the theoretical framework provided
by the research team into a generative AI context. In other
applications, the specific information at hand will differ, but
the process of integrating such information into prompts may
adhere to a comparable methodology.

SMS Standards and Limitations
Messages should ideally be 160 characters (including spaces)
or less to be delivered as a single text message to a mobile phone
and must consist of only Global System for Mobile
Communications (GSM-7)–encodable characters (Figure 2).
While some modern smartphones and mobile phone networks
allow for message concatenation, enabling longer messages to
be sent, requiring smartphone ownership for engagement in
health care interventions has been shown to increase health
disparities [69]. Thus, the restriction to the 160 characters
encodable in GSM-7 has been used in this paper because it is
the most standard restriction for SMS-based programs and
allows for the greatest number of successful and predictable
deliveries to participants.
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Figure 2. An example of messages violating (left) and meeting (right) SMS and content design standards. GSM-7: Global System for Mobile
Communications.

Content Design Standards
As one must understand a message to be moved by it, literacy
demands are a key focus in content design. Messages
constructed using shorter words and sentences can cater to a
wider range of literacy levels than those using advanced
vocabularies and complicated sentence structures. While there
are several metrics one might use to evaluate the complexity of
a given text [70-73], to ensure accessibility and readability of
the generated messages, they were assessed postcreation using
the Flesch-Kincaid Grade Level Test due to its widespread use
in practice and ease of implementation. The goal reading level
is set within or below an 8th-grade level, which is considered
the maximum recommended reading level for general adult
audiences [74].

In addition, while text messages often carry an informal and
conversational tone, in a health care context, even teenage
audiences expect there to be a nuanced balance between the
relaxed nature of the medium and the professional voice
expected from a credible source [75]. Consequently, our
messages are designed to avoid the use of slang, excessive
abbreviations, or overly informal punctuation. At the same time,
messages should convey warmth and friendliness, mirroring
the knowledgeable tone of a health care professional with the
approachability of a well-informed friend. Figure 2 shows a
demonstration of appropriate and inappropriate content design.

BCT Database
To ensure consistency and replicability in the development of
messages, we create a standardized database of the 46 BCTs
selected based on the needs of the given setting as identified in
the systematic review of brief message content [68]. The
database contains comprehensive information on each BCT
drawn from both the systematic review and the BCT Taxonomy
version 1 [64]. By centralizing this data in one location, we can
create uniform user prompts that are easily adjustable. This
flexibility allows for structural modifications, the inclusion or
omission of different fields, and swift adaptation if further
curation of BCTs is required, thus ensuring both consistency
and flexibility in the development of targeted health care
interventions. There are six database fields:

1. Number—the number assigned to the BCT [64]
2. Label—the name of the BCT [64]
3. Definition—the definition of the BCT [64]
4. Examples—available examples of the BCT [64]
5. Theoretical constructs—theoretical constructs mapped to

the BCT [68]
6. Behavioral strategies—behavioral strategies mapped to the

BCT [68]

The final table containing the BCT database can be found in
Multimedia Appendix 1.
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Technical Setup
To generate textual content, a pretrained LLM is needed. While
a variety of options currently exist, both proprietary (eg, GPT
[32] and LaMDA [76]) and open-source (eg, Orca [77] and
Llama 2 [78]), we use GPT for this particular project. As one
of the most advanced and widely recognized models in the field
of AI-driven language generation [41,42,79,80], GPT benefits
from an extensive body of research and a thriving community
of developers.

In this work, we use the gpt-3.5-turbo-0301 model through
OpenAI application programming interface (API) [47] calls to
generate health care messages and use the chat completion API
to communicate with the model. While the use of the completion
functionality might appear to be more suitable for a
single-prompt interaction, we observed superior results through
the chat function during initial testing, and therefore continued
development in a chat setting. Moreover, this choice aligns with
the practical recommendations provided by OpenAI [48].

As our experiments are of an illustrative nature, we mostly use
default parameter values for the API calls. In more nuanced use
cases, these values could be tweaked by the prompt engineer to
further tailor the output of the model to comply with the
application, but adjustments were unnecessary for our use case.
However, to ensure reproducibility of the presented results, we
globally set temperature equal to 0, even though in practice one
may obtain better outcomes by setting a positive temperature
and rerunning the same query until a more satisfactory result is
achieved. For instance, in ChatGPT, the value of the temperature
is set to 0.7, which allows for more varied, human-like
responses.

Message generation and analysis are performed in a Jupyter
notebook using Python 3.8 on a consumer-grade laptop. The
source code is included in Multimedia Appendix 1.

Prompt Engineering
For this work, we consider single-prompt chat completion where
the messages parameter contains 2 roles—“system” and
“user”—and their corresponding “content.” The conversation
begins with an initial system prompt, followed by a prompt
from the user. The interaction concludes with a response from
GPT, which provides the generated output. To enhance the
performance of the model for a task with many constraints (in
our case, these included length, complexity, style, and BCT
incorporation), attributed prompt design [81] has been used for
both the system and user roles.

The system role provides general context and behavior
instructions to the assistant. It is used to explain the setting,
rules, parameters, and personas of each participant in the
conversation.

The content of our system prompt is given in Textbox 1 and
consists of four main components:

1. Setting— this establishes the general setting of the
conversation, that is, the designated roles of “user” (as
behavioral scientist) and “assistant” (as diabetes specialist),
and the goal of the interaction (to construct messages
encouraging meditation adherence).

2. Style rules—these are guidelines on style to be used by the
assistant when constructing messages. In this case, style
rules focus mostly on the personality of the messages, in
addition to limitations on length, complexity, and
uniqueness.

3. BCT rules—these are guidelines on the incorporation of
BCTs to be used by the assistant when constructing
messages. BCT rules explain the importance of the BCT
and give directions for use.

4. Task—this combines the previous 3 sections into a single,
condensed statement defining the particular task being asked
of the “assistant” role.

The user role begins the conversation by providing the first
interaction to which the assistant role can respond. In our setting,
the user role has been defined through the system prompt as
“behavioral scientist,” and reflects a templatized version of the
BCT database to provide the assistant with the selected BCT
and its corresponding information.

The structure of our user prompt is given in Textbox 2, where
the tokenized attributes are replaced with their corresponding
values from the BCT database for each query. The five attributes
used in our prompts are as follows:

1. bct_label: the name of the selected BCT [64], prepended
by the label “BCT: ”

2. bct_definition: the definition of the selected BCT [64],
formatted in line with the bct_label following an equal sign
(=)

3. bct_examples: if available, examples of the selected BCT
[64], formatted as a new line prepended by the phrase “For
example, ”

4. bct_theoretical_constructs: if available, the theoretical
constructs corresponding to the selected BCT [68],
separated by 2 line breaks and prepended by the label
“Theoretical Constructs: ”

5. bct_behavioral_strategies: if available, the behavioral
strategies corresponding to the selected BCT [68], formatted
as a new line and prepended by the label “Behavioral
Strategies: ”

Results are delivered through the “assistant” role, which is the
content generated by the chosen GPT model in response to each
particular combination of system and user inputs. To maintain
the consistency of the presented results, we postprocess the
model output by stripping quotation marks and standardizing
the message separation to a single line break.
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Textbox 1. Attributed system prompt used for message generation.

You are a Diabetes Specialist encouraging medication adherence in people with type 2 diabetes via brief messages.

Your messages are informed by different Behavior Change Techniques (BCTs).

I am a Behavioral Scientist who will describe the BCT you should use to frame your messages encouraging medication adherence.

Messages should be friendly and positive, but also professional, super short, and to-the-point. You are limited on space. Messages should be written
at the reading level of an eighth grader. Word choice should be short and simple so everyone can understand. Every message must be entirely unique
from all others in both language and structure.

The BCT I will provide is {bct_label}. It is the most important thing, and it is very nuanced. Messages must intelligently use {bct_label} to encourage
medication adherence. All messages must prioritize {bct_label} over everything else. DO NOT write any part of the user message verbatim -- the
BCT, theoretical constructs, and behavioral strategies are a secret.

Task: You will use these sets of rules to construct 25 diverse messages that use {bct_label} to increase medication adherence for recipients with type
2 diabetes.

Textbox 2. Attributed user prompt used for message generation.

BCT: {bct_label} = {bct_definition}

For example, {bct_examples}

Theoretical Constructs: {bct_theoretical_constructs}

Behavioral Strategies: {bct_behavioral_strategies}

{bct_label} is critical to each creative, chatty message.

Ethical Considerations
This research focused on the development of content for SMS
interventions using generative AI, which did not require the
collection or analysis of personal data or direct engagement
with individuals. According to federal guidelines from the US
Department of Health and Human Services, known as the
“Common Rule” (45 CFR 46) [82], ethics board approval is
required only for research on human subjects that entails
obtaining data through interaction with individuals or the use
of identifiable private information. Since this study did not meet
these criteria, an ethics review was not applicable. The generated
content and associated processes were evaluated for adherence
to ethical standards in the context of AI-generated material and
were designed to be transparent, reproducible, and free of harm.

Results

Overview
Using the attributed system and user prompts, 25 messages are
generated for each of the 46 selected BCTs, resulting in 1150
BCT-informed messages. A total of 45,905 tokens costing US
$0.07 were used for the entire data set generation, with an
average of 998 tokens used and US $0.0015 expenditure per
BCT. Approximately US $10 was spent for the entire prompt
development process, which required over 300 iterations of the
prompt. The first 5 generated messages for the first 6 BCTs are
presented in Table 1, with the full data set made available in
Multimedia Appendix 1.

We analyze the generated messages to evaluate their overall
adherence to the required metrics. Specifically, we consider the
following parameters: message length, message readability, and
diversity of messages and their BCT alignments compared with
an existing message data set.
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Table 1. Examples of messages generated from the user query.

Message generatedUser query

1.2 Problem solving • Feeling overwhelmed by your medication regimen? Let’s work together to simplify it and make it more manageable.
• Are you experiencing any side effects from your medication? Let’s problem solve and find ways to cope with them.
• Let’s identify any barriers preventing you from taking your medication as prescribed and develop strategies to overcome

them.
• Having trouble remembering to take your medication? Let’s problem solve and find ways to make it a habit.
• Are you concerned about the cost of your medication? Let’s problem solve and explore options for financial assistance.

1.4 Action planning • Set a reminder on your phone to take your medication every day at the same time. This will help you remember to take
it consistently.

• Think about the best time of day for you to take your medication and plan to take it at that time every day.
• Create a checklist of all the medications you need to take and when to take them. This will help you stay organized and

on track.
• Plan to take your medication with a meal or snack to help prevent any stomach upset.
• Make a plan to refill your medication before you run out. This will ensure you always have it on hand.

2.3 Self-monitoring
of behavior

• Keep track of your medication intake every day to ensure you are staying on track with your treatment plan.
• Make a habit of checking your blood sugar levels regularly to monitor the effectiveness of your medication.
• Keep a log of any symptoms you experience to help your health care provider adjust your medication as needed.
• Set reminders on your phone to take your medication at the same time every day to establish a routine.
• Use a medication tracker app to monitor your medication intake and set reminders for refills.

2.4 Self-monitoring
of outcome(s) of be-
havior

• Keep track of your blood sugar levels every day to see how your medication is working for you.
• By monitoring your blood sugar levels, you can see the positive impact your medication is having on your health.
• Make a habit of recording your blood sugar levels to stay on top of your medication regimen.
• Keep a log of your blood sugar levels to help you stay motivated to take your medication as prescribed.
• By tracking your blood sugar levels, you can see how your medication is helping you manage your diabetes.

2.7 Feedback on
outcome(s) of behav-
ior

• Great job! By taking your medication as prescribed, you are helping to manage your diabetes and prevent complications.
• Keep up the good work! Taking your medication regularly can help lower your blood sugar levels and reduce your risk

of long-term health problems.
• You are doing an amazing job! Remember, taking your medication as directed can help you feel better and stay healthy.
• Congratulations! By sticking to your medication regimen, you are taking control of your diabetes and improving your

overall health.
• Way to go! Taking your medication on time and as prescribed can help you avoid complications and live a longer,

healthier life.

Message Length
Messages should be 160 characters or less. In total, 1034 of the
1150 (89.91%) total generated messages satisfy this requirement

(Figure 3). The average length of all generated messages is 119
characters.

Figure 3. Length (left) and readability (before adjustment, center; after adjustment, right) of the generated messages.

Message Readability
Messages should fall within or below an 8th-grade level on the
Flesch-Kinkaid Grade Level Test. In total, 688 of the 1150
(59.83%) total generated messages satisfy this requirement with
no alterations for our setting (Figure 3). The average grade level
of all generated messages is 8.4.

While this is the initial score for all messages, it is critical to
note that the nonnegotiable and unsubstitutable word

“medication” is considered complex due to its character length
(10 characters) and number of syllables (4 syllables). However,
for our setting, it is assumed that a population prescribed
diabetes-management medications will be cognizant of the word
“medication,” and it will thus not pose the same complexity
barrier in our context as it might in other applications. Therefore,
when the word “medication” is ignored during the readability
calculation, 928 out of the 1150 (80.7%) total messages satisfy
the readability requirement, with an average grade of 6.5 (Figure
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3)—a closer, more accurate metric of complexity for our
particular use case.

Message Diversity

Overview
To evaluate the diversity of the generated messages, we compare
them to the largest publicly available data set of SMS health
care communications using BCTs to address behaviors
surrounding diabetes [27]. We use pretrained natural language
processing systems to compute the embeddings for each set of
messages and compare their distribution.

It is important to note that due to the general opacity surrounding
message creation for brief message interventions and the
resulting lack of publicly available data sets, the study [27] we
use for comparison is similar in theoretical framework used
(BCTs) and general condition (diabetes), but different in
population (individuals with prediabetes vs diagnosed diabetics),
health behaviors addressed (diet and physical activity vs
medication adherence), and size of the data set (124 vs 1150).

Also note that some of the messages in the comparison data set
[27] are coded for multiple BCTs. In such cases, we duplicate
the message and assign each variation a single BCT to be
consistent with our single-BCT-per-message mapping, resulting
in a comparison data set consisting of 169 total messages.

BERT Embeddings and Principal Component Analysis
Projection
We use BERT [83] to compute message embeddings through
the bert-base-uncased model available through the Hugging
Face Inference API [84]. For any message x∈X its BERT

embedding vector emb(x) is given as emb(x)∈R768.

For each message, we compute its 768-dimensional embedding
vector and then project it onto a 2D plane using principal
component analysis (PCA) [85] (Figure 4). We note that the
distributions of embeddings in both data sets are comparable,
with embeddings being spread throughout the latent space
without clustering per BCT, which indicates the presence of
nontrivial semantic diversity.

Figure 4. Principal component analysis projection of BERT embeddings of messages: ours (left) and comparison (right).

ADA Embeddings and t-Distributed Stochastic Neighbor
Embedding Visualization
We use ADA [86] to compute message embeddings through
the text-embedding-ada-002 model available through the
OpenAI Embeddings API [87]. For any message x∈X, its ADA
embedding vector emb(x) is given as

emb(x)∈S1535⊂R1536,

where S1535 denotes the unit sphere in R1536. Because the
embeddings computed by ADA are given as points on the unit
sphere of the latent space, it does not seem sensible to use a
linear projector like PCA; instead, we use t-distributed stochastic
neighbor embedding (t-SNE) [88] to perform nonlinear
dimensionality reduction. For each message, we compute its
1536-dimensional embedding vector and then embed them into
a 2D plane using t-SNE (Figure 5). We note that the distributions
of embeddings of both data sets are comparable, with messages
corresponding to the same BCT being positioned closely.
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Figure 5. t-Distributed stochastic neighbor embedding visualization of ADA embeddings of messages: ours (left) and comparison (right).

Cross-Comparison of Data Sets
In this section, we aim to provide a more head-to-head
comparison between the 2 data sets. To achieve such a
comparison, 2 major differences in the data sets must be
addressed: distribution (ie, the BCTs and number of messages
per BCT) and objective (ie, the setting for which the messages
are written).

To match the BCT-message distribution in 2 data sets, we first
select the messages corresponding to the BCTs present in both
data sets (Multimedia Appendix 1). Then, we check the number
of messages available for each BCT in the comparison data set
(169 messages mapped onto 41 BCTs) and take the same
number of messages for each corresponding BCT from ours
(1150 messages mapped onto 46 BCTs). This results in 2 sets
of 135 messages spread across 31 BCTs (Multimedia Appendix
1).

While matching the objective is barely feasible, as it involves
changing the semantic structure of each message, we attempt
to nullify this difference by averaging the embeddings over each

data set. Concretely, for each message x from the data set X we
compute its representation r(x) by taking the ADA embedding
emb(x) and centering it as,

(1)

where X denotes the set of all messages from this data set and
|X| denotes its cardinality. This modification is proposed in [89]
and is prefaced on the assumption that the embedding emb(x)
contains sufficient semantic information about the message
x∈X, and thus the average of the embedding vectors over the
data set represents the information that unifies all the messages,
that is, the objective. By subtracting the average, the
representation r(x) still contains the information that is specific
to this particular message, that is, the semantic structure and
the BCT.

Computing representations (equation 1) for each message in
both data sets allows us to directly compare the 2 data sets
through the PCA and t-SNE projection of the message
representations, shown in Figure 6.

Figure 6. Projections of normalized ADA embeddings of messages: principal component analysis (PCA; left) and t-distributed stochastic neighbor
embedding (t-SNE; right).

Moreover, we compute the relevance between BCT encodings
in the 2 data sets by averaging message representations
corresponding to each BCT and then taking an inner product,
that is,

(2)

where  ·, · : R1536×R1536→R denotes the inner product, X1/X2

is the set of messages corresponding to BCT bct1/bct2,
respectively, and r(x) is the numeric representation of the
message x computed via equation 1. The resulting 31 × 31
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heatmap can be found in Multimedia Appendix 1. The obtained
relevancies can be used to evaluate the alignment of BCTs
between 2 data sets, which result in a top-5 accuracy of 67%
and a top-10 accuracy of 87%. Even though such an approach
is a bit heuristic, we observe that the representations of the
messages from both data sets are distributed similarly, often
with messages corresponding to the same BCT being close to
one another. This observation provides grounds to contend that
the diversity of the messages generated by our approach is
comparable to those previously created by researchers for
practical, real-world applications.

Discussion

Overview
In this paper, we propose a novel approach to creating
behaviorally informed content for brief message interventions.
Using the setting of medication adherence for people with type
2 diabetes, we use a pretrained LLM to develop a bank of text
messages based on BCTs curated in a recent systematic review
[68]. This work is intended to act as a blueprint for future
research to create a more transparent, replicable, and
scientifically rigorous look into the content creation process for
brief message interventions and serve as a starting point for
subsequent studies to analyze the safety, efficacy, and viability
of AI-generated messages.

Principal Findings
In this paper, we show the potential of generative AI as a tool
for transparent and replicable content creation in brief message
interventions. Inspired by a list of 46 BCTs and their
corresponding theoretical constructs and behavioral strategies,
we engineer attributed system and user prompts for GPT to
generate 25 messages for each of the 46 BCTs, for a total of
1150 messages in the specific setting of medication adherence
for type 2 diabetes. Our findings reveal that a significant
majority of the generated messages were compliant with both
message length and complexity considerations (1034/1150,
89.91% and 928/1150, 80.7%, respectively), making them
well-suited for SMS-style interventions.

The diversity of generated messages is analyzed through the
distributions of their embedding vectors with 2 popular
pretrained natural language processing systems: BERT and
ADA. The generated messages showcase a diversity in message
content that is comparable with an existing publicly available
data set of brief messages and reflects similar distributions
among BCTs from the comparison data set while also
maintaining variability between messages of the same BCT,
thereby demonstrating the capability for generative AI to craft
a plethora of unique and contextually relevant communications
with only a very standardized change in input between BCTs.
The data set and source code for message generation and
analysis are available in Multimedia Appendix 1.

Technical Limitations
As generative AI is an extremely new field growing at a rapid
rate, new algorithms and “versions” of LLMs are being released
regularly. These updates can often fundamentally change the
assistant output generated by the same system and user inputs,

leading to a lack of consistency in experiments conducted with
the same prompt over a long period of time. Especially for users
of chatbot-style LLMs like ChatGPT, these updates can come
suddenly and without permission, making research on such
platforms difficult. While this issue is somewhat mitigated using
an API (which generally does not force immediate adoption of
the newest models), many current LLMs will eventually be
depreciated, albeit at a more gradual rate. The only true
mitigation of this limitation is the use of open-source models
(such as, for example, Orca [77] and Llama 2 [78]) that can be
fully downloaded and deployed on the client side; however, this
comes at the cost of the technical proficiency required to set up
such a system. Therefore, while prompts like ours serve as great
examples of attributes to consider and the language one might
use when constructing a prompt for a particular setting, the
definitive construction of a singular, unchanging prompt to
support intervention research is generally unfeasible in practice.

Another potential limitation of generative AI for very large-scale
message generation is the finite context window size of the
given LLM. In our results, we generate 25 messages per BCT,
equating to an average of 998 tokens for each interaction, which
keeps us well within the current 4000-token context limit bounds
of gpt-3.5-turbo-0301. If a larger bank of messages is required,
according to our current standardized single-prompt structure,
one could feasibly increase the number of generated messages
to 100 or more before nearing the limit. However, for extremely
large-scale data generation, even a single-prompt interaction
will likely be insufficient, and because LLM context is
cumulative, this restriction will likely be most prominent for
multistep interactions.

It is important to note that our use of a singular templatized
prompt across multiple BCTs can sometimes fail to capture the
nuanced essence of each distinct BCT. This “one-size-fits-all”
approach may yield inconsistencies in the quality and accuracy
of the generated content for certain BCTs as compared with
others. However, prior studies in behavioral science have also
suggested that some BCTs may not be capable of being
delivered effectively in an SMS format regardless of the method
of creation [90], perhaps indicating that difficulties in accurately
representing some BCTs may have less to do with the limitations
of generative AI and more to do with the inherent complexities
of some BCTs in the given setting of brief message
interventions.

Generative AI, while versatile, is heavily reliant on the specific
language of the prompts provided; thus, when prompts rely
heavily on external data fitting into a templatized structure,
small, seemingly insignificant differences in the style or
authorship of that data can potentially affect results [91,92]. For
those aiming for AI-generated content that would be used in
practice without human review, the design and fine-tuning of
dedicated prompts for each unique contextual change (in our
case, BCTs and their corresponding information) are likely a
necessity. Therefore, while our approach serves as a proof of
concept for efficient single-prompt content creation and
demonstrates the vast potential of pretrained LLMs in this
domain, achieving universally accurate results for all BCTs
would necessitate a more granular, tailored approach to prompt
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design, attending to the individual nuances and requirements
of each BCT within its specific context.

Safety and Ethics in AI
As with any state-of-the-art technology, ethical considerations
for the implementation of generative AI are paramount, guided
by the core principles of transparency, privacy, accountability,
and fairness [93,94]. However, the inherent unpredictability of
LLMs becomes acutely significant in health care contexts, where
the consequences of misinformation or inappropriate
AI-generated suggestions can be dire for patients. Given that
ensuring fully reliable, safe, and accurate information generation
by LLMs is deemed “fundamentally impossible” [95], human
checkpoints become indispensable before, during, and after AI
employment. Researchers and domain experts must meticulously
review AI-generated content for accuracy, safety, and equity,
especially when evaluating its usability for complex
patient-facing health care interventions.

It has been demonstrated that diversely attributed, complex
prompts can reduce biases [81], but it is imperative to strike a
balance, as excessively long prompts may increase the likelihood
of undesired model behaviors [96]. In our approach, we
acknowledge the crucial role of domain experts in both prompt
design and content review, effectively mitigating the risk of
malicious actor involvement and enabling the use of longer,
more attributed prompts. Generative AI should not be seen as
a standalone solution but as a tool that augments and accelerates
the work of researchers. While it dramatically enhances
efficiency in content creation, the responsibility for upholding
rigorous standards of accuracy, safety, and fairness in health
care interventions remains firmly with human experts, and it is
the symbiotic collaboration between this tool and the human
research team that ensures the delivery of ethically sound and
clinically effective interventions.

Comparison With Prior Work
To the best of our knowledge, this is the first work to propose
the use of generative AI as a tool for content creation in SMS
health interventions. However, a similar study [28] detailing a
traditional content creation process was undertaken using the
same systematic review [68] as a theoretical framework. A
workshop was held for content creation and subsequent focus
groups and surveys were used for review, resulting in the
production of 371 messages informed by the selected BCTs in
the context of medication adherence for type 2 diabetes.
However, despite efforts toward transparency, this work does
not reveal a detailed account of the actual content creation
process, and the data set of generated messages has not been
made publicly available for review or comparison.

Previous studies have looked at traditional content creation for
brief message interventions, with a specific focus on the
selection and review of BCTs and their corresponding messages
[27,97,98]. More broadly, investigations into mHealth
interventions have been a hot topic in health care research for
years [11,14,15,26], and several works investigating the specific
incorporation of behavioral science into brief message
interventions have been previously undertaken with positive
results [99-101].

In addition, one-shot, zero-shot, and few-shot approaches to
prompt engineering have seen an explosion of interest following
the expansion of LLMs within the public and academic mindset,
leading to a large body of research on the methods and
frameworks of prompt design for a variety of contexts and use
cases [45,102,103].

Future Work
This is the first in a series of works detailing the process for
responsible and efficient use of generative AI in the development
of brief message health care interventions. The next step
involves assembling a team of qualified behavioral scientists
and other domain experts to conduct in-depth analyses of the
generated messages, focusing on their adherence to safety
standards, adjustments to meet the technical requirements of an
SMS delivery system, a formal review of BCT coding for each
message, and general checks that the generated messages meet
best practice standards for content design.

Moreover, the development of a subsequent interaction with
the model could be used to self-adjust the generated results
based on designer feedback. Using a multistep prompting
method, the model could, for example, be directed to self-assess
for safety and equity considerations, as well as edit more
individually for the given use case based on specific critiques
provided by the research team. Such iterative developments of
the model should necessarily involve rigorous patient testing
and feedback—a crucial step in ensuring that the AI-generated
content resonates with patients’experiences and needs to further
personalize and refine the developed health care interventions.

Standardizing the realization of individual BCTs within brief
message content represents another critical research direction.
Many interventions currently withhold both their messages and
their content creation processes, potentially introducing
unintentional biases and skewed outcomes due to inherent
differences in writing styles and other design-related
confounding variables. By advocating for the transparency and
standardization of content design, we can enhance the research
efficacy of interventions by reducing such confounders and
further ensuring that the results of such interventions are truly
tied to the theoretical frameworks and behaviors being tested.

Finally, the ambitious goal of generating hyperpersonalized
health care communications tailored to individual patients
becomes a promising possibility with LLMs. Future iterations
of content could be further personalized by implementing
features like translating content for different languages and
localizations; tailoring content for cultural relevance and
sensitivity in the use of examples, metaphors, and references;
adjusting the complexity levels of the text to cater to different
educational backgrounds or cognitive abilities; and providing
accessible formats adjusted for individuals with disabilities.
While conventional content creation methods struggle with the
impossible number of potential messages required for
personalized content for every recipient, attributed prompting
with generative AI offers the potential to create individualized
messages that can significantly enhance patient engagement
and outcomes and change the way health care interventions are
experienced.
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Conclusions
In this study, we explore the practical application of generative
AI for content creation in the development of brief message
health care interventions. We illustrate the potential of using
pretrained LLMs as a tool to aid researchers in the
resource-intensive process of content creation by generating a
data set of 1150 messages inspired by 46 BCTs selected for the
setting of medication adherence for type 2 diabetes. Building
on the foundations laid by former health care intervention
development studies, this paper differentiates itself by the
following:

1. Proposing and demonstrating the use of generative AI with
pretrained LLMs for intervention development

2. Detailing the use of state-of-the-art AI tools for prompt
engineering and content design processes

3. Providing the largest publicly available data set of messages
created for SMS interventions, as well as the first publicly
available source code offering fully transparent insight into
the content creation process

Ultimately, the value proposition of using generative AI in this
domain lies not in the perfection of the initial generated content
but in its adaptability and capacity to rapidly produce a multitude
of messages that can subsequently be refined and curated by
human experts. This combination of AI-driven speed and
human-driven supervision presents an efficient, transparent,
and scalable method for developing effective and replicable
brief message interventions. While follow-up studies are needed
to ensure the safety and usability of the generated messages and
provide potential refinements to the proposed prompts for
individual settings, the use of generative AI in health care
intervention development opens new doors for the scalability
and potential standardization of content creation within health
care intervention design and research. Given the time- and
cost-intensive nature of crafting interventions traditionally and
the current opacity of the content design process, our study
underscores the potential of generative AI as a significant
efficiency tool poised to revolutionize the creation of behavior
change interventions for medication adherence and beyond.
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Abstract

Background: Biobehavioral rhythms are biological, behavioral, and psychosocial processes with repeating cycles. Abnormal
rhythms have been linked to various health issues, such as sleep disorders, obesity, and depression.

Objective: This study aims to identify links between productivity and biobehavioral rhythms modeled from passively collected
mobile data streams.

Methods: In this study, we used a multimodal mobile sensing data set consisting of data collected from smartphones and Fitbits
worn by 188 college students over a continuous period of 16 weeks. The participants reported their self-evaluated daily productivity
score (ranging from 0 to 4) during weeks 1, 6, and 15. To analyze the data, we modeled cyclic human behavior patterns based
on multimodal mobile sensing data gathered during weeks 1, 6, 15, and the adjacent weeks. Our methodology resulted in the
creation of a rhythm model for each sensor feature. Additionally, we developed a correlation-based approach to identify connections
between rhythm stability and high or low productivity levels.

Results: Differences exist in the biobehavioral rhythms of high- and low-productivity students, with those demonstrating greater
rhythm stability also exhibiting higher productivity levels. Notably, a negative correlation (C=–0.16) was observed between
productivity and the SE of the phase for the 24-hour period during week 1, with a higher SE indicative of lower rhythm stability.

Conclusions: Modeling biobehavioral rhythms has the potential to quantify and forecast productivity. The findings have
implications for building novel cyber-human systems that align with human beings’ biobehavioral rhythms to improve health,
well-being, and work performance.

(JMIR AI 2024;3:e47194)   doi:10.2196/47194
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Introduction

Background
Biobehavioral rhythms—repeated cycles of biological,
behavioral, and psychological events—are indicative of different
life and health outcomes [1]. Chronobiology, which examines
periodic phenomena in living organisms, has demonstrated the
impact of circadian disruptions on people’s lives, including
physical and mental health as well as safety and work
performance in shift workers [2-6]. However, research in
chronobiology has primarily been conducted via manual
observations and subjective reports often restricted over a small
period of time. Advances in mobile and wearable devices
provide the possibility of automatic and rigorous collection of
longitudinal biobehavioral data from people’s personal devices
[7-9]. This longitudinal fine-grained data collected on a daily
basis have the potential to reveal micro- and macrolevel patterns
related to different biobehavioral outcomes.

In this study, we examine the relationship between cyclical
human behaviors and work efficiency using data from mobile
sensors. This analysis is based on data collected from the
smartphones and Fitbits of 166 college students, encompassing
patterns such as activity, communication, and sleep. Our main
objective is to determine variations in biobehavioral rhythms
across students of varying productivity levels and identify
particular rhythm traits associated with productivity.

Related Work

Modeling Biobehavioral Rhythms
Research in chronobiology that examines periodic phenomena
in living organisms is relatively mature, and existing studies
have confirmed that exploring human rhythms is an effective
way to diagnose and treat many illnesses such as cancer,
cardiovascular disease, and mental health problems [10-12].
For example, patients with depression, those with bipolar
disorder, and those with schizophrenia usually exhibit irregular
changes in circadian rhythm, and adjusting the circadian rhythm
is an efficient auxiliary method for treating these conditions
[13-15]. Disruption in biological rhythms is also caused by
changing lifestyles and environmental conditions such as travel
across time zones and shift work [16]. Night shift and morning
shift workers may be especially at risk of committing errors and
having accidents [17].

A few studies have used smartphone technology to track
circadian patterns. For example, Abdullah et al [18] used
patterns of phone usage to identify chronotypes of students
(early birds or night owls). Murnane et al [19] aggregated mobile
app usage features by body clock time and analyzed the
correlation between circadian rhythms in app usage and alertness
level. Doryab et al [1] demonstrated modeling of rhythms using
data from Fitbit devices in patients with cancer and showed that
disruption in circadian rhythms predicts readmission in patients
with cancer undergoing treatment. Yan et al [7] further
developed a computational framework for modeling
biobehavioral rhythms from multimodal sensor streams. While
our work leverages this framework to model biobehavioral
rhythms, we advance research in this domain by developing

and applying algorithms to observe and measure changes in
multimodal biobehavioral rhythms across different periods and
between people with different productivity levels.

Productivity Assessment
Traditional productivity assessment approaches are typically
subjective, static evaluations administered as self-report surveys,
manager assessments, observations, or ability tests. Some studies
have used multitasking and interruptions, for example, checking
emails [20] and mental and physical fatigue as proxies for
productivity in workers and officers [21-24]. For example,
Gloria et al [20] tracked and analyzed email usage in affecting
workplace productivity and stress. Aryal et al [25] conducted
a simulated construction task for monitoring physical fatigue
by measuring changes in heart rate, skin temperature, and brain
signals. The study showed a direct relationship between physical
fatigue and heart rate metrics such as heart rate, heart rate
variability, and percentage of heart rate.

Recent studies on workplace productivity have used mobile,
wearable, and environmental sensors to track individuals’
behavior and environmental conditions to assess workers’ job
performance. For example, background noise, light, temperature,
and air quality have been shown as the 4 external factors
affecting productivity [26-29]. In a study by Mirjafari et al [30],
the analysis of phone usage, location, activity, sleep, and time
allocation of 554 participants indicated that the regularity of
behaviors distinguishes high and low performance. van Vugt
et al [31] suggested that eye-tracking could be used to measure
productivity. The hypothesis was that if the eyes of a person
remained at certain locations on the computer screen, they were
focused and thus productive. However, this theory has yet to
be evaluated in practice. In addition to external factors, research
studies have investigated the impact of internal factors and cues
in measuring productivity. For example, Das Swain et al [32]
demonstrated that static intrinsic personality can explain
workplace performance using data from 603 information
workers.

Our research is unique in measuring and assessing productivity
by leveraging cyclic biobehavioral patterns from passive data
streams to assess productivity. Our work is also the first to
measure daily productivity from multimodal mobile and
wearable data in college students.

Methods

Data Collection
We use a data set of smartphone and Fitbit logs collected from
188 students at an American university over the course of 1
semester. The data were collected as part of an extensive study
on students’ health and well-being. All participants were
first-year students, with their demographic details presented in
Table 1.

The AWARE data collection app [33] and Fitbit were used for
the collection of audio, Bluetooth, Wi-Fi, location, phone usage,
calls, calories, sleep, and steps. AWARE is an open-source data
collection framework that works both on Android and iOS
platforms. All participants used their smartphones, and this
study’s team provided a Fitbit Flex 2 to collect data. Students’
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productivity assessments were collected via an evening survey
during weeks 1, 6 (midsemester), and 15 (last week of classes)
of the semesters to avoid overburdening participants. The
assessment question included a single question: “How
productive did you feel today?” The possible responses ranged
from 0 (not productive at all) to 4 (extremely productive). The
mean and SD of self-evaluated productivity scores were
consistent for different sexes and major groups with no
significant difference: female (mean 1.65, SD 0.92), male (mean
1.80, SD 0.97), engineering (mean 1.71, SD 0.96), business
(mean 1.70, SD 0.99), science (mean 1.69, SD 0.94), art (mean

1.76, SD 0.95), humanities (mean 1.68, SD 0.97), and undecided
(mean 1.67, SD 0.87).

Of the initial 188 first-year students, 166 produced subjective
assessments of their respective daily productivity. The response
rate fluctuated over the 3 weeks, with some students not
completing the surveys. The data set included 488 total
observations, represented as participant-week pairs. During the
introductory meeting, students were briefed about this study’s
objectives. This study’s goals were transparently communicated
without any deceit or exclusion.

Table 1. Demographic distribution of this study’s samples: a total of 188 first-year university students were enlisted as participants for this research.

Participants, n (%)Category and subcategory

Sex

111 (59)Male

77 (41)Female

Race

107 (57)Asian

9 (5)Black

17 (9)Hispanic

64 (34)White

Major

79 (42)Engineering

30 (16)Art

24 (13)Business

23 (12)Science

8 (4)Humanities

Data Processing

Measuring Productivity Levels
As mentioned previously, while sensor data were collected
continuously for 16 weeks, self-reported productivity (by study
design) was only collected in weeks 1, 6, and 15. We used
productivity scores (0-4) to categorize participants into high
and low-productivity groups. These categories were used as
ground truth labels in the later analysis of the relationship
between rhythms and productivity. To identify the cutoff
threshold, we calculated the mean and median of the daily
productivity scores for all participants across all 3 weeks. The
mean of 1.89 (SD 0.94) and a median of 2 (IQR 1) indicated a
normal distribution across scores (verified by the Shapiro-Wilk
test, P=.12). Therefore, we used 2 as the threshold for
categorizing productivity, with scores less than 2 indicating low
productivity and scores equal to or above 2 indicating high
productivity. Figure 1 shows the distribution of the mean and
variance of daily productivity scores within each week. The
mean productivity has decreased in week 6 compared with week
1. Since week 6 is the midterm, a high workload and pressure
may make some students work more productively, but the

pressure and stress may have the opposite effect on others. The
IQR of the mean of low productivity is wider than in week 1.
The mean and 75th percentile of variance are all less than one,
which is also the interval between the survey’s productivity
options. This indicates that the participants’ answers are
relatively stable each week. We, therefore, average the
productivity scores of all days in each week (including both
weekdays and weekends) as the weekly productivity score with
the same threshold to categorize each participant’s week average
into high or low productivity.

In addition to labeling each participant’s weekly data as high
or low productivity, we also need to further categorize
participants into high or low productivity to evaluate our rhythm
similarity methods described in the Methods section. We analyze
the combination of high and low productivity weeks for all
participants as shown in Table 2. We observe the number of
participants in different combinations is imbalanced and does
not create large enough groups for analyzing each combination
separately. We therefore categorize participants into high and
low productivity groups, where students with at least 2 weeks
of high productivity rates are categorized as high productivity
and the rest are placed into the low-productivity group.
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Figure 1. If the mean of 1 week’s daily productivity is above 2 (SD 0.21), the week will be labeled high productivity; otherwise, the week will be
labeled low productivity. Gray represents the mean and variance that come from weeks with high productivity, and orange represents the mean and
variance that come from weeks with low productivity. The medians of variance are all less than 0.5, and the 75 percentiles are within 1 no matter what
productivity the weeks have. The difference in productivity scores between the 2 adjacent options in the productivity survey is 1, so the low variance
indicates that most participants will keep the same productivity level during the whole week. The medians of the mean of both high and low productivity
are very close, but there are more small mean values in week 6 for low productivity and more large mean values in week 1 for high productivity.

Table 2. Participant productivitya.

Participants, nWeek 15Week 6Week 1

High productivity group

13HighHighHigh

14LowHighHigh

12HighLowHigh

10HighHighLow

Low productivity group

29LowLowHigh

4LowHighLow

17HighLowLow

62LowLowLow

aThe middle column lists all combinations of weekly productivity levels, and the right column shows the number of participants for each combination.
Many participants were inefficient for all 3 weeks. Participants were more likely to achieve high productivity in week 1 and had the most difficulty
achieving high productivity in week 6. Moreover, we aggregated the 8 combinations into 2 groups. Participants with at least 2 highly productive weeks
were assigned to the high-productivity group; otherwise, they were assigned to the low-productivity group.

Feature Extraction
We extracted features in 2 processing layers. First, we
aggregated the raw sensor data into more meaningful behavioral
features to capture students’ social interaction, physical activity,
sleep, and academic life. The raw sensor data we collect are just
a series of numbers without providing much information. For
example, screen data are a time series of values from 0 to 3 (eg,
0121023...), which does not provide any helpful information,
but we can process this time series to extract more meaningful
information about how often the user has been interacting with
the phone. We then divided each data stream into hourly

intervals and extracted behavioral features in each interval
following the descriptions documented by Doryab et al [34].
Typical features included statistical measures such as minimum,
maximum, mean, SD, length of the status in the hour, and more
complex behavioral features such as movement patterns and
type and duration of activities. Example features are shown in
Table 3. Finally, we modeled the cyclic pattern of each
behavioral feature using Cosinor, which provided a set of
parameters that describe the cyclic pattern. This process and
the list of rhythm parameters are detailed in the following
section.
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Table 3. Examples of sensor features.

Extracted featureDevice and sensor

Smartphone

Percentage of time with voice, noise, or silence; minimum, maximum, mean, or SD of voice energyAudio

Mean or total number of Bluetooth scansBluetooth

Number of unique Wi-Fi hotspots detectedWi-Fi

Location variance; percentage of time staying at home; number of visits; time spent at green areas, ath-
letic areas, academic areas, or outside campus

Location

Minutes interacting with phone; minimum, maximum, mean, or SD length of interaction periodsPhone usage

Fitbit

Minutes asleep, awake, or restless; minimum, maximum, or mean length of asleep, awake, or restless
periods

Sleep

Total number of steps; minimum, maximum, mean, and total length of active or sedentary periodsSteps

Minimum, maximum, mean, or total calories burned; minimum, maximum, mean, or total decrease in
5-minute calories burned

Calories

Handling Missing Values
As data sets collected in the wild are expected to include noise
and missing data, we developed strategies to handle missing
data. The missing values were filled separately for different
participants and weeks using the local moving average
commonly used in time series. For example, if the hourly values
of location variance were missing at 2 PM and 3 PM on day 1
of week 1 for participant A, then we imputed the values as
follows: v2pm = v1pm + (v4pm – v1pm) / (4 – 1) and v3pm = v1pm +
2 × (v4pm – v1pm) / (4 – 1). Moving average is the most suitable
interpolation method for rhythm modeling. Other methods such
as multiple interpolations and Expectation-Maximization
estimation introduce cross-correlation between features, and
regression estimation and k-nearest neighbor increase
auto-correlation of a single sensor feature [35,36]. However,
the moving average method is sensitive to the number of
continuous missing data. If the missing block is large, the
moving average will introduce high noise and bias, and the data
may need to be removed instead of imputed. We, therefore,
calculated the average length of continuous missing hour blocks
to decide the minimum threshold for removing data. The average
missing block was 1.7 (SD 0.41) data points in sensor streams
with less than 20% missing values. We, therefore, imputed the
behavioral feature streams with less than 20% missing values
and discarded the rest.

After cleaning the data, we ended up with a data set that included
101 sensor features related to location, calories, steps, and sleep.
The amount of weekly data we have for each feature changes
because some data from participants was removed during our
missing handling process. As an example, location features have
around 50 observations for week 1 and 15 and 22 observations
for week 6; calories and steps features have around 110

observations for weeks 1 and 6 and 80 observations for week
15.

Modeling Biobehavioral Rhythms
To model rhythms from longitudinal biobehavioral data
collected in the wild, we used the Cosinor method introduced
by Halberg [37]. The Cosinor method forms a linear
combination of cosine curves with known frequencies to fit
cyclic time-series rhythm data and calculates rhythm parameters
using least square regression [38]. The Cosinor function can
take multiple periods as input parameters and use those to
generate a cyclic model of provided time series data. The
generated model includes a series of parameters that characterize
the cyclic behavior in the data stream. Textbox 1 details the
parameters, and Figure 2 [39] visually represents them. The
Cosinor method is mathematically expressed by Fernández et
al [40] as:

where yi is the observation at time ti;    is the Midline Estimating
Statistic of Rhythm (MESOR); ti is the sampling time;    is the
number of input periods; Ac, Tc, and Øc represent the amplitude
(Amp), period, and acrophase (PHI), respectively; and is the
error. Cosinor also outputs the SE for MESOR, Amp, and PHI,
respectively.

We used Cosinor to build personal cyclic models per student
per sensor stream in weeks 1, 6, 15, and the weeks adjacent to
them (eg, for week 6, we use sensor data from weeks 5, 6, and
7 to build Cosinor models). We then used rhythm parameters
generated by those models in the correlation analysis. We
assumed all participants had normal daily rhythms and used the
input periods of 8, 12, and 24 hours in the Cosinor. The 8, 12,
and 24 hours reflect nocturnal, diurnal, and circadian duration,
respectively.
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Textbox 1. Definitions of rhythm parameters output from the Cosinor model [41].

Rhythm parameters and their definition

• Fundamental period: the fundamental period is the least common multiple (LCM) of all individual periods. We use 8-, 12-, and 24-hour periods
in our modeling approach.

• MESOR: estimating the midline of the rhythm curves.

• Amplitude (Amp): half the difference between the maximum and the minimum of the best-fitted curve in an individual period.

• Acrophase (PHI): lag from a defined reference time point to the maximum point within an individual period.

• Magnitude: half the difference between the maximum and the minimum of the best-fitted curve in the fundamental period.

• Bathyphase: lag from a defined reference time point to the minimum point within an individual period.

• Orthophase: lag from a defined reference time point to the maximum point within the fundamental period.

• P value (P): P value indicates the significance level of the model fitted by an individual period.

• Percent rhythm (PR): percent rhythm is the coefficient of determination (R2) for the model using an individual period.

• Integrated P value (IP): the integrated P value indicates the significance level (P value) of the model fitted by the fundamental period.

• Integrated percent rhythm (IPR): integrated percent rhythm is the (R2) for the model using the fundamental period.

Figure 2. The cyclic wave is formed by fundamental parameters described in Table 3 (adapted from Cornelissen [7]). MESOR: Midline Estimating
Statistic of Rhythm.

Measuring the Relationship Between Rhythms and
Productivity
We adopted the Pearson correlation analysis to identify
relationships between rhythms and productivity across time
windows (here weeks). Such a relationship, however, is
multidimensional, involving multiple sensors, features, and
rhythm parameters. To quantify this multidimensional
relationship, we developed a 2-step method. First, we calculated
the correlation coefficient between each rhythm parameter and
productivity score to understand how rhythm parameters
correlate with productivity and whether the correlation is
consistent across weeks. To account for the varied scales of
productivity and rhythm parameters, we initially applied
minimum-maximum normalization to both the productivity
scores and each rhythm parameter. Following this, we computed
the Pearson correlation coefficient and determined its
significance using a 2-tailed P value test. The first step resulted
in 1 correlation coefficient and 1 P value per behavioral feature,

per rhythm parameter, and per time window (week) as shown
in Figure 3 (step 1). The correlation coefficient indicates how
closely the rhythm parameter and productivity score are related,
and whether they move together or in opposite ways. The P
value helps us understand if this relationship is significant or
merely coincidental.

Next, as presented in Figure 3, we adopt the Fisher method to
combine the correlation coefficient and its significance (P value)
of every combination of behavioral feature—rhythm
parameter—week. The Fisher method is a widely used
meta-analysis technique used for combining the results from
several independence tests [42,43]. These combinations provide
information about productivity-related variations of the rhythms
for each behavioral feature per week (2a in Figure 3) and
productivity-related variations of each rhythm parameter per
week (2b in Figure 3) regardless of behavior. While the
correlation coefficient represents the strength and direction of
the relationship, its significance reflects the reliability and

JMIR AI 2024 | vol. 3 | e47194 | p.478https://ai.jmir.org/2024/1/e47194
(page number not for citation purposes)

Yan et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


generalizability of the relationship. We, therefore, aggregated
significant correlation coefficients for all rhythm parameters
per behavioral sensor feature (2a) as well as aggregated
significant correlation coefficients for all sensor features per
rhythm parameter per week (2b). In step 3 (3a and 3b), we
further combined correlation coefficients and significance scores
across all 3 weeks. The final step (4) summarizes the correlation
(and significance) values into 1 final score for each sensor

feature (4a) and for each rhythm feature (4b). The calculation
process is detailed in the Multimedia Appendices 1 and 2. Since
the number of observations is different for different rhythm
parameters, behavioral sensor features, and weeks due to missing
values, this analysis was only performed on the correlations
with more than 28 observations, which is the median value in
our data set.

Figure 3. The pipeline to aggregate the correlation for a multidimensional dataset with K sensor features, L rhythm parameters, and J time windows.
The pipeline can output the correlation between productivity and a single sensor, and the correlation between productivity and a single rhythm parameter.
In step 1, we got a correlation coefficient and a P value for each behavior, rhythm setting, and week. In step 2, we calculated how rhythms changed
related to productivity for each behavior sensor weekly (2a) and for each rhythm setting weekly (2b). In step 3, we combined the correlation and
importance scores from all 3 weeks. Finally, in step 4, we converted the correlation and importance values into 1 final score for each sensor behavior
(4a) and each rhythm setting (4b).

Ethical Considerations
All data collection procedures were approved by an American
university’s institutional review board (Carnegie Mellon
University; STUDY2016_00000421).

Results

Overview
While correlations between rhythm parameters and productivity
scores were moderate across all behavioral sensor features and
all 3 weeks (Figure 4), we observed more pronounced
relationships between parameters related to regularity in rhythm

models, including SE, that is, deviation of the fitted model
parameter from the actual values, percent rhythms (PR and
integrated percent rhythm [IPR]) or proportion of variation
accounted for by the fitted model, and the significance of the
fit (P value and integrated P value [IP]). In addition, the
aggregated negative correlation (indicated by the red line) in
the majority of these parameters across all 3 weeks indicates
lower rhythm irregularity in highly productive students. The
rhythm parameters for location features appeared to be dominant
in both aggregated correlation coefficients and significance
scores, followed by activity and sleep features (Figure 5). In
the following, we discuss our observations in detail.
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Figure 4. The heat map displays correlations between rhythm parameters and productivity by week. (A) Average correlation coefficients (C-RF) by
week (Week-C); (B) Average significance score (S-RF) by week (Week-S). AMP: amplitude; C: correlation coefficients; IP: integrated P value; IPR:
integrated percent rhythm; MESOR: Midline Statistic of Rhythm; P: P value; PHI: acrophase; PR: percent rhythm; RF: random forest; S: significance
score.

Figure 5. The heat map displays the correlation between sensor features and productivity by week. The left side shows the 10 sensor features with the
highest aggregated correlation over all 3 weeks, and the right side shows the 10 sensor features with the highest aggregated significance score over all
3 weeks. The blank cells shown in the figure mean that the relationship is not significant. (A) Average of correlation (C-SF); (B) Significance score of
correlation (S-SF). C: correlation coefficients; S: significance score; SF: sensor feature.
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Correlation Aggregation of Rhythm Parameters

Overview
The blue and red cells in Figure 4 show the correlation
aggregated by week for each rhythm parameter as calculated
using equations 8, 9, 11, and 13 in Multimedia Appendix 2.
Recall that these formulas aggregate correlation across all sensor
features for each rhythm parameter to measure the strength of
the correlation between productivity and the rhythm parameter.
Blue cells indicate a positive correlation while red cells indicate
a negative correlation.

The green cells in Figure 4 show the significance score by week
for each rhythm parameter as computed by equations 10 and
12 in Multimedia Appendix 2. These formulas calculate
correlation significance across all sensor features for each
rhythm parameter to measure the significance of the correlation
between productivity and the rhythm parameter. The higher the
significance score, the more significant the relationship is.

Week 1
In week 1, the majority of parameters that measure the
irregularity of the rhythm models correlate negatively with
productivity indicating more stable rhythms in the high
productivity group. For example, stronger correlations were
observed between productivity and the model fit for the
fundamental period (IP; C=–0.24), the 24-hour period (P-24;
C=–0.21), the 12-hour period (P-12; C=–0.22), the 8-hour period
(P-8; C=–0.21), the fundamental PR (IPR; C = 0.18), and SE
of phase fit for the 24-hour period (PHI_SE-24; C=–0.16).

The relationship between regularity in rhythms and productivity
is further reinforced by the negative aggregated correlation
coefficients for P-24, P-12, P-8, IP, and SE. Specifically, their
low values indicate that Cosinor was able to create close fits to
the actual data which means more regularity in the actual data
corresponds to high productivity. This further demonstrates a
lower rhythm variation in highly productive students.

The relationship between lower rhythm variability and higher
productivity is also observed in the correlation of MESOR_SE,
Amp_SE-8, Amp_SE-12, Amp_SE-24, and PHI_SE-24. The
values have a relatively high aggregated significance score
compared to other parameters. This means the SE has a more
significant relationship with productivity. Given that the SE is
also a metric reflecting the irregularity of rhythm models, its
negative correlation indicates less irregularity of the rhythm
models in high productivity.

The PR parameter also demonstrated a relationship between
low rhythm variability and high productivity. A higher PR
represents low variability in the actual data. Specifically, the
PR of the fundamental, 24-hour, 12-hour, and 8-hour periods
all have high positive aggregated correlation coefficients with
productivity, indicating lower variability in diurnal activities
for the highly productive students.

Week 6
Week 6 (midterm) projected a relatively different pattern. For
example, we found positive correlations between productivity
and MESOR_SE, Amp_SE-8, Amp_SE-12, and Amp_SE-24.

Since Amp and MESOR are indicative of the intensity and
volume of activities, we see that highly productive students
performed more intense activity during week 6.

We also found Amp and MESOR have higher SE in the fitted
models. This implies higher variability in the intensity of regular
patterns during this week. This can be expected due to midterm
pressure.

Despite this increased variability of intensity of regular
activities, as demonstrated by the positive aggregated
correlations of IPR (C=0.24) and PR-24 (C=0.26) with
productivity, we see less irregularity in activity patterns during
this week for the highly productive students.

Finally, as in week 1, we see positive correlations between PR
and productivity. However, the correlation became more stable
in week 6 compared to week 1 with larger aggregated
significance scores.

Week 15
Week 15 (the week before finals) showed the strongest
correlations. For example, parameters that reflect irregularity
in rhythms such as SE (eg, MESOR_SE, Amp_SE, and PHI_SE)
show high (mostly positive) correlations with productivity.
Parameters characterizing the fitted cyclic model such as
MESOR, phase, and Amp also show high (mostly positive)
correlations with productivity indicating higher intensity and
duration of behavioral activities during this week.

The value of some correlations, however, decreased from weeks
1 and 6 to week 15. For example, the correlation between PRs
(eg, IPR, PR_8, and PR_ 12) and productivity. Given the
increased workload activities close to final examinations, the
observed irregularity and divergence from the routine patterns
are expected.

Despite the decline in the value of some correlations,
observations across all 3 weeks still suggest an overall lower
irregularity in rhythms among the high-productivity group. For
example, there is a consistent negative correlation of the
regularity indicators such as P-24, P-12, P-8, PHI-SE-24,
PHI-SE-12, PHI-SE-8, and IP. Moreover, parameters
representing the phase’s characteristics in rhythms including
orthophase, bathyphase, PHI-24, PHI-12, and PHI-8 exhibit
relatively high aggregated significance scores in all 3 weeks.
This means more regularity in phase is more significantly
correlated with high productivity. Thus, while further
explorations are needed, these observations indicate the
importance of rhythm stability in students’ productivity.

Correlation Aggregation of Sensor Features

Overview
Figure 5 shows the aggregated correlation and significance
scores by week for the top 10 sensor features calculated through
equations 2, 3, 4, 5, 6, and 7 in Multimedia Appendix 1. These
formulas calculate the aggregated correlation coefficients and
significance scores across all rhythm parameters for each sensor
feature to measure the strength of the correlation between
productivity and behavioral sensor features. Features with higher
significance scores have a more significant correlation with
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productivity. Overall, location features had a stronger aggregated
correlation and significance. The rhythm model for each sensor
feature was not consistently associated with productivity in all
3 weeks.

Week 1
In week 1, rhythm parameters for both the time spent in
frequently visited places and the frequency of visits in fraternity
or sorority houses (places for socializing) showed the highest
average positive correlations with productivity. A negative
correlation between productivity and off-campus duration was
also observed in the rhythm models. Finally, we found patterns
of asleep and burned calories to have high significance scores.

Week 6
In week 6, the variance of the length or number of stays in
academic areas, halls, and apartments showed high negative
aggregated correlations with productivity (the left side of Figure
5), indicating that highly productive students had a stable living
and studying environment at home and school. Conversely, the
SD of duration in athletic areas was positively correlated with
productivity. This indicates higher variability in exercise
associated with high productivity. A similar conclusion can be
drawn with the data from the aggregated significance score data
(the right side of Figure 5).

Week 15
In week 15, we observed the highest aggregated significance
scores for rhythms of restless sleep duration, awake sleep

duration, time spent at greens, and sedentary duration. On the
left side of Figure 5, we see the time spent at greens was
positively correlated with productivity, whereas the radius of
the visited areas was negatively correlated with productivity.
This finding suggests that high-efficiency students reduced their
range of activities and spent time outdoors more frequently in
week 15.

We further select the “restless sleep” feature to visualize how
changes in rhythm parameters reflect the change in productivity
for 2 individual students in our sample (Figure 6). The left and
right columns in the figure show changes in rhythm parameters
between weeks for 1 high- and 1 low-productivity student,
respectively. While both students’ productivity levels lowered
in week 6, their rhythm parameters of MESOR (SE), Amp (SE),
and phase increased from week 1 to 6 with substantially higher
variations in the parameters of the low-productive student. After
week 6, the student’s productivity in the left column went back
to high while MESOR and Amp of their restless sleep rhythm
substantially lowered. However, the pattern for the student on
the right remained relatively unchanged. As the values of these
parameters reflect intensity (Amp and MESOR), duration
(phase), and variation (SE), the figure shows that an increase
in intensity, duration, and irregularity of restless sleep may be
indicative of lower productivity in both students. Although we
only look at 2 random participants, the positive and negative
changes in rhythm parameters and their accordance with changes
in productivity pose an interesting observation and call for
further exploration.

Figure 6. Change in restless sleep and productivity patterns of 2 sample students. Orange and gray represent high and low productivity, respectively.
The direction of the arrows indicates an increase or decrease of the rhythm parameter values between weeks. AMP: amplitude; MESOR: Midline
Estimating Statistic of Rhythm; PHI: acrophase.
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Discussion

Principal Findings
In this paper, we analyze cyclic human behavior using passive
multimodal mobile sensing data to understand its correlation
with work productivity. By creating rhythmic models for each
sensor type and employing a multidimensional correlation-based
algorithm, we examine the links between biobehavioral rhythms
and daily work performance evaluations. Our data are sourced
from smartphones and Fitbits of 166 college students, capturing
behaviors such as activity, communication, and sleep patterns.
The main aim of our analysis is to identify variations in
biobehavioral rhythms based on productivity levels and identify
specific rhythmic traits associated with them.

To the best of our knowledge, this study pioneers the modeling
relationships between daily productivity and biobehavioral
rhythms derived from passive sensor data. Notably, we evaluate
the capability to model cyclic behavior from detailed phone and
Fitbit data. Additionally, we introduce a novel method to
measure the correlation and importance of various sensors and
rhythms to productivity, which illuminates the connection
between rhythmic consistency and different levels of
productivity.

Overall, our results showed more rhythm stability in the
high-productivity group of students in our sample despite
changes in students’ workload in different weeks. This
observation was especially projected by lower variation
accounted for in fitted rhythm models (indicated by PRs and
SE parameters) and more significant fit levels (indicated by P
parameters) across the weeks. In addition, our correlation
analysis of rhythms for each sensor feature showed the
significance of consistent patterns in location and sleep to
productivity. While encouraging, these results call for more
data and analyses to replicate and improve.

Limitations
However, this study was not devoid of limitations. A notable
constraint was data quality and its lack of completeness. Inherent
issues such as device malfunctions, device misplacement, and
time zone travels are usual and expected in mobile and sensor
data collection studies. These issues were frequently observed
in our data set and contributed to different lengths of time series
data for each sensor feature in the modeling step. To address
this, we employed data imputation and elimination strategies.
The longitudinal repeated-measures design of our study helps
mitigate the influence of transient noise or anomalies in the
data. By modeling everyone’s rhythms across multiple weeks,
we reduced the influence of random confounding events.
However, we acknowledge that the persistent confounds
affecting multiple weeks of data for a given participant could
bias their overall rhythms models. We plan to further evaluate
our methods on other similar data sets of human behavior such
as Tesserae [44], TILES [45], and RAAMPS [46]. We also plan

to extend our study to other groups such as construction workers
and office staff in the future.

Few other limitations were imposed by the data set we used in
this paper, notably its inclusion of only 3 weeks of
noncontinuous self-reported productivity covering the beginning,
middle, and end of a semester despite continuous sensor data.
Although this was deliberately designed to reduce the burden
of frequent self-reports, it limited our ability to model the
relationship between productivity and rhythms continuously
and throughout the semester. In this study, we incorporated the
subjective assessments of daily productivity provided by
students through evening surveys. Such survey-based methods
are widely recognized in academic research as a standard
approach to measure productivity, as evidenced by studies such
as Tesserae [44], TILES [45], and RAAMPS [46]. It is worth
noting that while subjective measurements might introduce
biases, our data indicated that students maintained consistency
in their responses over several weeks. Furthermore, by creating
individual models for each student’s rhythms, we successfully
accounted for week-to-week variations, allowing us to assess
the relationship between these rhythms and the reported
productivity, even considering potential biases. Overall, we
were able to test our methods on this data. However, a larger
and more longitudinal data set is needed to fully characterize
biobehavioral rhythms from mobile data streams and model
their relationship with different outcomes.

Given the observational nature of collecting sensor data
unobtrusively “in the wild,” it is impossible to account for all
variables that may impact the data. However, we have taken
steps to qualify the potential limitations and strengthen the
validity of our digital phenotyping approach within reason. We
also suggest further research incorporating both subjective
self-reports and sensor data to better characterize confounding
contexts. With these caveats articulated, we believe our study
maintains substantial value in demonstrating the promise of
modeling multidimensional digital phenotypes through passively
collected mobile sensor data to advance biobehavioral research.

Conclusion
We explored the feasibility of modeling biobehavioral rhythms
from longitudinal multimodal mobile data streams, focusing on
college students to identify the relationship between these
rhythms and productivity levels. We introduced a
multidimensional correlation method to analyze connections
between variations in biobehavioral rhythms and productivity.
This approach enabled us to observe differences in the
longitudinal behavior of high and low-productive students and
highlighted that highly productive students encompass more
rhythm stability throughout the semester despite variations in
workload during different periods. We plan to further evaluate
by testing the applicability and adaptability of our methods with
diverse data sets. This research paves the way for novel
cyber-human systems that align with human beings’
biobehavioral rhythms to improve health, well-being, and work
performance.
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Abstract

Background: Physicians spend approximately half of their time on administrative tasks, which is one of the leading causes of
physician burnout and decreased work satisfaction. The implementation of natural language processing–assisted clinical
documentation tools may provide a solution.

Objective: This study investigates the impact of a commercially available Dutch digital scribe system on clinical documentation
efficiency and quality.

Methods: Medical students with experience in clinical practice and documentation (n=22) created a total of 430 summaries of
mock consultations and recorded the time they spent on this task. The consultations were summarized using 3 methods: manual
summaries, fully automated summaries, and automated summaries with manual editing. We then randomly reassigned the
summaries and evaluated their quality using a modified version of the Physician Documentation Quality Instrument (PDQI-9).
We compared the differences between the 3 methods in descriptive statistics, quantitative text metrics (word count and lexical
diversity), the PDQI-9, Recall-Oriented Understudy for Gisting Evaluation scores, and BERTScore.

Results: The median time for manual summarization was 202 seconds against 186 seconds for editing an automatic summary.
Without editing, the automatic summaries attained a poorer PDQI-9 score than manual summaries (median PDQI-9 score 25 vs
31, P<.001, ANOVA test). Automatic summaries were found to have higher word counts but lower lexical diversity than manual
summaries (P<.001, independent t test). The study revealed variable impacts on PDQI-9 scores and summarization time across
individuals. Generally, students viewed the digital scribe system as a potentially useful tool, noting its ease of use and time-saving
potential, though some criticized the summaries for their greater length and rigid structure.

Conclusions: This study highlights the potential of digital scribes in improving clinical documentation processes by offering a
first summary draft for physicians to edit, thereby reducing documentation time without compromising the quality of patient
records. Furthermore, digital scribes may be more beneficial to some physicians than to others and could play a role in improving
the reusability of clinical documentation. Future studies should focus on the impact and quality of such a system when used by
physicians in clinical practice.

(JMIR AI 2024;3:e60020)   doi:10.2196/60020
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Introduction

In recent years, the issue of burnout among physicians has been
increasingly recognized within the health care sector. A survey
conducted in 2017 involving 5000 physicians in the United
States found that 44% exhibited at least 1 sign of burnout [1].
In response to this issue, the National Academy of Medicine
established a committee dedicated to enhancing patient care
through the promotion of physician well-being. The committee
produced a detailed report titled Taking Action Against Clinician
Burnout, which outlines the causes of burnout among physicians.
A significant cause identified is the growing administrative
workload [2]. The introduction of the electronic health record
(EHR) has led to physicians spending up to half of their working
hours on administrative duties [3-5]. Such tasks have been
shown to lower job satisfaction for physicians [6] and negatively
impact the physician-patient relationship [7]. Additionally,
research linking the use of EHR to burnout indicates that
physicians spending more time on EHR, particularly outside of
regular hours, face a greater risk of experiencing burnout [8,9].

Recent advances in natural language processing (NLP) have
created the possibility of automating some of these
administrative tasks. One of these promises is the creation of
the so-called “digital scribe.” Such a system, first described in
2018, automatically records, transcribes, and summarizes the
clinical encounter [10,11]. A scoping review from 2022
presented an overview of the capabilities of digital scribes at
that point in time, and showed that none of these systems had
the full capability of a digital scribe [12]. The introduction of
large language models has disrupted this field, with many papers
describing their potential value in clinical note generation and
multiple companies now offering digital scribe systems [13-15].
However, an evaluation on the potential impact of such a system
on documentation time, including the assessment of quality and
user experiences is not available to date. A thorough, prospective
investigation of digital scribe performance and impact on routine
practice is necessary to ensure the safety and effectiveness of
the system. The aim of the current study is to assess the potential
impact on the time spent and quality of medical summaries
using a Dutch, commercially available digital scribe system.

Methods

Data
Our data set consisted of 27 recordings of mock consultations
between physicians and nonmedical individuals. The
consultations were structured around 26 vignettes, created by
an internist. These vignettes delineated a set of symptoms, with
a focus on various presentations of chest pain. Nonmedical
individuals, assuming the role of patients, were provided with
these vignettes. They were encouraged to develop and present
a narrative surrounding the described symptoms. The
participating physicians, all specialists in internal medicine from
the Leiden University Medical Center, engaged with these
simulated patients, applying their expertise to the scenarios
presented. The average duration of the consultations was 293
(IQR 189-398) seconds.

Participants
In total, 21 medical students with experience in clinical practice
and clinical documentation from Leiden University Medical
Center consented to participate in our study. All students had
a bachelor’s degree in medicine and completed a course in
clinical documentation. The students received a compensation
of €100 (US $111) for their participation.

Autoscriber
Autoscriber is a web-based software application that transcribes
and summarizes medical conversations (currently with support
for Dutch, English, and German). The pipeline uses a
transformer-based speech-to-text model, fine-tuned on
proprietary clinical data for transcription and a mixture of large
language models such as GPT-3.5 and GPT-4, combined with
a tailored prompt structure and additional rules for
summarization. The tool also has self-learning functionality,
which was not evaluated in this study for practical reasons.

Summarization
All students summarized 4 consultations manually, then 8
consultations using Autoscriber, and finally 4 consultations
manually to minimize a learning effect (see Figure 1). In total,
students summarized 16 unique consultations.
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Figure 1. Flowchart showing the 3 different summarization methods and consecutive evaluation.

Manual Summarization
Students were asked to listen to the full recording, making some
notes using pen and paper. At the end of the recording, they
started timing and summarized the consultation on the computer.
When finished, they recorded the total time spent summarizing.

Automatic Summarization
For the 8 consultations summarized using Autoscriber, the setup
was similar. However, students first opened the Autoscriber
application and, while listening to the recording, also recorded
the consultation with Autoscriber. Once Autoscriber had created
an automatic summary, students started timing and edited the
automatic summary. Finally, they uploaded both the automatic
summary and the edited summary, including the total time they
spent editing.

Evaluation
Once all summaries were created, the manual, automatic, and
edited summaries were randomly reassigned to other students,
who were blinded for the method used to create the summary.
Students first listened to the full recording, and then evaluated
the related summaries using a modified version of the Physician
Documentation Quality Instrument (PDQI-9) [16]. The PDQI-9
is a validated evaluation instrument for assessing the quality of
clinical documentation, consisting of 9 questions. We removed
question 1 (up-to-date: the note contains the most recent test
results and recommendations) and 8 (synthesized: the note
reflects the author’s understanding of the patient’s status and
ability to develop a plan of care) for our study, as these could
not be answered in the current setup. We translated the questions
into Dutch, which were reviewed by one clinician (MB). Per
recording, we selected the manual summary with the highest
PDQI-9 score as the reference standard summary.

At the end of the study, we asked students about their experience
with Autoscriber, what was positive, what should be improved,

and if they would want to use Autoscriber in their work. For a
more in-depth view of the differences between the automatic
and edited summaries, we prompted ChatGPT (paid version,
GPT-4) to assess the differences. The prompt was created
iteratively using PromptPerfect until the format of the answer
was satisfactory. We then ran the prompt several times to check
for internal consistency. Two researchers (MB and MvB)
manually checked the answers provided by ChatGPT.

Data Analysis

Preprocessing
For every summary, we calculated the total word count and the
lexical diversity. Furthermore, to compare the automatic
summaries to their edited counterparts we calculated the number
of insertions, deletions, the Recall-Oriented Understudy for
Gisting Evaluation (ROUGE)–1 and ROUGE-L score [17], and
the BERTScore metric [18]. The ROUGE-1 score calculates
the overlap in words between 2 texts. The ROUGE-L score
calculates the longest common subsequence. The BERTScore
metric uses contextual embeddings to compare words between
2 texts.

Power Analysis
To ensure the study was adequately powered to detect a large
effect size (Cohen f=0.4) between 3 groups with an alpha level
of 0.05 and a power of 95%, a power analysis was conducted
using the FTestAnovaPower function from the statsmodels
library in Python. This analysis assumed equal group sizes and
did not account for potential correlations among repeated
measures.

Statistical Analysis
The differences between the automatic and associated edited
summaries were tested using a paired t test. To compare the
differences in summaries per recording, we selected the manual
summary with the highest PDQI-9 score as the reference
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standard. We then calculated the ROUGE-1 and ROUGE-L
scores for all the other manual, automatic, and edited summaries.
The differences in word count, lexical diversity, PDQI-9 score,
and ROUGE scores between the 3 methods was tested using
one-way ANOVA and, if the P-value was below .05, followed
by Tukey Honestly Significant Difference test. To assess the
possibility of a learning effect, we compared the first and second
batch of manual summaries on time spent creating the summary
and PDQI-9 score using a paired sample t test. We used Python
for the analysis, using the “statsmodels” and the “scipy”
package.

Ethical Considerations
This study was conducted in accordance with the Declaration
of Helsinki. For the purposes of this study, ethics approval was
not applicable as the research did not include actual patients or
any personal or sensitive information. All students involved in
the study were informed about the purpose of the research, the
use of the data, and gave their informed consent to participate
in the study under these conditions.

Results

The power analysis indicated that a sample size of approximately
100 participants per group would be necessary to achieve the
desired power of 95% for detecting a large effect size among
the 3 groups under the specified conditions. In total, we collected
156 manual summaries, 137 automatic summaries, and 137
edited summaries from 21 students. A difference in the total
number of manual, automatic, and edited summaries occurred
because 3 students dropped out of the study due to time
restraints. Table 1 shows an example of a manual, automatic,
and edited summary of the same recording. 18 students
completed the evaluation phase of the study. The median time
students spent creating or editing the summaries was 186
seconds (IQR 109-267). Summaries had a median length of 129
(IQR 91-172) words. On average, summaries had a median
PDQI-9 score of 28.5 (IQR 25-32) out of a maximum of 35
(Table 2). Multimedia Appendix 1 shows an extended version
of Table 2, including the results of the Tukey Honestly
Significant Difference test. There was a difference in time spent
on manually summarizing the first batch and the second batch,
with a median of 246 (IQR 137-311) and 188 (IQR 118-226),
respectively, (P=.004). However, there was no difference in
PDQI-9 score between these 2 batches.

Table 1. An example of a manual, automatic, and edited summary of the same recording.

Edited summaryAutomatic summaryManual summary (translated)

••• For several days now, tearing pain in the
chest, radiating to between the shoulder
blades.

Reason for referral:For a few days now, tearing pain in the
chest with radiation to behind the shoulder
blades. Was sitting on the couch watching
TV, pain started acutely, felt like a tear and
is continuously present. No complaints of
tingling, numbness, or cold hands. No loss
of function in arm or leg. No palpitations.
Not nauseous. Has not had similar com-
plaints before.

• Main complaint: Persistent chest pain,
feels as if something is tearing and radi-
ates to behind the shoulder blades. • Chest pain started a few days ago while

calmly watching TV and has been stable
since then.• History:

• Chest pain started a few days ago while
calmly watching TV.

• No palpitations, not nauseous, no tingling
or numb feeling.

• The pain remains constantly present
since the beginning.

• Blood pressure is regularly measured and
is about 75 over 120. Cholesterol is good.• The patient is on the “edge” of hypercholes-

terolemia, does not use medication. Mea-
sures blood pressure regularly for donation,
pressure regular, last 120/75. The patient
has never smoked. Drinks alcohol on the
weekend.

• The pain feels as if something is tearing
and radiates to the back of the shoulder
blades.

• Patient is worried because of family history.
• Fam: father had heart problems, brother

had a heart attack at a young age, hyperc-
holesterolemia, no connective tissue dis-
eases.

• There are heart problems in the family
(patient's father and brother).

• The patient's father had a poor vascular
system and a leaking heart valve, and
died of a heart failure.

• Family: Father had congenital vascular
problems, began having heart problems at
the beginning of his 50s, also had heart
valve problems, died of heart failure.
Brother had a heart attack at age 46, was
stented.

• Intox: no smoking, alcohol on weekends in
moderation

• Med: none
• The patient's brother had a heart attack

at the age of 46 and was stented.

• Social history: The patient does not smoke
and drinks moderately alcohol on the week-
end.

• Both brothers have hypercholesterolemia.
No connective tissue disorders in the fami-
ly. • Current medication: The patient does not use

any medication.• The patient is worried due to familial CVD
(Cardiovascular Disease). • Physical examination:

• Additional investigation:
• Blood pressure is regularly measured

and is about 75 over 120.
• The patient gives blood every six

months.

• Diagnosis:
• Treatment plan:
• Requested examinations:
• Informed consent:
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Table 2. Descriptive statistics of the different methods and associated P values.

P value (ANOVA)AS (n=137), median (IQR)AS edited (n=137), median
(IQR)

Manual (n=156), median
(IQR)

Metrics

<.0010 (0-0)152 (93-244)202 (128-286)Time spent on summary (seconds)

<.001148 (116-180)137 (96-194)101 (67-141)Word count

<.0010.59 (0.53-0.63)0.61 (0.56-0.66)0.68 (0.63-0.74)Lexical diversity

PDQI-9a score

<.00125 (22-28)29 (26-33)31 (27-33)Overall

<.0014 (2-5)5 (4-5)5 (4-5)Accurate

<.0013 (2-4)4 (4-5)4 (4-5)Thorough

<.0014 (3-4)4 (4-5)5 (4-5)Useful

.014 (3-4)4 (3-5)4 (3-5)Organized

<.0014 (3-5)5 (4-5)5 (4-5)Comprehensible

<.0013 (2-4)4 (2-5)5 (4-5)Succinct

<.0015 (4-5)5 (4-5)5 (4-5)Internally consistent

<.00132.3 (27.0-37.4)40.6 (35.0-45.4)47.3 (42.5-56.4)ROUGEb,c-1 F1-score

<.00119.6 (15.7-23.5)23.4 (20.6-27.5)29.4 (23.7-37.6)ROUGE-L F1-score

<.00168.6 (67.5-70.3)71.6 (69.5-73.7)74.6 (71.9-77.0)BERTScorecF1-score

aPDQI-9: Physician Documentation Quality Instrument.
bROUGE: Recall-Oriented Understudy for Gisting Evaluation.
cTo calculate the ROUGE score and BERTScore, the highest scoring manual summary was taken as the reference standard. These summaries were
taken out of the data set when calculating the average ROUGE scores.

Comparison Between Automatic and Corresponding
Edited Summaries
Students inserted a median of 45 (IQR 27-82) words and deleted
46 (IQR 27-80) words. The edits led to a median increase in
PDQI-9 score of 4.0 (IQR 1-8). The median ROUGE-1 F1 score
between the automatic and their corresponding edited summaries
was 73.3 (IQR 61.0-84.4), the ROUGE-L F1 score was 67.4
(IQR 50.0-80.5), and the BERTScore F1 was 84.1 (IQR
79.0-89.4).

ChatGPT assessed the differences between automatic summaries
and their edited counterparts on the following aspects: language
use and precision, clarity and detail, coherence and flow,
structural differences, stylistic variations, and the most common
deletions and insertions. The final prompt can be seen in
Multimedia Appendix 2. See Table 3 for the observations per
aspect. The assessment by ChatGPT aligned with the sample
analysis performed by the researchers. Furthermore, similar
aspects were mentioned by the students.
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Table 3. Differences between automatic and edited summaries, as assessed by ChatGPT.

ObservationsEdited summariesAutomatic summariesAspect

Human editors refine the language to
be more precise and contextually ap-
propriate.

More sophisticated and precise lan-
guage. Example: ”Since a few days
tearing chest pain radiating to be-
tween the shoulder blades.“

Generally simplistic and formulaic
language. For example, “Chest pain
started a few days ago while quietly
watching TV.”

Language use and precision

Human editing enhances clarity by
adding relevant details that were
omitted in the automatic summaries.

Provide clearer, more detailed descrip-
tions. Example: “Patient has had per-
sistent watery diarrhea for a week
with a frequency of ten times a day.”

Often vague, lacking specific details.
For instance, “Patient has had persis-
tent watery diarrhea since one week.”

Clarity and detail

Human editors improve the coher-
ence, making the summaries easier to
follow.

Better structured, with a smoother
flow of ideas. Example: “The patient
complains of sudden and persistent
chest pain that started several days
ago.”

Sometimes disjointed or lacking in
logical flow. Example: “The chest
pain started suddenly and has been
continuously present since it started.”

Coherence and flow

Human editing allows for more flexi-
ble structuring, tailored to the specific
summary.

More varied structures, adapted to the
content's needs.

Tend to follow a predictable structure,
possibly template-based.

Structural differences

Human editors introduce stylistic di-
versity, making each summary more
unique.

Display a wider range of styles,
adapting to the tone and context.

Limited stylistic variations, often
repetitive.

Stylistic variations

Redundant phrases, overly general
statements.

Most common deletions

Specific details, clarifying phrases,
and contextual information.

Most common insertions

Differences Per Student
Using Autoscriber had a different effect per student. For 8 out
of 18 students, using Autoscriber was associated with a decrease
in PDQI-9 score, while for the other students the difference in
PDQI-9 score between manual and automatic summaries had
a P value above .05. For 5 students, editing the automatic
summary took more time than manually creating a summary,
although these differences were not significant. For 3 students,
editing the automatic summary led to a decrease in time spent
on summarizing, with a P value lower than .05. See Multimedia
Appendix 3 for the full overview.

Experiences With the Use of Autoscriber
Students were generally very positive about using Autoscriber,
mentioning that it was nice or interesting to use (n=9), easy and

simple in use (n=6), and that they believed in the potential of
such a tool (n=4). Four students mentioned the automatic
summary exceeded their expectations, while 4 other students
said the quality of the summary was insufficient due to errors
and the amount of time needed to make edits. A specific error
that was mentioned multiple times was that the summary did
not include negative symptoms (eg, the absence of shortness of
breath). Three students mentioned the tool did not always work:
it would sometimes load for a very long time or get stuck while
generating the summary. This was due to limitations in graphics
processing unit capacity at that time. See Table 4 for the positive
aspects and points of improvement mentioned by the students.
A majority of students (12/18, 67%) would want to use the
application during their work. The other students (6/18, 33%)
said they would want to use the application if improvements
were made.
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Table 4. Themes most often described by students about the positive aspects and points of improvement.

CountMentioned aspects

Positive

5Easy to use

5Good accuracy, eg, amount of details, good use of language, low amount
of errors, inclusion of important symptoms

4Summary fairly complete

4Saves time

4Well-structured view

3Nice to have something to start with, without typing

Negative

6Structure does not align with preferences, eg, headings unclear, illogical
structure, does not align with style

5Wordy/lengthy

5Relevant information missing, eg, details, absence of symptoms

5Comments on language use, eg, use of nonstandard words, vague descrip-
tions, too literal, absence of common abbreviations

3Duration of summarization time

2Presence of irrelevant information

Discussion

Principal Findings
In this impact study, we extensively evaluated the efficacy of
Autoscriber, a Dutch digital scribe system, in enhancing the
clinical documentation process in a pilot setting. A group of
trained medical students summarized clinical conversations
with and without the tool. We found differences between
automatic and manual summaries in time spent on the summary,
the word count, lexical diversity, and qualitative aspects such
as accurateness and usefulness. These differences decreased
after students edited the automatic summaries. During editing,
medical students most often added context and details, while
removing overly general statements and irrelevant text. Most
were positive about using the tool, although some mentioned
the summaries were lengthy and the structure did not always
align with their preferences.

As the first impact study of a fully functioning digital scribe
system, we provide some interesting insights into the possible
future of digital scribes in health care. First of all, we show that
a collaboration between the system and the students leads to
the best results at this point in time, with a decrease in time
spent on summarizing in combination with a similar quality
when compared to manual summarization. We believe the
current setting might even provide an overestimation of the
quality of the manual summaries: the students did not have a
time cap for creating the summaries, while in clinical practice,
physicians often have to create a summary during or in between
consultations. Furthermore, multiple studies show a negative
association between seniority of a physician and the
completeness of a medical record [19-21]. Taking this into
account, we see the potential in using a digital scribe system
that provides a first draft, which the physician then edits. In the

current setup, this collaboration led to a decrease in time spent
summarizing, while keeping the quality of the summary on par.

When looking at the differences between the 3 methods, the
higher word count and lower lexical diversity in the automatic
summaries compared to the manual summaries stood out. Two
previous studies compared human and ChatGPT-written medical
texts and reported similar results [22,23]. Furthermore, one of
these studies reported human texts contained more specific
content, which we found as well. These aspects are essential to
improve in future versions, as they directly link to the quality
of a summary in terms of succinctness and thoroughness. An
increased summary length could lead to an increase in time
spent reading or analyzing summaries downstream in the clinical
process. However, a small decrease in lexical diversity in
combination with a more structured summary could also be
seen as a step toward standardization of medical summaries.
This aspect is becoming more important since clinical
documentation is increasingly reused for other purposes, such
as research and quality measurements. Furthermore, previous
studies show that structured documentation leads to increased
note quality [24], which in turn has been shown to positively
affect the quality of care [25-27]. These potential effects have
to be studied in future research.

We found large differences in the effect of using Autoscriber
on PDQI-9 score and time spent summarizing between students.
While using Autoscriber decreased the time spent on finalizing
the summary for most students, there were a few students who
spent more time on editing the automatic summary then on
manually creating a summary. Furthermore, the difference in
PDQI-9 score between manual and automatic summaries
differed greatly between students. This result is highly relevant,
as it shows that the added value of using a digital scribe differs
per user. Future studies should investigate which users could
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gain most benefit in using a digital scribe, taking into account
age, specialty, the ability to type blindly, and other factors that
might impact the added value on a personal level.

Strengths and Limitations
This impact study on a digital scribe system for clinical
conversations presents a novel exploration into the practical
application of such technology. Since the introduction of
ChatGPT, many papers have described the potential of using
ChatGPT and other large language models in health care. While
their potential is clear, these models have still to prove their
actual clinical value. This study takes a first step in gaining a
better view of the potential effects such a digital scribe system
could have on the documentation process, especially in
interaction with the user. Apart from quantitative analyses, we
also included several different qualitative analyses, providing
a more in-depth view of the differences between the summaries
and the experiences of the students. These results are highly
relevant for researchers and companies developing digital scribes
as well as health care organizations considering using a digital
scribe in the near future.

One limitation is the setup of our study, which is not fully
representative of clinical practice. Specifically, our reliance on
medical students listening to prerecorded mock consultations
does not fully capture the dynamic and often unpredictable
nature of real-time clinical interactions. The controlled
environment of our study does not account for the varied
technological, environmental, and personal factors that can
influence the use and effectiveness of digital scribe systems in
live clinical environments. However, this approach allowed us
to isolate and evaluate the impact on summarization time and
differences in summary between the 3 methods. Future research
should aim to incorporate real clinical interactions to validate
and extend our findings.

Another limitation is the lack of a reference summary per
consultation. To calculate the ROUGE scores, we designated
the highest scoring manual summary as the reference standard
per consultation. This method suffices for the current pilot study;
however, it brings up the bigger issue of summary evaluation
metrics. The ROUGE score remains the most used metric, while
this metric only measures exact overlap in words and is, thus,
very sensitive to the choice of reference summaries [28].
Because of this limitation, we added the BERTScore metric,
which has been shown to correlate better with human evaluations
[18]. However, the overall lack of a standard for clinical
documentation still poses a considerable challenge for the
objective assessment of summarization efficacy of digital
scribes. This underscores the necessity for developing more

sophisticated evaluation methods, especially with the arrival of
large language models in health care.

Future Implications
Our findings underscore the promising potential of integrating
digital scribe technologies like Autoscriber within clinical
settings to alleviate the administrative burdens faced by health
care professionals. Future clinical impact studies are imperative
to explore the broader effects of digital scribes on the
physician-patient interaction, documentation accuracy, and
overall health care delivery efficiency. These studies should
aim to evaluate the real-world applicability of digital scribes,
including their impact on clinical workflow, quality of care,
and patient satisfaction. Especially the latter, which has not
received sufficient attention up to now, should be the focus of
future research to ensure the physician-patient relationship is
not harmed. Additionally, exploring the customization of digital
scribe systems to fit the specific needs and preferences of
individual physicians or specialties could enhance user adoption
and effectiveness. As the field of large language models is
developing at a fast rate and digital scribes will improve quickly,
repeated or continuous evaluation of these systems is necessary.
A recent study described the development and evaluation of a
chat-based diagnostic conversational agent [29]. This agent
outperformed primary health care providers in both diagnosis
and the development of a treatment plan. The introduction of
digital scribes in clinical practice could eventually lead to similar
support during the clinical encounter, where the digital scribe
might suggest additional follow-up questions or provide a
differential diagnosis. Ultimately, the goal is to seamlessly
integrate digital scribes into clinical practice, ensuring they
enhance patient care and physician well-being.

Conclusions
This study explores the impact of a Dutch digital scribe system
on the clinical documentation process, offering significant
insights into its potential to enhance physicians’experience. By
demonstrating the use of the system in reducing summarization
time while maintaining summary quality through collaborative
editing, our research highlights the potential of digital scribe
systems in addressing the challenges of clinical documentation.
Despite the limitations related to the representativeness of our
pilot setup and the evaluation of summary quality, the positive
outcomes suggest a promising avenue for future research and
development. Further studies, particularly those involving
real-world clinical settings, are essential to fully understand the
implications of digital scribes on the physician-patient dynamic
and health care delivery.
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Introduction

Accurate determination of gender from names is vital for
addressing gender-related disparities in medicine and promoting
inclusivity. Gender detection tools (GDTs) offer efficient
solutions, enabling large-scale demographic analysis [1-3] to
improve data quality and inform targeted interventions. Indeed,
they can process thousands of names simultaneously, saving
time and resources. However, most of them charge for more
than a certain number of requests per month. We recently
compared the performance of 4 GDTs and showed that Gender
API (Gender-API.com) and NamSor (NamSor Applied
Onomastics) were accurate (misclassifications=1.5% and 2.0%,
respectively; nonclassifications=0.3% and 0%, respectively)
[4].

ChatGPT is a language model developed by OpenAI that is
capable of generating human-like text and engaging in natural
language conversations [5]. In medicine, ChatGPT can be
employed for various purposes, such as answering patient
queries and providing information on medical topics, making
it a valuable resource for health care professionals and
researchers seeking quick access to medical information and
support in their work [6,7].

Given the increasing usefulness of GDTs in research,
particularly for evaluating gender disparities in medicine, we
assessed whether the performance of ChatGPT as a free GDT
(version GPT-3.5) could approach that of Gender API and
NamSor. We also compared ChatGPT-3.5 with the more
advanced GPT-4 version. We hypothesized that ChatGPT, a

versatile language model not specifically trained for gender
analysis, could achieve gender detection performance
comparable to specialized tools and that ChatGPT-4 would
perform no better than ChatGPT-3.5.

Methods

Database Selection and Data Collection
The methods used in this study are the same as those used in
our primary study, which compared the performance of 4 GDTs
[4]. We used a database of 6131 physicians practicing in
Switzerland, a multilingual and multicultural country with 36%
of physicians of foreign origin [4]. The sample consisted of
3085 women (50.3%) and 3046 men (49.7%), with gender
determined by self-identification. We used nationalize.io to
determine the origin of physicians’ names (Table 1). A total of
88% of names were from French-, English-, Spanish-, Italian-,
German-, or Portuguese-speaking countries or from another
European country.

We asked ChatGPT-3.5 to determine the gender of 500
physicians at a time, after copying and pasting these lists of first
and last names from the database. We ran the analysis twice
and also examined ChatGPT-4 to check the “stability” of the
responses [8]. The data were collected between September and
November 2023.

We constructed a confusion matrix (Table 2): ff and mm
correspond to correct classifications, mf and fm to
misclassifications, and fu and mu to nonclassifications (ie,
gender impossible to determine).
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As in other studies [4,9], we calculated 4 performance metrics,
namely “errorCoded” (the proportion of misclassifications and
nonclassifications), “errorCodedWithoutNA” (the proportion
of misclassifications), “naCoded” (the proportion of

nonclassifications), and “errorGenderBias” (the direction of
bias in gender determination). We used Cohen κ to assess
interrater agreement.

Table 1. Estimated origin of physicians’ names (N=6131 physicians).

Counta, n (%)Origin

1679 (32.2)French-speaking country

751 (14.4)English-speaking country

404 (7.7)Spanish-speaking country

344 (6.6)Asian countryb

324 (6.2)Eastern European country

288 (5.5)Italian-speaking country

272 (5.2)Western European countryb

259 (5.0)Arabic-speaking country

259 (5.0)German-speaking country

220 (4.2)Northern European countryb

217 (4.2)Southern European countryb

198 (3.8)Portuguese-speaking country

aThe total number of physicians does not add to 6131 because of missing values (no assignments for 916 physicians).
bIf not already classified in another group (eg, in the Arabic-speaking country group for some Asian countries).

Table 2. Confusion matrix showing the 6 possible classification outcomes.

Unknown (predicted)Male (predicted)Female (predicted)

fufmffFemale (actual)

mummmfMale (actual)

Ethical Considerations
Since this study did not involve the collection of personal
health–related data, it did not require ethical review per current
Swiss law.

Results

Performance metrics showed high accuracy for ChatGPT-3.5
and ChatGPT-4 in both the first and second rounds (Table 3).

The number of misclassifications was low (proportion≤1.5%)
and there were no “nonclassifications.” As shown in Table 3,
interrater agreement between the first and second rounds (for
ChatGPT-3.5 and ChatGPT-4) and between ChatGPT-3.5 and
ChatGPT-4 (for the first round) was “almost perfect” (κ>0.97,
all Ps<.001).
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Table 3. Confusion matrix and performance metrics for ChatGPT-3.5 and ChatGPT-4 (N=6131 physicians).

Interrater agreementaUnclassified, n (%)Classified as
men, n (%)

Classified as
women, n (%)

P valueCohen κ (95% CI)

<.0010.9817 (0.9770-0.9865)bChatGPT-3.5

First roundc

0 (0)57 (1.8)3028 (98.2)Female physicians (n=3085)

0 (0)3028 (99.4)18 (0.6)Male physicians (n=3046)

Second roundd

0 (0)55 (1.8)3030 (98.2)Female physicians (n=3085)

0 (0)3018 (99.1)28 (0.9)Male physicians (n=3046)

<.0010.9958 (0.9935-0.9981)bChatGPT-4

First rounde

0 (0)65 (2.1)3020 (97.9)Female physicians (n=3085)

0 (0)3019 (99.1)27 (0.9)Male physicians (n=3046)

Second roundf

0 (0)65 (2.1)3020 (97.9)Female physicians (n=3085)

0 (0)3020 (99.1)26 (0.9)Male physicians (n=3046)

aInterrater agreement between ChatGPT-3.5 and ChatGPT-4 (for the first round): Cohen κ=0.9768, 95% CI 0.9715-0.9822, P<.001.
bInterrater agreement between the first and second rounds for each version.
cPerformance metrics: errorCoded=0.01223, errorCodedWithoutNA=0.01223, naCoded=0, and errorGenderBias=–0.00636.
dPerformance metrics: errorCoded=0.01354, errorCodedWithoutNA=0.01354, naCoded=0, and errorGenderBias=–0.00440.
ePerformance metrics: errorCoded=0.01501, errorCodedWithoutNA=0.01501, naCoded=0, and errorGenderBias=–0.00620.
fPerformance metrics: errorCoded=0.01484, errorCodedWithoutNA=0.01484, naCoded=0, and errorGenderBias=–0.00636.

Discussion

We used ChatGPT to determine the gender of 6131 physicians
practicing in Switzerland and found that the proportion of
misclassifications was ≤1.5% for both versions. There were no
nonclassifications and gender bias was negligible. Interrater
agreement between ChatGPT-3.5 and ChatGPT-4 was “almost
perfect.”

These results are relatively similar to those found in our primary
study for Gender API and NamSor (errorCoded=0.0181 and
0.0202, errorCodedWithoutNA=0.0147 and 0.0202,
naCoded=0.0034 and 0, errorGenderBias=–0.0072 and 0.0026)
[4]. They are slightly better than those of another study
published in 2018, which compared 5 GDTs, including Gender
API and NamSor [9]. These results suggest that ChatGPT can

accurately determine the gender of individuals using their first
and last names. The disadvantage of ChatGPT compared to
Gender API and NamSor is that the database cannot be uploaded
directly into ChatGPT (eg, as an Excel or CSV file).

Both ChatGPT-3.5 and ChatGPT-4 exhibit high accuracy in
gender detection, with no significant superiority observed in
ChatGPT-4 over ChatGPT-3.5. This underscores the robustness
of ChatGPT in gender prediction across different versions. Our
short study has 2 main limitations. Given the estimated origin
of physicians’ names, the results of the study can probably be
generalized to most Western countries but not necessarily to
Asian or Middle Eastern countries. GDTs are often less accurate
with names from these countries [9,10]. In addition, GDTs
oversimplify the concept of gender by dichotomizing individuals
into male or female.
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Abstract

Background: Identification and referral of at-risk patients from primary care practitioners (PCPs) to eye care professionals
remain a challenge. Approximately 1.9 million Americans suffer from vision loss as a result of undiagnosed or untreated ophthalmic
conditions. In ophthalmology, artificial intelligence (AI) is used to predict glaucoma progression, recognize diabetic retinopathy
(DR), and classify ocular tumors; however, AI has not yet been used to triage primary care patients for ophthalmology referral.

Objective: This study aimed to build and compare machine learning (ML) methods, applicable to electronic health records
(EHRs) of PCPs, capable of triaging patients for referral to eye care specialists.

Methods: Accessing the Optum deidentified EHR data set, 743,039 patients with 5 leading vision conditions (age-related
macular degeneration [AMD], visually significant cataract, DR, glaucoma, or ocular surface disease [OSD]) were exact-matched
on age and gender to 743,039 controls without eye conditions. Between 142 and 182 non-ophthalmic parameters per patient were
input into 5 ML methods: generalized linear model, L1-regularized logistic regression, random forest, Extreme Gradient Boosting
(XGBoost), and J48 decision tree. Model performance was compared for each pathology to select the most predictive algorithm.
The area under the curve (AUC) was assessed for all algorithms for each outcome.

Results: XGBoost demonstrated the best performance, showing, respectively, a prediction accuracy and an AUC of 78.6%
(95% CI 78.3%-78.9%) and 0.878 for visually significant cataract, 77.4% (95% CI 76.7%-78.1%) and 0.858 for exudative AMD,
79.2% (95% CI 78.8%-79.6%) and 0.879 for nonexudative AMD, 72.2% (95% CI 69.9%-74.5%) and 0.803 for OSD requiring
medication, 70.8% (95% CI 70.5%-71.1%) and 0.785 for glaucoma, 85.0% (95% CI 84.2%-85.8%) and 0.924 for type 1
nonproliferative diabetic retinopathy (NPDR), 82.2% (95% CI 80.4%-84.0%) and 0.911 for type 1 proliferative diabetic retinopathy
(PDR), 81.3% (95% CI 81.0%-81.6%) and 0.891 for type 2 NPDR, and 82.1% (95% CI 81.3%-82.9%) and 0.900 for type 2
PDR.

Conclusions: The 5 ML methods deployed were able to successfully identify patients with elevated odds ratios (ORs), thus
capable of patient triage, for ocular pathology ranging from 2.4 (95% CI 2.4-2.5) for glaucoma to 5.7 (95% CI 5.0-6.4) for type
1 NPDR, with an average OR of 3.9. The application of these models could enable PCPs to better identify and triage patients at
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risk for treatable ophthalmic pathology. Early identification of patients with unrecognized sight-threatening conditions may lead
to earlier treatment and a reduced economic burden. More importantly, such triage may improve patients’ lives.

(JMIR AI 2024;3:e48295)   doi:10.2196/48295

KEYWORDS

decision support for health professionals; tools, programs and algorithms; electronic health record; primary care; artificial
intelligence; AI; prediction accuracy; triaging; AI model; eye care; ophthalmic

Introduction

In the United States alone, more than 93 million adults were at
high risk for vision loss in 2017; however, only 56.9% visited
an eye care professional annually, and only 59.8% received a
dilated eye examination [1]. More than 4 million Americans
suffer from uncorrectable vision impairment, and more than 1
million are blind; this number is predicted to more than double
by 2050 to 9 million due to the increasing epidemics of diabetes
and other chronic diseases and our rapidly aging US population
[2]. The impact of poor eyesight is manifest in its potentiation
of comorbidities, particularly in increasing the risk of disability
in patients with cognitive impairment [3]. Early identification
of patients with unrecognized sight-threatening conditions may
lead to earlier treatment and a reduced economic burden. More
importantly, such triage may improve patients’ lives.

The identification and referral of patients at risk of vision loss
from primary care practitioners (PCPs) to eye care professionals
remains a challenge [4]. A 2010 study identified a number of
barriers, including a lack of access to ophthalmic screening
within the setting of the PCP’s office [4]. Some regional efforts
have been made to improve the efficiency of triage of patients
at risk for glaucoma [5] and diabetic retinopathy (DR) [6];
however, existing initiatives triage patients on only a few
demographic and comorbidity parameters, whereas many
systemic associations have been identified for age-related
macular degeneration (AMD), cataract, DR, glaucoma, and
ocular surface disease (OSD) [7-16].

Artificial intelligence (AI) modeling techniques are becoming
increasingly important in ophthalmology in particular and
medicine in general [17-20]. In ophthalmology, AI is used to
calculate intraocular lens (IOL) powers [21-23], predict
glaucoma progression [24,25], recognize DR [26], and classify
ocular tumors [27]. To the best of our knowledge, AI has not
yet been used to triage primary care patients for ophthalmology
referral. In this study, the development, validation, and testing
of multiple predictive machine learning (ML) methods for 5
leading sight-threatening and treatable ocular pathologies (ie,
AMD, visually significant cataract, DR, glaucoma, and OSD)
that have the potential to be used by PCPs to triage patients,
based on existing data in their electronic health records (EHRs),
for referral to eye care specialists were reported.

Methods

AI Modeling
All AI techniques have in common the process of “training,”
the adjustment of importance (ie, weights) of attributes or
intermediate values, based on a set of data referred to as a

training set. The model performance is then assessed against
another set of data called the test set. Similar model performance
on training and test sets demonstrates model generalizability.
The advent of large clinical databases has made possible the
construction and training of both ML and neural network AI
models. To this end, a large commercial EHR database that
includes demographic, diagnostic, and therapeutic data to create
and curate an ophthalmologically focused data set from which
predictive models of multiple eye diseases can be built was
used. We chose to compare several different ML methods to
create models that might be used by PCPs to triage patients for
referral to an eye care specialist. The models thus created used
non-ophthalmic clinical and demographic data to assess relative
risk scores for AMD, cataract, DR, glaucoma, and OSD.

Data Source
This retrospective, case-controlled study used data from the
Optum deidentified EHR data set. EHRs provide efficient access
to detailed patient-level longitudinal data that represent integral
components of clinical care that may not necessarily be available
through other retrospective database sources, such as
administrative claims databases or patient registries [28,29].
The Optum EHR data set consists of data primarily from the
United States and represents the clinical information of more
than 80 million patients, including at least 7 million patients in
each US census region from May 2000 to December 2019. Data
from multiple EHR platforms, including Cerner, Epic, GE, and
McKesson, are analyzed by Optum by means of natural language
processing (NLP) to extract information about patient
demographics, enrollment, diagnoses, biometrics, laboratory
results, procedures, and medications [30]. The data set draws
upon a network of more than 140,000 providers at more than
700 hospitals and 7000 clinics.

Ethical Considerations
The use of the Optum EHR data set was reviewed by the New
England Institutional Review Board (IRB) and was determined
to be exempt from broad IRB approval as this research project
did not involve human subject research.

Outcome Measures
This study sought to predict the diagnosis of 5 major eye
pathologies: AMD, cataract, DR, glaucoma, and OSD. The
classification of AMD was based on the International
Classification of Diseases, 10th Revision (ICD-10) codes and
subdivided into nonexudative (H35.31%) and exudative
(H35.32%) groups, in which “%” represents a wildcard. The
classification of cataract required a more restrictive definition
than simply H25%. Since no ICD-10 code distinguishes visually
significant cataracts from those of lesser impact, we chose to
use cataract surgery as a surrogate for visually significant
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cataract. For this study, cataract was defined by the cataract
surgery Current Procedural Terminology (CPT) codes of 66982
and 66984 rather than by ICD-10. The classification of DR was
based on the data set ICD-10 codes and subdivided into type 1
nonproliferative diabetic retinopathy (NPDR;
H10.31%-H10.34%), type 1 proliferative diabetic retinopathy
(PDR; H10.35%), type 2 NPDR (H11.31%-H11.34%), and type
2 PDR (H11.35%). Glaucoma was defined by the presence of
1 or more of 3 criteria: an ICD-10 code of H40.1% (open-angle
glaucoma), the prescription of glaucoma medication, or the
presence of a CPT code indicating glaucoma surgery. This

definition was developed to capture not only patients with a
recorded diagnosis of glaucoma but also those patients being
treated for glaucoma or high-risk ocular hypertension for whom
the diagnosis of glaucoma was not recorded in the data set.
Similar to cataract, OSD required narrower criteria than simply
H04.1% and H02.88% since these codes do not distinguish OSD
requiring treatment from more mild presentations. For this study,
OSD was defined rather restrictively as patients receiving
cyclosporine ophthalmic emulsion 0.05%, cyclosporine
ophthalmic solution 0.09%, or lifitegrast ophthalmic solution
5% (see Tables 1 and 2).

Table 1. Listed medications for glaucoma.

ExamplesType of medication

Levobunolol (Betagan, Akbeta), timolol (Timoptic, Betimal, Istalol), carteolol (Ocupress), metipranolol
(Optipranolol), timolol gel (Timoptic Xe), betaxolol (Betoptic, Betoptic S)

Beta blockers

Apraclonidine (Iopidine), brimonidine (Alphagan, Alphagan P), dipivefrin (Propine)Alpha agonists

Dorzolamide (Trusopt), brinzolamide (Azopt)Carbonic anhydrase inhibitors

Latanoprost (Xalatan), bimatoprost 0.01% (Lumigan), travoprost (Travatan Z), tafluprost (Zioptan), la-
tanoprostene bunod (Vyzulta)

Prostaglandin analogs

Dorzolamide/timolol (Cosopt and Cospot Pf), brimonidine/timolol (Combigan), brinzolamide/brimonidine
(Simbrinza), netarsudil/latanoprost (Rocklatan)

Prostaglandin analogs (combined medi-
cations)

Netarsudil (Rhopressa)Rho kinase inhibitors

Table 2. Listed procedures for glaucoma.

DescriptionICD-10a code

Insertion of anterior segment aqueous drainage device, without extraocular reservoir, internal approach, into the trabecular
meshwork; initial insertion

0191T

Insertion of anterior segment aqueous drainage device, without extraocular reservoir, internal approach, into the suprachoroidal
space

0253T

Insertion of anterior segment aqueous drainage device, without extraocular reservoir, internal approach, into the trabecular
meshwork; each additional device insertion (list separately in addition to code for primary procedure)

0376T

Insertion of aqueous drainage device, without extraocular reservoir, internal approach, into the subconjunctival space; initial
device

0449T

Insertion of aqueous drainage device, without extraocular reservoir, internal approach, into the subconjunctival space; each ad-
ditional device (list separately in addition to code for primary procedure)

0450T

Insertion of anterior segment aqueous drainage device, with creation of intraocular reservoir, internal approach, into the supra-
ciliary space

0474T

Goniotomy65820

Trabeculoplasty laser65855

Transluminal dilation of aqueous outflow canal; without retention of device or stent66174

Transluminal dilation of aqueous outflow canal; with retention of device or stent66175

Aqueous shunt to extraocular equatorial plate reservoir, external approach; without graft66179

Aqueous shunt to extraocular equatorial plate reservoir, external approach; with graft66180

Insertion of anterior segment aqueous drainage device, without extraocular reservoir, external approach66183

Revision of aqueous shunt to extraocular equatorial plate reservoir; without graft66184

Revision of aqueous shunt to extraocular equatorial plate reservoir; with graft66185

ciliary body destruction by cyclophotocoagulation, trans-scleral approach66710

ciliary body destruction by cyclophotocoagulation, endoscopic approach (endoscopic cyclophotocoagulation)66711

aICD-10: International Classification of Diseases, 10th Revision.

JMIR AI 2024 | vol. 3 | e48295 | p.504https://ai.jmir.org/2024/1/e48295
(page number not for citation purposes)

Young et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Creation of Patient Cohorts
Five distinct cohorts (ocular cohorts) of patients (AMD
n=294,739, cataract n=1,191,492, DR n=348,056, glaucoma
n=843,560, and OSD n=660,218) were selected from the Optum
EHR data set based on the aforementioned code definitions
from October 2015 onward (to limit the analysis to the start of
the ICD-10 coding system in the United States). The inclusion
criteria were as follows: patients with diagnosis codes such as
H 3 5 3 0 % / H 3 5 3 1 % / H 3 5 3 2 % ,  H 2 5 % ,
E083%/E093%/E103%/E113%/E133%, H40%, or
H041%/H0288% and EHRs with an ICD-10 diagnosis code
type. Patients were excluded if they had an unknown birth year,
were younger than 15 years, had less than 60 days of continuous
enrollment in the database prior to their diagnosis, had a gender
labeled as unknown, or had undergone a cataract-related
procedure or diagnosis at baseline or not undergone a
cataract-related procedure and diagnosis in the follow-up.
Patients with multiple conditions (eg, glaucoma and OSD) were
identified in both the glaucoma and OSD cohorts. For each
patient, demographic information, complete clinical and drug
use information, and comorbidities were identified. Multimedia
Appendix 1 presents the patient inclusion and exclusion criteria
and attrition data. All patients with the diagnoses present in the
database during the specified inclusion period were considered
for inclusion. Finally, the patients were segregated into subsets
based on the AMD subtype or the DR subtype. In addition, only
those patients who had open-angle glaucoma, had consumed a
glaucoma-related medication, had undergone a glaucoma-related
procedure in the follow-up, or had consumed dry eye and
meibomian gland dysfunction (DEMGD)–related medications
in the follow-up were retained. The final cohorts were as
follows: exudative AMD n=32,072 (10.9%), nonexudative AMD
n=114,839 (39%), cataract n=197,570 (16.6%), type I NPDR
n=20,654 (5.9%), type I PDR n=4465 (1.3%), type II NPDR
n=155,927 (44.8%), type II PDR n=21,032 (6%), glaucoma
n=192,727 (22.8%), and OSD n=3720 (0.6%).

For each of the 5 cohorts, a control population was created from
the pool of patients without ocular conditions. The control
populations were matched 1:1 to each ocular cohort using exact
matching on age and gender. A total of 743,039 patients with
AMD, visually significant cataract, DR, glaucoma, or OSD
were available in the Optum deidentified EHR data set, so these
were exact-matched on age and gender to 743,039 controls
without eye conditions.

Machine Learning
Several distinct ML approaches were followed to model the
outcomes described earlier. These included the generalized
linear model (GLM) [31], L1-regularized logistic regression
(L1-LR) [32], random forest (RF) [33], Extreme Gradient
Boosting (XGBoost) [34], and J48 decision tree (DT) [35].

Data Preprocessing
The data set consisted of 380 attributes, including demographic
information, diagnoses, biometrics, laboratory results,
procedures, and medications. Since some of these attributes,
particularly some of the laboratory tests, were only sparsely
represented, the data were pruned to remove attributes (ie,

“features” in ML) with more than 20% missing values. Missing
values were imputed with medians for continuous variables (eg,
BMI), with a “Missing” group for categorical variables (eg,
smoke or alcohol usage), and with the most frequent value for
binary variables (eg, levels of lab test results). Winsorization
of the data was performed to remove outliers and replace these
with 0.1 and 99.9 percentile values. Further feature engineering
was performed to remove or combine highly correlated features,
such as “rheumatoid arthritis/collagen vascular disease” and its
highly correlated cognate “connective tissue disease.” These
feature engineering steps were performed individually for each
case-controlled data set of each subpathology. The resultant
data sets exhibited between 142 and 182 features after the
above-described culling. The feature exclusion data sets for
each of the 9 subpathologies were modeled using each of 5
distinct modeling strategies to produce a total of 45 individual
ML models. These 45 models were produced and compared in
a competitive fashion to identify the single-best model for each
pathology.

Model Strategies
Logistic regression without regularization (LR), L1-LR, RF,
and XGBoost models were performed in Python (3.8.5) using
the Scikit-learn (0.23.2) and XGBoost (1.2.0) libraries. Next,
80% of the data were used for training, and 20% of the data
were used for testing with 5-fold cross-validation. A grid search
was used to optimize hyperparameters. For L1-LR, the
regularization strength C was tuned. In the RF algorithm, the
space of the number of trees and the maximum depth of each
tree combination were searched. The hyperparameter tuning for
XGBoost included the learning rate and the maximum depth of
each tree. The ML modeling pipeline was established, and
information of missing values fit and learned from the training
data was applied to the test data set to avoid information leakage.
J48 DT modeling, a Java-based implementation of the C4 tree,
was performed in the WEKA ML workbench (University of
Waikato). Finally, 10-fold cross-validation was used with an
initial leaf size of 2% of the data set. The area under the curve
(AUC) was assessed for all algorithms for each outcome to
measure the overall performance of the binary classification
models.

Results

Cohort Details
The demographic information of each cohort is shown in Table
3. Briefly, the total populations for modeling, for each cohort,
varied in size from 7440 to 395,140. Populations were mostly
female for AMD, cataract, glaucoma, and OSD requiring
medications, and the average age ranged from 51 to 80 years.

The performance of different ML strategies varied as well
(Figures 1 and 2 and Table 4), but in all cases, XGBoost
demonstrated the best performance, showing, respectively, a
prediction accuracy and an AUC of 78.6% (95% CI
78.3%-78.9%) and 0.878 for visually significant cataract, 77.4%
(95% CI 76.7%-78.1%) and 0.858 for exudative AMD, 79.2%
(95% CI 78.8%-79.6%) and 0.879 for nonexudative AMD,
72.2% (95% CI 69.9%-74.5%) and 0.803 for OSD requiring
medication, 70.8% (95% CI 70.5%-71.1%) and 0.785 for
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glaucoma, 85.0% (95% CI 84.2%-85.8%) and 0.924 for type 1
NPDR, 82.2% (95% CI 80.4%-84.0%) and 0.911 for type 1
PDR, 81.3% (95% CI 81.0%-81.6%) and 0.891 for type 2
NPDR, and 82.1% (95% CI 81.3%-82.9%) and 0.900 for type
2 PDR (Table 4). XGBoost identified several clinical attributes
that were important for diagnosis prediction (Figure 3).

The top-performing models identified the following clinical
and demographic features that were primarily contributing to
the predictions for each pathology (Figure 3; continuous
measures showed positive associations):

• Exudative AMD diagnosis prediction was associated, in
order of importance, with average household income,
percentage college education, geographical division (Middle
Atlantic, East North Central, East South Central, New
England, South Atlantic/West South Central, Mountain,
West North Central, Pacific, other/unknown), the BMI, and
the Elixhauser score (comorbidity index).

• Nonexudative AMD demonstrated similar associations. In
order of importance, these were average household income,
percentage college education, region (Northeast, Midwest,
South, West, other/unknown), smoking, and the Elixhauser
score.

• Glaucoma clinical associations, in order of importance,
included average household income, percentage college
education, adrenal or androgen use, the BMI, and race.

• Cataract clinical associations, in order of importance,
included average household income, percentage college
education, region, the BMI, and smoking.

• OSD associations, in order of importance, included average
household income, percentage college education,
geographical division, rheumatoid arthritis and connective
tissue disease, and region.

• DR associations varied over different subpathologies but
generally included the Elixhauser score, high serum glucose,
the BMI, hypertension, chronic pulmonary disease,
depression, cardiac arrhythmia, and obesity.

Performance in predicting the presence of pathology ranged
from 71% in the case of glaucoma to 87% in the case of type 1
PDR, with an average performance of 80% across all groups.
Since the intent was to identify at-risk patients, these
performance values were used to determine disease odds ratios
(ORs) according to the method described by Hogue et al [36].

Applying this to each of the models provided a clinically useful
measure. The models identified patients with elevated ORs of
the prevalence of pathology from 2.4 in the case of glaucoma
to 5.7 in the case of type I NPDR, with an average OR of 3.9
(Table 5).
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Table 3. Demographic information of each cohort with ocular disease. For each cohort, a control (age- and gender-matched) population of similar size
was generated, without the condition of interest.

Type II PDR
(n=21,032)

Type II
NPDR
(n=155,927)

Type I PDRd

(n=4465)

Type I

NPDRc

(n=20,654)

Glaucoma
(n=192,727)

OSDb requir-
ing medica-
tion
(n=3720)

Cataract
(n=197,570)

Nonexuda-
tive AMD
(n=114,839)

Exudative

AMDa

(n=32,072)

Characteristic

61.6 (12.7)64.4 (12.9)52.1 (14.6)51.5 (16.0)72.4 (13.3)68.3 (14.0)69.7 (9.9)77.1 (10.7)79.8 (10.4)Age (years),
mean (SD)

10,032
(47.7)

77,028
(49.4)

2170 (48.6)10,203
(49.4)

108,698
(56.4)

3050 (82.0)115,183
(58.3)

70,971
(61.8)

19,885
(62.0)

Gender (fe-
male), n (%)

Race, n (%)

484 (2.3)4054 (2.6)31 (0.7)186 (0.9)3662 (1.9)52 (1.4)3951 (2.0)1608 (1.4)353 (1.1)Asian

3912 (18.6)24,948
(16.0)

545 (12.2)2231 (10.8)30,065
(15.6)

272 (7.3)13,632 (6.9)2756 (2.4)374 (2.1)Black

13,166
(62.6)

106,342
(68.2)

3393 (76.0)16,337
(79.1)

139,342
(72.3)

3281 (88.2)160,229
(81.1)

97,843
(85.2)

27,903
(87.0)

White

3449 (16.4)20,582
(13.2)

500 (11.2)1900 (9.2)19,658
(10.2)

112 (3.0)23,511
(11.9)

12,632
(11.0)

3143 (9.8)Unknown

Ethnicity, n (%)

2608 (12.4)13,722 (8.8)223 (5.0)888 (4.3)7516 (3.9)86 (2.3)5927 (3.0)2067 (1.8)513 (1.6)Hispanic

15,900
(75.6)

124,118
(79.6)

3764 (84.3)17,804
(86.2)

164,589
(85.4)

3553 (95.5)168,132
(85.1)

96,465
(84.0)

27,774
(86.6)

Non-His-
panic

2524 (12.0)18,088
(11.6)

478 (10.7)1962 (9.5)20,622
(10.7)

82 (2.2)23,511
(11.9)

16,307
(14.2)

3784 (11.8)Unknown

4943 (23.5)37,111
(23.8)

1058 (23.7)4936 (23.9)47,411
(24.6)

868 (23.2)47,614
(24.1)

27,906
(24.3)

7761 (24.2)Education (col-
lege educated),
n (%)

21,032155,927446520,654192,7273720197,570114,83932,072Size of control
population, n

42,064311,854893041,308385,4547440395,140229,67864,144Total popula-
tion for model-
ing (cohort+con-
trol), n

aAMD: age-related macular degeneration.
bOSD: ocular surface disease.
cNPDR: nonproliferative diabetic retinopathy.
dPDR: proliferative diabetic retinopathy.
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Figure 1. Model accuracy by pathology degeneration; AUC = area under the curve; CI = confidence interval; J48 = Decision tree; LR = Logistic
Regression without regularization; LR-L1 = L1-regularized logistic regression; NPDR = non-proliferative diabetic retinopathy; OSD = ocular surface
disease; PDR = proliferative diabetic retinopathy; XGB = XGBoost.

Figure 2. Receiver operating characteristic (ROC) curves illustrating the diagnostic ability of the models for the 9 pathologies. amd: age-related macular
degeneration; auc: area under the curve; demgd: dry eye and meibomian gland dysfunction; j48: decision tree; l1: L1-regularized logistic regression;
lr: logistic regression without regularization; npdr: nonproliferative diabetic retinopathy; pdr: proliferative diabetic retinopathy; rf: random forest; xgb:
Extreme Gradient Boosting.
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Table 4. Model accuracy, AUCa, sensitivity, and specificity.

SpecificitySensitivityAUC (95% CI)Accuracy (95% CI)Outcome and algo-
rithms

Cataract

0.7760.7960.878 (0.875-0.880)78.6% (78.3%-78.9%)XGBoostb

0.6930.7490.811 (0.808-0.814)72.1% (71.8%-72.4%)RFc

0.6950.6830.767 (0.764-0.771)68.9% (68.6%-69.2%)LR-L1d

0.6950.6830.767 (0.764-0.771)68.9% (68.6%-69.2%)LRe

0.6280.7020.710 (N/A)66.5% (N/Ag)J48 DTf

Exudative AMDh

0.7780.7690.858 (0.851-0.863)77.4% (76.7%-78.1%)XGBoost

0.7150.7450.817 (0.810-0.825)73.0% (72.2%-73.8%)RF

0.7200.7160.794 (0.786-0.802)71.8% (71.0%-72.6%)LR-L1

0.7200.7170.794 (0.786-0.801)71.8% (71.0%-72.6%)LR

0.6600.7070.721 (N/A)68.1% (N/A)J48 DT

Nonexudative AMD

0.7830.8010.879 (0.876-0.882)79.2% (78.8%-79.6%)XGBoost

0.6980.7680.823 (0.820-0.827)73.3% (72.9%-73.7%)RF

0.6970.7290.794 (0.790-0.798)71.3% (70.9%-71.7%)LR-L1

0.7000.7270.794 (0.790-0.798)71.3% (70.9%-71.7%)LR

0.6220.7410.725 (N/A)68.1% (N/A)J48 DT

OSDi

0.7350.7080.803 (0.780-0.824)72.2% (69.9%-74.5%)XGBoost

0.6690.7490.771 (0.747-0.795)70.9% (68.6%-73.2%)RF

0.6880.6910.757 (0.732-0.782)69.0% (66.7%-71.3%)LR-L1

0.7020.6880.757 (0.733-0.782)69.5% (67.2%-71.8%)LR

0.6280.6750.702 (N/A)65.1% (N/A)J48 DT

Glaucoma

0.7280.6890.785 (0.782-0.788)70.8% (70.5%-71.1%)XGBoost

0.7020.6560.741 (0.738-0.745)67.9% (67.6%-68.2%)RF

0.6140.6220.669 (0.665-0.673)61.8% (61.5%-62.1%)LR-L1

0.6170.6190.669 (0.665-0.673)61.8% (61.5%-62.1%)LR

0.5930.6470.647 (N/A)62.0% (N/A)J48 DT

Type I NPDRj

0.8500.8500.924 (0.919-0.930)85.0% (84.2%-85.8%)XGBoost

0.7900.7990.872 (0.864-0.879)79.5% (78.6%-80.4%)RF

0.8240.8470.908 (0.902-0.915)83.5% (82.7%-84.3%)LR-L1

0.8240.8470.908 (0.902-0.915)83.5% (82.7%-84.3%)LR

0.7210.7560.796 (N/A)73.8% (N/A)J48 DT

Type I PDRk

0.8280.8160.911 (0.897-0.924)82.2% (80.4%-84.0%)XGBoost

0.7440.8020.861 (0.846-0.878)77.3% (75.4%-79.2%)RF
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SpecificitySensitivityAUC (95% CI)Accuracy (95% CI)Outcome and algo-
rithms

0.7770.8470.895 (0.881-0.910)81.2% (79.4%-83.0%)LR-L1

0.7870.8290.894 (0.880-0.910)80.8% (79.0%-82.6%)LR

0.6860.7610.804 (N/A)72.4% (N/A)J48 DT

Type II NPDR

0.7820.8450.891 (0.888-0.893)81.3% (81.0%-81.6%)XGBoost

0.7520.7510.833 (0.830-0.836)75.1% (74.8%-75.4%)RF

0.7390.8430.866 (0.863-0.869)79.1% (78.8%-79.4%)LR-L1

0.7390.8440.866 (0.863-0.869)79.1% (78.8%-79.4%)LR

0.7570.6350.742 (N/A)69.6% (N/A)J48 DT

Type II PDR

0.8010.8410.900 (0.893-0.907)82.1% (81.3%-82.9%)XGBoost

0.7900.7630.858 (0.850-0.865)77.7% (76.8%-78.6%)RF

0.7630.8340.880 (0.873-0.887)79.9% (79.0%-80.8%)LR-L1

0.7530.8470.880 (0.873-0.887)80.0% (79.1%-80.9%)LR

0.7480.6740.774 (N/A)71.1% (N/A)J48 DT

aAUC: area under the curve.
bXGBoost: Extreme Gradient Boosting.
cRF: random forest.
dL1-LR: L1-regularized logistic regression.
eLR: logistic regression without regularization.
fDT: decision tree.
gN/A: not applicable.
hAMD: age-related macular degeneration.
iOSD: ocular surface disease.
jNPDR: nonproliferative diabetic retinopathy.
kPDR: proliferative diabetic retinopathy.

Figure 3. Clinical features primarily contributing to the predictions for each pathology. amd: age-related macular degeneration; demgd: dry eye and
meibomian gland dysfunction; hh: household; npdr: nonproliferative diabetic retinopathy; pct: percentage; pdr: proliferative diabetic retinopathy; xgb:
Extreme Gradient Boosting.
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Table 5. Model accuracy and ORsa by pathology.

OR (95% CI)Model accuracy, %Pathology

3.4 (3.2-3.7)77Exudative AMDb

3.8 (3.6-4.0)79Nonexudative AMD

3.7 (3.6-3.8)79Cataract

2.6 (2.1-3.3)72OSDc

2.4 (2.4-2.5)71Glaucoma

4.6 (3.6-5.9)82Type I PDRd

5.7 (5.0-6.4)85Type I NPDRe

4.6 (4.1-5.1)82Type II PDR

4.3 (4.2-4.5)81Type II NPDR

aOR: odds ratio.
bAMD: age-related macular degeneration.
cOSD: ocular surface disease.
dPDR: proliferative diabetic retinopathy.
eNPDR: nonproliferative diabetic retinopathy.

Discussion

Principal Findings
A major challenge of current deep learning (DL) models is that
their training requires a large amount of data because insufficient
data may decrease the performance of DL models [37]. The
original EHR data pool for this study comprised more than 80
million patients, one of the largest AI projects of its kind in
ophthalmology. The final study populations totaled 1,486,078
patients, 50% of whom were controls. In addition to the
substantial patient population, this study examined 9
subpathologies using 5 different analytical modeling approaches
to identify the most predictive model for each pathology.

The goal of this effort was to create a digital health tool to
identify patients at higher risk for the presence of ophthalmic
pathology and to do this based solely on the sort of
non-ophthalmic data to which a PCP would have access. The
authors do not propose to either make definitive ophthalmic
diagnoses or predict the development of future pathology.
Rather, this work seeks to identify patients whose clinical and
demographic context is associated with the presence of AMD,
cataract, clinically significant DR, glaucoma, or OSD of a
magnitude requiring pharmacological therapy. The creation,
demonstration, and real-world validation (within a clinical
setting) of a deployable digital tool will be the next step of this
project.

The application of such a model in the clinical setting would
allow a PCP to identify patients nearly 4 times more likely to
have ophthalmic pathology. Such a tool would bring a
substantial benefit in the triage and referral of at-risk patients
to eye care professionals.

Data and Outcome Engineering
These data consist of diagnostic and procedure codes; biometric
data, such as the BMI and vital signs; demographic information,

including socioeconomic and geographical information;
laboratory results; and medications prescribed. This information
does not include the physician notes that might provide a
rationale for the diagnoses recorded. Indeed, since only a limited
number of diagnoses may be listed on a claim, it is possible that
some extant diagnoses may have gone unrecorded. However,
diagnoses like cataract and OSD may be overrepresented since
the ICD-10 taxonomy does not distinguish between clinically
significant cataract and OSD from cases in which these
pathologies are subclinical. Indeed, it would be of little clinical
utility to build an AI model that detects subclinical cataracts.

Ours is not the first study to be faced with the challenge of
identifying clinically relevant diagnoses from large data sets.
A 2018 study [38] investigated the precision of ICD-10 codes
for patients with uveitis and found that 13 of 27 uveitides were
imprecisely defined and that multiple codes were used to
describe the same pathology. A 2020 study of ocular pathology
in patients with stroke [39] noted fewer patients with glaucoma
than anticipated and attributed this to the lack of ophthalmology
clinic data. The authors noted that patients may be on glaucoma
medications without a concurrent ICD-10 code recorded for
glaucoma, suggesting that a diagnosis of glaucoma may have
been recorded in the patients’ medical records before
incorporation into the data set. The authors sought, therefore,
to define the glaucoma cohort as those patients who met 1 or
more of 3 criteria: an ICD-10 code of H40.1% (open-angle
glaucoma), the prescription of glaucoma medication, or the
presence of a CPT code indicating glaucoma surgery (see Tables
1 and 2). This definition was developed to both detect glaucoma
patients without glaucoma ICD-10 codes and to exclude patients
inappropriately labeled as glaucoma by ICD-10. This definition
resulted in a substantial winnowing of the glaucoma cohort from
1,368,700, 50% of whom were controls, to 385,514 patients.

The authors took a similar approach to the cataract and OSD
study populations. Cataract and OSD are among the most
frequently recorded diagnoses on claims [40]. Cataract, in
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particular, is nearly ubiquitous in elderly patients and was the
most common ophthalmic ICD-10 diagnosis of those examined
here. Since only a subset of these patients require cataract
surgery, the detection of cataract alone is not clinically useful.
ICD-10 coding does not distinguish between cataracts requiring
surgery and those that do not. However, CPT coding, in a sense
does make this distinction. Therefore, CPT codes of 66984
(cataract extraction with intraocular lens) and 66982 (complex
cataract extraction) were chosen as the criteria for clinically
significant cataracts. This narrowing of the inclusion criteria
reduced our cataract study population from 2,087,836, 50% of
whom were controls, to 395,140 patients. OSD coding is even
more problematic. A large number of ICD-10 codes are
available, and clinical significance is difficult to establish. Our
initial cohort of OSD patients and controls totaled 1,182,912
patients. To model the clinical context associated with OSD, a
restrictive criterion was chosen: the prescription of topical
cyclosporine or lifitegrast. This greatly reduced the OSD
population to 7440 patients, but this ensured the final population
represented patients with clinically meaningful disease. No
outcome engineering measures were applied to the AMD groups
or to the DR groups, each of which was defined by its
corresponding ICD-10 code.

In addition, PDR and NPDR could have been combined into 1
group since the referring physician probably would not care
about what sort of DR the patient has. However, the NPDR
group is so much larger than the PDR group that the authors do
not expect that the segmentation is detrimental.

Clinical and Demographic Attributes and Feature
Engineering
The initial data set included a large number of attributes or
“features” (in the language of ML), totaling 380 individual
parameters. To produce models that would not be burdensome
for the clinician to use, the authors sought to reduce the number
of attributes required by each model. This reduction and
modification of model parameters is referred to as “feature
engineering.” For a feature to be included in the final model,
several criteria needed to be met. The feature must play a
significant role in the model’s outcome. It is self-evident that
features that do not contribute substantially to a model may be
discarded with little impact on model performance. In the case
of the XGBoost models, parameter optimization was performed
by the grid search algorithm [41]. The second feature inclusion
criterion was noncorrelation with other features. In some cases,
such as between weight and the BMI, the correlation is evident.
However, the correlation between other clinical features only
becomes clear on analysis. The issue of feature correlation
highlights a difference between AI and traditional risk analysis
studies. When studied individually, certain attributes, such as
obesity and socioeconomic status, may be identified as disease
risk factors. However, when viewed collectively, the importance
of 1 of these may be reduced if the 2 attributes are highly
correlated. The third criterion for feature inclusion was high
frequency in the data set. Some of the laboratory values,
particularly serum fibrinogen, were so sparse in the data set that
exclusion of the feature was preferable to the alternatives of
sample reduction or interpolation. Two thresholds for feature
sparsity were established in this project. Models were built upon

data sets that excluded features with more than 20% missing
values. Feature engineering substantially benefits from guidance
by clinical domain experts [42], and our feature and outcome
engineering was clinically informed, particularly in the realm
of the diagnostic criteria described earlier. The features included
in the final XGBoost model, the top-performing strategy, are
available as supplementary materials to this manuscript.
XGBoost is a DT-based ensemble modeling method. It can
effectively capture the nonlinear relationship between predictors
and the outcome by combining many weaker models to create
a strong model. “Weak” and “strong” here refer to how
correlated the models are to the outcome. The algorithm added
models sequentially, and the next model corrected the error
from the previous model. Through this iterative process, the
data can be eventually accurately predicted by the model.

Usage Data and Generalizability
The application of usage data to this effort is both a weakness
and a strength of this project. These data do not contain the
richness of a complete medical record. It is therefore impossible
to establish the criteria under which the clinicians made the
diagnoses recorded—hence our outcome engineering maneuvers
to establish stricter criteria (eg, using CPT codes for cataract
surgery to identify patients with clinically significant cataract).
At the same time, models built upon these sorts of data are more
generalizable and available than models built upon more specific
and perhaps more idiosyncratic data sources. These are precisely
the sorts of data available to PCPs, making these models more
easily deployable than models built upon a specific medical
record system. Indeed, the availability of these data is illustrated
by our being able to investigate a base of more than 80 million
patients from disparate health care systems.

Definitions of the parameters used in these models is a topic
worth addressing. The parameters ingested by the models that
are used to make predictions include pathologies and
demographics that would ordinarily require a clear and
consistent definition. These parameters include macular
degeneration whose definition should be established a priori to
demographic terms, such as gender and sex, that not only require
definition but also incorporate the idea of nonbinary values.

It is the nature of large electronic medical record studies that
such definitions are impossible to impose externally and that
the interpretations of gender, hypertension, diabetes, and
glaucoma are likely to vary among the practitioners and patients
who themselves may be the source of the data of these values
in the data set. Our use of a database of 80 million patients
provides a large degree of protection from selection bias.
However, because these clinical definitions are intrinsic to the
data set itself, a great deal of caution must be exercised when
attempting to draw inferences about pathogenesis simply by
evaluating the most correlative features of the model. However,
the limitation of the model to revealing the disease process
makes the model no less valuable in its ability to predict which
patients are at the highest risk for unrecognized eye disease.

Hierarchical Relationships
It should be noted that the clinical features identified as relevant
by each of the pathology models should be viewed as correlative
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but not necessarily causative. It is better to think of the collection
of clinical values as a patient’s clinical milieu rather than as a
collection of individual risk factors. Although it is difficult to
imagine that college education is itself a risk factor for
pathology, its correlation and importance to a given model
should not be discounted, since it does contribute to the model’s
predictiveness of the presence of pathology. All of this is not
to say that causation may not exist in the relation between some
of these features and the pathologies modeled. Highly
multidimensional clinical AI studies like this one may identify
previously unrecognized factors that directly influence
pathogenesis. However, causative connection cannot be
established by this sort of study and would require a more
traditional experimental approach. Although the J48 DT models
did not perform as well as the GLM or XGBoost strategies, they
are informative in that they describe hierarchical relationships
among clinical features. As an example, the J48 model for
glaucoma identifies race, systemic steroids, and antidiabetic
medication use as important clinical features. However, the
model dictates the order in which these factors should be
considered, assessing race only after it is established whether
the patient takes antidiabetic medications and assessing systemic
steroid use only after these first 2 attributes have been
determined. Such a hierarchical relationship among clinical
features and demographic characteristics would be enormously
difficult to establish in traditional reduced-dimensional scientific
queries. This gestalt approach to multidimensional clinical
context is one of the strengths of AI.

Decision Support
Ophthalmology is well suited for AI, given the rich visual
information and data available; complex ophthalmological
systems are better understood and eye care enhanced through
sophisticated analysis and prediction. Integrating AI into clinical
practice may facilitate better patient outcomes, given the
complexity of disease diagnosis, treatment selection, and clinical
testing. Ophthalmological clinical decision support systems that
aid in diagnosis could improve the accuracy and efficiency of
decision-making processes in ophthalmology, ultimately leading
to improved patient access, outcomes, and potentially costs [43].

These models predict the presence of extant pathology. They
would be of value in the identification of populations in which
these pathologies are substantially more prevalent than in the
general population. The models should not be used to make a
diagnosis for an individual patient but rather to identify patients
at risk of having undetected AMD, cataract, DR, glaucoma, or
OSD. Further, these models are built upon clinical data in which
an ophthalmic pathology is or is not present. That is to say, the
models presented here are not constructed to predict the
development of future pathology. It may or may not be the case
that a particular clinical context, as defined by the
multidimensional features incorporated into the models, may
predict the development of future disease, but that is not
appropriate way to use the models presented. These models
predict the presence of ophthalmic pathology based upon
non-ophthalmic data and would be best used for triage and
referrals from non-ophthalmologists to eye care specialists. The
research is designed to raise awareness about the variables
associated with referral to heighten PCPs’ vigilance to the

clinical and demographic characteristics that may need further
reflection and attention.

Real-World Application Prospects of Ophthalmological
AI Models
Advances in computing power combined with disruptions in
health care resulting from unprecedented circumstances of the
COVID-19 pandemic have prompted the worldwide exploration
of AI-based systems in several medical subfields, including
ophthalmology [44]. Ophthalmology has been at the forefront
of AI research, in particular ML and DL approaches, because
of the ubiquitous availability of noninvasive, rapid, and
relatively inexpensive ophthalmic imaging [45]. Ophthalmic
AI systems are advantageous in that they decrease the amount
of time required to interpret image data, enable ophthalmologists
to gain a greater understanding of disease progression, and assist
with early-stage diagnosis, staging, and prognosis [46].

Numerous factors will determine the successful adoption of AI
technologies into clinical practice. AI innovations that help
clinicians manage the complexity (rather than add yet another
layer of complexity) associated with effective ophthalmological
care will likely be better received. In addition, the ability for
critical appraisals by optometrists and ophthalmologists will be
key to validating the theoretic models. AI models can be difficult
to interpret and explain, which can make it difficult for
stakeholders to understand how decisions are made [47]. It is
important that the AI models be transparent and explainable in
order to gain and maintain the trust of health care professionals,
patients, and other decision makers. Providers of AI technologies
and educators also need to ensure that training needs are
adequately assessed and value to patient outcomes demonstrated
if the promise of AI in ophthalmological care is to be realized.

AI has the potential to provide invaluable insights across
multiple domains of ophthalmology. By leveraging ML
algorithms, AI can process and analyze vast amounts of
information, including physiological data, EHRs, 3D images,
radiology images, histologic evaluation, genomic sequencing,
and administrative and billing data. One advantage that could
be realized by the algorithms discussed herein is that they use
commonly collected data contained within an EHR system to
identify eye disease risk. This means that the algorithms could
be deployed in the background of an EHR to enable inference
of an entire PCP’s or practice’s patient population. The results
of this inference could appear as a flag in a patient chart, alerting
the PCP for a given patient as to the need to refer to an eye care
professional for further evaluation. The approach of deploying
these algorithms within the EHR would also enable further
validation and assessment of algorithm generalizability prior
to clearing the algorithm for regular use by PCPs. Additional
validation steps such as this would help identify any local biases
for a given patient population and enable monitoring
performance for algorithmic drift.

Data infrastructure is an important influencer for the adoption
of AI innovations. AI requires a continuous supply of
high-quality data. Data quality issues may entail accuracy,
completeness, consistency, timeliness, integrity, relevance, data
collection, preprocessing, management, data governance, and
data labeling [47]. Storage challenges, processing challenges,
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data management challenges, data heterogeneity, data privacy
and security, bias and representativeness, and data access are
also data quality considerations [47]. An appropriate data
infrastructure, including its maintenance and evolution over
time, is a prerequisite for successful AI applications.

Management of eye health necessitates a multidisciplinary team
with a dynamic flow of information between treating doctors
[48]. Holley and Lee’s [4] qualitative research found that PCPs
had poor communication with eye care providers and the PCPs
desire changes in the current referral-to-eye-care system. Better
communication between PCPs and eye care professionals,
further implementation of EHRs, and increasing eye screening
in primary care clinics were common themes. Moudgil et al
[48] found that 80% of the physicians communicated with
ophthalmologists sometimes, whereas only 10% ensured
communication at all times. The information sought by the
treating physicians from the ophthalmologists regarding their
referral for ocular findings included severity, the grading of
DR, other ocular changes, need for intervention, and the
frequency of screening and follow-up based on changes
observed.

Finally, ethical considerations call for AI systems to adhere to
the principles of fairness and nondiscrimination [49,50].
Advances in modern medicine are sometimes stymied by the
inability to translate evidence-based care to all patients [51].
Transparency of AI models is essential to be able to evaluate
and ensure their relevance for diverse populations and the ability
to translate the innovations to all settings of care.

Limitations
Several limitations are inherent in the use of aggregated clinical
data. Longitudinal data on patients are limited, and this, by
extension, limits projects such as ours in their ability to predict
the development of future pathology. Although the data set does
derive information from EHRs, including Epic, Cerner, GE,
and McKesson, the actual physicians’ notes are not available
for analysis. Aggregated data also disproportionally represent

hospital encounters and underrepresent outpatient visits [52].
Attempts to mitigate some of these deficiencies in the feature
and outcome engineering methods are described before. A
certain degree of circumspection should be exercised when
applying this model more broadly to other databases that may
have used different NLP protocols.

A challenge with deploying these models in their current form
is that the richness of data (ie, number of parameters) to be input
into the models must be balanced against the labor the clinician
must expend entering them. The authors sought to reduce feature
input without substantially affecting model predictive
performance. The goal is to develop tools that will aid clinicians
and reduce the number of undiagnosed serious ophthalmic
conditions. Empirically based analyses such those presented
here are exploratory and intended to generate insights worthy
of subsequent investigation with different study designs and
methods that are better suited for causal inference.

It is important to note that data quality and representativeness
are a potential issue for ML model training from EHRs and
other clinical databases. EHR data can be incomplete,
inconsistent, or erroneous, given the nature of the data collection
and documentation. EHR data can also be biased toward
populations with better access to health care. Some of these
issues (eg, access) are inherent to our health care system in
general and are not specific to EHR data. Regardless of the
source of the issue, it is important to note that models trained
and tested on EHR data may not be generalizable to the larger
population.

Conclusion
In summary, this research demonstrates real patient triage
potential by deploying AI strategies directly to PCP EHRs. In
addition, based on the original data pool (more than 80 million
patients), the final study population size (1,486,078 patients,
50% of whom were controls) and the 9 subpathologies using 5
different analytical modeling approaches, the authors believe
this study to be one of the largest AI projects in ophthalmology.
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Abstract

Background: The use of artificial intelligence (AI) can revolutionize health care, but this raises risk concerns. It is therefore
crucial to understand how clinicians trust and accept AI technology. Gastroenterology, by its nature of being an image-based and
intervention-heavy specialty, is an area where AI-assisted diagnosis and management can be applied extensively.

Objective: This study aimed to study how gastroenterologists or gastrointestinal surgeons accept and trust the use of AI in
computer-aided detection (CADe), computer-aided characterization (CADx), and computer-aided intervention (CADi) of colorectal
polyps in colonoscopy.

Methods: We conducted a web-based questionnaire from November 2022 to January 2023, involving 5 countries or areas in
the Asia-Pacific region. The questionnaire included variables such as background and demography of users; intention to use AI,
perceived risk; acceptance; and trust in AI-assisted detection, characterization, and intervention. We presented participants with
3 AI scenarios related to colonoscopy and the management of colorectal polyps. These scenarios reflect existing AI applications
in colonoscopy, namely the detection of polyps (CADe), characterization of polyps (CADx), and AI-assisted polypectomy (CADi).
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Results: In total, 165 gastroenterologists and gastrointestinal surgeons responded to a web-based survey using the structured
questionnaire designed by experts in medical communications. Participants had a mean age of 44 (SD 9.65) years, were mostly
male (n=116, 70.3%), and mostly worked in publicly funded hospitals (n=110, 66.67%). Participants reported relatively high
exposure to AI, with 111 (67.27%) reporting having used AI for clinical diagnosis or treatment of digestive diseases.
Gastroenterologists are highly interested to use AI in diagnosis but show different levels of reservations in risk prediction and
acceptance of AI. Most participants (n=112, 72.72%) also expressed interest to use AI in their future practice. CADe was accepted
by 83.03% (n=137) of respondents, CADx was accepted by 78.79% (n=130), and CADi was accepted by 72.12% (n=119). CADe
and CADx were trusted by 85.45% (n=141) of respondents and CADi was trusted by 72.12% (n=119). There were no
application-specific differences in risk perceptions, but more experienced clinicians gave lesser risk ratings.

Conclusions: Gastroenterologists reported overall high acceptance and trust levels of using AI-assisted colonoscopy in the
management of colorectal polyps. However, this level of trust depends on the application scenario. Moreover, the relationship
among risk perception, acceptance, and trust in using AI in gastroenterology practice is not straightforward.

(JMIR AI 2024;3:e50525)   doi:10.2196/50525

KEYWORDS

artificial intelligence; delivery of health care; gastroenterology; acceptance; trust; adoption; survey; surveys; questionnaire;
questionnaires; detect; detection; colonoscopy; gastroenterologist; gastroenterologists; internal medicine; polyp; polyps; surgeon;
surgeons; surgery; surgical; colorectal

Introduction

Artificial intelligence (AI) has made groundbreaking
technological advancements in medical image interpretation
[1]; diagnosis assistance; risk assessment for various conditions
[2]; outcome prognostication [3]; and in certain areas, treatment
suggestion [4] and partaking in surgical intervention [5].

Studies of AI trust and acceptance among clinicians are
becoming increasingly important. This is because trust and
acceptance of AI technology are seen as preconditions for
clinical workflow integration [6]. Currently, trust has already
been demonstrated by several studies as one of the main
determinants in driving the adoption of AI in health care [7,8].
One study showed that within a general home-based health care
setting—where AI is applied on the internet of things–based
devices to monitor patients’health—risk perception, acceptance,
and trust are related concepts that govern the ultimate use of
the developed technology [9]. A separate study [10] conducted
on the use of an AI-based system in the application of a Blood
Utilization Calculator showed that its trust and use were
determined by perceived risk and expectancy (in our context,
acceptance). It was demonstrated that high perceived risk
reduced trust and subsequent use.

While the clinical evidence of accuracy in the diagnosis and
prognosis of AI is accumulating, the level of trust and
acceptance by clinicians requires more attention [6]. We
identified that gastroenterology, by its very nature of having
heavy usage of image-based diagnosis (eg, computed
tomography, magnetic resonance imaging, endoscopy, and
histology) and surgical or endoscopic intervention, will be one
of the specialties that may readily use AI technologies in clinical
management [11,12]. Yet, there is little research on AI risk
perception, acceptance, and trust among gastroenterologists.

To our knowledge, most published research surveys trust in a
more general manner. One such recent example is the survey
on gastrointestinal (GI) health care in 2022, which covered
clinicians’ perspectives in a general way [13]. However, such

surveys lack granularity. It is impossible to know under what
circumstances do clinicians become less trusting or accepting
or become more concerned about the deployments of AI.

Moreover, there is a lack of explicit modeling from collected
data to relate patterns of risk perception, acceptance, and trust
among practitioners. There are existing models [14,15] that
explore parts of the interactions among these 3 factors. However,
because these explorations cover only partial relationships and
interactions, we feel that these may be inadequate for modeling
real-world dynamics. Therefore, having more comprehensive
models would allow for a better understanding of the various
factors underpinning how clinicians come to trust, accept, and
eventually use AI. This knowledge would help in formulating
successful implementation of AI tools in real-world
environments.

In this study, we aim to understand the trust and acceptance
among gastroenterologists, with a specific focus on the
Asia-3Pacific region. We hypothesize is that risk perception,
acceptance, and trust will change according to the scenario
(computer-aided detection [CADe], computer-aided
characterization [CADx], or computer-aided intervention
[CADi]), with different levels of invasiveness. A blueprint of
a survey that examines contextual responses toward screening
colonoscopy with polypectomy in clinical environments is
provided. Using our collected data, we attempt to elucidate how
risk perception, acceptance, and trust interactions can be
modeled and studied. These contributions collectively enhance
our understanding of complex factors influencing the integration
of AI in medical practice.

Methods

Survey
We used a structured questionnaire (Multimedia Appendix 1)
to conduct a survey in English by inviting gastroenterologists
or GI surgeons from the Asia-Pacific region through open
invitations to various medical associations. The questionnaire
was based on the expectancy-value framework, major constructs
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of the Theory of Planned Behaviour research framework [16],
and the Technology Acceptance Model measures [17]. Items
in the questionnaire for testing risk perception, acceptance, and
trust were adapted from various other studies [18,19], with some
including items from validated constructs in questionnaires.
These questions are then adapted into scenarios covering
detection (CADe), characterization (CADx), or intervention
(CADi), with different levels of invasiveness characterization
and intervention for colonoscopic detection and polypectomy
(see Textbox 1 for items used to evaluate these aspects).

Most items were rated on a 7-point Likert scale, where 7 denotes
strong agreement. To assess risk perception, acceptance, and
trust, we presented participants with 3 different AI applications
related to colonoscopy and the management of colorectal polyps.
These scenarios, reflecting existing AI applications in GI,
involve the detection of polyps (CADe), characterization of the
nature of polyps (CADx), and treatment procedures (CADi),
respectively (see Table 1 and Textbox 1). Table 2 displays
measurement items.

In this study, the three key elements for assessment are (1) risk
perception, (2) acceptance, and (3) trust. Risk perception refers
to an individual’s subjective assessment or understanding of

the potential hazards, threats, or uncertainties associated with
a particular situation or activity. It involves the process of
evaluating and interpreting information about risk, considering
factors such as the severity of potential consequences [20,21].
Acceptance is the mental and emotional state of acknowledging
and accommodating a new concept or innovation into one’s
beliefs, behaviors, or practices. Trust is defined as belief or
confidence in the reliability, credibility, and integrity of a
person, system, or technology leading to usage or action [20,21].
Acceptance may precede trust in the adoption of new
technologies, but trust plays a crucial role in establishing a
strong foundation for sustained usage and effective integration
of AI into medical practice. Risk perception, acceptance, and
trust may interact with each other and other factors stemming
from professional, technological, and personal sources. The
conceptual framework presented in Figure 1 illustrates the
intricate interplay among sociodemographic variables, AI
acceptance, trust, perceived risk, and outcomes [22]. Our study
aims to contribute to this understanding not by testing individual
relationships within this conceptual framework but by exploring
how trust, risk, and acceptance are possibly interconnected in
the context of AI-supported applications in gastroenterology.

Textbox 1. The 3 operationalized case scenarios of using artificial intelligence–assisted colonoscopy in the management of colorectal polyps.

Computer-aided detection

• Imagine you are attending an informal meeting of colleagues. Your colleagues are not experts in artificial intelligence and have about the same
amount of understanding as you do. The conversation turns to innovation in medicine, especially machine learning algorithms and their potential
to assist in the interpretation of medical imagery in the early detection of colon cancer. One of the colleagues speaks about a patient who underwent
a colonoscopy which was assisted by a machine learning algorithm. When the algorithm indicated that the patient had a colonic polyp, the
colleague asked for an additional biopsy. It turned out that the result produced by the algorithm was correct (use the following scale: 1=have
major doubts to 4=neutral to 7=fully believe).

Computer-aided characterization

• The second colleague reported that the machine learning algorithm is also capable of correctly classifying whether the colonic polyp was
adenomatous or hyperplastic (use the following scale: 1=have major doubts to 4=neutral to 7=fully believe).

Computer-aided intervention

• Now suppose a third colleague told you that a machine learning algorithm can be applied to guide interventions. Endoscopists need a targeted
biopsy from specific locations that harbor the lesion. The third colleague said that the algorithm can guide a biopsy needle more precisely than
a human, using ultrasound imaging (use the following scale: 1=have major doubts to 4=neutral to 7=fully believe).

Table 1. Scenarios demonstrating AIa use in gastroenterology practice from detection to characterization and intervention.

ObjectiveScenario

To evaluate the acceptability of AI to assist in the interpretation of medical
imagery in detecting colorectal lesions under different bowel preparations
and colonic configurations

Computer-aided detection: use of AI to assist in identifying the presence
of colorectal polyps and improving adenoma detection rate.

To evaluate the acceptability of AI to differentiate (without histology)
between adenoma (with variable degree of malignant potential) vs hyper-
plastic polyps (no malignant potent)

Computer-aided characterization: use of AI to classify whether a colonic
polyp was adenomatous or hyperplastic.

To evaluate the acceptability of AI to decide which tool to use in assessing
the completeness of polypectomy and risk of bleeding, perforation, or
both.

Computer-aided intervention: use of AI in an endoscopy to guide colono-
scopic polypectomy.

aAI: artificial intelligence.
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Table 2. Survey items used to measure risk perception, acceptance, and trust.

Question textMeasure

I expect major risks involved with the artificial intelligence diagnosis.Risk perception

Do you believe that machine learning algorithm can, in some cases (as in the one described above), better perform (the
task, computer-aided detection, computer-aided characterization, Computer-aided intervention) than human beings?

Acceptance

I am ready to try the method myselfTrust

Figure 1. Conceptual model of perceived risk, acceptance, and trust on artificial intelligence decision aids.

Statistical Analysis
Statistically significant application pairs were identified by the
Mann-Whitney U test (U test) or when there is dependence, the
Wilcoxon signed-rank test (Wilcox test). Statistical significance
is established at .05. Analyses were conducted in Python using
the scipy.stats module (version 1.10.0; the SciPy community),
statsmodels module (version 0.13.5), and the Pingouin statistical
package (version 0.5.3) or SPSS (version 28; IBM Corp).

Correction for multiple testing was performed using Bonferroni
correction, where the statistical threshold (α) was divided by
the number of tests n, such that the adjusted P value threshold
is given by α/n.

Power Analysis
Our hypothesis is that risk perception, acceptance, and trust will
change according to the scenario (detection [CADe],
characterization [CADx], or intervention [CADi]), with different
levels of invasiveness. Based on an estimated effect size of 0.3
for trust, power, and risk perception with 0.95 power, we can
calculate the minimum set of respondents needed to determine
any significant differences of a given “size” in response to trust,
risk perception, and acceptance measures across scenarios. Since
every individual answers scenarios 1 to 3, the differences in the
response of every individual can be estimated using a Wilcox
test if we compare between pairs of scenarios. The required
sample size to pick up a small-moderate effect size (based on
Cohen d) of 0.3 with a power of 95% is 154. In this study, we
have recruited 165 participants, and this should be enough to
achieve sufficient statistical power.

Ethical Considerations
This study was approved by the Nanyang Technological
University institutional review board (IRB-2022-756). Informed
consent was obtained with ability to opt out. Data was
anonymized, and no compensation was provided.

Results

Response and Nonresponse Bias
Tracking response rates can help determine the
representativeness of a study, but due to the constraints of our
institutional review board, we were not allowed to track
individual respondents. During the initial phase of the study,
we sent the survey to a distribution list of 151 participants with
known dates. Applying an approximate 1-month window
(October 21, 2022, to November 13, 2022), we obtained 128
responses. Thus, our estimated response rate is ~85% (n=128).
While we were analyzing or cleaning up the data, we hoped to
get more participants. In the subsequent weeks, we obtained 37
new responses. To compare early and late respondents, we
aggregated the first 130 responses (collected between October
21, 2022, and December 29, 2022) as a single group to represent
the early respondents and the remaining 35 (collected between
January 10 to January 19, 2023) as the late responses.
Comparing 130 early respondents against 35 late respondents
using a Mann-Whitney U test with a Bonferroni-adjusted
α=.0056, we found no significant differences for risk, trust, and
acceptance across each of the 3 scenarios. This suggests no
significant difference between the early and late responses. The
lowest obtained P value was .022 (trust in CADx), and the
remaining P values were at least .30. Together, we take these
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results as a proxy that nonresponder bias is not a strong concern.
We also note the overall response rates are rather high; the
survey was sent out to various gastroenterology associations as
an open invitation, without individual follow-up. It is possible
that AI is increasingly seen as transformative and important in
the gastroenterology field, but there is not much work on
understanding how perspectives on AI lead toward trust and
adoption. Hence, invitees feel strongly about the matter and are
more inclined to participate in this survey.

Unidimensionality and Reliability
Most items in our questionnaire were already used in other
questionnaires and can be considered as validated. For the
scenario-based questions used in this study, these are novel, as
we needed to develop new instruments to explore new topics.
Participants had to answer on three 7-point items (not at all to
wholeheartedly) whether they accept, trust, and perceive risk
on the method presented in each of the scenarios.
Unidimensionality and reliability were verified and assured
using confirmatory factor analysis and Omega Hierarchical,
respectively (see Multimedia Appendix 1 for details).

Cohort Characteristics
In total, 165 clinicians participated in the study. The survey
completion rate was ~99.40% (n=165). Participants averaged
44.49 (SD 9.65) years, were mostly male (n=116, 70%), and
predominantly specialized in gastroenterology (n=153, 92.72%;
see Table 3).

The sample comprised gastroenterologists and GI surgeons with
varied clinical experience: 93 (56.36%) participants have over
10 years’ experience in practicing gastroenterology and 111
(66.81%) participants were consultants or senior consultants,
mostly working in public hospitals (n=110, 66.67%). Most
participants reported basic familiarity with AI (n=160, 96.97%;
Q1: How familiar are you with AI?). Many were exposed at
work, either directly (n=111, 67.27%; Q2: Have you ever used
AI in your occupation?) or indirectly (n=112, 67.88%; Q6: Do
you personally know other clinicians who use AI at work?).

Participants rated a mean score of 6.00 (SD 0.95) for intending
to use AI when it becomes available in their workplace and a
score of 5.50 (SD 1.24) for intending to use it to provide services
to their patients. Participants rated a mean score of 5.83 (SD
1.37) for intention to use AI routinely in patient care. These
figures suggest generally favorable attitudes toward adopting
AI.
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Table 3. Participant demographics and general characteristics.

Values (N=165), n (%)Participant

44.49 (9.65)Age (years), mean (SD)a

Gendera

116 (75.32)Male

38 (24.68)Female

Country or areab

3 (1.83)Australia

7 (4.27)Brunei Darussalam

18 (10.98)Hong Kong

6 (3.66)India

6 (3.66)Indonesia

9 (5.49)Japan

1 (0.61)New Zealand

50 (30.49)People’s Republic of China

1 (0.61)Philippines

2 (1.22)Republic of Korea

24 (14.63)Singapore

33 (20.12)Taiwan

Main work settingc

110 (67.9)Public hospital

28 (17.28)Private hospital

18 (11.11)Institute of higher learning

1 (0.62)Community health center

5 (3.09)Other

Current role at workd

19 (11.8)Resident

19 (11.8)Fellow

57 (35.4)Consultant

54 (33.54)Senior consultant

12 (7.45)Other

Specialtyc

153 (94.44)Gastroenterology

4 (2.47)Colorectal surgery

2 (1.23)General surgery

3 (1.85)Other

Practicing in specialty (years)c

39 (24.07)Less than 5

30 (18.52)5-10

48 (29.63)11-20

45 (27.78)Over 20

a11 participants did not report their ages or gender.
b1 participant did not report their country or area.
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c3 participants did not report their main work setting, specialty, and years practicing in a specialty.
d4 participants did not report their current role at work.

Scenario-Based Differentiation
When participants were exposed to three scenarios in medical
practice that extend from (1) diagnosing and detecting colorectal
polyps (CADe), (2) assessing the nature of pathology of polyps
and predict risk of malignancy (CADx), and (3) adopting
endoscopic or surgical intervention or removal of the polyps
(CADi), clinicians expressed similar risk perceptions across all
a p p l i c a t i o n s  ( F i g u r e  2 A :
MedianCADe=MedianCADx=MedianCADi=4.0; WilcoxCADe-CADx:
P=.09; WilcoxCADe-CADi: P=.44; WilcoxCADx-CADi: P=.66).

However, there were clear application-specific differences in
intention to accept AI in practice, with CADe and CADx rated
higher than that of CADi (Figure 2B: MedianCADe=6.0,
MedianCADx=6.0, MedianCADi=5.0; WilcoxCADe-CADx: P=.031;

WilcoxCADe-CADi: P=1.6×10–4; WilcoxCADx-CADi: P=.02).
Similarly for trust, CADe and CADx were rated higher than
CADi (Figure 2C: MedianCADe=6.0, MedianCADx=6.0,
MedianCADi=5.0; WilcoxCADe-CADx: P=.29; WilcoxCADe-CADi:

P=3.7×10–08; WilcoxCADx-CADi: P=4.5×10–08).

Figure 2. Gastroenterologists’ attitude toward using AI in the management of colorectal polyps: perceived risk, acceptance, and trust in 3 case scenarios
of using AI-assisted colonoscopy in CADe, CADx, and adopting CADi with either surgery or endoscopy. Pairwise tests based on the Wilcox test were
performed across scenarios. (A) Risk perception across CADe, CADx, and CADi applications. The raincloud plot comprises a 3-panel visualization
with a density plot on top revealing density patterns, a box plot in the middle summarizing the median and IQR, and a univariate strip plot on the bottom
showing the actual data distribution. No significant pairs were identified. (B) Acceptance across CADe, CADx, and CADi applications. Pairs with
statistically significant differences are highlighted by a red connector and an asterisk. (C) Trust across CADe, CADx, and CADi applications. Pairs with
statistically significant differences with a P value ≤.02 are highlighted by a red connector and an asterisk. AI: artificial intelligence; CADe: computer-aided
detection; CADi: computer-aided intervention; CADx: computer-aided characterization.

Subgroup Analysis for Identification of Confounding
Effects and Other Intrinsic Factors
We performed a subgroup analysis to investigate if factors such
as gender, years of experience, and practice environment will
affect risk perception, acceptance, and trust in AI for
gastroenterology practice (Figure 3).

Male and female practitioners held similar risk perceptions.
There was good concordance in their risk perception,
acceptance, and trust toward using AI in gastroenterology
practice (Figure 3A1, 3B1, and 3C1). Male participants tended
to be less accepting and trusting, especially in CADi, although
this difference is not statistically significant.

Next, we compared practitioners with 10 or less years of clinical
experience (n=69) versus experienced practitioners with more
than 10 years of clinical experience (n=93). While the overall
trends of high acceptance and trust showed no difference
between the 2 groups, experienced clinicians exhibited
consistently lower risk perception than less experienced ones
(Figure 3A2). This observation was statistically significant for

all 3 scenarios (CADe: P=9.7×10–6; CADx: P=1.7×10–06; CADi:

P=3.3×10–04). We also compared practitioners of the rank senior
consultant and consultant (n=111) against residents and fellows
(n=38; Figure 3A3, 3B3, and 3C3). The acceptance and trust
remained high, and the trend showed a good concordance
between the 2 groups. A lower risk perception was found among
senior consultants and consultants compared to residents and
fellows (CADe: P=.12, CADx: P=.10, and CADi: P=.27).
However, the difference is statistically insignificant. The years
of experience in clinical practice appeared to have a stronger
impact on risk perception than the rank held.

Finally, we compared practitioners from public hospitals with
those from private hospitals (Figure 3A4, 3B4, and 3C4). There
was no statistically significant difference between private
hospital practitioners against their public counterparts, although
there was a noticeable difference in CADx on acceptance (Figure
3B4). There was also a lower rate of acceptance and trust in
using AI for intervention (CADi) compared to CADe and CADx.
Despite not reaching statistical significance, we observed that
the spread among private hospital respondents tended to exhibit
greater variations. In some instances, the spread appeared to be
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bimodal for CADi, suggesting that the private respondents could
be a combination of 2 distinct subgroups.

The correlation among risk perception, acceptance, and trust
was further analyzed by incorporating the years of experience
of the participants by their years of practice in gastroenterology.
In all 3 scenarios, there is a moderate correlation between
acceptance and trust of AI in detecting polyps (CADe) and
characterizing polyps (CADx). The influence of risk perception
on acceptance and trust appears to be more diffused: noticeably,
when trust and acceptance are both high, and it does not always
coincide with low-risk perception.

We first used contingency tables combined with the Fisher exact
test to evaluate the impact on the original relationships between
trust and acceptance and after introducing risk perception (risk)
as an interaction term. This was repeated for each scenario
(CADx, CADi, and CADe; Multimedia Appendix 1). Using
this approach, we find that after introducing risk perception,
the distribution of values still largely follows that of the original
data, suggesting that risk does not interact strongly with trust
and acceptance. However, this does not mean that risk does not

influence these 2 factors. To further investigate, we performed
a 2-way ANOVA to further study the influence of risk
perception on acceptance and trust. The 2-way ANOVA revealed
a statistically significant interaction in CADe (F25=3.37;

P=1.6×10–05) but not in CADx (F25=1.40; P=.12) and CADi
(F36=1.35; P=.16). Finally, we performed two sets of regression
analyses with (1) acceptance and risk perception as independent
variables and (2) acceptance, risk perception, and an interaction
term that is the product of acceptance and risk perception
(Multimedia Appendix 1). Acceptance had a statistically
significant positive influence on trust for all 3 scenarios. Risk
perception only has a statistically significant negative impact
on trust for the first 2 scenarios (CADe and CADx). When we
considered an interaction term, only CADe had a statistically
significant impact on trust on all 3 terms. For CADx and CADi,
this effect disappeared and only acceptance retained a
statistically significant influence on trust. Thus, we believe risk
perception has a weak association with trust and acceptance.
Taken together, the relationship between trust, acceptance, and
risk perception appears complex and is not straightforward.
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Figure 3. Subgroup analysis of risk perception, acceptance, and trust stratified by year of experience, seniority (consultant+senior consultant vs
fellow+resident), gender, and practicing environment (public vs private hospital). The visualization is a grouped violin plot with split violins. The left
and right halves of the violin depict the distributions of 2 samples. If the 2 samples are similar, they will exhibit symmetry on both sides. The median
lines for each sample have dashed lines, and these median lines are in turn, bordered by their respective 25th and 75th percentile lines depicted as dotted
horizontal lines. Comparisons with statistically significant differences with P value ≤.0014 are flagged with a red asterisk. CADe: computer-aided
detection; CADi: computer-aided intervention; CADx: computer-aided characterization.
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Discussion

Principal Findings
The findings from our study demonstrate that gastroenterologists
are generally familiar with AI and were frequently exposed to
AI tools in medical settings. This may be because of the
introduction of AI-assisted colonoscopy by various industries.
In recent years, there are also numerous publications and
seminars in the field of gastroenterology mentioning the success
of using AI tools in diagnosis, risk prediction, and the treatment
of GI conditions [23]. This suggests that they have a keen
awareness of AI’s future potential in clinical applications.
However, our findings showed that acceptance is not an
all-or-nothing choice, but the application or intention to use AI
tools varied between different clinical scenarios as well as the
nature and impact of AI participation.

When looking at scenario-specific acceptance and trust in AI,
the responses vary. Our survey on AI use in detection (CADe),
characterization (CADx), and intervention (CADi) of colonic
polyps revealed wide acceptance disparity among practitioners
(Figure 2). While CADe was more widely accepted, CADi was
met with much greater resistance. The 3 AI scenarios that were
presented to clinicians in this study varied in the degree of
involvement a clinician has in certain procedures. Participants
preferred CADi the least. These results agree with our
hypothesis that trust, acceptance, and risk perception will change
according to the scenario (detection [CADe], characterization
[CADx], or intervention [CADi]), with different levels of
invasiveness.

In this study, acceptance appeared to have little correlation with
the perceived risk level of the procedures. Although certain case
scenarios were considered by some as high risk, they do not
necessarily warrant low acceptance or trust in using AI. Hence,
the findings highlight the intricate relationship between the
complexity of AI technologies and their acceptance. One
intriguing finding is that participants with more (years of)
experience appear to accept the risk and would trust the use of
AI more than those who are less experienced. This probably
indicates that they see the use of AI as an option or
recommendation, instead as an obligation or necessity.
Therefore, having more clinical experience may give clinicians
greater confidence in their medical expertise and practice,
thereby generating more confidence in risk mitigation when
new technologies are introduced. Indeed, a study by Lawton et
al [24] revealed more experienced doctors were much more at
ease with uncertainty.

On the other hand, a general lack of AI familiarization and
training in medical education may be one of the reasons that
less experienced doctors perceive AI as more risky than regular
or traditional practice. Chen et al [25] found that while most
physicians and medical students were receptive to the use of
AI, most also had concerns about the potential for unpredictable
or incorrect results. The same study also stated that respondents
were aware of AI’s potential but lacked practical experience
and related knowledge. Thus, introducing AI literacy and
familiarization training early in medical careers may help
mitigate risk aversion and promote responsible AI use in clinical

practice. Young doctors are also aware of their education gaps.
In a study by Civaner et al [26], medical student respondents
acknowledged a gap in “knowledge and skills related to AI
applications” (96.2%), “applications for reducing medical
errors” (95.8%), and “training to prevent and solve ethical
problems that might arise as a result of using AI applications”
(93.8%).

Our results suggest that although there is a moderate correlation
between trust and acceptance, risk perception appeared invariant
suggesting the relationship between trust and acceptance with
risk perception is not straightforward and may implicate other
factors and interactions than the relationships shown in Figure
1. Indeed, the invariance of risk perception across scenarios
against acceptance suggests that there are other factors that
influence the acceptance of AI (Figure 2). Among the tested
factors, we find that risk acceptance is confounded with years
of experience (Figure 3). Future studies should be conducted
to better understand other drivers and barriers that influence
acceptance, such as the perceived usefulness of using AI and
whether AI tools may replace the jobs of clinicians in future
practices. Qualitative studies, such as the use of focus group
discussions, would also be useful to better understand clinicians’
specific concerns in using AI and the impact of their concerns
on the use of AI. Quantitatively, more complex data analysis
methods may also be used in the future to understand the causal
relationship between various factors and the acceptance of AI.
As we proceed into deeper and larger cohort studies
investigating trust and acceptance of AI, the development of
powerful network methodologies can yield more insight. Indeed,
simple statistical learning and even deep learning methods may
soon become limited in their ability to explain complex and
directed relationships among factors. We believe that causal
analysis methods, such as Bayesian Belief Networks will soon
become necessary and indispensable for explaining and
modeling trust, acceptance, and risk perceptions on medical AI
[27].

Limitations
There are limitations in this study. While this study provides
invaluable insight into the Asia-Pacific region, we have only
captured clinicians’ perspectives despite there being other
stakeholders whose voices and opinions matter. This includes
nurses, endoscopy assistants, and patients. Future studies should
aim to capture their perspectives and understand better how
their opinions align or conflict with each other. This will help
us navigate complex trust and acceptance issues more
realistically and create valuable propositions and effective
policies by adopting a multistakeholder perspective into
consideration [28]. Participants in this study come from 5
countries with only 165 respondents. The generalizability of
the findings can be strengthened by including more clinicians
from different backgrounds and regions of practice. In future
implementation studies, it may also be worthwhile to examine
additional case scenarios such as the management of
complicated inflammatory bowel diseases; choice of therapy
for GI cancers and GI bleeding; and their corresponding trust,
acceptance, and risk perceptions. This additional information
will help us better contextualize how risk acceptance,
acceptance, and trust change depending on practice.
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Conclusions
This study is one of the first to examine risk perception,
acceptance, and trust across different scenarios. It is one of the
earliest reports of AI risk perception, acceptance, and trust
among gastroenterologists, with a unique focus on the Asia-
Pacific region. We found that gastroenterologists have, in
general, a high acceptance and trust level of using AI-assisted

colonoscopy in the management of colorectal polyps. However,
this level of trust depends on the application scenario. Moreover,
the relationship among risk perception, acceptance, and trust in
using AI in gastroenterology practice is not a straightforward
correlation. Future studies are required to identify factors that
influence the acceptance and trust of using AI in clinical
practices.
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Abstract

Background: ChatGPT (Open AI) is a state-of-the-art large language model that uses artificial intelligence (AI) to address
questions across diverse topics. The American Society of Clinical Oncology Self-Evaluation Program (ASCO-SEP) created a
comprehensive educational program to help physicians keep up to date with the many rapid advances in the field. The question
bank consists of multiple choice questions addressing the many facets of cancer care, including diagnosis, treatment, and supportive
care. As ChatGPT applications rapidly expand, it becomes vital to ascertain if the knowledge of ChatGPT-3.5 matches the
established standards that oncologists are recommended to follow.

Objective: This study aims to evaluate whether ChatGPT-3.5’s knowledge aligns with the established benchmarks that oncologists
are expected to adhere to. This will furnish us with a deeper understanding of the potential applications of this tool as a support
for clinical decision-making.

Methods: We conducted a systematic assessment of the performance of ChatGPT-3.5 on the ASCO-SEP, the leading educational
and assessment tool for medical oncologists in training and practice. Over 1000 multiple choice questions covering the spectrum
of cancer care were extracted. Questions were categorized by cancer type or discipline, with subcategorization as treatment,
diagnosis, or other. Answers were scored as correct if ChatGPT-3.5 selected the answer as defined by ASCO-SEP.

Results: Overall, ChatGPT-3.5 achieved a score of 56.1% (583/1040) for the correct answers provided. The program demonstrated
varying levels of accuracy across cancer types or disciplines. The highest accuracy was observed in questions related to
developmental therapeutics (8/10; 80% correct), while the lowest accuracy was observed in questions related to gastrointestinal
cancer (102/209; 48.8% correct). There was no significant difference in the program’s performance across the predefined
subcategories of diagnosis, treatment, and other (P=.16, which is greater than .05).

Conclusions: This study evaluated ChatGPT-3.5’s oncology knowledge using the ASCO-SEP, aiming to address uncertainties
regarding AI tools like ChatGPT in clinical decision-making. Our findings suggest that while ChatGPT-3.5 offers a hopeful
outlook for AI in oncology, its present performance in ASCO-SEP tests necessitates further refinement to reach the requisite
competency levels. Future assessments could explore ChatGPT’s clinical decision support capabilities with real-world clinical
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scenarios, its ease of integration into medical workflows, and its potential to foster interdisciplinary collaboration and patient
engagement in health care settings.

(JMIR AI 2024;3:e50442)   doi:10.2196/50442
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artificial intelligence; ChatGPT-3.5; language model; medical oncology

Introduction

OpenAI released ChatGPT, a pioneering artificial intelligence
(AI) language model, in late 2022. ChatGPT-3 is an AI chatbot
that can comprehend user input and react to it in a manner that
is natural and human-like [1]. The program was trained on a
large body of data sourced from the internet, including
textbooks, articles, social media posts, and web-based forums,
up to the last quarter of 2021 [2]. It works by analyzing user
input text to generate a response using a probabilistic distribution
of words and phrases derived from its training data. To date, it
has significantly impacted numerous disciplines, including law,
health care, and medical education [3-6]. Large language models
like ChatGPT-3.5 represent a significant advancement in the
preceding class of deep learning–based models, by facilitating
the interpretation, processing, and production of natural language
[7].

The use of AI has rapidly emerged as a promising approach in
the health care industry, where it has been applied to medical
imaging analysis, drug discovery, and patient monitoring [8].
Recent research has evaluated ChatGPT-3.5’s abilities to
respond to standardized questions from professional
examinations for law and the United States Medical Licensing
Examination (USMLE) [3,4]. ChatGPT-3.5 was able to achieve
passing grades on these examinations while providing logical
and informative explanations. Additionally, studies have been
conducted to assess ChatGPT’s capabilities in responding to
international medical licensing examinations from countries
such as Italy, France, Spain, the United Kingdom, and India.
The success rates observed ranged between 22% and 73% [9].

AI and Chat GPT showcase substantial promise in augmenting
medical consultations, offering preliminary diagnostic
suggestions, and providing a vast knowledge base for medical
practitioners and patients alike [10]. However, while it embarks
on a path toward a more integrated health care AI system,
several limitations hinder its full potential. The model’s reliance
on historical data without the ability to access real-time patient
data can lead to outdated or inaccurate information
dissemination. Additionally, its inability to comprehend nuanced
human emotions and the ethical implications surrounding patient
data privacy remain significant hurdles [11].

AI has displayed a notable deficiency in grasping context and
nuance, elements that are fundamental for delivering safe and
effective patient care [12]. Furthermore, analyzing the prospects
of job automation in health care, Frey and Osborne [13] have
projected that while administrative roles within the sector, such
as health information technicians, exhibit a high likelihood of
automation at 91%, the odds plummet to a mere 0.42% for the

automation of roles held by physicians and surgeons. This stark
contrast underscores the intricate nature of medical practice,
which extends beyond the mere application of codified
knowledge. Additionally, there is a burgeoning discussion
around the ethical dimensions of using conversational AI in
medical practice. The crux of the issue revolves around the
substantial volume of high-quality data required to train these
models. Present-day algorithms are often honed on biased data
sets, inheriting not just the availability, selection, and
confirmation biases inherent in the data but also displaying a
propensity to exacerbate these biases [14]. Looking ahead, the
evolving capabilities of AI hint at the potential for tackling more
sophisticated tasks, such as orchestrating experiments or future
clinical trials [15] or engaging in peer review processes [16].

The American Society of Clinical Oncology Self-Evaluation
(ASCO-SEP) program created a comprehensive educational
program to help physicians keep up to date with the many rapid
advances in the field. The question bank consists of multiple
choice questions (MCQs) addressing the many facets of cancer
care, including diagnosis, treatment, and supportive care. It is
intended to evaluate participants’ knowledge and give them
feedback to direct future learning. The program is largely
regarded as the leading resource for cancer specialists seeking
to gain and maintain professional licensure in the field of
medical oncology [17].

However, the evolving complexities of oncological care
necessitate additional tools that can aid oncologists in clinical
decision-making. By assessing ChatGPT-3’s ability to answer
ASCO-SEP questions, this study’s objective is to understand
ChatGPT’s potential to serve as a supportive instrument in
clinical decisions, offering instantaneous insights for health care
providers, and to identify novel and efficient educational aids
in oncology, with a specific emphasis on their role in clinical
decisions.

Methods

Input Data
Questions were sourced from ASCO-SEP, which consists of
approximately 1000 MCQs covering the spectrum of cancer
care. The question bank was accessed from February 2023 to
March 2023. As ChatGPT-3.5 can only generate responses to
textual data, the study excluded questions with images, tables,
or other non-textual content. Questions consisted of an
information stem followed by a specific question with 3-5
possible answers (A-E), along with their corresponding letter
choices, only 1 of which was correct. Figure 1 illustrates the
workflow for data sourcing, input, encoding, and analysis.
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Figure 1. Schematic of sourcing, encoding, and scoring procedures. ASCO-SEP: American Society of Clinical Oncology Self-Evaluation Program.

Before proceeding with the analysis, a random spot check was
performed. For this, a random subset of the ASCO-SEP
questions was selected, and their answers, explanations, or
related content were manually cross-referenced with Google’s
index to ensure that they were not present before January 1,
2022, the last date accessible to the ChatGPT training data.

During this study, we used the free version of ChatGPT-3.5. At
that time, ChatGPT-4 and its associated plugins were not yet
available.

Encoding
We imported individual ASCO-SEP questions, including the
information stem and multiple-choice response options, into
the ChatGPT-3.5 interface. The questions were formatted to
include the question stem, followed by each potential response
on a separate line. We did not change the structure of the
questions given to ChatGPT-3.5 and entered them in the original
format provided by ASCO-SEP without altering the phrasing
or the wording. A new conversation session was started
in ChatGPT for each question. We did not provide ChatGPT-3.5
with any prompts and offered only one opportunity to answer
each question.

Data Analysis
Selected questions were grouped by cancer type or discipline
(eg, breast, lung, and colon cancer) with further

subcategorization based on content such as treatment, diagnosis,
or other. ChatGPT was deemed to have responded correctly if
it chose the correct answer as defined and provided by
ASCO-SEP. The study team did not define or determine the
correct answer. The program was not asked to provide
justifications or references for answers. No point was assigned
if ChatGPT-3.5 provided an answer that was not from the
options given. Questions where ChatGPT-3.5 chose 2 possible
answers or chose multiple answers and did not commit to a
single best answer were also considered wrong, even if 1 of the
responses was correct.

For statistical analysis, data were logged, scored, and analyzed
in Excel (Microsoft Corp). Specifically, a chi-square test was
performed to determine if there was a significant difference in
the distribution of correct answers across different categories
or groups.

Results

A total of 1040 questions were extracted from the ASCO-SEP
question bank.

The questions covered 15 cancer types or disciplines. The largest
portion focused on breast (223/1040; 21.4%) and gastrointestinal
(209/1040; 20%) cancers, with ≤1% (13/1040) covering central
nervous system malignancies, developmental therapeutics, and
prevention/epidemiology (Table 1).
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Table 1. Question distribution and proportions by cancer type or specialty area.

Number of questions (N=1040), n (%)Cancer type or discipline

223 (21.4)Breast cancer

209 (20)Gastrointestinal cancer

137 (13.1)Thoracic oncology

121 (11.6)Hematological malignancies

97 (9)Genitourinary cancer

43 (4)Melanoma and skin cancer

36 (3)Sarcoma

36 (3)Head and neck

36 (3)Gynecologic cancers

29 (3)General oncology

28 (3)Supportive and palliative care

17 (2)Genetics and genomics

13 (1)Central nervous system

10 (1)Developmental therapeutics

5 (0.5)Prevention and epidemiology

Varying levels of accuracy were observed in ChatGPT-3.5’s
performance in answering questions based on different cancer
types or disciplines (Table 2). The highest accuracy was
achieved in questions related to developmental therapeutics

(8/10; 80% correct), while the lowest accuracy was observed
for questions related to gastrointestinal cancer (102/209; 48.8%
correct).

Table 2. Accuracy rates by cancer type or specialty area.

Discipline-specific accuracy rates, n/N (%)Cancer type or discipline

8/10 (80)Developmental therapeutics

10/13 (77)Central nervous system

28/43 (65)Melanoma and skin cancer

11/17 (65)Genetics and genomics

18/29 (62)General oncology

22/36 (61)Gynecologic cancers

17/28 (61)Supportive and palliative care

3/5 (60)Prevention and epidemiology

21/36 (58)Head and neck

130/223 (58.3)Breast cancer

20/36 (57)Sarcoma

77/137 (56)Thoracic oncology

66/121 (55)Hematological malignancies

49/97 (51)Genitourinary cancer

102/209 (48.8)Gastrointestinal cancer

583/1040 (56.1)Total

Questions were further subcategorized as “diagnosis,”
“treatment,” and “other,” with the latter covering topics such
as biostatistics, cancer staging, and treatment complications.
Out of the total questions, 73.1% (760/1040) were related to
cancer treatment, 10% (99/1040) focused on diagnosis, and the
remaining 17.4% (181/1040) were categorized as “other” (Table

3). Accuracy based on subcategory also varied, with 55%
(418/760) of treatment questions, 63% (62/99) of diagnosis
questions, and 56.9% (103/181) of “other” questions answered
correctly (Table 2). There was no significant difference in the
program’s performance across the predefined subcategories of
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diagnosis, treatment, and other (P=.16, which is greater than .05).

Table 3. ChatGPT-3.5 performance on questions per subcategory.

P valueaOverall accuracy, n/N (%)Number of questions, n (%)Category

.16418/760 (55)760 (73.1)Treatment

.1662/99 (63)99 (10)Diagnosis

.16103/181 (56.9)181 (17.4)Other

.16583/1040 (56.3)1040 (100)Overall

aChi-square test.

Overall, ChatGPT-3.5 achieved a score of 56.3% (583/1040)
for correct answers provided across all categories. Of note,
responses were marked as incorrect if ChatGPT-3.5 provided
2 or more answers, even if 1 of those answers was correct
(37/1040, 3%; Figure 1).

Discussion

Overview
In this study, we evaluated the performance of ChatGPT-3.5 in
answering ASCO-SEP questions designed for medical
oncologists in training and practice to support licensure and
ongoing medical education. To facilitate a fair and rigorous
assessment, spot checks were performed to ensure answers were
not present in the program training data, and questions were
entered in separate sessions to avoid grounding bias.
Furthermore, questions were presented in their original format,
as seen by physicians, with no changes made to prompt the
program.

Over 1000 questions were posed to the program, spanning the
spectrum of cancer care, with an overall score of 56.3%
(583/1040) achieved. While promising, this is, however, below
the accepted threshold of 70% that is required by ASCO-SEP
to claim CME credits using their question bank [18].

Since the launch of ChatGPT-3.5, several studies have evaluated
the program’s performance on medical examinations. A notable
study conducted by Kung et al [3] assessed ChatGPT-3.5’s
performance on the USMLE taken by US medical students. The
results showed that ChatGPT-3.5 performed at, or near, the
passing threshold for all 3 examinations. Specifically, the
accuracy rates for USMLE Steps 1, 2 CK, and 3 were 68.0%,
58.3%, and 62.4%, respectively, which are acceptable passing
scores. Gilson et al [19] reported similar results, where
ChatGPT-3.5 scored 60% on USMLE test questions. It is worth
noting that although the authors used questions published on
the USMLE website after the training date cutoff for ChatGPT,
which is late 2021, many of these questions were similar to
those published in previous years. Moreover, these questions
were discussed on web-based forums, which may explain the
higher scores achieved [20]. Additionally, previous studies have
evaluated ChatGPT-3.5’s performance in microbiology [21]
and pathology [22] and have shown promising outcomes in
these fields with an accuracy rate of 80%.

Several factors might explain why ChatGPT’s performs
differently on USMLE compared to ASCO-SEP questions. First,

the ASCO-SEP is tailored for medical oncologists, delving deep
into cancer care, while USMLE caters to a broader set of
medical students, covering general medical knowledge. Given
that ChatGPT-3.5’s training data spans a wide range of topics,
it’s plausible that the content aligns more with the generalized
medical queries of USMLE than the specialized focus of
ASCO-SEP. Additionally, the structure and phrasing of
questions play a critical role, potentially influencing AI’s
response accuracy. The questions within the USMLE typically
features keywords that assist students in selecting an answer
from the provided options. Conversely, the ASCO-SEP presents
more specialized questions, challenging physicians’ ability to
discern first- and second-line treatments for a specified condition
[23]. For instance, in 1 of the numerous subreddits [24] available
web-based that was likely included in ChatGPT’s training data
set [25] students discuss how certain keywords aid them in
answering examination questions. These data might have
assisted ChatGPT in responding to USMLE questions in a
previous paper that tested ChatGPT’s performance on the
USMLE [3,19]. However, such keywords are not used or
discussed among physicians engaging with ASCO-SEP
questions.

There are additional possible explanations for the observed
performance of ChatGPT-3.5 in this study. One key factor is
the comprehensive data set of over 1000 questions used, which
allowed for a more thorough and holistic evaluation of the
program’s performance compared to previous studies
[3,19,26,27]. Another contributing factor may be the dynamic
and rapid scientific and clinical advances that occur in the field
of oncology, which ChatGPT-3.5 could not fully tackle given
that its training data is limited to pre-2022 internet data, with
restricted access to key databases in the field like PubMed [28].

ChatGPT-3.5 demonstrated varying levels of accuracy in
answering questions across the different cancer types and
disciplines. Questions related to developmental therapeutics
had the highest accuracy rate (80%, 8/10); however, the limited
question sample size may not have allowed a complete
assessment. Indeed, ChatGPT-3.5’s lowest score was achieved
in gastrointestinal cancer, which contained one of the largest
numbers of questions in the bank (102/209, 48.8%), suggesting
that broader assessments may identify more knowledge gaps.
This study did not, however, find any significant difference in
ChatGPT-3.5’s performance across the subcategories of
diagnosis, treatment, and others.

While ChatGPT-3.5 is not yet fully dependable for complex
decision-making in medical oncology, it shows promise in the
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field. In recent years, we have witnessed significant progress
in neural networks, and the future of health care is becoming
increasingly multimodal. Oncologists now rely on more than
just text-based information when prescribing treatments. They
consider a wide range of factors, including diverse image types,
genomic data, and social determinants of health. However, in
the past, developing multimodal machine learning models
seemed like an overly ambitious goal. Thankfully, the landscape
has changed, and we have seen exciting advancements in this
area through various publications in 2022 and 2023 [29,30].
These studies have showcased the potential applications of
multimodal models in the field of oncology, bringing us closer
to a more comprehensive and holistic approach to cancer care.

Based on its performance in this study, we do not think that AI
can aid oncologists in clinical decision-making at this time.
However, it may excel in other tasks in the field [31]. Experts
might look to language-generating AI to reduce the burden on
humans who create questions and explanations for tests.
However, it should be noted that ChatGPT-3.5 is not a useful
tool without human supervision at this point, given its potential
to fabricate references that may sound plausible but are incorrect
[14,32,33]. Oncologists can also use it for administrative tasks
such as drafting notes [34] or crafting communication messages
for patients [11]. Additionally, while a previous study by
Johnson et al [35] demonstrated that ChatGPT can be used by
patients to answer common cancer myths and questions, the
questions used in this study were already featured on the
National Cancer Institute’s webpage and were likely part of
ChatGPT’s training data [25] and fewer questions were used.
We can infer from this study that the answers provided by
ChatGPT still require review by an oncologist to ascertain their
accuracy.

In the future, AI has the potential to assist oncologists in critical
aspects such as determining optimal chemotherapy dosages [36]
and aiding in diagnostics within fields like radiology and
pathology [37]. By leveraging the capabilities of these advanced
language models, health care professionals can access valuable
insights and support in making informed decisions regarding

treatment plans. Moreover, patients can also reap the advantages
of AI-driven technologies by receiving more accurate diagnoses
and tailored treatment approaches, ultimately leading to
improved outcomes and enhanced patient care [38].

This study does, however, have several important limitations.
First, as ASCO-SEP only consists of MCQs, we did not
challenge ChatGPT-3.5 with any other question formats (eg,
open-ended), which may have yielded different results.
Furthermore, MCQs may not fully reflect the complexity of
clinical scenarios that oncologists face in their practice. Second,
we did not test the variability of the answers provided by
ChatGPT. Each question was presented to ChatGPT 3.5 only
once, and the first answer was scored given that previous studies
showed high consistency of ChatGPT answers [39] Finally, we
could have performed a qualitative assessment of ChatGPT-3.5
answers to gain insights into the etiology of its errors as a guide
to future required improvements.

Conclusions
In conclusion, this study explored the capacity of ChatGPT-3.5’s
knowledge in medical oncology using the ASCO-SEP. We
aimed to bridge the knowledge gaps surrounding the efficacy
of AI-driven tools like ChatGPT-3.5 in supporting clinical
decision-making. Our assessment revealed that while
ChatGPT-3.5 shows promise for the future of AI in oncology,
its current performance on ASCO-SEP underscores a pressing
need for further refinement to meet the competency standards
in this complex field.

Future evaluations of ChatGPT could extend to assessing its
capability in clinical decision support, gauging its accuracy in
real-life clinical scenarios, and its ease of integration into
medical workflows. Evaluating GPT-4 as a resource to aid
oncologists in clinical decision-making, an aspect not available
during the tenure of this study, could significantly contribute
to the field. The tool’s facilitation of interdisciplinary
collaboration among health care professionals and its impact
on patient engagement and communication are other potential
areas of investigation.
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Abstract

Background: Many promising artificial intelligence (AI) and computer-aided detection and diagnosis systems have been
developed, but few have been successfully integrated into clinical practice. This is partially owing to a lack of user-centered
design of AI-based computer-aided detection or diagnosis (AI-CAD) systems.

Objective: We aimed to assess the impact of different onboarding tutorials and levels of AI model explainability on radiologists’
trust in AI and the use of AI recommendations in lung nodule assessment on computed tomography (CT) scans.

Methods: In total, 20 radiologists from 7 Dutch medical centers performed lung nodule assessment on CT scans under different
conditions in a simulated use study as part of a 2×2 repeated-measures quasi-experimental design. Two types of AI onboarding
tutorials (reflective vs informative) and 2 levels of AI output (black box vs explainable) were designed. The radiologists first
received an onboarding tutorial that was either informative or reflective. Subsequently, each radiologist assessed 7 CT scans, first
without AI recommendations. AI recommendations were shown to the radiologist, and they could adjust their initial assessment.
Half of the participants received the recommendations via black box AI output and half received explainable AI output. Mental
model and psychological trust were measured before onboarding, after onboarding, and after assessing the 7 CT scans. We
recorded whether radiologists changed their assessment on found nodules, malignancy prediction, and follow-up advice for each
CT assessment. In addition, we analyzed whether radiologists’ trust in their assessments had changed based on the AI
recommendations.

Results: Both variations of onboarding tutorials resulted in a significantly improved mental model of the AI-CAD system
(informative P=.01 and reflective P=.01). After using AI-CAD, psychological trust significantly decreased for the group with
explainable AI output (P=.02). On the basis of the AI recommendations, radiologists changed the number of reported nodules in
27 of 140 assessments, malignancy prediction in 32 of 140 assessments, and follow-up advice in 12 of 140 assessments. The
changes were mostly an increased number of reported nodules, a higher estimated probability of malignancy, and earlier follow-up.

JMIR AI 2024 | vol. 3 | e52211 | p.539https://ai.jmir.org/2024/1/e52211
(page number not for citation purposes)

Ewals et alJMIR AI

XSL•FO
RenderX

mailto:lotte.ewals@catharinaziekenhuis.nl
http://www.w3.org/Style/XSL
http://www.renderx.com/


The radiologists’ confidence in their found nodules changed in 82 of 140 assessments, in their estimated probability of malignancy
in 50 of 140 assessments, and in their follow-up advice in 28 of 140 assessments. These changes were predominantly increases
in confidence. The number of changed assessments and radiologists’ confidence did not significantly differ between the groups
that received different onboarding tutorials and AI outputs.

Conclusions: Onboarding tutorials help radiologists gain a better understanding of AI-CAD and facilitate the formation of a
correct mental model. If AI explanations do not consistently substantiate the probability of malignancy across patient cases,
radiologists’ trust in the AI-CAD system can be impaired. Radiologists’ confidence in their assessments was improved by using
the AI recommendations.

(JMIR AI 2024;3:e52211)   doi:10.2196/52211
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Introduction

Background
Lung cancer is one of the leading causes of cancer-related deaths
worldwide [1]. Early detection of lung cancer is essential to
provide curative treatment and improve survival. However,
detecting and diagnosing lung cancer using computed
tomography (CT) scans can be challenging. On CT scans, early
lung cancer can be seen as a small nodule. However, these
nodules can also be benign. The risk of malignancy depends on
various patient factors and lung nodule features, such as the
morphology, size, and number of lung nodules. Nodules that
are challenging to detect can, for instance, be small, and their
perceptibility might be hampered by their location close to
normal lung tissue that is visually similar on a CT scan, such
as blood vessels or bronchi [2-5]. As a result, radiologists may
overlook or misdiagnose lung nodules on CT scans. A previous
study showed that radiologists missed 15% of all lung cancer
cases on screening CT scans. Of these missed cancers diagnoses,
35% were not visible on the scan, 50% were not detected by
the radiologist, and 15% were detected but not diagnosed as
cancer [6].

A recent approach to improve the detection and diagnosis of
lung nodules on CT scans is the use of artificial intelligence
(AI) models. Diagnostic assistance from AI models that provide
recommendations for radiologists is referred to as AI-based
computer-aided detection or diagnosis (AI-CAD) [7]. Many
studies have been published on AI models for assessing lung
nodules on CT scans, showing promising performance with
sensitivities for detection of up to 98.1% and a mean of only 2
false-positives (FPs) per scan [8,9].

Although many AI models and AI-CAD systems have been
developed, few are used in clinical practice. Although most
studies on AI for lung nodule assessment focus on the
development and stand-alone performance of AI models
[8,10,11], few studies have focused on user interaction with AI
models in the clinical context beyond the theoretical level
[12-16]. However, human-AI interaction is essential to enable
radiologists to comprehend and effectively use AI
recommendations in their tasks, ultimately achieving the highest
levels of diagnostic quality and efficiency.

Trust is of great importance in the interactions and collaborations
between radiologists and AI-CAD systems [15,17-20]. Trust
influences the end users’ level of reliance on AI
recommendations, and hence, it influences the performance of
AI-assisted end users [18,19]. If the user has very little trust in
the system, the potential benefits of AI-CAD will be reduced
because of disuse, whereas too much trust in the system leads
to overreliance and can result in mistakes that would not have
been made without using the AI-CAD system [15,18].

Trust is a dynamic process. Trust changes over time and across
situations and is influenced by many factors. For example, trust
varies based on the reliability of the AI system, the design of
the system, the personal characteristics of the user, prior
interactions and experience, and moderating factors such as
workload and sociocultural context [18,21-25]. Some of these
factors can be influenced through the design of the system, with
the aim of achieving the formation of appropriate trust. Trust
calibration refers to interventions that facilitate the formation
of an appropriate trust level by aligning a person’s trust in the
AI with the capabilities of the AI [26,27]. In this study, we
introduced 2 instruments aimed at appropriate trust calibration
at different time points of use. First, an onboarding tutorial
aimed to set the right expectations before initial use. Second,
AI model explainability as an information cue available to
clinical users during use to judge the credibility of the arguments
underpinning the AI model prediction.

We aimed to assess whether radiologists’ trust in AI-CAD
systems and their use of AI recommendations in lung nodule
assessments on CT scans were affected by different onboarding
tutorials and by different levels of AI model explainability.

Theoretical Argumentation

Trust Definitions
Different definitions and measures exist for trust [15]. In this
study, we considered trust from 2 complementary perspectives,
a cognitive perspective and a behavioral perspective [23].

From the cognitive perspective, we explored the users’ mental
model and psychological trust. The mental model represents a
person’s “static knowledge about the system: its significant
features, how it functions, how different components affect
others, and how its components will behave when confronted
with various factors and influences” [24]. In short, the mental
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model is the user’s understanding of the AI system. A correct
mental model is expected to contribute to appropriate trust
calibration between the user’s trust in an AI system and the
trustworthiness of the system [25]. User’s psychological trust
refers to “the extent to which a user is confident in, and willing
to act on the basis of, the recommendations, actions, and
decisions of an artificially intelligent decision aid” [28]. Because
radiologists gain experience and learn through the process of
assessing CT cases with the AI-CAD tool and actually see what
the system is capable of, they are expected to have an improved
mental model of (hypothesis 1a) and psychological trust in
(hypothesis 1b) the AI-CAD system after using the AI-CAD
system compared with before using the system.

However, holding a positive attitude toward the AI-CAD system
does not mean that the user will also act in line with its
recommendations. Therefore, we also adopted a behavioral lens
by examining whether trust was reflected in the use of the AI
recommendations (reliance and compliance) and the
corresponding impact on decision outcomes [29,30]. The
decision of whether radiologists use AI recommendations
depends not only on their overall trust in the AI-CAD system
but also on their agreement with the specific AI
recommendations for a given case. As the AI recommendations
function as a second reader, it is expected that radiologists’
confidence in their assessments will be higher when they are
assisted by AI-CAD than without assistance (hypothesis 2).

Onboarding Tutorials
Research on how to ensure that radiologists have appropriate
expectations of the system’s capabilities and limitations is
limited [27]. As suggested by Cai et al [31], when clinical
practitioners are first introduced to an AI system, a human-AI
onboarding process can be crucial for them to determine how
they will partner with AI in practice. Therefore, an onboarding
tutorial to inform radiologists about the capabilities and
limitations of the AI-CAD system is expected to improve
radiologists’mental model of (hypothesis 3a) and psychological
trust in the AI-CAD system (hypothesis 3b).

Moreover, critical reflection on one’s experience is essential
for developing competence and self-awareness [32]. Hence, it
is hypothesized that critical reflection and feedback built through
a reflective onboarding tutorial will lead to a more improved
mental model of (hypothesis 4a) and psychological trust in
(hypothesis 4b) the AI-CAD system than an informative
onboarding tutorial. Furthermore, it is expected to be easier for
radiologists to understand whether an AI suggestion should be
followed because of their understanding of the AI-CAD system
from reflective onboarding, especially when they are not fully
sure of their own assessment. Therefore, it is expected that
radiologists who receive reflective onboarding will use the AI
recommendations more often than radiologists who receive
informative onboarding (hypothesis 5).

Levels of AI Model Explainability
In addition, radiologists are expected to better judge whether
they can trust an AI recommendation when the AI model
discloses the reasoning behind its recommendations (explainable
AI models) compared with black box models. Hence, it is
hypothesized that after using the AI-CAD system, radiologists
assisted with explainable AI output have an improved mental
model of (hypothesis 6a) and psychological trust in (hypothesis
6b) the AI-CAD system than radiologists assisted with black
box AI output. Because radiologists can see the reasoning behind
the recommendations when receiving explainable AI output, it
is expected that they will use the AI recommendations more
often than radiologists assisted with black box AI output
(hypothesis 7).

Methods

Overview
We tested the hypotheses using a 2×2 repeated-measures
quasi-experimental design: informative versus reflective
onboarding tutorial and black box versus explainable AI output.
In this simulated use study, we aimed to realistically mimic
clinical practice [33,34]. Realistic clinical simulations allow
participants to engage with the setup in real-world clinical
scenarios and encourage participants to authentically execute
the study as if they are performing their clinical work.

Prototype

Image Viewer
A medical image–viewing prototype was developed to enable
radiologists to assess incidental lung nodules on cardiac CT
scans with and without the assistance of an AI-CAD system.
The AI recommendations were implemented as a second reader,
allowing the radiologist to first assess the cases independently.
The interface was designed based on the literature, brainstorms,
and feedback sessions with radiologists and design specialists
and was iteratively optimized for the 2 variations of onboarding
tutorials (reflective vs informative) and 2 variations of AI
outputs (black box vs explainable). The final user interface is
shown in Figure 1. We aimed to realistically simulate the
radiologists’ clinical setup to facilitate proper engagement of
the participants with the task of lung nodule assessment. The
user setup was designed to simulate clinical practice as
realistically as possible. The developed interface was shown to
the radiologists on a monitor, which was placed in a separate
silent room. This room was inside the hospital, and lights could
be dimmed if the radiologists preferred it, comparable with their
own working space. Similar to the picture archiving and
communication system used in clinical practice to assess CT
scans, radiologists could scroll through the images, zoom in,
measure, and change the windowing level between the soft
tissue and lung setting using a computer mouse.
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Figure 1. Medical image–viewing prototype in the explainable artificial intelligence (AI) condition. In the black box AI condition, users could not see
the nodule characteristics column on the right side of the screen. When the AI findings toggle is off, all AI recommendations will be hidden to the users.

Clinical Data
To further increase study engagement and realism, the use
scenarios were based on real-world patient cases. We
retrospectively selected 10 CT angiography scans with incidental
pulmonary nodules from a large Dutch clinical hospital. Scans
acquired between 2008 and 2015 were used because the 5-year
outcomes of these patients are known: whether they developed
lung cancer. An expert radiologist selected the cases for this
study. Of the 10 selected scans, we used 3 for onboarding and
7 for testing the impact of the design interventions. All CT scans
were performed on patients with lung cancer. By selecting the
7 CT cases, we aimed to obtain a diverse mix of assessment
complexity by including both lower and higher suspicious
nodules (based on size, spiculation, and solidity) and nodules
at easier and more difficult locations (such as against the veins
or pleura). The characteristics of the 7 CT cases and the findings
of the AI model for these cases are presented in Multimedia
Appendix 1.

AI Model
To detect and estimate the malignancy of lung nodules on the
CT scans, the pretrained AI framework developed by
Trajanovski et al [35] was applied. This framework relies on a
2-stage process, where the first stage performs nodule detection
and the second stage assigns a malignancy probability to the
detected nodules. Among the validated nodule detectors, the
best performance was achieved by the nodule detector developed
by Liao et al [36]. This nodule detector is based on deep learning
models, more precisely, convolutional neural networks. The
nodules detected by the nodule detector are provided as input
to the second stage of the framework that assigns the cancer
malignancy probabilities. The second stage of the framework
is based on a convolutional neural network that was trained

using the publicly available National Lung Screening Trial data
set [37].

During inference, the model takes a CT scan as input and
automatically produces a list of nodule locations (x,y,z), their
radii, and malignancy probabilities. The prototype, described
previously, ensures that this information is displayed intuitively
to the clinicians. The article by Liao et al [36] provides all the
relevant details regarding the training process and performance
validation.

In this study, the AI model proposed by Trajanovski et al [35]
was used without any additional fine-tuning. Specifically, the
model weights remained unchanged. The sole adjustment
involved calibrating (or rescaling) the output of the model to
accommodate the changed distribution of malignant cases
(Multimedia Appendix 2 [35,38,39]).

AI Recommendations
The AI model recommendations were provided using 4
information cues (Multimedia Appendix 3):

1. Detected nodules (shown by target mark directly on the CT
scan)

2. Benign or malignant classification per nodule (malignant
nodules are highlighted in orange color)

3. Model confidence in the benign or malignant classification
(shown as the negative predictive value [NPV] or positive
predictive value [PPV] score and an intuitive icon
representing high, medium, or low confidence)

4. In the explainable AI output variant: nodule features serving
as an explanation for the classification

AI nodule detection and benign or malignant classification (cues
1 and 2) were obtained using the described AI model [35]. The
number of lung nodules detected by the AI model varied
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between 1 and 5 per scan. The AI model found at least one
true-positive lung nodule in each case and found one or more
FP nodules in 4 of 7 cases. For more information about the AI
findings, see Table S1 in Multimedia Appendix 1.

Confidence in the malignancy classification (cue 3) was given
by means of PPVs for malignant predictions, indicating the
probability that nodules with malignant predictions were actually
malignant, and by means of NPVs for benign predictions,
indicating the probability that nodules with a benign prediction
were actually benign. The PPV was 0.25 (low confidence), 0.30
(medium confidence), or 0.38 (high confidence), and the NPV
was 0.94 (low confidence), 0.97 (medium confidence), or >0.99
(high confidence; for an explanation of how the PPVs and NPVs
were calculated, see Multimedia Appendix 2). In addition,
confidence was shown by means of a small bar graph, indicating
low, medium, or high model confidence.

Two levels of AI transparency were tested: black box AI output
and explainable AI output. Black box output indicates that
radiologists did not see what the malignancy estimation was
based on. The explainable AI output variant provided the same
information as the black box AI output variant and additionally
showed the characteristics of the lung nodules (cue 4); this
information was expected to help in understanding and
interpreting the predictions of the AI-CAD system (Figure 1,
right column). For each lung nodule, the following lung nodule

characteristics were provided: long axis diameter, solidity,
margin characteristics, and location. The nodule characteristics
were not provided by the AI model and were therefore
realistically simulated, which is in agreement with related
research [40] via manual annotation by 2 expert radiologists in
consensus. However, the participants were not aware of the
simulation; therefore, from the radiologists’ perspective, the
characteristics were AI generated as well [41]. For an overview
of the information cues for the AI recommendations, see
Multimedia Appendix 3.

Onboarding Tutorials
Two variations of onboarding tutorials were designed:
informative onboarding and reflective onboarding. During
informative onboarding, radiologists passively received a
stepwise introduction of the AI capabilities and common pitfalls
so that they could acquire a realistic mental model of the system
(Figure 2). The AI model’s capabilities and pitfalls were
illustrated in the onboarding tutorial with 3 CT scans that
showed obvious cancer cases, FP nodules, and false-negative
nodules. For an overview of all implemented questions and
explanations, see Multimedia Appendix 3. During reflective
onboarding, radiologists additionally engaged in active
reflection. They received cognitive feedback on 4 questions that
they had to answer to check whether their mental model of the
AI-CAD system was correct.

Figure 2. Onboarding tutorial in the informative onboarding condition, which provided a stepwise introduction of artificial intelligence (AI) capabilities
and limitations using example patient cases. In the reflective onboarding condition, an additional question-answer dialog was triggered to provide
feedback on whether the user’s expectations of the AI capabilities and limitations were correct.

Study Protocol
For this study, physicians were eligible for participation if they
were radiologists, nuclear radiologists, or radiology residents.
We will refer to the participants as radiologists. Several effects
were to be tested; we used a power of 80%. For the mental

model differences between radiologists, we based our sample
size calculation on a comparison of means of 2 versus 3 (SD
0.5). This led to a necessary sample size of 12 radiologists. For
the psychological trust differences, we based the sample size
calculation on a comparison of means of 0.5 versus 0.75 (SD
0.1). This resulted in a sample size of at least 8 radiologists.
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The differences in the use of AI recommendations were based
on a comparison of proportions in the order of magnitude of
30% versus 10%. This leads to a necessary sample size of 124
comparisons if we assume that the intraclass coefficient is low.
Eventually, 20 radiologists were included in this study, all of
whom assessed 7 CT scans for a total of 140 recommendations
[42]. In this 2×2 repeated-measures design, the radiologists
were divided into 4 groups, each of which consisted of 5
radiologists. After onboarding in one of the 2 conditions, using
3 CT scans, each radiologist assessed the 7 CT scans. In addition
to the CT scans, each patient’s age and gender were provided

because radiologists also use the patient context when they
assess CT scans in clinical practice. First, the radiologists
assessed the scans without observing the AI output. They
reported the nodules they detected, estimated the malignancy
probability for the patient case (not per nodule, unlike the AI
model), and provided follow-up advice. Subsequently, the AI
recommendations were presented, and the radiologists could
adjust their initial assessments. The nodules detected by AI and
the AI malignancy estimations might trigger the radiologists to
change their initial assessments. This process is visualized in
the flow diagram in Figure 3.

Figure 3. Flow diagram showing the clinical decisions of radiologists, which might potentially be influenced by the outcomes of the artificial intelligence
model. The detected nodules may influence the malignancy estimation, and the malignancy estimation may influence the follow-up advice. AI-CAD:
artificial intelligence–based computer-aided detection or diagnosis.

Measures for Trust
To evaluate the effects of the 2 types of AI onboarding tutorials
and the 2 levels of explainability of AI outputs on radiologists’
trust in AI and their use of AI recommendations, participants
were requested to complete questionnaires on 3 aspects: the

radiologists’mental model of the AI-CAD system’s capabilities
and pitfalls, psychological trust in the AI-CAD system, and the
use of AI recommendations. These questionnaires were
completed at different time points, as schematically shown in
Figure 4.

Figure 4. Overview of the flow of the experiment with the questionnaires at different time points. AI: artificial intelligence; CT: computed tomography.

Mental Model
The mental model questionnaire measured the radiologists’
understanding of the AI capabilities and limitations to uncover
whether their expectations of the AI-CAD system were
appropriate. Of the 11 questions in this questionnaire, 5

questions were related to nodule detection and 6 were related
to malignancy prediction (see the full questionnaire in
Multimedia Appendix 4). Questions could be answered with
yes, no, or I do not know. Depending on whether the assessment
was correct as compared with the true AI capabilities, a score
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of 1 (correct) or 0 (incorrect or I do not know) was assigned per
question, resulting in summed scores between 0 and 11. A higher
score implies a better understanding of the AI capabilities. The
mental model was measured before onboarding, after
onboarding, and after assessing the 7 CT scans.

Psychological Trust
To measure the radiologists’psychological trust in the AI-CAD
system, a questionnaire was derived from the study by Ashoori
and Weisz [43] and adapted to fit this study (see the full
questionnaire in Multimedia Appendix 4). This questionnaire
examined overall trustworthiness, reliability, technical
competence, and personal attachment. An example of a
statement is “This model is trustworthy.” The 12 statements
about the AI model had to be answered with a score between 1
(strongly disagree) and 5 (strongly agree). For the negatively
phrased questions, scores were reversed for the data analysis
so that for all questions, a higher score reflected more trust in
the AI-CAD system. Subsequently, the scores for the 12
questions were averaged. The psychological trust of each
participant was measured before onboarding, after onboarding,
and after assessing the 7 CT scans.

Use of AI Recommendations
To evaluate the radiologists’ use of the AI recommendations,
their assessments and confidence in their assessments—first
without and then with AI assistance—were recorded in a
questionnaire. AI recommendation use was measured at 3
assessment levels: number of detected nodules, malignancy
probability, and follow-up advice. Therefore, the questionnaire
included questions about the number of found nodules, the
malignancy probability (at the patient level) as a percentage,
and the follow-up advice according to the Fleischner guidelines
[44]. The follow-up advice had to be scored with a score of 1
(consider CT at 3 months, positron emission tomography–CT,
or tissue sampling), 2 (CT at 3-6 months), 3 (CT at 6-12
months), 4 (CT at 12 months), or 5 (no routine follow-up). A
lower score indicated earlier follow-up. In addition, the
confidence of the given answers at each assessment level had
to be rated with a score between 1 (not confident at all) and 5
(very confident). The complete questionnaire is provided in
Multimedia Appendix 4. Participants were requested to complete
this questionnaire while assessing without AI assistance and
with AI assistance for each CT case.

Analyses

Mental Model and Psychological Trust
Changes in the mental model and psychological trust were
assessed by comparing the scores before and after onboarding,
and the scores after onboarding and at the end of the test, that
is, after assessing all 7 CT scans. These changes were assessed
for all radiologists together, for the 2 onboarding tutorial groups
separately, and for the 2 AI output groups separately. The
changes in scores were compared between the 2 onboarding
tutorial groups and between the 2 AI output groups to analyze
whether the types of onboarding tutorials and level of AI
explainability influenced radiologists’ initial trust and
maintenance of trust during CT assessment. In addition, we
analyzed whether the changes in mental model and

psychological trust scores were influenced by any of the
following characteristics of the radiologists: age, gender, years
of experience, how often they assessed lungs on CT as part of
their job, how eager they were to try new information
technologies, and how frequently they used AI-CAD tools.

Use of AI Recommendations
The use of AI recommendations was assessed by analyzing the
number of cases in which radiologists adjusted the number of
found nodules, the malignancy probability, and the follow-up
advice after viewing the AI-CAD recommendations. In addition,
we analyzed whether the radiologist’s confidence in the
assessments of the number of nodules, the malignancy
prediction, and the follow-up advice changed after viewing the
AI recommendations and whether their confidence increased
or decreased. The use of AI recommendations and the impact
on radiologists’ confidence were compared between the groups
of onboarding tutorials and between the groups of AI output.

Secondary Analyses

Additional Analyses and Use of AI Recommendations
In addition, the impact of agreeing or disagreeing with the AI
detected nodules was evaluated. We analyzed whether the use
of AI recommendations and radiologists’ confidence in their
assessments were affected by 2 factors: first, whether the same
or different nodules were found by the AI as compared with the
radiologist and, second, whether the radiologist changed the
number of reported nodules after seeing the AI
recommendations.

Correctness of Follow-Up Advice
Furthermore, to evaluate whether AI-CAD assistance resulted
in improved clinical assessment, we analyzed whether the
radiologists selected the correct follow-up advice more often
with or without the AI recommendations. For each case, the
correct follow-up according to the Fleischner criteria was
retrospectively determined by 2 expert radiologists in consensus
and used as reference follow-up advice. The follow-up
recommendations provided by the radiologists were compared
with the reference follow-up advice, and we analyzed whether
AI assistance resulted in more accurate follow-up advice.

Statistical Analyses

Mental Model and Psychological Trust
Differences between the mental model scores and psychological
trust scores of the radiologists at different time points were
analyzed using the Wilcoxon signed rank test. Differences
between the mental model scores and psychological trust scores
of the groups with informative and reflective onboarding
tutorials and of the groups with black box and explainable AI
output were statistically analyzed using Mann-Whitney U tests.
To control for heterogeneity, we tested whether radiologists’
characteristics influenced the mental model scores and
psychological trust scores at different time points and over time
by performing multiple linear regression analyses.

Use of AI Recommendations
Multilevel logistic regression analyses were performed to assess
whether the type of onboarding tutorial or level of explainability
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of the AI output influenced the use of the AI recommendations
and the radiologists’ confidence in their assessments. To control
for potential impact on the outcomes by other factors
(exclusively the same nodules found by radiologists and AI
model, change in number of reported nodules, age, gender, years
of experience, how frequently they assess lungs on CT, how
eager they are to try new information technologies, and how
frequently they used computer-aided detection tools), these
factors were included in the multilevel regression analyses as
well. The same analysis scheme was used for all multilevel
logistic regression analyses. First, an empty model was run to
identify the variance at the individual level. The second
regression analysis also considered the variants of onboarding
tutorials and AI output. Third, whether the same nodules were
found by AI and the radiologist exclusively and whether they
made changes in the number of reported nodules were added.
The final analysis also included different CT scans and
radiologists’ characteristics.

A P value of <.05 was considered statistically significant. All
analyses were performed using Stata (version 17; StataCorp).

Ethical Considerations
This study was approved by the Internal Committee for
Biomedical Experiments of Philips (number ICBE-S-000204)
and conducted in accordance with the Declaration of Helsinki
(as revised in 2013). Written informed consent was obtained
from the participating clinicians.

Results

Participants
In total, 20 physicians from 7 Dutch hospitals participated in
this study. Of the 20 participants, 16 were radiologists (median
10.5, range 1-32 years of experience as a specialist), 1 was a
nuclear radiologist (2 years of experience in assessing lung CT
scans), and 3 were radiology residents (median 2, range 1-5
years of residency). Of the 16 radiologists, 8 (50%) specialized
in thoracic radiology. The male-to-female ratio was 50:50. Of
the participants, 25% (5/20) were aged between 26 and 35 years,
35% (7/20) were aged between 36 and 45 years, 20% (4/20)

were aged between 46 and 55 years, and 20% (4/20) were aged
between 56 and 65 years.

Mental Model and Psychological Trust
Figure 5 presents the mental model and psychological trust
scores before onboarding, after onboarding, and at the end of
the test. These scores were shown for all radiologists together
and for the 2 variations of the onboarding tutorials and AI output
separately.

After onboarding, the mental model score of the radiologists
was significantly higher than that before onboarding (P<.001).
The mean scores were 5.7 (SD 2.0) before onboarding and 8.6
(SD 1.9) after onboarding, which supports hypothesis 3a. Both
informative (P=.01) and reflective (P=.01) onboarding resulted
in significantly higher mental model scores. These
improvements did not significantly differ between the groups;
therefore, hypothesis 4a is not supported. At the end of the test,
the mental model scores did not differ significantly from the
scores after onboarding in any of the groups, which does not
support hypothesis 1a and hypothesis 6a.

Considering all radiologists together, the psychological trust
scores did not change significantly over time; therefore,
hypotheses 1b and 3b are not supported. Between the 2
variations of onboarding tutorials, no significant differences in
psychological trust scores were observed, and therefore,
hypothesis 4b is not supported. In the group that received
explainable AI output, psychological trust at the end of the test
was significantly lower than that after onboarding (P=.02),
which interestingly contradicts hypothesis 6b. In the group that
received black box AI output, there was no significant change
in psychological trust. Changes in psychological trust scores
between after onboarding and at the end of the test were
significantly different between the black box output and
explainable AI output groups (P=.03). All P values can be found
in Multimedia Appendix 5.

None of the tested characteristics of radiologists significantly
predicted the mental model scores or the psychological trust
scores at the different time points nor did they significantly
predict the changes over time.

JMIR AI 2024 | vol. 3 | e52211 | p.546https://ai.jmir.org/2024/1/e52211
(page number not for citation purposes)

Ewals et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Boxplot showing the (A) mental model scores and (B) psychological trust scores before and after onboarding and at the end of the test using
either informative or reflective onboarding tutorials and either black box or explainable artificial intelligence (AI) output. The cross shows the mean
value; the horizontal line inside the box indicates the median value; the lower and higher boundaries of the box indicate the first and third quartiles; the
whiskers indicate the minimum and maximum values; and outliers are indicated by colored dots. Only significant differences are mentioned. *Significant
difference between time points. **Significant difference in the change over time between the black box and explainable AI output groups.

Use of AI Recommendations
After viewing the AI outcomes, the radiologists adjusted their
found nodules in 27 of 140 assessments, their estimated
probability of malignancy in 32 of 140 assessments, and their
follow-up advice in 12 of 140 assessments (Figure 6).
Radiologists predominantly added nodules (23 of 27 changed
cases), increased the probability of malignancy (24 of 32
changed cases), and shortened the recommended follow-up
period (eg, from CT at 6-12 months to CT at 3-6 months; 8 of
12 changed cases). The empty model, which included no
predictor variables, revealed that regarding whether radiologists
made changes, approximately 3% of the variance in the outcome
variable was attributable to differences between radiologists.
For changes in malignancy prediction and follow-up advice,
this attributable variance was approximately 20% and 7%,
respectively. This indicates that there is some variability in the
outcome, which can be explained by the individual radiologists.
Radiologists’ assessments were not significantly impacted by
the type of onboarding tutorial or by the type of AI output;
therefore, hypotheses 5 and 7 are not supported. All outcomes

of the multilevel regression analyses can be found in Multimedia
Appendix 6.

At all levels of assessment, radiologists’ confidence in the
assessments (n=140) predominantly increased after viewing the
AI-CAD recommendations (in found nodules [75/82, 91%] of
all changed assessments, in malignancy probability [42/50,
84%], in follow-up advice [22/28, 79%]; Figure 7), which
supports hypothesis 2. The multilevel regression analysis
revealed that in the empty model without predictor variables,
approximately 20% of the total variance in the changed
confidence in detected nodules was attributed to differences
between radiologists. Regarding the changed confidence in
malignancy prediction and follow-up advice, this attribution of
the total variance was 10% and 7%, respectively. The
radiologists’ confidence in their assessments was not
significantly affected by the type of onboarding tutorial but was
affected by the type of AI output after controlling for whether
the AI model found the same or different nodules as the
radiologist without AI assistance (first model: β=0.143; P=.16;
second model: β=0.167; P=.04; third model: β=0.207; P=.02).
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See Multimedia Appendix 6 for all outcomes of the multilevel regression analyses.

Figure 6. Bar graph showing the changes in the radiologist’s computed tomography assessments; (A) Reported nodules, (B) Malignancy probability,
(C) Follow-up advice after viewing the recommendations from the artificial intelligence–based computer-aided detection or diagnosis using either
informative or reflective onboarding tutorials, and either black box or explainable artificial intelligence (AI) output. No significant differences between
the onboarding and AI output groups resulted from the multilevel regression analyses.
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Figure 7. Bar graph showing the changes in the radiologist’ confidence in their assessments; (A) Confidence reported nodules, (B) Confidence
malignancy probability, (C) Confidence follow-up advice after viewing the recommendations from the artificial intelligence–based computer-aided
detection or diagnosis using either informative or reflective onboarding tutorials, and either black box or explainable artificial intelligence (AI) output.
*The multilevel regression analysis showed a significant difference between the 2 groups according to the number of changed radiologists’ confidence
(orange+green) in their assessment after using the artificial intelligence–based computer-aided detection or diagnosis system.
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Secondary Outcomes

Post Hoc Analyses Regarding the Use of AI
Recommendations
In 26 of 140 assessments, the same nodules exclusively had
been found by the AI model and the unassisted radiologist. In
these cases, radiologists changed the number of nodules less
frequently than when different nodules had been found (second
model: β=–0.245; P=.003 third model: β=–0.437; P=.001;
Multimedia Appendix 6).

In 27 of 140 assessments, radiologists changed the number of
nodules when using AI assistance. In the cases in which the
radiologists did not change the number of nodules, the
radiologists’ confidence in their malignancy prediction changed
more often, mostly increased, than in the cases in which the
radiologists did change the number of found nodules (second
model: β=0.369; P<.001; third model: β=0.283; P=.001;
Multimedia Appendix 6). Whether the number of nodules was
changed also significantly influenced radiologists’ confidence
in their follow-up advice, but this was probably related to some

radiologists’ characteristics, as this effect disappeared after
controlling for such characteristics (second model: β=0.277;
P=.02; third model: β=0.154; P=.23).

Correctness Follow-Up Advice
Without AI assistance, the radiologists provided the correct
follow-up advice according to the Fleischner criteria in 94 of
140 assessments (Table 1). Mostly, the correct follow-up advice
was provided for CT cases 1, 3, 5, and 7, whereas most of the
incorrect follow-up advice concerned CT cases 2, 4, and 6. With
AI assistance, radiologists provided correct follow-up advice
in 100 of 140 assessments. In 12 cases, the follow-up advice
was changed after viewing the AI results. In 7 of these 12 cases,
correct follow-up was provided after seeing the AI results. In
1 case, correct follow-up advice that was given initially was
changed to incorrect follow-up advice after seeing the AI results.
In 3 cases, the changed follow-up advice was still not correct
but closer to the correct follow-up advice, and in the remaining
case, the changed follow-up advice was further from the correct
follow-up advice.

Table 1. Correct follow-up advice provided by the radiologists.

CT7
(n=20)

CT6
(n=20)

CT5
(n=20)

CT4
(n=20)

CT3
(n=20)

CT2
(n=20)

CT1
(n=20)

All
(n=140)

CTa cases (number of assessments)

18 (90)7 (35)20 (100)6 (30)17 (85)6 (30)20 (100)94 (67)Correct follow-up advice given without AIb assistance, n (%)

20 (100)9 (45)20 (100)7 (35)17 (85)7 (35)20 (100)100 (71)Correct follow-up advice given with AI assistance, n (%)

2 (10)2 (10)0 (0)5 (25)1 (5)2 (10)0 (0)12 (9)Changed follow-up advice after using AI assistance, n (%)

2 (100)2 (100)0 (0)2 (40)0 (0)1 (50)0 (0)7 (58)Wrong→correct

0 (0)0 (0)0 (0)1 (20)1 (100)1 (50)0 (0)3 (25)Wrong→better (still wrong, but closer to correct follow-up)

0 (0)0 (0)0 (0)1 (20)0 (0)0 (0)0 (0)1 (8)Wrong→worse (still wrong, even further from correct follow-
up)

0 (0)0 (0)0 (0)1 (20)0 (0)0 (0)0 (0)1 (8)Correct→wrong

aCT: computed tomography.
bAI: artificial intelligence.

Discussion

Principal Findings
Our study demonstrated that onboarding is of great importance
because the radiologists’ mental model of the AI-CAD system
was significantly more accurate after onboarding. This finding
implies that after onboarding, radiologists had a better
understanding of the capabilities and limitations of the AI-CAD
system, which is important for using the AI recommendations
correctly. In addition, the importance of onboarding was
emphasized by the fact that the mental model did not become
more accurate through the actual use of the AI-CAD system. A
study by Lam Shin Cheung et al [45] supports the need for
onboarding.

We hypothesized that reflective onboarding would result in a
more appropriate level of trust than informative onboarding, as
radiologists in the reflective onboarding group were triggered
to actively engage in cognitive reflection and receive feedback
on their mental model. However, this hypothesis was not
supported because the increases in mental model scores of

radiologists in the reflective onboarding group did not
significantly differ from those in the informative onboarding
group. This unexpected finding might be explained by the high
level of clarity of the explanations provided during both
informative and reflective onboarding, because of which the
reflection had no significant added value. Alternatively,
participating radiologists might possess a natural tendency to
engage in cognitive reflection even if the system does not
actively trigger them to do so.

Another unexpected finding was that explainable AI output
resulted in a significant decrease in psychological trust (P=.02)
during the use of the AI-CAD system for assessing the 7 CT
scans, which was not the case in the group that received black
box AI output (Figure 5). Apparently, users can become insecure
about the reliability of AI-CAD when they receive explanations.
On the basis of feedback from the participating radiologists, we
know that some radiologists observed that the AI-CAD system
provided different malignancy predictions for similar nodules
with the same visual characteristics provided such as size and
morphology. These discrepancies raised questions about why

JMIR AI 2024 | vol. 3 | e52211 | p.550https://ai.jmir.org/2024/1/e52211
(page number not for citation purposes)

Ewals et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


nodules with similar characteristics had different malignancy
probabilities. In fact, this key aspect still felt like a black box
to the participants. Apparently, providing more transparency,
which enables radiologists to observe inconsistencies in the AI
predictions, can decrease the radiologists’ trust in the AI-CAD
system. However, this decrease in trust might be appropriate
because the AI model’s performance might be suboptimal and
inconsistent.

In many CT assessments, the radiologists did not make any
changes in their assessments after seeing the AI
recommendations. However, this does not necessarily mean
that the radiologist did not trust the AI-CAD system. There can
be several reasons for making no changes. First, the AI
recommendations can be exactly the same as the radiologists’
assessments. Second, radiologists may disagree with the AI
recommendations, which may be appropriate because the AI
model also makes mistakes. Third, concerning malignancy
prediction and follow-up advice, the AI recommendations may
not impact the assessments, whereas the radiologists do agree
with the AI recommendations. For instance, the AI model might
find an extra nodule; however, if another larger and more
suspicious nodule was already detected, the extra nodule does
not impact the radiologist’s malignancy risk prediction at the
patient level or the follow-up recommendation.

Another important finding is that radiologists became more
confident in their assessments after using the AI
recommendations. This change might be explained by the fact
that the AI-CAD system provides an extra check, which reduces
the likelihood of nodules being overlooked. Hence, it provides
radiologists with a sense of safety that increases their
confidence, regardless of whether they agree with the AI output.

The follow-up advice was adjusted by the radiologists after
viewing the AI results in only 12 of 140 assessments, whereas
the number of observed nodules and the malignancy
probabilities were changed more often (27/140, 19.3%
assessments and 32/140, 22.9% assessments, respectively). This
finding can be explained by the fact that follow-up advice is
predominantly affected by the most suspicious nodule.
Consequently, an AI-CAD finding of an additional small nodule
while a large suspicious nodule had already been detected by
the radiologist did not impact the radiologist’s follow-up advice.
Of the 3 assessment levels, follow-up advice is clinically most
relevant. When the follow-up advice was adjusted, it was mostly
changed to a shorter follow-up period (8/12, 67% assessments;
eg, from CT at 6-12 months to CT at 3-6 months). This finding
indicates that, owing to the AI recommendations, radiologists
tended to be more careful and took fewer risks in their follow-up
advice. For this study, earlier follow-up was appropriate as all
CT scans showed cancer cases, but in clinical practice, it can
be questionable whether being more careful and taking fewer
risks in the follow-up advice is always desirable because it may
increase the health care costs. Therefore, it is of great importance
to study the cost-effectiveness of AI-CAD systems.

Secondary Findings
Confidence in malignancy prediction was significantly more
frequently changed when the radiologist did not change their
number of nodules after viewing the AI recommendations

(Multimedia Appendix 6). This might be caused by the
malignancy prediction provided by the AI-CAD system of
nodules that they also found themselves. The radiologist might
become more convinced whether a case is malignant or benign
based on this AI-CAD malignancy recommendation.

This study also demonstrates the importance of applying a
user-centered design process to achieve appropriate use of the
AI-CAD system. This is lacking in many studies and
applications [46]. Radiologists indicated in their feedback that
the PPV and NPV were difficult to interpret. Therefore, different
visualizations of model confidence might be more appropriate,
such as using only bar graphs. Furthermore, radiologists
mentioned that some extra functionalities that radiologists use
in clinical practice for lung assessment need to be implemented
in the prototype, such as multiplanar reconstruction and
maximum intensity projection, underlining the need for tight
integration of AI into the radiologist routine workstations. In
addition, they mentioned that during onboarding, they would
like to receive more information on AI model training and
validation, including the data sets used and ground truth
definition, which should therefore be added to the onboarding
prototype. This need is in line with the findings of Cai et al [31],
who explored the information needs for onboarding for AI-CAD
in pathology. Ashoori and Weisz [43] mentioned that
information on AI model training and testing is important for
radiologists’ trust in AI-CAD systems. Radiologists’ feedback
needs to be incorporated to achieve the AI-CAD system that
fully meets radiologists’ needs.

Limitations and Future Perspectives
This study had several limitations. First, this study was not fully
representative of the clinical situation. Owing to time
constraints, we specifically asked the radiologists not to assess
the entire case but to focus on the component task of lung nodule
assessment. Therefore, radiologists were aware that lung nodule
assessment was important, which is representative for CT scans
acquired because of pulmonary complaints but not for scans
with incidental lung nodules. In addition, this study exclusively
included scans of cancer cases, which differs from clinical
practice, in which scans may also show no nodules and solely
benign nodules. However, the data set with cancer cases was
appropriate for our research goals.

Second, in the current prototype, the explainable AI output was
simulated post hoc. There is an increasingly louder call to build
causal models in the medical domain where the cost of failure
is high, allowing the clinician to verify the causal chain of
effects of clinically validated features on the model prediction.
However, such inherently interpretable models are currently
the exception rather than mainstream practice [47]. In this study,
we focused on the current state of medical practice, where, if
at all, most post hoc explainability techniques are used to
improve interpretability. Importantly, post hoc techniques come
at the expense of the validity of the relationship between post
hoc explanations and model prediction. In fact, what appears
to an end user as an explanation might not convey why the black
box predicted what it did [48]. In this study, we were interested
in the effect of a widespread approach to explain user trust and
decision-making in a medical context. In addition, although
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simulating explainable AI output is very useful in the early
stages of AI-CAD system development [33,34], having fully
functioning AI models would further add to the realism of the
test. Furthermore, it would be valuable if the algorithm can
provide the extent to which each nodule characteristic
contributed to malignancy prediction. In addition, PPV and
NPV computed at the patient level were applied at the nodule
level.

Third, this study included only 20 radiologists and 7 CT scans,
which need to be scaled up to have sufficient power to be able
to detect smaller effect sizes. In this pilot study, this limitation
was accepted to make the test less time-consuming for the
participating radiologists and to postpone larger samples after
at least some evidence of larger effects in this context could be
established. During case selection for this study, we aimed to
collect a mix of relatively easy and more challenging cases,
which worked well, considering the number of correct follow-up
recommendations in Table 1. In a future large-scale study, it
would be advisable to use a clinically representative data set to
prevent the impact of selection bias. Testing on a larger scale
is also required to analyze what radiologists do with FP findings

and how these findings affect their trust in the AI-CAD. It is
interesting to assess which types of FP findings are recognized
by radiologists. Furthermore, it is useful to analyze whether
changes in the number of observed nodules and in malignancy
probability are correct based on a reference standard defined
by expert radiologists and pathology. This is important because
of automation bias, implying that radiologists rely too much on
the AI recommendations, has to be prevented [40,49].

Conclusions
When clinical decision support systems are implemented,
clinicians should receive careful onboarding that gives them a
better understanding of the capabilities and limitations of the
AI-CAD system. This understanding contributes to appropriate
trust in the AI system, which is important when AI systems are
used in clinical practice. Providing more AI output transparency,
which enables clinicians to observe inconsistencies in the AI
recommendations, can decrease clinicians’ trust in the AI-CAD
system. AI recommendations frequently increased radiologists’
confidence in their assessments, even if they did not fully agree
with these recommendations.
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Abstract

Background: Although uncertainties exist regarding implementation, artificial intelligence–driven generative language models
(GLMs) have enormous potential in medicine. Deployment of GLMs could improve patient comprehension of clinical texts and
improve low health literacy.

Objective: The goal of this study is to evaluate the potential of ChatGPT-3.5 and GPT-4 to tailor the complexity of medical
information to patient-specific input education level, which is crucial if it is to serve as a tool in addressing low health literacy.

Methods: Input templates related to 2 prevalent chronic diseases—type II diabetes and hypertension—were designed. Each
clinical vignette was adjusted for hypothetical patient education levels to evaluate output personalization. To assess the success
of a GLM (GPT-3.5 and GPT-4) in tailoring output writing, the readability of pre- and posttransformation outputs were quantified
using the Flesch reading ease score (FKRE) and the Flesch-Kincaid grade level (FKGL).

Results: Responses (n=80) were generated using GPT-3.5 and GPT-4 across 2 clinical vignettes. For GPT-3.5, FKRE means
were 57.75 (SD 4.75), 51.28 (SD 5.14), 32.28 (SD 4.52), and 28.31 (SD 5.22) for 6th grade, 8th grade, high school, and bachelor’s,
respectively; FKGL mean scores were 9.08 (SD 0.90), 10.27 (SD 1.06), 13.4 (SD 0.80), and 13.74 (SD 1.18). GPT-3.5 only
aligned with the prespecified education levels at the bachelor’s degree. Conversely, GPT-4’s FKRE mean scores were 74.54 (SD
2.6), 71.25 (SD 4.96), 47.61 (SD 6.13), and 13.71 (SD 5.77), with FKGL mean scores of 6.3 (SD 0.73), 6.7 (SD 1.11), 11.09 (SD
1.26), and 17.03 (SD 1.11) for the same respective education levels. GPT-4 met the target readability for all groups except the
6th-grade FKRE average. Both GLMs produced outputs with statistically significant differences (P<.001; 8th grade P<.001; high
school P<.001; bachelors P=.003; FKGL: 6th grade P=.001; 8th grade P<.001; high school P<.001; bachelors P<.001) between
mean FKRE and FKGL across input education levels.

Conclusions: GLMs can change the structure and readability of medical text outputs according to input-specified education.
However, GLMs categorize input education designation into 3 broad tiers of output readability: easy (6th and 8th grade), medium
(high school), and difficult (bachelor’s degree). This is the first result to suggest that there are broader boundaries in the success
of GLMs in output text simplification. Future research must establish how GLMs can reliably personalize medical texts to
prespecified education levels to enable a broader impact on health care literacy.

(JMIR AI 2024;3:e54371)   doi:10.2196/54371
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generative language model; GLM; artificial intelligence; AI; low health literacy; LHL; readability; GLMs; language model;
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Introduction

Health literacy is critical for informed health care decisions.
However, only 12% of Americans are considered to have
proficient health literacy skills [1]. Low health literacy (LHL)
is a limited ability to procure, process, and comprehend health
information [2]. Importantly, patients with LHL have poorer
health outcomes than those with higher health literacy [3]. Many
interventions have been proposed and implemented to address
health literacy disparities including community health fairs,
increased number of primary care visits, and informational
handouts [4]. Although the availability of community health
fairs and on-demand primary care consultation is variable, the
internet is widely accessible [5]. However, internet-derived
health information has limitations. Specifically, accessing
web-based information and navigating complex user interfaces
results in information overload that can negate potential benefits
for patients with LHL [6].

Artificial intelligence (AI)–driven chatbots use natural language
processing to better interpret and respond to human-like prompts
[7]. Generative language models (GLMs), such as ChatGPT
(OpenAI), are now regularly used by consumers [8]. Despite
the recent increase in the availability of GLMs, implementing
AI as a patient education adjunct is not new [9]. Jayakumar et
al [10] previously used AI to assist in patient medical education.
The incorporation of AI-driven tools resulted in significantly
improved decision quality and satisfaction among patients with
knee osteoarthritis compared to patients who only received
educational material [10]. Given the success of previous
iterations of AI in patient education and decision-making,
elucidating the potential role of a GLM in a similar capacity
could be transformative as a resource to combat LHL [11].
These new tools for patient education can unlock methods for
addressing health care concerns, such as pain perception, as
illustrated by Sun et al [12], who used education to decrease
perceived pain and facilitate recovery.

While there is ostensibly immense potential for this use of AI
in health care, at this time, many questions remain, specifically
about the accuracy and reproducibility of chatbot-generated
medical content [7,13]. While content accuracy is a subject of
further clinical discourse, this paper aims to explore the potential
of GLMs in tailoring medical text to patient-specific
characteristics such as education level. Previous research has
evaluated the capability of ChatGPT to simplify a medical text
and respond to hypothetical patient questions in various medical
specialties [14-17]. In this study, we assessed the ability of
ChatGPT versions 3.5 and 4 to transform text to suit a broad
range of education levels, including 6th grade, 8th grade, 12th
grade, and bachelor’s degree. To elucidate this ability, we tested
2 common clinical scenarios: a patient learning about a diagnosis
of diabetes mellitus (DM) or hypertension (HTN). The Flesch
reading ease score (FKRE) and the Flesch-Kincaid grade level
(FKGL) were implemented as outcome measures as both are
clinically validated numeric text assessment tools. The FKRE
and FKGL were originally developed to quantify readability

ease, with the FKGL being developed specifically for the US
Navy in 1975 [18]. As indicated, scores are used commonly,
for example, with the US Department of Defense using the
FKRE to quantify the readability of its forms and documents
[19]. These outcome measures have also frequently been
implemented to assess the readability of clinical texts and have
been frequently used for assessing outpatient resources [20,21].
Hence, this study explores GLMs as a potentially useful
interface to combat LHL by personalizing medical information
to a specific education level, as the complexity of
clinician-provided and open-access medical information can
often inhibit proper understanding. We hypothesized that
ChatGPT would be able to successfully create outputs at
different readabilities, with GPT-4 being more accurate than its
predecessor model, GPT-3.5.

Methods

Overview
GPT-3.5 and GPT-4 were used for this study. Both models were
developed using reinforcement learning from human feedback,
which uses human-generated texts to prompt and train the GLM.
This study used a standardized method to generate each input
prompt, assess the readability of each output, and perform
statistical analyses on the readability scores. This study focused
exclusively on evaluating the capacity of GPT-3.5 and GPT-4
to generate outputs with targeted readability levels, without
verifying the accuracy of the content produced.

Input Prompt Creation
A total of 2 input prompts were created that emulate common
medical scenarios: DM and HTN. Pertinent information in each
input prompt included patient demographics, chief concern at
the time of presentation, a set of medical interventions to address
the chief concern, and a sentence specifying the desired output
(Figures S1-S4 in Multimedia Appendix 1).

Prespecified designation of input patient education level was
the focus of this study. Previous research has demonstrated a
significant correlation between educational attainment and health
literacy, prompting us to use education level as a proxy for
health literacy [22,23]. To explore the effect of changing the
education level on the generated output, we repeatedly queried
the same input prompt while only changing the designated
education level of the patient. The education levels included a
6th-grade, 8th-grade, 12th-grade (high school graduate), and a
university graduate (bachelor’s degree). Starting at the 6th-grade
level ensures alignment with standardized medical
recommendations for reading levels of patient-facing materials,
while the 8th grade represents the average reading level for an
adult in the United States, aligning the study with broad public
health guidelines [24-26]. High school graduates were evaluated
to bridge the gap between middle and higher education,
reflecting a common literacy standard, while the bachelor’s
degree level tests the GLM’s ability to tailor complex health
information for a more educated audience without unnecessary
complexity. Specifically, the high school and bachelor’s levels
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of education were included as even highly educated people may
have LHL due to the complexity of the medical text. Assessing
whether GPT-3.5 and GPT-4 can customize outputs for these
demographics is essential for validating their use as tools to
potentially address LHL.

Generation of GPT-4 Outputs and Statistical Analysis
In total, 2 sets of input prompts (DM and HTN) were finalized
and cataloged in spreadsheets. These input prompts were
subsequently entered into GPT-3.5 and GPT-4. Each input
scenario—such as GPT-3.5, DM, and 6th grade—was entered
into a new conversation window, 5 separate times. All input
scenarios were run 5 times to assess reproducibility and to attain
statistical significance when comparing groups (Table 1). Next,
each output was cataloged, placed into a standardized
single-paragraph format, and entered into the readability
calculator on Word (Microsoft Corp). The outputs were
reformatted into a single paragraph to standardize readability
scores, as variations in formatting can affect Word’s ability to
accurately measure readability. For this study, the FKRE and
the FKGL values were calculated and subjected to statistical
analysis [27]. Equations 1 and 2 show how each of these scores
are calculated. The FKRE ranges from 0 to 100, with scores of
0 and 100 indicating texts of high and low reading complexity
respectively (Table 2).

FKRE = 206.835–1.015 × (total words ÷ total sentences) – 84.6
× (total syllables ÷ total words) (1)

FKGL = 0.39 × (total words ÷ total sentences) + 11.8 × (total
syllables ÷ total words) – 15.59 (2)

Single factor ANOVA was performed to determine if any
significant differences existed between the education levels.
Once ANOVA confirmed this statistically significant difference,
each set of data was subjected to the Tukey multiple comparison
post hoc analysis to evaluate differences between the means of
each group within each scenario. Significance for all statistical
analysis was set at P<.05. Single-factor ANOVA with the Tukey
post hoc analysis was used because Shapiro-Wilk normality
testing and Levene’s test for equality of variances showed that
the data did not violate the assumptions of normality or
homogeneity of variances. Statistical analyses were performed
for individual clinical scenarios and aggregated data. Unpaired
2-tailed t tests were also performed to determine the differences
in functionality between GPT-3.5 and GPT-4 for both individual
clinical scenarios and aggregated data across all 4 education
levels. Finally, aggregated analysis was conducted to determine
which education level led to outputs with the highest and lowest
variation for FKRE and FKGL.
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Table 1. Summary of scenarios organized by AIa model, grade level, and clinical scenario (N=80).

Number of scenarios, n (%)Clinical scenarios and grade level

GPT-4

DMb

5 (6)6th grade

5 (6)8th grade

5 (6)High school

5 (6)Bachelor’s

HTNc

5 (6)6th grade

5 (6)8th grade

5 (6)High school

5 (6)Bachelor’s

GPT-3.5

DM

5 (6)6th grade

5 (6)8th grade

5 (6)High school

5 (6)Bachelor’s

HTN

5 (6)6th grade

5 (6)8th grade

5 (6)High school

5 (6)Bachelor’s

aAI: artificial intelligence.
bDM: diabetes mellitus.
cHTN: hypertension.

Table 2. Interpretation of the Flesch reading ease score based on the US grade level system.

DescriptionSchool level (US)Score

Extremely difficult to read. Only suitable for university graduatesProfessional10.0-0.0

Very difficult to read and comprehendCollege graduate30.0-10.0

Difficult to read and comprehendCollege50.0-30.0

Fairly difficult to read and comprehend10th to 12th grade60.0-50.0

“Plain English”8th and 9th grade70.0-60.0

Fairly easy to read and comprehend7th grade80.0-70.0

Easy to read and comprehend. Considered conversational English for speakers6th grade90.0-80.0

Extremely easy to read and comprehend5th grade100.0-90.0

Ethical Considerations
No application was submitted for review board assessment
because no human or animal participants participated directly
or indirectly in this study. The University of California, Irvine
Institutional Review Board does not require assessment of
studies that do not directly or indirectly involve human or animal

participants. This study consisted solely of a quantitative
evaluation of a GLM for text personalization and is hence
exempt from any institutional review.
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Results

Overview
Descriptive statistics were tabulated for individual clinical
vignettes and aggregated data (Tables 3 and 4). Clinical vignette
analysis compared how the readability scores changed with
education level for each individual clinical case (DM and HTN).
When reported for individual clinical vignettes, data have been
reported as AI model-clinical case-education level. Importantly,
2 readability scores were implemented (FKGL and FKRE), so
clinical vignette analysis includes a discussion of how both
scores change with education level in each individual clinical
example.

In this study, accuracy was defined as a readability score (FKRE
or FKGL) whose mean, plus or minus one SD, falls within or
below the predefined category. For FKRE, these categories are
detailed in Table 2, as originally established by Kincaid et al

[18] while for FKGL, the categories are inherently reflected by
the corresponding grade levels they represent. For instance, an
FKGL score of 6.32 is approximately indicative of a reading
level between the 6th and 7th grades. It is important to note that
the FKGL formula typically rounds to the nearest whole number,
thus for practical purposes, a score of 6.32 is considered
appropriate for the 6th grade.

Aggregated data analysis consisted of descriptive statistical
reporting similar to the clinical vignette analysis except data
were pooled by education level. For example, both of the clinical
scenarios were iterated 5 times using “6th-grade” as the
prespecified education level. Aggregated data analysis involved
pooling the readability scores of all prompt structures that
implemented “6th-grade” as the education level (n=10) to
observe the consistency of readability scores for educational
level across clinical vignettes. FKGL and FKRE scores were
acquired, so both metrics were implemented in aggregated data
analysis.

Table 3. Mean and SD of FKREa and FKGLb for each education level within each clinical vignette.

FKGL, mean (SD)FKRE, mean (SD)Grade levelClinical scenarioAIc model

6.32 (0.91)74.52 (3.12)6thDMdGPT-4

7.12 (0.91)69.42 (3.00)8thDMGPT-4

11.4 (1.66)47.02 (7.86)HSeDMGPT-4

16.78 (1.13)14.48 (3.33)BSfDMGPT-4

6.28 (0.63)74.56 (2.34)6thHTNgGPT-4

6.28 (1.22)73.08 (6.17)8thHTNGPT-4

10.78 (0.75)48.2 (4.69)HSHTNGPT-4

17.28 (1.15)12.94 (7.89)BSHTNGPT-4

9.7 (0.55)54.6 (3.05)6thDMGPT-3.5

10.0 (1.19)53.6 (6.39)8thDMGPT-3.5

13.88 (0.86)30.36 (4.81)HSDMGPT-3.5

14.44 (1.05)26.5 (5.65)BSDMGPT-3.5

8.46 (0.74)60.9 (4.08)6thHTNGPT-3.5

10.54 (0.98)48.96 (2.26)8thHTNGPT-3.5

12.92 (0.35)34.2 (3.70)HSHTNGPT-3.5

13.04 (0.91)30.12 (4.63)BSHTNGPT-3.5

aFKRE: Flesch reading ease score.
bFKGL: Flesch-Kincaid grade level.
cAI: artificial intelligence.
dDM: diabetes mellitus.
eHS: high school.
fBS: bachelor’s degree.
gHTN: hypertension.
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Table 4. Descriptive statistics for FKREa and FKGLb scores. All 3 clinical scenarios (diabetes and hypertension) scores are aggregated by education
level.

FKGL, mean (SD)FKRE, mean (SD)nGrade levelAIc model

6.3 (0.73)74.54 (2.6)106thGPT-4

6.7 (1.11)71.25 (4.96)108thGPT-4

11.09 (1.26)47.61 (6.13)10HSdGPT-4

17.03 (1.11)13.71 (5.77)10BSeGPT-4

9.08 (0.90)57.75 (4.75)106thGPT-3.5

10.27 (1.06)51.28 (5.14)108thGPT-3.5

13.4 (0.80)32.28 (4.52)10HSGPT-3.5

13.74 (1.18)28.31 (5.22)10BSGPT-3.5

aFKRE: Flesch reading ease score.
bFKGL: Flesch-Kincaid grade level.
cAI: artificial intelligence.
dHS: high school.
eBS: bachelor’s degree.

Descriptive Statistics—Clinical Vignette Data
Analysis of each group (ie, AI model-clinical case-education
level) revealed that GPT-4 consistently produced accurate
average FKRE scores for both DM and HTN scenarios across
all education levels, with the exception of the 6th grade, where
the FKRE scores were 74.52 (SD 3.12) and 74.56 (SD 2.34),
respectively (Table 3). Regarding FKGL measures, GPT-4
achieved the target readability for all education levels except
for the bachelor’s degree for the HTN scenario, where the
average FKGL was slightly higher at 17.28 (SD 1.15; Table 3).
Conversely, GPT-3.5 accurately produced FKRE and FKGL
scores that met the required standards only when tasked with
generating outputs for bachelor’s degree holders (Table 3).
Specifically, in the diabetes scenario at this education level
(GPT-3.5-DM-bachelor’s degree), FKRE was 26.5 (SD 5.65)
and FKGL was 14.44 (SD 1.05), while in the HTN scenario
(GPT-3.5-DM-bachelor’s degree), FKRE and FKGL scores
were 30.12 (SD 4.63) and 13.04 (SD 0.91), respectively (Table
3).

The data from clinical vignettes showed that SDs were stable
across subgroups for both GPT-3.5 and GPT-4 (Table 3). The
average FKRE SD for GPT-3.5 was 4.91 and for GPT-4 was
4.86 (Table 3). The average FKGL SDs were 0.99 for GPT-3.5
and 1.05 for GPT-4 (Table 3). The highest FKRE SD recorded
was 7.89 in the GPT-4 HTN-bachelor’s degree scenario, and
the lowest was 2.26 in the GPT-3.5 HTN-8th grade scenario
(Table 3). For FKGL, the highest SD was 1.66 in the GPT-4
diabetes-high school scenario, and the lowest was 0.35 in the
GPT-3.5 HTN-high school scenario (Table 3).

Descriptive Statistics—Aggregated Data
Data were aggregated for each education level across clinical
vignettes as mentioned in the Results Overview section. When

aggregated, GPT-4 generated accurate average FKRE scores
for most education levels; however, the 6th grade was an
exception with an average FKRE of 74.54 (SD 2.60; Table 4).
Furthermore, the aggregated data for GPT-4 indicated that the
FKGL average was accurate across all tested educational levels
(Table 4). In contrast, GPT-3.5 achieved accurate mean FKRE
and FKGL scores only at the bachelor’s degree level, with
averages of 28.31 (SD 5.22) and 13.74 (SD 1.18), respectively
(Table 4).

ANOVA and the Tukey Post Hoc Analysis
To determine the differences between the means of each clinical
vignette’s FKRE and FKGL, unidirectional ANOVA and the
Tukey multiple comparison post hoc analysis were performed
(Figures 1A-3D). The Tukey post hoc analysis showed
significant differences between almost all education levels across
both clinical vignettes, both individually and when aggregated
(Figures 1A-3D). Notably, in the GPT-4 analysis (both
individually and aggregated), the only education levels without
a statistically significant difference were between 6th grade and
8th grade, for both FKRE and FKGL (Figures 1A, 1B, 2A, 2B,
3A, and 3B). In the GPT-3.5 DM scenario, this pattern persisted,
with an additional absence of significance between the high
school and bachelor’s education levels for both FKRE and
FKGL (Figures 1C, 1D, 2C, 2D, 3C, and 3D). In the GPT-3.5
HTN scenario, the only pair without a significant difference
was between high school and bachelor’s degree for both FKRE
and FKGL (Figures 2C and 2D). Finally, in the aggregated
GPT-3.5 data, FKGL showed no significant differences between
6th-grade and 8th-grade or between high school and bachelor’s
degree, while FKRE lacked significance only between high
school and bachelor’s degree (Figures 3C and 3D).
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Figure 1. (A) GPT-4 diabetes FKRE, compared with single-factor ANOVA and Tukey post hoc test. (B) GPT-4 diabetes FKGL, compared with
single-factor ANOVA and Tukey post hoc Test. (C) GPT-3.5 diabetes FKRE, compared with single-factor ANOVA and Tukey post hoc test. (D)
GPT-3.5 diabetes FKGL, compared with single-factor ANOVA and Tukey post hoc test. FKRE: Flesch reading ease score; FKGL: Flesch-Kincaid
grade level.
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Figure 2. (A) GPT-4 HTN FKRE, compared with single-factor ANOVA and Tukey post hoc test. (B) GPT-4 HTN FKGL, compared with single-factor
ANOVA and Tukey post hoc test. (C) GPT-3.5 HTN FKRE, compared with single-factor ANOVA and Tukey post hoc test. (D) GPT-3.5 HTN FKGL,
compared with single-factor ANOVA and Tukey post hoc test. FKRE: Flesch reading ease score; FKGL: Flesch-Kincaid grade level; HTN: hypertension.
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Figure 3. (A) GPT-4 aggregated FKRE, compared with single-factor ANOVA and Tukey post hoc test. (B) GPT-4 aggregated FKGL, compared with
single-factor ANOVA and Tukey post hoc test. (C) GPT-3.5 aggregated FKRE, compared with single-factor ANOVA and Tukey post hoc test. (D)
GPT-3.5 aggregated FKGL, compared with single-factor ANOVA and Tukey post hoc test. FKRE: Flesch reading ease score; FKGL: Flesch-Kincaid
grade level.

Unpaired 2-Tailed t Test Analysis—GPT-3.5 Versus
GPT-4
When comparing readability scores by education level, unpaired
2-tailed t test analysis of individual and aggregated data

consistently showed statistically significant differences between
GPT-4 and GPT-3.5 (Figures 4A-6H). The analysis revealed
that GPT-4 generally produced more readable outputs (higher
FKRE and lower FKGL) across all education levels, except for
the bachelor’s degree (Figures 4A-6H).
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Figure 4. (A) Comparison of FKRE between GPT-4 and GPT-3.5 for diabetes outputs at the 6th-grade level, analyzed with an unpaired 2-tailed t test.
(B) Comparison of FKGL between GPT-4 and GPT-3.5 for diabetes outputs at the 6th-grade level, analyzed with an unpaired 2-tailed t test. (C)
Comparison of FKRE between GPT-4 and GPT-3.5 for diabetes outputs at the 8th-grade level, analyzed with an unpaired 2-tailed t test. (D) Comparison
of FKGL between GPT-4 and GPT-3.5 for diabetes outputs at the 8th-grade level, analyzed with an unpaired 2-tailed t test. (E) Comparison of FKRE
between GPT-4 and GPT-3.5 for diabetes outputs at the high school level, analyzed with an unpaired 2-tailed t test. (F) Comparison of FKGL between
GPT-4 and GPT-3.5 for diabetes outputs at the high school level, analyzed with an unpaired 2-tailed t test. (G) Comparison of FKRE between GPT-4
and GPT-3.5 for diabetes outputs at the bachelor’s level, analyzed with an unpaired 2-tailed t test. (H) Comparison of FKGL between GPT-4 and
GPT-3.5 for diabetes outputs at the bachelor’s level, analyzed with an unpaired 2-tailed t test. FKRE: Flesch reading ease score; FKGL: Flesch-Kincaid
grade level.
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Figure 5. (A) Comparison of FKRE between GPT-4 and GPT-3.5 for HTN outputs at the 6th-grade level, analyzed with an unpaired 2-tailed t test. (B)
Comparison of FKGL between GPT-4 and GPT-3.5 for HTN outputs at the 6th-grade level, analyzed with an unpaired 2-tailed t test. (C) Comparison
of FKRE between GPT-4 and GPT-3.5 for HTN outputs at the 8th-grade level, analyzed with an unpaired 2-tailed t test. (D) Comparison of FKGL
between GPT-4 and GPT-3.5 for HTN outputs at the 8th-grade level, analyzed with an unpaired 2-tailed t test. (E) Comparison of FKRE between GPT-4
and GPT-3.5 for HTN outputs at the high school level, analyzed with an unpaired 2-tailed t test. (F) Comparison of FKGL between GPT-4 and GPT-3.5
for HTN outputs at the high school level, analyzed with an unpaired 2-tailed t test. (G) Comparison of FKRE between GPT-4 and GPT-3.5 for HTN
outputs at the bachelor’s level, analyzed with an unpaired 2-tailed t test. (H) Comparison of FKGL between GPT-4 and GPT-3.5 for HTN outputs at
the bachelor’s level, analyzed with an unpaired 2-tailed t test. FKRE: Flesch reading ease score; FKGL: Flesch-Kincaid grade level; HTN: hypertension.
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Figure 6. (A) Comparison of FKRE between GPT-4 and GPT-3.5 for aggregated outputs at the 6th-grade level, analyzed with an unpaired 2-tailed t
test. (B) Comparison of FKGL between GPT-4 and GPT-3.5 for aggregated outputs at the 6th-grade level, analyzed with an unpaired 2-tailed t test. (C)
Comparison of FKRE between GPT-4 and GPT-3.5 for aggregated outputs at the 8th-grade level, analyzed with an unpaired 2-tailed t test. (D) Comparison
of FKGL between GPT-4 and GPT-3.5 for aggregated outputs at the 8th-grade level, analyzed with an unpaired 2-tailed t test. (E) Comparison of FKRE
between GPT-4 and GPT-3.5 for aggregated outputs at the high school level, analyzed with an unpaired 2-tailed t test. (F) Comparison of FKGL between
GPT-4 and GPT-3.5 for aggregated outputs at the high school level, analyzed with an unpaired 2-tailed t test. (G) Comparison of FKRE between GPT-4
and GPT-3.5 for aggregated outputs at the bachelor’s level, analyzed with an unpaired 2-tailed t test. (H) Comparison of FKGL between GPT-4 and
GPT-3.5 for aggregated outputs at the bachelor’s level, analyzed with an unpaired 2-tailed t test. FKRE: Flesch reading ease score; FKGL: Flesch-Kincaid
grade level.

Discussion

Overview
Previous investigations into the use of ChatGPT within health
care primarily focused on evaluating its potential as an
educational tool for patients, particularly in terms of content
accuracy and the general readability of its outputs [15,28,29].
Previous studies have also explored the capacity of ChatGPT
to distill complex medical information, such as published
research abstracts, thereby enhancing accessibility for patients
lacking specialized medical knowledge [16,30]. Despite these
advancements, no research to date has specifically investigated
ChatGPT’s ability to adjust the readability of its outputs to
match different educational levels as explicitly directed by users.
This study aimed to fill that gap by assessing the capacity of
GLMs to produce tailored educational content that adheres to
specified readability standards based on user input.

Principal Results
Analysis of the FKRE data showed some trends that point to
GPT-4 having the potential to achieve this goal (Figures 1A-3D).
GPT-4 can consistently generate outputs at 3 generalized reading
levels: easy (6th and 8th grade), medium (high school), and
difficult (bachelor’s degree). In the case of GPT-4, the
readability analysis revealed indistinct results exclusively
between the outputs for the 6th and 8th grades (Figures 1A, 1B,
2A, 2B, 3A, and 3B). This indistinguishability likely stems from
the close progression of these 2 educational stages, being solely
separated by the 7th grade. In contrast, all other adjacent
educational levels examined in this study were separated by a
minimum of 4 grades, which inherently facilitated a more
distinct comparison. Although the differences in readability
between the outputs for the 6th and 8th grades were not
statistically significant, further investigation is warranted to
ascertain whether this similarity has any substantive implications
for clinical or educational outcomes when these outputs are
used in patient education.
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Similar to GPT-4, GPT-3.5 also demonstrated nonsignificant
differences in readability between the 6th- and 8th-grade levels,
both in individual DM scenarios and when considering the
overall FKGL. Although the difference in readability scores for
the HTN scenario and the combined FKGL scenario was
statistically significant between these grades, the scores were
higher than the target readability level across the board (Tables
3 and 4 and Figures 2C, 2D, and 3C). One distinct deviation in
performance between GPT-3.5 and GPT-4 was the former’s
consistent failure to produce outputs with a significant difference
in readability between the high school and bachelor’s degree
levels across all test cases (Figures 1C, 1D, 2C, 2D, 3C, and
3D). This suggests that GPT-3.5 may be less adept than GPT-4
at differentiating between education levels in its generated text
when given specific prompts.

Finally, for the mean FKRE, the trend between education levels
was always negative, meaning that as the education level
increased, the prompts became harder to read (Figures 1A, 1C,
2A, 2C, 3A, and 3C). Analysis of the FKGL data also showed
similarly consistent trends as FKGL average scores always
increased with higher education levels (Figures 1B, 1D, 2B,
2D, 3B, and 3D). This is encouraging, as these results show
even at this early stage of its existence, GLMs, such as GPT-3.5
and GPT-4, can consistently create outputs of varying readability
when explicitly prompted by an input.

GPT-3.5 and GPT-4 demonstrated relatively consistent results
in variability across all educational levels, suggesting that both
versions of ChatGPT maintain uniform performance irrespective
of the complexity of language in the clinical vignettes used.
Repeated trials across scenarios—conducted 5 times
each—affirmed the reliability of our findings, as consistency
in outputs was systematically verified. Notably, the average
SDs for the FKRE scores were 4.91 for GPT-3.5 and 4.86 for
GPT-4, respectively. Given that these values are less than 5 and
considering that a 10-point difference on the FKRE scale
roughly corresponds to one grade level (as detailed in Table 1),
it can be inferred that 95% of the FKRE scores for both models
are expected to cluster within one grade level of each other.
This is significant as it highlights the models’ ability to produce
outputs with stable readability values, with most variations not
deviating dramatically from the mean. Similarly, the average
FKGL SDs were 0.99 for GPT-3.5 and 1.05 for GPT-4,
indicating that roughly 95% of FKGL scores likely fall within
approximately two grade levels, providing further evidence of
output consistency. It is important to clarify that this analysis
does not assess the accuracy of the outputs in matching the
requested readability levels but rather their consistency in
reaching said levels.

A key difference in performance between GPT-3.5 and GPT-4
was observed in the accuracy of the outputs’ readability levels.
GPT-4 achieved accurate average readability scores in 13 out
of 16 scenarios across both FKRE and FKGL, while GPT-3.5
reached accurate average readability scores in only 4 out of 16
scenarios, exclusively at the bachelor’s degree education level
(Tables 2 and 3). A comparative grade level analysis using an
unpaired 2-tailed t test, both for individual and aggregated data,
consistently indicated statistically significant differences
between GPT-4 and GPT-3.5. This analysis suggests that GPT-4

generally delivered outputs with better readability (higher FKRE
and lower FKGL) across various educational levels, with the
exception of the bachelor’s degree scenarios (Figures 4A-6H).
These findings validate our hypothesis that GPT-4 would
outperform its predecessor in output readability accuracy,
highlighting its improved language processing capabilities. This
suggests that GPT-4 could be more effective in applications
requiring nuanced understanding and generation of text such as
educational tools or automated content creation. Future research
could explore the specific enhancements in GPT-4 that
contribute to these improvements and test its performance in
other domains to further understand its broader applicability
and limitations.

FKRE and FKGL scores were implemented, as they weigh
aspects of readability differently (equations 1 and 2). The FKGL
emphasizes sentence length more than word length when
compared to FKRE [18]. This explains some of the
inconsistency in the trend analysis of group variance. Ultimately,
our findings concerning FKRE and FKGL scores examine
GPT-3.5 and GPT-4’s ability to reliably respond to varying
education levels, which as a clinical tool, has the potential to
be beneficial in educating patients [31]. However, future
research must quantify readability with more metrics to ensure
proper personalization of patient-facing educational information.

Our results indicate that GLMs have the potential to create
customizable educational materials for patients, suggesting a
possible role as a new tool in addressing LHL. Further research
is integral in elucidating the capacity that ChatGPT and other
GLMs can address LHL, as a patient’s level of health literacy
can significantly impact their health outcomes [32]. Specifically,
patients with LHL have higher hospitalization rates, are more
likely to have poor health status, and have a mortality rate almost
double that of patients who do not have LHL [3]. These patients
are less likely to receive preventive health services and are more
likely to face difficulty accessing the health care they require
[33,34]. Current services addressing LHL, including educational
pamphlets and community health fairs, have shown limited
success due to accessibility constraints [4,35,36]. Thus, attempts
to bridge this gap in health literacy and improve health outcomes
have been focused on improving health communication
techniques for patients with LHL [3]. In this regard, ChatGPT
and other new technologies exhibit clear potential, however,
are not currently suitable for clinical use in this context. Use of
either GPT-3.5 or GPT-4 is not recommended with patients, at
the time of this publication due to a few significant limitations.

Limitations
The major limitation of this study was that it did not analyze
the accuracy of the content produced by ChatGPT. Other studies
have elucidated the accuracy of ChatGPT outputs in the context
of patient queries, particularly within the fields of
otolaryngology, urology, and plastic surgery. These studies
demonstrated that while ChatGPT can provide accurate answers
to patient-style questions, it often answers questions incorrectly
[37-39]. Without thorough content validation, the use of GLM
technology to generate patient education materials could
inadvertently contain false information, potentially leading to
the spread of misinformation and resulting in patients
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mishandling their own care. At present, we strongly recommend
that patients seeking medical information obtain their health
education materials directly from a qualified physician.
Specifically, the use of natural language processors, like
ChatGPT, should be restricted to licensed health care providers
when disseminating information to patients. This approach
ensures the accuracy and reliability of the health information
provided. Additionally, this study only tested 2 clinical
scenarios. These scenarios centered around a patient using
ChatGPT to learn about a new diagnosis of DM or HTN. This
study design potentially limits the generalizability of these
findings in other clinical contexts.

Another challenge GLMs face is related to maintaining patient
privacy [11]. In March of 2023, OpenAI confirmed that they
experienced a data leak in which select conversation titles from
random users were made visible to other users [11]. The
comprehensive impact of this data breach is unclear, but the
prospect of future breaches—particularly those involving
protected health information—represents a substantial privacy
concern for GLMs [11]. At this time, there is no way for a
publicly accessible GLM, such as ChatGPT, to be trained on
protected health information while maintaining Health Insurance
Portability and Accountability Act compliance [40]. Companies
and health care professionals looking to develop GLMs for
medical use continue to face legal hurdles aimed at protecting

patient privacy [41]. In addition to data leaks, ChatGPT was
functionally banned for a week in Italy in March of 2023 due
to accusations that it was violating European Union data
protection laws [42]. This ban prompted other countries,
including Germany, Spain, and Canada, to launch investigations
into ChatGPT [42]. Given these valid concerns regarding privacy
and legality, developers should continue to address these
challenges as they integrate this technology into medical care.

Conclusions
GPT-4 can create outputs within 3 tiers of readability: easy (6th
and 8th grade), medium (high school), and difficult (bachelor’s
degree). These 3 tiers fall relatively well into their correct
intended levels of readability according to the FKRE and FKGL
and they allow for preliminary stratification of readability.
Unfortunately, GPT-3.5 is less adept at creating customized
outputs that fall into their specified readability ranges. Our
results highlight GPT-4’s ability to provide patient-centered
responses with statistically significant changes to output
readability based on education level. Further optimization of
this personalization’s accuracy is necessary for it to be an
effective clinical tool in addressing LHL. This must be coupled
with comprehensive content validation and stringent privacy
security measures. The continued evolution of GLMs should
provide more robust and capable tools to address these
limitations in order to best educate and empower patients.
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Abstract

Background: The COVID-19 pandemic has led to the rapid proliferation of artificial intelligence (AI), which was not previously
anticipated; this is an unforeseen development. The use of AI in health care settings is increasing, as it proves to be a promising
tool for transforming health care systems, improving operational and business processes, and efficiently simplifying health care
tasks for family physicians and health care administrators. Therefore, it is necessary to assess the perspective of family physicians
on AI and its impact on their job roles.

Objective: This study aims to determine the impact of AI on the management and practices of Qatar’s Primary Health Care
Corporation (PHCC) in improving health care tasks and service delivery. Furthermore, it seeks to evaluate the impact of AI on
family physicians’ job roles, including associated risks and ethical ramifications from their perspective.

Methods: We conducted a cross-sectional survey and sent a web-based questionnaire survey link to 724 practicing family
physicians at the PHCC. In total, we received 102 eligible responses.

Results: Of the 102 respondents, 72 (70.6%) were men and 94 (92.2%) were aged between 35 and 54 years. In addition, 58
(56.9%) of the 102 respondents were consultants. The overall awareness of AI was 80 (78.4%) out of 102, with no difference
between gender (P=.06) and age groups (P=.12). AI is perceived to play a positive role in improving health care practices at
PHCC (P<.001), managing health care tasks (P<.001), and positively impacting health care service delivery (P<.001). Family
physicians also perceived that their clinical, administrative, and opportunistic health care management roles were positively
influenced by AI (P<.001). Furthermore, perceptions of family physicians indicate that AI improves operational and human
resource management (P<.001), does not undermine patient-physician relationships (P<.001), and is not considered superior to
human physicians in the clinical judgment process (P<.001). However, its inclusion is believed to decrease patient satisfaction
(P<.001). AI decision-making and accountability were recognized as ethical risks, along with data protection and confidentiality.
The optimism regarding using AI for future medical decisions was low among family physicians.

Conclusions: This study indicated a positive perception among family physicians regarding AI integration into primary care
settings. AI demonstrates significant potential for enhancing health care task management and overall service delivery at the
PHCC. It augments family physicians’ roles without replacing them and proves beneficial for operational efficiency, human
resource management, and public health during pandemics. While the implementation of AI is anticipated to bring benefits, the
careful consideration of ethical, privacy, confidentiality, and patient-centric concerns is essential. These insights provide valuable
guidance for the strategic integration of AI into health care systems, with a focus on maintaining high-quality patient care and
addressing the multifaceted challenges that arise during this transformative process.

(JMIR AI 2024;3:e40781)   doi:10.2196/40781
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Introduction

Background
There is no universal definition for artificial intelligence (AI)
[1]. AI has been defined in the literature as the branch of applied
computer sciences in which algorithms are designed and are
intended to perform different tasks while mimicking human
intelligence [2]. It has been further defined as technologies that
not only mimic human intelligence but can surpass them [3].

The global AI market in health care is projected to reach US
$27.6 billion by 2025 [4]. One of the studies estimated that AI
could save US $150 billion per annum by 2026 [5]. The human
resource crisis in health care is already on the rise [6]. The global
shortage of health care workers is approximately 17.4 million.
Approximately, 50% of existing jobs will be in jeopardy or
obsolete in 20 years [7].

Primary care is where AI would be most used in terms of
opportunities on the broadest scale, where its power and future
would be realized [8]. Moreover, AI has been regarded as a
transformational force in the health care sector due to its impact
on key stakeholders, such as primary care physicians, patients,
systems, and financiers. AI will significantly impact many
dimensions of clinical practice in the coming years, as machine
learning (ML) and deep learning (DL) continue to hasten and
will bring many advantages to both patients and clinicians [9].
There is not much literature on the impact of AI on employees,
as little effort has been made empirically to study its impact
[10]. Moreover, it is essential to know if AI is beneficial or
detrimental to employees, as assisted AI, augmented AI, and
autonomous AI have different implications on employee’s roles.
Physicians are required to adjust their roles accordingly as AI
is modeling practices nowadays, and if physicians fail to adjust
their roles, it can lead to detrimental effects on overall patient
care [11]. Physicians must be prepared to embrace the changes
that AI will bring to their roles and to lead this change
themselves. Furthermore, primary care physicians in health care
are the main stakeholders and the most crucial, valuable, highly
knowledgeable, and skilled human resource. Hence, it is
essential to understand family physicians’ overall perception
of AI application in primary care to develop organizational
policies, modernize information technology infrastructure,
develop AI literacy among physicians, establish and modify
data privacy, data confidentiality, and code of ethics for the
successful adoption and implementation of technology to gain
a competitive advantage.

Aims and Objectives
This study assessed the role of AI in the management and
practices of the Primary Health Care Corporation (PHCC) in
Qatar, emphasizing its fundamental potential in health care
management. The primary objective was to evaluate the impact
of AI in improving health care practice at the PHCC. In addition,
the study sought to determine the role of AI in managing health

care tasks and assess its impact on family physicians’ job roles.
Moreover, this research also examined the challenges and ethical
ramifications associated with introducing AI in primary care
services at the PHCC.

Literature Review

Understanding AI
AI is related to developing machines that mimic human
cognitive processes such as learning, reasoning, and
self-correction [3,12] and to performing tasks similar to a human
mind [1]. It involves applying theoretical principles and the
operation of applicable operating models to automate intellectual
behaviors [13]. AI includes new concepts and solutions to
address complex challenges [14]. In the field of medicine, AI
introduces novel concepts such as a digital physician, reshaping
the landscape [15].

Conceptualization of AI
The core of the AI system comprises neural-like elements, which
are interconnected growing networks similar to a human brain
that is active, associative, and homogenous with the ability to
perceive, apprehend, and save information, enabling the system
to learn, train, reason, and classify data to locate various patterns
and connections to control external modalities [16]. To
understand AI, it is essential to understand 2 key forms of AI:
general and narrow AI. General AI refers to a machine’s ability
to perform any intellectual task performed by a human, whereas
narrow AI algorithms are designed for a limited task. Health
applications using AI are generally of the narrow type. AI
subfields in the health care sector are expert systems, automation
of robotic processes, natural language processing, ML, and DL
[6]. An example of an expert system is clinical decision support
systems. The growth of AI in health care has been possible in
recent decades due to the faster computer processing of data
and data collection. Large amounts of data collection have been
possible due to widespread electronic health records, mobile
health, telehealth, and the Internet of Things. Improvements in
natural language processing, ML, and DL have made AI possible
up to the stage where it mimics human intelligence, fueling
active discussion in the literature on whether AI can replace
human doctors in the future [17].

AI and Health Care
The rapid growth of technology in health care has become a
catalyst for evidence-based practice, and the integration of AI
holds significant potential for improving health care service
delivery [18]. The perceptions of AI’s impact, coupled with a
deep understanding of the knowledge and interests of family
physicians within primary care settings, is pivotal for the
successful implementation of AI-based applications.
Surprisingly, in an extensive survey across 4 of Saudi Arabia’s
largest hospitals, a general lack of AI knowledge was evident
among 250 doctors, nurses, and technicians [19]. This signifies
the importance of addressing knowledge gaps to harness the
benefits of AI effectively.

JMIR AI 2024 | vol. 3 | e40781 | p.574https://ai.jmir.org/2024/1/e40781
(page number not for citation purposes)

Waheed & LiuJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


A gender-specific perspective on AI knowledge was highlighted
in a study among 387 medical students in India, revealing that,
although female students exhibited little initial AI knowledge,
they displayed heightened interest in the field [20]. Moreover,
AI was perceived to play a major role in health care service
delivery in the future. This gender dimension adds nuance to
the broader understanding of AI adoption in health care.

The projected role of AI in future health care service delivery
is significant. Examples abound, such as AI therapy, which is
a web-based course developed by the University of Sydney that
uses cognitive behavioral therapy to help patients with social
anxiety disorder [21]. In pathology, a DL-based convolution
neural network achieved performance comparable with that of
a human pathologist for detecting metastatic breast cancer in
tissue slides from a lymph node biopsy. Similarly, the
convolutional neural network–based system was more precise
and accurate for a tissue slide–based scoring system to predict
a decline in kidney function than a traditional pathologist [22].
In ophthalmology, the Food and Drug Administration–approved
DL system has been used to detect diabetic retinopathy.
Similarly, the DL system has been developed and evaluated to
diagnose and classify cataracts in pediatric patients based on
slit-lamp examination images, glaucoma based on retinal nerve
fiber layer or visual field, and keratoconus based on Scheimpflug
tonometry [22]. Physical robots are becoming more sophisticated
as AI is incorporated into their operating systems and are likely
to show the same intelligence level as other AI applications
[23]. Moreover, surgical robots are also used in minimally
invasive procedures such as in urological; gynecological; and
ear, nose, and throat surgeries. In recent advances in AI
applications, IBM’s Watson is an aiding tool for physicians to
detect cardiovascular diseases and cancer [21]. The IBM Watson
system can search and analyze data from a wide range of
sources, surpassing human physicians’ capacity in knowledge
[22]. Similarly, the picture archiving and communication system
can detect signs of diseases from chest x-ray, ultrasound,
magnetic resonance imaging, and computed tomography (CT)
scan by contextualizing data from past images, clinical reports,
and laboratory studies [24]. Opportunistic health care
management is the provision of health services or interventions
that are not planned but rather is an opportunity to address a
health care need or an issue such as smoking cessation, screening
for hypertension, prediabetes, and diabetes during a routine
medical consultation. In the United Kingdom, for example, as
a public health policy, “Making Every Contact Count” requires
health care professionals to provide such interventions [25].
This role of the physician can be assisted by AI. AI can be used
for opportunistic screening for diabetic retinopathy [26] and
opportunistic screening of low bone density using contrast and
noncontrast CT examinations [27]. AI algorithms identify minor
or subclinical electrocardiogram abnormalities linked to a higher
risk of developing left ventricular systolic dysfunction in the
future [28]. During the COVID-19 pandemic, AI performed
exceptionally well in the diagnosis, prognostic evaluation,
epidemic forecasting, and drug discovery processes [29].

Building upon this extensive literature review, the following
hypotheses were formulated:

• Hypothesis 1: perceived knowledge of AI among family
physicians within the PHCC does not vary significantly
based on age and gender.

• Hypothesis 2: family physicians at the PHCC perceive AI
to have a positive impact on enhancing health care practices.

• Hypothesis 3: family physicians at the PHCC perceive AI
to positively influence their roles in opportunistic health
care management.

AI in Primary Care
The rapid advancement of AI technology has brought about
transformative changes in health care management and has the
potential to revolutionize various aspects of medical practice.

Kueper et al [30] conducted a scoping review of the literature
on AI’s application in primary care, highlighting the evolving
landscape of AI adoption. This study showed a shift from
traditional expert systems to more sophisticated approaches,
particularly supervised ML, mirroring the rapid advances in AI
technologies. This paradigm shift holds profound significance
for health care management, as AI gains increasing recognition
as an asset in supporting health care professionals to make
well-informed clinical decisions, especially when managing
chronic conditions in high-income countries.

AI can assist with various health care tasks in primary care
settings. AI predictive analytics tools have proven their efficacy
in managing health care tasks [31]. These tasks include
maintaining precise medical records, scheduling, inventory
management, cost tracking, health promotion, clinical diagnosis,
treatment planning, and developing care management plans. AI
has the potential to enhance health care outcomes by
streamlining operations within the health care system. Current
academic literature presents an increasing trend in AI use in
primary care and its positive effect on health care tasks,
particularly in clinical management responsibilities [18]. The
emergence of AI in electronic health record systems, which are
extensively used today, has proven to be highly effective.
AI-based clinical decision support systems have continued to
evolve. Clinical decision support systems assist physicians and
enhance patient safety by preventing dosage errors, drug
duplication and presenting information on drug and drug
interactions. Moreover, these systems helps physicians to adhere
to clinical guidelines, order and interpret laboratory results,
issue prompts and alerts for abnormal results, suggest follow-up
actions, render treatment reminders and provide support for
clinical and diagnostic coding [32]. Early diagnosis and
treatment are essential for improving health outcomes. AI has
shown its effectiveness in assisting doctors with image-based
diagnoses of skin conditions and in proactively identifying
patients at risk of developing dementia [15]. In England’s
National Health Services, innovative applications of AI range
from triage and symptom assessment to the automatic coding
of clinical data, both in primary and community health care
settings, thereby supporting personalized care management.
This integration not only improves the quality of care but also
saves valuable time for physicians, allowing them to focus more
on providing personalized patient care. While the transformative
potential of AI in clinical roles is evident, its impact on
administrative functions has been relatively less explored [23].
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Nevertheless, AI can play a vital role in optimizing
administrative processes such as insurance collection, clinical
reporting, medical billing, sales cycle management, and medical
record management, ultimately contributing to more efficient
health care operations and resource allocation. AI systems can
perform routine operational tasks such as maintenance system
management, accounting, and information inquiry much better
and faster than human workers. AI-enabled chatbots and nursing
robots can significantly improve operational process efficiency
and reduce medical cost [33].

Collective evidence from the literature strongly suggests that
AI holds promise as a constructive tool for managing various
health care tasks at the PHCC. Its integration is expected to lead
to improved clinical decision-making, operational efficiency,
and ultimately contribute to enhanced patient care.

Accordingly, the following hypotheses were developed:

• Hypothesis 4: AI is perceived to play a constructive role in
managing various health care tasks in PHCC.

• Hypothesis 5: family physicians at the PHCC perceive AI
as having a positive impact on their clinical management
responsibilities.

• Hypothesis 6: family physicians at the PHCC perceive AI
as having a positive impact on their administrative
management tasks.

• Hypothesis 7: AI is perceived to significantly improve the
operational processes at the PHCC.

AI and Physicians
Whether AI will eventually replace physicians or complement
them is still being debated, but it will significantly impact health
care management activities and service delivery. The study by
Ahuja [22] investigated whether AI will augment the physician’s
role or eventually replace them using a quantitative survey
methodology. The key finding was that AI would eventually
replace radiologists in the field of radiology. This is because
AI is more efficient and can handle and interpret millions of
images in seconds. AI could interpret CT scans during the
COVID-19 pandemic with 96% accuracy in just 20 seconds
[34]. However, it has limitations, such as the inability to engage
in complex interactions (ie, communication) with patients,
failing to reassure patients, and to convey empathy. The study
by Sarwar et al [35] concluded a positive attitude toward AI by
taking the opinions of 487 pathologists from 54 countries
regarding AI. However, the majority also had concerns regarding
AI replacing their jobs. AI can triage cases as benign or
malignant cases to pathologists, increasing diagnostic efficiency
and accuracy and automated reporting, freeing 40% of
pathologist time by reducing the workflow [36]. Esteva et al
[37] conducted a comparative study testing 21 board-certified
dermatologists against a convoluted neural network–trained
system fed with 129,450 clinical images to the system. This
study concluded that the CNN outperformed dermatologists in
terms of both sensitivity and specificity. The study by Karches
[38] argued that human physician judgment would remain better
than that of AI in a primary care setting, as AI cannot adjust to
recommendations according to individual patients’ needs.
However, it cannot fine-tune its perception based on the patient’s
history and examination, which appears to be a human-only

ability. The study by Amisha et al [21] contends that machines
cannot gather cues that only a physician can do during a
patient-physician encounter. The machine cannot translate
human traits, such as empathy, creativity, imagination, critical
thinking, emotional intelligence, and interpersonal
communication, both analytically and logically. According to
the study by Meskó et al [39], the human physician is inevitable
as empathy, communication, and human touch are included in
the entire treatment process, which AI cannot provide; hence,
AI will only be a helpful cognitive assistant. Physicians and
nurses provide care to patients in an empathetic and
compassionate environment that robotic physicians and nurses
will not be able to do, as they lack the human characteristics of
compassion [40]. Trust, empathy, and compassion are widely
acknowledged as the core principles of effective health care
[41]. Empathetic care enhances patient satisfaction.

Accordingly, the following hypotheses were developed.

• Hypothesis 8: the application of AI in health care tasks is
perceived to lead to improved health care service delivery
at the PHCC.

• Hypothesis 9: family physicians at the PHCC believe that
AI is less likely to replace their current job roles.

• Hypothesis 10: family physicians at the PHCC perceive
that AI decision-making does not surpass the judgment
process of human physicians.

• Hypothesis 11: family physicians believe that the
introduction of AI at the PHCC reduces patient satisfaction.

AI and Human Resource Management
AI is promising for closing the care gap in resource-poor
settings, as digital health is widening. AI can address human
resource shortages by ameliorating diagnostics, administrations,
big analytics, and health care decisions [39]. AI and big data
have significant impacts on strategic human resource
management. Its digital transformation improves business
processes [42] through the employee recruitment process (hiring
and selection) and performance evaluation by providing
real-time and accurate data and positively impacting staff
retention [43]. AI is reported to reduce costs by providing
evidence-based and affordable care to patients [39].
Furthermore, this will improve the overall quality of care. The
actual economic impact of AI on health care is undetermined
due to the methodological deficiencies in the literature analyzed
in a systematic review [44]. Human resource management
confers a competitive advantage through employment
management by placing capable and highly committed workers
and incorporating structural, cultural, and personal techniques
[45]. Human resource management aims to manage human
capital in modern organizations, which is the most vital asset.
Instead of focusing on power, human resource management
should invest more in employee training and development
because it is a significant source of innovation and development
[46]. Mutual complementation of humans and machines creates
more value for the organization, as machines help data
interpretation and analysis, and humans in innovation and social
interaction. AI frees employees from repetitive tasks, but at the
same time, it also needs the development of higher collaborative
competencies among employees. Firms in the future would need
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new human resource plans with the need to develop policies by
reviewing the need for structural changes and capacity models,
and recent reforms would be required for enterprise human
resource management. Furthermore, a negative attitude toward
AI needs to be addressed among employees by properly
engaging them and studying AI in depth [46].

Accordingly, the following hypothesis was developed:

• Hypothesis 12: the introduction of AI is perceived to assist
and enhance human resource management practices at the
PHCC.

AI Challenges, Risks, and Ethical Ramifications
The study by Laï et al [1] argued that there are many concerns
regarding AI. These include the fuzzy notion of AI, health data
confidentiality issues, growth in AI knowledge, international
competition, and disruption of the patient-physician relationship.
Furthermore, the diagnosis and decision-making landscape is
expected to change for both physicians and patients, and these
developments would impact the entire health care system. The
implementation of AI will be another challenge, and AI must
add value and should support and not subvert the
patient-physician relationship, as health care is a social endeavor
based on human interactions. If AI is implemented correctly,
emotional and cognitive spaces would open for physicians;
however, if implemented incorrectly, it will have severe
consequences [8]. The existing information technology
infrastructure might be outdated to adopt AI systems, which
will require careful review before implementation. The adoption
of AI-based technologies by resource constrained countries can
be wider, as they will be more open to policy changes compared
to resource-rich countries [39]. With the introduction of AI
technology, the patient-physician relationship will change
significantly. The hierarchy will still be in place and the
patient-physician relationship will be more just than ever before
but patients’ autonomy is still a question. Similarly, the
development of standards for collecting data and testing, which
stakeholders, clinicians, industry, and scientists should lead,
will be challenging.

Accordingly, the following hypotheses were developed:

• Hypothesis 13: the implementation of AI is not expected
to undermine the patient-physician relationship from the
family physician’s perspective at the PHCC.

• Hypothesis 14: family physicians’perceptions of challenges
and ethical ramifications when introducing AI at the PHCC
do not significantly differ based on age and gender.

Methods

Overview
This study adopted a cross-sectional research design, using a
quantitative approach. The primary focus of a quantitative
methodology is to identify the relationship between variables
and to accept or reject connections or linkages between these
variables [47]. Moreover, it reduces bias probabilities, as the
researcher is independent of the respondents, both physically
and emotionally, and establishes standardization of investigation
and interpretation rather than situational analysis.

Participants and Data Collection
The PHCC in Qatar is the main provider of primary health care
services via its 28 health centers, scattered across all regions of
Qatar. There are 724 family physicians working in the
organization. On the basis of a CI of 95%, an expected
proportion of 0.5, and a margin of error of 5, the sample size
was 252. The questionnaire was sent via PHCC intranet email
by the operations department of the PHCC to all family
physicians for 4 weeks in March 2021, with reminder emails
sent after the second and third week. A total of 132 physicians
participated in the study. Among them, 102 questionnaires were
fully completed that were eligible for data analysis. Incomplete
questionnaires were not included because all questions were
eligible for the hypothesis test. The response rate was 14.1%
(102/724).

The demographic characteristics of participants who were early
and late responders were analyzed by splitting the data into 2
groups based on the date of response. The analysis showed that
early responders were similar to late responders in age (P=.15),
gender (P=.99), working status (P=.33), and licensed years
(P=.11). Although the response rate was low, it can be assumed
that the nonresponse bias was minimal.

Data Analysis
Data collected from participants using Survey Monkey software
(Symphony Technology Group) were transferred to SPSS
(version 27; IBM Corp) for statistical analysis. The information
was codified using the data statistics editor in SPSS. The Likert
scale had 5 categories: strongly agree, agree, neutral, disagree,
and strongly disagree. The Likert scale data were forward scored
on a numeric scale of 1 to 5 to facilitate statistical analysis.

Descriptive and inferential statistical models were used to
analyze the survey results. Nonparametric tests were chosen
because the data were not normally distributed, as confirmed
using the Kolmogorov test. The Shapiro-Wilk test is commonly
used for sample sizes <50, while the Kolmogorov approach is
used for sample sizes >50 to assess the normality of the data
distribution [48].

The Spearman rho correlation coefficient, which assesses the
2-way linear relationship between 2 variables, was used to
determine whether the application of AI in health care tasks is
perceived to lead to improved health care service delivery at
PHCC. The Spearman rho correlation value ranges from +1 to
–1, where 0 represents no relationship, +1 indicates a perfect
positive correlation, and –1 indicates a perfect negative
correlation [49].

The chi-square goodness-of-fit test, comparing expected and
observed values in categorical variables [50], was used to assess
family physicians’ perceptions of AI’s role in job replacement,
human resource management, and patient-physician
relationships. The chi-square test of homogeneity, comparing
proportions between ≥2 groups [51], was used to examine
variations in AI knowledge and challenges, as well as ethical
ramifications by age and gender. To compare column
proportions by age and gender groups, multiple corrections were
made using the Bonferroni correction.
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The 1-sample Wilcoxon test was used to assess perceptions of
AI’s positive impact on health care practices, clinical and
administrative tasks, and patient satisfaction at the PHCC. This
test, an alternative to the standard 1-sample t test, is assumed
to be more sensitive to the sign test, measuring positive and
negative ranks for testing significance using the hypothesized
median set as neutral (0) when testing these hypotheses [52].

Validation
The survey questionnaire, comprising 47 questions, underwent
a systematic process of piloting, testing, and validation to
eliminate potential ambiguity for the respondents. Primarily
using the Likert scale, it covered five main constructs: (1)
demographics (4 items), exclusively designed to capture
participant data without internal consistency measurement; (2)
family physician’s knowledge and perspective on clinical
management of AI (11 items, Cronbach α=0.873); (3) family
physician perspective on administrative management of AI (10
items, Cronbach α=0.916); (4) family physician’s perspective
on public health management of AI (9 items, Cronbach
α=0.930); and (5) family physicians’ perspectives on AI
challenges, ethical ramifications, and impact on job roles (13
items, Cronbach α=0.744). The overall Cronbach α score for
the research instrument, excluding demographics, was 0.937,
indicating exceptional reliability per the established standard
[53]. The respondents took mean time of 12 (SD 9) minutes to
complete the survey.

Ethical Considerations
This paper was developed from the first author’s (MAW’s)
dissertation that he completed with the University of Liverpool
in partial fulfillment of the requirements for a master’s degree
when the second author (LL) was the supervisor. The original
research project was approved by both the University of
Liverpool, United Kingdom Research Ethics Committee, and
PHCC, Qatar Research Subcommittee (approval no:
PHCC/DCR/2020/07/079). Permission was obtained by sending
a questionnaire via the intranet email from the organization. In
the web-based survey questionnaire, an initial page was provided
to participants to explain the nature, purposes, and expected
duration of the research. Moreover, it was ensured to the
participants that this study was entirely voluntary, their data
would be dealt with in the strictest confidential manner, and no
information would be collected to identify them.

Results

Descriptive Statistics
Descriptive statistics were used to summarize the research
findings using the frequency and percentage of responses. The
responses on the Likert scale were collapsed and recategorized
into 3 main groups: agree, neutral, and disagreed.

Demographic Data
The demographic data are summarized in Table 1. The majority
of respondents (72/102, 70.6%) were men, 94 (92.2%) out of
102 were in the age group of 35 to 54 years, and 58 (56.9%)
out of 102 worked as consultants.
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Table 1. Participants’ demographic data (N=102).

Values, n (%)Characteristics

Age groups (years)

1 (1)25-34

44 (43.1)35-44

49 (48)45-54

8 (7.8)55-64

Gender

72 (70.6)Men

30 (29.4)Women

Working status

27 (26.5)General practitioner

1 (1)Pediatrician

7 (6.9)Associate specialist

58 (56.9)Consultant

7 (6.9)Senior consultant

1 (1)Manager

1 (1)Executive

Licensed years

2 (2)1-2

16 (15.7)2-5

29 (28.4)5-10

31 (30.4)10-20

19 (18.6)20-30

5 (4.90)30-40

Perceived Knowledge of AI
Of the 102 family physicians surveyed for AI awareness, 7
(6.9%) out of 102 were extremely aware, 18 (17.6%) out of 102
were very aware, 55 (53.9%) out of 102 were somewhat aware,

20 (19.6%) out of 102 were not so aware, and 2 (2%) out of 102
had no awareness. Overall, AI awareness among PHCC
physicians was 78.4% (80/102). The results are summarized in
Table 2.

Table 2. Perceived knowledge of artificial intelligence (AI; N=102).

Values n (%)Perceived knowledge of AI

7 (6.9)Extremely aware

18 (17.6)Very aware

55 (53.9)Somewhat aware

20 (19.6)Not so aware

2 (2)Not at all aware

80 (78.4)Overall awareness

Family Physicians’ Perspective on Clinical and
Administrative Role of AI in Health Care Management
Table 3 depicts the perspective of family physicians on the
clinical and administrative role of AI in health care management.
Most of the respondents (73/102, 71.6%) acknowledge the
potential of AI in triage, while 60 (58.8%) out of 102 believe
in its efficacy for assisting in emergency case management.

Regarding clinical assessment and diagnostic management tasks,
69.6% (71/102) agree with the assistive role of AI, with 55
(53.9%) out of 102 of physicians foreseeing its capability to
surpass conventional methods of diagnostic report management.
Furthermore, 81 (79.4%) and 56 (54.9%) out of 102 of
physicians believe in AI's assistance in medication management
requirements and improving patient treatment compliance,
respectively. On the administrative role of AI, most physicians
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(86/102, 84.3%) perceive AI as managing health care
performance by enhancing information dissemination, while
78 (76.5%) out of 102 anticipate improved efficiency in health
care administrative activities. The positive perceptions extend
to the care management systems, with 83 (81.4%) out of 102

agreeing on AI’s improving them and 79 (77.5%) out of 102
endorsing its ability to reduce medical errors. This collective
optimism highlights the potential transformative impact of AI
in enhancing the clinical and administrative roles of family
physicians and, hence, health care delivery.

Table 3. Family physicians’ perspective on the clinical and administrative management role of artificial intelligence (AI; N=102).

Disagree, n (%)Neutral, n (%)Agree, n (%)

AI on clinical management

6 (5.9)23 (22.5)73 (71.6)AI can assist in triage

15 (14.7)27 (26.5)60 (58.8)AI can assist in managing emergency cases

7 (6.9)24 (23.5)71 (69.6)AI will assist in clinical assessment and diagnosis management tasks easy

17 (16.7)30 (29.4)55 (53.9)AI will supersede the conventional methods of diagnostic reports management

9 (8.8)28 (27.5)65 (63.7)AI will improve clinical judgment process

1 (1)15 (14.7)86 (84.3)AI has the potential for the task management and clinical investigation and data
storage

1 (1)19 (18.6)82 (80.4)AI will assist to follow clinical pathways

2 (2)19 (18.6)81 (79.4)AI will assist in medication management requirements

11 (10.8)35 (34.3)56 (54.9)AI integration will make patients treatment compliance better

2 (2)29 (28.4)71 (69.6)AI enhances overall management of patient care

AI on administrative management

1 (1)18 (17.6)83 (81.4)AI integration will help in improving care management systems

1 (1)22 (21.6)79 (77.5)AI can make effective plans to reduce medical errors

1 (1)15 (14.7)86 (84.3)AI will help in managing health care performance by improving information dissem-
ination

2 (2)22 (21.6)78 (76.5)AI will be more helpful in management of service provision

4 (3.9)20 (19.6)78 (76.5)AI integration will make health care administrative activities more robust and suc-
cessful

3 (2.9)24 (23.5)75 (73.5)AI helps in financial planning and management

11 (10.8)24 (23.5)67 (65.7)AI assists in health care policy making

6 (5.9)23 (22.5)73 (71.6)AI has potential for planning treatment care pathways

8 (7.8)29 (28.4)65 (63.7)AI will assist human resource management (recruitment and retention)

5 (4.9)23 (22.5)74 (72.5)AI introduction will be advantageous to administrative staff

Family Physicians’ Perspective on the Role of AI in
Public Health Management
Table 4 presents the family physicians’ perspectives on the role
of AI in public health management. Family physicians
overwhelmingly supported the integration of AI in public health,
with 80 (78.4%) out of 102 respondents endorsing its role in
organizing tasks for public health awareness and 84 (82.4%)
out of 102 endorsing its role in managing public health
surveillance. Interestingly, 85 (83.3%) out of 102 agreed on

AI’s efficacy in providing disease reports for disease prediction
and management. A significant majority (86/102, 84.3%)
perceived AI as a valuable tool for opportunistic health care
screening. Moreover, 78 (76.5%) out of 102 believed in AI’s
effectiveness during epidemics and 72 (70.6%) out of 102 agreed
that it aids in managing health care logistics and reducing costs
during pandemics. These findings highlight the positive
perception of AI’s multifaceted benefits in enhancing public
health strategies and outcomes.
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Table 4. Family physicians’ perspectives on the role of artificial intelligence (AI) in public health management (N=102).

Disagree, n (%)Neutral, n (%)Agree, n (%)

AI on public health management

1 (1)21 (20.6)80 (78.4)AI is beneficial for organizing tasks for public health awareness

1 (1)17 (16.7)84 (82.4)AI helps in disease screening and monitoring

2 (2)20 (19.6)80 (78.4)AI is an efficient tool for assessing and managing risks to public health

0 (0)17 (16.7)85 (83.3)AI has the potential for providing reports for disease prediction and disease manage-
ment

0 (0)18 (17.6)84 (82.4)AI may be considered by physicians as a beneficial tool in managing public health
surveillance

0 (0)16 (15.7)86 (84.3)AI introduction in health care management will make opportunistic health care
screening easier

3 (2.9)21 (20.6)78 (76.5)AI is effective tool in managing quality of care in epidemics

2 (2)27 (26.5)73 (71.6)AI is an efficient tool in disease containment projects planning

0 (0)30 (29.4)72 (70.6)AI will help in managing health care logistics and reduce cost during pandemics

Family Physicians’ Perspective on AI Challenges and
Ethical Ramifications in Health Care and Impact on
Their Job Roles
Table 5 shows that family physicians expressed concerns about
AI challenges, ethical ramifications in health care, and their
impact on their job roles. A majority (61/102, 59.8%) worried
about patient confidentiality due to potential hacking of
AI-managed health care records; similarly, 61 (59.8%) out of
102 were concerned about the risk to organizations’confidential
data. Regarding decision-making, 69 (67.6%) out of 102
acknowledged potential conflicts with humans due to differences
in decision-making and 80 (78.4%) out of 102 expressed concern
about AI lacking emotional input. Patient satisfaction was a
concern for 76 (74.5%) out of 102 due to the absence of
emotions in AI-driven decisions. In addition, 65 (63.7%) out
of 102 believed AI’s clinical judgment may be inferior to that

of physicians. While 42 (41.2%) out of 102 agreed AI could be
accountable in malpractice cases, 89 (87.3%) out of 102
emphasized the need for AI training for health care managers
and staff. However, 33 (32.4%) out of 102 found learning AI
challenging for health care staff. Family physicians expressed
nuanced views on AI’s impact on their roles. The majority
(74/102, 72.5%) believed that AI cannot replace their jobs, with
53 (52%) out of 102 asserting that it will not undermine the
patient-physician relationship. A total of 35 (34.3%) out of 102
were open to using AI in medical decisions in the future. These
findings demonstrated family physicians’ perceived AI risks,
such as data privacy, confidentiality, the decision-making
process of AI, its accountability in cases of malpractice, and
the need for training to learn AI. Moreover, it also highlighted
a balanced perspective on AI’s role, emphasizing AI augmenting
the roles of family physicians rather than replacing them.
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Table 5. Family physicians’ perception on artificial intelligence (AI) challenges and ethical ramifications and impact on their job role (N=102).

Disagree, n (%)Neutral, n (%)Agree, n (%)

AI challenges and ethical ramifications

9 (8.8)32 (31.4)61 (59.8)Management of health care records through AI may threaten patient confidentiality
due to hacking

11 (10.8)30 (29.4)61 (59.8)Management through AI may threaten health care organizations confidential data
due to hacking

7 (6.9)26 (25.5)69 (67.6)Management of health care operations involving AI may conflict with humans due
to difference in decision-making

6 (5.9)16 (15.7)80 (78.4)Decision-making process by AI in health care encounters lacks emotional input

8 (7.8)18 (17.6)76 (74.5)Management of decision-making process through AI may decrease patient satisfaction
due to lack of emotions

13 (12.7)42 (41.2)47 (46.1)Patients’ satisfaction is decreased with inclusion of AI in decision-making process
management

11 (10.8)26 (25.5)65 (63.7)Process of clinical judgment by AI might be inferior to that made by physicians

21 (20.6)39 (38.2)42 (41.2)In case of malpractice AI integration in decision-making process can be held account-
able

1 (1)12 (11.8)89 (87.3)Health care managers and staff will require training in AI-based operations

29 (28.4)40 (39.2)33 (32.4)Management of health care processes through AI are hard to learn for health care
staff

11 (10.8)17 (16.7)74 (72.5)AI could not replace physician job

21 (20.6)28 (27.5)53 (52.0)AI would not undermine patient-physician relationship

23 (22.5)43 (43.1)35 (34.3)AI will be used in making medical decision in future

Hypothesis
Table 6 illustrates a summary of the hypotheses tested, the
statistical tests used, corresponding P values and key findings
with their relevant implications. The perceived knowledge of
AI among different age and gender groups (hypothesis 1)
examined by using the chi-square test of homogeneity showed
no statistical significance for the perceived knowledge of AI
among family physicians within the PHCC based on age and
gender groups. The awareness of the physicians who were men
was (60/72, 83%), and that of the women awareness was (20/30,
67%; P=.06). Similarly, regarding the awareness of AI between
physicians aged 18 to 54 years (72/94, 77%) and aged >55 years
(8/8, 100%) with P=.12. Licensed years and working status also
had no statistical significance with awareness of AI (P=.50 and
P=.51, respectively). Chi-square tests of homogeneity showed
no significant differences across age and gender groups
regarding 10 item, AI challenges and ethical ramifications

(hypothesis 14; P>.05). A 1-sample Wilcoxon signed-rank test
confirmed a perceived positive role of AI in health care practice,
task management, and operational processes at PHCC
(hypotheses 2, 4, and 7; P<.001). In addition, a Spearman rho
test demonstrated a moderate to strong correlation between
health care tasks and health care service delivery (hypothesis
8; Spearman rho=0.679, P<.001). The analyses using a 1-sample
Wilcoxon signed-rank test further supported the positive impact
of AI on family physician opportunistic health and clinical and
administrative roles (hypotheses 3, 5, and 6; P<.001), while
anticipating a reduction in patient satisfaction (hypothesis 11;
P<.001). Importantly, the results indicated that AI is not
expected to negatively impact the patient-physician relationship
(hypothesis 13; P<.001) and will not replace human physicians
(hypothesis 11; P<.001). These findings provide valuable
insights into the strategic integration of AI into health care
settings.
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Table 6. Summary of hypothesis testing using specific statistical tests (chi-square test of homogeneity and goodness-of-fit, 1-sample Wilcoxon
signed-rank test, and Spearman rho), corresponding P values, key findings and their implications.

Key findings and implicationsP valueStatistical testHypothesis

No significant difference in AI perceived
knowledge across age and gender groups.

.12 for age;

.06 for gen-
der groups

Chi-square test of homo-
geneity

Hypothesis 1: perceived knowledge of AIa among family

physicians within the PHCCb does not significantly vary
based on age and gender groups.

Strong evidence is supporting the perceived
positive role of AI in health care practice.

<.0011-sample Wilcoxon
signed-rank test

Hypothesis 2: family physicians at the PHCC perceive AI
to have a positive impact on enhancing health care prac-
tices.

Affirms the perceived positive influence of AI
on opportunistic health care management roles.

<.0011-sample Wilcoxon
signed-rank test

Hypothesis 3: family physicians at the PHCC perceive AI
to positively influence their roles in opportunistic health
care management.

Strong evidence suggesting AI’s perceived
beneficial impact on health care task manage-
ment.

<.0011-sample Wilcoxon
signed-rank test

Hypothesis 4: AI is perceived to play a constructive role
in managing various health care tasks at the PHCC.

Indicates a perceived positive effect of AI on
clinical management roles.

<.0011-sample Wilcoxon
signed-rank test

Hypothesis 5: family physicians at the PHCC perceive AI
to have a positive impact on their clinical management re-
sponsibilities.

Provides evidence of AI’s perceived positive
influence on administrative roles.

<.0011-sample Wilcoxon
signed-rank test

Hypothesis 6: family physicians at the PHCC perceive AI
to have a positive impact on their administrative manage-
ment tasks.

Strong evidence supporting AI’s perceived
positive influence on health care operations.

<.0011-sample Wilcoxon
signed-rank test

Hypothesis 7: AI is perceived to significantly improve the
operational processes at the PHCC.

Moderate to strong positive correlation be-
tween perceived AI application in health care
tasks and health care service delivery.

<.001Spearman rho testcHypothesis 8: the application of AI in health care tasks is
perceived to lead to improved health care service delivery
at the PHCC.

Strong evidence against the hypothesis of AI
job replacement as perceived by family physi-
cians.

<.001Chi-square goodness-of-

fit testd
Hypothesis 9: family physicians at the PHCC believe that
AI is less likely to replace their current job roles.

Strong evidence against the superiority of AI
decision-making over human judgment as
perceived by family physicians.

<.001One sample Wilcoxon
signed-rank test

Hypothesis 10: family physicians at the PHCC perceive
that AI decision-making does not surpass the judgment
process of human physicians.

Strong evidence that AI has a negative impact
on patient satisfaction as perceived by family
physicians.

<.001One sample Wilcoxon
signed-rank test

Hypothesis 11: the introduction of AI is believed to reduce
patient satisfaction by family physicians at the PHCC.

Strong evidence supporting the idea that AI is
perceived to assist in human resource manage-
ment.

<.001Chi-square goodness-of-

fit teste
Hypothesis 12: the introduction of AI is perceived to assist
and enhance human resource management practices at the
PHCC.

Strong evidence against the hypothesis of AI
is perceived to negatively impacting the pa-
tient-physician relationship.

<.001Chi-square goodness-of-

fit testf
Hypothesis 13: the implementation of AI is not expected
to undermine the patient-physician relationship from the
family physician perspective of the PHCC.

No significant differences in perceived chal-
lenges and ethical ramifications among age
and gender groups.

>.05Chi-square test of homo-
geneity

Hypothesis 14: family physicians’perceptions of challenges
and ethical ramifications when introducing AI at the PHCC
do not significantly differ based on age and gender.

aAI: artificial intelligence.
bPHCC: Primary Health Care Corporation.
cCorrelation coefficient of health care tasks and health care service delivery was Spearman rho=0.679 (moderate to strong correlation).
dχ2

2=71.1; N=102.
eχ2

2=48.8; N=102.
fχ2

2=16.6; N=102.

Discussion

Principal Findings
The primary findings of this study offer valuable insights into
the perceptions of PHCC family physicians in Qatar regarding

the integration of AI in the health care context. The overall
awareness of AI among PHCC physicians in Qatar was 78.4%
(80/102). Moreover, the proportion of physicians with very
aware and extremely aware levels of AI was 24.5% (25/102),
reflecting a robust understanding of AI technology. Critically,
the statistical analysis did not reveal any meaningful variations
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in perceived AI knowledge based on gender (P=.06) or age
groups (P=.12). Similarly, the exploration showed no
statistically significant correlations between AI awareness and
factors such as years of licensure (P=.50) or current working
status (P=.51). Similarly, no significant disparities in perceived
AI challenges and ethical implications were identified among
physicians of diverse age and gender groups (P>.05).
Furthermore, the results highlight the affirmative role that
physicians perceive AI might play in the enhancement of health
care practices at the PHCC (P<.001), facilitating improved
management of health care tasks (P<.001), optimizing
operational processes (P<.001), and fostering effective human
resource management (P<.001). Notably, AI was perceived to
exert a beneficial influence on the multifaceted roles of family
physicians in clinical (P<.001), administrative (P<.001), and
opportunistic health care management (P<.001). It is crucial to
highlight that the study findings indicate physicians’perception
that AI decision-making does not supersede the clinical
judgment process of human physicians (P<.001), and the
introduction of AI is not anticipated to compromise the essential
patient-physician relationship (P<.001). Moreover, from the
perspective of family physicians, AI was less likely to displace
their existing job roles (P<.001). However, the implementation
of AI was expected to result in reduced patient satisfaction
(P<.001).

Comparison With Prior Work
The overall awareness of AI among PHCC physicians stands
at 78.4% (80/102), reflecting a significant level of perceived
knowledge. This heightened awareness may facilitate the
implementation of AI without substantial resistance [54]. This
awareness level is notably higher than that in the study
conducted by Oh et al [55], where only 5.9% of Korean medical
students and doctors perceived a strong familiarity with AI,
despite Korea’s reputation as technologically advanced.

Consistent with the proposition found in the study by Lin et al
[8], our findings indicate that PHCC physicians perceive AI as
a transformative force in primary care. Importantly, our research
affirms that from the physicians’ perspective, AI is less likely
to replace the role of the family physician and does not surpass
the human physician decision-making process. This aligns with
the literature, which asserts that AI enhances the diagnostic
capability of family physicians rather than replacing their
diagnostic intelligence [56].

Our study demonstrates that PHCC physicians perceive AI as
a valuable tool for human resource management, positively
impacting both employee retention and recruitment, which is
consistent with the literature. Despite being a relatively novel
concept, AI has the potential to streamline recruitment processes,
leading to more efficient and high-quality employee selection
[57]. Furthermore, AI’s influence extends across key domains
of human resource management, as indicated by its potential to
enhance recruitment, placement, staff development, performance
management, compensation management, human relations
management, and strategic planning of human resources [58].
AI-based systems, such as those using automated recruitment
tasks and reducing bias, hold promise for improving the
efficiency and effectiveness of human resource functions.

The perception among PHCC physicians that AI improves
operational processes and reduces the cost of care aligns with
existing literature. Predictive analytics, including forecasting,
enhance capacity management, resource use, and improvement
in overall business processes, contributing to operational
innovation in health care [59]. In addition, routine operational
processes can be made quicker and more efficient through AI
integration.

Although, nowadays, AI can demonstrate superior performance
compared to physicians in certain specialties, such as
dermatology (analysis of skin lesions), pathology (slide
scanning), cardiology (electrocardiographic interpretation), and
radiology (analysis of clinical images) [60], it is not perceived
as surpassing the broader clinical decision-making process of
human physicians. Patient satisfaction may be reduced due to
AI’s limitations in replicating human characteristics, such as
empathy, compassion, and human touch [61], and complete
acceptance of fully automated services remains a challenge.
Nevertheless, AI’s superiority in specialized domains
underscores its potential to complement medical practitioners
in specific areas.

This study highlights the perceived positive impact of AI on
opportunistic health care management, which was evident
particularly during the COVID-19 pandemic. The use of AI in
tracking, prediction, contact tracing, early diagnosis, monitoring,
and vaccine development highlights its crucial role in addressing
pandemic health care challenges [62]. Approximately 36
countries have used AI- and ML-based applications for digital
contact tracing to limit the spread of SARS-CoV-2 [63]. The
Ministry of Public Health of Qatar has also adopted AI-based
tools for contact tracing, and this exemplifies how AI can
contribute to crisis management and safeguarding public health.

Given the perception of family physicians, this research
establishes that AI integration positively affects PHCC service
delivery, enhancing health care task management and care
systems. AI will automate many administrative tasks where
managers, administrators, and health care staff spend about 54%
of their time on them [64]. Family physicians’ clinical and
administrative roles may benefit from AI integration, reducing
administrative burdens and allowing them to focus on
patient-centered care, increasing their professional fulfillment
and reducing burnout [65]. AI’s potential for disease prediction,
digital health coaching, evidence-based clinical decisions, and
medication management improvement holds promise for
improving the quality of care provided.

PHCC physicians perceived ethical considerations surrounding
AI, including informed consent, safety, transparency, biases,
and data privacy, aligned with concerns found in the literature
[66]. Notably, 41.2% (42/102) of participants in this study
advocated AI’s liability in cases of malpractice, reflecting the
need for robust accountability mechanisms. Recent regulatory
updates, such as the introduction of the Medical Device
Regulation in Europe, reflect the evolving legal landscape of
AI [66]. Policy makers should consider product liability,
deterrence, and compensation as they navigate this dynamic
terrain.
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While the impact of AI on patient-physician relationships
remains uncertain [67], our study concludes that from the
physicians’ perspective, AI will not subvert these relationships.
However, careful and strategic planning is essential during AI
implementation to prevent potential negative consequences.
The balance between cost reduction, efficiency, and accuracy
considerations while upholding patient-physician dynamics is
of paramount importance.

Limitations and Further Research
This study produced compelling findings and will serve as a
springboard for future researchers to replicate similar studies.
However, it is critical to understand the limitations of a study
because they reflect flaws that could influence the outcomes
and conclusions [68]. First, it used a positivist paradigm that
limits family physicians’ richer perspectives in a broader context
for applying AI in PHCC management and practices. Second,
this study only included the PHCC, a single organization, and
the response rate in this study was low despite sending 2
reminder emails to practicing family physicians at the PHCC.
However, response rates have been declining in health care
field–related surveys [69] and physicians’ response rates have
continued to decline [70].

This research can be replicated based on an interpretivist
paradigm and by using semistructured interviews to obtain
deeper insights and richer knowledge about the perception of
family physicians regarding the application of AI in a primary
care setting. Perhaps using mixed methods will provide a deeper
understanding and add more rigor to research regarding the
application of AI in primary care [71]. Future research can also
examine the factors that lead to resistance to AI implementation
in primary care. Moreover, it should include nurses’
administrative, laboratory, pharmacy, and dental staff’
perspectives on applying AI in primary care. Furthermore, the
most crucial aspect is to have the patient perspective central to
improvement in health care systems.

Conclusions
The findings from this study indicate that physicians hold a very
positive perception regarding the integration of AI within

primary health care services at the PHCC, foreseeing potential
enhancements in health care task management and overall
service delivery. This perception extends to various dimensions
of family physicians’ job roles, encompassing clinical,
administrative, and opportunistic health care management. The
positive expectations regarding AI’s impact also extend to
operational processes, anticipating improved information
dissemination, enhanced health care policy formulation,
optimization of treatment care pathways, more effective human
resource management, and strategic financial planning processes
within the PHCC. During periods of epidemics and pandemics
such as the COVID-19 pandemic, the public health management
role of AI is well acknowledged by family physicians for disease
screening, contact tracing, risk assessment, real-time monitoring,
early diagnosis, vaccine development, and formulating efficient
management strategies using AI’s predictive and logistical
prowess. It is important to note that AI is not perceived as a
direct replacement for family physician roles, and its
introduction is not anticipated to undermine the significant
patient-physician relationship. Moreover, AI is not perceived
as superior to the human judgment process. Although AI holds
the potential to be a valuable augmentation tool for the roles of
family physicians, as per their perspective, it enhances their
efficiency and productivity. However, its implementation
requires due diligence with a strategy that maintains the critical
challenges associated with AI integration, such as concerns
related to patient satisfaction, ethical considerations regarding
AI accountability in cases of malpractice, and the utmost need
to uphold data privacy and confidentiality, as highlighted in this
study. The implementation of AI is expected to elevate care
management systems, consequently enhancing the quality of
care, while simultaneously streamlining costs. The
perception-based insights from this study can guide future AI
implementation strategies within the context of primary health
care at the PHCC, helping to pave the way for a more informed
and sustainable integration of this technology. This careful and
patient-centered approach will be essential in unlocking the full
potential of AI in improving health care delivery, while
safeguarding the values and priorities that underpin the field of
medicine.
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Abstract

Background: The integration of artificial intelligence (AI), particularly deep learning models, has transformed the landscape
of medical technology, especially in the field of diagnosis using imaging and physiological data. In otolaryngology, AI has shown
promise in image classification for middle ear diseases. However, existing models often lack patient-specific data and clinical
context, limiting their universal applicability. The emergence of GPT-4 Vision (GPT-4V) has enabled a multimodal diagnostic
approach, integrating language processing with image analysis.

Objective: In this study, we investigated the effectiveness of GPT-4V in diagnosing middle ear diseases by integrating
patient-specific data with otoscopic images of the tympanic membrane.

Methods: The design of this study was divided into two phases: (1) establishing a model with appropriate prompts and (2)
validating the ability of the optimal prompt model to classify images. In total, 305 otoscopic images of 4 middle ear diseases
(acute otitis media, middle ear cholesteatoma, chronic otitis media, and otitis media with effusion) were obtained from patients
who visited Shinshu University or Jichi Medical University between April 2010 and December 2023. The optimized GPT-4V
settings were established using prompts and patients’ data, and the model created with the optimal prompt was used to verify the
diagnostic accuracy of GPT-4V on 190 images. To compare the diagnostic accuracy of GPT-4V with that of physicians, 30
clinicians completed a web-based questionnaire consisting of 190 images.

Results: The multimodal AI approach achieved an accuracy of 82.1%, which is superior to that of certified pediatricians at
70.6%, but trailing behind that of otolaryngologists at more than 95%. The model’s disease-specific accuracy rates were 89.2%
for acute otitis media, 76.5% for chronic otitis media, 79.3% for middle ear cholesteatoma, and 85.7% for otitis media with
effusion, which highlights the need for disease-specific optimization. Comparisons with physicians revealed promising results,
suggesting the potential of GPT-4V to augment clinical decision-making.

Conclusions: Despite its advantages, challenges such as data privacy and ethical considerations must be addressed. Overall,
this study underscores the potential of multimodal AI for enhancing diagnostic accuracy and improving patient care in
otolaryngology. Further research is warranted to optimize and validate this approach in diverse clinical settings.
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Introduction

The emergence of artificial intelligence (AI) has altered the
landscape of medical technology, particularly in diagnosis,
which leverages the identification of features based on imaging
and physiological data [1-3]. In the field of otolaryngology, AI
and deep learning models are being used for imaging; ongoing
efforts focus on classifying diseases based on tympanic
membrane images of middle ear disease [4-6]. Technological
advancements, including deep learning and transfer learning
using pretrained models, have resulted in an accuracy range of
70%-90% in models for analyzing otoscopic images [7]. There
have also been advancements in its application, such as
implementing smartphone-based point-of-care diagnostics [8].
However, these models rely on trained image data, require large
image data sets, and do not consider patient information or
clinical context. Consequently, the universality of these models
is limited, and their optimal application in clinical practice
remains unclear.

Recently, large-scale language-processing models have become
available for general use. Further, 1 such model, the GPT-4,
has demonstrated specialist-level medical knowledge through
its language-processing abilities [9-11]. Since October 2023,
GPT-4 Vision (GPT-4V) has gained the ability to evaluate image
data, enabling a multimodal diagnostic approach that
incorporates both language processing and image analysis [12].
GPT-4V enables the integration of patient information analysis
and image-based deep learning models, providing valuable

support in diagnosis and treatment, similar to decisions made
in a clinical setting [13]. Multimodal AI, which bases diagnosis
on multiple pieces of information, has been reported to be more
effective than methods that rely on a single type of information.
This is demonstrated in various medical applications, including
the combination of pathology images with genomic information
[14] and their use in liver cancer [15] and cervical cancer [16],
where imaging information is integrated. In
otorhinolaryngology, there have been few reports; however,
efforts to incorporate AI for otoscopic images could further
improve the quality of care.

In this study, we aimed to investigate the effectiveness of a
multimodal approach using GPT-4V to diagnose middle ear
disease. This approach was designed to integrate patient-specific
data (age, sex, and chief complaint) with tympanic membrane
images to assess the accuracy of the versatile GPT-4V. The
model’s accuracy was compared with physicians’ diagnoses to
validate its effectiveness in image-based deep learning. The
potential future development of the multimodal AI approach
for classifying middle ear diseases is also discussed.

Methods

Study Design
GPT-4V has been available as an image recognition model since
September 25, 2023. This study’s design was divided into two
phases: (1) establishing a model with appropriate prompts and
(2) validating the ability of the optimal prompt model to classify
images (Figure 1).
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Figure 1. Overview of this study. The model was divided into two phases: (1) establishment and (2) tuned model validation.TM: tympanic membrane.

Correct Otoscopic Images and Patient Information
This study included 305 otoscopic images of middle ear disease
obtained from patients who visited Shinshu University or Jichi
Medical University between April 2010 and December 2023.
The endoscope used was an Olympus ENF-VH and ENF-V3
(Olympus), and the video system was an Olympus VISERA
ELITE OTV-S190. Further, 1 image was obtained from each
patient. We excluded images with poor quality and those in
which multiple diseases were suspected. The remaining images
were classified into 4 disease categories: acute otitis media
(AOM), middle ear cholesteatoma (chole), chronic otitis media
(COM), and otitis media with effusion (OME). The final
diagnoses were based on the judgment of the otolaryngologists
who treated the patients. These images were accompanied by
patient-specific information, such as age, sex, and chief
complaint (eg, fever, otalgia, otorrhea, ear fullness, deafness,
facial palsy, dizziness, and tinnitus). We excluded images taken
after otologic surgery. Of note, only 1 image was obtained from
each patient.

GPT-4V Settings and Prompt Tuning
The GPT-4V settings were established using prompts reported
in previous studies [17,18]. Briefly, conditions and prompts for
providing answers were verified using 10 images for each
disease. According to a report on prompts [19], image data or
patient information were manually input into GPT-4V, and the
generated results were evaluated by the physicians (MN and
HY).

Accuracy Verification of GPT-4V Using the Optimal
Prompt Model
The model with the optimal prompt created was used to verify
the diagnostic accuracy of GPT-4V on 190 images (37 in AOM,
53 in chole [6 in congenital, 47 in acquired], 51 in COM, and

49 in OME), which were different from those for tuning
prompts. To account for the variability in responses, each
administration was performed 3 times, and responses that were
answered 2 or more times were considered to be the actual
response.

Comparison of AI Accuracy With Physician Accuracy
To compare the diagnostic accuracy of GPT-4V with that of
physicians, 30 clinicians completed a web-based questionnaire
consisting of 190 images.

The web-based survey included tympanic membrane images
and patient information (age, sex, and chief complaint) in a
4-choice question format. The respondents included 8
certificated pediatricians, 8 otolaryngology residents, 8
certificated otolaryngologists, and 6 experts in otolaryngology
(more than 15 years of experience).

To show the trend in the percentage of correct responses
according to the difficulty of the questions, the questions were
divided into 3 levels (easy, normal, and hard) according to the
overall percentage of correct responses by physicians, and the
percentage of correct responses for each level and each question
was compared between the GPT-4V and all doctors,
otolaryngologists, and pediatricians.

Ethical Considerations
Patient information was anonymized to protect privacy and used
only with the approval of the Ethics Committee of the Shinshu
University School of Medicine (6088).

Statistical Analysis
Groups were compared by 1-way ANOVA. Subsequently,
multiple comparison tests (the Bonferroni method) were used
to compare groups. Statistical significance was set at P<.05. A
1-sample proportion test was used to compare the performance
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of the physician with that of GPT-4V in terms of the correct
response rate.

Results

Establishment of Optimal Prompts
In the initial stage, we sought an optimal input method using
10 images for each disease (AOM, chole, COM, or OME; 40
images total). First, we input only images or options; GPT
mostly requires clinical information, such as patient history and
symptoms, although no response regarding the disease was
generated (Figure 1 and Multimedia Appendix 1). Second, the
names of the 4 diseases were added as candidate answers, but
again, no response regarding the disease was generated. When
detailed patient information, such as age, sex, and main
symptoms, was inputted, GPT-4V provided answers, indicating
that input images with patient data were the optimal prompt for
testing the accuracy of GPT-4V.

Accuracy Validation of the Multimodal AI Approach
The performance of the multimodal AI approach in this study
for classifying middle ear diseases was validated, with an overall
diagnostic accuracy of 82.1% for the GPT-4V-based analysis.
Disease-specific accuracy rates were 89.2% for AOM (true
positives [TP]=33, false positives [FP]=1, false negatives
[FN]=4, precision=0.97, recall=0.89, F1-score=0.93), 76.5%
for COM (TP=39, FP=7, FN=12, precision=0.85, recall=0.76,
F1-score=0.8), 79.3% for cholesteatoma (TP=42, FP=13, FN=11,
precision=0.76, recall=0.79, F1-score=0.78), and 85.7% for
OME (TP=42, FP=10, FN=7, precision=0.81, recall=0.86,
F1-score=0.83; Figure 2).

These results indicate high discrimination among various disease
types; however, there were also some incorrect responses.
Representative images of correct and incorrect GPT-4V
classifications for each disease are shown in Figure 3.

Figure 2. Confusion matrix of GPT-4V for classifying 4 middle ear diseases. AOM: acute otitis media; chole: middle ear cholesteatoma; COM: chronic
otitis media; GPT-4V: GPT-4 Vision; OME: otitis media with effusion.
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Figure 3. Representative images of correct and incorrect GPT-4V classifications for 4 middle ear diseases. The left side shows the correct images for
GPT-4V classification, and the right side shows the incorrect images for GPT-4V. AOM: acute otitis media; chole: middle ear cholesteatoma; COM:
chronic otitis media; GPT-4V: GPT-4 Vision; OME: otitis media with effusion.

Comparison of Diagnostic Accuracy by Physicians and
GPT-4V
The same images with patients’ information used by GPT-4V
were evaluated by pediatricians (n=8), otolaryngology residents
(n=8), certificated otolaryngologists (n=8), and experts in
otolaryngology (n=6), and the diagnostic accuracy of each group
was compared. The mean diagnostic accuracy was 70.6% (SE
4.2%) for pediatricians, 95.5% (SE 1%) for otolaryngology
residents, 97.3% (SE 0.8%) for certificated otolaryngologists,
and 98.2% (SE 0.4%) for experts in otolaryngology. ANOVA
revealed significant differences among the 4 groups (F1=13.43,
P<.001). In the post hoc comparison, a significant difference
was observed between pediatricians and the other 3 groups
(P<.001). The GPT-4V correct response rate was 82.1%,
surpassing that of pediatricians by 11.5% and trailing behind
otolaryngologists by an average of just over 10% (Figure 4).

The accuracy rates for specific diseases were as follows: 92.3%
for AOM (pediatricians 80.4%, otolaryngology residents 94.9%,
certificated otolaryngologists 97%, and experts in
otolaryngology 98.2%), 95.9% for COM (pediatricians 89.5%,
otolaryngology residents 96.6%, certificated otolaryngologists
99.8%, and experts in otolaryngology 98.4%), 81.8% for chole
(pediatricians 46%, otolaryngology residents 93.2%, certificated
otolaryngologists 93.6%, and experts in otolaryngology 98.4%),
and 93.7% for OME (pediatricians 81.6%, otolaryngology
residents 97.2%, certificated otolaryngologists 99%, and experts
in otolaryngology 98%).

In the confusion matrix of all doctors, there was a notable
tendency to misclassify chole as OME and AOM as OME.
Among pediatricians, there were more errors in classifying chole
as AOM or COM (Figure 5).
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Figure 4. Result of human validations with doctors of TM images and patients’data. The graph shows the average correct rate for doctors (pediatricians,
otolaryngology residents, certificated otolaryngologists, and experts in otolaryngology), and the dotted line shows the correct answer rate of GPT-4V.
GPT-4V: GPT-4 Vision; TM: tympanic membrane. **P value <.01.

Figure 5. Confusion matrix of doctors (pediatricians, otolaryngology residents, certificated otolaryngologists, and experts in otolaryngology) for
classifying 4 middle ear diseases. (A) Confusion matrix of all doctors (N=30). The average (percentage of total responses) is shown. (B) Confusion
matrix of doctors in each group: pediatricians (n=8), otolaryngology residents (n=8), certificated otolaryngologists (n=8), and experts in otolaryngology
(n=6). The averages of each group (percentage of total responses) are shown. AOM: acute otitis media; chole: cholesteatoma; COM: chronic otitis
media; OME: otitis media with effusion.

Regarding the difference in the trend of the percentage of correct
answers between GPT-4V and physicians according to the
difficulty of the questions, even the percentage of correct
answers for GPT-4V tended to decrease gradually from 85.7%
for easy, 84% for normal, and 71.1% for hard questions (Table
1).

Furthermore, compared with otolaryngologists, GPT-4V had a
significantly lower percentage of correct answers for all

questions (99.7% for easy, 97.1% for normal, and 90.8% for
hard questions; all P<.001). In contrast, the results of the “hard”
and “normal” groups were similar. Compared with pediatricians,
the GPT-4V outperformed the pediatricians in easy questions
with 96.6%, although no statistically significant difference was
observed (P=.006). However, the GPT-4V had a predominantly
higher percentage of correct answers for normal (76.3%, P=.07)
and hard questions (45.4%, P<.001).
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Table 1. Comparison of the scores by GPT-4 Vision (GPT-4V) and human validation with physicians across various difficulty levels (N=190).

PediatriciansOtolaryngologistsAll doctorsGPT-4V
(mean %)

Ques-
tions, n
(%)

Difficulty
level

P valueDifferencesMean %
(95% CI)

P valueDifferencesMean %
(95% CI)

P valueDifferencesMean %
(95% CI)

.006a10.996.6 (95.3-
97.9)

<.001a14.099.7
(99.5-
99.9)

<.001a12.197.8
(97.4-
98.2)

85.777 (40.5)Easy
(>95%)

.07–7.776.3 (73.6-
79.0)

<.001a13.197.1
(96.2-
98.0)

.136.490.4
(89.7-
91.0)

8475 (39.5)Normal
(>85%,
<95%)

<.001a–25.745.4 (39.5-
51.3)

<.001a19.790.8
(87.2-
94.3)

.445.776.8
(73.7-
79.8)

71.138 (20)Hard
(<85%)

aStatistically significant.

Discussion

Principal Results
In this study, we assessed the accuracy of the GPT-4V
multimodal AI approach in classifying middle ear disorders,
yielding the following three key findings. First, GPT-4V, a
general-purpose model focusing on large-scale language models,
achieved approximately 80% accuracy in classifying middle
ear disease. The model’s performance, evaluated using images
and patient data, was superior to that of nonotolaryngologists,
although it was lower than the average accuracy of
otolaryngologists. Second, the GPT-4V was able to classify
diseases when patient information and disease options were
input. Further improvements in accuracy could be achieved
with more detailed patient information. Third, accuracy varied
by disease, suggesting the potential for optimizing AI usage
and improving accuracy by understanding the specificity of
GPT-4V in classifying particular diseases.

Comparison With Prior Work
The GPT-4V model has undergone training and uses 0-shot
learning, which recognizes image features based on natural
language to classify diseases based on image information and
previously learned disease features [20]. GPT-4V can yield
effective results with fewer resources than previous deep
learning models, which typically require a large amount of
image data, computational resources, time, and parameter
adjustments for training. By inputting new information rather
than simply classifying image data, it becomes possible to tailor
diagnoses and diagnostic aids for each individual. Furthermore,
GPT-4V and other large-scale language processing models
feature prompt development that is appropriate for its usage
purposes, since the accuracy of such models varies depending
on the prompt adjustments.

Compared with physicians’ accuracy, the model’s performance
in this study was higher than that of a pediatrician but lower
than that of an otolaryngologist. In a previous comparison
between deep learning and humans, Crowson et al [21] classified
22 tympanic membrane images and found that the deep learning
model achieved an accuracy of 95.5%, compared with an

accuracy of 65% for 39 clinicians. Suresh et al [22] also reported
that a machine-learning model created from 1000 images was
more effective than pediatricians, with an accuracy rate of
90.6%, surpassing the clinicians’accuracy of 59.4%. Our results
indicated that the model did not reach the proficiency level of
otolaryngologists; however, it could be valuable for using
tympanic membrane images in medical practice outside of
otolaryngology. In particular, GPT-4V judgments predominantly
exceeded pediatricians' correct response rates for questions with
normal to hard difficulty, suggesting that the present model may
be useful for nonotolaryngologists who have difficulty in making
such judgments.

Moreover, previous reports on deep learning classification
models have determined the presence or absence of
inflammation and exudates based on photographs alone. Further
studies are needed to identify the optimal stage in the
examination for implementing the image classification model
and the subsequent policy decisions that should follow.

GPT-4V allows for the classification of diseases using patient
information. While comments about medical or harmful content
(with restrictions on medical advice) may result in a lower
correct response rate, informative or educational responses are
still possible if they are well-informed. Efforts have been made
to use large language models (LLMs) to improve the accuracy
of prompts. Therefore, it is possible to develop appropriate
prompts for medical imaging and middle ear disorders. The
accuracy of the LLM is expected to further improve with the
development of prompts that are specifically tailored for medical
imaging and middle ear disease [23,24].

For the clinical application of the GPT-4V model, collecting
clinical data and adjusting parameters are needed to further
improve its diagnostic accuracy for each middle ear disease.
Upon reviewing the incorrect responses of GPT-4V for each
disease, we found that chole might demonstrate a retraction
pocket, which may be mistaken for a perforation. However,
images with keratin debris accumulation in the retraction pocket
were less prone to misclassification. In cases of COM with
calcification, a white lesion was considered to be chole
calcification, emphasizing the importance of distinguishing
between these 2 diseases. AOM cases without the chief

JMIR AI 2024 | vol. 3 | e58342 | p.596https://ai.jmir.org/2024/1/e58342
(page number not for citation purposes)

Noda et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


complaint of acute inflammation (fever, ear pain, or ear
discharge) were occasionally misclassified, even with
characteristic findings such as a bulging tympanic membrane,
suggesting that GPT-4V was likely to prioritize patients'
information over images. In OME cases, a white lesion was
sometimes considered to be a pearly tumor (chole) or tympanic
membrane perforation (COM), particularly when it involved a
small amount of effusion or air. For physicians, chole and AOM
were often misidentified as other diseases and OME,
respectively. When comparing the GPT-4V model with the
entire group of physicians, the percentage of correct responses
was generally higher among the physicians. However, the
GPT-4V diagnostic accuracy for chole was higher than that of
pediatricians, indicating that GPT-4V could help
nonotolaryngologists diagnose chole. In a previous report, a
dedicated AI model had a diagnostic accuracy of approximately
90% for chole [25]; therefore, the combination of such a system
and GPT-4V would be useful to improve the accuracy of chole
detection.

As demonstrated in this study, the application of AI, including
LLM, is believed to offer advantages in terms of improving
efficiency and providing assistance in clinical work, enabling
the delivery of high-quality medical care, and overcoming
language barriers in medicine. The use of GPT-4V has already
been reported to diagnose complicated cases [26], and its
application can be expanded by integrating it with imaging
information. In the field of orthopedics, trials are underway to
determine treatment methods based on MRI reports [27],
showcasing the effectiveness of GPT-4V as an aid in image
interpretation. GPT has been shown to return answers and
provide details about the disease, including risk factors and
treatment methods. This allows for the evaluation of images
alone and assists in medical treatment. Such insights are valuable
for understanding the practical use and challenges of AI in
real-world applications. Unlike the simplistic deep learning
models of the past, the LLM can enhance accuracy by presenting
evidence for judgments and asking a series of questions. When
used by physicians with a certain level of specialized knowledge,
the LLM effectively aids judgment, leading to increased
efficiency in medical care. GPT-4V provides answers in just a
few seconds, which is significantly shorter than the time it takes
a physician to provide a diagnosis, thereby confirming its
efficiency. GPT-4V can be used on smartphones, potentially
making medical treatment more location-independent. However,
there are associated risks, including the reliance on AI for

medical care, misdiagnoses due to system malfunctions, and
patient information leakage. ChatGPT (OpenAI, Microsoft
Corporation) is trained based on information up to a certain
period but may respond differently at different times or provide
answers using outdated criteria. Furthermore, legal and personal
literacy measures must be developed to protect personal
information and address ethical concerns. Foreign countries and
the United Nations are actively promoting laws and regulations
governing the use of AI [28,29].

Limitations
In total, one limitation of this study is the use of a limited
number of images (N=190). Further analysis is required to assess
the impact of using a larger data set that encompasses various
diseases. Additionally, as there are large variations in the quality
of otoscopic images, accurate diagnosis might be challenging
in some cases.

The recognition and content of the answers may change
depending on the doctor, clinics, and designed prompt; the
accuracy may also change due to changes in the image quality
used or the method used to capture the image. While this is
common to deep learning, the advantage of GPT, which does
not require prior training, is that it is not affected by the data to
be trained; thus, the possibility of such changes is considered
to be small.

For these reasons, further exploration is needed on strategies
for handling challenging images and facilitating open-ended
responses without giving predefined options. Furthermore,
because of the rapid pace of technological evolution, it is
essential to regularly fine-tune and make a standalone model
that ensures reliability and consistency over time.

Conclusions
A multimodal AI approach using GPT-4V has revealed a
potential new diagnostic approach for classifying middle ear
diseases. This confirms the ability of AI to assist in clinical
diagnosis and identify disease-specific features. The significant
improvement in accuracy compared with conventional deep
learning models indicates that even general-purpose AI
technology can assist in medical treatment with a certain level
of accuracy. It can be applied to highly specialized diagnoses,
depending on the method. Further improvements in diagnostic
accuracy are expected in future studies by integrating more
diverse data types.
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Multimedia Appendix 1
Representative image and prompt of this study. (A) Representative image of input and output to GPT-4 Vision. Input can be
combined with text and images in input to obtain output. (B) Example of changing the prompt content and an output that asks
for patient information. By presenting a concept as ORDER and adding conditions as restriction, appropriate prompts were
attempted to be developed. In the output, it is required to input patient information such as age, medical history, and chief
complaint. (C) An example of an answer with an optimized prompt. Present the diagnosis, the rationale for the diagnosis, and
treatment and prevention methods.
[PDF File (Adobe PDF File), 483 KB - ai_v3i1e58342_app1.pdf ]
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Abstract

Background: Medical self-diagnostic tools (or symptom checkers) are becoming an integral part of digital health and our daily
lives, whereby patients are increasingly using them to identify the underlying causes of their symptoms. As such, it is essential
to rigorously investigate and comprehensively report the diagnostic performance of symptom checkers using standard clinical
and scientific approaches.

Objective: This study aims to evaluate and report the accuracies of a few known and new symptom checkers using a standard
and transparent methodology, which allows the scientific community to cross-validate and reproduce the reported results, a step
much needed in health informatics.

Methods: We propose a 4-stage experimentation methodology that capitalizes on the standard clinical vignette approach to
evaluate 6 symptom checkers. To this end, we developed and peer-reviewed 400 vignettes, each approved by at least 5 out of 7
independent and experienced primary care physicians. To establish a frame of reference and interpret the results of symptom
checkers accordingly, we further compared the best-performing symptom checker against 3 primary care physicians with an
average experience of 16.6 (SD 9.42) years. To measure accuracy, we used 7 standard metrics, including M1 as a measure of a
symptom checker’s or a physician’s ability to return a vignette’s main diagnosis at the top of their differential list, F1-score as a
trade-off measure between recall and precision, and Normalized Discounted Cumulative Gain (NDCG) as a measure of a differential
list’s ranking quality, among others.

Results: The diagnostic accuracies of the 6 tested symptom checkers vary significantly. For instance, the differences in the M1,
F1-score, and NDCG results between the best-performing and worst-performing symptom checkers or ranges were 65.3%, 39.2%,
and 74.2%, respectively. The same was observed among the participating human physicians, whereby the M1, F1-score, and
NDCG ranges were 22.8%, 15.3%, and 21.3%, respectively. When compared against each other, physicians outperformed the
best-performing symptom checker by an average of 1.2% using F1-score, whereas the best-performing symptom checker
outperformed physicians by averages of 10.2% and 25.1% using M1 and NDCG, respectively.

Conclusions: The performance variation between symptom checkers is substantial, suggesting that symptom checkers cannot
be treated as a single entity. On a different note, the best-performing symptom checker was an artificial intelligence (AI)–based
one, shedding light on the promise of AI in improving the diagnostic capabilities of symptom checkers, especially as AI keeps
advancing exponentially.

(JMIR AI 2024;3:e46875)   doi:10.2196/46875
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Introduction

Background
Digital health has become ubiquitous. Every day, millions of
people turn to the internet for health information and treatment
advice [1,2]. For instance, in Australia, approximately 80% of
people search the internet for health information and
approximately 40% seek web-based guidance for self-treatment
[3,4]. In the United States, approximately two-thirds of adults
search the web for health information and one-third use it for
self-diagnosis, trying to singlehandedly understand the
underlying causes of their health symptoms [5]. A recent study
showed that half of the patients investigated their symptoms on
search engines before visiting emergency rooms [6,7].

Although search engines such as Google and Bing are
exceptional tools for educating people on almost any matter,
they may facilitate misdiagnosis and induce serious risks [5].
This is because searching the web entails sifting through a great
deal of information, stemming from all kinds of sources, and
making personal medical judgments, correlations, and
deductions accordingly. Some governments have even launched
“Don’t Google It” advertising campaigns to raise public
awareness of the risks of assessing one’s health using search
engines [8,9]. The reality is that search engines are not medical
diagnostic tools and laymen are not usually equipped to leverage
them for self-diagnosis.

In contrast to search engines, symptom checkers are
patient-facing medical diagnostic tools that emulate clinical
reasoning, especially if they use artificial intelligence (AI)
[4,10]. They are trained to make medical expert–like judgments
on behalf of patients. More precisely, a patient can start a
consultation session with a symptom checker by inputting a
chief complaint (in terms of ≥1 symptoms). Afterward, the
symptom checker asks several questions to the patient and
collects answers from them. Finally, it generates a differential
diagnosis (ie, a ranked list of potential diseases) that explains
the causes of the patient’s symptoms.

Symptom checkers are increasingly becoming an integral part
of digital health, with >15 million people using them on a
monthly basis [11], a number that is expected to continue to
grow [12]. A United Kingdom–based study [13] that engaged
1071 patients found that >70% of individuals aged between 18
and 39 years would use a symptom checker. A recent study
examining a specific symptom checker found that >80% of
patients perceived it to be useful and >90% indicated that they
would use it again [14]. Various credible health care institutions
and entities such as the UK National Health Service [15] and
the government of Australia [16] have officially adopted
symptom checkers for self-diagnosis and referrals.

Symptom checkers are inherently scalable (ie, they can assess
millions of people instantly and concurrently) and universally
available. In addition, they promise to provide patients with
necessary high-quality, evidence-based information [17]; reduce
unnecessary medical visits [18-21]; alleviate the pressure on
health care systems [22]; improve accessibility to timely

diagnosis [18]; and guide patients to the most appropriate care
pathways [12], to mention just a few.

Nevertheless, the utility and promise of symptom checkers
cannot be materialized if they are not proven to be accurate
[10]. To elaborate, a recent study has shown that most patients
(>76%) use symptom checkers solely for self-diagnosis [14].
As such, if symptom checkers are not meticulously engineered
and rigorously evaluated on their diagnostic capabilities, they
may put patients at risk [23-25].

This study investigates the diagnostic performance of symptom
checkers by measuring the accuracies of a few popular symptom
checkers and a new AI-based symptom checker. In addition, it
compares the accuracy of the best-performing symptom checker
against that of a panel of experienced physicians to put things
in perspective and interpret results accordingly.

Evaluation Methodology
To evaluate symptom checkers, we propose a scientific
methodology that capitalizes on the standard clinical vignette
approach [26] (Multimedia Appendix 1 provides additional
information on how our methodology aligns with the
recommended requirements of this approach [4,7,12,26-39]).
Delivering on this methodology, we compiled 400 vignettes
and peer reviewed them with 7 external physicians using a
supermajority voting scheme. To the best of our knowledge,
this yielded the largest benchmark vignette suite in the domain
thus far. Furthermore, we defined and used 7 standard accuracy
metrics, one of which measures for the first time, the ranking
qualities of the differential diagnoses of symptom checkers and
physicians.

Subsequently, we leveraged the peer-reviewed benchmark
vignette suite and accuracy metrics to investigate the
performance of a new AI-based symptom checker named Avey
[40] and 5 popular symptom checkers named Ada [41], K Health
[42], Buoy [43], Babylon [44], and WebMD [45]. Results
demonstrated a significant performance variation between these
symptom checkers and the promise of AI in improving their
diagnostic capabilities. For example, the best-performing
symptom checker, namely Avey, outperformed Ada, K Health,
Buoy, Babylon, and WebMD by averages of 24.5%, 142.8%,
159.6%, 2968.1%, and 175.5%, respectively, in listing the
vignettes’ main diagnoses at the top of their differentials.

Avey claims to use advanced AI technology [40]. In particular,
it involves a diagnostic engine that operationalizes a
probabilistic graphical model, namely a Bayesian network.
Figure 1 demonstrates the model in action, which was built
bottom-up over 4 years specifically for medical diagnosis. In
addition, the engine uses a recommendation system, which
predicts the future impact of every symptom or etiology that
has not yet been asked during a patient session with Avey and
recommends the one that exhibits the highest impact on the
engine’s current diagnostic hypothesis. At the end of the session,
a ranking model is used for ranking all the possible diseases for
the patient’s case and outputs them as a differential diagnosis.

To put things in perspective, we subsequently compared the
performance of Avey against 3 primary care physicians with
an average experience of 16.6 years. The results showed that
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Avey compared favorably to the physicians and slightly
outperformed them in some accuracy metrics, including the
ability to rank diseases correctly within their generated
differential lists.

Finally, to facilitate the reproducibility of the study and support
future related studies, we made the peer-reviewed benchmark

vignette suite publicly and freely available [27]. In addition, we
posted all the results of the symptom checkers and physicians
in the Benchmark Vignette Suite [27] to establish a standard of
full transparency and allow researchers to cross-validate the
results, a step much needed in health informatics [46].

Figure 1. An actual visualization of Avey’s brain (ie, a probabilistic graphical model). At a high level, the nodes (or dots) can be thought of representing
diseases, symptoms, etiologies, or features of symptoms or etiologies, whereas the edges (or links) can be thought of as representing conditional
independence assumptions and modeling certain features (eg, sensitivities and specificities) needed for clinical reasoning.

Methods

Stages

Overview
Building on prior related work [4,5,11,12,26,28,29], we adopted
a clinical vignette approach to measure the performance of
symptom checkers. A seminal work at Harvard Medical School
has established the value of this approach in validating the

accuracies of symptom checkers [11,29], especially because it
has been also used as a common approach to test physicians on
their diagnostic capabilities [29].

To this end, we defined our experimentation methodology in
terms of 4 stages, namely vignette creation, vignette
standardization, vignette testing on symptom checkers, and
vignette testing on doctors. The 4 stages are illustrated in Figure
2.
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Figure 2. Our 4-stage experimentation methodology (Vi=vignette i, assuming n vignettes and 1≤i≤n; Dj=doctor j, assuming 7 doctors and 1≤j≤7;
MDk=medical doctor k, assuming 3 doctors and 1≤k≤3; Ri=result of vignette Vi as generated by a checker or a medical doctor [MD]). In the “vignette
creation” stage, the vignettes are compiled from reputable medical sources by an internal team of MDs. In the “vignette standardization” stage, the
vignettes are reviewed and approved by a panel of experienced and independent physicians. In the “vignette testing on symptom checkers” stage, the
vignettes are tested on symptom checkers by a different panel of experienced and independent physicians. In the “vignette testing on doctors” stage,
the vignettes are tested on a yet different panel of experienced and independent physicians.

Stage 1: Vignette Creation Stage
In this stage, an internal team of 3 physicians (akin to the study
by Gilbert et al [28]) compiled a set of vignettes from October
10, 2021, to November 29, 2021. All the vignettes were drawn
from reputable medical websites and training material for health
care professionals, including the United States Medical
Licensing Examination, Step 2 CK, Membership of the Royal
Colleges of Physicians Part 1 Self-Assessment, American Board
of Family Medicine, and American Board of Pediatrics, among
others [30-37]. In addition, the internal medical team
supplemented the vignettes with information that might be
“asked” by symptom checkers and physicians in stages 3 and
4. The vignettes involved 14 body systems and encompassed
common and less-common conditions relevant to primary care

practice (Table 1). They fairly represent real-life or practical
cases in which patients might seek primary care advice from
physicians or symptom checkers.

The internal medical team constructed each vignette in terms
of eight major components: (1) the age and sex of the assumed
patient; (2) a maximum of 3 chief complaints; (3) the history
of the suggested illness associated with details on the chief
complaints and other present and relevant findings (a finding
is defined as a symptom, a sign, or an etiology, each with a
potential attribute); (4) absent findings, including ones that are
expected to be solicited by symptom checkers and physicians
in stages 3 and 4; (5) basic findings that pertain to physical
examinations that can still be exploited by symptom checkers;
(6) past medical and surgical history; (7) family history; and
(8) the most appropriate main and differential diagnoses.

JMIR AI 2024 | vol. 3 | e46875 | p.604https://ai.jmir.org/2024/1/e46875
(page number not for citation purposes)

Hammoud et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. The body systems and numbers of common and less-common diseases covered in the compiled vignette suite.

Covered diseases, %

(pa/Pb)

VignettesBody system

Vignettes with less-common

diseases, % (kf/n) (total: 44.5%,
178/400)

Vignettes with common dis-

eases % (me/n) (total: 55.5%,
222/400)

Weightage in the suite,

% (nc/Nd)

4.89 (13/266)91.3 (21/23)8.7 (2/23)5.75 (23/400)Hematology

11.28 (30/266)41.3 (19/46)58.7 (27/46)11.5 (46/400)Cardiovascular

5.26 (14/266)59.09 (13/22)40.91 (9/22)5.5 (22/400)Neurology

4.89 (13/266)35 (7/20)65 (13/20)20 (5)5 (20/400)Endocrine

5.64 (15/266)30.43 (7/23)69.57 (16/23)5.75 (23/400)ENTg

12.78 (34/266)52.27 (23/44)47.73 (21/44)11 (44/400)GIh

13.16 (35/266)40.74 (22/54)59.26 (32/54)13.5 (54/400)Obstetrics and gynecology

6.39 (17/266)73.91 (17/23)26.09(6/23)5.75 (23/400)Infectious

7.52 (20/266)29.73 (11/37)70.27 (26/37)9.25 (37/400)Respiratory

9.4 (25/266)34.38 (11/32)65.63 (21/32)8 (32/400)Orthopedics and rheumatology

4.51 (12/266)16.67 (3/18)83.33 (15/18)4.5 (18/400)Ophthalmology

4.51 (12/266)25 (3/12)75 (9/12)3 (12/400)Dermatology

3.01 (8/266)42.86 (6/14)57.14 (8/14)3.5 (14/400)Urology

6.77 (18/266)46.88 (15/32)53.13 (17/32)8 (32/400)Nephrology

ap: number of diseases covered in the body system.
bP: total number of diseases covered by the N vignettes.
cn: number of vignettes for the corresponding body system.
dN: total number of vignettes in our suite.
em: count of vignettes covering common diseases of the corresponding body system.
fk: count of vignettes covering less-common diseases of the corresponding body system.
gENT: ear, nose, and throat.
hGI: gastrointestinal.

Stage 2: Vignette Standardization Stage
The output of the vignette creation stage (ie, stage 1) is a set of
vignettes that serves as an input to the vignette standardization
stage (ie, stage 2). Seven external physicians (as opposed to 3
doctors in the study by Gilbert et al [28]) from 4 specialties,
namely family medicine, general medicine, emergency medicine,
and internal medicine, with an average experience of 8.4 years
were recruited from the professional networks of the authors to
review the vignettes in this stage. None of these external doctors
had any involvement with the development of any of the
symptom checkers considered in this study.

We designed and developed a full-fledged web portal to
streamline the process of reviewing and standardizing the
vignettes. To elaborate, the portal allows the internal medical
team to upload the vignettes to a web page that is shared across
the 7 externally recruited doctors. Each doctor can access the
vignettes and review them independently, without seeing the
reviews of other doctors.

After reviewing a vignette, a doctor can reject or accept it. Upon
rejecting a vignette, a doctor can propose changes to improve
its quality or clarity. The internal medical team checks the

suggested changes, updates the vignette accordingly, and
reuploads it to the portal for a new round of peer reviewing by
the 7 external doctors. Multiple reviewing rounds can take place
before a vignette is rendered gold standard. A vignette becomes
the gold standard only if it is accepted by at least 5 out of the 7
(ie, supermajority) external doctors. Once a vignette is
standardized, the portal moves it automatically to stages 3 and
4.

Stage 2 started on October 17, 2021, and ended on December
4, 2021. As an outcome, 400 vignettes were produced and
standardized. To allow for external validation, we made all the
vignettes publicly available [27].

Stage 3: Vignette Testing on Symptom Checkers
The output of stage 2 serves as an input to stage 3, namely,
vignette testing on symptom checkers. For this sake, we
recruited 3 independent primary care physicians under 2
specialties, namely family medicine and general medicine, with
an average experience of 4.2 years from the professional
networks of the authors. None of these physicians had any
involvement with the development of any of the symptom
checkers tested in this study. Furthermore, 2 of them were not
among the 7 doctors who reviewed the vignettes in stage 2.
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These doctors were recruited solely to test the gold-standard
vignettes on the considered symptom checkers.

The approach of having primary care physicians test symptom
checkers has been shown recently to be more reliable than
having laypeople do so [28,38,47]. This is because the
standardized vignettes act as proxies for patients, whereas testers
act as only data extractors from the vignettes and information
feeders to the symptom checkers. Consequently, the better the
testers are in extracting and feeding data, the more reliable the
clinical vignette approach renders. In fact, a symptom checker
cannot be judged on its accuracy if the answers to its questions
are not in full alignment with the contents of the vignettes.

To this end, physicians are deemed more capable of playing the
role of testers than laypeople, especially that AI-based symptom
checkers (eg, Ada and Avey, among others) may often ask
questions that have no answers in the vignettes, even if the
vignettes are quite comprehensive. Clearly, when these questions
are asked, laypeople will not be able to answer them properly,
impacting thereby the reliability of the clinical vignette approach
and the significance of the reported results. In contrast,
physicians will judiciously answer these questions in alignment
with the vignettes and capably figure out whether the symptom
checkers are able to “diagnose” them (ie, produce the correct
differential diagnoses in the vignettes). We elaborate further on
the rationale behind using physicians as testers in the Strengths
and Limitations section.

Besides vignettes, we chose 6 symptom checkers, namely Ada
[41], Babylon [44], Buoy [43], K Health [42], WebMD [45],
and Avey [40], to evaluate their performance and compare them
against each other. Four of these symptom checkers (ie, Ada,
Buoy, K Health, and WebMD) were selected because of their
superior performance reported in Gilbert et al [28], and 1 (ie,
Babylon) was chosen because of its popularity. Avey is a new
AI-based symptom checker that is emerging, with >1 million
people who have already downloaded it [40]. We tested the
gold-standard vignettes on the most up-to-date versions of these
symptom checkers that were available on Google Play, App
Store, or websites (eg, Buoy) between the dates of November
7, 2021, and January 31, 2022.

The 6 symptom checkers were tested through their normal
question-answer flows. As in the study by Gilbert et al [28],
each of the external physicians in stage 3 randomly pulled
vignettes from the gold-standard pool and tested them on each
of the 6 symptom checkers (compared to the study by Gilbert
et al [28], where 8 doctors tested vignettes on 4 symptom
checkers; Figure 2). By the end of stage 3, each physician tested
a total of 133 gold-standard vignettes on each symptom checker,
except 1 physician who tested 1 extra vignette to exhaust the
400 vignettes. Each physician saved a screenshot of each
symptom checker’s output for each vignette to facilitate the
results’ verification, extraction, and analysis. We posted all the
screenshots on the internet on the internet [27] to establish a
standard of full transparency and allow for external
cross-validation and study replication.

Stage 4: Vignette Testing on Doctors
In this stage, we recruited 3 more independent and experienced
primary care physicians with an average experience of 16.6
years (compared with 7 doctors in the study by Gilbert et al
[28], with an average experience of 11.2 years) from the
professional networks of the authors. One of those physicians
is a family medicine doctor with >30 years of experience. The
other 2 are also family medicine doctors, each with >10 years
of experience. None of these physicians had any involvement
with the development of any of the tested symptom checkers.
Furthermore, none of them was among the 7 or 3 doctors of
stages 2 or 3, respectively, and they were all only recruited to
pursue stage 4.

The sole aim of stage 4 is to compare the accuracy of the
winning symptom checker against that of experienced primary
care physicians. Hence, similar to the study by Semigran et al
[11], we concealed the main and differential diagnoses of the
400 gold-standard vignettes from the 3 recruited doctors and
exposed the remaining information through our web portal. The
doctors were granted access to the portal and asked to provide
their main and differential diagnoses for each vignette without
checking any reference, mimicking as closely as possible the
way they conduct real-world sessions live with patients. As an
outcome, each vignette was “diagnosed” by each of the 3
doctors. The results of the doctors were posted to allow for
external cross-validation [27].

Finally, we note that different symptom checkers and doctors
can refer to the same disease differently. As such, we considered
an output disease by a symptom checker (in stage 3) or a doctor
(in stage 4) as a reasonable match to a disease in the
gold-standard vignette if it was an alternative name, an umbrella
name, or a directly related disease.

Accuracy Metrics
To evaluate the performance of symptom checkers and doctors
in stages 3 and 4, we used 7 standard accuracy metrics. As in
the study by Gilbert et al [28] and United States Medical
Licensing Examination [48], for every tested gold-standard
vignette, we used the matching-1 (M1), matching-3 (M3), and
matching-5 (M5) criteria to measure if a symptom checker or
a doctor is able to output the vignette’s main diagnosis at the
top (ie, M1), among the first 3 diseases (ie, M3), or among the
first 5 diseases (ie, M5) of their differential list. For each
symptom checker and doctor, we report the percentages of
vignettes that fulfill M1, M3, and M5. The mathematical
definitions of M1, M3, and M5 are given in Table 2.

Besides, as in the studies by Gilbert et al [28], Baker et al [38],
and Kannan et al [49], for each tested gold-standard vignette,
we used recall (or sensitivity in medical parlance) as a measure
of the percentage of relevant diseases that are returned in the
symptom checker’s or doctor’s differential list. Moreover, we
used precision as a measure of the percentage of diseases in the
symptom checker’s or doctor’s differential list that are relevant.
For each symptom checker and doctor, we report the average
recall and average precision (see Table 2 for their mathematical
definitions) across all vignettes.
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Typically, there is a trade-off between recall and precision (the
higher the recall, the lower the precision, and vice versa). Thus,
in accordance with the standard practice in computer science,
we further used the F1-measure that combines the trade-off

between recall and precision in one easily interpretable score.
The mathematical definition of the F1-measure is provided in
Table 2. The higher the F1-measure of a symptom checker or a
doctor, the better.

Table 2. The descriptions and mathematical definitions of the 7 accuracy metrics used in this study.

Mathematical definitionDescriptionMetric

, where N is the number of vignettes and iv is 1 if the symptom checker or

doctor returns the gold standard main diagnosis within vignette v at the top of
their differential list; and 0 otherwise

The percentage of vignettes where the gold
standard main diagnosis is returned at the
top of a symptom checker’s or a doctor’s
differential list

M1%

, where N is the number of vignettes and iv is 1 if the symptom checker or

doctor returns the gold standard main diagnosis within vignette v among the top
3 diseases of their differential list; and 0 otherwise

The percentage of vignettes where the gold
standard main diagnosis is returned among
the first 3 diseases of a symptom checker’s
or a doctor’s differential list

M3%

, where N is the number of vignettes and iv is 1 if the symptom checker or

doctor returns the gold standard main diagnosis within vignette v among the top
5 diseases of their differential list; and 0 otherwise

The percentage of vignettes where the gold
standard main diagnosis is returned among
the first 5 diseases of a symptom checker’s
or a doctor’s differential list

M5%

, where N is the number of vignettes and of the symptom checker or doctor
for vignette v

Recall is the proportion of diseases that are
in the gold standard differential list and are
generated by a symptom checker or a doc-
tor. The average recall is taken across all
vignettes for each symptom checker and
doctor

Average recall

, where N is the number of vignettes and of the symptom checker or doctor
for vignette v

Precision is the proportion of diseases in
the symptom checker’s or doctor’s differen-
tial list that are also in the gold standard
differential list. The average precision is
taken across all vignettes for each symptom
checker and doctor

Average precision

, where average recall and average precision are as defined at column 3 in
rows 4 and 5 above, respectively

F1-measure captures the trade-off between
precision and recall. The average F1-mea-
sure is taken across all vignettes for each
symptom checker and doctor

Average F1-measure

, assuming N vignettes, n number of diseases in a gold standard vignette v, and

relevancei for the disease at position    in v’s differential list , which is computed

over the differential list of a doctor or a symptom checker for v. Gold DCGv is

defined exactly as DCGv, but is computed over the gold standard differential list

of v

NDCG is a measure of ranking quality. The
average NDCG is taken across all vignettes
for each symptom checker and doctor

Average NDCGa

aNDCG: Normalized Discounted Cumulative Gain.

Finally, we measured the ranking qualities of each symptom
checker and doctor using the Normalized Discounted
Cumulative Gain (NDCG) [50] metric that is widely used in
practice [51]. To begin with, each disease at position in the
differential list of a gold-standard vignette is assigned . The
higher the rank of a disease in the differential list, the higher
the relevance of that disease to the correct diagnosis (eg, if a
gold-standard differential has 2 diseases D1 and D2 in this order,
they will be assigned relevancies 2 and 1, respectively). Next,
Discounted Cumulative Gain (DCG) is defined mathematically

as , assuming diseases in a vignette’s differential list (Table
2). As such, DCG penalizes a symptom checker or a doctor if
they rank a disease lower in their output differential list than
the gold-standard list. Capitalizing on DCG, NDCG is the ratio
of a symptom checker’s or a doctor’s DCG divided by the

corresponding gold-standard DCG. Table 2 provides the
mathematical definition of NDCG.

Ethical Considerations
No patients (whether as subjects or testers) were involved in
any part of this study, but rather vignettes that acted as proxies
for patients during testing with symptom checkers and
physicians. As such, the vignettes are the subjects in this study
and not humans. In addition, doctors were not subjects in stage
4 of the study (or any stage as a matter of fact), but rather the
vignettes themselves. When the subjects are not humans, no
institutional review board approval is typically required as per
the guidelines of the United States Office for Human Research
Protections [52]. This closely aligns with many of the related
studies that use the clinical vignette approach
[12,28,29,38,53,54], whereby none of them (to the best of our
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knowledge) has obtained an institutional review board approval
to conduct the study.

Results

Accuracies of Symptom Checkers
In this section, we present our findings of stage 3. As indicated
in the Methods section, the 400 gold-standard vignettes were
tested over 6 symptom checkers, namely Avey, Ada, WebMD,
K Health, Buoy, and Babylon. Not every vignette was
successfully diagnosed by every symptom checker. For instance,
18 vignettes failed on K Health because their constituent chief
complaints were not available in K Health’s search engine;
hence, the sessions could not be initiated. Moreover, 35 vignettes
failed on K Health because of an age limitation (only vignettes
that encompassed ages of ≥18 years were accepted by K Health).

In addition to search and age limitations, some symptom
checkers (in particular, Buoy) crashed while diagnosing certain
vignettes, even after trying multiple times. Moreover, many
symptom checkers did not produce differential diagnoses for
some vignettes albeit concluding the diagnostic sessions. For
example, Babylon did not generate differential diagnoses for
351 vignettes. The reason some symptom checkers could not
produce diagnoses for some vignettes is uncertain, but we
conjecture that it might relate to either not modeling those
diagnoses or falling short of recalling them despite being
modeled. Table 3 summarizes the failure rates and reasons
across the examined symptom checkers. Moreover, the table
shows the average number of questions asked by each symptom
checker upon successfully diagnosing vignettes.

Table 3. Failure reasons, failure counts, success counts, and average number of questions across the 6 tested symptom checkers.

Number of ques-
tions, mean (SD)

Success countsFailure reasons and countsSymptom checker

DDx generatedNo DDxa generatedCrashedAge limitationsSearch limitations

24.89 (12.15)3982000Avey

29.33 (6.62)4000000Ada

2.64 (2.11)3943012WebMD

25.23 (6.59)345203518K Health

25.67 (5.79)31674532Buoy

5.91 (5.47)343510015Babylon

aDDx: differential diagnosis.

Figure 3 demonstrates the accuracy results of all the symptom
checkers over the 400 vignettes, irrespective of whether they
failed or not during some diagnostic sessions. In this set of
results, a symptom checker is penalized if it fails to start a
session, crashes, or does not produce a differential diagnosis
albeit concluding the session. As depicted, Avey outperformed
Ada, WebMD, K Health, Buoy, and Babylon, respectively, by
averages of 24.5%, 175.5%, 142.8%, 159.6%, and 2968.1%
using M1; 22.4%, 114.5%, 123.8%, 118.2%, and 3392% using
M3; 18.1%, 79.2%, 116.8%, 125%, and 3114.2% using M5;
25.2%, 65.6%, 109.4%, 154%, and 3545% using recall; 8.7%,
88.9%, 66.4%, 88.9%, and 2084% using F1-measure; and 21.2%,
93.4%, 113.3%, 136.4%, and 3091.6% using NDCG. Ada was
able to surpass Avey by an average of 0.9% using precision,
although Avey outpaced it across all the remaining metrics,
even with asking an average of 17.2% lesser number of
questions (Table 3). As shown in Figure 3, Avey also
outperformed WebMD, K Health, Buoy, and Babylon by

averages of 103.2%, 40.9%, 49.6%, and 1148.5% using
precision, respectively.

Figure 4 illustrates the accuracy results of all the symptom
checkers across only the vignettes that were successful. In other
words, symptom checkers were not penalized if they failed to
start sessions or crashed during sessions. As shown in the figure,
Avey outperformed Ada, WebMD, K Health, Buoy, and
Babylon, respectively, by averages of 24.5%, 173.2%, 110.9%,
152.8%, and 2834.7% using M1; 22.4%, 112.4%, 94%, 112.9%,
and 3257.6% using M3; 18.1%, 77.8%, 88.2%, 119.5%, and
3003.4% using M5; 25.2%, 64.5%, 81.8%, 147.1%, and
3371.4% using recall; 8.7%, 87.6%, 44.4%, 83.8%, and 1922.2%
using F1-measure; and 21.2%, 91.9%, 85%, 130.7%, and 2964%
using NDCG. Under average precision, Ada outpaced Avey by
an average of 0.9%, whereas Avey surpassed WebMD, K
Health, Buoy, and Babylon by averages of 101.3%, 22%, 45.6%,
and 1113.8%, respectively.
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Figure 3. Accuracy results considering for each symptom checker all the succeeded and failed vignettes. NDCG: Normalized Discounted Cumulative
Gain.

Figure 4. Accuracy results considering for each symptom checker only the succeeded vignettes, with or without differential diagnoses. NDCG:
Normalized Discounted Cumulative Gain.

Finally, Figure 5 shows the accuracy results of all the symptom
checkers over only the vignettes that resulted in differential
diagnoses on every symptom checker (ie, the intersection of
successful vignettes with differential diagnoses across all
symptom checkers). In this set of results, we excluded Babylon
as it failed to produce differential diagnoses for 351 out of the
400 vignettes. As demonstrated in the figure, Avey outperformed
Ada, WebMD, K Health, and Buoy, respectively, by averages
of 28.1%, 186.9%, 91.5%, and 89.3% using M1; 22.4%, 116.3%,
85.6%, and 59.2% using M3; 18%, 80.1%, 85.7%, and 65.5%
using M5; 23%, 64.9%, 78.5%, and 97.1% using recall; 7.2%,
92.7%, 42.2%, and 47.1% using F1-measure; and 21%, 93.6%,

77.4%, and 76.6% using NDCG. Under average precision, Ada
surpassed Avey by an average of 2.4%, whereas Avey outpaced
WebMD, K Health, and Buoy by averages of 109.5%, 20.4%,
and 16.9%, respectively.

All the combinations of all the results (ie, 45 sets of
experiments), including a breakdown between common and
less-common diseases, are posted on the internet [27]. In
general, we found Avey to be more accurate than the other 5
tested symptom checkers, irrespective of the combination of
results; hence, it was chosen to be compared against primary
care physicians.
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Figure 5. Accuracy results considering only the succeeded vignettes with differential diagnoses across all the symptom checkers. NDCG: Normalized
Discounted Cumulative Gain.

Avey Versus Human Doctors
In this section, we present our findings of stage 4. As discussed
in the Methods section, we tested the 400 gold-standard
vignettes on 3 doctors with an average clinical experience of
16.6 years. Table 4 shows the results of the doctors across all
our accuracy metrics. Furthermore, Multimedia Appendix 2
depicts the results of Avey against the average physician, which
is the average performance of the 3 physicians. As shown, the
human doctors provided average M1, M3, M5, recall, precision,
F1-measure, and NDCG of 61.2%, 72.5%, 72.9%, 46.6%, 69.5%,
55.3%, and 61.2%, respectively. In contrast, Avey demonstrated

average M1, M3, M5, recall, precision, F1-measure, and NDCG
of 67.5%, 87.3%, 90%, 72.9%, 43.7%, 54.6%, and 76.6%,
respectively.

To this end, Avey compared favorably to the considered doctors,
yielding inferior performance in terms of precision and
F1-measure but a better performance in terms of M1, M3, M5,
NDCG, and recall. More precisely, the doctors outperformed
Avey by averages of 37.1% and 1.2% using precision and
F1-measure, whereas Avey outpaced them by averages of 10.2%,
20.4%, 23.4%, 56.4%, and 25.1% using M1, M3, M5, recall,
and NDCG, respectively.

Table 4. Accuracy results (%) of 3 medical doctors (MDs), MD1, MD2, and MD3, with an average experience of 16.6 years.

NDCGaF1-measurePrecisionRecallM5M3M1Doctors

52.248.458.641.262.76249.7MD1

5853.978.141.267.567.261.3MD2

73.563.771.757.388.588.272.5MD3

aNDCG: Normalized Discounted Cumulative Gain.

Discussion

Principal Findings
In this paper, we capitalized on the standard clinical vignette
approach to assess the accuracies of 6 symptom checkers and
3 primary care physicians with an average experience of 16.6
years. We found that Avey is the most accurate among the
considered symptom checkers and compares favorably to the 3
involved physicians. For instance, under M1, Avey outperforms

the next best-performing symptom checker, namely, Ada, by
24.5% and the worst-performing symptom checker, namely
Babylon, by 2968.2%. On average, Avey outperforms the 5
competing symptom checkers by 694.1% using M1. In contrast,
under M1, Avey underperforms the best-performing physician
by 6.9% and outperforms the worst-performing one by 35.8%.
On average, Avey outperforms the 3 physicians by 13% using
M1. Table 5 shows the ordering of symptoms and physicians
from best-performing to worst-performing.
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Table 5. Ordering of symptom checkers and physicians (denoted as MD1, MD2, and MD3) from best-performing to worst-performing symptom checkers
and physicians.

DoctorsSymptom checkersDescending order (best to worst)Metrics

Values, SD
(%)

Values, range
(%)

Values, SD
(%)

Values, range
(%)

922.82165.3MD3, Avey, MD2, Ada, MD1, K Health, Buoy, WebMD, and BabylonM1%

1126.22784.8MD3, Avey, Ada, MD2, MD1, WebMD, Buoy, K Health, and BabylonM3%

1125.82787.2Avey, MD3, Ada, MD2, MD1, WebMD, K Health, Buoy, and BabylonM5%

816.12270.9Avey, Ada, MD3, WebMD, MD1 and MD2 (a tie), K Health, Buoy,
and Babylon

Average recall

819.51340.6MD3, MD2, MD1, Ada, Avey, K Health, Buoy, WebMD, and BabylonAverage preci-
sion

615.31632.9MD3, Avey, MD2, Ada, MD1, K Health, Buoy and WebMD (a tie),
and Babylon

Average
F1-measure

921.32374.2Avey, MD3, Ada, MD2, MD1, WebMD, K Health, Buoy, and BabylonAverage ND-

CGa

aNDCG: Normalized Discounted Cumulative Gain.

Strengths and Limitations
This paper proposed a comprehensive and rigorous
experimentation methodology that taps into the standard clinical
vignette approach to evaluate symptom checkers and primary
care physicians. On the basis of this methodology, we developed
and peer reviewed the largest benchmark vignette suite in the
domain thus far. A recent study used 200 vignettes and was
deemed one of the most comprehensive to date [28]. The work
of Semigran et al [29] used 45 vignettes and many studies
followed suit [4,7,12,38].

Using this standardized suite, we evaluated the performance of
a new AI symptom checker, namely, Avey; 5 popular symptom
checkers, namely, Ada, WebMD, K Health, Buoy, and Babylon;
and a panel of 3 experienced physicians to put things in
perspective and interpret results accordingly. To measure
accuracy, we used 7 standard metrics, one of which was
leveraged for the first time in literature to quantify the ranking
qualities of symptom checkers’ and physicians’ differential
diagnoses. To minimize bias, the 6 symptom checkers were
tested by only independent primary care physicians and using
only peer-reviewed vignettes.

To facilitate the reproducibility of the study and support future
related studies, we made all the peer-reviewed vignettes publicly
and freely available on the internet [27]. In addition, we posted
on the internet all the reported results (eg, the screenshots of
the sessions with symptom checkers and the answers of
physicians) on the Benchmark Vignette Suite [27] to establish
a standard of full transparency and allow for external
cross-validation.

That said, this study lacks an evaluation with real patients and
covers only 14 body systems with a limited range of conditions.
As pointed out in the Methods section, in the clinical vignette
approach, vignettes act as proxies for real patients. The first
step in this approach is to standardize these vignettes, which
would necessitate an assembly of independent and experienced

physicians to review and approve them. Consequently, if we
replace vignettes with real patients, a group of physicians (say,
7, as is the case in this study, for example) is needed to check
each patient at the same time and agree by a supermajority vote
on their differential diagnosis. This corresponds to standardizing
the diagnosis of the patient before she or he is asked to
self-diagnose with each symptom checker. Afterward, the
diagnoses of the symptom checkers can be matched against the
patient’s standardized diagnosis and accuracy results can be
reported accordingly.

Albeit appealing, the abovementioned approach differs from
the standard clinical vignette approach (wherein no vignettes
will be involved anymore but actual patients) and is arguably
less practical, especially since it suggests checking and
diagnosing a vast number of patients, each by a panel of
physicians, before testing on symptom checkers. In addition,
the cases of the patients should cover enough diseases (eg, as
in Table 1), which could drastically increase the pool of patients
that needs to be diagnosed by physicians before identifying a
representative sample. This may explain why this alternative
approach has not been used in any of the accuracy studies of
symptom checkers so far, granted that the clinical vignette
approach is a standard paradigm, let alone that it is also
commonly used for testing the diagnostic abilities of physicians
[29].

In any of these approaches, it is important to distinguish between
testers and subjects. For instance, in the abovementioned
alternative approach, the patients are the testers of the symptom
checkers and the subjects by which the symptom checkers are
tested. In contrast, in the clinical vignette approach, the testers
are either physicians or laypeople, whereas the subjects are the
standardized vignettes. As discussed in the Stage 3: Vignette
Testing on Symptom Checkers section, using physicians as
testers makes the clinical vignette approach more reliable. This
is because symptom checkers may ask questions that hold no
answers in the standardized vignettes, making it difficult for
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laypeople to answer them appropriately and hard for the
community to trust the reported results accordingly.

To this end, 2 research methodologies have been adopted in the
literature. One is to dry run a priori by a physician every
gold-standard vignette on every considered symptom checker
and identify every finding (ie, symptom, etiology, or attribute)
that could be asked by these symptom checkers. Subsequently,
the physician supplements each vignette with more findings to
ensure that laypeople can properly answer any question asked
during actual testing. This is the methodology that was used in
the seminal work of Semigran et al [11,29].

The second methodology is not to dry run each vignette
beforehand on each symptom checker, especially as it might
not be possible to fully know what an AI-based symptom
checker will ask during actual testing. On the contrary, the
methodology suggests standardizing the vignettes in a way that
precisely reflects real-life patient cases. Afterward, multiple (to
address bias and ensure reliability) independent physicians test
the vignettes on each symptom checker. These physicians will
then reliably answer any questions about any data not included
in the vignettes, thus ensuring the correctness of the approach.
This methodology has been shown to be more reliable for
conducting accuracy studies [28,38,47]. As such, it was used
in most recent state-of-the-art papers [4,28] and, consequently,
in ours.

Aside from studying the accuracy of symptom checkers, real
patients can be involved in testing the usability of such tools
(eg, by using a self-completed questionnaire after
self-diagnosing with symptom checkers as in the study by Miller
et al [55]). Clearly, this type of study is orthogonal to the
accuracy ones and lies outside the scope of this paper.

Finally, we indicate that the physicians that were compared
against the symptom checkers in stage 4 (ie, vignette testing on
doctors) may not be a representative sample of primary care
physicians. Furthermore, our study did not follow a rigorous
process to choose symptom checkers and considered only a few
of them, which were either new (ie, Avey), popular (ie,
Babylon), or performed superiorly in recent studies (ie, Ada, K
Health, Buoy, and WebMD).

Comparison With the Wider Literature
Much work, especially recently, has been done to study
symptom checkers from different perspectives. It is not possible
to do justice to this large body of work in this short paper. As
such, we briefly describe some of the most closely related ones,
which focus primarily on the accuracy of self-diagnosis.

Semigran et al [29] were the first to study the performance of
many symptom checkers across a range of conditions in 2015.
They tested 45 vignettes over 23 symptom checkers and
discovered that their accuracies vary considerably, with M1
ranging from 5% to 50% and M20 (which measures if a
symptom checker returns the gold-standard main diagnosis
among its top 20 suggested conditions) ranging from 34% to
84%.

Semigran et al [11] published a follow-up paper in 2016 that
compared the diagnostic accuracies of physicians against

symptom checkers using the same vignettes in Semigran et al
[29]. Results showed that, on average, physicians outperformed
symptom checkers (72.1% vs 34.0% along M1 and 84.3% vs
51.2% along M3). However, symptom checkers were more
likely to output the gold-standard main diagnosis at the top of
their differentials for low-acuity and common vignettes, whereas
physicians were more likely to do so for high-acuity and
uncommon vignettes.

The 2 studies of Semigran et al [11,29] provided useful insights
into the first generation of symptom checkers. However, much
has changed from 2015 to 2016. To exemplify, Gilbert et al
[28] recently compiled, peer reviewed, and tested 200 vignettes
over 8 popular symptom checkers and 7 primary care physicians.
As in the study by Semigran et al [29], they found a significant
variance in the performance of symptom checkers, but a promise
in the accuracy of a new symptom checker named Ada [41].
Ada exhibited accuracies of 49%, 70.5%, and 78% under M1,
M3, and M5, respectively.

None of the symptom checkers in the study by Gilbert et al [28]
outperformed general practitioners but Ada came close,
especially in M3 and M5. The authors of the study by Gilbert
et al [28] pointed out that the nature of iterative improvements
in software suggests an expected increase in the future
performance of symptom checkers, which may at a point in
time exceed that of general practitioners. As illustrated in Figure
2, we found that Ada is still largely ahead of the conventional
symptom checkers but Avey outperforms it. Furthermore, Avey
surpassed a panel of physicians under various accuracy metrics
as depicted in Multimedia Appendix 2.

Hill et al [4] evaluated 36 symptom checkers, 8 of which use
AI, over 48 vignettes. They showed that accuracy varies
considerably across symptom checkers, ranging from 12% to
61% using M1 and from 30% to 81% using M10 (where the
correct diagnosis appears among the top 10 conditions). They
also observed that AI-based symptom checkers outperform
rule-based ones (ie, symptom checkers that do not use AI). Akin
to Hill et al [4], Ceney et al [12] detected a significant variation
in accuracy across 12 symptom checkers, ranging from 22.2%
(Caidr [56]) to 72% (Ada) using M5.

Many other studies focused on the diagnostic performance of
symptom checkers, but only across a limited set of diagnoses
[57-68]. For instance, Shen et al [67] evaluated the accuracy of
WebMD for ophthalmic diagnoses. Hennemann et al [62]
investigated the diagnostic performance of Ada for mental
disorders. Nateqi et al [65] validated the accuracies of
Symptoma [69], Ada, FindZebra [70], Mediktor [71], Babylon,
and Isabel [72] for ear, nose, and throat conditions. Finally,
Munsch et al [64] assessed the accuracies of 10 web-based
COVID-19 symptom checkers.

From a technical perspective, early AI models for medical
diagnosis adopted expert systems [49,73-76]. Subsequent models
used probabilistic formulations to account for uncertainty in the
diagnostic process [77] and focused on approximate probabilistic
inference to optimize for efficiency [78-80].

With the increasing availability of electronic medical records
(EMRs), Rotmensch et al [81] used logistic regression, naive
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Bayes, and Bayesian networks with noisy OR gates (noisy OR)
on EMRs to automatically construct medical knowledge graphs.
Miotto et al [82] proposed an EMR-based unsupervised deep
learning approach to derive a general-purpose patient
representation and facilitate clinical predictive modeling. Ling
et al [83] modeled the problem as a sequential decision-making
process using deep reinforcement learning. Kannan et al [49]
showed that multiclass logistic regression and deep learning
models can be effective in generalizing to new patient cases,
but with an accuracy caveat concerning the number of diseases
that can be incorporated.

Miller et al [55] presented a real-world usability study of Ada
over 523 participants (patients) in a South London primary care
clinic over a period of 3 months. Approximately all patients (ie,
97.8%) found Ada very easy to use. In addition, 22% of patients
aged between 18 and 24 years suggested that using Ada before
coming to the clinic would have changed their minds in terms
of what care to consider next. Studies of other symptom checkers
such as Buoy and Isabel reported high degrees of utility as well
[24,84].

Some other work has also explored the triage capabilities of
symptom checkers [7,38,84-86]. Studying the utility and triage
capabilities of symptom checkers is beyond the scope of this
paper and has been set as future work in the Unanswered
Questions and Future Research section.

Finally, we note that many survey papers systematically
reviewed symptom checkers, made several observations, and
identified a few gaps [12,20,23,53,86-91]. For instance,
Chambers et al [87] found in 2019 that symptom checkers were
much less accurate than physicians. This was observed in this
study as well for most of the symptom checkers (see the Results
section). Aboueid et al [12] identified knowledge gaps in the
literature and recommended producing more research in this
area with a focus on accuracy, user experience, regulation,
doctor-patient relationship, primary care provider perspectives,
and ethics. Finally, some studies [88-90] highlighted various
challenges and opportunities in using symptom checkers. They
revealed methodological variability in triage and diagnostic
accuracies and, thus, urged for more rigorous and standardized
evaluations before widespread adoption. In response to this, our
work used the standard clinical vignette approach to study the
diagnostic accuracies of some commonly used symptom
checkers.

Implications for Clinicians and Policy Makers
As pointed out in the Introduction section, a United
Kingdom–based study that engaged 1071 patients found that
>70% of individuals aged between 18 and 39 years would use

a symptom checker [13]. This study was influential in the United
Kingdom health policy circles, whereby it received press
attention and prompted responses from National Health Service
England and National Health Service X, a United Kingdom
government policy unit that develops best practices and national
policies for technology in health [55,92]. Given that symptom
checkers vary considerably in performance (as demonstrated in
the Results section), this paper serves to scientifically inform
patients, clinicians, and policy makers about the current
accuracies of some of these symptom checkers.

Finally, this study suggests that any external scientific validation
of any AI-based medical diagnostic algorithm should be fully
transparent and eligible for replication. As a direct translation
to this suggestion, we posted all the results of the tested
symptom checkers and physicians on the web to allow for
cross-verification and study replication. Moreover, we made all
peer-reviewed vignettes in our study publicly and freely
available. This will not only enable the reproducibility of our
study but also further support future related studies, both in
academia and industry alike.

Unanswered Questions and Future Research
This paper focused solely on studying the diagnostic accuracies
of symptom checkers. Consequently, we set forth 2
complementary future directions, namely, usability and utility.
To elaborate, we will first study the usability and acceptability
of symptom checkers with real patients. In particular, we will
investigate how patients will perceive symptom checkers and
interact with them. During this study, we will observe and
identify any barrier in the user experience or user interface and
language characteristics of such symptom checkers. Finally, we
will examine how patients will respond to the output of these
symptom checkers and gauge their influence on their subsequent
choices for care, especially when it comes to triaging.

Conclusions
In this paper, we proposed an experimentation methodology
that taps into the standard clinical vignette approach to evaluate
and analyze 6 symptom checkers. To put things in perspective,
we further compared the symptom checker that demonstrated
the highest performance, namely, Avey against a panel of
experienced primary care physicians. Results showed that Avey
outperforms the 5 other considered symptom checkers, namely,
Ada, K Health, Buoy, Babylon, and WebMD by a large margin
and compares favorably to the participating physicians. The
nature of iterative improvements in software and the fast pace
of advancements in AI suggest an accelerated increase in the
future performance of such symptom checkers.
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Abstract

Background: Collecting information on adverse events following immunization from as many sources as possible is critical
for promptly identifying potential safety concerns and taking appropriate actions. Febrile convulsions are recognized as an
important potential reaction to vaccination in children aged <6 years.

Objective: The primary aim of this study was to evaluate the performance of natural language processing techniques and machine
learning (ML) models for the rapid detection of febrile convulsion presentations in emergency departments (EDs), especially
with respect to the minimum training data requirements to obtain optimum model performance. In addition, we examined the
deployment requirements for a ML model to perform real-time monitoring of ED triage notes.

Methods: We developed a pattern matching approach as a baseline and evaluated ML models for the classification of febrile
convulsions in ED triage notes to determine both their training requirements and their effectiveness in detecting febrile convulsions.
We measured their performance during training and then compared the deployed models’ result on new incoming ED data.

Results: Although the best standard neural networks had acceptable performance and were low-resource models, transformer-based
models outperformed them substantially, justifying their ongoing deployment.

Conclusions: Using natural language processing, particularly with the use of large language models, offers significant advantages
in syndromic surveillance. Large language models make highly effective classifiers, and their text generation capacity can be
used to enhance the quality and diversity of training data.

(JMIR AI 2024;3:e54449)   doi:10.2196/54449
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Introduction

Background
A febrile convulsion refers to a seizure triggered by a fever,
most commonly experienced by children aged between 6 months
and 5 years, in the absence of an underlying central nervous
system infection or metabolic disturbance [1]. Febrile
convulsions have various causes and risk factors, including viral
or bacterial infections, a family history of seizures, underlying
neurological conditions, environmental factors, and specific
vaccinations [2]. Age, fever, and a seizure are essential
components of the definition of childhood febrile convulsion
[3]. Febrile convulsions are most often caused by viral
respiratory tract infections but are also associated with viral
infections such as chicken pox, tonsillitis, and middle ear
infections. Febrile convulsions are also associated with the
administration of childhood vaccines [4]. Although febrile
convulsions caused by vaccines are rare and typically do not
cause permanent damage, parents’ experiences with their
children’s febrile convulsions can have a negative effect on
their perception of vaccine safety [5].

In 2010, in Australia, there was an increase of febrile
convulsions in young children after the release of the southern
hemisphere trivalent inactivated influenza vaccine, produced
by CSL Biotherapies [6,7]. Following national suspension of
seasonal influenza vaccinations for children aged <5 years,
reviews [8,9] revealed deficiencies in Australian adverse event
following immunization (AEFI) monitoring system, which had
resulted in delayed reporting and underreporting of febrile
convulsions [10,11]. The reviews highlighted the need for
monitoring additional data sources for early AEFI detection, a
subsequent focus of Surveillance of Adverse Events Following
Vaccination In the Community [12,13] and the Health
Informatics groups at the Murdoch Children’s Research Institute,
Victoria, Australia. A recent paper highlighted the need for
vaccine safety monitoring to include natural language processing
(NLP) of both internet-based data sources and electronic health
records [14].

In this study, we aimed to assess the effectiveness of NLP
techniques for rapid detection of febrile convulsion presentations
in emergency departments (EDs).

Syndromic surveillance relies on the categorization of
patient-presented symptoms and complaints into “syndromic
indicators,” often derived from patient-reported or observed
symptoms [15]. These indicators, recorded by health care
providers during the initial patient contact, along with
preliminary or working diagnoses, are crucial in the absence of
any confirmatory testing or diagnosis to facilitate prompt public
health decisions [16]. Examples include monitoring of telephone
health advice systems, of notes taken during attendance to
primary physicians, and of data entry performed during visits
to ED.

Syndromic surveillance has shown to have the ability to rapidly
evaluate the potential impact of a recently introduced vaccine
[17,18]. Monitoring telephone helpline data can also assist with
early detection of AEFI, and in the case of 2010 Australian

AEFI signal, retrospective analysis of these data showed that
such methods would have flagged a signal 2 weeks after
commencement of vaccination, which is 4 weeks earlier than
the alert was raised [19]. Surveillance of ED triage notes is
particularly effective for timely syndromic information capture,
as data are entered upon a patient’s arrival to ED, allowing for
the initiation of a notification from a surveillance system while
the patient is still in the ED [20], well before any diagnostic
coding takes place.

ED triage notes are gathered during the first moments of the
patient encounter and usually contain aspects of a patient’s
medical history, presenting symptoms, and the reasons for their
visit. This information is primarily used to direct initial clinical
management and can serve as a tool to help understand trends
of patient visits in near real time [21]. However, variation in
the language used in the documentation of this information
within and across hospitals significantly impedes the reuse of
these data [22]. Abbreviations abound and their meanings vary
according to context; for example, “cp” might be used as
abbreviation for any type of chest pain, which can include
pulmonary and trauma-related sources, in some contexts, it
might just mean cardiac pain, while in others, it may refer to
cerebral palsy. In some presentations, “NVD” means “nausea,
vomiting, and diarrhea,” but in relation to childbirth, “NVD”
means “normal vaginal delivery.” Misspellings, local variations
of abbreviations, and context-sensitive vocabulary all feature
in ED notes, and there are additional variations of the quality
and length of the texts [23].

Research examining triage notes can be broadly classified into
3 main categories: quality improvement of triage notes’
recording and category assignment, prediction, and case
identification. Studies focusing on the quality improvement of
triage notes’ recording and category assignment aim to enhance
the accuracy, reliability, efficiency, and completeness of the
information recorded during triage. Prediction studies aim to
predict the outcomes of emergency visits or the resources needed
by patients based on the information recorded in triage notes.
Case identification studies aim to either classify ED visits into
categories or syndromes or to collect data about specific
presentations (or syndromes) of interest [24].

Various methods have been used for identifying syndromes
from triage notes. These include keyword-based,
linguistic-based, statistical and machine learning (ML)
algorithms, or hybrids of these [25]. Some have used data from
1 hospital [26], while others have used data from >1 hospital
[27]. These systems vary in their goals, such as focusing on
classification of 1 syndrome [28] or developing a syndromic
surveillance system for >1 syndrome [29].

In recent years, the use of ML algorithms for surveillance of
ED triage notes has increased [24]. One of the main obstacles
in using supervised ML algorithms is the scarcity of annotated
data for training and benchmarking [30]. Many studies have
used medical coding against existing data as a proxy for the
labels [31-34]. However, the use of International Classification
of Diseases codes as a gold standard has known limitations as
they do not always align with the actual reason for the visit [35].
For instance, codes can be assigned to identify the underlying
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etiology of a presentation, for health conditions not directly
observed in the text of a presentation, or for other purposes such
as financial incentives [36,37]. The choice of codes can be
influenced by perceptions of the importance of a certain
condition [38], and in this study, a febrile convulsion might not
get coded if it is thought of as a secondary effect or not
significant enough to include on a discharge summary when
there are limitations to how many codes may be assigned.

When using supervised ML algorithms in the context of
syndromic surveillance of ED triage notes, researchers have
manually annotated from several thousand [29] to a few hundred
thousand records [39] to train the algorithms. It has been
observed that data annotation poses a significant obstacle in
training NLP models within the clinical domain, with manual
identification of labels affecting the representativeness of
samples. This challenge often restricts NLP solutions to obtain
data from only a few institutions, thereby impacting their
generalizability [40].

Objectives
In this study, the overarching aim was to identify emerging
trends that could signal potential issues with a vaccine. Our
primary objective was to construct a highly effective NLP model
for the early detection of febrile convulsions in ED notes,
applicable to the entirety of public hospital ED departments,
without requiring large volumes of annotated training data. We
achieved this goal by leveraging a limited set of manually
labeled records and using data augmentation techniques. Our
data set was sourced from 26 public hospitals across the
Australian State of Victoria. Furthermore, we aimed to outline
the essential requirements for the development and deployment
of such a system.

Methods

Data

Overview
SynSurv provided the primary data source for this study.
SynSurv is the syndromic surveillance project of the Department
of Health of the state government of Victoria, Australia. Its
objective is to detect events of public health significance early,
allowing clients responsible for public health action to respond
promptly and effectively. At the time of writing, SynSurv
receives a rapid stream of information about every ED
presentation, including the triage text, from a majority (n=34)
of the public hospitals with Emergency Departments in Victoria,
Australia. Most presentations arrive within 5 to 15 minutes of
the patient’s assessment.

Data comprise the text recorded at triage by ED nurses and are
characterized by a unique structure that primarily consist of
abbreviations and brief phrases. The text usually contains a
presenting complaint, selected past medical history, and the
nurse’s observations of the patient. Triage text does not contain
demographic or identifying information. The length of the text
varies; it may be a detailed narrative of the patient’s presentation
to the triage nurse or it could be a concise summary of a possible
diagnosis along with a few observations. The unlabeled data

set used in this study consisted of 76,274 ED triage text from
January 1 to July 14, 2022, of ED presentations of children aged
between 6 months and 6 years. The average length of text was
22 (SD 20.4) words. The longest record initially contained 319
words, but after data preparation, which involved removing
nontextual information, the length of the longest text was
reduced to 253 words. Additional data collected in 2022 were
used to create a hold-out test data set.

Febrile Convulsion Symptoms
During the initial, “tonic” seizure stage of a febrile convulsion,
the individual may let out a cry or moan before suddenly losing
consciousness and experiencing muscular rigidity. This stage
can last for up to 30 seconds and may be accompanied by the
cessation of respiratory movements. The “clonic” seizure stage
that follows involves repetitive movements of the limbs or face.
While rigors (uncontrolled shivering and shaking) may look
similar and often occur during any acute febrile illness, loss of
consciousness is not typically associated with them [41].
Seizures typically last <5 minutes, although they may be
prolonged. A “postictal state” follows, lasting between 5 and
30 minutes, during which the patient can experience drowsiness,
confusion, headaches, and nausea while gradually returning to
normal.

Data Annotation
Annotation of febrile convulsions needs to account for the
language used in their clinical descriptions, which includes
temperature-related terms and terms used to describe the clonic,
tonic, and postictal stages of a seizure.

The first step of annotation involved filtering the ED notes for
convulsion-related terms (eg, “seiz,” “convuls,” “fit,” “epilep,”
“ictal,” “tonic,” or “clonic”) and fever-related terms (eg, “febri,”
“fever,” “37.”, “38.”, “39.”, “40.”, “41.”, “42.”, or “43.”).
Applying the filter reduced the data set to around 29,000
candidates for labeling, and these were annotated with a goal
to identify around 1000 positive examples of febrile convulsion.
The ED nurse’s notes were thoroughly reviewed, and if there
was a likely indication of a febrile convulsion, whether explicitly
mentioned or not, a positive label was assigned by J Black
(described below), and a negative label was assigned to records
that did not meet the criteria. In an additional step, some records
that did not contain any of the filter settings were randomly
selected and labeled. Only a few of these were identified as
positive, mostly due to spelling variations in the filter strings
that caused the records not to be detected in the initial step.

An annotation guideline was developed by J Black, who is a
physician with ED experience, where a record was labeled as
positive if the following criteria were met:

• The patient presented with febrile convulsion symptoms at
the time of ED presentation, which requires mentions of
both seizure and fever.

• The mention of febrile convulsion is not just in the patient’s
medical history (eg, only “phx febrile convulsion”) or just
an expression of parental concern (eg, only “mother worried
as child previously had a seizure”).

• The convulsion is not related to other chronic conditions
that include seizures, as febrile illness can trigger a
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pre-existing disposition to seizures. A mention of medicine
usually taken when seizures happen is an indication of
existing underlying cause.

• A mention of fever-lowering medications, subjective
assessment of fever by parents or carers, or measurements
taken at home can indicate the presence of a fever, even if
the temperature recorded in the ED is normal.

• The notes do not indicate other types of seizure, including
absent or focal seizures.

Following this guideline, author J Black annotated the training
data to classify instances as either febrile convulsion or not.
This resulted in 1032 positive labels and 14,415 negative labels,
making a total of 15,447 annotations. The annotation of the
separate test data set resulted in 432 positive and 2768 negative
labels, a total of 3200 records. Table 1 provides examples of
triage notes along with their corresponding labels, and Table 2
enumerates the record and word counts of the data sets.

Table 1. Sample of triage notes (not the actual text but examples of typical structure).

Triage notesCategoryLabel

“Seizure, Unwell Since yesterday, Febrile, Vomit enroute, IUTD, Nil Rash, A-PATENT, Nil Sob,
T- 38.8, GCS-15, R- 22, Nil Pain, PWD, O/A alert.”

Fever and seizure present1

“BIBA: Unwell 1/12 (fev,diahhroea). 1× ep of eye rolling back? tonic clon. Self res 1/60. Good oral
intake. O/E: PWD, Good capp Asleep, easily rouse. Ket 0.4 Pmhx: UTDI”

“Tonic clonic” and fever but no men-
tion of convulsion or seizure

1

“FEVER. Decreased oral intake. Sz today. Runny nose. Clear chest. Nil vomiting. Miserable at
triage. Phx dad states rare gene mutation.”

Fever and spelling variation of
seizure-related term and fever

1

“BIBA post seizure tonight, eyes rolled and floppy unresponsive 5 min. Temps last 3/52. At triage
febrile.”

Seizure and spelling variation of
fever-related term

1

“At midnight Advil given. At 0100 10 sec of seizure like activity. 2nd seizure activity shortly after
lasting a few minutes with bilious vomit. O/A alert. RR 24 sats 99 no WOB HR 112.”

Seizure and fever medication is men-
tioned

1

“Prolonged sz at home lasting 13 mins. Congested left lung with resp symptoms. Runny nose and
cough this week. 4mg oral midaz. Resolved with av arrival. Postictal 40 mins. Phx sz focal or ton-
ic/clonic phx eplispey and dravat sx”

Underlying condition for seizure0

“BIBA seizure like activity tonight, intermittent 15 mins, post ictal .30/60. Hx febrile convulsions.
Afebrile oa”

Febrile convulsion in past medical
history only

0

“FEVER Since yesterday, Coughing, Nasal congestion, Parents concerned as previous febrile con-
vulsion”

Parental concerns0

“FEVER? Absent episode at day care following fever. Nil seizure activity, but more quiet. GCS 15.
pHx asthma”

Other types of seizures0

Table 2. Descriptive statistics of the data set.

Unique words, nAverage words, nTotal words, nTotal records, nData set

52,69821.691,654,04576,274Initial data

21,08625.80398,60815,447Training data

992532.07102,6253200Test data

Data Set Construction
The original data were very imbalanced, with 1032 positive
labels versus 14,415 negative labels. Our approach was to allow
for the influence of the negative examples as much as the
positive examples, as we wanted to ensure the models were not
overly prone to identify false positives. We decided to evaluate
as many negatively labeled records as possible by dividing the
negative data into smaller data sets that each roughly matched
the number of available positive records, while also matching
the positive records’ text lengths, and we paired each of these
with the positive records for a training data set. To accomplish
text length matching, we assigned a word-count group to each
record, and when sampling negative records, we ensured that
we took similar numbers from each word-count group to those
which existed in the positive records.

After setting aside a validation data set of 100 positive and 100
negative labels, 932 positive labels remained for training. When
sampling the negative labels to match the 932 positive labels
for a training data set, we oversampled by a factor of around
1.2, iteratively extracting negative examples until we ran out
of examples to complete a training data set. The result was 9
data sets each consisting of the same 932 positive labels and
1127 different negative labels, with a total of 2059 records in
each. These were used for initial training of 9 identical
transformer models, and by assessing their test scores, we could
determine that the best model also identified the best of the 9
training data sets, where the balance of negative examples
worked most advantageously with the positive examples. We
chose transformers for the training data evaluation because with
their capacity to take account of language structure, they were
more sensitive to textual information compared to the other
standard neural networks we were evaluating [42].
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Data Augmentation
When evaluating the transformer models, we found that there
was potential for improvement in their performance, as their
F1-score was around 0.79. Therefore, we decided to assess the
effect of training with additional examples. As we lacked new
positive examples, we decided to experiment with data
augmentation techniques. These included synthetic text
generation using GPT-2 models, domain-specific data
augmentation, and task-agnostic techniques. This is explained
in a prior publication [43] where the best result was achieved
by using synthetic text generation techniques. Using this
approach added 1582 positive labeled records to the training
data set. This meant we could safely add further negative
examples without the data set becoming imbalanced, resulting

in 5455 training records. We used this augmented data set and
the 200-record validation data set to train and validate all the
approaches, and we evaluated and compared them using the
3200-record holdout test set.

After conducting error analysis on the predictions of the
transformer model, we added another 112 seizure-related
negative labeled records to the data set. This gave the models
additional exposure to ED notes about other types of seizures
or tonic-clonic seizures without the fever components, which
would allow to the model to better learn not to create false
positive predictions on these marginally negative examples.
The final training data set consisted of 2514 positive and 3053
negative labels, a total of 5567 records. Table 3 shows the
construction of the data sets.

Table 3. Data sets’ construction.

Negative, n (%)Positive, n (%)Data set

1127 (54.7)932 (45.3)Initial training (×9; n=2059)

2941 (53.89)2514 (46.11)Augmented training (n=5455)

3053 (54.78)2514 (45.22)Final training (n=5567)

100 (50)100 (50)Validation (n=200)

2768 (86.5)432 (13.5)Test (n=3200)

Classification

Overview
As part of our goal of determining the most effective NLP
methods for identifying febrile convulsions in ED visits, we
needed to assess the trade-off in requirements and benefits of
increasingly sophisticated NLP models. While the Data section
described the data requirements that evolved as these models
were assessed, the Classification section describes the reasons
for evaluating the various models, their data preparation and
training requirements, and some relevant observations of their
training processes. Evaluation and results will be discussed fully
in the Results section.

Pattern Matching
We started with pattern matching as a manual approach that
could give us a baseline against which we could compare ML
approaches. This consisted of selecting text based on relevant
strings that would, when combined, indicate both fever and
convulsions. After importing the data into a Structured Query
Language (SQL) database, we used a SQL full-text search to
describe the patterns more comprehensively and to ensure that
both fever and convulsions were included together. The pattern
used was (‘ “fever*” OR “pyrexi*” OR “feb*” OR “37.6” OR
“37.7” OR “37.8” OR “37.9” OR “38.*” OR “39.*” OR “40.*”
OR “41.*” OR “42.*” OR “43.*” OR “T38*” OR “Temp38*”
OR “T39*” OR “Temp39*” OR “T40*” OR “Temp40*” OR
“T41*” OR “Temp41*” OR “T42*” OR “Temp42*” OR “T43*”
OR “Temp43*” OR “hot*” OR “warm*” ’) AND (‘ “convul*”
OR “*seiz*” OR “size*” OR “*sezi*” OR ictal OR tonic OR
clonic ’). We experimented with accounting for negations and
modifiers, such as mentions of medical history and temperature
measurement units, when they were close to terms related to

febrile convulsions. Although this improved the detection of
false positives, it detrimentally affected the detection of true
positives and ultimately resulted in a poorer performance of the
model. Therefore, to retain the simplest and most performant
pattern matching approach, we decided to avoid dealing with
negations and modifiers.

Standard Classifiers
We evaluated a variety of standard classifiers using both the
original text with trigrams and lemmatized forms of trigrams.
Given the highly specific nature of the texts, where abbreviations
and punctuations prevail, we did not eliminate stop words, and
we restricted our preprocessing to (1) expanding any
contractions that used apostrophes and (2) converting collections
of the plus sign (eg, “+++”) into the word “extreme,” as these
are used throughout to convey that meaning. We used a
customized tokenization method, based on spaCy, to ensure
that tokenization did not break apart symbols on embedded
periods and slashes and to fashion bigrams, trigrams, and
lemmatized words. This was because we needed to preserve the
forms of words, especially regarding temperatures and explicit
compound expressions, and to control how n-grams and
lemmatization were performed. We experimented with the
Scikit-Learn CountVectorizer and TfidfVectorizer, with and
without inverse document frequency (IDF) enabled; with the
result that for each of the 3 data sets, we had standard, trigram,
and lemmatized versions, each of which were assessed via a
CountVectorizer, TfidfVectorizer with IDF, and TfidfVectorizer
without IDF enabled; a total of 27 data sets for each of the
classifiers were assessed.

Standard Neural Networks
We preprocessed the data for experimentation with standard
neural networks by separating basic contractions (eg, isn’t to is
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n’t), but otherwise, the data were left intact, with no ED-specific
translations done per the Standard Classifiers section, such as
“+++” to “extreme.” The preprocessed text was tokenized using
the torchtext library, and models were constructed using the
Pytorch library. We experimented with a range of neural
network models—convolutional neural network (CNN), long
short-term memory (LSTM), bidirectional LSTM (BiLSTM),
CNN-LSTM, and CNN-BiLTSM hybrids. Then, we tested the
gated recurrent unit (GRU), bidirectional GRU (BiGRU), and
CNN-GRU and CNN-biGRU hybrids. We implemented the
best of these—the BiGRU and the CNN-BiGRU hybrid. The
latter consisted of a 3-layer CNN producing one-grams, bigrams,
and trigrams (via kernel sizes of 1, 2, and 3 with a kernel number
of 100), with its output concatenated with a BiGRU output. The
standard BiGRU model’s F1-score slightly exceeded that of the
CNN-BiGRU hybrid model, but the CNN-BiGRU was included
because it mostly had a better balance of precision and recall
and was a strong contender.

Transformers
We used the RoBERTa-large-PM-M3-Voc model, published
by Facebook [44] and described as being “pre-trained on
PubMed and PMC and MIMIC-III with a BPE Vocab learnt
from PubMed.” This model was selected due to its superior
performance in classifying biomedical and clinical texts
compared to other models with similar capabilities, including
Scientific Bidirectional Encoder Representations from
Transformers (SciBERT) by the Allen Institute for Artificial
Intelligence, Biomedical (BioBERT) by researchers at Korea
University and the National Institutes of Health, ClinicalBERT
by researchers at the University of Pennsylvania and the
University of Washington, and BioMed-RoBERTa by
researchers at the University of California, San Diego. We did
no text preprocessing, as we considered that the transformer’s
internal byte pair encoding approach and inherent language
understanding as sufficient to deal with the texts’ complexity.
The best transformer model was identified from the final form
of the training data.

Ethical Considerations
Ethics approval for this study was granted by the Department
of Health, Human Research Ethics Committee in Victoria,
Australia (project ID: HREC/83486/DOH-2022-298485). No
compensation was provided to any participants. Informed
consent was not sought for this study because the operational
work it supports aligns with legislation related to serious public

health threats. The data were anonymized by removing personal
details and using a 1-way hashing algorithm to ensure that
reidentification is not possible.

Results

Overview
The results are shown in Table 4 as precision, recall, and
F1-scores when evaluated against the test data set. We used
precision, recall, and F1-scores as evaluation metrics to assess
the performance of the models on the positive label using the
test data set. Precision measures the proportion of correctly
classified positive instances out of all instances predicted as
positive. Recall measures the proportion of correctly classified
positive instances out of all actual positive instances. F1-score
is the harmonic mean of precision and recall, providing a
balanced measure of performance. By using these evaluation
metrics, we were able to comprehensively evaluate the models’
performance on key measures of accuracy and completeness
with respect to both the positive and negative labels.

Scores are depicted for each model in order of the data sets used
to train a model. These were (1) the best of the initial training
data set of 2059 records, (2) the synthetic records–enhanced
data set of 5455 records, and (3) the data set also containing
112 additional examples of negative seizure examples, with a
total of 5567 records. These data sets are indicated with
superscripts of b, d, and e in Table 4.

The models’ difference scores are shown at the bottom of each
model group. These are calculated as the difference between
model test scores obtained when trained on the final (ie, third)
data set (superscript e) and the test scores obtained using the
pattern matching approach, which functions as a baseline. The
best individual value in each of the table columns are in italics,
but the F1-score is the most important value to measure overall
performance.

Figure 1 shows a graphical comparison of the F1-scores achieved
per model on the test data set, as the models were trained on
the 3 training data sets. Notably, the F1-score of the RoBERTa
transformer model was initially no better than pattern matching
when trained on the first data set. However, as more data were
added, the RoBERTa transformer model’s performance
improved significantly, surpassing the F1-scores of the other
models starting from the second data set onward.
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Table 4. Model performance metrics.

False negativeFalse positiveTrue positiveTrue negativeF1-scoreRecallPrecisionModel and data sets

321642925520.7970.993a0.665Pattern matching

322342925450.7920.9930.658RoBERTab,c

127342026950.9080.9720.852RoBERTad

126042027080.9210.9720.875RoBERTae

9–156–91560.124–0.0210.210RoBERTa—differencee

369239726750.8610.9170.812BiGRUb,f

346239927050.8930.9210.866BiGRUd

444238927250.9000.8980.903BiGRUe

41–174–401730.104–0.0950.237BiGRU—differencee

378639626810.8660.9150.822CNN-BiGRUb,g

494838427190.8880.8870.889CNN-BiGRUd

255937427420.8990.9370.864CNN-BiGRUe

22–157–551900.102–0.0560.199CNN-BiGRU—differencee

2623540625330.7570.9400.633XGBoostb,h

3115440126140.8130.9280.723XGBoostd

3613539626330.8220.9170.746XGBooste

33–81–33810.026–0.0760.081XGBoost—differencee

aItalicized values represent the best individual value in each of the columns.
bThe best of the initial training data set of 2059 records.
cRoBERTa: Robustly optimized Bidirectional Encoder Representations from Transformers approach.
dThe synthetic records–enhanced data set of 5455 records.
eThe data set also containing 112 additional examples of negative seizure examples.
fBiGRU: bidirectional gated recurrent unit.
gCNN-BiGRU: convolutional neural network-bidirectional gated recurrent unit.
hXGBoost: extreme gradient boosting.
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Figure 1. Comparison of the F1-scores of the models. BiGRU: bidirectional gated recurrent unit; CNN-BiGRU: convolutional neural network-bidirectional
gated recurrent unit; RoBERTa: Robustly optimized Bidirectional Encoder Representations from Transformers approach; XGBoost: extreme gradient
boosting.

Pattern Matching
The pattern matching method we assessed was a rules-based
approach looking at text patterns in a SQL full-text query. It
achieved a very high recall of 0.99—meaning it correctly
identified almost all the febrile convulsion records. However,
it also identified many incorrect records as febrile convulsions
with a resulting precision of 0.67, so its F1-score suffered,
although it remained acceptable at 0.80 (rounded). Analysis of
false positives showed that mentions of time of the day, duration
of seizure, and child weight were all open to misinterpretation
as indications of fever, as numbers ranging from “37.6” through
to “43.” were matched as indicators of temperature. By contrast,
references to temperature that had no accompanying qualifier
or decimal point were ignored. Terms such as “warm to touch”
were missed, where warm can refer to fever (but is also used in
observations about skin being pink, warm, and dry). Imprecise
descriptions of febrile convulsion, negations, and mentions of
previous history of fever, seizure, and febrile convulsions were
missed or misinterpreted. For instance, implied and specific
references to history such as “increased seizure,” “mother
concerned,” “Mum states older brother has had a febrile seizure
before,” “febrile convulsion previously,” “recent admission
with seizure + enterovirus,” and mentions of use of
seizure-related medications before the emergency visit. We
experimented with including pattern matching of previous
history in our query, which worked to a certain extent to remove
false positives but also removed true positives, with a resulting
worse performance. A fully implemented pattern matching
system requires extensive rules that adjust for many textual
nuances but which can never be complete and would be difficult
to maintain, which is why we focused our effort on ML
solutions.

Standard Classifiers
We assessed the Scikit-Learn Multinomial Naive Bayes, logistic
regression cross validation, linear support vector classification
(SVC), stochastic gradient descent (SGD), random forest, extra
trees classifiers, and the extreme gradient boosting (XGBoost)
classifier. Each was tested with the 3 data sets; with the standard
form of the text, with trigrams, and with lemmatized trigrams;
and vectorizing with the Scikit-Learn CountVectorizer,
TfidfVectorizer with IDF, and TfidfVectorizer without IDF
enabled. Grid searches were performed to further tune model
parameters for the best models from each round. We evaluated
the models with the test data set.

On the initial data set of 2059 records, the best model was the
XG Boost classifier, using lemmatized text and the
CountVectorizer, with an F1-score of 0.757. The second best
was the logistic regression cross validation model, using
standard text and the CountVectorizer, with an F1-score of
0.755. The XG Boost model continued to be the best model as
we assessed with the larger data sets. With the augmented,
second data set of 5455 records, which included synthetic
positive examples, the F1-score was 0.813, using standard text
and the TfidfVectorizer with no IDF. With the third data set of
5567 records, which included extra negative seizure examples,
the F1-score was 0.822, again using standard text and the
TfidfVectorizer but this time with IDF enabled.

The standard classifiers were worse than pattern matching on
the initial data set, but on the larger data sets, the best of the
models scored better than pattern matching. The XG Boost
model fared well for recall, with an average of 0.93 over the
data sets, which was marginally better than the standard neural
networks’ average of 0.91 but not as good as the transformer’s
average of 0.98. However, the superior precision of the standard
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neural networks resulted in their F1-scores being, on average,
0.09 higher than those of the XGBoost model, while the average
F1-score of the transformer model was 0.10 higher. With a
relatively good recall but overall poorer performance and a high
degree of effort required to prepare for and assess these models,
we would consider these only in a low-resource situation and
would consider pattern matching as a comparable option.

BiGRU and CNN-BiGRU
The BiGRU and CNN-BiGRU classifiers were Pytorch models
trained from scratch on the different data sets. Other models
that were evaluated did not come close to their performance;
these included a CNN model, LSTM models (in both standard
and bidirectional form), CNN-LSTM, CNN-BiLSTM, and a
BiGRU model with an additional attention layer. Word2Vec
embeddings from the training data sets were loaded into the
models.

Their performance based on F1-score was as much as 10% better
than that of pattern matching at 0.8, ranging from around 0.86
to around 0.9 as the data sets were developed. This was because
their precision was much better; they found fewer false positives,
although their recall was poorer compared to pattern matching
by as much as 10%.

Initially, they were better than the transformer approach as well;
their starting F1-score of around 0.86 exceeded the transformer’s
score of 0.79. However, as data were added, first through
additional synthetic positive records and then by adding negative
seizure examples, these models only improved over their initial
scores by around 4 percentage points (lower than the
improvement of transformer, discussed next).

Transformers
The transformer model architecture has been proven to be very
suitable for fine tuning to tackle language tasks, with previous
research [45] demonstrating that these models outperform other
neural networks and standard classifiers. The
RoBERTa-large-PM-M3-Voc model was chosen because of its
proven capacity to understand clinical texts. Our initial training
used 9 slightly imbalanced data sets, all with the same 932
positive labels but each with different 1127 negative labels,
which, at 2059 records, was scarcely enough to fine-tune a
transformer. However, we were able to establish which of the
data sets worked best with the model, and this data set then
became the foundation of data set development, which was
chiefly undertaken to improve the performance of the
transformers while providing a comparison to their performance
improvements against other models.

The initial transformer model did no better than the pattern
matching; its F1-score was 0.792, which was slightly less than
the 0.797 of the pattern matching and much less than the 0.866
of the CNN-BiGRU model. Encouragingly, it matched the
pattern matching model’s recall of 0.933, but it was let down
by a relatively poor precision of 0.658. We found that this was
mainly due to false positives; it was classifying many
seizure-related records as febrile convulsion when they had no
mention of fever. We added 112 more examples of negatively
labeled seizure records, which we had manually checked to

ensure fever was absent. The expectation was that the model
could learn that seizure alone was not predictive of a febrile
convulsion. However, this had only a slight effect; the F1-score
only increased by 0.6 percentage points to 0.797, now equaling
the pattern matching.

Therefore, we decided instead to add a lot more positive and
negative records, as the model was clearly struggling with a
lack of data to learn from. As we had no more positive records,
we used a GPT-2 language model to generate synthetic examples
of positive labels, as described previously [43]. Adding these
enabled us to also sample and add many more negative labels
to get a reasonably balanced data set of 5455 records, containing
2514 positive and 2941 negative labels—the slight imbalance
was to give the model more negative examples. Training the
transformer and other models just on the combined initial and
synthetic data allowed us to measure the effect of the synthetic
records clearly. Any extra negative records were randomly
selected and not taken from the manually crafted 112 seizure
negative records, which we had set aside at this point. This had
a very positive effect; the F1-score on a newly fine-tuned model
increased by 11.7 percentage points to 0.908, beating the 0.893
of the BiGRU, which was the best performing standard neural
network trained on this version of the training data set.

Finally, we readded the 112 negative seizure records and reran
our training for all models; the best transformer model now
achieved an F1-score of 0.921, a more significant 1.6 percentage
points improvement compared to the 0.6 increase obtained when
the negative seizure records alone had been added in our
previous experiment with them.

The best performing transformer model still maintained an
impressive recall of 0.972, compared to its initial 0.993, but its
precision had risen to 0.875 from 0.665. Its F1-score of 0.921
was 12.4 percentage points better than the pattern matching
baseline of 0.797 and 2 percentage points better than the best
standard neural network, which was the BiGRU with a score
of 0.900.

This result confirmed our previous experience that transformers
need more data to learn from compared to lighter-weight neural
networks, but in the right conditions will outperform those
simpler architectures. While the neural networks improved over
their initial scores by around 4 percentage points following
addition of synthetic data, the transformer improved from its
starting score by >3 times that amount, at around 13 percentage
points. The final transformer was superior to the final BiGRU
by 2 percentage points (0.92 vs 0.90).

Deployment
The best performing models from both standard neural networks
and transformers were deployed in a Databricks environment.
The transformer model was originally 1.4 GB in size and ran
in a timely manner best on a graphics processing unit (GPU);
inference was 5 times faster on a GPU versus a central
processing unit (CPU). For performing inference on a CPU, we
wanted to reduce both the memory required and the speed to
perform inference. Therefore, we converted the best transformer
checkpoint to an Open Neural Network Exchange (ONNX)
model and optimized and then quantized it. Although the
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optimized model was no smaller than the original transformer
model, it ran twice as fast as the transformer on a CPU. The
quantized model was considerably smaller at 500 MB, had no
loss of accuracy, and ran 40% faster again than the optimized
model on a CPU; hence, it was used. Inference times on CPU
for the quantized ONNX model were similar to the transformer
model on GPU. However, inference times on CPU using the
CNN-BiGRU, which was only 14 MB in size, were 10 to 12
times faster than the transformer on GPU and the quantized
ONNX models.

The minimum available Databricks configuration was a Standard
DS3 v2 CPU compute with 14 GB of memory and 4 cores and
a 13.1 ML runtime, which costed 0.75 Databricks units per hour.
All models were able to run on this. However, the much faster
inference and smaller memory requirement of the standard
neural network models meant that this configuration would be
able to support the parallel loading of many such models (for
the surveillance of numbers of syndromes), while based on the
use of 2 transformer-based ONNX models, we estimate that it
would support only up to 6 simultaneously loaded models before
requiring a parallel deployment of computing capacity or a more
powerful single capacity.

After 5 months of deployment, the model has predicted 749
febrile convulsion cases in the target group of children aged <6
years and 75,543 cases of no febrile convulsion in that group.
To evaluate its performance, we sampled 125 of its predictions
for each cohort. To ensure we had good candidates for potential
false negatives, when sampling for the 125 nonfebrile
convulsions, we filtered to records that had a mention of either
febrile, seizure, or convulsion. Labeling resulted in 122 febrile
convulsion and 128 nonfebrile convulsion records. The model
had predicted incorrectly for 9 (3.6%) of the 250 records,
resulting in a precision score of 0.952, a recall score of 0.975,
and an F1-score of 0.964.

Discussion

Overview
The key objective of this study was to contribute to improving
near real-time syndromic surveillance of febrile convulsions by
using NLP models. We compared NLP approaches with a
pattern matching baseline solution. We found that even with
minimal initial training data but careful attention to the training
examples and the addition of augmented data to improve the
data, a transformer-based model could achieve superior
performance, without needing any demanding text preprocessing
or feature construction. We concluded that while the process of
determining the best training data set was nontrivial, the result
justified the effort and acted as a guide to further development
for these models for classifying ED notes.

Principal Findings
The format, quality, and length of ED triage notes can differ
greatly, which presents a considerable challenge when it comes
to text processing. To overcome these dissimilarities, one
solution is to use lexicons to replace variations in spelling,
abbreviations, and medical terms with standardized synonyms,
and another solution is to use rules to recognize specific text

features. Nonetheless, both these methods demand ongoing
efforts to handle novel words or establish new rules, which can
make the system more intricate as additional rules often need
to be introduced to amend the impact of previously applied
rules. In addition, the use of these methods can negatively affect
the generalizability of solutions across hospitals, as terminology
and abbreviations can be specific to individual ED departments.

In our research, we have demonstrated that neural networks and
especially cutting-edge large language models can remove the
need for preprocessing of text and can use text as is to achieve
outstanding performance in syndromic surveillance of ED notes.
Large language models have been originally trained on
substantial volumes of text and have extensively learned
complex textual patterns and relationships within texts, and
when fine-tuned, they can quickly learn the specifics of
previously unseen texts such as triage notes. This learning is
enhanced if the model has been pretrained on similar texts, as
was the case with the RoBERTa-large-PM-M3-Voc model we
used, which had been trained on biomedical and clinical texts.

Development of supervised algorithms requires labeled data,
which is hard to acquire [40,46]. Various techniques have been
used by researchers to overcome this barrier. Researchers have
employed various techniques to overcome this barrier, ranging
from using proximal ICD codes [31], which suffers from a loss
of expert targets, to the labor-intensive process of manually
labeling many records [39]. Our strategy showed that use of
language models for generating synthetic text is a highly
effective and efficient way to augment data to improve the
performance of the classification task. However, our findings
suggested that although data augmentation can have a significant
impact on the performance of language model–based classifiers,
its impact on more conventional classifiers such as CNNs may
be more limited. Specifically, augmenting data can substantially
improve the accuracy and robustness of language model–based
classifiers by expanding the data set and introducing greater
variation in the data, particularly when there is information in
the texts that clarifies the features of classes. However, there
are lesser gains realized by standard neural networks and
traditional classifiers, which indicates the greater ability of
language models to benefit from textual clues.

Our findings also suggested that there is no single solution that
can be universally applied for syndromic surveillance of ED
triage notes, and simple pattern matching may provide
reasonable performance, particularly where a syndrome can be
clearly identified with the presence of specific keywords.

Clinical NLP research has been ongoing for several decades
and has contributed significantly to many areas of patient care.
However, despite these advances, there is still a lack of NLP
systems that have been deployed and integrated into operational
settings [47]. Our solution is currently deployed in a cloud-based
environment and is continuously sending a stream of flagged
presentations to an organization tracking adverse events
following immunization monitor for possible increases against
their background rate for detection of any vaccine safety signal
related to febrile convulsions.
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Limitations
Our approach is extendible to similar scenarios; however, the
model we created is specific to the task of detection of febrile
convulsions in ED notes. Although the process of careful
analysis, leading to an informed application of methods to
enhance training data, is repeatable for the detection of other
syndromes and potentially beyond (eg, vaccine adverse events
following immunization), the approach depended on personal
judgment and experience and was somewhat complex. More
methodical approaches to determining optimal training data are
described in the active learning literature [48], and our future

focus will be on implementing these approaches while
leveraging the insights gained from this study on using
augmentation to enhance training data.

Conclusions
Near real-time surveillance of febrile convulsion presentations
to EDs is feasible using NLP solutions. We established that a
large language model classifier can be trained in the context of
few training examples by adding synthetically generated data
and implemented into a real syndromic surveillance system,
enabling surveillance of febrile convulsion following
vaccination.
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Abstract

Background: Despite their growing use in health care, pretrained language models (PLMs) often lack clinical relevance due
to insufficient domain expertise and poor interpretability. A key strategy to overcome these challenges is integrating external
knowledge into PLMs, enhancing their adaptability and clinical usefulness. Current biomedical knowledge graphs like UMLS
(Unified Medical Language System), SNOMED CT (Systematized Medical Nomenclature for Medicine–Clinical Terminology),
and HPO (Human Phenotype Ontology), while comprehensive, fail to effectively connect general biomedical knowledge with
physician insights. There is an equally important need for a model that integrates diverse knowledge in a way that is both unified
and compartmentalized. This approach not only addresses the heterogeneous nature of domain knowledge but also recognizes
the unique data and knowledge repositories of individual health care institutions, necessitating careful and respectful management
of proprietary information.

Objective: This study aimed to enhance the clinical relevance and interpretability of PLMs by integrating external knowledge
in a manner that respects the diversity and proprietary nature of health care data. We hypothesize that domain knowledge, when
captured and distributed as stand-alone modules, can be effectively reintegrated into PLMs to significantly improve their adaptability
and utility in clinical settings.

Methods: We demonstrate that through adapters, small and lightweight neural networks that enable the integration of extra
information without full model fine-tuning, we can inject diverse sources of external domain knowledge into language models
and improve the overall performance with an increased level of interpretability. As a practical application of this methodology,
we introduce a novel task, structured as a case study, that endeavors to capture physician knowledge in assigning cardiovascular
diagnoses from clinical narratives, where we extract diagnosis-comment pairs from electronic health records (EHRs) and cast
the problem as text classification.

Results: The study demonstrates that integrating domain knowledge into PLMs significantly improves their performance. While
improvements with ClinicalBERT are more modest, likely due to its pretraining on clinical texts, BERT (bidirectional encoder
representations from transformer) equipped with knowledge adapters surprisingly matches or exceeds ClinicalBERT in several
metrics. This underscores the effectiveness of knowledge adapters and highlights their potential in settings with strict data privacy
constraints. This approach also increases the level of interpretability of these models in a clinical context, which enhances our
ability to precisely identify and apply the most relevant domain knowledge for specific tasks, thereby optimizing the model’s
performance and tailoring it to meet specific clinical needs.

Conclusions: This research provides a basis for creating health knowledge graphs infused with physician knowledge, marking
a significant step forward for PLMs in health care. Notably, the model balances integrating knowledge both comprehensively
and selectively, addressing the heterogeneous nature of medical knowledge and the privacy needs of health care institutions.
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Introduction

Background
In recent years, pretrained language models (PLMs) have
revolutionized many areas of natural language processing (NLP),
demonstrating proficiency in handling a broad spectrum of
general-domain text tasks. However, their performance declines
when confronted with specialized domains, such as health care,
as clinical text often presents unique linguistic characteristics
and semantics that differ from standard language [1,2]. The
extensive proliferation of electronic health records (EHRs)
further underscores the gap, highlighting the demand for
domain-specific methods in PLMs.

Although there are domain-specific PLMs designed by training
on large-scale clinical data sets, they often fail to capture the
depth and breadth of knowledge scattered across diverse
biomedical sources [3]. This limitation calls for an approach
that integrates specific domain knowledge into PLMs, enhancing
their effectiveness and accuracy in specialized contexts.

To address this need, we propose a dual strategy—the strategic
incorporation of external knowledge from diverse sources in a
unified yet compartmentalized manner. Biomedical domain
knowledge is inherently heterogeneous and stored in a variety
of formats. A unified approach that simultaneously incorporates
various knowledge sources is essential to manage this diversity.
Traditional methods of sequential training with new knowledge
sources are inefficient and risk losing previously integrated
knowledge due to continuous model parameter adjustments. A
unified model overcomes these challenges by integrating diverse
knowledge without the need for repeated, individualized
retraining.

Furthermore, the broad diversity of domain knowledge sources,
each relevant to different tasks in its own way, underscores the
need for a compartmentalized approach. This strategy allows
for the selective integration of the most relevant knowledge,
avoiding information overload. In addition, given that each
institution manages its own proprietary repository of data and
knowledge, often governed by protected health information
(PHI) regulations, a method that potentially respects institutional
boundaries is desirable. This could enable an institution to freely
choose to equip a widely shareable foundational model with its
particular data, thereby enabling an adaptable and compliant
framework that can cater to diverse institutional needs without
compromising data privacy and security.

Building on this rationale, we introduce a specific case study
in the cardiovascular domain to demonstrate our approach. This
involves extracting diagnosis-comment pairs from EHRs and
approaching the problem through text classification, predicting
diagnoses based on physician comments. Essentially, we take
PLMs with a linear head on top as the foundational prediction

model and fine-tune them on this specific task, optimizing it to
better capture the specialized knowledge and clinical
terminologies present in physician comments within the
cardiovascular domain.

As most clinical PLMs, such as clinical bidirectional encoder
representations from transformer (ClinicalBERT) [4], are
primarily trained on large-scale free texts and lack integration
with structured domain knowledge, they often demonstrate
suboptimal performance in knowledge-driven tasks [5-7]. To
address this limitation, we incorporate the Diverse Adapters for
Knowledge Integration (DAKI) framework [6] for knowledge
infusion, which integrates domain knowledge adaptively from
multiple sources. More specifically, we train 3 distinct adapters,
each tailored to encapsulate domain knowledge from a specific
source, that are (1) the Unified Medical Language System
(UMLS) Metathesaurus, (2) Wikipedia articles, and (3) semantic
grouping information for biomedical concepts. This approach
effectively augments PLMs, enhancing their performance within
the clinical context. The adapter-enhanced PLMs retain a unified
utility, functioning as standard PLMs, while simultaneously
featuring a compartmentalized structure, where adapters are
incorporated in a plug-and-play manner, ensuring flexibility
and transferability. The contributions can be summarized as
follows: (1) we propose a novel task aimed at capturing
physician knowledge in the cardiovascular domain through text
classification of diagnosis-comment pairs from EHRs. The
encouraging performance of our models on this task validates
its feasibility, demonstrating the potential of PLMs in capturing
medical insights. (2) Upon integrating domain knowledge
through the DAKI framework, the models not only exhibit
enhanced performance but also an increased level of
interpretability, where we can closely examine and clarify which
external domain knowledge is activated during tasks. Such
interpretability could further enable the identification of vital
knowledge pieces, refine the fine-tuning of models for particular
tasks, and assist in adjusting the applied domain knowledge to
be more task-specific. (3) The domain knowledge demonstrates
transferability when injecting respective adapters into different
PLMs, where pretrained knowledge adapters also prove effective
when equipped with other, previously unseen PLMs. This
highlights the potential for heterogeneous knowledge infusion
while considering institutional boundaries, laying a foundational
step toward the development of health knowledge graphs
enriched with physician knowledge.

Related Work
Patient diagnosis prediction is a challenging task due to the
complex and knowledge-intensive nature of this field. Most
existing studies heavily rely on codified, numerical, or
time-series features of patients, where significant features are
manually selected as input to downstream machine learning
models. Franz et al [8] extracted all numerical observations
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from MIMIC-III (Medical Information Mart for Intensive Care
III) data set [9], for example, vital sign measures and lab results,
and fed them as input into a 4-layer neural network (1
convolutional neural network [10] layer spanning across the
time dimension followed by 3 fully connected layers) for
multiclass classification. Zoabi et al [11] selected a set of
features including sex, age, symptoms (cough, fever, sore throat,
shortness of breath, and headache), and known contact as input
and fed them into a gradient-boosting machine model to track
COVID-19. Meanwhile, with the rapid growth of NLP
techniques, researchers have been exploring the clinical notes
of EHRs for a wide variety of clinically relevant tasks, including
diagnosis prediction. For example, Franz et al [8] fine-tuned
ClinicalBERT [12] for the prediction and significantly
outperformed their numerical method. Another line of research
aimed to leverage the multimodality of EHRs as there exists
rich structural information within EHRs, for example, the
interactions among users, symptoms, and diseases [13], where
these interactions are captured through encoding EHRs through
graph neural networks [14,15]. The task of this work differs
from the aforementioned studies in that we only use a single
piece of physician comment as input, and instead of pushing
state-of-the-art predictive performance, we try to understand
the insight of a physician by capturing their reasoning on the
diagnosis.

While PLMs excel on general-domain text, their performance
over domain-specific text is relatively poor due to domain shift
[2]. In the last few years, several domain-specific PLMs have
been proposed to mitigate the issue, for example, BioBERT
[16], ClinicalBERT [12], ClinicalBERT [4], PubMedBERT
[17], ClinicalT5 [18], etc. Despite their specificity, training
these models demands significant time and resources. Moreover,
recent findings indicate that even these specialized models can
struggle in certain scenarios, particularly when reliable
knowledge retrieval is essential for complex domain-specific
reasoning [3].

Beyond acquiring domain knowledge through pretraining, a
distinct research trajectory emphasizes knowledge infusion,
wherein domain knowledge is intentionally injected into
language models [6,7,19-23]. Typically, this involves adding
an auxiliary training objective driven by knowledge. This
approach facilitates additional pretraining or fine-tuning of
existing models, thereby cutting down on training expenses,
though it can still demand significant resources. For instance,
Wang et al [7] jointly optimized language modeling with a
knowledge embedding objective. Zhang et al [23] fused PLMs
with graph neural networks through layered modality
interactions, enabling bidirectional information flow for
enhanced reasoning in question-answering tasks. Our choice to
use DAKI [6] for knowledge infusion is motivated by 3 principal
reasons, that are (1) the framework integrates domain knowledge
of varied sources and formats, which reflects the heterogeneous
nature of the domain knowledge; (2) focusing on training
adapters, instead of the entire language model, presents a more
sustainable and efficient approach; and (3) the knowledge
adapters are integrated in a plug-and-play manner that increases
both flexibility and interpretability.

Proposed Task Design

Data Collection and Structure
The experiment was conducted using clinical notes generated
by the Mayo Clinic Rochester Campus between January 1 and
December 31, 2015, corresponding to roughly 5 million
documents. Specifically, we extracted the problem entries from
the Impression/Report/Plan (IRP) section in the clinical note as
it contained a diagnostic problem list that was used to summarize
the main findings [24]. The entries are recorded as numbered
items and each item is a textual description of the diagnosis
followed by a physician comment detailing their reasoning for
giving a diagnosis. We then convert them into <entity,
comment> pairs by mapping the textual descriptions of diagnosis
to entities and associated UMLS concept unique identifiers
(CUIs) using SciSpacy [25]. We specifically perform entity
linking for diseases and syndromes, in light of the observation
that medical interests arise primarily around symptoms and
problems [26]. After filtering to only clinical narratives
generated in the Department of Cardiovascular Medicine and
removing unrecognized or unlinkable texts, 174,980 valid pairs
were generated corresponding to 30,240 patients. We then split
the data into 10 folds where 8 folds for training, 1 fold for
development, and 1 fold for testing were at the patient level.

Task Objective and Metrics
The task is cast as a multiclass text classification problem, that
is, to predict the assigned diagnosis (entity) from a physician’s
comment detailing their reasoning for assigning a diagnosis.
As most (linked) entities occur only once in the prepared data
set, we use the most frequent top 50 entities as the targets for
all experiments in this study. For instance, the top 10 most
frequent entities that appear in the training set are “hypertensive
disease,” “hyperlipidemia,” “sleep apnea, obstructive,” “atrial
fibrillation,” “coronary arteriosclerosis,” “hypothyroidism,”
“diabetes mellitus, non-insulin-dependent,” “gastroesophageal
reflux disease,” “chronic kidney diseases,” and “dyslipidemias.”
We use the top-k (k=1,3,5,10) accuracy classification score as
the evaluation metric, which computes the number of times
where the correct label is among the top-k labels predicted
(ranked by predicted scores).

Methods

We consider 2 prediction models in this study, that are, the
PLMs and those equipped with DAKI [6].

Foundational Models
For the foundational prediction models, we used
BERT-base-uncased [27], ALBERT-xxlarge-v2 [28], and
ClinicalBERT-base [4] to cover base or large, and general or
specific domain variants. Essentially, we encode the physician
comment with the models and feed the average pooled
representations into a linear layer for prediction. The model is
fine-tuned by optimizing a cross-entropy loss.

Models Equipped With DAKI
To facilitate prediction on clinical text, we leverage a novel
framework that incorporates DAKI into PLMs. The adapter in
this framework is a small bottleneck feed-forward network with
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a residual connection that is placed within PLMs, as illustrated
in Figure 1. One can also incorporate a more advanced adapter
structure, such as the LoRA (low-rank) adapter [29]. This
framework consists of 3 major components, which are the base
PLM, pretrained knowledge-specific adapters, and the
knowledge controller (CTRL) that adaptively activates the
adapters, as illustrated in Figure 2. Generally, when pretraining
a knowledge adapter, the parameters of the base PLM are frozen,
and only the adapter is optimized. In this way, we inject specific
knowledge into an adapter. By equipping PLMs with adapters,
one can inject domain knowledge into the models without
touching the original parameters of PLMs, enhancing their
representation capabilities on domain-specific text. Essentially,
a knowledge adapter is independently pretrained to encode
domain knowledge, and the trained adapters are then plugged
into DAKI for downstream fine-tuning, where the knowledge
adapters are adaptively activated by the knowledge controller.
Therefore, the usage of DAKI is simple and straightforward as
the output can be considered as the last hidden states of a PLM.

We use the best version of ALBERT (ie, ALBERT-xxlarge-v2
[28]) as the base PLM for adapter pretraining. In this study, we
incorporate 3 clinically relevant knowledge adapters that
integrate disparate domain knowledge from the UMLS
Metathesaurus (knowledge graph adapter [KG]), the Wikipedia
articles for diseases (disease adapter [DS]), and the semantic

groupings (semantic grouping adapter [SG]). More specifically,
the KG captures relational patterns within medical entities using
the UMLS Metathesaurus. It is trained on triples from UMLS,
treated as textual sequences, to predict the plausibility of these
relational statements. For the DS, disease-related textual
descriptions are sourced from Wikipedia, with the training
process focusing on inferring disease names through masked
language modeling, enhancing the model’s grasp on disease
contexts. The SG uses UMLS semantic groupings to predict the
categorization of medical concepts, leveraging textual definitions
to understand and classify medical concepts into coherent
groupings. Essentially, we try to enforce the KG to capture the
relationships between medical entities, the DS to help PLMs
understand the definitions and contexts for diseases, and the
SG to maintain semantic coherence within a categorization
group. We refer the readers to our previous work for a more
detailed treatment of the architecture and training objectives of
DAKI [6].

We equip the 3 foundational models, that is, BERT, ALBERT,
and ClinicalBERT, with DAKI, respectively, and enable all the
previously trained adapters within the framework for the
experiments. Likewise, we encode the physician comments with
the DAKI models and feed the average pooled representations
to a linear layer for prediction.

Figure 1. Adapter module, for example, a bottleneck feed-forward network with a residual connection.
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Figure 2. Architecture of DAKI [6]. CTRL: knowledge controller; DAKI: Diverse Adapters for Knowledge Integration; DS: disease adapter; h, r, t:
head, relation, tail; KG: knowledge graph adapter; PLM: pretrained language model; SG: semantic grouping adapter; TL: transformer layer.

Ethical Considerations
We used the Mayo Clinic IRP data, and this study was approved
by the Mayo Clinic Institutional Review Board (#20-001137)
for human participants research. The data were not anonymous.
No compensation was offered to participants in the study. Due
to the presence of private health information in the clinical data
set, we do not distribute any recordings or models trained on
these recordings. Access to the clinical data is restricted to Mayo
Clinic researchers who have the appropriate authorization.

Results

Overview
We present the performance of models both with and without
DAKI on the test set and development set in Table 1. Generally,
all the models are fine-tuned on the development set, and the
best epochs of that are selected to report their performance on
the test set. The results indicate that the infusion of domain
knowledge into PLMs through DAKI consistently boosts their
overall performance. Notably, DAKI-ALBERT demonstrates
compelling performance gain over ALBERT across all the
metrics, compared with the other 2 foundational models, which

is almost expected as the adapters are trained with ALBERT as
the base PLM. On the other hand, the improvement with
ClinicalBERT is comparatively slight, and we hypothesize that
this is due to ClinicalBERT’s extensive exposure to clinical text
during its pretraining, rendering DAKI-ClinicalBERT less
striking.

Another key observation from our results is that DAKI-BERT
not only matches but in certain metrics surpasses the
performance of ClinicalBERT. This highlights the advantages
of incorporating knowledge adapters, particularly given that
DAKI-BERT achieves such results without needing extensive
and sensitive clinical text corpora. Such transferability of
knowledge adapters also indicates a potential for heterogeneous
knowledge infusion while respecting institutional boundaries,
especially in contexts where each institution possesses its own
exclusive data repository due to PHI constraints.

Moreover, considering it is a complex 50-class classification
problem, these results are commendably robust. They not only
shed light on the feasibility of encapsulating physician reasoning
but also highlight the potential of transferable or portable domain
knowledge.
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Table 1. Overall performance.

DevelopmentTestData sets and metrics

Acc@10Acc@5Acc@3Acc@1Acc@10Acc@5Acc@3Acc@1a

Without DAKIb, %

84.9276.8470.2150.5685.3776.7369.748.81BERT

84.67669.3750.4785.8276.769.3548.02ALBERT

84.9776.8770.2750.6385.9677.0569.8848.49ClinicalBERT

With DAKI, %

84.7876.7770.1950.5986.3877.6470.2648.2BERT

84.8476.8270.4850.786.377.669.9348.32ALBERT

84.7576.4569.9951.1485.9477.0570.1548.73ClinicalBERT

aAcc@k: the number of times where the correct label is among the top-k labels predicted (ranked by predicted scores).
bDAKI: Diverse Adapters for Knowledge Integration.

Ablation Study
To investigate the influence of each of the knowledge adapters,
we conduct an ablation study and show the results in Table 2.
We take DAKI-BERT and DAKI-ClinicalBERT for comparison
as they have the same number of parameters. We gradually
remove the knowledge adapters from the complete setting (ie,
all 3 equipped) and this makes 6 conditions, as shown in the
table. Essentially for DAKI-BERT, the results of the ablated
models demonstrate varying degrees of decline in performance,

indicating the necessity of each source of external knowledge.
For DAKI-ClinicalBERT, however, the situation is different.
When 1 knowledge adapter is removed (ie, KG or DS), the
performance gets improved, which is consistent with our
conjecture that ClinicalBERT has been exposed to clinical
knowledge during pretraining and this weakens the knowledge
adapters’ impact. When 2 knowledge adapters are removed, the
performance gets decreased at a lower level compared with that
of DAKI-BERT, indicating the effectiveness and complementary
nature of the knowledge adapters.

Table 2. Ablation analysis on the test set.

DAKI-ClinicalBERTDAKIa-BERTAblated model and
metrics

ΔAcc@10Acc@5Acc@3Acc@1ΔcAcc@10Acc@5Acc@3Acc@1b

Baseline (no ablation), %

—85.9477.0570.1548.73—d86.3877.6470.2648.2With all

1 adapter removed, %

1.5086.877.7770.1648.65–1.8785.8577.1569.5748.04KGe

0.6786.4177.7869.8748.49–1.1885.8577.3270.5147.62DSf

–0.6086.2276.9169.4948.65–0.1786.3977.5169.9148.49SGg

2 adapters removed, %

–0.8086.2377.3269.2848.25–1.6885.9776.7769.6648.39KG-DS

–0.3686.1877.2269.5948.52–1.6885.8176.6369.9348.83KG-SG

–0.3186.3977.4769.6748.03–2.3086.0676.9469.6347.55DS-SG

aDAKI: Diverse Adapters for Knowledge Integration.
bAcc@k: the number of times where the correct label is among the top-k labels predicted (ranked by predicted scores).
cΔ: the change of accumulated accuracy scores.
dNot applicable.
eKG: knowledge graph adapter.
fDS: disease adapter.
gSG: semantic grouping adapter.
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Analysis
In this section, we want to analyze and answer the following
research questions: (1) what knowledge is lacking in the PLMs
for the physician reasoning task? (2) How do the models perform
on different target diagnoses, that is, at the individual level? (3)
How does the knowledge affect the representations at the token
level?

Knowledge Activation
Due to DAKI’s inherent flexibility, we are able to provide a
high-level representation of the adapter activations during the
inference process. As depicted in Multimedia Appendix 1, we
compute the softmax activations across 3 key layers within the
encoders of DAKI-BERT (left) and DAKI-ClinicalBERT (right)
where the adapters are situated. These activations are then
averaged across all test set instances. Notably, the disease
knowledge consistently stands out in its importance and
activation across these layers, when compared with the other 2
knowledge types. We conjecture that the specificity and

relevance of DS to the model’s tasks allow it to have a more
significant influence on the encoder’s activation patterns. This
reinforces the notion that domain-specific knowledge,
particularly when closely aligned with the predictive tasks, is
crucial for the model’s decision-making process. The injected
knowledge also demonstrates a more pronounced effect on
BERT than on ClinicalBERT. This distinction is likely because
ClinicalBERT has previously encountered clinical data sets
during its pretraining phase, which aligns with the observations
detailed in Table 1. The diminished reliance of ClinicalBERT
on the knowledge adapters underscores the importance of
identifying knowledge that truly complements specific PLMs.

Impact Pattern
We also investigate the impact pattern of these knowledge
adapters. Essentially, we show the top 10 most and least
successful targets in Figure 3. We also observe that the targets
with the biggest improvement are among the least successful
targets, as shown in Multimedia Appendix 2. The impact is
evaluated in terms of the F1-score.

Figure 3. Understanding performance variability: most versus least successful targets.

In general, we believe targets that demand more tests to diagnose
are easier to predict, for example, Gout. Such targets might
demonstrate more unique textual context in the comment that
facilitates the prediction. On the other hand, targets that are
easier to diagnose are more challenging for the model to identify.
For instance, it makes more sense to diagnose “Diabetes” with
“150 mg/dL” than with “blood sugar.” Moreover, we observe
that nearly half (ie, 4 out of 10) of the most-impacted targets
are among the least successful ones (ie, represented in orange
in Multimedia Appendix 2). This pattern underscores the utility
of the domain knowledge we have incorporated into the PLMs.
It indicates that this specialized knowledge is particularly

effective for enhancing the model’s capability to accurately
predict outcomes for what are considered harder targets. This
suggests that targeted interventions in the training process can
yield substantial improvements in predictive accuracy.

Contribution Shift
In the end, we would like to understand how the injected
knowledge affects PLMs in the specific task. We use the
SHapley Additive exPlanations (SHAP) tool, a game theoretic
approach to explaining the output of any machine learning model
[30], to explain the results. We take one of the hardest targets,
that is, coronary heart disease, as an example and investigate
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the contribution distribution of tokens from ClinicalBERT and
DAKI-ClinicalBERT, as shown in Figure 4. Red means positive
contribution (ie, predicting the comment to be coronary heart
disease among all the targets in this case), and blue means
negative contribution. The f(x) is the model’s score for this
observation, where a higher score leads the model to predict the

specific class. Essentially, we observe that with the external
knowledge, the DAKI-ClinicalBERT model is more sensitive
to the tokens and their contribution to the prediction, compared
with ClinicalBERT that treats the tokens almost equally. Such
contribution shift indicates that the injected knowledge helps
PLMs capture the semantics of text at the token level.

Figure 4. Contribution shift analysis of ClinicalBERT (top) and DAKI-ClinicalBERT (bottom). Darker shades of pink indicate a positive contribution
and the shades of blue indicate a negative contribution to the target, that is, coronary heart disease. DAKI: Diverse Adapters for Knowledge Integration.

Discussion

Principal Findings
Interpretability is a major issue in machine learning, especially
in the clinical setting. The reasons are 2-fold. First, it is essential
for physicians to understand how a model is making its
predictions in order to trust and effectively use the model. This
is particularly important in the medical field because the
consequences of incorrect predictions can be severe. Second,
machine learning techniques, especially deep learning models,
are hard to interpret, which makes it difficult for physicians to
identify potential biases or errors in the model. To improve the
interpretability in the application of machine learning to the
clinical setting, we consider constructing a health knowledge
graph so that the models are used responsibly and that the
consequences of incorrect predictions are minimized.

In recent years, there has been a surge of interest in creating
and using external health knowledge graphs to enhance the
domain adaptation and interpretability of PLMs. An optimal
health knowledge graph can be used for a variety of purposes,
such as, (1) for research purposes, they could be used to
represent the relationships between different medical conditions,
treatments, and patient characteristics that a physician considers
when deciding on a course of treatment for a patient and this
could help to clarify the reasoning behind the decision and
identify any factors that may have influenced the decision; (2)
for analysis purposes, they could help to identify patterns and
factors in physicians’ decision-making process, which can be
important for improving the quality and efficiency of hospital
care; and (3) for practical purposes, such graphs could support
clinical decision-making by providing physicians with
information and guidance to help them make informed decisions
about patient care.

Nevertheless, traditional biomedical knowledge graphs,
including the UMLS [31], the Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT) [5], the Human
Phenotype Ontology (HPO) [32], etc, mostly consist of

biomedical concepts and their relationships, along with textual
descriptions, and can struggle to fulfill the third purpose, that
is, clinical practice. The reason lies in their limited capacity to
incorporate practical physician knowledge, which is crucial for
clinical applications.

Physician knowledge is a key item of interest for inclusion in
health knowledge graphs, as mining a health knowledge graph
(as opposed to manual construction) provides the potential for
discovering latent clinical knowledge that may not be
self-evident. Such items can be found within physician reasoning
behind assigning a diagnosis, as such diagnoses are typically
made based on an application of the individual physician’s
knowledge. As physician reasoning is primarily not encoded in
structured data forms, we must instead turn to NLP techniques,
for example, the PLMs, on clinical narratives, which can include
symptom descriptions, reasons for diagnosis, patient activities,
and patient histories with the aim of helping physicians express
a holistic picture of the patient [8].

As a preliminary step, we aim to explore and model the thought
process and decision-making in the clinic by capturing physician
reasoning. With the experiment of text-based diagnosis
prediction, we believe that foundational PLMs are capable of
capturing physician knowledge given relatively high
performance in top-k (k=1,3,5,10) returned results, especially
when compared with random chance.

Moreover, by injecting external domain knowledge from 3
disparate sources (ie, the UMLS Metathesaurus, the Wikipedia
articles, and the semantic groupings) into the PLMs through
adapters, we show that the models’ performance gets
consistently improved with an increased level of interpretability.
Essentially, the framework’s flexibility enables us to investigate
and interpret what external domain knowledge is activated and
how it contributes to the model in capturing physician reasoning.

The transferability of the knowledge adapters is also notably
highlighted. As demonstrated in Table 1, DAKI-BERT’s
performance, on par with ClinicalBERT, underscores the
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adapters’ transferability, given that DAKI-BERT achieves
comparable performance even without using extensive and
confidential clinical text corpora. This transferability implies
the potential for infusing heterogeneous knowledge while
honoring institutional boundaries; institutions can create their
adapters using proprietary data and knowledge, thereby sharing
only the foundational models and not the institution-specific
adapters. This aspect warrants further exploration in future
studies.

As for future work, we would further investigate the impact of
different sources of knowledge over individual diagnosis, that
is, how external knowledge affects the judgments over the 50
diagnoses. We would also explore and incorporate other sources
of knowledge such as the ontological structure of the target
diagnoses. By combining the internal knowledge within the
EHRs and the external knowledge accumulated throughout
knowledge bases under a unified framework, we would improve
the interpretability of machine learning models in the clinical
scenario and facilitate the construction of a health knowledge
graph eventually.

Although the experiments demonstrate the effectiveness of our
method, there are still some limitations that can be improved.
First, the impact of knowledge adapters over different clinically
relevant tasks remains unclear as only one task is considered in

this work. Second, the range of external knowledge is a bit
limited, for example, the inherent ontological structure of the
targets is not leveraged, as mentioned above. Third, there is a
lack of clinical explanation for the observations at an individual
level, for example, why these knowledge adapters are most
useful for “normocytic anemia.” We will try to fix these issues
in future work.

Conclusions
This study serves as a preliminary exploration of capturing
physician reasoning. By predicting patients’ diagnoses based
on physician comments, we aim to explore physician knowledge
and the way they make judgments about the patients. We
propose to inject domain knowledge from disparate sources into
PLMs through adapters under the DAKI framework, enhancing
their representation capability on clinical text. The experimental
results demonstrate that capturing physician knowledge is
feasible through the encoding of clinical text using PLMs, the
representation capability and interpretability of which can be
further improved when equipped with external domain
knowledge. Notably, the transferability of the knowledge
adapters, exemplified by comparable performance between
DAKI-BERT and ClinicalBERT without access to extensive
clinical corpora, underscores the potential for scalable and
versatile applications across various institutional contexts and
knowledge domains.
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Multimedia Appendix 1
Activation levels of the adapters placed at different layers of BERT (left) and ClinicalBERT (right), respectively.
[PNG File , 46 KB - ai_v3i1e56932_app1.png ]

Multimedia Appendix 2
Greatest impact observed among the least successful targets.
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Abstract

Background: The use of artificial intelligence (AI) for pain assessment has the potential to address historical challenges in
infant pain assessment. There is a dearth of information on the perceived benefits and barriers to the implementation of AI for
neonatal pain monitoring in the neonatal intensive care unit (NICU) from the perspective of health care professionals (HCPs)
and parents. This qualitative analysis provides novel data obtained from 2 large tertiary care hospitals in Canada and the United
Kingdom.

Objective: The aim of the study is to explore the perspectives of HCPs and parents regarding the use of AI for pain assessment
in the NICU.

Methods: In total, 20 HCPs and 20 parents of preterm infants were recruited and consented to participate from February 2020
to October 2022 in interviews asking about AI use for pain assessment in the NICU, potential benefits of the technology, and
potential barriers to use.

Results: The 40 participants included 20 HCPs (17 women and 3 men) with an average of 19.4 (SD 10.69) years of experience
in the NICU and 20 parents (mean age 34.4, SD 5.42 years) of preterm infants who were on average 43 (SD 30.34) days old. Six
themes from the perspective of HCPs were identified: regular use of technology in the NICU, concerns with regard to AI integration,
the potential to improve patient care, requirements for implementation, AI as a tool for pain assessment, and ethical considerations.
Seven parent themes included the potential for improved care, increased parental distress, support for parents regarding AI, the
impact on parent engagement, the importance of human care, requirements for integration, and the desire for choice in its use. A
consistent theme was the importance of AI as a tool to inform clinical decision-making and not replace it.
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Conclusions: HCPs and parents expressed generally positive sentiments about the potential use of AI for pain assessment in
the NICU, with HCPs highlighting important ethical considerations. This study identifies critical methodological and ethical
perspectives from key stakeholders that should be noted by any team considering the creation and implementation of AI for pain
monitoring in the NICU.

(JMIR AI 2024;3:e51535)   doi:10.2196/51535

KEYWORDS

pain monitoring; pain management; preterm infant; neonate; pain; infant; infants; neonates; newborn; newborns; neonatal; baby;
babies; pediatric; pediatrics; preterm; premature; assessment; intensive care; NICU; neonatal intensive care unit; HCP; health
care professional; health care professionals; experience; experiences; attitude; attitudes; opinion; perception; perceptions;
perspective; perspectives; acceptance; adoption; willingness; artificial intelligence; AI; digital health; health technology; health
technologies; interview; interviews; parent; parents

Introduction

Globally, an estimated 13.4 million babies were born preterm
in 2020, accounting for about 1 in 10 of all babies born [1].
Unfortunately, a significant proportion of preterm infants require
neonatal intensive care unit (NICU) due to their vulnerability
to complications and health issues [2]. As part of their lifesaving
care, preterm infants undergo an average of 10 to 16 painful
procedures per day [3]. Unmanaged NICU pain has significant
developmental consequences [4,5] and is one of the largest
sources of severe emotional distress in parents [6]. Pain
assessment and management is a critical aspect of care in the
NICU [7]. Traditional pain assessment methods in the NICU
rely on observational tools [8,9]. However, there are several
challenges with these methods, including bias and subjectivity,
staff time resources, and potential variability in interpretation
[10-12]. Given these challenges, innovative approaches are
needed to improve existing pain assessment practices. Artificial
intelligence (AI), which includes machine learning (ie, using a
machine to extract knowledge from data and learn
autonomously), is one technology that has shown tremendous
potential in the health care field, and this potential may also
inform the development of clinical decision support systems
[13]. Specifically, AI-based technology can analyze large
volumes of behavioral, physiological, and brain imaging data
to provide suggestions with regard to infant pain assessment at
the point of care.

Current evidence about the use of AI in the assessment and
monitoring of infant pain appears to be promising [14,15].
Preliminary algorithms to monitor vital signs [16], such as heart
rate, respiratory rate, and oxygen saturation, of preterm infants
have been developed, all of which provide physiological
indications of pain or distress as well as systems that incorporate
behavioral indicators (eg, face movements, body movements,
and crying) to predict pain [17]. Although there is immense
potential for these new technologies to revolutionize how
neonatal pain is assessed and monitored in the NICU, a limited
understanding of the perspectives of key stakeholders with
regard to this emerging technology exists, that is, health care
professionals (HCPs) and parents. These perspectives are
essential for the successful implementation of this technology
in clinical practice.

Studies exploring the attitudes and trust of clinicians toward AI
in health care found that while there is recognition of AI’s

potential benefits, concerns persist about reliability,
transparency, data privacy, potential loss of autonomy in
decision-making, and potential misinterpretation [18-21]. Factors
such as age, education level, and previous experience with AI
influenced attitudes and trust in AI technologies [21].

There is a growing interest in the application of AI technologies
in health care, particularly in neonatal and pediatric care [14].
However, little is known about the perspectives of HCPs and
parents on the use of AI for pain assessment in the NICU. Pain
is a significantly different context warranting focused study
because infants cannot verbalize for themselves. This study
explores the perspectives of health care professionals and parents
with regard to automated pain assessment using AI technology
in the NICU. This study will inform the implementation of AI,
specifically machine learning technology in the NICU, leading
to more effective pain assessment and management strategies.

Methods

Ethical Considerations
Ethics approval for this qualitative study was granted from all
study sites, including York University (2020-034), Mount Sinai
Hospital (MSH; 19-0252-A), and University College London
Hospital (UCLH; 11/LO/0350). Informed consent was obtained
from all participants. All data were deidentified. Individuals
were provided with a CAD $10 (approximately US $7) gift card
to a local coffee shop for their participation.

Setting and Design
Data collection occurred at 2 tertiary care NICUs: MSH
(Toronto, Canada) and UCLH (London, United Kingdom). The
study is part of a larger project focused on the use of AI,
specifically the development of a machine learning algorithm,
to assess infant pain in the NICU. Participants consisted of 20
HCPs (nurses, physicians, and allied health professionals) and
20 parents (mothers and fathers). Recruitment at MSH took
place from February to March 2020, and recruitment at UCLH
took place from July 2021 to October 2022. Interviews at MSH
occurred in person at the hospital, whereas interviews at UCLH
were web-based and conducted using a secure Zoom platform
(Zoom Video Communications). This difference was due to the
onset of the COVID-19 pandemic after the study had launched,
which delayed the UK interviews and necessitated the use of a
secure web platform. For HCPs, eligibility criteria were (1)
currently providing care to infants at one of the NICUs and (2)
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trained as either a nurse, physician, or other health professionals
(ie, outreach staff and consultant practice educator). For parents,
eligibility criteria included being 18 years and older of age,
having an infant who was currently receiving care in the NICU,
and being fluent in English, orally (in order to respond to
complex questions in the interview). Using a purposive sampling
approach, all participants were initially approached by 1 clinical
member of staff on the unit and asked if they were interested
in participating in the study. Only families where the parent
was at least 18 years of age and spoke English were approached.
If interested, they received additional information, and a time
was scheduled for an interview.

Following introductions and the completion of the consent form,
30-minute semistructured interviews were conducted by a
member of the research team (NR, C Chow, and L Johannsson)
in a private clinic room (MSH) or web-based room (UCLH).
Baseline demographic information was collected at the outset
of the meeting followed by a series of questions (10 for HCPs
and 9 for parents) pertaining to the use of AI to inform NICU
decision-making related to the assessment of infant pain. Notes
were taken during the interviews to supplement transcripts.
Interviewers read an initial script providing a definition of AI
and providing context for the study. In-person interviews were
recorded using a digital audio recorder, whereas web-based
interviews were recorded using privacy-compliant web software
(Zoom) and stored on a secure server. All participants were
debriefed following the interview and provided with a gift card
to a local coffee shop as a token of appreciation. Standards for
Reporting Qualitative Research were followed for this study
(Multimedia Appendix 1 [22]).

Development of the Interview Guides
Using a grounded theory approach [23], the goal of the
qualitative interviews was to generate detailed knowledge about
HCPs’ and parents’ understandings and perceptions of the use
of AI in the NICU to assist with infant pain assessment and
management. Specifically, we sought to gain insight into HCPs’
and parents’understanding of AI, perceived implications of this
technology, potential benefits of the technology, and barriers
to its use in the NICU setting. Two interview guides were
developed to address the diverse perspectives of HCPs
(Multimedia Appendix 2) and parents (Multimedia Appendix
3). The interview guides were developed collaboratively by
members of the research team (RPR and NR), who are clinical
psychologists with previous experience in conducting qualitative
research with both HCPs and parents in the NICU and other
pediatric medical settings [24,25]. The guides were reviewed
and edited based on the feedback from team members with
NICU clinical expertise (VS, C Chow, JM, and MPL-D) as well
as ethical or legal or social expertise related to AI (IS).
Interviews were conducted by 2 postdoctoral fellows (NR and
C Chow) and 1 research staff (L Johannsson). A decision was
made in advance to review and make necessary changes to the
questions after the first interviews were conducted at each site
based on participant comprehension and feedback. Based on
the review, no major alterations were required. Participants had
the opportunity to provide any additional comments or feedback
at the end of the interview. Interviews were conducted until
saturation was reached [26].

Data Processing and Analysis
The interview audio recordings were anonymized and
transcribed by 1 research assistant and independently
double-checked by members of the research team. Transcripts
were subsequently analyzed using 6 phases of thematic analysis
(ie, familiarization, generating codes, identifying themes,
reviewing themes, naming themes, and report writing) [27].
Data analyses took place from February to April 2023. There
were 3 analysis leads (NR, C Chow, and RPR) who took primary
responsibility for developing the code book, overseeing the
coding process, and developing themes based on the codes
generated. As a first step, the analysis leads familiarized
themselves with the data by reading and making notes on the
transcripts. Responses were examined for differences between
the 2 sites (eg, unique considerations related to the country,
time, or modality via in-person vs web-based) or any effects
that may have necessitated a different analysis pathway. It was
determined that there were no differences, and we proceeded
with analyzing the transcripts together. Next, a list of initial
codes was generated independently by the analysis leads prior
to a consensus meeting. Two consensus meetings were held,
where all codes were reviewed and agreed upon. Subsequently,
the analysis leads (NR, RPR, and C Chow) ran a 90-minute
training session with 10 coders to familiarize them with the
codes that have been created. All coders (LH, SJ, OB, VS,
MPL-D, C Cheng, IS, HD, NM, and L Jones) were members
of an interdisciplinary research team (ie, neurobiology,
behavioral neuroscience, neurophysiology, psychology,
medicine, nursing, and law) with research backgrounds in
pediatric health care, with most specializing in infant care. Each
transcript was coded twice. The average percent agreement (ie,
the number of times 2 individuals agreed upon a code divided
by the total number of units of observation that were rated)
across transcripts between coders for the HCP and parent
transcripts was 0.77, which is adequate [28]. Next, the analysis
leads reviewed the coded transcripts and collated codes for each
question. The analysis leads met and generated relevant potential
themes and a thematic map based on the data. Finally, examples
were selected to accompany each theme, which are presented
in the results below. Summary statistics of all demographic
variables were conducted in SPSS (version 28; IBM Corp).

Results

Participant Characteristics
The participant characteristics are shown in Table 1. In total,
90% (n=18) of HCPs were university-educated and had
extensive experience in the NICU (mean 19.4, SD 10.69 years;
range 4-37 years). For HCPs, 55% (n=11) reported “Western”
cultural heritages (eg, Canadian, British, and Australian), 5%
(n=1) African, 15% (n=3) East Asian, 10% (n=2) Caribbean,
10% (n=2) South Asian, and 5% (n=1) not reported. For parents,
80% (n=16) reported “Western” cultural heritages (eg, Canadian,
European, or Australian), 5% (n=1) Asian, 5% (n=1) Middle
Eastern, and 10% (n=2) not reported. Most parents who
participated across both sites were mothers (n=17, 85%) with
a mean age of 34 (SD 5.42) years. In total, 90% (n=18) of
parents had a university education or higher.
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Table 1. Participant demographic characteristics.

Parents (n=10 each)Health care providers (n=10 each)Characteristics

University College
London Hospital

Mount Sinai HospitalUniversity College
London Hospital

Mount Sinai Hospital

Gender, n (%)

9 (90)8 (80)8 (80)9 (90)Women

1 (10)2 (20)2 (20)1 (10)Men

34.2 (5.14)34.56 (6.04)——aAge (years), mean (SD)

57.5 (29.52)28.11 (24.09)——Postnatal age of infant (days), mean (SD)

Highest level of education, n (%)

9 (90)3 (30)7 (70)6 (60)Graduate school or professional training

1 (10)5 (50)3 (30)2 (20)University graduate

0 (0)0 (0)0 (0)0 (0)Partial university

0 (0)1 (10)0 (0)1 (10)Trade school or community college

0 (0)0 (0)0 (0)0 (0)High school graduate

0 (0)1 (10)0 (0)0 (0)Less than high school

0 (0)0 (0)0 (0)1 (10)Not reported

Heritage culture, n (%)

0 (0)0 (0)0 (0)1 (10)African

0 (0)1 (10)1 (10)2 (20)Asian

2 (20)0 (0)0 (0)0 (0)Australia or New Zealand

0 (0)0 (0)0 (0)2 (20)Caribbean

0 (0)5 (50)0 (0)1 (10)Canadian

8 (80)1 (10)7 (70)3 (30)European

0 (0)1 (10)0 (0)0 (0)Middle Eastern

0 (0)0 (0)2 (20)0 (0)South Asian

0 (0)2 (20)0 (0)1 (10)Not reported

Type of health care professional, n (%)

——3 (30)5 (50)Physician

——4 (40)5 (50)Registered nurse

——3 (30)0 (0)Other health professional

——16 (12.18)22 (8.55)Experience (years), mean (SD)

aNot available.

HCP Themes
Six themes emerged from the thematic analysis on the HCP
interviews. Each theme, a description, and representative quotes
are presented in Table 2. HCP themes and subthemes are
presented in Figure 1. First, in the context of their comfort with
incorporating new AI technology, HCPs reported limited
experience with AI technology in the NICU (1 HCP was part
of a research study at another institution), and they were
comfortable using other forms of technology. Second, HCPs
identified some concerns with regard to the integration of AI
for pain assessment in the NICU. Some of these concerns
included increased distress from knowing clinicians were
inflicting pain and extra workload for HCPs, increased stress

for parents, and decreased opportunities for parent-child
bonding, as well as fears related to overreliance on AI
technology and the overuse of medication to manage pain.
Despite these concerns, the third theme emerged surrounding
several benefits that AI could bring to the NICU context.
Notably, HCPs identified increased awareness of infant pain,
early detection and diagnosis of clinical changes, increased
efficiency, and standardization of pain assessment, as well as
the potential to inform the development of better pain
management strategies. From a practical standpoint, the fourth
theme identified requirements to facilitate the implementation
of AI in the NICU, including the size of machinery, staff
training, as well as clearly communicating the validity,
sensitivity, and specificity of the algorithm being used. The fifth
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theme that was unanimously shared was the idea that using AI
for pain assessment in the NICU would be a tool for HCPs to
use but could not replace the clinical judgment and
decision-making of an HCP. Concerns related to how the next
generation of HCPs would be trained to ensure that they have
both the clinical and technological skills to operate in the NICU
were described, given the potential overreliance on technology.
Finally, HCPs identified the potential for ethical concerns related
to an AI algorithm for constant pain monitoring in the NICU,

specifically, issues related to the disagreement between HCP
and the AI algorithm, implications of pain monitoring in the
absence of pain management, as well as the need to audit the
algorithm. Overall, there was general acceptability for the
benefits, use, and integration of AI technology for pain
assessment in the NICU, with keen identification of the potential
work-related, structural, technological, and ethical issues that
would need to be addressed to facilitate implementation.

Figure 1. Themes and subthemes generated from qualitative interviews with HCPs on their perspectives about using AI to assess pain in the NICU.
AI: artificial intelligence; Ax: assessment; HCP: health care professional; NICU: neonatal intensive care unit.
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Table 2. Key themes identified by HCPsa with regard to the use and integration of AIb for pain assessment in the NICUc.

Representative quoteDescriptionTheme

HCPs shared that despite having limited experience with
AI specifically, they use technology to inform their
clinical decision-making and they feel comfortable using
the technology that is currently available.

Technology is used regular-
ly in the NICU

• “It informs everything. I think that’s one of the things
that working in intensive care is that we use technology
and monitoring to inform a lot of our decisions.”

HCPs identified concerns related to the integration of
AI in the NICU. It specifically increased the workload
for HCPs and increased distress, knowing they were
potentially inflicting pain on an infant. They also report-
ed that constant pain monitoring could increase stress
for parents and that added machinery could inhibit par-
ent-child bonding. Concerns were also identified with
regard to the overreliance on what the algorithm reported
and the overuse of pain pharmaceuticals to manage pain.

Concerns of AI integration
for pain assessment in the
NICU

• Increased HCP distress: “I’m not sure cause you imagine
like how upsetting it would be like you know I’m doing
a diaper change and this thing is telling me the baby is
in pain.”

• Increased workload: “I think there would be some nega-
tive feedback towards having extra work to be done.”

• Fear of overreliance on the AI: “The disadvantages would
be that we become over reliant on it. And just because
the machine says the baby’s not in pain, then it could be
dismissed as the baby isn’t in pain, when actually if you
look at the baby, you can tell they’re in pain.”

• Increased parent stress: “It can cause stress ... Unneces-
sary stress.”

• Impeding parent-child bonding: “I can see it taking away
from looking at babies...you see parents, particularly
looking at their monitor alarms, for whatever reason, they
look more at the monitor than actually what their baby’s
doing.”

HCPs indicated there are several ways in which integrat-
ing constant pain monitoring in the NICU could improve
clinical care, including the development of new thera-
pies, early diagnosis of difficulties, detection of changes
in clinical presentation, increased awareness of infant
pain, increased efficiency of pain assessment, increased
standardization of pain assessment, and increased col-
laboration between HCPs and parents.

AI has the potential to im-
prove pain assessment and
management

• “I think it’s good that um there is a form of technology
that can give us more information about pain in this
population because I think there’s a lot of unknown and
I think well I know for myself like I said I can’t honestly
say that I’m always thinking about if this baby is in pain
or what kind of pain this baby is in when doing a proce-
dure.”

• “I think it would give them more time to obviously focus
on other aspects of their work instead of having to score
every half an hour or so to proceed and enter the data as
it is at the moment.”

HCPs described structural (ie, machine size and inva-
siveness of machinery) requirements for implementing
AI in the NICU. Specifically, machinery would need to
be small and noninvasive. HCPs indicated that training
staff to understand and interpret the output provided by
the technology is important. They also indicated that
the algorithm would need to be properly validated and
sensitive for detecting pain in diverse patient groups
and situations.

Requirements for implemen-
tation of AI in NICU

• Structural requirements: “It depends how invasive the
technology is. When you have a 450 gram baby in front
of you. Even putting on things like more monitors actu-
ally occludes your that visual assessment of the child. So
I think there can be barriers.”

• Importance of training: “I think obviously, it’s all about
training ... everybody understands how it works and the
benefits.”

HCPs indicated that AI in the NICU should be viewed
as a tool to inform clinical decision-making but not as
a replacement. They also indicated that the integration
of this technology would have implications for the
training of new HCPs to ensure they have the ability to
understand how this tool could inform their own clinical
assessment.

AI is a tool to inform clini-
cal pain assessment and
management

• “I like using technology but as long as it doesn’t replace
my ability to provide comfort and care”

• “If I’m gonna make it’s just detection of pain, I think it’d
be fairly comfortable with that. Because then I can react
to that. Whereas if it’s making medical decision on the
treatment, a baby’s receiving, I think that will be a com-
pletely different scenario.”

HCP indicated the need to be aware of ethical concerns
like the potential bias in AI algorithms, disagreements
between HCPs and the AI’s output, and the implications
of constant pain monitoring without intervening. HCPs
also indicated that algorithms would need to be audited
and monitored over time.

Ethical concerns with con-
stant pain monitoring may
occur

• “And then you have to decide, what you want to do about
it. And then you have to decide, in a medical-legal issue
whether to believe A.I. or the clinician and that will be
interesting.”

aHCP: health care professional.
bAI: artificial intelligence.
cNICU: neonatal intensive care unit.

JMIR AI 2024 | vol. 3 | e51535 | p.650https://ai.jmir.org/2024/1/e51535
(page number not for citation purposes)

Racine et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Parent Themes
Seven overarching themes were identified with parents (Table
3). Parent themes and subthemes are presented in Figure 2. First,
parents indicated it would be desirable to know if their infants
were in pain because there are limited ways of assessing
neonatal pain and it would provide useful information to HCPs
to improve their infant’s care. However, the second theme arose
about the emotional toll that may be experienced by parents.
Some parents noted heightened distress from knowing their
infant was experiencing pain. The third theme revolved around
a preference to have parents decide for themselves whether they
wanted continuous pain monitoring using AI. The fourth theme
was that parents indicated wanting support to interpret and
understand the constant pain monitoring. That is, they would
want HCPs to explain their decision-making process as well as
how the pain assessment provided by the AI was being used.

The fifth theme was that parents perceived their current level
of engagement in their infant’s care to be quite high and they
did not think constant pain monitoring would change this
engagement. The sixth theme was that most parents would not
trust an AI to make an independent decision about their infant’s
pain but rather believe it should be incorporated as a tool by
HCPs to make a clinical decision. Parents voiced that there
would be potential for error in the AI’s assessment and that
verification by an HCP would be important. Finally, parents
identified requirements related to AI integration in the NICU.
Specifically, they are concerned about privacy since large
amounts of data would be collected and therefore would need
to be kept secure. They also identified that the algorithm should
be developed in a nonbiased way and that generalizability of
the algorithm across infant presentations and contexts would
be needed.

Figure 2. Themes and subthemes generated from qualitative interviews with parents on their perspectives of using AI to assess pain in the neonatal
intensive care unit. AI: artificial intelligence; HCP: health care professional.
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Table 3. Key themes identified by parents with regard to the use and integration of AIa for pain assessment in the NICUb.

Representative quoteDescriptionTheme

Parents indicated there are advantages to constant pain
monitoring (eg, increase in awareness of infant’s experience
and confidence in care provided).

Constant pain monitoring
can facilitate better care

• “But then it could also help the parent, could help us
understand the baby a bit more and maybe bond
maybe a bit more or communicate in a way with the
baby more.”

Parents shared disadvantages to constant pain monitoring,
such as too much information or distress associated with
knowing their child is in pain.

Emotional distress may re-
sult from constant pain
monitoring

• “My gut is saying, as a parent, well, of course. But
I’m wondering whether you can have almost too much
information, where if certain things, I definitely would
be in this position, where if certain things had to be
done to my child, life and death or even just less seri-
ous, but they needed to be done for, you know, health
reasons, how productive is it for a parent to know ex-
actly how much pain their child is in.”

Parents indicated that they would like to be given a choice
to view the constant pain monitoring.

Desire for choice in using
the constant pain monitoring

• “You should have a choice in the same way as like,
you can choose to look at lots of the information about
your baby or not.”

• “I mean I would want to know if my baby is in pain
or not. But maybe some parents are ok with or don’t
want to know about their baby’s pain but to me I
would definitely want to see.”

Parents indicated that they would want communication
from staff and support to understand and interpret the

Desire for support related to
AI

• “Because even now I don’t want to do anything unless
the nurse is there ... but you see that number go up as
you’re as you’re caring for the baby you might be orconstant pain monitoring. They would also like basic infor-
I might be a little apprehensive um but with the reas-mation about how the algorithm was developed and makes

its predictions. surance of the nurse or if you can see that once the
baby is settled down the baby is more comfortable
again then you know that it’s ok.”

• “I would want to know, and I would want it to be very
clear why those decisions were made. I would want,
if we were using kind of artificial intelligence, what
kind of almost a report on why those decisions were
made and why it was recommended that XYZ hap-
pened as a result.”

Parents indicated that constant pain monitoring would
minimally impact their level of active engagement in the

Minimal impact on parent
engagement

• “You know I’m not sure that it would change how
engaged I would be because I think you know you
can use other metrics as like surrogate of pain as wellnewborn’s care as most reported that they already engaged

at a high level. and being at the bedside you can still be engaged in
her care but I guess it could be interested to ask you
know like when we should up like you know how
were her pain scores overnight or something like that.
And you know get that data and get that information
from the bedside nurse. But I don’t think it would
dramatically change the engagement.”

Parents indicated that constant pain monitoring should be
used as a tool to inform clinical judgment.

AI for pain monitoring is a

tool for HCPsc, not a replace-
ment

• “Yeah no I would like the doctor so I could also ask
questions and you know it’s yeah a tool to assess or
to inform them”

• “And I think it makes sense that the physician in the
bedside needs to integrate that with what their clinical
assessment is”

• “It would be a good thing if doctors were checking in
to validate that the AI was right and if they disagree
they should definitely question it [...] maybe the
model is wrong or like maybe the model just needs to
be tweaked and it needs doctors and scientists to
question it right? It’s probably a good thing.”
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Representative quoteDescriptionTheme

• “... questions about the data it was collecting and
where that was going and who’s using that data. So
obviously, the monitoring there’s a lot of information
there.”

• “I would be concerned if a model was created that the
way in which it was created was maybe not ethical
but I’m I know there’s all kinds of laws and things
like that but I was just thinking about how that might
work.”

• “And then the sample size and the how many different
like every baby is different and every baby’s pain
tolerance is different how do you know that you’ve
got all your bases covered for all the different scenar-
ios.”

Parents indicated that it would be important to consider
how data might be collected and used by the AI, how to
reduce bias in the development of the algorithm, and how
to ensure that the algorithm was generalizable across infants
and contexts.

Requirements for AI integra-
tion in the NICU

aAI: artificial intelligence.
bNICU: neonatal intensive care unit.
cHCP: health care professional.

Discussion

Principal Findings
This international study includes the perspectives of both HCPs
(ie, physicians and nurses) and parents regarding the use of AI
technology in the NICU setting. These perspectives offer critical
insights to help inform the development of potential AI
technology on infant pain management and integration of this
technology as part of clinical decision support systems. We
found that both HCPs and parents were supportive of the use
of AI technology in predicting infant pain. Both HCPs and
parents recognized that AI has the potential to improve care in
the NICU setting. Other studies have also identified similar
benefits including earlier detection of illness, increased
collaboration and communication, and development of new
treatments that further support the use of AI in clinical settings
[29,30].

In line with previous research [31], this study also found that
HCPs and parents had similar concerns on the use of AI
technologies in the NICU setting, including effectiveness and
accuracy, fear of overreliance, and shared decision-making over
the use of AI technology. Furthermore, we identified additional
themes from the perspectives of parents regarding the
importance of receiving support for interpreting and
understanding constant pain monitoring. Interestingly, most
parents indicated that they would prefer the choice to have
access to constant pain monitoring in real time, as it could
impact parents differently. Moreover, both HCPs and parents
identified the importance of using AI as an adjunctive tool to
inform clinical decisions. That is, both parents and HCPs seemed
in favor of using AI to augment human intelligence and support
more informed clinical decision-making [32] rather than
automating any aspect of clinical care. Similar to youth and
adult patients, parents of infants in the NICU were concerned
about the risk of clinician replacements and emphasized the
importance of the human element (ie, HCP’s presence at the
bedside) in clinical care [30,33,34]. Clinicians also warned
about the potential for diminished skills and overreliance on
technology for the next generation of clinicians with regard to

pain assessment at the bedside. It is worth noting that clinical
decision-making and responsibility continue to rest with
clinicians, and there is currently no legislation that would allow
automated health care decisions by an AI [35]. These new
emerging themes could potentially help inform the future
development of AI tools in the NICU setting as well as the
training of future HCPs working in the NICU. Findings from
this study could be used to justify increased training,
engagement, and consultation with health care professionals as
AI is implemented in the NICU.

Interestingly, we found very similar responses and results across
countries as well as interview modalities. This is not surprising
as both the United Kingdom and Canada follow similar protocols
within the NICUs as both have public health care systems.
Additionally, structured interviews, such as those conducted in
this study, work equally well in face-to-face or web-based
studies [36]. Furthermore, the interviewers were the same across
both contexts. We also found that both HCPs and parents had
limited experience with the use of AI in the NICU, meaning
that all the responses garnered in this study were hypothetical
in nature. Had participants had exposure, they may have
provided different responses with regard to the feasibility and
use of this technology. Future research prior to and during the
implementation process will be important to capture these
perspectives.

Limitations
There are some limitations to this study that should be
considered when interpreting our results. First, interviews were
conducted with HCPs at 2 large, tertiary-care, academic
hospitals in Canada and the United Kingdom that are at the
forefront of technological advancement in the NICU. As such,
the perspectives of HCPs in this study may not be generalizable
to smaller, less well-resourced care settings. Second, parents
included in this study were highly educated, which may limit
generalizability to parents with lower educational attainment,
which is also a known risk factor for preterm birth [37].
Moreover, parents were recruited into the sample if they spoke
English, which may have resulted in a less culturally diverse
sample. Third, many of the themes that were identified by HCPs
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and caregivers were broad in that they were not referring to the
use of AI specifically but rather the use of clinical decision
support systems (ie, a clinician using technology like AI to help
inform their decisions related to care). As both technology and
terminology evolve in the medical context, it will be important
to disentangle opinions related to the technology itself as
opposed to its use as a clinical decision-making tool. Finally,
questions asked of HCPs and parents differed with more
emphasis placed on general technology with HCPs and on
neonatal pain for parents. This may have had an impact on the
responses that were generated. As AI-related technology is
integrated into medical settings, future qualitative research may
focus specifically on pain-related questions.

Conclusions
Based on detailed interviews with 40 HCPs and parents across
2 large NICUs in publicly funded hospitals in Canada and the
United Kingdom, our overall findings indicate that both HCPs
and parents view the integration of an AI algorithm for constant
pain monitoring to have potential benefits and to be an
acceptable practice. Notably, HCPs identified several ways in
which constant pain monitoring could improve the clinical care
provided in the NICU. Both HCPs and parents were balanced
in their perspectives and identified potential disadvantages as
well as requirements for the successful implementation of an
AI tool for pain assessment. Taken together, there is immense
promise as well as major structural, ethical, and methodological
considerations for the development and implementation of AI
technology in the NICU setting.
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Abstract

Background: Qualitative methods are incredibly beneficial to the dissemination and implementation of new digital health
interventions; however, these methods can be time intensive and slow down dissemination when timely knowledge from the data
sources is needed in ever-changing health systems. Recent advancements in generative artificial intelligence (GenAI) and their
underlying large language models (LLMs) may provide a promising opportunity to expedite the qualitative analysis of textual
data, but their efficacy and reliability remain unknown.

Objective: The primary objectives of our study were to evaluate the consistency in themes, reliability of coding, and time needed
for inductive and deductive thematic analyses between GenAI (ie, ChatGPT and Bard) and human coders.

Methods: The qualitative data for this study consisted of 40 brief SMS text message reminder prompts used in a digital health
intervention for promoting antiretroviral medication adherence among people with HIV who use methamphetamine. Inductive
and deductive thematic analyses of these SMS text messages were conducted by 2 independent teams of human coders. An
independent human analyst conducted analyses following both approaches using ChatGPT and Bard. The consistency in themes
(or the extent to which the themes were the same) and reliability (or agreement in coding of themes) between methods were
compared.

Results: The themes generated by GenAI (both ChatGPT and Bard) were consistent with 71% (5/7) of the themes identified
by human analysts following inductive thematic analysis. The consistency in themes was lower between humans and GenAI
following a deductive thematic analysis procedure (ChatGPT: 6/12, 50%; Bard: 7/12, 58%). The percentage agreement (or
intercoder reliability) for these congruent themes between human coders and GenAI ranged from fair to moderate (ChatGPT,
inductive: 31/66, 47%; ChatGPT, deductive: 22/59, 37%; Bard, inductive: 20/54, 37%; Bard, deductive: 21/58, 36%). In general,
ChatGPT and Bard performed similarly to each other across both types of qualitative analyses in terms of consistency of themes
(inductive: 6/6, 100%; deductive: 5/6, 83%) and reliability of coding (inductive: 23/62, 37%; deductive: 22/47, 47%). On average,
GenAI required significantly less overall time than human coders when conducting qualitative analysis (20, SD 3.5 min vs 567,
SD 106.5 min).

Conclusions: The promising consistency in the themes generated by human coders and GenAI suggests that these technologies
hold promise in reducing the resource intensiveness of qualitative thematic analysis; however, the relatively lower reliability in
coding between them suggests that hybrid approaches are necessary. Human coders appeared to be better than GenAI at identifying
nuanced and interpretative themes. Future studies should consider how these powerful technologies can be best used in collaboration
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with human coders to improve the efficiency of qualitative research in hybrid approaches while also mitigating potential ethical
risks that they may pose.

(JMIR AI 2024;3:e54482)   doi:10.2196/54482

KEYWORDS

GenAI; generative artificial intelligence; ChatGPT; Bard; qualitative research; thematic analysis; digital health

Introduction

Background
Qualitative methods are pivotal for the development and
implementation of digital health interventions. In
implementation science, qualitative methods are often used to
inform, refine, and improve digital health interventions [1].
Thematic analysis can be applied to qualitative data generated
from various methods or sources (eg, key informant interviews
and focus groups). This flexible and broad method involves
identifying, extracting, and interpreting common themes (ie,
codes) within the data that are not subscribed to a particular
theory [2,3]. These themes may be identified via inductive
(“bottom-up”) or deductive (“top-down”) methods [2]. In the
former, themes are data driven, reflecting a rich description of
the overall data. In contrast, the latter is driven by existing
literature and previously published health behavior models,
resulting in a detailed analysis of specific data that fit within a
priori coding frames.

Compared to quantitative methods, qualitative methods are
often more resource and cost intensive, conflicting with the
need for timely feedback in rapidly changing real-world settings
(eg, changes in health care policies and patient needs). Such
delays in research on evidence-based practices unfortunately
minimize their relevance and applicability [4]. An emerging
alternative to traditional qualitative methods includes rapid
qualitative analyses, which most commonly aim to reduce the
time invested in data collection, management, analysis, and
interpretation [5,6]. Studies comparing rapid qualitative analyses
to traditional methods have shown a good overlap between
themes [1,5,7], with additional benefits such as greater data
collection and decreased costs [6]. Nonetheless, ongoing
challenges to rapid analyses include reduced scientific rigor (ie,
trustworthiness) [6,8] and an intensified workload due to a
truncated timeline [1,5].

ChatGPT (Open AI) and Google Bard (subsequently rebranded
as Gemini) are 2 popular generative artificial intelligence
(GenAI)–based systems that provide an interface for humans
to collaborate with powerful large language models (LLMs):
OpenAI’s GPT-3.5 neural engine [9] and Google’s PaLM 2
[10]; these models are trained to predict and generate humanlike
textual responses by leveraging deep learning techniques on
massive amounts of pre-existing textual data [11,12]. Recently,
LLMs have outperformed previously developed artificial
intelligence (AI) systems across different tasks spanning a wide
range of disciplines [13]. There is a growing interest in exploring
clinical uses for GenAI including new drug design [14] and
brain tumor imaging [15]. In the digital health setting, GenAI
apps offer individualized information to users on diverse health
topics including chronic and infectious diseases or healthy

lifestyle choices [16]. In research, GenAI functions can range
from summarizing literature and analyzing data (including
coding) to identifying research gaps and drafting papers [17].
Despite these powerful uses, questions remain about the
reliability of GenAI as a research tool, given the possibility that
GenAI generates incorrect text (eg, “hallucinations”) and distorts
scientific facts [17].

In the realm of qualitative research, the interpretation of
observed events introduces significant subjectivity.
Triangulation [8,18] is a strategy to improve the validity or
efficacy of qualitative analysis by integrating information from
different sources (eg, human- vs computer-derived codebooks),
thereby leveraging the advantages of multiple data analysis
methods. For example, Firmin et al [19] found that
human-generated thematic codes and software-driven categories
were highly correlated for concrete constructs but highlighted
unique subjective or abstract constructs. Qualitative analysis
by human coders targets meanings and interpretations, whereas
LLMs target structural and logical elements of language [11].
To date, there have only been 2 known studies that have recently
demonstrated and evaluated the efficacy of applying GenAI for
qualitative research compared to human analysts. de Paoli [11]
explored whether the LLM underlying ChatGPT could be used
to conduct inductive thematic analysis. The results suggested
that at least some of the themes previously identified by human
analysts in the contexts of education and psychology were able
to be reproduced by GenAI and warranted further exploration
and methodological considerations [11]. Alternatively, Hamilton
et al [20] leveraged ChatGPT to conduct a phenomenological
qualitative analysis of significant statements from the interview
transcripts nested within a guaranteed income program
evaluation and compared its identified themes to those generated
by human analysts. They similarly found promising similarities
in identified themes as well as discrepancies such as limited
contextual understanding from ChatGPT.

Although substantial debate remains as to how to best evaluate
the methodological rigor or trustworthiness of qualitative
research, the accuracy in which findings reflect the data (ie,
efficacy) and the reliability within analytic procedures are
prominent considerations [21]. The extent to which GenAI can
produce rigorous and trustworthy qualitative research while
reducing the time and resource burden of current qualitative
methods remains open to exploration, particularly within the
context of health-related research.

Objectives
The primary objectives of our study were to assess the
consistency and reliability of thematic analysis conducted by
ChatGPT, Bard, and human coders following both inductive
and deductive approaches. In this paper, we have described and
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compared the methods that we used among humans and GenAI
to contribute to the growing body of literature on the
wide-ranging applications of GenAI for qualitative analysis in
digital health research. Specifically, we aimed to compare both
the consistency in identifying broad themes essential to
qualitative research and the reliability in coding between
methods (ie, humans, ChatGPT, and Bard). Furthermore, we
additionally examined the difference in human resources
required (ie, time spent on the analysis) between the methods
for both approaches.

Methods

Qualitative Data
The qualitative data for this study consisted of 40 short (<160
characters; 5-14 words in length) SMS text message prompts
used in a previous study evaluating an SMS text messaging
intervention (individualized texting for adherence building;
iTAB) to promote antiretroviral medication adherence among
people with HIV who use methamphetamine [22]. The iTAB
messages draw from various health behavior models including
the health belief model [23], theory of planned behavior [24],
social cognitive theory [25], and attitude–social
influence–efficacy model [26]. During the development of
iTAB, sample messages were tested among people with HIV
who provided feedback; participant feedback was subsequently
used to adapt the SMS text messages. These SMS text messages
served as the foundation for the final, streamlined version [27].
For this study, the 40 short SMS text messages were the
qualitative data being analyzed. We used SMS text message
prompts as opposed to participant-generated qualitative
responses in our analyses, as GenAI services record all data
entered to further train LLMs.

Ethical Considerations
Presently, the use of participant-generated SMS text messages
would violate the protection of confidentiality agreements as

the consent forms approved by our institutional review board
did not specify that participant-generated qualitative data would
be uploaded to third-party vendors. We believe that using the
40 short SMS text message prompts provides a proxy for
qualitative data to model how GenAI and LLMs compare in
detecting shared themes among the SMS text messages
compared to human-conducted thematic analysis. This was an
institutional review board–exempt study as there were no data
from human participants involved.

GenAI Services

Overview
We used 2 commercially available GenAI services:
ChatGPT-3.5 (OpenAI) and Bard (Google). ChatGPT-3.5
leverages OpenAI’s proprietary LLM (GPT-3.5), which was
trained using reinforcement learning from human feedback [28],
a method that provides rewards to reinforce learning. Bard is
powered by Google’s proprietary LLM (PaLM 2) [10], a
transformer-based model that enables it to conduct advanced
reasoning tasks including classification and language generation.
Both LLMs are currently free and open to the public.

GenAI: Inductive Thematic Analysis Procedures
ChatGPT and Bard were given identical prompts to conduct
inductive thematic analysis. Before providing the SMS text
message prompts, both GenAI services were prompted with
contextual information on the study and a description of the
procedures, which the independent human analyst asked GenAI
to perform (Figure 1). Following this contextual information
and instructions, the SMS text messages were copied into the
GenAI interface all at once (ie, as a list of 40 messages), and
the model exported the requested 3-column codebook table. We
then provided additional instructions to have the GenAI label
the SMS text messages based on shared themes (Figure 1).
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Figure 1. Generative artificial intelligence thematic analysis instruction prompts.

GenAI: Deductive Thematic Analysis Procedures
ChatGPT and Bard were given identical prompts to conduct
deductive thematic analysis. Both GenAI services were
prompted with the same background contextual information
and instructions as the inductive thematic analysis prompts. All
SMS text messages for analyses were similarly copied all at
once into the GenAI. However, the deductive approach
additionally requested that SMS text messages be categorized
using constructs from relevant theories of behavior change (such
as medication adherence) including the health belief model [23],
theory of planned behavior [24], social cognitive theory [25],
and attitude–social influence–efficacy model) [26] (Figure 1).

Training of Human Coders and Analyst
In terms of training, all the 4 human coders responsible for the
qualitative analysis had been previously trained by the senior
author on the proper conduct of qualitative analysis on prior
studies, as well as had attended formal external webinars on
qualitative coding and analysis. Each thematic analysis was
conducted by 2 research team members consisting of a clinical
psychology doctoral student and a research assistant with a
bachelor’s degree. These research team members were not
involved in the development or evaluation of the SMS text
messaging intervention. The separate inductive and deductive
human teams were thus intentionally balanced in their

experience and expertise with qualitative analysis and were
instructed not to discuss or collaborate on their analyses to
maintain the independence of each analytic approach.

Similar to human coders, the human analyst responsible for
developing the GenAI prompts used in this study had previous
training and experience with qualitative analysis. The human
analyst also had several years of experience working in
technology development, applying emerging technologies to
digital health, and incorporating general guidelines on prompt
engineering in the context of health care [29]. Specifically, the
analyst incorporated guidelines such as being specific, providing
the setting and context, identifying the overall goal first, and
requesting examples to inform their prompts.

Procedures for Human Inductive Thematic Analysis
For inductive thematic analysis, both members were given
contextual background on the SMS text messaging study and
were instructed to independently develop their own codebook.
Once each member developed an initial codebook, they were
instructed to come to a consensus on a final codebook.
Following agreement on a final codebook, each team member
applied the codebook to group the SMS text messages and began
to search for themes. Finally, both team members compared
their application of the final codebook, resolved disagreements
in coding, and ultimately came to a consensus on the broader
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themes derived by summarizing and collapsing codes. This
process was consistent with the basic steps of a thematic analysis
[2].

Procedures for Human Deductive Thematic Analysis
For deductive thematic analysis, both research members were
given the same contextual study information as the inductive
thematic analysis team. The deductive analysis team was then
given a list of a priori codes based on the theories of behavior
change including health belief model [23], theory of planned
behavior [24], social cognitive theory [25], and attitude–social
influence–efficacy model [26]. Next, the deductive analysis
team was instructed to independently develop a codebook
considering the key constructs of the theories of behavior change
and was suggested a priori codes. Once both team members
independently developed a codebook, they were instructed to
compare codebooks and reached a consensus on a final
codebook. Following agreement on a final codebook, each team
member applied the codebook to group the text messages and
began searching for themes. Both team members then compared
their application of the final codebook, resolved any
discrepancies in coding, and came to a consensus on broader
themes by collapsing and summarizing their codes. This process
was consistent with the basic steps of a thematic analysis [2].

Consistency and Intercoder Reliability
Consistency was defined as the extent to which the thematic
findings were the same across the 2 analytic methods, as has
previously been used when comparing qualitative methods [1].
We operationalized this as the percentage of themes that was
shared between methods (eg, 100% consistency would suggest
that the themes between the methods were identical). For
example, if method A (reference method) were to identify 10
total themes and method B identified 5 of those themes, then
the theme consistency would be 50% (5/10).

Intercoder reliability (ICR) was operationalized as the number
of agreements in coding divided by the sum of agreements and
disagreements in coding [30]; thus, a higher score equates to a
greater agreement between coders. After reaching a final
consensus on the codebook, an ICR was calculated. Human
coders then met to discuss disagreements in the coding of the
data. To compare the reliability of coding between humans and
GenAI for themes that were shared by both methods, ICRs were
calculated to determine the reliability between (1) human coders
and Bard, (2) human coders and ChatGPT, and (3) ChatGPT
and Bard. ICRs were averaged across all common themes to
compute an overall ICR percentage. To qualitatively describe
the extent of agreement between human and GenAI teams, the
following cutoffs were used to interpret the ICRs: slight
(0%-20%), fair (21%-40%), moderate (41%-60%), substantial
(61%-80%), and almost perfect (81%-100%) [31]. The
consistency and ICR between methods were descriptively
reported and compared.

Total Time Spent on the Analyses
After all thematic analyses had been completed, each human
coder was asked to retrospectively estimate the amount of total
time spent on their qualitative analyses. For the human coders,
this total time included the sum of the time spent by each

individual coder on their initial coding, codebook development,
application of codebook, and meetings to reach a consensus on
disagreements in coding and themes. The total time spent on
thematic analyses using GenAI was the sum of the time taken
to input the prompts, waiting for responses to generate, and
compiling those responses in a spreadsheet table. The differences
in the total time spent on analysis between methods were also
descriptively reported and compared.

Results

Consistency of Inductive Thematic Analyses
In the inductive arm of our study, 7 themes were identified by
the human coders following an inductive thematic analysis of
the iTAB SMS text messages. These themes included “time,”
“adherence,” “religious,” “community care,” “health reminder,”
“warning,” and “encouragement.” Of these 7 themes identified
by human coders, 5 (71%) were also consistent with the themes
derived by both ChatGPT and Bard. Multimedia Appendix 1
presents a complete mapping of the inductive thematic analysis
codebooks (including theme, description, and example text
messages) generated by human coders, ChatGPT, and Bard.

ChatGPT’s inductive thematic analysis of the same SMS text
messages identified 10 themes, which included
“spirituality/higher power,” “supportive community,” “love and
support from others,” “health benefits,” “reminder,” “resistance
and risk to others,” “consequences of nonadherence,” “positive
reinforcement,” “fun and enjoyment,” and “accountability.” Of
these 10 themes, almost all (n=9, 90%) were consistent with
the themes identified by our human coders. Bard’s inductive
thematic analysis identified 6 themes from the SMS text
messages, which included “religious/spiritual beliefs,” “social
support,” “importance of taking medication,” “consequences
of not taking medication,” “enjoyment,” and “personal
responsibility.” Of these 6 themes, the majority (n=5, 83%)
were consistent with the themes identified by human coders,
and there was perfect consistency (6/6, 100%) between the
themes identified by ChatGPT and Bard.

The 1 theme that ChatGPT identified that human coders did not
was “accountability,” which was defined as “Messages
emphasizing personal responsibility for adherence.” Bard
similarly identified this theme as “personal responsibility,”
which was defined as “The messages emphasize that it is
important for people to take care of themselves and take their
medication on their own. They also suggest that people should
be proud of themselves for being adherent to their medication
regimen.” The example SMS text messages provided by
ChatGPT and Bard that are representative of the “accountability”
and “personal responsibility” theme were as follows:

Stop screwing around and take ur [medication] now.
[ChatGPT]

It's impt to take care of urself. Pls take ur
[medication] [Bard]

ChatGPT and Bard did not reproduce 2 (29%) of the 7 human
coders’ themes, “time” and “adherence,” which were defined
rather literally as including the words “time” or “adherence” in
the message. There were 4 instances where 2 themes derived
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by ChatGPT ultimately mapped onto a single broader theme
identified by the human coders’ thematic analysis. For example,
the human coders identified “community care,” which they
defined as “message focused on the importance of the individual
in relation to others, both being cared for by others and being
accountable to others.” By examining both themes and their
descriptions, we observed that there were 2 themes identified
by ChatGPT that mapped onto “community care” as defined
by our human coders:

1. Supportive community: messages highlighting the care and
support from others

2. Love and support from others: messages emphasizing the
impact on loved ones

Reliability of Inductive Thematic Coding
The overall ICR of all inductive themes shared by human coding
and ChatGPT was moderate (31/66, 47%). The overall ICR was
lower between human coders and Bard at 37% (20/54), which
is indicative of fair agreement. There was similarly fair
agreement in coding between ChatGPT and Bard at 37%
(23/62). There was notable variation in the ICR between coding
arms when examined by theme, which ranged from 8% (2/26;
slight agreement for “encouragement” between ChatGPT and
Bard) to 80% (4/5; substantial agreement for “religious” between
human coders and ChatGPT, human coders and Bard, and
ChatGPT and Bard). Table 1 lists ICR between human coders,
ChatGPT, and Bard for inductive thematic coding, both overall
and by theme.

Table 1. Inductive thematic analysis intercoder reliability (ICR) between human coders, ChatGPT, and Bard by theme and overall.

Bard and ChatGPTHuman coders and ChatGPTHuman coders and BardThemes

Disagreement, n/N
(%)

Agreement, n/N
(%; ICR)

Disagreement, n/N
(%)

Agreement, n/N
(%; ICR)

Disagreement, n/N
(%)

Agreement, n/N
(%; ICR)

24/26 (92)2/26 (8)17/29 (59)12/29 (41)15/17 (88)2/17 (12)Encouragement

6/15 (40)9/15 (60)11/18 (61)7/18 (39)11/17 (65)6/17 (35)Health reminder

2/5 (40)3/5 (60)1/5 (20)4/5 (80)1/5 (20)4/5 (80)Religious

1/5 (20)4/5 (80)2/6 (33)4/6 (67)1/6 (17)5/6 (83)Community or cared
by others

2/6 (33)4/6 (67)4/8 (50)4/8 (50)6/9 (67)3/9 (33)Warning

4/5 (80)1/5 (20)————aPersonal responsibili-
ty (Bard and ChatGPT
only)

39/62 (63)23/62 (37)35/66 (53)31/66 (47)34/54 (63)20/54 (37)Overall (across all
themes)

aNot applicable.

Consistency of Deductive Thematic Analysis
A total of 12 themes were identified by the human coders
following a deductive thematic analysis of the same text
messages, which included “positive tone,” “stern/serious tone,”
“sense of urgency/priority,” “balancing health with ‘fun’,”
“self-care,” “expectations and attitudes,” “perceived negative
outcomes” “perceived benefits,” “norms,” “social influence,”
“self-efficacy,” and “spirituality/religion as motivation.” Of
these 12 themes identified by human coders, 6 (50%) were also
consistent with the themes derived by ChatGPT, and 7 (58%)
were consistent with those found by Bard. Multimedia Appendix
2 lists the complete mapping of the deductive thematic analysis
codebooks (including theme, description, and example SMS
text messages) generated by human coders, ChatGPT, and Bard.

ChatGPT’s deductive thematic analysis identified a total of 9
themes, which included “consequences,” “health benefits,”
“motivation,” “social influence,” “care and support,”
“self-efficacy,” “religious beliefs,” “responsibility,” and
“reminders.” Of these 9 themes, the majority (7/9, 78%) were
consistent with the themes identified by our human coders.
Bard’s inductive thematic analysis identified 6 themes from the
SMS text messages, which included “importance of adherence,”
“negative consequences of nonadherence,” “benefits of

adherence,” “social support,” “self-efficacy,” and
“religious/spiritual.” Of these 6 themes identified by Bard, there
was perfect consistency (6/6, 100%) with the themes identified
by human coders, and there was strong consistency (5/6, 83%)
with the themes identified by ChatGPT.

ChatGPT and Bard did not reproduce 6 (50%) and 5 (42%),
respectively, of the human coder’s 12 deductive themes. Neither
ChatGPT nor Bard identified the human coder’s themes of
“positive tone,” “stern/serious tone,” “balancing health with
‘fun’,” “self-care,” or “expectations and attitudes.” In addition,
ChatGPT did not identify the human coder’s theme of “sense
of urgency/priority,” which was defined as “includes messages
instructing a person to place their health, or desired health
behaviors, over other competing priorities.” On the basis of this
description, the Bard theme of “importance of adherence” was
mapped onto this theme, and both shared the example message
of “Stop everything and take ur meds!”

There were 2 themes identified uniquely by ChatGPT (ie, neither
Bard nor human coders identified these themes), which were
“responsibility” and “reminders” and were defined as follows:

• Responsibility: encouraging a sense of responsibility for
one’s health and well-being through adherence.
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• Example text: It’s impt to take care of urself. Pls take
ur [medication]

• Reminders: providing reminders or cues to prompt
medication adherence.
• Example text: Ready, set, get healthy! It’s med time.

Time for ur [medication]

There was 1 case where Bard identified a single theme (“social
support”) that human coders and ChatGPT had separated into
2 separate themes (“norms” or “social influence” and “social
influence” or “care and support,” respectively). Furthermore,
there was an instance where 2 themes derived by ChatGPT
ultimately mapped onto a broader theme identified by the
thematic analysis performed by the human coders and Bard.
For example, the human coders identified “perceived benefits,”
which they defined as “perception of the effectiveness of an
action to reduce the threat of illness or disease, including factors
related to ease of use.” By examining both themes and their
descriptions, there were 2 ChatGPT themes that mapped onto
this theme of “perceived benefits”:

1. Health benefits: highlighting the positive impact of
medication adherence on health and well-being

2. Motivation: encouraging individuals to take their medication
by emphasizing the benefits of doing so

Reliability of Deductive Thematic Coding
The overall ICR of deductive themes shared between human
coders and ChatGPT was fair at 37% (22/59), which was similar
to Bard at 36% (21/58). There was moderate agreement in
coding between the codebooks generated by ChatGPT and Bard,
as reflected by an overall ICR of 47% (22/47). We also
examined code-specific ICR in addition to the overall ICR,
which varied substantially across themes. For example, there
was perfect (4/4, 100%) agreement in coding between human
coders and ChatGPT, human coders and Bard, and ChatGPT
and Bard within the theme of “perceived negative outcomes,”
but only slight to fair agreement for the theme of “perceived
benefits” (6/29, 21%; 5/13, 38%; and 9/28, 32%, respectively).
Table 2 presents the ICR between human coders, ChatGPT, and
Bard deductive thematic coding, both overall and by theme.

Table 2. Deductive thematic analysis intercoder reliability (ICR) between human coders, ChatGPT, and Bard by theme and overall.

Bard and ChatGPTHuman coders and ChatGPTHuman coders and BardThemes

Disagreement, n/N
(%)

Agreement, n/N
(%; ICR)

Disagreement, n/N
(%)

Agreement, n/N
(%; ICR)

Disagreement, n/N
(%)

Agreement, n/N
(%; ICR)

19/28 (68)9/28 (32)23/29 (79)6/29 (21)8/13 (62)5/13 (38)Perceived bene-
fits

0/4 (0)4/4 (100)0/4 (0)4/4 (100)0/4 (0)4/4 (100)Perceived nega-
tive outcomes

1/5 (20)4/5 (80)9/14 (64)5/14 (36)10/14 (71)4/14 (29)Social Support
(Norms and So-
cial influence)

4/5 (80)1/5 (20)5/7 (71)2/7 (29)3/5 (60)2/5 (40)Self-efficacy

1/5 (20)4/5 (80)0/5 (0)5/5 (100)1/5 (20)4/5 (80)Spirituality or re-
ligion as motiva-
tion

————a15/17 (88)2/17 (12)Sense of urgency
or priority (Bard
only)

25/47 (53)22/47 (47)37/59 (63)22/59 (37)37 (64)21/58 (36)Overall (across
all themes)

aNot applicable.

Total Time Spent on Qualitative Analyses
The human coding teams reported 492 (inductive) and 705
(deductive) total minutes to complete their thematic analyses
of the SMS text messages. This total time includes the sum of
the time spent by each individual coder on their initial coding,
codebook development, application of codebook, and reaching
consensus on disagreements in coding. The total time to
complete the inductive and deductive thematic analyses with
ChatGPT was 15 minutes (97% less time than the human
approach) and 25 minutes (97% less), respectively, whereas
both analyses took a total of 20 minutes with Bard (96% and
97% less time, respectively). The total time spent on thematic
analyses using GenAI was the sum of the time taken to input

the prompts, wait for responses to generate, and document those
responses in a spreadsheet table.

Discussion

Principal Findings
This study evaluated the consistency and ICR in themes between
human coders and GenAI models conducting both inductive
and deductive thematic analyses of short SMS text message
prompts that were used in a previous intervention to promote
medication adherence. There was evidence of consistency in
the themes identified by ChatGPT and Bard compared to human
coders’ inductive thematic analysis (both 5/7, 71%), but the
consistency was notably lower for deductive thematic analysis
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(6/12, 50% and 7/12, 58%, respectively). The overall ICR
(percent agreement in coding) of themes shared between human
coders and GenAI models (inductive: 31/66, 47% and 20/54,
37%; deductive: 22/59, 37% and 21/58, 36%, respectively) was
fair to moderate [31]. In addition, GenAI models were
significantly less resource-intensive, as they took an average of
97% less time (20 vs 567 min) for qualitative analysis compared
to human coders. ChatGPT and Bard performed similarly to
each other across both types of thematic analysis.

This study is the first of our knowledge to compare the GenAI-
and human-generated themes from textual data following both
inductive and deductive qualitative thematic analysis procedures
using health-related data. We also evaluated and compared both
ChatGPT and Bard, whereas prior studies of GenAI have only
examined ChatGPT. Our findings demonstrate that GenAI may
provide a promising opportunity to facilitate quicker and more
resource-efficient qualitative analysis of textual data; however,
such technologies should be used to assist human coders in
order to further improve the efficacy and reliability of findings.

Comparison With Prior Work
Although we did not find perfect consistency in AI- and
human-generated themes, there were notable similarities in the
themes derived by both methods. Hamilton et al [20] similarly
compared emergent ChatGPT- and human-generated themes
from a qualitative analysis of interview data from a guaranteed
income program evaluation, in which they also found an overlap
between the 2 methods. They found that approximately 50% of
human-generated themes were consistent with those identified
by ChatGPT and that 80% of themes identified by ChatGPT
were identified by human coders. Furthermore, de Paoli [11]
emulated inductive thematic analysis of a previously analyzed
semistructured interview data set using the underlying natural
language processing (NLP) model of ChatGPT (GPT 3.5-Turbo)
and found that a majority of the original themes (9/13, 69%)
were identified. The consistency between our GenAI- (ChatGPT
and Bard) and human-generated thematic analyses (50%-71%)
was notably similar to that observed in these studies (50%-80%)
[11,20]. The results of this study and the study by Hamilton et
al [20] both found that both GenAI- and human-generated
themes were promisingly similar, but both methods also
identified distinct themes. Although de Paoli [11] and Hamilton
et al [20] had previously demonstrated and evaluated the
potential efficacy of GenAI for qualitative research, our findings
further suggest that GenAI may also have promising applications
for qualitative research in the context of health research.

In this study, the data set consisted of SMS text messages to
promote HIV medication adherence for individuals who use
methamphetamine and included nuanced references that are
unique to this population such as references to substance use
(eg, “fun” and “partying”) and specific slang for
methamphetamine (“Tina”). The deductive human coding team
identified the theme of “balancing health with ‘fun’” based on
these messages and recognized the nuance of the use word “fun”
in this context as a subtle reference to substance use (codebook
description: “Messages contain content reminding a person to
prioritize health, even engaging in ‘fun’or ‘partying behaviors,’
which may include risky behaviors”), whereas ChatGPT and

Bard did not. For these messages, both AI methods tended to
take a literal meaning and labeled these messages as representing
themes of “fun and enjoyment” or “enjoyment.” However, it is
also important to recognize that our inductive coding team
similarly did not appear to recognize these subtle references to
substance use behaviors. In terms of other notable discrepancies
in themes, the human-generated deductive themes included
“positive tone” and “stern/serious tone,” which neither ChatGPT
nor Bard produced. These themes appear to be consistent with
sentiment analysis (or recognizing the sentiment or emotion
expressed in text), which is surprising given that recent research
has found ChatGPT to be quite promising in sentiment
classification of textual data (>92% accuracy) and superior to
other NLP methods [32].

One possible explanation for the difference in the results
between methods is that GenAI methods appear to be relatively
limited in their ability to understand the contextual or subtle
meaning of textual data, as they rely primarily on probabilistic
pattern recognition to generate responses. The training sets used
to train the NLP models underlying ChatGPT and Bard (ie,
largely internet content) presumably did not contain a substantial
amount of textual data specific to substance use, and so the
ability to recognize subtle nuances and references within this
context is more limited. The implications of these findings
suggest that GenAI shows promise in qualitative thematic
analysis but may ultimately prove less valid for less mainstream
research topics that may relatively use more nuanced language
(eg, illicit substance use), which further highlights the
importance of continued inclusion of human coders in the
qualitative research process. This possible limitation regarding
the more explicit interpretation of GenAI that we observed
appears to extend to not only the output it produces but also its
use of input (prompts). Whereas our human coders’
understanding of qualitative thematic analysis included the
possibility of themes emerging related to the sentiment of the
text messages, it appears that ChatGPT and Bard did not. This
finding highlights the relative importance of prompt engineering
(ie, research into how best to instruct such technologies) and
further stresses the importance of maintaining human coders in
the qualitative research process when leveraging GenAI.

Currently, there is considerable heterogeneity in the prompts
being used to conduct qualitative research with GenAI to date,
such that some examples have had the models show their work
and used step-by-step prompts following a typical 6-step process
[11], and others have been more global in their approach [20]
similar to ours. While general guidance exists on how best to
prompt GenAI in the context of health care [29], we believe
that this represents a critical future direction of research for this
field of work. As more studies and case examples are published,
a systematic review would be critical for developing best
practices and standards for prompt engineering in the specific
context of qualitative analysis (eg, are step-by-step prompts
better received than more global ones such as the ones used in
our study?).

Given that GenAI and human coders were operating off
independently derived codebooks and themes, the degree of
disagreement in ICR is not surprising. After the initial
application of their codebooks and before meeting and coming

JMIR AI 2024 | vol. 3 | e54482 | p.664https://ai.jmir.org/2024/1/e54482
(page number not for citation purposes)

Prescott et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


to a consensus on disagreements, our inductive and deductive
human coding teams had ICRs of 83% (57/69) and 31%
(45/144), respectively. Therefore, the ICRs found between our
human coders before discussing disagreements was in fact quite
similar to the ICRs we observed between human and GenAI
methods for shared themes. Furthermore, Xiao et al [33]
similarly examined the degree of ICR between a pretrained
LLM (GPT-3) and deductive coding conducted by expert human
coders, in which they also found fair to substantial agreement
between methods [33]. Regarding the difference in ICRs
between the inductive and deductive analyses, current literature
suggests that this most likely is a reflection of the method and
the associated number of codes. In our study, the human
deductive analysis team identified more themes (and codes)
than did the inductive analysis team (12 vs 7, respectively),
which could be suspected as they had been provided with a
priori codes from several theories of behavior change. Previous
research has found that a greater number of codes reduces the
ICR [34,35], which is believed to reflect having to be familiar
with a relatively longer coding scheme and thus being more
cognitively taxing [36]. There is also substantial debate over
the utility of ICR in qualitative methods, as some argue that the
inherent subjectivity of qualitative research and the resulting
researcher’s reflexivity and personal engagement are necessary
for understanding the diversity of perspectives on a given topic
rather than treating it as noise to be minimized [36,37]. The
arguments in support of using ICR are that it helps ensure that
themes and information being derived from qualitative data are
consistent and meaningful [38]. Therefore, GenAI-generated
qualitative analyses may be useful as tools for providing an
additional perspective of the data to complement those found
by human coders and enabling triangulation and recognition of
potential biases.

A significant barrier to qualitative analysis is the considerable
time and resources involved, which can be particularly salient
when rapid research findings are urgently needed to improve
the dissemination and implementation of evidence-based health
interventions [4,39]. Previous innovations in qualitative
methods, such as rapid qualitative analysis, have shown promise
in helping maintain the rigor of the analysis while being quicker
and more cost-efficient than traditional methods [1,7]. However,
such methodologies still require substantial human resources,
and the resource efficiency of qualitative methodologies may
be further improved when augmented with new technologies.
Several examples of hybrid NLP-qualitative methods, whereby
human coders and NLP or GenAI technologies collaborate
during analysis, have been proposed or demonstrated previously
[40-43]. Skeen et al [41] have provided one such example of a
hybrid approach in their proof-of-concept study that applied
NLP to condense a large data set of unstructured textual data
before subsequent human-generated thematic analysis in order
to more rapidly produce design insights for improving a digital
HIV intervention.

However, most of these studies using hybrid methods have only
demonstrated proof of concept and lacked comparisons with
gold-standard qualitative analysis conducted by human analysts.
In one previous study comparing qualitative analysis with human
coders, NLP-only, and NLP-hybrid methods, the authors found

similar thematic findings across methods and that NLP and
hybrid methods required notably less time and resources [43].
Whereas the technical skills (eg, coding) required to implement
NLP methods previously posed a significant barrier to the wider
adoption of such methodologies among qualitative researchers,
commercially available GenAI services, such as ChatGPT and
Bard, provide a promising opportunity for further exploration
of hybrid NLP-qualitative methods. An example of a hybrid
approach incorporating GenAI might be for it to complete the
often time-intensive initial coding of textual data, which could
subsequently be reviewed and summarized by human analysts
to produce the themes that are often more interpretative and
abstract in nature. Alternatively, a single human coder might
conduct a complete thematic analysis and then collaborate with
GenAI as if they were another human coder to reflect on
discrepancies and convergence between their coding and
identification of broader themes (ie, replacing the need for a
second human coder or analyst). The unknown feasibility,
efficacy, and efficiency of such hybrid approaches leveraging
GenAI warrant future exploration and study.

Limitations
There are several important limitations to consider when
interpreting the findings of our study and more broadly the
application of GenAI to qualitative analysis. First and foremost,
there are numerous current ethical and privacy issues to applying
GenAI to human participant research. These issues are currently
being debated as these technologies emerge and include the
potential for perpetuating bias and inequality, fact fabrication,
plagiarism, and potential breaches of data privacy or ownership
[44-48]. Using GenAI in the research process also poses
potential challenges to obtaining informed consent from
participants, especially when working with at-risk populations
such as those living with HIV or those who use substances.
Obtaining informed consent is fundamental to the ethical
conduct of research and involves disclosing to potential
participants how their data could be used and the risks associated
with research participation, both of which may be difficult to
do in the context of using GenAI services due to their lack of
transparency, explainability (eg, black box), and the potential
risk of reidentification [49]. Future researchers should continue
to prudently investigate and monitor both the potential benefits
and risks associated with groundbreaking technologies such as
GenAI services, especially when incorporating them into the
scientific process and their use with data from vulnerable
populations.

In addition, it is important to note that our data set consisted of
only relatively brief SMS text message prompts that could easily
be provided to ChatGPT and Bard. We do not know how well
the consistency and reliability of themes derived by GenAI
would compare to human coders for longer textual data sets
that are common in qualitative research (ie, unstructured or
structured interview, focus group transcripts, etc). Our data set
also notably did not consist of natural, participant-generated
language (eg, transcribed spoken language in interviews), so
our findings may not generalize to these more likely data sets
for qualitative analysis. However, recent studies have conducted
qualitative analyses using GenAI services or their underlying
LLMs with such data sets (eg, unstructured qualitative interview
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transcripts and significant statements from transcripts) and have
shown promisingly similar results to ours [11,20].

Relatedly, we observed challenges with GenAI being able to
recognize interpretative themes and consider the nuanced
meaning of some topics (specifically, substance use), which
may also suggest that our findings may not generalize to all
research content areas. Although the flexibility of thematic
analysis allows and expects to some degree that initial codes
go on to form main themes [2,50], our study was relatively
limited in the extent to which we could determine whether
GenAI correctly identifies more complex themes due to our
small data set of brief text messages. Given the limited research
that exists examining the consistency and reliability of applying
GenAI to qualitative research and the novelty of the field, future
studies should consider further exploring how well these
methods generalize to other types and content of data.

Conclusions
Our findings suggest that GenAI may have promising
applications for qualitative thematic analysis (including reducing
the time and resources required), but hybrid approaches that
allow for collaboration between human coders and GenAI
technologies are likely necessary to further improve the
consistency and reliability of such methods. Improvements in
efficiency may be particularly important to further facilitating
the adoption of qualitative methods for studying and improving
digital health interventions within often complex and rapidly
changing real-world settings. As GenAI models are expected
to continually improve as they learn, future studies should
further explore how humans can best collaborate with these
powerful tools given their potential for enabling more rapid
research while also remaining vigilant of the potential risks they
may pose. Research into the ethical challenges posed by GenAI
in the context of human participant research is also urgently
needed.
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Abstract

Background: Large curated data sets are required to leverage speech-based tools in health care. These are costly to produce,
resulting in increased interest in data sharing. As speech can potentially identify speakers (ie, voiceprints), sharing recordings
raises privacy concerns. This is especially relevant when working with patient data protected under the Health Insurance Portability
and Accountability Act.

Objective: We aimed to determine the reidentification risk for speech recordings, without reference to demographics or metadata,
in clinical data sets considering both the size of the search space (ie, the number of comparisons that must be considered when
reidentifying) and the nature of the speech recording (ie, the type of speech task).

Methods: Using a state-of-the-art speaker identification model, we modeled an adversarial attack scenario in which an adversary
uses a large data set of identified speech (hereafter, the known set) to reidentify as many unknown speakers in a shared data set
(hereafter, the unknown set) as possible. We first considered the effect of search space size by attempting reidentification with
various sizes of known and unknown sets using VoxCeleb, a data set with recordings of natural, connected speech from >7000
healthy speakers. We then repeated these tests with different types of recordings in each set to examine whether the nature of a
speech recording influences reidentification risk. For these tests, we used our clinical data set composed of recordings of elicited
speech tasks from 941 speakers.

Results: We found that the risk was inversely related to the number of comparisons an adversary must consider (ie, the search
space), with a positive linear correlation between the number of false acceptances (FAs) and the number of comparisons (r=0.69;

P<.001). The true acceptances (TAs) stayed relatively stable, and the ratio between FAs and TAs rose from 0.02 at 1 × 105

comparisons to 1.41 at 6 × 106 comparisons, with a near 1:1 ratio at the midpoint of 3 × 106 comparisons. In effect, risk was high
for a small search space but dropped as the search space grew. We also found that the nature of a speech recording influenced
reidentification risk, with nonconnected speech (eg, vowel prolongation: FA/TA=98.5; alternating motion rate: FA/TA=8) being
harder to identify than connected speech (eg, sentence repetition: FA/TA=0.54) in cross-task conditions. The inverse was mostly
true in within-task conditions, with the FA/TA ratio for vowel prolongation and alternating motion rate dropping to 0.39 and
1.17, respectively.

Conclusions: Our findings suggest that speaker identification models can be used to reidentify participants in specific
circumstances, but in practice, the reidentification risk appears small. The variation in risk due to search space size and type of
speech task provides actionable recommendations to further increase participant privacy and considerations for policy regarding
public release of speech recordings.
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Introduction

Background
Advances in machine learning and acoustic signal processing,
along with widely available analysis software and computational
resources, have resulted in an increase in voice- and
speech-based (hereafter referred to as speech for simplicity)
diagnostic and prognostic tools in health care [1]. Applications
of such technology range from the early detection of
cardiovascular [2], respiratory [3], and neurological [4] diseases
to the prediction of disease severity [5] and evaluation of
response to treatment [6]. These advances have substantial
potential to enhance patient care within neurology given the
global burden of neurological diseases [7,8], the poor global
access to neurological expertise [9,10], and the established role
of speech examination within the fields of neurology and
speech-language pathology [11].

Large curated data sets are needed to harness the advances in
this area. These data sets are costly to assemble and require rare
domain expertise to annotate, leading to increased interest in
data sharing among investigators and industry partners.
However, given the potentially identifiable nature of voice or
speech recordings and the health information contained within
such recordings, significant privacy concerns emerge. For many
data sets, conventional deidentification approaches that remove
identifying metadata (eg, participant demographics and date
and location of recording) are sufficient, but sharing speech
recordings comes with additional risk as the speech signal itself
has the potential to act as a personal identifier [12-14]. In
recognition of this potential problem, voiceprints are specifically
mentioned as an example of biometric identifiers with respect
to the Health Insurance Portability and Accountability Act
(HIPAA) Privacy Rule [15,16]. Approaches that involve
modifying nonlinguistic aspects of speech through distortion
or alteration of the signal may address the inherent identifiability
of the speech signal (ie, its potential as a voiceprint) [13,17],
but this is not an option when a central part of speech
examination in medicine is to use the acoustic signal to detect
subtle nonlinguistic abnormalities indicative of the presence of
neurological disease [11,13]. Deidentification in compliance
with HIPAA may still be possible under the Expert
Determination implementation, whereby the risk of
reidentification for unmodified speech recordings is deemed
low according to accepted statistical and scientific principles
[15,16]. In this respect, various previous studies have
investigated the risk of reidentification in research cohort data
sets based on demographic or other metadata that may link a
participant to their corresponding recordings [18-20], but none
have explicitly assessed the inherent risk of the acoustic signal
itself. Determining the risk of reidentification for recordings in
speech data sets and learning how to best mitigate such risk is
necessary for health care institutions to protect patients, research
participants, and themselves.

Unfortunately, the same machine learning advances that
facilitate the use of speech in health care have also made
adversarial attacks, such as deanonymization or reidentification
attacks, more feasible. For example, attempting to reidentify a
speaker from only a speech recording relies on the mature,
well-researched field of speaker identification [21,22]. Studies
using speaker identification suggest that the potential for
identification from the acoustic signal alone is high [23],
although there have been minimal studies in the context of
adversarial attacks that may result in potential harm to a speaker
[24,25]. Only one previous study has relied on a speaker
identification model for reidentification, and the results
suggested that the risk was high with a single unknown or
unidentified speaker and a moderately small reference set of
250 known or identified speakers [25]. As such, the risk inherent
in the acoustic signal, devoid of metadata, is nonzero but
relatively unknown, and the feasibility for larger data sets is
unexplored.

In addition, these approaches are rarely applied to medical
speech data sets [26]. This presents a gap in research as medical
speech recordings differ from speech recordings of healthy
speakers in a few systematic ways. First, the recordings typically
contain speech with abnormalities (ie, speech disorders), which
may make reidentification harder as many speech disorders are
the result of progressive neurological disease, which causes
changes in speech that evolve over months to years [11].
Matching recordings from a time when a speaker was healthy
or mildly affected to recordings in which they have a more
severe speech disorder may be more difficult [27-29]. Second,
the premise of speaker identification is that there are
recognizable between-speaker differences tied to identity.
However, in a cohort enriched with speech with abnormalities,
a substantial proportion of the variance would be tied to the
underlying speech disorder as this causes recognizable
deviations [11], resulting in speakers sounding less distinct [30].
Finally, medical speech recordings typically contain responses
to elicited speech tasks rather than the unstructured connected
speech typically used in identification experiments. Some speech
task responses do contain connected speech (eg, paragraph
reading), but others are very dissimilar (eg, vowel prolongation).
The impact of speech task on identifiability remains unknown.

Objectives
In this study, we addressed the risk of reidentification in a series
of experiments exploring the reidentifiability of medical speech
recordings without using any metadata. We accomplished this
goal by modeling an adversarial attack using a state-of-the-art
speaker identification architecture wherein an adversary trains
the speaker identification model on publicly available, identified
recordings and applies the model to a set of unidentified clinical
recordings.
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Methods

Overview
Our experimental design was based on the following
assumptions: (1) a data recipient has decided to attempt
reidentification of study participant data, thereby becoming an
adversary; and (2) this adversary relies on an adversarial attack
strategy known as a marketer attack, wherein they use a large
data set of identified speech (hereafter referred to as the known
set), perhaps obtained from a web source such as YouTube, to
train a speaker identification model that is then used to reidentify

as many unknown speakers in the shared clinical data set
(hereafter referred to as the unknown set) as possible [19,31].
Other attack scenarios are possible, but a marketer attack
establishes an accepted baseline for risk. To simulate this attack
scenario, we built a text-independent speaker identification
model with a combination of x-vector extraction using
Emphasized Channel Attention, Propagation, and Aggregation
in Time-Delay Neural Network (ECAPA-TDNN) [32] and a
downstream probabilistic linear discriminant analysis
(PLDA)–based classifier [33,34], as described in detail in the
following sections. Figure 1 shows the architecture of our model.

Figure 1. Speaker identification system architecture. During training, recordings from known speakers are fed into a pretrained speaker identification
model (ECAPA-TDNN) to extract embeddings. These constitute a low-dimensional, latent representation for each recording that is enriched for
speaker-identifying features (x-vectors). We used these x-vectors for known speakers to train a probabilistic linear discriminant analysis (PLDA)
classifier and generate an average threshold for acceptance or rejection of a speaker match over several subsets. During testing, the extracted x-vectors
are fed into the trained PLDA, and the training threshold is applied, resulting in a set of matches (or no matches) for each recording. ECAPA-TDNN:
Emphasized Channel Attention, Propagation, and Aggregation in Time-Delay Neural Network.
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Data

Overview
An ideal data set for our attack scenario would consist of (1) a
set of elicited speech recordings from tasks typically used in
clinical or research speech evaluations and (2) a set of
unstructured speech recordings including the same speakers as
in item 1 but acquired at a different time and place. This would
allow us to directly assess the risk of reidentification of medical
recordings by training a model on unstructured connected
speech, such as what an adversary may find on the web. Such
a data set does not exist. As such, we made use of 2 separate
data sets. The first was a combination of the well-known
VoxCeleb 1 and 2 data sets, which contain recordings from a
web source of >7000 speakers [23,35,36]. The second was a
medical speech data set from the Mayo Clinic, which contains
recordings of commonly used elicited speech tasks but with
fewer speakers.

VoxCeleb
The VoxCeleb 1 and 2 data sets are recent large-scale speaker
identification data sets containing speech clips extracted from

celebrity interviews on YouTube [23,35,36]. The utterances are
examples of natural, real-world speech recorded under variable
conditions from speakers of different ages, accents, and
ethnicities. VoxCeleb 1 and 2 have a combined total of
1,281,762 recordings from 7363 speakers.

Mayo Clinic Speech Recordings
The Mayo Clinic clinical speech data set consists of recordings
from elicited speech tasks in previously recorded speech
assessments. Each speaker has a combination of clips from
various tasks commonly used in a clinical speech evaluation,
including sentence repetition, word repetition, paragraph
reading, alternating motion rates (AMRs), sequential motion
rates (SMRs), and vowel prolongation [11]. The clips from
speakers vary in recording medium (cassette recording vs DVD),
microphone distance, degree of background noise, and presence
and severity of motor speech disorder or disorders. There are
19,195 recordings from 941 speakers (the breakdown is
presented in Table 1).

Table 1. Breakdown of number of recordings and speakers for each task in the Mayo Clinic clinical speech data set.

Speakers, n (%)Recordings, n (%)

Vowel prolongation

812 (86.3)1734 (9.03)“Aaaaaah”

AMRa

777 (82.6)3921 (20.43)“Puh,” “tuh,” and “kuh”

SMRb

564 (59.9)1049 (5.46)“Puh-tuh-kuh”

Word repetition

62c (6.6)124 (0.65)“Catapult” and “catastrophe”

354c (37.6)4012d (20.9)Other words

Sentence repetition

222e (23.6)238 (1.24)“My physician...”

551e (58.6)7505d (39.1)Other sentences

Reading passage

501 (53.2)612 (3.19)“You wish to know...”

aAMR: alternating motion rate.
bSMR: sequential motion rate.
c354 total unique speakers.
dSamples instead of recordings.
e551 total unique speakers.

X-Vector Extraction Using ECAPA-TDNN
We generated speaker embeddings using a deep neural network
to extract fixed-length embedding vectors (x-vectors) from
speech recordings [32,34]. This technique has been shown to
outperform previous embedding techniques such as i-vectors
[37,38] while offering a competitive performance compared to
newer end-to-end deep learning approaches [21,22]. Our

network of choice was the state-of-the-art ECAPA-TDNN
model, which was pretrained on a speaker identification task
using VoxCeleb 1 and 2 [32]. This model extracts a
192-dimensional x-vector for each speech recording. The model
is publicly available through SpeechBrain, an open-source
artificial intelligence speech toolkit [39], and is hosted on
Hugging Face.
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PLDA Back-End Classifier
PLDA classifiers are a standard approach for speaker
identification due to their ability to reliably extract
speaker-specific information from an embedding space using
both within- and between-speaker variance [33,40]. PLDA is a
dimensionality reduction technique that projects data to a
lower-dimensional space where different classes are maximally
separated (ie, maximal between-class covariance). The
advantage of PLDA over the standard linear discriminant
analysis is that it can be generalized to unseen cases [41]. PLDA
can then be used to determine whether 2 data points belong to
the same class by projecting 2 data points to the latent space
and using the distance between them as a measure of similarity.
This works well for speaker identification as speaker
embeddings are typically fed into a classifier in pairs, where
the classifier’s role is to optimally reject or accept the hypothesis
that the 2 recordings are from the same speaker. PLDA typically
uses the log-likelihood ratio (probability of recordings belonging
to the same class vs different classes) to measure similarity,
commonly referred to as PLDA scores. During training of a
PLDA classifier, PLDA scores for each pairwise comparison
in the training set are computed and then used to set a threshold
for determining potential speaker matches [33,40].

Our classifier was built and trained on a set of x-vectors
extracted from either VoxCeleb or Mayo Clinic speech
recordings using ECAPA-TDNN functions from SpeechBrain
[39]. We aimed to maximize performance by giving the model
multiple speech embeddings per speaker during training, each
extracted from recordings under different degradation conditions
(eg, varying background noise and microphone distances), which
were then averaged to create a single speaker embedding [33].

Threshold Calculation for Acceptance or Rejection
During training, an optimal threshold needs to be determined
to classify whether a given PLDA score represents a match,
which can then be applied to new, unseen recordings. Matches
that pass the threshold are then considered accepted matches.
Generally, the equal error rate (EER) is used to select the
threshold [21,22,24,33,34]. The use of the EER assumes that
the cost of a false acceptance (FA) is the same as a false
rejection (FR) such that the optimal threshold is 1, where the
FA rate (FAR) equals the FR rate [22]. While this may be
feasible for smaller data sets, when there are several million
comparisons, the EER often generates many potential matches
per speaker. As such, this can overwhelm the model early on
and make it difficult for an adversary to find reliable matches.
To scale up to large numbers of comparisons, the adversary
must make decisions on how to calibrate the threshold
calculation, such as penalizing FAs more heavily even if some
true acceptances (TAs) are missed. From an adversary’s
perspective, it is less costly to miss TAs if the identified
accepted cases have a high likelihood of being true. In effect,
precision is more important than recall. The detection cost
function (equation 1 [42]) captures this well:

minDCF = CFR×FR × priortarget + CFA × FA × (1 –
priortarget)(1)

We take the cost of an FR (CFR) multiplied by the total number
of FRs and the prior probability of the target and add it to the
cost of an FA (CFA) multiplied by the total number of FAs and
the complement of the prior probability.

Using this function, a threshold can be found by setting optimal
cost and previous terms based on the adversary’s perspective
(ie, avoiding FAs more aggressively) and then finding the FA
and FR values that minimize the detection cost function
(minDCF) [42]. For example, as the prior probability of the
target is lowered (ie, if an adversary expects a small overlap),
the calculation puts more emphasis on avoiding FAs (lower
FAR) as compared to the EER. Increasing the cost of FAs and
decreasing the cost of FRs further prevents FAs.

We used the minDCF with two parameter configurations: (1)
the default configuration for the SpeechBrain implementation
of the minDCF, where FAs and FRs are penalized equally
(CFA=1; CFR=1; prior=0.01) [39]; and (2) a strict configuration
with a higher penalty for FAs (CFA=10; CFR=0.1; prior=0.001).

Due to the large amount of training data in VoxCeleb, it was
not computationally feasible to select a threshold for the entire
set of identified speakers at once. In addition, we wanted to
estimate thresholds that were representative of the population
rather than any one subset of speakers. We used a bootstrap
sampling technique in which we calculated a minDCF threshold
on subsets of training speakers and averaged across runs to
estimate the optimal threshold. For each run, latent
representations from 2 random subsets of 100 speakers were
selected from the training data and fed to the minDCF to
calculate a threshold. If the 2 subsets had no overlapping
speakers, the entire run was discarded as a threshold could not
be calculated. We ran this process between 100 and 500 times
depending on the overall number of speakers used for training
the PLDA. Training with fewer speakers required fewer runs
to converge on an optimal threshold.

Generating Experimental Speaker Sets
To model the attack scenario, we randomly sampled our data
sets to generate the following speaker subsets:

1. Known set: this set represents speakers with identified audio
data from a web source that the adversary has access to.

2. Unknown-only set: this set represents speakers in a shared
data set who do not have identifiable audio on the web. No
unknown-only speakers are present in the known set.

3. Overlap set: this set is a proxy for speakers in a shared data
set who do have identifiable audio somewhere on the web.
Some speakers from the known set are randomly selected
to create this set.

4. Unknown set: this represents the full shared data set,
consisting of both the unknown-only set and the overlap
set.

The number of speakers per set varied based on the experiment.
Furthermore, the number of speech recordings per speaker varied
between the known and unknown sets. We used all available
speech recordings per speaker in the known set but randomly
selected only 1 recording per speaker in the unknown set. For
overlapping speakers, the selected recording for the unknown
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set was withheld from the known set. The limit of 1 sample per
speaker in the unknown set was based on the nature of a
supposed real-world data set where all speech is unlinked and
partially deidentified, meaning that the adversary needs to
separately find potential matches for each recording even if they
come from the same speaker.

Because we randomly subsampled speakers to generate these
sets, there is variation in the speakers selected for each
experiment, which will result in variability in model
performance that is dependent only on the data set. To account
for this, we generated multiple speaker splits per experiment.
The exact number of splits was dependent on the experiment.

Experiments

VoxCeleb Realistic Experiments: Effect of Search Space
Size
We relied on VoxCeleb 1 and 2 to investigate the capability of
an attack as a function of the size of the search space (ie, the
number of comparisons made to find matching speakers). We
reidentified speakers by comparing each speaker in the known
set to each speaker in the unknown set. Thus, the search space
is the product of the sizes of the known and unknown sets. As
such, an increase in either set will increase the number of
comparisons. We considered both cases separately, which
allowed us to consider one scenario that is dependent on the
resources of the adversary (known set size) and another that is
under the control of the sharing organization (unknown set size).

To construct a realistic scenario, we assumed that the known
and unknown sets would have a low degree of speaker overlap.
To justify this assumption, one can consider what would be
involved in constructing a set of known speakers. In the absence
of metadata about the unknown speakers (eg, the ages and
location), there would be no way for an adversary to target a
specific population to build their known set. It is unlikely to be
feasible for an adversary to manually collect and label speech
recordings for a large proportion of the population. Instead, an
adversary would likely need to rely on a programmatic approach
using easily accessible identifiable audio, such as scraping audio
from social media and video- or audio-sharing websites [43].

It is worth noting that this would still be difficult because of
several confounding factors: (1) not all members of the
population use these websites; (2) not all users have publicly
accessible accounts; (3) users with publicly accessible accounts
may not have identifiable information linked to them; (4) some
accounts post audio or video from multiple speakers, including
speakers who also have their own accounts; (5) many users do
not post at all; and (6) the population of users is not
representative of the general US population, let alone the subset
with speech disorders—in terms of the distribution of both age
and geographic area [44]. As such, there is no reason to suspect
that a patient in a shared medical speech data set would have a
high likelihood of existing in an adversary’s set of identified
audio recordings.

We also assumed that the adversary would not know which
unknown speakers, if any, exist in the known speaker set.
Therefore, the adversary must consider all potential matches
rather than only focusing on the N overall best matches, where
N is the known overlap. This would reduce the reliability of any
match because the likelihood of all potential matches being true
is lower than the likelihood of the best N matches being true.

We first trained the speaker identification model with the
number of speakers in the known set increasing from 1000 to
7205 while maintaining a static unknown set size of 163
speakers, with low speaker overlap between sets (n=5, 3.1%
speakers in the overlap set and n=158, 96.9% in the
unknown-only set).

We then trained the model with a fixed known set size of 6000
speakers while increasing the number of speakers in the
unknown set from 150 to 1000 speakers and maintaining a low
overlap of 5 speakers.

Given the low number of overlapping speakers and overall large
set sizes, we generated 50 speaker splits for each set size of
interest (known set: 1000, 4000, and 7205; unknown set: 150,
500, and 1000).

The acceptance threshold for these experiments was set using
the strict minDCF configuration. Experimental parameters are
summarized in Table 2.
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Table 2. Experimental parameters, including number of runs; set sizes; and minimum detection cost function (minDCF) parameters such as the cost
of a false acceptance (CFA), cost of a false rejection (CFR), and prior probability (prior).

minDCF parametersSet size, total speakersRuns, nExperiment

PriorCFRCFAOverlapUnknown onlyUnknownKnown

0.0010.11050VoxCeleb: effect of
search space size
and known-overlap
worst-case scenario

•••• 5158 (varied
known)

163 (varied
known)

1000 to 7205
(varied
known) •• 145 to 995

(varied un-
known)

150 to 1000
(varied un-
known)

• 6000 (varied
unknown)

0.0010.11020VoxCeleb: full-
overlap worst-case
scenario

•••• 163 (varied
known)

0163 (varied
known)

1000 to 7205
(varied
known) •• 150 to 1000

(varied un-
known)

150 to 1000
(varied un-
known)

• 6000 (varied
unknown)

0.011120Mayo Clinic speech
recordings: cross-
task

•••• 55055500

0.011120Mayo Clinic speech
recordings: within
task

•••• 55055500a

aWord repetition: 299 speakers; reading passage: 466 speakers.

VoxCeleb Known-Overlap and Full-Overlap
Experiments: Worst-Case Scenarios
There are two important initial assumptions in our construction
of realistic experiments: (1) the adversary was unaware of the
amount of overlap between known and unknown sets, and (2)
the amount of overlap was low. Thus, we considered how
reidentification risk would be affected if either assumption was
incorrect.

First, we considered a potential worst-case scenario in which
the adversary did know the number of overlap speakers N and,
therefore, was able to limit potential matches to the top N best
matches. As previously mentioned, limiting the number of
matches could theoretically improve model reliability, and
further reducing the number of matches could produce more
noticeable effects. We leveraged our base results from the
realistic experiments and only considered the top N best
matches.

Next, we considered a less realistic worst-case scenario in which
all unknown speakers exist in the known speaker set. From an
adversary’s perspective, a full-overlap scenario would provide
the best chance for them to successfully reidentify speakers
because most FAs occur when the model finds a match for
unknown speakers who are not in the known speaker set.

We assessed this scenario by replicating the realistic experiments
with full overlap between the known and unknown sets. That
is, regardless of the unknown set size, all speakers also exist in
the known set (no unknown-only set). When increasing the
known set size with a fixed unknown set of 163 speakers, the
overlap set consists of all 163 speakers, and when increasing
the unknown set size with a fixed unknown set, the overlap set
is the same as the unknown set size of interest (150, 500, and
1000). In this scenario, we generated only 20 speaker splits for

each set size of interest as the larger overlap set led to less
variance across runs.

As in the realistic experiments, the acceptance threshold was
set using the strict minDCF configuration. Experimental
parameters are summarized in Table 2.

Mayo Clinic Speech Recording Experiments: Effect of
Speech Task
Next, we shifted our focus from the public VoxCeleb data set
to a private data set of Mayo Clinic medical speech recordings
to look at factors specific to a clinical speech data set, such as
whether certain elicited tasks are easier for reidentification and
whether being able to link recordings to the same speaker across
tasks (pooling) increases risk.

We first compared the performance of the speaker identification
model across the various elicited speech tasks in the Mayo Clinic
data set based on the same adversarial attack scenario used with
the VoxCeleb experiments. In this scenario, the cross-task
performance aligns with a real-world case in which the training
data contain connected speech recordings (ie, recordings of
continuous sequences of sounds such as those of spoken
language) but speakers are reidentified using a variety of elicited
speech tasks (Table 1). Each task has a different degree of
similarity to connected speech (left: most; right: least):

Reading passage > sentence repetition > word
repetition > SMR > AMR > vowel prolongation

The reading passage is essentially real-world connected speech
in terms of content and duration, but sentence repetition is closer
to the connected speech seen in most speech data sets [23]. As
such, we selected sentence repetition recordings for speakers
in the known set.

The resulting known set comprised 500 speakers and included
all sentence repetition recordings, excluding any repetitions of
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the physician sentence (“My physician wrote out a
prescription”), which was saved for the unknown set. We then
generated separate unknown sets for each elicited task with 55
speakers (n=5, 9% overlap and n=50, 91% unknown only) who
had both sentence repetition recordings and a recording for the
given reidentification task (eg, “My physician...” sentence and
AMRs).

The known and unknown set sizes were bounded by the number
of speakers with sentence repetition recordings (587 speakers)
as the sentence-sentence configuration required enough speakers
to create a separate known and unknown-only set. We also
considered the sentence-sentence configuration (ie, sentence
repetitions in both the known and unknown sets) as the realistic
baseline.

As a secondary part of this experiment, we pooled all available
recordings from all elicited speech tasks (by averaging their
embeddings) to generate an unknown set in which the adversary
could link recordings from a given speaker (ie, there would be
more speech for each unknown speaker).

In addition to the cross-task performance, we compared the
within-task performance—where the same elicited speech task
is used for both known and unknown speakers—to determine
whether anything about the nature of a given speech task
affected reidentification. For example, the variance across
recordings for the sentence repetition task reflects a combination
of static speaker factors (eg, identity and age), dynamic speaker
factors (prosody, eg, the same speaker may emphasize different
words in a sentence on repeated trials), and content factors (ie,
different words in different sentences). In contrast, a task such
as AMR involves repeating the same syllable as regularly and
rapidly as possible, with most of the variance across speakers
likely resulting from static speaker factors. A priori, considering
all the elicited tasks, one would expect the proportion of variance
across speakers due to dynamic speaker factors to decrease
following the same scale as similarity to natural speech. The
reading passage would have the most variance due to dynamic
speaker factors alone, whereas vowel prolongation would have
the least variance. By removing the confounding variable of
different elicited tasks for known and unknown speakers (ie,
the model is both trained and tested on the same task), we can
ascertain whether the qualities of the speech task itself influence
reidentification.

We used the same set sizes as the cross-task experiments (500
known, 55 unknown, and 5 overlap) but used recordings from
the same elicited speech task in both the known and unknown
sets. This setup required at least 2 recordings per speaker for
each task. Some tasks had <500 unique speakers or not enough
recordings (word repetition and reading passage), so not every
known set had exactly 500 speakers. The word repetition task
had 299 speakers, and the reading passage task had 466
speakers.

To account for the decrease in the amount of data as compared
to the VoxCeleb experiments, we generated only 20 speaker
splits per task with default minDCF parameters. Experimental
parameters are summarized in Table 2.

Statistical Analyses
Given that we were simulating an adversarial attack and not
optimizing a model, we used random splitting to account for
the potential of outlier cases, wherein specific configurations
of speakers in the known and unknown sets had a
higher-than-average risk of reidentification. We first randomly
sampled our larger data set either 20 or 50 times depending on
the experiment to generate speaker splits (known, unknown,
and overlap sets). We also randomly selected a single recording
per speaker in the unknown set to mitigate utterance effects.
Furthermore, we used bootstrap sampling of the known
(training) set to estimate our acceptance threshold by feeding
cohorts of 100 speakers to the minDCF function between 100
and 500 times to converge on an optimal threshold. The exact
number of runs was dependent on the overall number of speakers
in the known set.

Our primary outcome of interest was the average number of
FAs, where the model accepts a match for an unknown speaker
without a true match, compared to TAs over several subsampled
data sets. Using these counts, we also calculated precision.
These metrics informed the reliability of reidentification. Note
that TAs and FAs are functionally equivalent to true and false
positives, respectively. Using the counts, we also calculated the
Pearson correlation coefficient between FAs and set size along
with the FAR to determine whether a linear correlation existed
between the number of FAs and the number of speakers or
comparisons. A 2 tailed t test was performed to determine the
significance of each correlation.

Ethical Considerations
The primary data type for this work was clipped speech
recordings from either VoxCeleb or our Mayo Clinic clinical
speech data set. We could not deidentify the data due to the
nature of our work, and the data sets were not anonymous. The
VoxCeleb data set has no privacy protections or additional
consent processes in place given its public nature—all
recordings come from interviews of celebrities posted on
YouTube [23,35,36]. For the Mayo Clinic clinical speech data
set, we submitted an institutional review board application to
the Mayo Clinic to gain permission to use the data. Our work
was deemed exempt from additional consent requirements and
granted a waiver of HIPAA authorization considering the
secondary nature of the analysis. No compensation was offered
to participants in the original studies. As the clinical data set
may contain private health information, we do not share any
recordings or models trained on the clinical recordings. Only
researchers at our institution with proper permission can access
the clinical data set.

Results

VoxCeleb Realistic Experiments: Effect of Search
Space Size
When training the speaker identification model with increasing
numbers of speakers in the known set while maintaining a static
unknown set size with low speaker overlap between sets, we
found that increasing the number of speakers in the known set
resulted in an increase in the mean number of FAs while TAs
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remained stable, with a linear correlation between FAs and the
number of known speakers (r=0.30; P<.001; t148=3.89; Figure
2A). Increasing the size of the unknown set had a similar yet
more pronounced effect than increasing the known set size, with
a higher linear correlation between FAs and the number of
unknown speakers (r=0.60; P<.001; t148=9.21; Figure 2B).

The difference in effect can be understood based on the
geometry of the search space. While the unknown set remains
substantially smaller than the known set, adding a speaker to
the unknown set will result in a larger increase in the search
space than adding a speaker to the known set. As such, we can
better demonstrate the overall trend in FAs by considering the
results in terms of total comparisons (ie, search space size) rather
than individual set size.

Figure 2. Number of true acceptances (TAs) and false acceptances (FAs) for the speaker recognition model in a realistic scenario using VoxCeleb. (A)
shows the counts when varying the number of known speakers while keeping the number of unknown speakers static, (B) shows the counts when varying
the number of unknown speakers while keeping the number of known speakers static, and (C) shows the overall trend in terms of the number of
comparisons made (ie, the search space size=known × unknown speakers). All plots (A-C) include the Pearson correlation coefficient and corresponding
significance for FAs and number of speakers or comparisons. Each run is plotted as a single circle, with red horizontal lines indicating the mean number
of FAs and green horizontal lines indicating the mean number of TAs. minDCF: minimum detection cost function.

We observed that there was a high positive linear correlation
between FAs and the number of comparisons (r=0.69; P<.001;
t198=13.54; Figure 2C), with the mean FAs increasing from 0.04
to 2.84 while TAs remained stable. The ratio between FA and

TA (FA/TA) rose from 0.02 at 1 × 105 comparisons to 1.41 at

6 × 106 comparisons, with a near 1:1 ratio at the midpoint of 3

× 106 comparisons. There was a corresponding drop in precision
(Figure 3A). It was notable that the FAR remained low and
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relatively stable, averaging at 4.152 × 10−7 (SD 7.255 × 10−7;
Figure 3B), indicating that the demonstrated trend should hold
for the larger numbers of comparisons that we would expect to
see in a real attack.

We further observed that using a stricter threshold for matches
resulted in our model selecting only 1 match per speaker. This
is functionally the same as limiting matches to only the best
potential match for each speaker (rank-1 matches), which is an
option for an adversary to increase reliability without knowledge
of the amount of overlap.

Figure 3. Precision and false acceptance rates (FARs) for the speaker recognition model in a realistic scenario using VoxCeleb. Precision (A) and
FARs (B) are shown as a function of the number of comparisons. For both plots, each run is represented by a circle, and the mean is represented by a
horizontal black line. FA: false acceptance; minDCF: minimum detection cost function; TA: true acceptance.

VoxCeleb Known-Overlap and Full-Overlap
Experiments: Worst-Case Scenarios
When only considering the top N best matches, we found that
there was still a trend of increasing FAs, with a high linear
correlation with the number of comparisons (r=0.70; P<.001;
t198=13.72; Figure 4A). The FA/TA ratio increased from 0.02

at 1 × 105 comparisons to 1.24 at 6 × 106 comparisons and again

had a near 1:1 ratio at 3 × 106 comparisons. These results
indicate that some FAs were seen as better matches than some
TAs, as further supported by the associated drop in precision
(Figure 4B).

When all unknown speakers existed in the known speaker set,
the performance improved significantly, with most matches
being correct (Figure 4C). Even so, there was still a high positive
linear trend for FAs, indicating that, at high overlap, some FAs
were ranked higher than TAs (r=0.67; P<.001; t78=7.98; Figure
4D). The FA/TA ratio exhibited a fairly large increase
considering the number of TAs, increasing from 0.0008 at 1 ×

105 comparisons to 0.008 at 6 × 106 comparisons. This is
surprising given that, for the realistic experiments, all FAs were
associated with matches for nonoverlapping speakers.

JMIR AI 2024 | vol. 3 | e52054 | p.679https://ai.jmir.org/2024/1/e52054
(page number not for citation purposes)

Wiepert et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Results for our speaker recognition model in worst-case scenarios using VoxCeleb. (A) shows the true acceptance (TA) and false acceptance
(FA) counts for a known-overlap scenario (limited to N=5 best matches), whereas (B) shows the corresponding precision as a function of the number
of comparisons (search space size). (C) and (D) show the FA and TA counts for a full-overlap scenario in which all unknown speakers are present in
the known speaker set as a function of the number of comparisons (search space size). (A) and (C) also show the Pearson correlation coefficient and
corresponding significance between FAs and number of comparisons. Each run is plotted as a single circle, with red horizontal lines indicating the mean
number of FAs, green horizontal lines indicating the mean number of TAs, and black horizontal lines indicating the mean precision. minDCF: minimum
detection cost function.

Mayo Clinic Speech Recording Experiments: Effect
of Speech Task
We first compared the performance of the speaker identification
model across the various elicited speech tasks in the Mayo Clinic
data set based on the same adversarial attack scenario used in
the VoxCeleb experiments. We observed that the total number
of acceptances decreased as the unknown speaker tasks became
less similar to the known speaker task, but the proportion of
TAs and FAs also varied. This made it more difficult to
determine the performance through counts alone (Figure 5A).
When considering precision and FA/TA ratio instead, we found

that the baseline (sentence-sentence) had the best performance,
although the average precision was not high (FA/TA=0.54;
precision=66.5%; Figure 5B). The paragraph reading, word
repetition, and SMR tasks had a worse performance than the
baseline but were comparable to each other in terms of both
precision (Figure 5B) and FA/TA ratios (reading passage:
FA/TA=1.09; word repetition: FA/TA=0.72; SMR:
FA/TA=0.85). However, the AMR and vowel prolongation
tasks had extremely low precision and high FA/TA ratios. Vowel
prolongation, in particular, had a precision of 0 (almost no TAs
across runs) but a high number of FAs, resulting in a ratio of
98.5. Pooling resulted in decreased performance compared to
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the baseline and the top-performing tasks in terms of both
precision (approximately 36%) and FA/TA ratio (2.56). This
was likely due to the influence of AMR and vowel prolongation
recordings.

The within-task results did not exhibit the same effect as the
cross-task results. We found that all tasks reidentified the
overlapping speakers (TA=10) but the number of FAs varied
drastically across tasks (Figure 5C). Previously, the baseline

had the best performance, whereas we instead observed that the
SMR and vowel prolongation tasks had the highest precision
(Figure 5D), as well as FA/TA ratios of 0.35 and 0.39,
respectively. In fact, as tasks became more dissimilar from
connected speech and had less variance due to dynamic speaker
factors, they saw a relative increase in performance compared
to the cross-task scenario. Word repetition was the only
exception to this, with lower precision and a greater FA/TA
ratio of 2.02 as compared to the cross-task performance.

Figure 5. Results for our speaker recognition model using the Mayo Clinic clinical speech data set. (A) and (B) show cross-task results, in which
recordings for known speakers are always sentence repetition but the task for unknown speaker recordings varies. The baseline is when sentence
repetitions are in both the known and unknown sets. Pooling is when all recordings for an unknown speaker are linked together across all tasks. (A)
shows the breakdown of counts for this case, whereas (B) is the corresponding precision. (C) and (D) show within-task results, where tasks for known
and unknown speakers are always the same. (C) is the breakdown of counts for this case, whereas (D) is the corresponding precision. Each run is plotted
as a single circle, with red horizontal lines indicating the mean number of false acceptances (FAs), green horizontal lines indicating the mean number
of true acceptances (TAs), and black horizontal lines indicating the mean precision. AMR: alternating motion rate; minDCF: minimum detection cost
function; SMR: sequential motion rate.
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Discussion

Principal Findings
In this study, we investigated the risk of reidentification of
unidentified speech recordings without any other speaker- or
recording-related metadata. To do so, we performed a series of
experiments reflecting a marketer attack by an adversary with
access to identified recordings from a large set of speakers and
the capability to train a speaker identification model, which
would then be used to reidentify unknown speakers in a shared
data set. We systematically considered how changes in the size
of the data sets and the nature of the speech recordings affected
the risk of reidentification. We found that it is feasible to use a
speaker identification design—a deep learning speaker
embedding extractor (x-vectors) coupled with a PLDA back
end—to reidentify speakers in an unknown set of recordings
by matching them to recordings from a set of known speakers.
Given the performance of current state-of-the-art speaker
identification models, this is not surprising. However, these
models have only rarely been applied in an adversarial attack
scenario [24,25] (ie, their potential as an attack tool for an
adversary who aims to reidentify speakers in a shared or publicly
available data set was largely unknown). Furthermore, the
feasibility of such an attack has not been considered and may
have been assumed to be low for speech recordings stripped of
all metadata (sometimes referred to as deidentified or
anonymous in the literature) without considering the
identifiability of the acoustic signal itself [45-48].

Our findings suggest that this is not true. Consistent with a
previous study that found a high reidentification risk for an
unknown speaker with known sets of up to 250 speakers (search
space of ≤250 comparisons) [25], we observed that risk was
indeed high for small search spaces. For example, when
attempting to reidentify 5 overlapping speakers between a small
set of unknown speakers (n=163) and a moderate set of known
speakers (n=1000), our model had nearly perfect precision
(Figure 3A) and identified 2 speakers on average (FA/TA=0.02;
Figure 2A). However, our experiments allowed us to extend
this to more realistic search spaces, such as scenarios in which
an adversary uses a known speaker set of up to 7205 speakers
and an unknown speaker set of up to 1000 speakers (search
space of ≤6 million comparisons). We observed that the risk
dropped sharply as the search space grew. The FAR was

relatively stable at 4.152 × 10–7 (Figure 3B), which translates
to an average increase of 1 FA for every 2.5 million
comparisons. This is a key take-home message from these
experiments—increasing the size of the search space, whether
by increasing the size of the adversary’s set of identified
recordings or of the shared data set, resulted in a corresponding
increase in the number of FAs. Given that the number of
overlapping speakers remained constant, this suggests that the
primary driver of FAs is the size of the nonoverlapping
known-to-unknown comparison space (ie, most FAs arise from
nonoverlapping unknown speakers being falsely matched to
known speakers). In fact, all FAs in the realistic experiments
corresponded to nonoverlapping unknown speakers. Here, it is
worth noting that, in the experiments in which we only
considered the top N matches (where N=number of overlapping

speakers), this trend remained true because some of the FAs
scored higher than TAs (Figure 4). This suggests that for a
sufficiently large search space, even considering only the best
N matches will result in many FAs. We pushed this line of
reasoning to its limit by considering a worst-case scenario of
full overlap in which all unknown speakers had a true match.
Even in this scenario, there were still many FAs, and the
proportion of FAs increased with increasing search space size.
Importantly, this scenario showed that overlapping speakers
can still be falsely matched when the overlap is high.

Our experiments with the Mayo Clinic clinical speech recordings
allowed us to assess the influence of speech task based on both
cross-task and within-task performance. When the model was
trained on sentence repetition (ie, the known data set consisted
of sentence recordings) and then applied to other tasks (ie, the
unknown set consisted of elicited, nonsentence speech), all tasks
performed below the baseline, but performance deteriorated
most drastically for the less connected speech–like tasks such
as AMR and vowel prolongation. These results can be
understood with reference to the default minDCF settings, which
would penalize FAs and FRs equally. The threshold was chosen
using sentence repetition task recordings such that, in most
instances, all overlapping speakers were reidentified for
unknown sets with connected speech tasks (sentence repetition,
paragraph reading, word repetition, and SMRs). The minDCF
threshold for these similar tasks resulted in fewer overall
acceptances (higher FR rate), but as the tasks diverged from
sentence repetition with respect to the degree of connectedness,
they were also less likely to be FAs. This suggests that
identifiable characteristics learned from training on the sentence
repetition task translate well to other connected speech tasks.
It also demonstrates the difficulty of choosing a threshold when
the tasks in the known set are different from those in the
unknown set. Because of the differences within a speaker across
tasks, it becomes hard to balance TAs with the flood of FAs as
the search space increases. In this instance, a slightly stricter
threshold may have been better for the adversary. In contrast,
the non–connected speech tasks (AMRs and vowel prolongation)
had almost no TAs and a high number of FAs, suggesting that
identifiable characteristics from connected speech tasks do not
translate to non–connected speech tasks. This is not unexpected
given that models perform worse when tested on data that are
dissimilar from the training data [49,50]. Following this, we
also found that pooling across tasks decreased performance
from the baseline. Generally, having more data for a speaker is
expected to improve performance, but it is possible that adding
recordings of nonsentence tasks to the unknown set hurt
performance because the identifiable characteristics are different
across tasks and the system is unable to accommodate them. In
other words, any helpful characteristics from the connected
speech tasks were cancelled out by competing characteristics
from the non–connected speech tasks.

In the within-task scenarios, where the known and unknown
sets were made up of the same task, the reidentification power
for overlapping speakers was better than in the cross-task
scenario, but the tasks exhibited vastly different FA rates. In
fact, many tasks that were different from connected speech saw
improved performance. For example, vowel prolongation, which
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is nonconnected and the most perceptually different from
sentence repetition, exhibited the worst cross-task performance
but the second-best within-task performance. This may be
because less connected tasks have fewer interfering dynamic
speaker factors such that they isolate well the acoustic features
that are tied to identity.

Another important finding is that performance for sentence
repetition was much weaker than expected based on the
VoxCeleb experiments with a larger number of comparisons.
We suspect that this may be due to a combination of factors.
First, it may be more difficult to differentiate speakers in an
unknown set of elicited recordings in which every speaker utters
the same sentence. Second, the clinical recordings were all made
by patients referred for a speech examination. Consequently,
the resulting cohort contained mostly speech with abnormalities,
which may impact the PLDA performance. Third, the Mayo
Clinic clinical speech data set is smaller than the VoxCeleb data
set in terms of both the number of speakers and the number of
recordings per speaker, and the recordings are also shorter in
duration. This likely had a negative impact on the training of
the PLDA classification back end. It remains unknown whether
larger clinical data sets or data sets with more recordings per
speaker may yield findings more similar to the VoxCeleb results.

Taken together, our findings suggest that the risk of
reidentification for a set of clinical speech recordings devoid
of any metadata in an attack scenario such as the one we
considered in this study is influenced by (1) the number of
comparisons that an adversary must consider, which is a function
of the size of both the unknown and known data sets; (2) the
similarity between the tasks or recordings in the unknown and
known data sets; and (3) the characteristics of the recordings in
the unknown data set, such as degree of speaker variance and
presence and type of speech disorders. These findings translate
to actionable goals for both an adversary and the sharing
organization.

Mitigating Privacy Risk
While we assumed that the sharing organization had already
reduced risk by stripping recordings of demographic (eg, age
or gender) or recording (eg, date or location) metadata, we
additionally suggest that reidentification risks could be further
reduced by increasing the search space (ie, larger shared data
set size) or decreasing the similarity between shared recordings
and publicly available recordings (eg, sharing vowel
prolongation recordings as long as a publicly available vowel
prolongation recording data set does not exist or sharing a larger
variety of speech disorder recordings instead of those for a single
disorder). Even if the number of overlapping speakers increased
with the size of the shared data set, the results from the
full-overlap scenario indicate that a model could still have
reduced reliability due to an increasing FAR.

In contrast, an adversary can also use this knowledge to enhance
their attacks. From their perspective, any additional information
that can reduce the search space or increase the similarity
between recordings will increase the reliability of speaker
matches. This could involve using demographics such as gender,
be they shared or predicted by a separate model, to rapidly
reduce the number of comparisons. For instance, when the

gender balance is 50:50, comparing unknown male individuals
to known male individuals would reduce the number of
comparisons by 75% (eg, from 6 million to 1.5 million). The
adversary may also seek out publicly available recordings of
speech with abnormalities to refine their model or models or
reduce the search space based on speech disorders. If social
media groups exist where identified users with certain medical
or speech disorders post videos or audio, an adversary could
restrict their known set to these users. Similarly, research
participants and support staff may also influence risk through
disclosure of participation. By disclosing participation in a study
known to share speech recordings, a participant would
effectively reduce the size of the known set to 1, increasing their
individual risk of reidentification. In addition, having a
confirmed match can increase risk overall as the adversary
would have a baseline to determine the reliability of matches
[51]. Although the focus of this investigation was on the change
in relative risk with changes in data set size and speech task, it
is worth considering our findings in the context of other factors
that impact risk in practice. The most obvious factor is the
availability of additional metadata on the speakers or recording.
In this respect, it is worth noting that sufficient demographic
data, even in the absence of speech, are well known to carry a
significant risk of reidentification [19,52]. If any aspect of the
metadata makes a patient population unique (ie, there is only
one person in a given age range), the risk of reidentification
increases [12,14]. Furthermore, the risk is not necessarily the
same for all speakers or groups. For example, individuals with
rare speech disorders, accents, or other qualities may be easier
to match across known and unknown data sets. There may also
be identifiable content in the recordings. During less structured
speech tasks such as recordings of open-ended conversations,
participants may disclose identifiable information about
themselves (eg, participants saying where they live). Removing
these spoken identifiers is an active area of research [25].

However, it is important to acknowledge that simply because
records are vulnerable to reidentification does not mean that
they would be reidentified. Notably, when assessing privacy
concerns, the probability of reidentification during an attack is
conditional on the probability of an attack occurring in the first
place [52]. In most instances in which data are shared, the
receiving organization or individual will not have any incentive
to attempt reidentification. The sharing organization and, in
some cases, a receiving organization may also take steps to
discourage the risk of an attack. These may take the form of
legal (eg, data-sharing agreements) or technical (eg, limited,
monitored access) deterrents to a reidentification attack [53].
In contrast, the risk of an attack may be higher for publicly
available data sets [54], but there may also be a greater risk of
reidentification without a targeted attack. For example, in the
field of facial recognition, some companies have scraped billions
of photos from publicly available websites to create massive
databases with tens of millions of unique faces. These are then
used to train a matching algorithm [43], which an end user could
query using a photo of an unknown face and obtain a ranked
list of matching faces and the source (eg, Facebook). The end
user can visit the source website and instantly gain access to
other data that may increase or decrease their confidence in a
match as well as provide feedback on matches, thereby gradually

JMIR AI 2024 | vol. 3 | e52054 | p.683https://ai.jmir.org/2024/1/e52054
(page number not for citation purposes)

Wiepert et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


increasing the performance of the tool as well as the number of
known faces. If similar databases are built for speech recordings,
they will certainly include publicly available medical speech
recordings. Every query to the model would then represent a
threat to such a public sample being matched to a queried
recording regardless of the intent of the user who queried the
model. Such a scenario is difficult to simulate because of the
continuously improving nature of the algorithm and the fact
that users would incorporate various degrees of nonspeech data.

Refraining from publicly releasing data sets is an obvious
mitigation strategy for some of these threats. However, the risk
of reidentification must always be balanced with the benefit of
data sharing as larger, more representative data sets for the
development and testing of digital tools may benefit patients.
It is critical that policy makers consider this balance in the
context of the rapidly evolving field of artificial intelligence.
Naïve approaches such as the “deidentification
release-and-forget model” are unlikely to provide sufficient
protection [55]. Similarly, informed consent for public release
is problematic because the risk of reidentification will be neither
static nor easily quantifiable over time. This has led to the
development of potential alternative approaches, such as data
trusts, synthetic data, federated learning, and secure multiparty
computation [56-59].

Limitations
It should be recognized that there are several notable limitations
to our investigation. First, while we relied on state-of-the-art
learning architectures, the risk may differ if other computational
approaches are considered [21,22]. Second, we did not consider
multistage adversarial attacks in which one model is used to
predict a demographic, such as sex or age, which is then used
to limit the search space, or a scenario in which an adversary
manually goes through all potential matches to attempt manual
identity verification. However, such approaches would introduce
additional uncertainty for the adversary as they would generate
predictions for an out-of-sample data set of speech with
abnormalities, meaning that accuracy may be lower than
expected and the resulting filtered data set may still require
many comparisons, in which case our results would apply
[60,61]. Third, we did not directly consider the risk of healthy
speech versus speech with abnormalities. Nearly all recordings
in the Mayo Clinic speech data set contain speech with
abnormalities, whereas all VoxCeleb recordings are from healthy
speakers. Ideally, there would be a single data set containing
both. Fourth, it should be noted that, beyond methodological
limitations, our results may not generalize well outside of the
United States as the VoxCeleb data have a strong US bias and
all the Mayo Clinic recordings were captured in the United
States. As such, it will be important to conduct future
experiments that leverage alternative computational
architectures, more complex adversarial attacks, conversational
speech, and data from other geographic regions to assess the

reidentification risk for medical speech data more
comprehensively.

In addition, there is an important implication of the VoxCeleb
experimental design. As we were interested in a range of set
sizes and wanted to complete multiple runs for each size, we
combined the train and validation sets from VoxCeleb 1 and 2
and randomly selected a holdout set. However, the
ECAPA-TDNN model used for extracting embeddings was
pretrained on VoxCeleb, meaning it was exposed to most of the
recordings (ie, all but the validation cases) during the original
training step [32]. The embeddings are almost certainly superior
to what one may have obtained if the embedding model was
retrained for each of our splits. Unfortunately, that is not a
computationally feasible experimental design. Furthermore,
superior embeddings mean we are likely to overestimate risk
and draw more conservative conclusions. Given the
stakes—reidentification of anonymous research patients—we
feel this decision was justified. We also ran a set of experiments
using the VoxCeleb validation set as our unknown set
(Multimedia Appendix 1). This only allowed for a small
unknown set with fixed speakers across runs, so it may be overly
optimistic regarding risk. In our opinion, the true risk lies in
between our main results and the supplementary results.

Conclusions
IIn summary, our findings suggest that while the acoustic signal
alone can be used for reidentification, the practical risk of
reidentification for speech recordings, including elicited
recordings typically captured as part of a medical speech
examination, is low with sufficiently large search spaces. This
risk does vary based on the exact size of the search
space—which is dependent on the number of speakers in the
known and unknown sets—as well as the similarity of the speech
tasks in each set. This provides actionable recommendations to
further increase participant privacy and considerations for policy
regarding the public release of speech recordings. Finally, we
also provide ideas for future studies to extend this work, most
notably the need to assess other model architectures and data
sets as improvements in speaker identification could
substantially increase reidentification risk.

Data Availability
The VoxCeleb 1 and 2 data sets analyzed during this study are
available in the VoxCeleb repository [62]. Our Mayo Clinic
clinical speech recordings data set analyzed during this study
is not publicly available due to the privacy risks related to the
release of clinical speech data and are not available by request.
We used Python (Python Software Foundation) to implement
our code for preprocessing, extracting speaker embeddings,
generating subsampled data sets, and running the probabilistic
linear discriminant analysis. The source code is available on
the internet [63]. The repository also contains detailed
documentation for using the scripts.
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Abstract

Background: Hypertension is the most common reason for postpartum hospital readmission. Better prediction of postpartum
readmission will improve the health care of patients. These models will allow better use of resources and decrease health care
costs.

Objective: This study aimed to evaluate clinical predictors of postpartum readmission for hypertension using a novel machine
learning (ML) model that can effectively predict readmissions and balance treatment costs. We examined whether blood pressure
and other measures during labor, not just postpartum measures, would be important predictors of readmission.

Methods: We conducted a retrospective cohort study from the PeriData website data set from a single midwestern academic
center of all women who delivered from 2009 to 2018. This study consists of 2 data sets; 1 spanning the years 2009-2015 and
the other spanning the years 2016-2018. A total of 47 clinical and demographic variables were collected including blood pressure
measurements during labor and post partum, laboratory values, and medication administration. Hospital readmissions were verified
by patient chart review. In total, 32,645 were considered in the study. For our analysis, we trained several cost-sensitive ML
models to predict the primary outcome of hypertension-related postpartum readmission within 42 days post partum. Models were
evaluated using cross-validation and on independent data sets (models trained on data from 2009 to 2015 were validated on the
data from 2016 to 2018). To assess clinical viability, a cost analysis of the models was performed to see how their recommendations
could affect treatment costs.

Results: Of the 32,645 patients included in the study, 170 were readmitted due to a hypertension-related diagnosis. A cost-sensitive
random forest method was found to be the most effective with a balanced accuracy of 76.61% for predicting readmission. Using
a feature importance and area under the curve analysis, the most important variables for predicting readmission were blood
pressures in labor and 24-48 hours post partum increasing the area under the curve of the model from 0.69 (SD 0.06) to 0.81 (SD
0.06), (P=.05). Cost analysis showed that the resulting model could have reduced associated readmission costs by US $6000
against comparable models with similar F1-score and balanced accuracy. The most effective model was then implemented as a
risk calculator that is publicly available. The code for this calculator and the model is also publicly available at a GitHub repository.

Conclusions: Blood pressure measurements during labor through 48 hours post partum can be combined with other variables
to predict women at risk for postpartum readmission. Using ML techniques in conjunction with these data have the potential to
improve health outcomes and reduce associated costs. The use of the calculator can greatly assist clinicians in providing care to
patients and improve medical decision-making.

(JMIR AI 2024;3:e48588)   doi:10.2196/48588
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Introduction

Hypertensive disorders of pregnancy (HDP) are common and
estimated to occur in 10% of pregnancies in the United States.
In addition to complicating the management of pre- and
postdelivery periods, hypertension is the leading cause of
postpartum readmission, accounting for 9.3%-27% of
postpartum readmissions [1-3]. Postpartum readmission is
costly, both in health care dollars and in quality-of-life measures
for mothers and new families. In addition, HDP increases
maternal morbidity and mortality and is associated with an
increased risk of cardiovascular disease later in life [4-8].

A study published in the Journal of Hypertension in 2018
estimated that preventable postpartum readmission in women
with hypertension resulted in 20,240 excess inpatient hospital
days and US $36 million excess medical costs [9]. Rates and
reasons for readmission have been under recent scrutiny and
offer an area to improve health care delivery and preventative
care. All-cause hospital readmission rates are on the rise with
risk factors for all-cause postpartum readmission including
public insurance, race, presence of comorbid conditions
including hypertension and diabetes, and cesarean section [3].

Approximately 30% of women who experience
hypertension-related postpartum readmissions do not have
antecedent diagnoses of hypertension, thus making it imperative
to include normotensive patients without an HDP before
postpartum discharge in evaluating for postpartum readmission
[10]. As such, our objective was to identify key clinical
variables, in addition to demographic characteristics, implicated
in postpartum readmission of all birthing persons using a
machine learning (ML) model. This prediction task is
challenging because while costs related to readmission are high,
readmission rates are low resulting in highly imbalanced data
sets that are challenging to use in training ML models. For
instance, while existing models have strong overall accuracy
performance (out of sample, an area under the curve of 0.81)
[11], they do so by trading off high specificity for low sensitivity
which could result in many readmission cases going undetected
and not properly treated. We hypothesized that blood pressure
metrics during labor, not just post partum, would impact
readmission rates. Similarly, we hypothesized that
antihypertensive medication administration and high
preeclampsia laboratory values during initial readmission would
increase the readmission rate.

Methods

Ethical Considerations
We obtained institutional review board approval (#2016-006).
Individual patient consent was not required due to the
retrospective study design. The data set was deidentified before
study analysis. No compensation was provided to human

participants as this was a retrospective study that involved
development of a retrospective data set using electronic medical
records (EMRs).

Chart Review and Inclusion
We initially performed a retrospective chart review of all
patients who delivered at a single, midwestern academic center
hospital between 2009 and 2015. Inclusion criteria for this study
included all women who delivered a baby in this time frame.
We wanted to ensure that we captured all hypertension-related
readmissions within 42 days post partum regardless of a
diagnosis of hypertension before hospital discharge from the
delivery of their infant. The primary outcome was
hypertension-related readmission; therefore, all readmissions
included in this data set were specific to hypertension only. To
confirm our previous results and create a larger sample size, we
extended the study population to include births from 2016 to
2018 and used a similar process to manage the data of all
patients who delivered at the same birthing hospital. We used
the hospital’s PeriData website [12] data set, which is used to
contribute birth-related outcomes to the state-wide database for
clinical perinatal information and additional hospital-run reports
to obtain additional data available from the EMR. We collected
demographic as well as clinical data, including blood pressure
measurements during labor and post partum, laboratory data,
and medication administration at the patient level to be our
predictor variables. Hospital readmissions and our prediction
response variable were verified by patient chart review. Given
that the data came from multiple sources and had missing
observations, the raw data set could not be used directly for
analysis.

Analytics Plan

Data Processing and Feature Engineering
We processed the raw data set and then merged the processed
data including patient demographics, blood pressure
measurements, medication administration, and laboratory
information from different sources into 1 pandas data frame
[13]. Race and ethnicity were entered in the medical chart based
on the patient’s self-identity at the time of admission to the
health care system. Laboratory results were included in this
analysis because they are involved in the classification and
severity of HDP. Laboratory results included liver function
tests, hemoglobin and platelet counts, creatinine, and urine
protein. We analyzed blood pressure records with timestamps
and identified the highest systolic blood pressure and associated
diastolic blood pressure during 3 time periods, that are, labor,
0-24 hours post partum, and 24-48 hours post partum, because
we expected blood pressure during labor and post partum to be
important features for predicting hypertensive readmissions.
Using the medication administration data from the EMR, we
constructed the following binary (yes or no) attributes for the
following medication name and route administered: (1) oral
labetalol, (2) intravenous labetalol, (3) oral nifedipine-immediate
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release, (4) oral nifedipine-extended release, (5) intravenous
hydralazine, and (6) oral ibuprofen. To obtain these features,
we started with a full medication data set for each patient’s
medical registration number that included the medication name,
time administered, dosage, and route of administration. This
meant that there were multiple entries per medical registration
number if a particular patient was given that medication more
than once. The key challenge of using the medication data was
that there were significant missing data; moreover, not all
patients received all medications, and the individual medication
schedules could be infrequent. For this reason, we considered
only the binary attributes instead of the full medication schedule
to ensure that the data points were dense enough for the analysis.

Predictive Model Training and Validation
We used a cost-sensitive random forest method to predict which
patient would experience a hypertension-related postpartum
readmission [14]. Since the data set was imbalanced (only 170
readmissions out of 32,645 participants), the use of class weights
that penalize false negatives significantly higher than false
positives was necessary to avoid ML models that predict every
sample as the negative class. We considered other candidate
classifiers namely logistic regression with L1 or L2
regularization, support vector machines (SVM) with polynomial,
radial basis function or sigmoid kernel, and a standard decision
tree approach for the prediction task. To measure the predictive
performance of each model, we considered a combination of
different metrics. In the case of imbalanced data, reporting high
accuracy may be inappropriate since a highly accurate model
could simply ignore the rare class and still achieve high
accuracy. Therefore, we considered 2 complementary scores
for assessing our model namely balanced accuracy and the
F1-score [15]. The balanced accuracy can be thought of as
balancing the frequency of true positives and true negatives.
When calculating accuracy, it can be calculated by averaging
the true negative rate (specificity) and the true positive rate
(sensitivity) of the model. In addition to prediction accuracy,
since our setting has a low frequency of positive cases, we
needed to ensure our selected model had high precision
(alternatively low false alarm rate). For that reason, we also
considered the F1-score, which measures the balance between
the precision and the true positive rate. We tuned the
hyperparameters of each model using cross-validation. For the
outer loop, we iterated every hyperparameter combination. Then
we performed stratified 5-fold cross-validation in the inner loop
and optimized the hyperparameters by evaluating the average
balanced accuracy. Each model was trained using its respective
classifier implementation from scikit-learn [16].

We trained models on the 2009-2015 data and 2016-2018 data
individually and validated them using the 5-fold cross-validation

pipeline. The purpose of this was to see if different factors
impacted readmission rates and decisions between the 2 time
periods. For added validation, we computed the performance
of models trained on the 2009-2015 data set using the 2016-2018
data to evaluate our pipeline. The final model deployed in
practice was tuned using the combined data set and 5-fold
cross-validation. We performed a feature importance analysis
on the best models chosen by cross-validation for each data set.

Cost Analysis and Estimating Clinical Impact
To estimate the clinical impact of predictions, we completed 2
different forms of cost analysis. For each candidate model
considered, we used the above cross-validation procedure to
compute their estimated implementation costs.

We estimated the value of a false negative (an unplanned or
unpredicted readmission) to be US $20,439 and the value of a
false positive (the price of labetalol for 6 weeks for a patient
who ultimately did not need it) to be US $36. These costs were
based on estimates derived from our previous research [17]. In
addition, for the cost-sensitive random forest model (which we
ultimately determined was the most effective model), we
performed an additional analysis. For this analysis, we took the
model’s score for how likely a patient was to be classified as
needing readmission and compared it with a predictive threshold.
If the model score was larger than the threshold, the model
would predict that the patient would be readmitted. When the
threshold is <0.5, more patients are predicted to be readmitted
and if the threshold is >0.5, more patients are predicted to not
be readmitted. We used leave-one-out cross-validation to
compute the overall medical costs and balanced accuracy for
different thresholds between 0 and 1. The goal of this analysis
was to see how model scores should be interpreted in practice
by decision makers so that overall medical costs are minimized.

Results

Data Overview
From January 2009 to December 2018, a total of 39,133 women
delivered at our hospital; however, only 32,645 had complete
medical records available for analysis. Of these, 170 women
were readmitted for a hypertension-related diagnosis. There
was a statistically significant difference between the readmitted
group and the not readmitted group in terms of maternal age,
gestational age at delivery, race, BMI, mode of delivery, and
hypertension diagnosis. The readmitted group was more likely
to be older, having earlier gestational age at delivery, Black
race, higher BMI, cesarean delivery, and having a diagnosis of
chronic or pregnancy-induced hypertension (Table 1). The rate
of hypertension diagnosis in our sample was 9%. The rate of
readmission was 0.5%.
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Table 1. Patient demographics and comparisons between the readmitted group and the not readmitted group.

P valueNot readmitted (n=32,475)Readmitted (n=170)All patients (N=32,645)Characteristics

<.00130.5 (5.3)32.9 (5.7)30.5 (5.3)Maternal age, mean (SD)

.29Parity, n (%)

10,725 (33)61 (35.9)10,786 (33)Nulliparous

17,851 (55)95 (55.9)17,946 (55)Multiparous

3899 (12)14 (8.2)3913 (12)Unknown

<.00138.9 (2.4)37.7 (2.5)38.9 (2.4)Gestational age at delivery in weeks, mean
(SD)

<.001Race, n (%)

26,058 (80.2)130 (76.5)26,188 (80.2)White

1203 (3.7)18 (10.6)1221 (3.7)Black

2520 (7.8)12 (7.1)2532 (7.8)Asian Indian

852 (2.6)3 (1.8)855 (2.6)Asian, other

456 (1.4)1 (0.6)457 (1.4)American Indian or Native

67 (0.2)0 (0)67 (0.2)Native Hawaiian

1319 (4.1)6 (3.5)1325 (4.1)Unknown or other

.05Hispanic, n (%)

2929 (9)8 (4.7)2937 (9)Yes

29,546 (91)162 (95.3)29,708 (91)No

.00126.5 (8.9)28.7 (8.6)26.5 (8.6)BMIa, mean (SD)

<.001Mode of delivery, n (%)

20,141 (62)76 (44.7)20,217 (61.9)Vaginal

1687 (5.2)8 (4.7)1695 (5.2)Vaginal vacuum

579 (1.8)3 (1.8)582 (1.8)Vaginal forceps

10,068 (31)83 (48.8)10,151 (31.1)Cesarean section

<.0012856 (8.8)96 (56.5)2952 (9)Hypertension diagnosis, n (%)

Chronic hypertension

283 (0.9)16 (9.4)299 (1)Without preeclampsia

269 (0.8)15 (8.8)284 (0.9)With preeclampsia

780 (2.4)13 (7.6)793 (2.4)Gestational hypertension

Preeclampsia

556 (1.7)26 (15.3)582 (1.8)Mild

810 (2.5)18 (10.6)828 (2.5)Severe

158 (0.5)8 (4.7)166 (0.5)Unspecified

aBMI: weight in kilograms divided by the square of height in meters.

Predictive Model Results
During our initial analysis of the data from 2009 to 2015, we
evaluated 47 clinical and demographic variables to assess their
importance in predicting postpartum readmission (Figure 1).
The variables most important for predicting readmission
included blood pressure parameters during labor and through
the postpartum period as well as factors such as prepregnancy
BMI, maternal age, and gestational age at delivery. Variables
that had less predictive value included an HDP, administration

of antihypertensive medication, and mode of delivery. To
increase the predictive accuracy of the model, many of these
variables were excluded from the next analysis. Even with fewer
variables, again the diagnosis of HDP and mode of delivery
were of least importance and blood pressure data during labor
and post partum were most important. Additional details on the
model feature importance and feature correlations can be found
in the Multimedia Appendix 1 [18]. Through cross-validation
analysis, we found that the best model in terms of balanced
accuracy and F1-score was the random forest model. We
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performed an additional validation by using the best-tuned
models from the 2009 to 2015 data set on the 2016 to 2018 data
sets; the results are shown in Table 2. Each model was trained
only on the 2009-2015 data and was used to predict readmission
for patients in the 2016-2018 data. As shown in Table 2, the

random forest model achieves the best-balanced accuracy and
F1-scores among all candidate models. Please refer to the
Multimedia Appendix 1 [18] for the full set of cross-validation
parameters for each model.

Figure 1. Feature importance plot for hypertension-related postpartum readmission, 2009-2015. APGAR: appearance, pulse, grimace response, activity,
respiration; DBP: diastolic blood pressure; NICU: neonatal intensive care unit; SBP: systolic blood pressure.

JMIR AI 2024 | vol. 3 | e48588 | p.693https://ai.jmir.org/2024/1/e48588
(page number not for citation purposes)

Tao et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Predictive performance of models trained using the 2009-2015 data set on the 2016 to 2018 data sets.

Cost (US $)Balanced accuracy, %F1-scoreNPVb, %Precision or PPVa, %Sensitivity, %Specificity, %Model type

426,24073.330.02799.821.3875.8170.86Random forest

450,82870.370.02399.81.1575.8164.94Decision tree

316,51271.770.02099.91.0390.3253.21SVMc

360,86472.990.02399.861.1783.8762.12Logistic regression L1

356,83273.480.02499.861.2183.8763.09Logistic regression L2

aPPV: positive predictive value.
bNPV: negative predictive value.
cSVM: support vector machines.

Feature Importance Analysis
The additional 11,608 participants from deliveries between 2016
and 2018 were then added to the data set, and medication
administration data and laboratory data were included in the
next analysis. The final data set included 32,645 patients. Out
of 33,482 total patients, 837 were excluded from the analysis
because of incomplete information regarding key features. We
ranked the features by their predictive importance and selected
the final set of features to be (1) BMI; (2) gestational age at
delivery; (3) maternal age; (4) highest systolic blood pressure
during 3 time periods, that were labor, 0-24 hours post partum,
and 24-48 hours post partum; and (5) binary medication features.
The laboratory features were discarded because of their low
predictive feature importance. The most important clinical
variable in predicting readmission was systolic blood pressure

between 24 and 48 hours post partum, and the second most
important was systolic blood pressure during labor (Figure 2).
Other factors that continued to be of importance in predicting
readmission included gestational age at delivery, maternal age,
and prepregnancy BMI. We computed the correlation between
our proposed features (Figure 3). The receiver operating
characteristic (ROC) curves demonstrate that our model is able
to distinguish between a true positive (meaning predicting a
readmission) and a false positive (meaning incorrectly predicting
a readmission). To show the significance of blood pressure
features in readmission prediction, we did a ROC curve
comparison using a 10-fold cross-validation with and without
blood pressure features and calculated the mean ROC and
associated SD, respectively. We can see a significant decline
in the classification performance without blood pressure features
(Figure 4).

Figure 2. Validated feature importance plot for hypertension-related postpartum readmission, 2009-2018 (blood pressure values were the highest
recorded values during the specified time frames).
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Figure 3. Correlation matrix between features on the combined data from 2009 to 2018. IV: intravenous; PO: orally.

Figure 4. Receiver operating curve comparisons with and without blood pressure features including highest systolic blood pressure and associated
diastolic blood pressure during 3 time periods—labor, between 0-24 hours postpartum, and between 24-48 hours postpartum. AUC: area under the
curve.

Cost Analysis and Final Model Tuning
To tune and validate the final model deployed in a calculator,
we also evaluated the model by measuring the estimated health
care costs associated with the predictions. As previously
mentioned, the value of a false negative was estimated to be
US $20,439, and the value of a false positive to be US $36. The
cost ratio was then created by dividing those 2 numbers and
came out at 565 [17]. Lowering or raising this cost ratio places
more weight on different factors; for example, the side effects
associated with taking labetalol versus the time away from
family or a job during a readmission. With this information, the
estimated total cost for each model can be calculated by using
the numbers of false negatives and false positives in the
validation sets to give a sense for the medical impact of model
implementation. However, there are a lot more factors that need

to be considered if we want the metric to be as generalizable as
the balanced accuracy and the F1-score. For this reason, we did
not consider estimated cost as the primary metric for model
selection. In Table 3, we can see that of the models considered,
the random forest model with class weight 1:200 had the highest
balanced accuracy. Compared with the best logistic regression
models and SVM, random forest with class weight 1:200
performs slightly better in terms of both balanced accuracy and
F1-score. However, random forest model with class weight of
1:500 can provide better precision and F1-score. Combining the
2 metrics, we decided to implement the random forest model
with class weight 1:500. Note that for all models the F1-score
is relatively low, this is mainly due to the large imbalance in
the data set. Since readmissions are fairly rare, to ensure that
we avoid false negatives, we must reduce the precision of the
model leading to the reduced score.
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Table 3. Prediction model performance on joint data with cross-validation. For completeness, all models are included.

Cost (US $)
Balanced accuracy,
%F1-scoreNPVb, %

Precision or

PPVa, %Sensitivity, %Specificity, %
Candidate machine
learning model

Random forest model weights

659,01652.35—99.5—c4.71001

203,659.277.75d0.034699.851.7778.277.2200

220,28476.50.033299.831.775.977.1300

227,836.876.610.0355d99.831.8274.179.1500

243,777.675.510.034599.811.7771.779.21000

Decision tree model weights

623,973.654.66—99.53—1099.31

227,908.874.87d0.0296d99.821.5175.973.9200

249,69673.660.029499.811.572.475300

208,08071.620.021599.851.0983.559.7500

252,446.471.350.024099.81.2274.168.61000

Logistic regression (L2) model weights

691,56050—99.48—01001

233,596.876.530.0366d99.821.8872.980.1200

180,151.277.6d0.029699.881.5183.571.6300

162,964.874.360.022199.911.1290.658.1500

191,757.665.330.015299.910.7793.537.11000

Logistic regression (L1) model weights

691,56050—99.48—01001

233,625.676.520.036699.821.8872.980.1200

180,151.277.59d0.029699.881.5183.571.6300

162,964.874.360.022199.911.1290.658.1500

208,180.866.990.016699.870.8488.245.71000

SVMe

643,384.853.39—99.51—799.71

236,800.875.840.0343d99.821.7672.978.7200

177,393.677.61d0.029499.881.584.171.1300

174,45674.210.022599.891.1488.260.2500

177,429.668.960.017299.920.8792.9501000

aPPV: positive predictive value.
bNPV: negative predictive value.
cNot available.
dBest model with respect to the specific metric.
eSVM: support vector machines.

Compared with the best logistic regression and SVM models,
the random forest model with class weight 1:200 performs
slightly better in terms of both balanced accuracy and F1-score.
However, the random forest model with class weight 1:500 has
a better precision and F1-score. Combining the 2 metrics, we
decided to pick the random forest model with class weight 1:500

for final deployment. The overall hyperparameters picked for
this model were a maximum tree depth of 6 and 100 total
estimators.

With this model in mind, we performed a more in-depth cost
analysis by varying the prediction threshold for the random
forest model and examining how these impact the expected
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medical costs and balanced accuracy. In Figures 5 and 6, we
show the results of the analysis for expected costs and balanced
accuracy, respectively. All values for this analysis were
computed using leave-one-out cross-validation. As expected,

because the model was primarily chosen based on balanced
accuracy, this measure is maximized at a threshold of 0.5. On
the other hand, overall costs associated with model predictions
are maximized at a threshold of 0.3.

Figure 5. Plot showing a relationship between predictive threshold for the model and expected medical costs associated with treatment based on model
prediction. The y-axis is in thousands of US $ and the x-axis represents the threshold of prediction. All values were computed using leave-one-out
cross-validation and estimated costs from Niu et al [24].

Figure 6. Plot showing a relationship between predictive threshold for the model and balanced accuracy associated with treatment based on model
prediction. The y-axis is balanced accuracy and the x-axis represents the threshold of prediction. All values were computed using leave-one-out
cross-validation and estimated costs from the other cost analysis.

Risk Calculator
We operationalized our model by incorporating it into a risk
calculator that allows clinicians to compute how likely patients
are to be readmitted for hypertension-related factors. Figure 7
shows a screenshot of our calculator; clinicians are able to enter
9 numerical features in text fields and click 6 binary features
using a check box. The model for the calculator is deployed

using Python and Scikit-Learn [16] and is hosted on a public
website. The full code of the calculator model is publicly
available at the GitHub repository [19]. Based on the results
from our previous analysis, in practice clinicians using this tool
may want to consider any likelihood above 30% as important
to consider when making treatment decisions to minimize
readmission risk and related medical costs.
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Figure 7. Screenshot of calculator website.

Discussion

Principal Results
Our research indicates the importance of intrapartum and
postpartum blood pressure measurements in predicting
readmission. This is clinically important, as it suggests blood
pressure metrics before birth may be more important in guiding
postpartum hypertension treatment than previously
acknowledged. Current management of hypertension in
pregnancy is based on expert opinion and has recommended
initiation of antihypertensive medication for postpartum systolic
blood pressure greater than 150 mm Hg or diastolic blood
pressure greater than 100 mm Hg [4]. A recent study published
in AJOG MFM (American Journal of Obstetrics & Gynecology
Maternal-Fetal Medicine) suggests that lowering this threshold
to 140 mm Hg systolic or 90 mm Hg diastolic can increase
sensitivity in predicting postpartum readmission [10].
Regardless, given that systemic vascular resistance remains at
the pregnancy-associated lower value for about 2 days and then
subsequently increases to normal prepregnancy values by
postpartum day 3 to day 4, many women may be discharged
before the postpartum equilibration of blood pressure on
postpartum day 3 to day 4 and thus may be undertreated [20-23].
Using peak blood pressure values obtained during labor to aid
in decision-making may improve triaging and treatment of
hypertension after delivery, thus decreasing the risk of
postpartum readmission. Our research additionally indicates
that blood pressure metrics themselves are more important in
predicting readmission than more typically used patient
demographics such as gestational age at delivery, maternal age,
BMI, laboratory data, or the administration of oral or intravenous
antihypertensive medication before discharge [11]. Perhaps the
awareness of more severe diseases allows for more aggressive
treatment, management, and follow-up after the initial hospital
stay, thus decreasing readmission rates in this higher-risk group.

Comparison With Previous Work
Research evaluating postpartum readmission has used
descriptive statistics to describe demographic variables

implicated in readmission. A nested case-control study published
in the Journal of Perinatology in 2016 demonstrated no
increased risk of readmission by mode of delivery, severity of
preeclampsia, fluid balance, use of magnesium sulfate, or lab
abnormalities but did find a decreased risk of readmission for
women discharged home on antihypertensive medication when
controlled for age, race, and presence of chronic hypertension
[24]. However, this study only included women with
hypertension during their initial labor and delivery admission.
Given that 30% of women who experience hypertension-related
postpartum readmission do not have antecedent diagnoses of
hypertension, we furthered the previously published work by
Hirshberg et al [24] and included women without known
prepregnancy or pregnancy-induced hypertension in evaluating
for postpartum readmission in this study. Recently, an ML model
was published that evaluated factors predictive of
hypertension-related postpartum readmission [11]. Hoffman et
al [11] evaluated 31 features in their model, similarly finding
that systolic blood pressure (specifically the moving average,
or trend of the systolic blood pressure) was the most important
predictor of readmission. Our model identified biometric,
demographic, and obstetric variables easily identified in any
patient’s medical record. In addition, we investigated the use
of specific antihypertensive medication, rather than using a drug
score that does not indicate which specific agents were used.
We used a cost-sensitive random forest method, allowing us to
weigh the importance of particular observations and thus
penalize false negatives significantly higher than false positives.

Using our data and findings from this analysis, we created a
clinical risk calculator [25]

that predicts the likelihood of readmission based upon the key
clinical variables found to be most predictive of
hypertension-related postpartum readmission. Similar risk-based
calculators have previously been created and validated, including
the vaginal birth after cesarean calculator, commonly used
during the antepartum period to guide counseling and
management of women with a previous cesarean section, and
more recently a calculator to estimate the risk of cesarean section
after an induction of labor with an unfavorable cervix [26,27].
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Our calculator applies our predictive model to any given patient
to predict the likelihood of readmission. While we do not define
when a patient should or should not be treated based on the
likelihood of readmission, we hope that better quantifying the
likelihood of readmission will allow for an improved discussion
between health care providers and their patients. However, based
on our cost analysis, it seems that if the calculator reports a
likelihood of 30% or higher, clinicians may want to seriously
consider treatment options to reduce costs related to readmission.
Management options for women at higher risk of readmission
include earlier initiation of antihypertensive medication or closer
outpatient blood pressure surveillance with daily remote patient
monitoring or self-monitoring. These interventions would
hopefully lead to decreased health care costs by transitioning
to outpatient rather than inpatient care models. We recognize
that a balanced accuracy of 76.61% allows for error in our
model, thus health care providers must include this in their
counseling to optimize shared decision-making. Also, the 1.82%
precision that allows a number of false alarms should be noted.
However, since the cost of misidentifying a readmission is quite
high, the rate of false alarms might be necessary to provide
adequate care in the absence of other treatment options such as
home monitoring.

Strengths and Limitations
Strengths of our research include the development of a predictive
model, different from the previously used descriptive models.
In addition, we had a large data set comprised from several
sources allowing for better validation and model development.
One limitation of our research is that the proposed predictive
model is a random forest method, which is difficult to interpret.
Unlike logistic regression or a single decision tree, it is difficult
to extract exact thresholds for particular clinical measurements
to determine how they will impact the output of the random
forest. The importance plot of the random forest can be used to
find which features are most important for the model to make
a prediction, but it cannot be used to determine particular

prediction thresholds. This is of particular importance as these
thresholds will be key in establishing new treatment protocols.
In order to retrieve such thresholds, additional research needs
to be done in extracting an explainer model from our random
forest. Additional limitations include the use of ICD-9-CM
(International Classification of Diseases, Ninth Revision,
Clinical Modification) and ICD-10 (International Statistical
Classification of Diseases, Tenth Revision) codes for diagnosis
of preexisting hypertension and HDP, which may have led to
errors in coding and underreporting. Our rate of hypertension
was 9%, which aligns with national data, but is lower than that
previously reported in Wisconsin (estimated at 22%). Finally,
our readmission rate was low at <1%. Given the large catchment
area of the institution used in our research, it is possible that
women who delivered at our hospital presented to their local
emergency department or provider with postpartum hypertension
and were thus not included in our data as a readmit. This study
is additionally limited by generalizability. Our patients came
from a single, relatively homogenous, midwestern academic
institution. In order to apply these findings more broadly, our
predictive model should be applied to a more diverse population.

Conclusions
Our research shows that blood pressure metrics during labor
and post partum, in addition to obstetric and demographic
variables, are critical in creating a predictive model for
postpartum readmission. Predictive models like ours can
improve postpartum management, allowing practitioners to
characterize women as low-risk and high-risk for readmission
and better individualize treatment. If we can better predict
readmission, we can better prevent readmission. By creating a
clinical calculator to help guide postpartum hypertension
treatment, our goal is to decrease adverse maternal outcomes
and prevent costly postpartum readmission. Future research will
involve validating this model and finding specific threshold
values at which treatment is to be initiated.
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Abstract

Background: Leveraging free smartphone apps can help expand the availability and use of evidence-based smoking cessation
interventions. However, there is a need for additional research investigating how the use of different features within such apps
impacts their effectiveness.

Objective: We used observational data collected from an experiment of a publicly available smoking cessation app to develop
supervised machine learning (SML) algorithms intended to distinguish the app features that promote successful smoking cessation.
We then assessed the extent to which patterns of app feature use accounted for variance in cessation that could not be explained
by other known predictors of cessation (eg, tobacco use behaviors).

Methods: Data came from an experiment (ClinicalTrials.gov NCT04623736) testing the impacts of incentivizing ecological
momentary assessments within the National Cancer Institute’s quitSTART app. Participants’ (N=133) app activity, including
every action they took within the app and its corresponding time stamp, was recorded. Demographic and baseline tobacco use
characteristics were measured at the start of the experiment, and short-term smoking cessation (7-day point prevalence abstinence)
was measured at 4 weeks after baseline. Logistic regression SML modeling was used to estimate participants’ probability of
cessation from 28 variables reflecting participants’ use of different app features, assigned experimental conditions, and phone
type (iPhone [Apple Inc] or Android [Google]). The SML model was first fit in a training set (n=100) and then its accuracy was
assessed in a held-aside test set (n=33). Within the test set, a likelihood ratio test (n=30) assessed whether adding individuals’
SML-predicted probabilities of cessation to a logistic regression model that included demographic and tobacco use (eg, polyuse)
variables explained additional variance in 4-week cessation.

Results: The SML model’s sensitivity (0.67) and specificity (0.67) in the held-aside test set indicated that individuals’ patterns
of using different app features predicted cessation with reasonable accuracy. The likelihood ratio test showed that the logistic
regression, which included the SML model–predicted probabilities, was statistically equivalent to the model that only included
the demographic and tobacco use variables (P=.16).

Conclusions: Harnessing user data through SML could help determine the features of smoking cessation apps that are most
useful. This methodological approach could be applied in future research focusing on smoking cessation app features to inform
the development and improvement of smoking cessation apps.

Trial Registration: ClinicalTrials.gov NCT04623736; https://clinicaltrials.gov/study/NCT04623736

(JMIR AI 2024;3:e51756)   doi:10.2196/51756
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Introduction

Cigarette smoking remains a leading cause of preventable death
in the United States [1]. Evidence-based smoking cessation
interventions, though proven to be valuable in helping people
quit, are underused [2]. Smartphone apps have the potential to
expand the reach and increase the use of evidence-based
smoking cessation interventions [1,3]. Smartphone ownership
is high among every demographic group in the United States
[4], and an array of smoking cessation apps, including many
free options [5], are available in smartphone app stores.
Evidence suggests that smoking cessation apps are widely used,
with millions of downloads per year [6,7].

Research supporting the use of apps for smoking cessation is
still emerging, and many publicly available apps have not been
rigorously tested [8]. However, results from randomized
controlled trials (RCTs) suggest that apps can be effective in
helping people quit smoking [9-11]. Studies have also
demonstrated that both higher user engagement in smoking
cessation apps [11,12] and longer duration and greater frequency
of app use [6] are related to smoking cessation.

The many capabilities, features, and functionalities that can be
incorporated into smoking cessation apps have the potential to
increase their effectiveness. Apps can include interactive and
multimedia content, and offer tailored features to meet the needs
and preferences of different types of users [13]. Several reviews
have cataloged the most common types of features in smoking
cessation apps and evaluated whether those features align with
behavioral theories or smoking cessation clinical guidelines
[5,14-17]. Some studies have also investigated whether and
how users respond to and use particular app features. Through
their content analysis of smoking cessation app reviews and
ratings, Bendotti et al [18] found that users liked app features
that allowed them to set goals, track their progress, understand
and manage their cigarette cravings, and interact with others
within the app. Hoeppner et al [13] found that apps using
tailored communications with users were more likely to have
received more than 10,000 downloads compared to apps that
did not use tailored communications. In a recent study focused
on the National Cancer Institute’s quitSTART app, the app used
in this study, Budenz et al [19] found that a substantial
proportion of users accessed app-integrated, mood-related
support.

Few studies have examined the impacts of using particular app
features on smoking cessation outcomes. Rajani et al [20] found
that increased frequency of use of their apps’ gamification
features (eg, earning badges and unlocking levels) was
associated with increases in perceived self-efficacy and
motivation to quit smoking. Heffner et al [21] looked at features
within a smoking cessation app that was both popular (ie, among
the 10 most-used features in the app) and significantly associated
with successful quitting and identified 2 app features that met
both criteria—viewing one’s quit plan and tracking one’s

practice of letting smoking urges pass. In their study focused
on a smoking cessation app that emphasized positive psychology
content, Hoeppner et al [22] found that greater engagement with
the app’s happiness-related features was predictive of cessation.

More research is needed to understand which smoking cessation
app features are most valuable in helping users quit smoking.
Fortunately, the apps are designed to efficiently collect user
data that can be used to answer this question. App developers
can record users’ activity within apps, capturing information
such as how many times and when an individual took an action
within the app and how quickly they responded to an app
notification. However, raw app user data can be large and
unwieldy, particularly for apps that offer many features and
garner frequent engagement from users. Machine learning
methods expand our ability to analyze and glean insights from
app user data. The use of machine learning methods to analyze
user data from smoking cessation apps has the potential to
optimize the effectiveness of such apps [23,24].

In this study, we leverage supervised machine learning (SML)
methods to conduct a secondary analysis of app user data
collected from participants as part of an RCT involving the
quitSTART smoking cessation app—the quitSTARTEMA
Incentivization Trial. Our primary goal in conducting this study
is to outline an analytic approach that could be used in future
studies investigating whether and how patterns of use of
different smoking cessation app features affect cessation. We
also seek to fulfill the following exploratory research aims: (1)
examine the extent to which patterns of use of different features
of the quitSTART app can be used to predict participants’
short-term smoking cessation and (2) test whether participants’
patterns of app feature use predict variance in short-term
cessation that is not predicted by other variables related to
smoking cessation.

Methods

The quitSTART App
The quitSTART app is a free, publicly available app created by
the National Cancer Institute’s Smokefree.gov initiative, a
federal program that offers no-cost, evidence-based tobacco
cessation support to the public through a suite of websites, text
messaging programs, and mobile apps [25]. The quitSTART
app is available for both iPhones and Androids and is popular,
with 10,000-20,000 new downloads each year [25].

The app offers a range of features designed to assist individuals
in quitting smoking. App users can explore content pages,
referred to as “cards,” which contain information, tips, and
inspiration for quitting smoking. They can also seek real-time
support for managing their cravings, mood, and handling slips;
play games to distract themselves during cravings; track their
progress; and earn badges as they continue to use the app. Users
can customize their app experience by building a “quit kit”
containing cards they find useful and can create custom
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notifications. Since 2017, the quitSTART app has also included
ecological momentary assessment (EMA) capability. By default,
users are sent 3 EMA prompts each day at random times to
report their craving level, mood, and number of cigarettes
smoked. Users can opt out of receiving EMAs by disabling
notifications from the app.

Experimental Design
Data for this analysis were drawn from an experimental trial
conducted between October 2020 and May 2021. The
quitSTART EMA Incentivization Trial was conducted to test
the effects of incentivizing EMA completion within the
quitSTART app on short-term smoking cessation. Participants
were English-speaking adults who lived in the United States,
smoked cigarettes, and had a self-reported desire to quit
smoking.

As the goal of the clinical trial was to test the effects of
incentivizing completion of EMAs on smoking cessation,
eligible participants were randomized 1:1 into 2 study arms, an
incentivized EMA arm and a nonincentivized EMA arm.
Participants randomized to the nonincentivized EMA arm were
compensated for completing the surveys administered to all
participants at baseline, 2 weeks into the study, and at the end
of the 4-week study. Participants in the nonincentivized arm
received EMA notifications, which are sent to all users by
default. However, their compensation was not affected by their
EMA completion. In contrast, participants randomized to the
incentivized EMA arm were informed that part of their
compensation would be contingent on completing surveys and
the other part would be contingent on their EMA participation.
They had to complete at least half of the programmed EMAs
to receive any EMA compensation, and increasing EMA
participation resulted in higher compensation. The total amount
of compensation that could be earned was identical across the
2 study arms.

After completing the baseline survey, participants were
instructed to download the quitSTART app and use it for the
4-week study period. A total of 152 participants completed the
enrollment process and participated in the study, of whom 133
(88.2%) completed the 4-week follow-up survey. These 133
participants were included in this study. Figure S1 in Multimedia
Appendix 1 summarizes the recruitment, randomization, and
data collection processes for this study.

Ethical Considerations
The University of Virginia institutional review board approved
the study design and protocol (UVA SBS IRB protocol 3643;
ClinicalTrials.gov NCT04623736).

Study Measures

Baseline Participant Characteristics
Data collected in the baseline survey included participants’
gender identity, sexual orientation, education level, and scores
on the Patient Health Questionnaire-9 (PHQ-9) [26], which is
used to measure the presence and severity of depressive
symptoms. The baseline survey also assessed participants’ use
of tobacco products, nicotine dependence scores [27], and
whether they had made an attempt to quit within the past year.

When participants downloaded and first used the app, their
phone type (ie, whether they had an Android or iPhone) was
recorded.

Smoking Cessation Outcome Measure
The outcome of interest for this study, short-term cigarette
smoking cessation, was measured at the end of the quitSTART
EMA Incentivization Trial and was operationalized as 7-day
point-prevalence abstinence at 4 weeks postenrollment.
Participants were asked, “Have you smoked a cigarette (even
a puff) in the past seven days?” Participants who responded
“no” to this question were considered to have quit smoking.

App Feature Use Variables
As participants used the quitSTART app, each action they took
and its corresponding time stamp were recorded. These data
were used to create 3 sets of variables reflecting the participants’
use of app features. The first set of variables, “binary app feature
use variables,” consisted of yes or no variables that reflected
whether a participant took the action in question; these variables
were used for actions that most participants took only 1 time
(eg, completing the initial profile set-up process).

For actions that were intended to be taken as many times as a
participant wanted (eg, playing a game), 2 additional sets of
variables were created. One set of variables used in our main
analyses, which we labeled “proportion app feature use
variables,” reflected the number of times a participant took a
particular action within the app divided by their total number
of app use sessions. An app use session was defined as a period
during which a participant performed 1 or more actions in the
app with no more than 2 minutes between actions. We took this
approach to ensure that we captured variation in how participants
spent their time within the app rather than just variation in the
total time they spent in the app. The other set of variables,
“count app feature use variables,” reflected the total number of
times participants took an action and were used in a sensitivity
analysis, as described below.

Data Analysis

Overview
All analyses were conducted in R (version 4.1; R Core Team).
We first examined descriptive statistics for the baseline
participant characteristics. We also examined participants’
responses to our short-term smoking cessation item.

Our machine learning approach was based on the
recommendations made by Dinga et al [28] for controlling for
the effects of confounding variables on machine learning
predictions. Dinga et al [28] argued that regressing out
confounding variables from each predictor variable separately
prior to conducting machine learning modeling is insufficient.
They instead proposed controlling for confounding variables
post hoc at the level of machine learning predictions. We
adopted this approach for 2 reasons. First, it allowed us to
control for confounding more efficiently. It also enabled us to
fulfill our second study aim by testing whether predictions from
our machine learning model, which included input variables
capturing participants’ use of different app features, explained
variance in cessation that was not explained by participant-level
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variables that could potentially affect cessation such as
demographic characteristics and tobacco use.

Aim 1 Analysis
To identify which patterns of use of app feature use predict
short-term smoking cessation, we built SML models predicting
7-day smoking abstinence from a set of predictor variables that
included our binary app feature use variables, our proportion
app feature use variables, participants’ total number of app use
sessions, phone type (iPhone or Android), and study arm. Phone
type was included as a variable in the SML models because the
iPhone and Android versions of the quitSTART app were built
separately and user data from each app were recorded in a
slightly different manner. Although the 2 apps appeared identical
to users and we harmonized the user data collected from each,
we chose to include phone type as a variable in the SML models
in case there was a relationship between phone type and app
use or between phone type and cessation. We first randomly
divided our data into a training set (n=100, 75% of the data)
and a held-aside test set (n=33, 25% of the data).

Working with the training set, we used recursive feature
elimination with 10-fold cross-validation to determine the
optimal number of features for our classifier and then fit our
logistic regression classifier using this number of features to
the training set. We selected a logistic regression classifier
because our outcome variable was binary, and we wanted a
classifier that would yield predicted probabilities (rather than
binary predictions) for every participant. We evaluated the SML
model’s performance in the training set by looking at its
sensitivity, specificity, and accuracy. We also examined variable
importance (defined as the scaled absolute value of the
coefficient of each variable in a logistic regression model for
binary classification) for each feature and identified the features
in the model assigned the highest importance for predicting
cessation. We produced partial dependence plots for each of
the top 10 most important features in order to better understand
each feature’s relationship with short-term smoking cessation
[29].

We then applied the model to the held-aside test set and looked
at its sensitivity, specificity, and accuracy. We then used it to
produce predicted probabilities of short-term cessation for each
participant included in the test set.

Aim 2 Analysis
As a first step toward testing whether participants’ patterns of
app feature use predicted unique variance in cessation, we fit 2
logistic regression models using the test set data. These models
were fit with all participants in the test set who were not missing
data on any demographic or participant characteristic variables
(n=30; a total of 3 participants were excluded from the aim 2
analyses because of missing data on the gender variable). Due
to the small sample size available, no data splitting or
cross-validation was performed. The first model included
participant demographic variables, as well as other variables

that prior research suggests may be related to cessation. These
variables were measured in the baseline survey and included
age, race or ethnicity, gender identity, education, PHQ-9 scores,
sexual orientation, nicotine dependence, quit attempts in the
past year, and polytobacco use. The second model included all
these variables, as well as an additional predictor variable—the
predicted probabilities of short-term cessation from the SML
model. After fitting each model, we assessed its fit through a
likelihood ratio test comparing it to a null model. We then ran
a likelihood ratio test comparing the 2 logistic regression models
to one another to assess whether the model that included the
SML model-predicted probabilities of cessation had a
significantly better fit to the data.

Sensitivity Analysis
As a sensitivity analysis, we repeated our aim 1 and aim 2
analyses with 1 major change. We used the count app feature
use variables in place of the proportion app feature use variables
in our SML model. Participants’ total number of app use
sessions was not included as a predictor in these models due to
its collinearity with the count app feature use variables.

Results

Descriptive statistics for participant characteristics measured
in the baseline survey, as well as participants’ study arm and
phone type, are summarized in Table 1. Descriptive statistics
are shown for all participants, as well as for participants who
were included in the training set (n=100) and in the test set
(n=33) when building our SML models. Among all 133
participants in the study, 62 (46.6%) were randomized to the
incentivized EMA arm. About half (n=74, 55.6%) of participants
had iPhones, while 59 (44.4%) had Androids. Participants’
average age was 45.6 (SD 12.6) years. Participants reported
being mostly non-Hispanic White (n=103, 77.4%), female
(n=99, 74.4%), and straight (n=106, 79.7%). The average PHQ-9
score was 7.8 (SD 6.1), which indicates mild depression [26].

Participants’ mean score on the Fagerstrom test was 4.8 (SD
2.4), which equates to medium nicotine dependence [30]. Most
participants (n=105, 78.9%) had made a prior attempt to quit
smoking within the past year. Approximately a third of
participants (n=46, 34.6%) reported polytobacco use. Roughly
a quarter (n=37, 27.8%) of participants reported 7-day
point-prevalence abstinence at 4 weeks.

The full list of variables that were considered for inclusion in
the SML model and their descriptions are included in Table 2.
Results from recursive feature elimination showed that 28
features out of 29 candidate features should be included in the
SML model (every feature except ncravingspressed_prop). We
ran our SML model including these 28 features in the training
set and assessed its performance. The model’s accuracy in the
training set was 0.91, its sensitivity was 0.96, and its specificity
was 0.79.
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Table 1. Baseline participant characteristics for all participants, training set, and test set.

Test set (n=33)Training set (n=100)All participants (N=133)Characteristics

Study arm, n (%)

17 (51.5)45 (45)62 (46.6)Incentivized EMAa arm

16 (48.5)55 (55)71 (53.4)Nonincentivized EMA arm

Phone type, n (%)

21 (63.6)53 (53)74 (55.6)iPhone

12 (36.4)47 (47)59 (44.4)Android

41.5 (12.3)47.0 (12.4)45.6 (12.6)Age (years), mean (SD)

Race or ethnicity, n (%)

26 (78.8)77 (77)103 (77.4)Non-Hispanic White

7 (21.2)23 (23)30 (22.6)Hispanic White

Sex, n (%)

6 (18.2)25 (25)31 (23.3)Male

24 (77.4)75 (75)99 (74.4)Female

3 (9.1)0 (0)3 (2.3)Missing

Education level, n (%)

1 (3)5 (5)6 (4.5)Less than high school

3 (9.1)8 (8)11 (8.3)High school graduate or equivalent

13 (39.4)37 (37)50 (37.6)Some college

16 (48.5)50 (50)66 (49.6)College graduate or more

Sexual minority status, (%)

22 (66.7)84 (84)106 (79.7)Straight

11 (33.3)16 (16)27 (20.3)Not straight

7.15 (5.59)8.07 (6.32)7.8 (6.1)PHQ-9b score, mean (SD)

5.52 (2.55)4.56 (2.31)4.8 (2.4)Fagerstrom test, mean (SD)

Quit attempt in past 12 months, n (%)

27 (81.8)78 (78)105 (78.9)Yes

6 (18.2)22 (22)28 (21.1)No

Poly-use of tobacco products, n (%)

12 (36.4)34 (34)46 (34.6)Yes

21 (63.6)66 (66)87 (65.4)No

aEMA: ecological momentary assessment.
bPHQ-9: Patient Health Questionnaire-9.
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Table 2. Variables considered for inclusion in SMLa model (n=29), definitions, and mean values among participants (N=133).

ValuesDefinitionVariable name

Proportion app feature use variables (n=24), mean (SD)

0.02 (0.06)How many times a participant added a location to receive a location-based notification
app use divided by their app use sessions.

naddlocation_prop

0.03 (0.09)How many times a participant selected a specific time of day for a time-based notifi-
cation divided by their app use sessions.

naddtime_prop

0.55 (0.45)How many badges a participant earned for reaching milestones in their app use or
cessation journey divided by their app use sessions.

nbadgescompleted_prop

0.01 (0.03)How many times a participant viewed a badge available to earn divided by their app
use sessions.

nbadgesviewed_prop

0.74 (2.44)How many times a participant favorited a content page divided by their app use ses-
sions.

nbuttonsfavorited_prop

0.03 (0.08)How many times a participant shared a content page divided by their app use sessions.nbuttonsshared_prop

4.61 (4.33)How many content pages a participant viewed divided by their app use sessions.ncardsviewed_prop

0.05 (0.07)How many times participants accepted a challenge divided by their app use sessions.nchallengesaccepted_prop

0.18 (0.17)How many EMAb prompts a participant completed divided by their app use sessions.ncompletedemas_prop

0.07 (0.09)How many times a participant pressed the “I’m Craving” button divided by their app
use sessions.

ncravingspressed_prop

0.00 (0.02)How many times a participant entered a custom notification to receive at a specific
location divided by their app use sessions.

ncustomtips_location_prop

0.01 (0.02)How many times a participant entered a custom notification to receive at a specific
time of day divided by their app use sessions.

ncustomtips_time_prop

1.24 (1.08)How many times a participant viewed “Tips,” “FYIs” or “Inspirations” content pages
divided by their app use sessions.

nexplorecontentpages_prop

0.04 (0.06)How many times a participant selected the “Feeling Down” button divided by their
app use sessions.

nfeelingdownpressed_prop

0.10 (0.14)How many times a participant selected the “I’m Great” button divided by their app
use sessions.

nfeelinggreatpressed_prop

0.00 (0.02)How times a participant tagged a specific location divided by their app use sessions.nlocationtags_prop

0.64 (0.31)How many times a participant opened a scheduled notification from the app divided
by their app use sessions.

nnotificationsreceived_prop

0.38 (0.35)How many times a participant pressed the “Progress” button to view their progress
in their cessation journey divided by their app use sessions.

nprogresspressed_prop

0.14 (0.24)How many times participants set a new quit date divided by their app use sessions.nquitdateset_prop

1.18 (1.21)How many times a participant registered their account divided by their app use ses-
sions.

nregistrations_prop

7.52 (3.23)How many screens a participant viewed in the app divided by their app use sessions.nscreensviewed_prop

0.10 (0.13)How many times a participant selected the “I Slipped” button divided by their app
use sessions.

nslippedpressed_prop

0.00 (0.01)How many times a participant tagged a specific time divided by their app use sessions.ntimetags_prop

0.10 (0.19)How many times a participant played a game divided by their number of app use
sessions.

ntotalgames _prop

Binary app feature use variables (n=2), n (%)

23 (17.3)Did a participant opt not to select a quit date while setting up their profile?noquitdate_bin

47 (35.3)Did a participant reset their quit date at least once?quitdatereset_bin

Other variables (n=3)

54.58 (67.58)A participant’s total number of app use sessions, defined as any series of actions
within the app with no more than 2 minutes between actions.

nunique_sessions, mean (SD)

74 (55.6)Did a participant have an iPhone?Phonetype, n (%)
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ValuesDefinitionVariable name

62 (46.6)Was the participant assigned to the incentivized EMA or the nonincentivized EMA
arm?

Studyarm, n (%)

aSML: supervised machine learning.
bEMA: ecological momentary assessment.

The importance metrics for all 28 features in the model are
displayed in Figure S2 in Multimedia Appendix 1. Partial
dependence plots for the 10 most important features are shown
in Figure 1. These plots depict the marginal effect of each
feature on the probability of smoking cessation. The feature in
the model with the highest variable importance was
nslippedpressed_prop, the number of times a participant pressed
the “I slipped” button divided by their number of app use
sessions. By pressing this button, users access targeted content
and guidance intended to help them after they had “slipped up”
and smoked a cigarette. As can be seen in Figure 1, this feature
was negatively related to the probability of cessation, indicating
that users who reported “slipping up” more often, proportional
to their app use, were less likely to successfully quit smoking.
The second and third most important features in the model,
respectively, were nexplorecontentpages_prop and
nbadgescompleted_prop. The former variable represents the
number of times a participant viewed “Tips,” “FYIs,” or
“Inspirations” content pages in the app divided by their number
of app use sessions. The latter represents the number of badges
a participant earned for reaching milestones in their cessation
journey or use of the quitSTART app (eg, checking the app 5
times in 1 day) divided by their number of app use sessions.
Both of these variables were positively related to cessation,
showing that participants who used these app features more
often were more likely to successfully quit smoking. Other
features that were among the top 10 with the highest variable
importance were naddlocation_prop, ncompletedemas_prop,
studyarm, nprogresspressed_prop, noquitdate_bin, and
nfeelinggreatpressed_prop.

After building our SML model and assessing feature importance
in the training set, we fit the model in the test set. The model’s
accuracy was 0.67, and both its sensitivity and specificity were
also 0.67. We retained the SML model–predicted probabilities
of cessation as a variable in the test set.

Results from the 2 logistic regression models performed in the
test set are summarized in Table S1 in Multimedia Appendix
1. The likelihood ratio test comparing model 1, which included
our set of participant characteristics that are known to be related
to cessation, to a null model was not statistically significant at

the α=.05 level (χ2
9=5.0; P=.84). Likewise, the likelihood ratio

test comparing model 2, which included all variables included
in model 1, as well as the predicted probabilities of cessation
from the SML model to a null model was not statistically

significant (χ2
10=7.0; P=.73). The likelihood ratio test comparing

model 2 to model 1 was not statistically significant (χ2
1=2.0;

P=.16), indicating that model 2 provided a statistically
equivalent fit to the data to model 1.

The variables considered for inclusion in our sensitivity analysis
SML model are summarized in Table S2 in Multimedia
Appendix 1. Recursive feature elimination showed that the
optimal number of features to include in the model was 28. The
model’s accuracy in the training set was 0.88, its sensitivity was
0.94, and its specificity was 0.71. The most important feature
of the model was studyarm, which represented the participants’
assigned study arm. The importance metrics for each feature
included in the model are displayed in Figure S3 in Multimedia
Appendix 1 and each feature is defined in Table S2 in
Multimedia Appendix 1. The model’s accuracy in the test set
was 0.64. Its sensitivity was 0.75 while its specificity was 0.33.

We fit 2 logistic regression models in the test set (see Table S3
in Multimedia Appendix 1) and ran a likelihood ratio test
comparing the 2 models. The likelihood ratio test was not

statistically significant (χ2
1=0.6; P=.46), indicating that model

2, which included the predicted probabilities from the SML
model using continuous app feature use variables, did not
provide a significantly better fit to the data than model 1.
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Figure 1. Partial dependence plots depicting the predicted marginal effects on the probability of cessation for the 10 app use variables assigned the
highest feature importance. The x-axis in each figure is constrained to show only values of each variable that were observed in the training set used to
build the supervised machine learning model.

Discussion

Principal Findings
We developed and tested a novel approach to using SML to
examine whether and how the use of specific features within a
smoking cessation app predicts short-term cessation. We applied
SML models to data from the quitSTART EMA Incentivization
Trial to identify patterns of app feature use that predict

short-term smoking cessation. Our analysis of variable
importance within this model indicated that the 3 app feature
use variables that were most important for predicting cessation
were the number of times participants pressed the “I Slipped”
button, the number of times they viewed the “Tips,” “FYIs,” or
“Inspirations” content pages, and the number of badges they
completed (each expressed as a proportion of total app use
sessions). We then used a likelihood ratio test comparing 2
logistic regression models to assess whether including patterns
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of app feature use in our models allowed us to better predict
cessation. The results of this likelihood ratio test showed that
the logistic regression model that included both the
SML-predicted probabilities of cessation based on participants’
app feature use, as well as a set of variables reflecting
participants’baseline tobacco use and demographic and personal
characteristics did not fit the data better than a model that
included only the latter variables. This means the accuracy of
our model predicting whether participants quit smoking was
not improved by including the SML-predicted probabilities.
However, because only observations from the held-aside test
set (n=30) were included in this analysis, the small n likely
contributed to this null result.

This study adds to the small but growing body of literature that
has gone beyond looking at the overall relationship between
smoking cessation app use and smoking cessation to examine
which specific app features are associated with cessation [20,21].
Some of our findings align with those from prior research. For
example, our finding that completing badges is an important
variable for predicting smoking cessation aligns with the finding
reported by Rajani et al [20] that participants’ frequency of use
of gamification features, including earning badges, was
associated with motivation to quit. However, there is a need for
more research investigating different app features within
smoking cessation apps to help maximize the potential public
health impacts of smoking cessation apps. The methodological
approach developed in this study could be used to guide
additional research evaluating smoking cessation apps and to
improve the design and refinement of such apps. While this
study focused on smoking cessation, this approach could also
be applied in research on apps focused on other health behaviors.

Our methodological approach could help guide further research
in several ways. For example, our finding that patterns of app
feature use did not predict unique variance in cessation might
lead researchers to explore whether there is variability in the
extent to which different groups of app users are helped by
different app features. Alternatively, finding that patterns of
app feature use did predict unique variance in cessation might
inspire additional research investigating users’ perceptions of,
satisfaction with, and reasons for using the app feature use
variables that were found to be important for predicting
cessation.

Additionally, if an app feature uses a variable that was expected
to be effective based on theory and prior research was not found
to be important in predicting cessation, researchers might
investigate why this was the case, considering possible
explanatory factors such as design and usability issues [15,18].
This research could also inform the design of new apps, as well
as the refinement of existing apps. Apps could be streamlined
to only include features found to be important for cessation,
which could in turn improve their cost-efficiency for app
developers and usability for app users.

While this was a retrospective analysis conducted after
participants had finished using quitSTART, SML models could
also be applied in real time to identify current app users whose
patterns of app feature use suggest they may be unlikely to quit
smoking. These individuals could then be sent tailored messages

through the app to nudge them to alter their patterns of app use
or connect them with additional support. For example, in this
study, we found that individuals who pressed the “I slipped”
button more frequently, proportional to their overall app use,
were less likely to report short-term smoking cessation. If this
relationship was observed in a context in which real-time
intervention was possible, individuals who pressed the “I
slipped” button could automatically be connected to another
source of support, such as a smoking cessation counselor.

Study Limitations
Given that this was a secondary data analysis involving a
relatively small convenience sample of individuals who
participated in an experiment, findings from this study were not
expected to be generalizable to the general population of people
who smoke. Findings were also not expected to be generalizable
to all quitSTART users because the experimental protocol itself
may have affected some participants’ app feature use.
Specifically, participants in the incentivized EMA arm received
compensation based on their completion of EMAs and, as a
result, used that app feature more frequently than did participants
in the nonincentivized EMA arm (unpublished data, 2021). The
small sample size, as well as the relative rarity of our cessation
outcome (about 28% of participants reported 7-day
point-prevalence abstinence at 4 weeks), may also have impacted
the accuracy of the SML model we fit, contributing to its
suboptimal accuracy, specificity, and sensitivity in the test set.
These factors may also have affected the results of our aim 2
statistical analyses.

Additionally, the app feature use variables we included in our
SML model only captured the number of times a participant
used a given app feature as a proportion of their overall app use
or whether the participant had used an app feature at all. Future
research should examine factors such as the time of day during
which a participant used a given app feature or the responses
given to interactive app features to get a more detailed view of
the relationship between app feature use and cessation. Finally,
although we accounted for several variables that might be related
to cessation in our logistic regression models, the list of variables
we included was not exhaustive.

Conclusions
Smartphone apps could expand the availability and use of
evidence-based smoking cessation interventions, potentially
helping more people quit smoking. However, there is a need
for more research evaluating the effectiveness of smoking
cessation apps and investigating how individuals’ use of
different app features impacts their likelihood of cessation. In
this study, we developed and tested a novel methodological
paradigm using SML to test patterns of app feature use that are
most predictive of short-term smoking cessation and assess
whether patterns of app feature use explain variance in cessation
that is not explained by other relevant variables. We identified
important app feature use variables for predicting cessation. We
did not find evidence that patterns of app feature use explained
variance in cessation beyond what was explained by
participants’ tobacco use and demographic and personal
characteristics, although the small sample size likely contributed
to this result. Nonetheless, the methodological approach
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developed in this study could be used in future research focused
on smoking cessation apps and health behavior apps more

broadly to inform the design and refinement of such apps.
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Abstract

Background: The escalating global prevalence of obesity has necessitated the exploration of novel diagnostic approaches.
Recent scientific inquiries have indicated potential alterations in voice characteristics associated with obesity, suggesting the
feasibility of using voice as a noninvasive biomarker for obesity detection.

Objective: This study aims to use deep neural networks to predict obesity status through the analysis of short audio recordings,
investigating the relationship between vocal characteristics and obesity.

Methods: A pilot study was conducted with 696 participants, using self-reported BMI to classify individuals into obesity and
nonobesity groups. Audio recordings of participants reading a short script were transformed into spectrograms and analyzed using
an adapted YOLOv8 model (Ultralytics). The model performance was evaluated using accuracy, recall, precision, and F1-scores.

Results: The adapted YOLOv8 model demonstrated a global accuracy of 0.70 and a macro F1-score of 0.65. It was more effective
in identifying nonobesity (F1-score of 0.77) than obesity (F1-score of 0.53). This moderate level of accuracy highlights the
potential and challenges in using vocal biomarkers for obesity detection.

Conclusions: While the study shows promise in the field of voice-based medical diagnostics for obesity, it faces limitations
such as reliance on self-reported BMI data and a small, homogenous sample size. These factors, coupled with variability in
recording quality, necessitate further research with more robust methodologies and diverse samples to enhance the validity of
this novel approach. The findings lay a foundational step for future investigations in using voice as a noninvasive biomarker for
obesity detection.

(JMIR AI 2024;3:e54885)   doi:10.2196/54885

KEYWORDS

obesity; obese; overweight; voice; vocal; vocal cord; vocal cords; voice-based; machine learning; ML; artificial intelligence; AI;
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models; early warning; early detection; deep neural network; deep neural networks; DNN; artificial neural network; artificial
neural networks; deep learning
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Introduction

Obesity has emerged as a prominent global health concern, with
its prevalence nearly tripling since 1975 and affecting a
significant portion of the population worldwide [1]. This
increase is especially pronounced in developing nations, partially
owing to shifts in lifestyle and dietary habits [2]. Obesity serves
as a precursor to various medical conditions including, but not
limited to, type 2 diabetes, cardiovascular diseases, certain forms
of cancer, and musculoskeletal disorders, significantly
contributing to the global disease burden and elevating
premature mortality rates [3]. The increased health care
expenditures and reduced productivity adversely impacted the
regional economy [4].

While the broad ramifications of obesity are well documented,
recent scientific inquiries have begun to elucidate the potential
alterations in voice characteristics that may be concurrent with
obesity [5,6]. Several mechanisms are postulated to explain
these alterations in vocal attributes. The deposition of adipose
tissue near the vocal folds and larynx may influence vocal
resonance and pitch, often resulting in variations in voice quality
[7]. Restrictive lung patterns associated with obesity may lead
to compromised lung volumes and capacities, subsequently
impacting subglottal pressures essential for phonation [8].
Obesity induces a chronic inflammatory state, potentially
altering the composition and viscosity of vocal fold tissues and
affecting parameters such as jitter and shimmer [9]. In addition,
the hormonal imbalances often seen in obesity can impact the
elasticity and tension of laryngeal tissues, thereby influencing
voice characteristics [10].

Given these insights, voice-based markers have emerged as a
pioneering approach to assessing obesity [11]. The prospect of
using noninvasive and readily accessible audio recordings may
pave the way for advancements in diagnostic methodologies,
overcoming the constraints inherent to current obesity
assessment techniques [12]. This innovative method holds the
potential to inform preventive health care strategies by enabling
the extraction of critical health information from voice, allowing
for the development of scalable, real-time, and accurate
health-monitoring systems. The implications of such
advancements could be especially significant in regions with
limited resources, facilitating early interventions and alleviating
the compounded health and economic repercussions associated
with obesity. Delving into the intricate relationship between
voice characteristics and obesity may enhance our understanding
and propel the evolution of novel diagnostic and monitoring
tools, presenting opportunities for refined strategies in obesity
management and prevention.

Artificial intelligence (AI), characterized by machine and deep
learning techniques, has become increasingly popular in
exploring and addressing the multifaceted challenges associated
with obesity [13,14]. For instance, studies have used deep neural

network models to analyze face portrait photographs to predict
obesity status and the risk of diabetes, showcasing the versatility
and efficacy of AI in medical diagnoses and risk assessments
[15]. These applications exemplify the transformative potential
of AI in deriving insightful correlations and predictive analytics
in the context of obesity, allowing for the development of
sophisticated and nuanced approaches to studying and managing
this prevalent condition.

This pilot study pioneers the exploration of using deep neural
network models to predict individuals’ obesity status through
analyses of short audio recordings. Participants were recorded
while reading a prewritten script, and the models were developed
to discern potential associations between vocal characteristics
and obesity. This study constitutes the initial endeavor to explore
the relationship between obesity and voice, highlighting an
uncharted intersection in obesity research. Although preliminary,
the study lays the groundwork in this novel domain, and relevant
findings may inspire future research in voice-related health
diagnostics.

Methods

Data
We conducted a standardized web-based survey to gather
demographic information (gender and age), self-reported
anthropometric measurements (height and weight), disease
histories, and brief audio recordings from participants (see
Multimedia Appendices 1 and 2). The participants were
instructed to read a short Mandarin paragraph provided in the
survey and record it using their mobile phones. Consequently,
the final analysis comprised 696 participants, including 500
females and 196 males, with an average age of 24 years.

We classified study participants into 2 groups, obesity (271/696,
38.9%) and nonobesity (425/696, 61.1%), based on the standard

BMI threshold of ≥28 kg/m2 in the Chinese population [16].

A spectrogram is a visual representation of the spectrum of
frequencies in a sound signal as they vary with time, serving as
an essential tool for feature extraction in audio classification
tasks. Audio recordings were standardized to the WAV format
and then transformed into spectrograms. The preprocessed data
set was randomly partitioned into a training set of 591 audio
files (591/696, 85%) and a test set of 105 files (105/696, 15%).

Data augmentation on spectrograms involves applying various
techniques such as time stretching, noise injection, and
frequency masking to enhance the diversity and robustness of
the data set, thereby improving the performance of machine
learning models in audio classification. Data augmentation was
used to balance the training set, ensuring equal representations
of images labeled as obesity and nonobesity. Subsequently, a
5-fold cross-validation was performed on the balanced training
set. Our workflow is illustrated in Figure 1.

Figure 1. Research workflow.
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Ethical Considerations
The study was approved by the Shanghai University of Sport
Ethics Committee (institutional review board
#102772022RT065), with written informed consent obtained
from each study participant. After negotiations, each participant
received 10 yuan as compensation for participating in the study,
and the data of each participant were anonymized.

Model
We developed a neural network model to predict an individual’s
obesity status using spectrogram data. Adapting the YOLO
(You Only Look Once) framework [17], which is renowned for
real-time object detection and image segmentation in computer
vision, we fine-tuned the pretrained YOLOv8 model for our
voice-based obesity classifier. To enhance model performance,

we used techniques such as batch normalization, learning rate
optimization, label smoothing, and early stopping. This model
was constructed using Python (version 3.10.12; Python Software
Foundation) and was accelerated using a Tesla V100 GPU
(NVIDIA).

A comparison of the predictive performances of corresponding
models applying 2 main feature extraction approaches in speech
recognition was conducted. One is based on signal parameter
extraction, such as Mel-frequency cepstral coefficients and
Mel-filter bank features, while the other is based on spectrogram
images. Table 1 delineates the performance metrics of multiple
models across varied feature sets. The YOLOv8 model we
applied exhibited higher performance, which is specified in
italics.

Table 1. Overall performances of various models.

AccuracyPPVaSensitivityF1-scoreFeatures and model

Spectrogram

0.700.650.690.65bYolov8

0.600.610.580.59CNNc

MFCCsd+Delta-Delta

0.620.580.560.57CNN

0.630.590.560.58RandomForest

0.560.560.570.56MLPe

MFCCs+Melf

0.640.610.570.59CNN

0.630.600.570.58RandomForest

0.570.550.550.55MLP

aPPV: positive predictive value.
bItalics indicates higher performance.
cCNN: convolutional neural network.
dMFCC: Mel-frequency cepstral coefficient.
eMLP: multilayer perceptron.
fMel: Mel-filter bank features.

Results

Figure 2 shows 2 example spectrogram images transformed
from audio files labeled as nonobesity and obesity. In terms of
the spectrogram, horizontal axes indicate time in milliseconds.
Vertical axes indicate the frequency in hertz (Hz). Brightness
indicates decibel level; the brighter it is, the higher the decibel
level. The stripes in the spectrogram reflect the fundamental
characteristics of a speaker's voice. Bars that are relatively
parallel to the horizontal axis correspond to the formant. The
distance between dark stripes perpendicular to the horizontal
axis represents the period of fundamental frequency. Formant
and fundamental periods are closely related to the state of the
vocal tract structures.

Figure 3 depicts the 5-fold cross-validation training process.
The training loss gradually declined from around 0.15 to near
zero by epoch 80. During epochs 0-80, the validation loss
primarily decreased but with some fluctuations. From epochs
60-150, it began to stabilize around 0.25, with no substantial
reductions afterward. The peak model performance was achieved
at epoch 120, with a validation loss of 0.26 and an associated
training loss of 0.10. Trail 4 displayed different epoch numbers
due to a relatively small sample size and training fluctuations,
which triggered the early-stop feature of the YOLOv8 model.
During the training process, the curves of train loss and
validation loss did not perfectly coincide at the end. However,
the consistent downward and convergent trend of both indicated
that the model was trained normally without overfitting or
underfitting.
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Figure 2. Spectrogram images labeled nonobesity (left) and obesity (right).

Figure 3. Model training using 5-fold cross-validation. Train loss: training loss; val loss: validation loss.

Table 2 reports the model performance on the test set. For the
obesity category, the model yielded an F1-score of 0.53, with
a recall (sensitivity) of 0.67 and a precision (positive predictive
value) of 0.44. The model achieved an F1-score of 0.77 for

nonobesity classifications, with a recall of 0.70 and a precision
of 0.86. The overall model performance across both categories
was characterized by a macro F1-score of 0.65, a recall of 0.69,
a precision of 0.65, and a global accuracy of 0.70.

Table 2. YOLOv8 model performance on the test set.

AccuracyPPVaSensitivityF1-score

—b0.440.670.53Obesity

—0.860.700.77Nonobesity

0.700.650.690.65Overall

aPPV: positive predictive value.
bNot available.

JMIR AI 2024 | vol. 3 | e54885 | p.717https://ai.jmir.org/2024/1/e54885
(page number not for citation purposes)

Huang et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Discussion

This study explored the use of deep neural networks, specifically
an adapted YOLOv8 model, to predict obesity status from short
audio recordings. This approach aimed to identify potential
relationships between vocal characteristics and obesity. Our
results indicate a moderate level of accuracy in the model
performance, with a global accuracy of 0.70 and a macro
F1-score of 0.65. The model demonstrated a higher effectiveness
in identifying nonobesity cases, as reflected by an F1-score of
0.77, compared with a lower F1-score of 0.53 for obesity
classifications. These outcomes suggest that while the model
shows promise, there is a need for further refinement to enhance
its precision and reliability in obesity detection using vocal
biomarkers.

In the context of medical diagnostics, the use of voice as a
biomarker has been an emerging area of interest [18], although
its application in obesity identification remains relatively
unexplored. Historically, voice analysis has been successfully
used in the detection of various health conditions, such as
Parkinson disease, where vocal cord and speech pattern changes
are indicative of the disease’s progression [19]. Similarly, in
respiratory diseases, voice alterations often reflect changes in
lung function and airflow [20]. The rationale behind these
applications is that physiological changes, whether due to
neurological, respiratory, or other systemic conditions, can
manifest in measurable changes in voice characteristics [21].

The aim of our study to correlate voice characteristics with
obesity aligns with this emerging trend but ventures into a
relatively uncharted domain. Obesity, being a complex condition
with multifactorial etiologies, may not exhibit as direct a
relationship with vocal changes as seen in neurological or
respiratory illnesses [22]. Nonetheless, the premise that obesity
can induce physiological alterations, such as in the laryngeal
tissues and respiratory system [23], provides a theoretical
foundation for our exploration. The moderate success of our
model in distinguishing obesity from nonobesity cases indicates
a potential, albeit complex, link between obesity and voice
characteristics.

The findings of this study contribute to the expanding literature
on noninvasive diagnostic methods. Traditional obesity
diagnosis primarily relies on physical measurements such as
BMI and waist circumference, which have their limitations,
including the inability to assess body fat distribution and
differentiate between fat and muscle mass [24]. The prospect
of supplementing these methods with voice analysis could offer
a more holistic and convenient approach to obesity assessment.

Using deep neural networks, short audio recordings can predict
obesity status, offering practical applications in preventive
medicine, telemedicine, and public health research. It enables
noninvasive early screening for obesity and related health issues
such as obstructive sleep apnea [25], provides objective
measures in telemedicine, and offers a cost-effective data
collection approach for obesity prevalence research.

However, our study’s moderate accuracy underscores the
challenges inherent in this novel diagnostic pathway. It
highlights the need for further research to better understand the
nuances of how obesity might specifically alter vocal
characteristics and how these changes can be more accurately
captured and interpreted by advanced neural network models.

This study faces several key limitations. Foremost, the reliance
on self-reported BMI introduces potential inaccuracies due to
measurement errors and social desirability bias [26],
compromising the model’s accuracy in obesity classification.
In addition, the use of a small, convenience sample limits the
statistical power and generalizability of our findings, as it may
not adequately represent the broader population. Variability in
audio recording quality, resulting from participants using their
own mobile phones, further challenges the consistency of the
input data. The demographic homogeneity of the sample and
the lack of consideration for other factors influencing voice
characteristics, such as lifestyle choices, restrict the applicability
of our findings to a wider, more diverse population. These
limitations collectively underscore the need for more robust
methodologies and diverse participant samples in future research
to enhance the validity and applicability of voice analysis in
obesity detection.

Future research should prioritize conducting a longitudinal
cohort study to analyze voice changes in individuals
transitioning from lean to obese phases. This will deepen our
understanding of voice changes during obesity progression and
enable the extraction of vocal characteristic features across
different stages of obesity. Ultimately, such an approach may
aid in developing causal links between obesity and vocal
changes.

In sum, while our study presents an innovative approach to
obesity detection and adds to the growing body of research on
voice-based medical diagnostics, it also emphasizes the
complexity of this endeavor and the necessity for continued
research and development in this area. The potential of using
voice as a noninvasive biomarker for obesity is an intriguing
prospect, and our findings, though moderate in their current
state, lay the groundwork for future investigations to refine and
enhance this novel diagnostic method.
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Multimedia Appendix 1
Codebook and questionnaire (in Chinese).
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Multimedia Appendix 2
Codebook and questionnaire (in English).
[DOCX File , 17 KB - ai_v3i1e54885_app2.docx ]

References
1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019;15(5):288-298. [doi:

10.1038/s41574-019-0176-8] [Medline: 30814686]
2. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev

2012;70(1):3-21 [FREE Full text] [doi: 10.1111/j.1753-4887.2011.00456.x] [Medline: 22221213]
3. Pi-Sunyer X. The medical risks of obesity. Postgrad Med 2009;121(6):21-33 [FREE Full text] [doi:

10.3810/pgm.2009.11.2074] [Medline: 19940414]
4. Tremmel M, Gerdtham UG, Nilsson PM, Saha S. Economic burden of obesity: a systematic literature review. Int J Environ

Res Public Health 2017;14(4):435 [FREE Full text] [doi: 10.3390/ijerph14040435] [Medline: 28422077]
5. Munjal S, Sharma A, Chhabra N, Panda N. Perceptual, aerodynamic and acoustic evaluation of vocal characteristics in

subjects with obesity. J Voice 2024;38(3):660-665. [doi: 10.1016/j.jvoice.2021.10.019] [Medline: 34969555]
6. Bosso JR, Martins RHG, Pessin ABB, Tavares ELM, Leite CV, Naresse LE. Vocal characteristics of patients with morbid

obesity. J Voice 2021;35(2):329.e7-329.e11. [doi: 10.1016/j.jvoice.2019.09.012] [Medline: 31648859]
7. Solomon N, Helou L, Dietrich-Burns K, Stojadinovic A. Do obesity and weight loss affect vocal function? Semin Speech

Lang 2011;32(1):31-42. [doi: 10.1055/s-0031-1271973] [Medline: 21491357]
8. Zammit C, Liddicoat H, Moonsie I, Makker H. Obesity and respiratory diseases. Int J Gen Med 2010;3:335-343 [FREE

Full text] [doi: 10.2147/IJGM.S11926] [Medline: 21116339]
9. Bonilha HS, White L, Kuckhahn K, Gerlach TT, Deliyski DD. Vocal fold mucus aggregation in persons with voice disorders.

J Commun Disord 2012;45(4):304-311 [FREE Full text] [doi: 10.1016/j.jcomdis.2012.03.001] [Medline: 22510352]
10. de Souza LBR, Santos MMD. Body mass index and acoustic voice parameters: is there a relationship? Braz J Otorhinolaryngol

2018;84(4):410-415 [FREE Full text] [doi: 10.1016/j.bjorl.2017.04.003] [Medline: 28545946]
11. da Cunha MGB, Passerotti GH, Weber R, Zilberstein B, Cecconello I. Voice feature characteristic in morbid obese population.

Obes Surg 2011;21(3):340-344. [doi: 10.1007/s11695-009-9959-7] [Medline: 19763710]
12. Amato F, Fasani M, Raffaelli G. Obesity and gastro-esophageal reflux voice disorders: a machine learning approach. 2022

Presented at: IEEE International Symposium on Medical Measurements and Applications; June 22, 2022; Messina, Italy.
[doi: 10.1109/memea54994.2022.9856574]

13. An R, Shen J, Xiao Y. Applications of artificial intelligence to obesity research: scoping review of methodologies. J Med
Internet Res 2022;24(12):e40589 [FREE Full text] [doi: 10.2196/40589] [Medline: 36476515]

14. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing
framework and future research agenda. J Ambient Intell Humaniz Comput 2023;14(7):8459-8486 [FREE Full text] [doi:
10.1007/s12652-021-03612-z] [Medline: 35039756]

15. Chanda A, Chatterjee S. Predicting obesity using facial pictures during COVID-19 pandemic. Biomed Res Int
2021;2021:6696357. [doi: 10.1155/2021/6696357] [Medline: 33778081]

16. Body weight determination for adults. National Health Commission of the People's Republic of China. 2013. URL: http:/
/www.nhc.gov.cn/wjw/yingyang/201308/a233d450fdbc47c5ad4f08b7e394d1e8.shtml [accessed 2023-08-31]

17. Redmon J, Divvala S, Girshick R, Farhadi A. You Only Look Once: unified, real-time object detection. arXiv Preprint
posted online on Jun 8, 2015 [FREE Full text] [doi: 10.48550/arXiv.1506.02640]

18. Fagherazzi G, Fischer A, Ismael M, Despotovic V. Voice for health: the use of vocal biomarkers from research to clinical
practice. Digit Biomark 2021;5(1):78-88 [FREE Full text] [doi: 10.1159/000515346] [Medline: 34056518]

19. Amato F, Saggio G, Cesarini V, Olmo G, Costantini G. Machine learning- and statistical-based voice analysis of parkinson’s
disease patients: a survey. Expert Syst Appl 2023;219:119651. [doi: 10.1016/j.eswa.2023.119651]

20. Dejonckere PH. Assessment of Voice and Respiratory Function. New York, NY: Springer eBooks; 2009:11-26.
21. Tong JY, Sataloff RT. Respiratory function and voice: the role for airflow measures. J Voice 2022;36(4):542-553. [doi:

10.1016/j.jvoice.2020.07.019] [Medline: 32981809]
22. Celebi S, Yelken K, Develioglu ON, Topak M, Celik O, Ipek HD, et al. Acoustic, perceptual and aerodynamic voice

evaluation in an obese population. J Laryngol Otol 2013;127(10):987-990. [doi: 10.1017/S0022215113001916] [Medline:
24124897]

23. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol (1985)
2010;108(1):206-211 [FREE Full text] [doi: 10.1152/japplphysiol.00694.2009] [Medline: 19875713]

24. Kok P, Seidell JC, Meinders AE. De waarde en de beperkingen van de 'body mass index' (BMI) voor het bepalen van het
gezondheidsrisico van overgewicht en obesitas [The value and limitations of the body mass index (BMI) in the assessment
of the health risks of overweight and obesity]. Ned Tijdschr Geneeskd 2004;148(48):2379-2382. [doi:
10.47671/tvg.65.05.2000493]

25. Bonsignore MR. Obesity and obstructive sleep apnea. Handbook Exp Pharmacol 2022;274:181-201. [doi:
10.1007/164_2021_558]

JMIR AI 2024 | vol. 3 | e54885 | p.719https://ai.jmir.org/2024/1/e54885
(page number not for citation purposes)

Huang et alJMIR AI

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=ai_v3i1e54885_app2.docx&filename=1e3a8db4a346433c22e052388e924f46.docx
https://jmir.org/api/download?alt_name=ai_v3i1e54885_app2.docx&filename=1e3a8db4a346433c22e052388e924f46.docx
http://dx.doi.org/10.1038/s41574-019-0176-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30814686&dopt=Abstract
https://europepmc.org/abstract/MED/22221213
http://dx.doi.org/10.1111/j.1753-4887.2011.00456.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22221213&dopt=Abstract
https://europepmc.org/abstract/MED/19940414
http://dx.doi.org/10.3810/pgm.2009.11.2074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19940414&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph14040435
http://dx.doi.org/10.3390/ijerph14040435
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28422077&dopt=Abstract
http://dx.doi.org/10.1016/j.jvoice.2021.10.019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34969555&dopt=Abstract
http://dx.doi.org/10.1016/j.jvoice.2019.09.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31648859&dopt=Abstract
http://dx.doi.org/10.1055/s-0031-1271973
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21491357&dopt=Abstract
https://europepmc.org/abstract/MED/21116339
https://europepmc.org/abstract/MED/21116339
http://dx.doi.org/10.2147/IJGM.S11926
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21116339&dopt=Abstract
https://europepmc.org/abstract/MED/22510352
http://dx.doi.org/10.1016/j.jcomdis.2012.03.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22510352&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1808-8694(17)30055-1
http://dx.doi.org/10.1016/j.bjorl.2017.04.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28545946&dopt=Abstract
http://dx.doi.org/10.1007/s11695-009-9959-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19763710&dopt=Abstract
http://dx.doi.org/10.1109/memea54994.2022.9856574
https://www.jmir.org/2022/12/e40589/
http://dx.doi.org/10.2196/40589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36476515&dopt=Abstract
https://europepmc.org/abstract/MED/35039756
http://dx.doi.org/10.1007/s12652-021-03612-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35039756&dopt=Abstract
http://dx.doi.org/10.1155/2021/6696357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33778081&dopt=Abstract
http://www.nhc.gov.cn/wjw/yingyang/201308/a233d450fdbc47c5ad4f08b7e394d1e8.shtml
http://www.nhc.gov.cn/wjw/yingyang/201308/a233d450fdbc47c5ad4f08b7e394d1e8.shtml
https://arxiv.org/abs/1506.02640
http://dx.doi.org/10.48550/arXiv.1506.02640
https://doi.org/10.1159/000515346
http://dx.doi.org/10.1159/000515346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34056518&dopt=Abstract
http://dx.doi.org/10.1016/j.eswa.2023.119651
http://dx.doi.org/10.1016/j.jvoice.2020.07.019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32981809&dopt=Abstract
http://dx.doi.org/10.1017/S0022215113001916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24124897&dopt=Abstract
https://journals.physiology.org/doi/10.1152/japplphysiol.00694.2009?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1152/japplphysiol.00694.2009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19875713&dopt=Abstract
http://dx.doi.org/10.47671/tvg.65.05.2000493
http://dx.doi.org/10.1007/164_2021_558
http://www.w3.org/Style/XSL
http://www.renderx.com/


26. Bauhoff S. Systematic self-report bias in health data: impact on estimating cross-sectional and treatment effects. Health
Serv Outcomes Res Methodol 2011;11(1-2):44-53. [doi: 10.1007/s10742-011-0069-3]

Abbreviations
AI: artificial intelligence
YOLO: You Only Look Once

Edited by K El Emam, B Malin; submitted 26.11.23; peer-reviewed by D Singh, SF Qadri, L Huang; comments to author 10.02.24;
revised version received 10.03.24; accepted 13.06.24; published 25.07.24.

Please cite as:
Huang J, Guo P, Zhang S, Ji M, An R
Use of Deep Neural Networks to Predict Obesity With Short Audio Recordings: Development and Usability Study
JMIR AI 2024;3:e54885
URL: https://ai.jmir.org/2024/1/e54885 
doi:10.2196/54885
PMID:

©Jingyi Huang, Peiqi Guo, Sheng Zhang, Mengmeng Ji, Ruopeng An. Originally published in JMIR AI (https://ai.jmir.org),
25.07.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR AI, is properly cited. The complete bibliographic information, a link to the
original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

JMIR AI 2024 | vol. 3 | e54885 | p.720https://ai.jmir.org/2024/1/e54885
(page number not for citation purposes)

Huang et alJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.1007/s10742-011-0069-3
https://ai.jmir.org/2024/1/e54885
http://dx.doi.org/10.2196/54885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Evaluating Literature Reviews Conducted by Humans Versus
ChatGPT: Comparative Study

Mehrnaz Mostafapour1, PhD; Jacqueline H Fortier1, MSc; Karen Pacheco1, MSc; Heather Murray1,2, MD, MSc; Gary

Garber1,3,4, MD, FRCPC
1Canadian Medical Protective Association, Ottawa, ON, Canada
2Department of Emergency Medicine, Queen's University, Kingston, ON, Canada
3Ottawa Hospital Research Institute, Ottawa, ON, Canada
4Department of Medicine and the School of Public Health and Epidemiology, University of Ottawa, Ottawa, ON, Canada

Corresponding Author:
Gary Garber, MD, FRCPC
Canadian Medical Protective Association
875 Carling Ave
Ottawa, ON, K1S 5P1
Canada
Phone: 1 800 267 6522
Email: research@cmpa.org

Abstract

Background: With the rapid evolution of artificial intelligence (AI), particularly large language models (LLMs) such as
ChatGPT-4 (OpenAI), there is an increasing interest in their potential to assist in scholarly tasks, including conducting literature
reviews. However, the efficacy of AI-generated reviews compared with traditional human-led approaches remains underexplored.

Objective: This study aims to compare the quality of literature reviews conducted by the ChatGPT-4 model with those conducted
by human researchers, focusing on the relational dynamics between physicians and patients.

Methods: We included 2 literature reviews in the study on the same topic, namely, exploring factors affecting relational dynamics
between physicians and patients in medicolegal contexts. One review used GPT-4, last updated in September 2021, and the other
was conducted by human researchers. The human review involved a comprehensive literature search using medical subject
headings and keywords in Ovid MEDLINE, followed by a thematic analysis of the literature to synthesize information from
selected articles. The AI-generated review used a new prompt engineering approach, using iterative and sequential prompts to
generate results. Comparative analysis was based on qualitative measures such as accuracy, response time, consistency, breadth
and depth of knowledge, contextual understanding, and transparency.

Results: GPT-4 produced an extensive list of relational factors rapidly. The AI model demonstrated an impressive breadth of
knowledge but exhibited limitations in in-depth and contextual understanding, occasionally producing irrelevant or incorrect
information. In comparison, human researchers provided a more nuanced and contextually relevant review. The comparative
analysis assessed the reviews based on criteria including accuracy, response time, consistency, breadth and depth of knowledge,
contextual understanding, and transparency. While GPT-4 showed advantages in response time and breadth of knowledge,
human-led reviews excelled in accuracy, depth of knowledge, and contextual understanding.

Conclusions: The study suggests that GPT-4, with structured prompt engineering, can be a valuable tool for conducting
preliminary literature reviews by providing a broad overview of topics quickly. However, its limitations necessitate careful expert
evaluation and refinement, making it an assistant rather than a substitute for human expertise in comprehensive literature reviews.
Moreover, this research highlights the potential and limitations of using AI tools like GPT-4 in academic research, particularly
in the fields of health services and medical research. It underscores the necessity of combining AI’s rapid information retrieval
capabilities with human expertise for more accurate and contextually rich scholarly outputs.

(JMIR AI 2024;3:e56537)   doi:10.2196/56537
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OpenAIs; chatGPT; AI vs. human; literature search; Chat GPT performance evaluation; large language models; artificial intelligence;
AI; algorithm; algorithms; predictive model; predictive models; literature review; literature reviews
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Introduction

Artificial intelligence (AI) is a rapidly evolving technology that
combines computer programming with large data sets to enable
software to perform tasks. Generative AI uses this technology
to synthesize content; the system is trained on large volumes
of data to identify patterns until it can recognize those patterns
and generate novel responses to queries. Large language models
(LLMs), such as ChatGPT, are a form of generative AI wherein
the software is trained on extensive textual data sets and can
generate a response to prompts and questions [1].

AI in general and LLMs in particular are in a period of
exponential growth, and researchers are exploring their utility
to perform tasks with variable results [1-5]. Previous studies
have shown how these tools can help to advance research [4].
One area where there is potential to realize efficiencies is in the
creation of literature reviews and syntheses. The pace of
scientific publication has been rapidly expanding [6], and AI
tools may provide a useful starting point and substantial time
savings by automating some elements of a literature search.
However, there is little research that compares the results
generated using AI with those generated by skilled human
researchers.

The purpose of this study is to conduct a literature review using
OpenAI’s ChatGPT-4 model (“GPT-4”) and then conduct a
comparative analysis against a review conducted by human
researchers.

The way researchers use these tools and optimize the language
used to generate a response from ChatGPT, known as prompt
engineering, directly impacts the quality of results [7]. Clear,
concise, neutral, structured, and specific prompts reduce the
model’s tendency to respond with generic or off-topic responses,
as well as generate an unsubstantiated or false response, also
termed an AI hallucination [8]. Therefore, in order to conduct
this study, we have introduced an approach to prompt
engineering that may assist researchers who wish to use GPT-4
or other LLMs to generate literature reviews.

Methods

Overview
We started with a completed literature review exploring the
factors influencing the relational dynamics between the
physician and the patient that motivate patients to file
medicolegal complaints against physicians [9]. Using this review
as a reference standard, we then tasked Open AI’s GPT-4 model
(training data updated in September 2021) with producing a
literature review on the same topic. Subsequently, we compared
the results generated by GPT-4 and the literature review
conducted by human experts. It should be noted that while
GPT-4 was used to generate a literature review and make
suggestions for the paper title, it was not used to write this paper.

Human Literature Review
The first author conducted a traditional literature review to
identify what factors affect relationships between physicians
and patients. They used a systematic approach to ensure
transparency and reproducibility. The review included a mix of
studies and assessed both qualitative and quantitative data
together through thematic analysis [10]. With the help of a
research librarian, they developed a search strategy using
Medical Subject Headings (MeSH) terms, keywords, and key
phrases for a single database (Ovid MEDLINE) to identify
articles related to physician-patient relationships. The search
strategy was calibrated to identify articles that were most
relevant to the research question, rather than prioritizing an
approach that would capture every potentially relevant paper
(detailed in the “Search strategy developed for literature search
led by human researchers” section in Multimedia Appendix 1).

Subsequently, the librarian screened titles and abstracts, and
then the main author screened full-text papers for inclusion
against predefined eligibility criteria. Papers had to be empirical
research studies or literature reviews that discussed relational
factors between physicians and patients that affected patient
satisfaction and medicolegal complaints. Studies were excluded
if they were not based on empirical research (eg, editorials,
commentaries, and reports) or if they were unrelated to the
research question (Textbox 1; Figure 1).

Textbox 1. The eligibility criteria to identify relevant studies.

Inclusion criteria

• The study described an empirical research study or a literature review.

• The study focused on or described relational factors between physicians and patients impacting patients’ satisfaction.

• The record focused on or described the relationship between patients’ satisfaction and medicolegal risk against physicians.

• The study focused on or described medicolegal complaints against physicians caused by relational problems between patients and physicians.

Exclusion criteria

• The study was not empirical research, for example, editorials, commentaries, and reports.

• The study contained no explicit mention of physicians and patients’ relationships.

• The study was not related to either patients’ satisfaction or medicolegal risk against physicians.
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Figure 1. Overview of article screening and inclusion into the study.

We used a thematic analysis approach to review and synthesize
the included manuscripts to identify the relational factors that
influence patient satisfaction and medicolegal complaints, and
we reported the findings in a published narrative review [9].

AI Prompt Engineering for the Literature Search
Previous work suggested that the use of single prompts may
not be very effective for complex tasks [2]. We began our
process with a single prompt for the literature search (detailed
in the “Single Prompt” section in Multimedia Appendix 1), and
the results were clearly inadequate, confirming these findings.
Consequently, we developed a series of prompts in an iterative,
sequential format. This approach operated on the premise that
GPT-4 would benefit from incremental and iterative guidance
to yield optimal results. In this approach, the researcher designed
sequential prompts based on the assessment of the previous

responses generated by GPT-4, starting from a general prompt,
and designing subsequent prompts to refine the output toward
the desired form.

An initial series of prompts was used to explore GPT-4’s breadth
of knowledge about the factors impacting relationships between
physicians and patients. The first prompt was general, simple,
and short, asking GPT-4 to list relevant factors to the subject
matter. Since we did not know all the relevant factors related
to the topic, subsequent prompts were designed to ask for more
factors to extend the list of factors and reinforce previous
instructions while specifying the desired tone. Further prompts
extended the factors and ensured the validity of their content
by introducing additional criteria such as the number of
sentences and asking for precise references (Table 1; detailed
in the “Identifying relational factors” section in Multimedia
Appendix 1).
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Table 1. Iterative prompts used to generate contributing factors.

PromptsStep

Write a literature review on the relational problems between physicians and patients that lead to medicolegal complaints
against physicians, from a health service researcher perspective, and provide precise references.

1 

Please add at least 15 more factors related to relational problems between physicians and patients that lead to medicolegal
complaints against physicians to the list, considering the sensitivity, precision, and accuracy of information.

2 

You provided me with 21 relational factors between physicians and patients that contribute to the likelihood of filing a
medicolegal case against a physician. Please write an elaborated, scientific, and accurate description for each factor that
includes at least 15 sentences, and provide at least two real and precise references that support your arguments.

3 

In order to replicate the format of the literature review done by
human researchers, the researcher who had conducted the
literature review explored a series of prompts to guide GPT-4
through a more in-depth exploration of the identified relational
factors. They began by prompting GPT to suggest
evidence-based ways to improve each relational factor (eg,
“please also describe how to address communication issues
using methods derived from scientific publications and
research”), which were then evaluated. In cases where the
proposed strategy was deemed unsuitable, they either
recommended a specific alternative to replace the initial strategy
or asked ChatGPT-4 to generate a different one. If the new
strategy met the criteria, they instructed GPT-4 to incorporate
it into the written description. For example, when asked about

communication issues, GPT-4 first suggested the Four Habit
Model [11], which they evaluated to be somewhat out of date.
With further prompting, GPT-4 suggested newer strategies to
improve communication between physicians and patients, such
as the teach-back method and the Shared Decision-Making
Model [12], which they then instructed GPT-4 to incorporate
in the description. They were able to make these adjustments
because they used ChatGPT search while armed with subject
matter expertise and an understanding of the available literature
for this topic. They leveraged this knowledge to refine the
approach to prompt engineering during the process (Table 2;
detailed in “Exploring communication as a factor” in Multimedia
Appendix 1).

Table 2. Iterative prompts used to elaborate on each factor.

PromptsStep

Please also describe how to address communication issues using methods derived from scientific publications and research.1 

Is the Four Habit Model the most cited and most recent paper on how to address communication problems? Can you please
find a balance between the most cited research papers and the most recent ones, when trying to find references to explain
the problem and to address the problem?

2 

Please explain the teach-back model and shared decision-making in communication issues using relevant references.3 

Comparison of Human Versus AI Literature Reviews
To the best of our knowledge, there are no validated tools or
checklists to compare human and AI literature reviews.
Therefore, we chose to compare the reviews subjectively with
respect to the accuracy, response time, comprehensibility,
consistency, breadth and depth of knowledge, contextual
understanding, and transparency of the outputs. The criteria are
defined as follows:

1. Accuracy: we defined the accuracy of the outcome as the
percentage of correct responses.

2. Response time: we defined response time as the time it took
to conduct the review, including identifying factors and
demonstrating what they are.

3. Consistency: we defined consistency as the degree of
reliability and stability in the results of a study when it is
repeated under similar conditions to ensure it can be
replicated.

4. Breadth of knowledge: we defined the breadth of knowledge
as the extent and range of information one has access to
across various subjects and disciplines.

5. Contextual understanding: contextual understanding refers
to the ability to comprehend the meaning and relevance of

information within its specific context. It goes beyond just
the literal meaning of words but also the nuances and
implications shaped by the situation and the specific
circumstances under which the communication occurs [13].

Ethical Considerations
All the studies done at the Canadian Medical Protective
Associations have received ethics approval from the ethics
review panel of the Advarra Institutional Review Board
(Protocol #00020829).

Results

Exploring Literature Search Using AI (GPT-4 Model)
Using iterative prompts and starting from a general prompt,
GPT-4 initially generated 6 relational factors. After being
repeatedly asked for more factors, it became evident that GPT-4
began to produce unrelated factors after reaching 21, likely due
to hallucinations. Overall, GPT-4 generated a list of 21 relational
factors and provided 54 references (Table 3). Of these 21 factors,
14% (n=3) were identified as irrelevant. About 24% (n=13) of
the references were identified as somewhat related to the topic
but not particularly strong in their relevance, and 7.5% (n=4)
were identified as irrelevant.
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Table 3. Factors affecting the relationships between physicians and patients that lead to patient dissatisfaction and medicolegal complaints as identified
in human- and artificial intelligence (AI)–led literature reviews.

AI-generated literature review, following iterative prompts 1-3Human literature review

1. Communication issues

2. Lack of informed consent

3. Perceived negligence or incompetence

4. Mismatched expectations

5. Perceived lack of care or empathy

6. Systemic issues

7. Cultural and language barriers

8. Failure to follow-up

9. Breakdown in continuity of care

10. Patient autonomy disregarded

11. Trust erosion

12. Financial conflicts of interest

13. Power dynamics

14. Failure to respect confidentiality

15. Inadequate documentationa

16. Unaddressed patient concerns

17. Provider burnout

18. Poor coordination among care teamsa

19. Patient’s previous negative experiences

20. High patient expectations

21. Medical complexitya

Communication

• Understanding patients’ concerns and expectations
• Clarity of communication
• Information sharing and transparency
• Tone and attitude

Individual characteristics

• Physician characteristics
• Patient characteristics

Perceived care and empathy

Health care system and policies

• Navigating the health care system
• Wait times
• Resource constraints

aFactors indicated with an asterisk were identified by GPT-4 but were judged to be inaccurate by human researchers.

GPT-4 demonstrated an impressive ability to retrieve a breadth
of information; however, our assessment showed that this
information could be superficial, requiring an in-depth
investigation to ensure its reliability and validity. Since we were
uncertain how many relevant factors were related to the topic,
we prompted GPT-4 to extend the list of relevant factors. We
also observed that GPT-4 will not communicate to its users
when the topic has been saturated or when to stop asking for
more information. For example, when we pushed it to go beyond
contributing to the relational problems between physicians and
patients, GPT-4 provided 30 factors, but the additional factors
were increasingly irrelevant or obviously incorrect.

Although the description provided by GPT-4 for each factor
was initially short and concise, with prompting, the elaborations
for each factor became more detailed and comprehensive. In
addition, we noted that GPT-4 initially displayed limitations in
adhering to prompted numerical guidelines, such as requesting
a specific sentence count, word limit, or number of references,
but it started to better follow the instructions when they were
reinforced in subsequent prompts.

Our findings showed that GPT-4 can offer relevant responses
to questions; however, there were instances where more precise,
suitable, or applicable alternative answers existed. For example,
when tasked with suggesting a mitigation strategy for
communication issues between physicians and patients, GPT-4’s
initial recommendation was the Four Habits Model. However,
upon deeper expert analysis, the researchers determined that
the teach-back method and Shared Decision-Making Model

were more fitting for the review. This underscores that initial
responses from GPT-4, although relevant, may require further
evaluation to determine their optimal relevance and applicability.

Human Literature Review
A total of 120 articles were identified for review. Title and
abstract screening against the eligibility criteria yielded 113
papers that were directly relevant to our objectives, of which
92 were included for full-text reading and analysis. Two
researchers (MM and JHF) reviewed the included articles and
identified factors that affected the physician-patient relationship
in ways that contributed to patient satisfaction, dissatisfaction,
and potential medicolegal complaints. These factors were sorted
into the themes and subthemes displayed in Table 3.

Comparison of Human Versus AI Literature Reviews

Overview
While both reviews identified factors influencing the relational
problems between physicians and patients, there were important
differences. In the human-led literature search, we used a
semistructured approach to find relevant references, then
conducted a thematic analysis to group the factors into themes
and convey the concepts clearly to the target audience. In
contrast, GPT-4 used a proprietary search algorithm to explore
the web, find relevant articles, and identify relevant factors.
Also, it only followed the instructions to list the factors, so there
was no synthesis or grouping of the factors. A qualitative
comparison of the categories below can be found in Figure 2.
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Figure 2. Qualitative comparison of reviews conducted by GPT-4 versus. human researchers. Circle sizes (large to small) qualitatively represent
differences in criteria between GPT-4 and human researchers; they are not intended for precise measurement.

Accuracy
Of the 21 relational factors that were produced by GPT-4, 86%
(n=18) were assessed to be accurate based on our subjective
assessment (Table 3; detailed in the “Identifying relational
factors” section in Multimedia Appendix 1). As noted above,
GPT-4 will continue to suggest factors based on the user’s
prompting, so the accuracy rate would decline if the user kept
asking for additional factors.

In contrast, experienced human researchers have the nuanced
judgment to identify the relevant factors and eliminate the ones
that are not relevant to the subject matter. Typically, they can
offer a coherent rationale to justify their identification of a factor
as either relevant or irrelevant to the subject matter. In the
review conducted by researchers, all the identified factors are
considered quite relevant to the subject matter, and their
relevance is supported by scientific evidence.

Response Time
The AI model generated results within seconds, and the entire
series of experiments and prompts were conducted over a few
days. The human-led literature review was not conducted as a
time trial and occurred as part of a researcher’s regular activities
over the course of several months. Had the review been
conducted explicitly for this study, it would have required
substantially more time for human researchers to search the

literature, read and comprehend the papers, and produce results,
compared with GPT-4. Our evaluation indicated that OpenAI’s
GPT-4 model demonstrated an unparalleled advantage in
response time.

Consistency
In general, the GPT-4 model produced reliable responses to
prompts, but similar prompts could sometimes result in variable
outputs. We observed that shorter and more precise prompts
were more likely to yield consistent results, whereas complexity
and length in prompts led to more variability in outputs. When
conducting literature reviews, human researchers produce fairly
consistent results when they have adequate resources (eg, access
to a skilled health research librarian for literature search
strategies) and follow established techniques (eg, PRISMA
[Preferred Reporting Items for Systematic Review and
Meta-Analysis] for systematic reviews) [10].

Breadth and Depth of Knowledge
Our experiments demonstrated a considerable breadth of
knowledge within the GPT-4 model, significantly surpassing
that of human researchers. This was particularly evident when
the model almost instantly generated an extensive list of
contributing factors to relational problems between physicians
and patients, as well as a comprehensive list of potential
mitigation strategies for each factor.
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While breadth of knowledge is valuable when conducting
literature reviews, synthesizing the information derived from
such a review requires deep knowledge and the ability to apply,
analyze, and evaluate information related to that topic. This is
an area where the GPT-4 model fell short, and a human
researcher with experience in a specific subject area may have
an advantage.

Contextual Understanding
While LLMs are nonsentient and do not understand meaning
in a traditional sense, our experiments revealed that GPT-4 was
able to produce outputs that included a satisfactory level of
contextual information to allow readers to understand and link
key concepts. For example, through iterative prompting, the
software was able to produce a list of physician-patient relational
issues that included factors as varied as power dynamics,
provider burnout, medical complexity, and cultural and language
barriers. This level of context was improved by iterative
feedback and prompting, providing expanded definitions and
additional references [13]. However, given the fact that GPT-4
started to hallucinate when asked to generate more factors, we
concluded that it did not have a deep contextual understanding
to stop generating meaningless outcomes. On the other hand,
human researchers possess an understanding of meaning that
consistently results in superior proficiency in interpreting and
responding to nuanced contextual elements in this literature
search, which would prevent such errors.

Transparency
Another area where human researchers have an advantage is
transparency. Human researchers can describe their literature
search methods, state and rationalize eligibility criteria, explain
the inclusion or exclusion of various articles, describe the
approaches used in synthesis, and answer specific questions
about their methods. There is significantly less transparency in
the way that LLMs process prompts, collect information, and
generate outputs at this time. Even when prompted to explain
how it completed its literature review, GPT-4 will explain
broadly that it drew upon diverse training data but cannot
provide a full list of the relevant resources it reviewed, and so
the backend review process is almost hidden.

Discussion

Overview
Many researchers are considering how AI tools can support
their research. As with any new technology, there is a spectrum
of uptake from “early adopters” to “stubborn resistors.” This
paper explored how a widely available LLM tool, GPT-4,
conducts literature reviews and compares the generated
outcomes with a similar review conducted by human researchers.

We found that human-generated literature reviews were more
transparent, consistent, and accurate, as long as the literature
review was approached systematically and the researcher had
sufficient experience and expertise in the subject area. In
contrast, GPT-4–generated results were much faster, provided
an impressive breadth of content, and were reasonably accurate.
We also found that the model was often inconsistent in its

outputs and at times generated irrelevant information, especially
if forced to generate a certain number of factors.

One of the fundamental differences between the literature review
generated by GPT-4 and humans was in terms of contextual
understanding. We attribute this difference to one often-cited
limitation of LLMs: their status as so-called “stochastic parrots”
[14] that use statistical probabilities of which word is most likely
to be next rather than understanding meaning. With prompting,
GPT-4 rapidly produced an extensive list of factors that affect
the relationship between physicians and patients that appeared
very relevant. However, a deeper examination by experts
identified inaccurate outputs among accurate ones. This
underscores the necessity of expert evaluation in discerning the
nuanced veracity of the information generated by GPT-4.

In fact, in this study, we identified 2 potential scenarios where
researchers might encounter challenges while working with
GPT-4. First, effective communication with the model,
specifically through adept prompt engineering, is crucial.
Inadequate or improper prompting, particularly for complex
tasks like conducting a literature review, leads to unsatisfactory
results (detailed in the “Single prompt” section in Multimedia
Appendix 1). Second, novice researchers, unfamiliar with a
specific field, might use effective prompting techniques and
obtain a broad array of information. This breadth of knowledge
can be initially impressive, yet it is important to recognize that
the generated content may include errors or inaccurate
information. It is for this reason that researchers must carefully
review the results to identify and correct potential inaccuracies.
The importance of expert oversight in evaluating the reliability
of GPT-4–generated content is clear.

This paper introduces an iterative algorithm to effectively search
the literature to address the first challenge. We suggested an
approach to prompt engineering that uses directive iterative
prompts to guide GPT-4 to develop a literature review for
researchers. This structured approach includes 2 phases. In the
initial phase, researchers are advised to formulate a sequence
of prompts that is broad yet precise, progressively becoming
more specific. This approach should be designed to
incrementally introduce and reinforce instructions, guiding
GPT-4 toward generating an output that offers a thorough and
comprehensive perspective on a particular subject. In the second
phase, the researcher can independently query elements,
concepts, or factors identified in the first phase to explore these
in greater detail. At all phases of the process, the researcher’s
own understanding of the subject will shape the prompts and
drastically improve GPT-4’s literature review, suggesting
relevant ideas and references while guiding the software away
from outdated or incorrect concepts.

We suggest approaching GPT-4 as a research assistant who
possesses limited contextual expertise and occasionally
synthesizes responses entirely to overcome the second challenge.
This requires substantial insight and knowledge from the
researcher to diligently guard against the so-called
“hallucinations” of the software. Such vigilance is crucial, as
GPT-4 can produce convincing yet entirely fabricated content
and references [2,15].

JMIR AI 2024 | vol. 3 | e56537 | p.727https://ai.jmir.org/2024/1/e56537
(page number not for citation purposes)

Mostafapour et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


For this reason, it seems that GPT-4 might be a more useful
tool for experienced researchers looking for wide surveys on a
particular topic. The human researcher’s knowledge and
expertise in a specific area allows them to develop appropriate
prompts, iterate with the software to refine the outputs, introduce
relevant frameworks and key references, and ultimately guide
the process toward the desired output with a clear-eyed
understanding of the limitations of what is produced. However,
it can also offer different benefits to other audiences, including
more novice researchers. Leveraging its extensive knowledge
base and inhuman quickness, GPT-4 can help newcomers
familiarize themselves with the domain under review. The
software acts as an information assistant, offering a wide
spectrum of knowledge within a defined domain. In addition,
for researchers who have few resources or constrained schedules,
it can be used to facilitate the literature review process by
offering a robust preliminary draft outline, encompassing key
concepts that serve as foundational building blocks. Other
studies have explored the potential use of GPT-4 and other
LLMs for research tasks such as scholarly writing [2,16],
medical writing [15,17,18], and systematic reviews [19]. Still,
the rapid improvement in generative AI software has also
spurred rapid growth in concerns, such as those related to the
ethics of ChatGPT as a coauthor [20] or the potential for it to
be used to disseminate misinformation and promote plagiarism
[4]. As with any nascent technology, transparency around its
use will be essential, and caution is perhaps warranted.

Overall, this study clearly demonstrates the potential utility of
GPT-4, an LLM, in supporting the conduct of literature reviews,
particularly when an iterative feedback approach to prompt
engineering is used. The software successfully reviewed the
literature, identified several factors relevant to the subject matter,
and was able to respond to prompts requesting additional detail
and references. In some instances, and for some researchers,
the benefits of using GPT-4 for a literature review (including
good breadth of knowledge, reasonable accuracy, and an
impressive response time) outweigh the identified shortcomings
(including some inconsistency, some inaccuracy, and less depth
of knowledge). We suggest that our structured approach to
prompt engineering may serve as a model for researchers
looking to integrate generative AI into their literature searches.
Given the detailed assessment of the generated outcomes with
human-led reviews, we recommend approaching these models
as an assistant rather than a wise professor; researchers relying
on GPT-4 to provide them with a full and nuanced understanding
of a complex or rapidly-evolving subject do so at their own
peril.

Limitations and Future Research
This study has some limitations. Given the iterative nature of
our approach to prompting GPT-4, we did not predefine our
prompts or methods, and the researcher leading the prompts
(MM) had extensive experience in the subject area; these factors
undoubtedly influenced our prompts and thus our outcomes.
Our approach to comparing the human- and AI-led literature
reviews was subjective, exploratory, and qualitative.

We acknowledge the limitations posed by using a single
database and using a human-conducted review as the comparison

standard. However, the opaque nature of ChatGPT’s search
strategy presents challenges in directly comparing search
methodologies. These aspects are critical for interpreting our
findings and suggest avenues for future research. In addition,
while we have detailed GPT-4’s prompt strategies in the
Multimedia Appendix 1, the proprietary and evolving nature of
its algorithm limits a comprehensive methodological
comparison. Future research should examine AI capabilities in
detecting emerging trends and gaps, enhancing our
understanding of its utility and constraints in academic research.

In our methodology for the human literature search, we used
thematic analysis, a subjective process influenced by the
researchers’ expertise and perspectives. We highlight the
inherent subjectivity of thematic analysis as a key limitation.
Similarly, our review of ChatGPT’s capability to conduct
literature reviews acknowledges the qualitative and subjective
nature of this evaluation. Our aim was to offer insights and
guidance for researchers interested in leveraging AI tools like
ChatGPT in their research endeavors.

This study’s methodology involved the same researcher in both
conducting the human literature review and guiding the AI, as
well as participating in the team that evaluated the outcomes.
While this was intended to leverage the researcher’s subject
expertise, it introduces a potential bias, as the researcher was
not blinded to the results of the human review during the AI
evaluation. This could influence the assessment and
interpretation of the AI-generated content. Future studies might
consider a more diversified evaluation team to further mitigate
bias and enhance the objectivity of the findings.

This study is limited to an in-depth examination of the
ChatGPT-4 model, providing a detailed understanding of this
specific tool’s capabilities and limitations in conducting
literature reviews on a particular topic. While this focus allows
for a precise evaluation of GPT-4, we acknowledge that this
technology is evolving very fast, and it may not reflect the
performance of other AI tools that are designed to handle similar
tasks. Despite this limitation, our work shows the potential of
AI to streamline the initial stages of literature reviews. To build
on this foundation, future research should compare the
effectiveness of various AI models across a broader range of
topics, thereby enhancing our understanding of the general
applicability of AI-assisted literature reviews.

Moreover, upcoming studies should focus on enhancing prompt
engineering methods to further leverage ChatGPT-4’s
capabilities in conducting literature reviews. Addressing
identified limitations, such as improving the depth and
contextual understanding of AI-generated reviews, is crucial.
Expanding the training data sets of ChatGPT-4 to include more
diverse and recent publications could potentially mitigate issues
of relevance and accuracy. In addition, investigating the role of
AI in identifying emerging trends and gaps within specific
research fields, particularly in health services and medical
research, would provide valuable insights into the practical
applications and limitations of AI in academic research.
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Final Notes and Considerations
In incorporating AI such as ChatGPT into academic research,
ethical considerations are crucial. There is the potential for bias
in AI outputs, reflecting the biases present in the training data.
Ensuring transparency about how AI is used, including prompt
selection and response interpretation, is vital for replicability
and trust. Responsible use of AI requires acknowledging its
limitations and not substituting it for human expertise. As AI
technologies become more prevalent in research, it is essential
to establish ethical guidelines that promote awareness of bias,
transparency, and responsible usage. Integrating ChatGPT-4
and similar LLMs into academic research could dramatically
change how we conduct studies, particularly literature reviews.
This technology could speed up our ability to study extensive

fields, enabling quicker responses to new information or gaps
in knowledge. However, it is crucial to remember that the depth
of understanding and critical analysis, which are at the heart of
academic work, cannot be fully replicated by AI.

The use of LLMs might also make research more accessible,
allowing a wider range of voices to contribute to scholarly
conversations. Yet, we must navigate this future carefully,
paying close attention to ethical concerns like bias in AI outputs
and maintaining transparency in AI’s role in research processes.
As we move forward, the challenge will be to harness AI’s
power to enhance our work while ensuring that the essence of
research, critical thinking, depth of analysis, and human insight
remain at the forefront. The potential is vast, but it is also our
responsibility to use these tools wisely.
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Multimedia Appendix 1
(A) Single prompt. (B) Identifying relational factors. (C) Exploring communication as a factor. (D) Search strategy developed
for literature search led by human researchers.
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Abstract

Background: Women have been underrepresented in clinical trials for many years. Machine-learning models trained on clinical
trial abstracts may capture and amplify biases in the data. Specifically, word embeddings are models that enable representing
words as vectors and are the building block of most natural language processing systems. If word embeddings are trained on
clinical trial abstracts, predictive models that use the embeddings will exhibit gender performance gaps.

Objective: We aim to capture temporal trends in clinical trials through temporal distribution matching on contextual word
embeddings (specifically, BERT) and explore its effect on the bias manifested in downstream tasks.

Methods: We present TeDi-BERT, a method to harness the temporal trend of increasing women’s inclusion in clinical trials to
train contextual word embeddings. We implement temporal distribution matching through an adversarial classifier, trying to
distinguish old from new clinical trial abstracts based on their embeddings. The temporal distribution matching acts as a form of
domain adaptation from older to more recent clinical trials. We evaluate our model on 2 clinical tasks: prediction of unplanned
readmission to the intensive care unit and hospital length of stay prediction. We also conduct an algorithmic analysis of the
proposed method.

Results: In readmission prediction, TeDi-BERT achieved area under the receiver operating characteristic curve of 0.64 for
female patients versus the baseline of 0.62 (P<.001), and 0.66 for male patients versus the baseline of 0.64 (P<.001). In the length
of stay regression, TeDi-BERT achieved a mean absolute error of 4.56 (95% CI 4.44-4.68) for female patients versus 4.62 (95%
CI 4.50-4.74, P<.001) and 4.54 (95% CI 4.44-4.65) for male patients versus 4.6 (95% CI 4.50-4.71, P<.001).

Conclusions: In both clinical tasks, TeDi-BERT improved performance for female patients, as expected; but it also improved
performance for male patients. Our results show that accuracy for one gender does not need to be exchanged for bias reduction,
but rather that good science improves clinical results for all. Contextual word embedding models trained to capture temporal
trends can help mitigate the effects of bias that changes over time in the training data.

(JMIR AI 2024;3:e49546)   doi:10.2196/49546

KEYWORDS

natural language processing; NLP; BERT; word embeddings; statistical models; bias; algorithms; gender

Introduction

Background
Word embeddings are machine-learning models that aim to
represent words as real numbered vectors. To train the

embeddings, a large text corpus is needed. Contextualized word
embeddings such as BERT [1], where the representation of a
word depends on its surrounding words, have an immense
impact on performance in various natural language processing
(NLP) tasks. In the clinical domain, embeddings pretrained on
clinical texts can be used to perform biomedical NLP tasks [2]
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or predict clinical outcomes for patients [3]. However, if the
training corpus contains biases, they may be perpetuated by the
embedding model, and affect the performance on downstream
tasks [4-6]. Zhang et al [3] show that word embeddings trained
on clinical texts cause performance gaps for different genders
and races on clinical tasks.

Clinical trials are the main method to evaluate the efficacy of
new treatments on patients, but they may contain biases [7].
For decades, clinical trials excluded women participants [8,9].
The reported reasons for this exclusion include uncertainty about
the effects of the menstrual cycle on trial results [10] and
tragedies that occurred during trials. For instance, after the
thalidomide clinical trial, women of childbearing age were
excluded from early-phase clinical trials [8].
Underrepresentation of women leads to a misunderstanding of
how women respond to various drugs, which ultimately leads
to more adverse drug reactions than in men [11-13]. To mitigate
such phenomena, in 1993 the US Food and Drug Administration
mandated the inclusion of women in trials [8]. Nevertheless,
unequal representation of women persists. Clinical results are
not well analyzed nor reported for the influence of gender [9,14].

However, women’s representation in clinical trials significantly
improves over time due to constant social and legislative efforts
[8]. In a comprehensive study of over 43,000 clinical trial papers
from PubMed [9], the representation of women in 11 disease
categories was analyzed. They found that the number of women
participants from before 1993 until 2018 grew in 6 categories
and was unchanged in 3 more. In the remaining 2 categories,
the female participant proportion was traditionally higher than
the female prevalence—the proportion of female patients out
of all patients with the disease. The decrease indicates that the
proportion grew closer to the actual female prevalence. They
find that in all the categories combined, women’s representation
became more accurate. As women’s representation improves,
discoveries can be less biased toward women, as reflected in
changes in relations between concept embeddings over time
(Multimedia Appendix 1).

Related Work
Existing methods to remove representational gender bias from
word embeddings aim to remove sensitive information, for
example, gender, from the embeddings using data augmentation
[15,16], in-training methods modifying the training objective
[17], or posttraining methods such as projections to subspaces
[4,18,19]. Recently, adversarial training [3,20,21] was also
applied to remove information about protected attributes, for
example, gender or race, from the representations. These
methods aim for a notion of fairness named demographic parity
[22]: an independence between a model’s prediction and the
protected attribute. Indeed, a decision model cannot use the
protected attribute if it is not recoverable from the embeddings.

However, in the clinical domain, demographic parity should
not be applied, since the sensitive attribute (eg, gender) is an
important feature in clinical prediction tasks. Therefore, unlike
previous works about adversarial debiasing, we do not remove
gender information from the embeddings. Instead, we harness
the temporal trend of women’s inclusion that exists in the corpus

of clinical trials to improve the information captured in the
embeddings regarding women.

Another relevant work [23] explored a method where abstracts
were weighted by the number of women who participated in
the trial to train gender-sensitive Word2vec [24] embeddings.
In this work, we aim to explore the benefits of the improvement
in female inclusion over time as an alternative method for
debiasing. We compare our work to the method in the study by
Agmon et al [23] in Multimedia Appendix 2.

The term “temporal distribution matching” was recently used
[25] in an entirely different context: time series forecasting,
where given a series of samples and their labels over time, a
function from samples to labels is learned. Temporal distribution
matching in the context of time series forecasting is a method
to handle temporal covariate shifts that harm the performance
of the learned prediction model. The method is composed of
two phases: (1) detecting the different time periods through
“temporal distribution characterization” and (2) performing
distribution matching on the hidden states of a recurrent neural
network model which is the prediction model. To perform the
distribution matching, a loss term is added to the model
optimization, based on a pairwise distance between the hidden
states of the recurrent neural network after consuming each time
period of the series. There are 2 main reasons why this method
is not applicable to our problem. First, the task is inherently
different: we are interested in learning a word representation
model, which is an unsupervised task, while the study by Du et
al [25] focuses on time series forecasting, which is a supervised
task that requires labels. Second, to calculate a loss term such
as was introduced in the study by Du et al [25] requires
comparing the state of an embedding model after reading all
texts from each time period; embedding models usually do not
support such a long context in a meaningful way. Instead, our
method uses an adversary component to perform the distribution
matching while only looking at 1 abstract at a time. Our method
can be viewed as an adjustment of temporal distribution
matching to the task of word representation learning.

Goal of This Study
One method to use the improvements in clinical trial practices
is to repeat past clinical trials using the new practices. However,
it is not a feasible option due to both ethical concerns and the
costs of clinical trials. From the machine learning point of view,
a naive solution would be to train the embedding model only
on the more recent papers; but such a model is trained on far
less data. This may yield to suboptimal performance on
downstream tasks. We aim to train word embeddings that (1)
make use of the entire data set of clinical trial abstracts, (2)
harness the positive temporal trends in clinical trials, and (3)
achieve high performance on the downstream tasks for the
underrepresented group.

Intuitively, we would like to match the distribution of earlier
clinical findings to that of more recent findings. We present
TeDi-BERT—a temporal distribution matching training method,
applied to BERT word embeddings. In this method, in parallel
with the original training process of the embeddings, an
adversarial temporal classifier tries to distinguish old from new
samples based on their embeddings, while the embedding model
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tries to decrease the adversary’s performance. Intuitively, if the
temporal classifier’s performance is low, then the embeddings
of older clinical trials are similar to those of more recent clinical
trials. The competition between the embedding model and the
temporal classifier acts as a temporal distribution matching
mechanism. We use the adversarial component because
adversarial models were successfully applied in domain
adaptation [26], which is similar to our setting: the different
time periods can be viewed as 2 domains.

While there are methods to tackle model biases directly, in this
work we explore the effects of temporal distribution matching
on bias. Additionally, the proposed method can capture a wide
range of trends, such as the emergence of new diseases and new
practices. However, in this work, we focus on evaluating its
effects on gender bias. Although the method is generic, gender
bias is a real practical problem, where temporal trends have
been present for years [9]. Evaluating other aspects of temporal
distribution matching is left for future work.

We evaluated the model on several tasks, including clinical
tasks, based on the MIMIC-III data set [27], and compared the
performance on female and male patients.

We contributed our code and data sets [28] to the community
to be leveraged for additional tasks where subpopulations are
underrepresented.

Methods

Overview
A word embedding is a mapping from words to real numbered
vectors, such that the vector captures the meaning of the word.
Word embeddings are usually trained on a large corpus of text,
using a semantic task. For example, in BERT [1] embeddings,
some words in the sentence are masked, and the word vectors
of the remaining words are used to predict the masked words.
The loss from this prediction task is then used to tune the word
vectors: the word representations are modified to better perform
the task.

In this work, we describe TeDi-BERT, a temporal distribution
matching training method, applied to BERT. We trained the
word embeddings on PubMed abstracts of clinical trials between
2010 and 2018. We focused on this time range because there
were much fewer clinical trials in ClinicalTrials.gov before
2010, and we used ClinicalTrials.gov to filter the clinical trial
abstracts.

One could argue that a better data set to use for training is EHR
data, such as the medical notes from MIMIC-III. Numerous
factors contributed to our decision not to pursue that course of
action. The first is a technical reason: the timestamps available
in MIMIC-III were randomly shifted to preserve patient privacy,
so visits from different patients are not guaranteed to be in the
correct order. Second, the practices and methods in these
medical notes represent the conventions used in a single place
of medical care, unlike clinical trials which are more diverse,
and cover practices and methods from different geographic
places. Finally, to validate our choice of training data set, we
conducted a qualitative analysis of the trends that exist in clinical
trial abstracts and found several examples of real-world trends
that were quickly reflected in clinical trial abstract data
(Multimedia Appendix 3).

To harness the temporal trends in these clinical trials, we require
that the distribution of embeddings of the older abstracts be
similar to that of newer abstracts. In addition to training the
embedding model on the original semantic task, we
simultaneously train it on a temporal classification task.

The abstracts were divided into old, 2010-2013, and new,
2016-2018 (see below for details on the choice of time ranges),
and assigned a temporal label. A temporal discriminator, namely,
a classifier, aims to distinguish old from new abstracts based
on their embeddings. The embedding model, however, aims to
reduce the classifier’s performance by tuning the embeddings.
To translate this idea into an architecture (Figure 1), we
leveraged the well-received framework of generative adversarial
networks (GANs) [29], where 2 components (a generator and
a discriminator) compete on a task with opposite goals.

Figure 1. Schematic drawing of the TeDi-BERT model for health care embeddings. Clinical trial abstracts are embedded using a BERT model, and a
discriminator aims to distinguish between old and new abstracts. The embedder simultaneously trains on the original embedding task of masked language
modeling and regulates the embeddings to resemble an anchor model. TeDi-BERT: temporal distribution matching applied on BERT.
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For example, an abstract from 2010 is transformed into a vector
representation using the BERT embedder. The embedding vector
is fed to the temporal discriminator. Assume that the
discriminator correctly predicted that this sample is “old” with
probability p. The discriminator’s weights are then updated so
that p is closer to 1, while the embedder’s weights are updated
so that p is closer to 0.

The embedding model (Me) is given an abstract, performs the
semantic prediction task on the abstract text, and computes the
semantic loss (LMLM). Additionally, the same embedding model
acts as the generator in the GAN and emits an embedding for
the full abstract.

The abstract embedding is fed to the temporal discriminator
(Md), which is a classifier trying to distinguish whether the
embedding belongs to a new or old abstract. A binary cross
entropy loss (Ladv) for this task is computed using the
discriminator output and the temporal label. The discriminator
aims to minimize this loss. However, the generator aims to both
maximize the loss and simultaneously minimize LMLM.

Consider a trivial generator that outputs the same embeddings
regardless of the input text. In this case, the discriminator cannot
distinguish old from new texts, and Ladv would be minimized.
To prevent such cases, we wish the model to preserve the
original semantics of the texts. We therefore added another term
to the loss function, which was meant to anchor the embedding
model, so that it did not drift too far from the original
embedding. We embed each sample using a frozen anchor model
and compute the loss term (LA) as the L2 Frobenius norm
distance between the frozen embedding and the generator’s
embedding. The final objective function is given by:

Where θM denotes the parameters of a model M, and λadv and
λA are hyperparameters used to balance the different
components.

Implementation Details
The corpus of clinical trial abstracts from 2010 to 2018 was
divided into old (2010-2013) and new (2016-2018) clinical
trials. The guiding principle in choosing these time ranges is to
create a gap between the 2 time periods, while maintaining a
large enough and balanced number of abstracts in each set. The
first time range is 1 year longer since there are less abstracts
per year in 2010-2013 (~5000 on average) versus 2016-2018
(~9000 on average). The gap is needed for the discriminator
task: it is harder to distinguish between abstracts from
consecutive years since the temporal trends are slow. When
comparing the 2 time ranges, we observed a statistically
significant increase over time in the percentage of women
participants in clinical trials (Multimedia Appendix 1). This is
consistent with previous findings [9] over slightly different time
ranges: the total enrollment bias for women was improved from
before 1993 (–0.11) to 2014-2018 (–0.05).

As the embedding model, we chose BERT [1], a
transformer-based model for contextualized word embeddings.

We used a small version of BERT, named BERT-tiny [30], with
2 transformer layers and a hidden representation size of 128,
pretrained on BookCorpus [31] and the English Wikipedia.
Smaller models require less computation resources and are
therefore more affordable and accessible. Rosin et al [32] have
shown that BERT-tiny–based models were comparable to
BERT-base in their ability to learn temporal trends. We
witnessed a similar phenomenon on the clinical task of length
of stay (LOS) prediction (Multimedia Appendix 4).

We initialized the model from a version of BERT which was
not trained on any scientific or medical data, so that we could
attribute the medical knowledge accumulated in the model only
to the clinical trial abstracts in the corpus used in the train set.

As each abstract is long, and BERT has a maximal input length
of 512-word pieces, we split it into sentences using the Natural
Language Toolkit tokenizer [33]. The generator embeds each
sentence. The first m sentence embeddings are concatenated
and fed to the discriminator, which is a linear classifier. Hence
the classifier size is d ⋅ m+1. As 96.97% (21123/21784) of
abstracts had up to 20 sentences, we set m = 20 and padded
shorter abstract embeddings with zeros before feeding them to
the discriminator. As a frozen anchor model, we used a BERT
model of the same architecture as the generator, initialized
similarly but trained only with masked language modeling
(MLM) on all of the abstracts.

The embedder and discriminator components of TeDi-BERT
were trained simultaneously, 1 batch at a time for 20 epochs.
Each component was optimized using the Adam optimizer with
a learning rate of 2e–5. Additional technical details are given
in Multimedia Appendix 5.

The TeDi-BERT model used in our experiments was trained
with λadv=0.3, λA=0.3, hence the weight of the LMLM term was
0.4. We experimented with λadv,λA∈{0,0.1,…,0.6} and chose
the best combination according to the model’s ability to predict
the future semantic relatedness of medical concepts (Section
S3 in Multimedia Appendix 6).

Experimental Evaluation Setup
The corpus used to train the embedding models is composed of
PubMed [34] abstracts describing clinical trials on humans. To
select only those abstracts out of the 90,000 available in PubMed
version of 2020, we match each abstract with an entry from
ClinicalTrials.gov [35] according to the NCT identifier inside
the abstract text, leaving 21,784 abstracts, 12,452 of them from
2010-2013 and 2016-2018. We randomly split the data into
70.51% (8780 abstracts) train and 29.49% (3672 abstracts) test,
and kept this partition fixed throughout our experiments.

For our downstream tasks, we used 2 different clinical prediction
tasks, created based on the MIMIC-III data set [27], an
anonymized and publicly available data set that contains
information about patients at a massive tertiary care hospital.
The data set contained 58,976 hospital admissions with 61,532
intensive care unit (ICU) stays over 46,520 distinct patients.
After removing patients aged younger than 18 years (as
performed in the study by Lin et al [36]), 38,552 patients
remained. We randomly divided the patients into train and test
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sets, so that data from a single patient could not appear in both
the train and the test. The train set contained 30,817 patients,
out of which 43.97% (n=13,553) were female, and the test set
contained 7735 patients, out of which 43.33% (n=3352) were
female.

Downstream Tasks
LOS prediction—a regression task predicting a patient’s LOS
in the hospital in days. Predicting LOS is a common clinical
task, which is important in hospital resource allocation planning.
The predictions can also be taken as indications of the severity
and need for different levels of care and recovery.

To predict the LOS we used the patient’s diagnoses from their
previous admissions, and the primary diagnosis from the current
admission, along with demographic features and summary
features (number of previous admissions, procedures and
diagnoses, and time since the last admission).

Readmission prediction—a classification task predicting
unplanned ICU readmission of a patient, at the time of their
discharge. Such readmissions indicate an unexpected
deterioration in the patient’s state. Detecting such cases in
advance can improve the quality of care for the patients by
allocating special programs and resources that address reasons
for readmission. We followed Lin et al [36] for the definition
of unplanned readmission: patients that were transferred from
the ICU to low-level wards or discharged, but returned to the
ICU or died within 30 days. The features used in this prediction
task are the patient’s diagnoses from previous admissions, and
diagnoses and medications from the current admission (which
are known at the time of discharge), along with demographic
features.

Compared Models
We compared the following models in our experiments:

Nonmedical BERT—a pretrained BERT on English Wikipedia
and BookCorpus, not trained on any clinical data [30].

Medical BERT 2010-2018—this baseline represents the natural
way to train BERT for clinical uses: training BERT with the
MLM task over the clinical texts. The model was initialized
with nonmedical BERT and trained for 40 epochs on clinical
trial abstracts between 2010 and 2018.

Null it out [18]—As an example of a debiasing method aiming
to remove gender information from the embeddings, we applied
the method presented in the study by Ravfogel et al [18] on
medical BERT 2010-2018. This method was found to be best
at debiasing BERT embeddings to remove gender stereotypes
[37]. The method is based on iterative null space projection of
the embeddings so that the sensitive information (gender) cannot
be recovered from them by a linear model. Using the vocabulary
of all diseases and drugs used in the clinical tasks data sets, we
sampled the 2500 most feminine and 2500 most masculine
words, based on their relation to the he-she vector, to build a
training and test set for the iterative method. We applied the
projection process for 35 iterations. Before the process, a linear
classifier could determine the gender of the words in the test
set with an accuracy of 0.93. The accuracy dropped to 0.37 after
the process.

TeDi-BERT—the TeDi-BERT model, trained as described in
the Implementation Details section.

Ethical Considerations
All data sets used in this study are previously existing data sets,
which are either anonymous or deidentified. The data sets
containing clinical trial information (PubMed and
ClinicalTrials.gov) are anonymous: they do not contain any
single patient data, only aggregated data from all trial
participants. The publicly available MIMIC-III data set that we
use is deidentified and was approved as part of the original
MIMIC-III project [27] by the institutional review boards of
Beth Israel Deaconess Medical Center and the Massachusetts
Institute of Technology. Therefore, this research did not require
additional approval from an ethics committee.

Another ethical consideration is the use of abstracts in the later
time range as reference in the optimization function, although
they may still contain biases. This may lead to the model having
lower performance on diseases where women are still
understudied. However, the results described in the next section
show improved performance of our method for women, leading
us to believe that while this solution is not flawless, it is a step
in the right direction toward addressing the effects of bias in
clinical word embeddings. More on this in the Limitations
section.

Results

Hospital LOS Regression
The patient’s diagnoses are given as ICD-9 (International
Classification of Diseases, Ninth Revision) codes and mapped
into textual descriptions. The sequence of previous diagnoses
is embedded using the evaluated embedding model and
aggregated using a long short-term memory network (LSTM)
layer. The current diagnosis embedding is concatenated to the
LSTM output, and demographic features are added. The
combined feature vector is fed into a regression model—a
2-layer neural network. The embedding model is frozen, and
only the regression model is allowed to train. As the loss
function, we use mean square error in the training process and
train each model using the Adam optimizer with a learning rate
of 1e–3 for 10 epochs (after that, the loss increases).

We report the mean absolute error (MAE) for the compared
models, calculated over the entire test set, and aggregated by
patient gender (Figure 2 [18]). As expected, the nonmedical
BERT does not perform well, as it is not tuned on clinical data.
Medical BERT trained in the 2010-2018 range reached better
results but applying iterative nullspace projection over medical
BERT had lower performance than nonmedical BERT. This
can be because the projection alters the embedding space, in
the effort to remove gender information; these changes may
have harmed the semantic information captured in the
embeddings. TeDi-BERT performed best, with a significant
improvement in MAE for women and for men (Diebold and
Mariano [38] test with mean absolute deviation criterion had P
value of <.001 for both populations). Further analysis by patient
ethnicity (Multimedia Appendix 7) shows that TeDi-BERT
performed better than medical BERT over all ethnicity groups
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but had a specifically large improvement over female patients
in minority groups. This suggests that the trends of including
underrepresented populations in clinical trials led to the
accumulation of a wider knowledge base on these groups. Our
model can harness this trend to reach better prediction accuracy

on female patients without harming the accuracy on male
patients, and even more so in cases of complex bias types, such
as gender and race combined. We hypothesize that the
performance improvement for men stems from better conduction
of clinical trials with relevance to LOS prediction.

Figure 2. Mean absolute error for LOS regression task using different embeddings. Lower numbers indicate better results. “Null it out” is the work of
Ravfogel et al [18]. LOS: length of stay; MAE: mean absolute error.

ICU Readmission Prediction
Each element in each of the medications, diagnoses, and
previous diagnoses sequences is embedded using the evaluated
embedding model. We aggregate the embeddings using an
LSTM (with shared weights over the 3 feature sequences). The
concatenation of the aggregated embeddings is fed into a
classification model (a 2-layer neural network). The models
were trained for 4 epochs using the Adam optimizer with a
learning rate of 1e–5. The results are measured in area under
the receiver operating characteristic curve.

In Lin et al [36], the best model achieved an area under the
receiver operating characteristic curve of 0.79, with additional
features from the patient medical record events. However, we
purposely limited the classifier’s input features to the
aforementioned textual fields, since we aim to evaluate the
embeddings, and not fully solve the prediction task.

We analyzed the performance of each model per patient gender
(Figure 3 [18]). Further, 95% CIs were calculated using
bootstrapping with 2000 resamples over the test set. We further
validated the significance of the differences using the DeLong
test [39]. All differences for all patient groups were significant
with P<.001.

As in the previous task, nonmedical BERT results were lower
than medical BERT and TeDi-BERT. In this task, applying the
debiasing method from Ravfogel et al [18] over medical BERT
harmed the performance, but it remained better than nonmedical
BERT. TeDi-BERT statistically significantly outperformed all
models over female and male patients.

Following the results in the 2 clinical tasks, we conclude that
debiasing embeddings through the removal of gender
information did not improve the performance on downstream
tasks. However, we consistently observe that temporal
distribution matching improves performance for female patients.
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Figure 3. AUC for readmission within 30 days prediction. “Null it out” is the work of Ravfogel et al [18]. AUC: area under the receiver operating
characteristic curve.

Algorithm Analysis
To verify that temporal distribution matching does not harm
the semantics learned by the embedding model, we evaluated
its quality as a language model. We measured the MLM loss
on the validation set of the PubMed corpus (Section S1 in
Multimedia Appendix 6). TeDi-BERT’s loss (2.650) was close
to that of medical BERT (3.292), indicating that our algorithm
maintains the semantic performance of BERT, despite the
additional objective of temporal distribution matching.
Additionally, we tested the models on named entity recognition
tasks (Section S2 in Multimedia Appendix 6) and found that
TeDi-BERT did not harm the performance in this task compared
to the medical BERT model.

Next, we compared the models on their ability to predict future
semantic relatedness of medical concepts, by ranking pairs of
medical concepts according to their embedding similarity in
each model and comparing the ranking correlation to that of a
medical BERT model trained on 2020 abstracts (Section S3 in
Multimedia Appendix 6). TeDi-BERT reached the
highest-ranking correlation, meaning that TeDi-BERT was able
to predict concept similarity from 2020 better than medical
BERT, without ever training on texts from 2020. This
strengthens our hypothesis that indeed TeDi-BERT can better
capture temporal trends in the embeddings, as measured by
word similarities, compared to other BERT models.

Additionally, we performed an ablation test, to evaluate the
impact of the anchor model in TeDi-BERT (Section S4 in
Multimedia Appendix 6). A TeDi-BERT model without an
anchor model performed similarly to TeDi-BERT on the MLM
task, but its performance on the semantic relatedness task was
the lowest of all compared baselines. This shows the necessity
of using an anchor model in the training process of distribution
matching.

Finally, we used another ablation test to assess the impact of
the weight given to old and new abstracts in the training process
(Section S5 in Multimedia Appendix 6). We found that a higher
weight given to old abstracts caused lower performance in both
clinical tasks and the semantic relatedness task. We concluded

that indeed matching the older abstracts to the new ones has a
positive impact on performance.

Comparison to Imbalanced Learning Methods
In the MIMIC-III downstream tasks, one could argue that the
unbalanced numbers of female (43.97%, 13,553/30,817) and
male patients cause a performance gap. We experimented with
3 methods of handling imbalanced data. In all methods, the
training set for both tasks was modified to contain 50% women,
without modifying the test set.

• Downsampling—downsampling the male patients randomly
so that female and male patient numbers are equal (13,553)
in the training set.

• Synthetic Minority Over-Sampling Technique (SMOTE)
[40]—a classic imbalanced learning method to generate
synthetic samples based on neighbors from the same group.
We applied SMOTE on the female patients in each
downstream task separately and generated 3711 additional
samples, so the train set contained 17,264 male patients and
17,264 female patients.

• MedGAN [41]—a widely used synthetic generation method
for patient data, that has recently shown promising results
in predictive diagnostic tasks. MedGAN combines an
autoencoder and a GAN to generate realistic synthetic
patient data. For each downstream task, we trained
MedGAN on the female patient admissions in the training
set and used it to generate additional synthetic admissions,
so the train set contained 17,264 male patients and 17,264
female patients.

We trained our prediction models with medical BERT
2010-2018 embeddings on the modified training sets, using the
same methods and parameters as in our main results, and
compared the results to TeDi-BERT.

In ICU readmission prediction (Figure 4), downsampling the
male patients harmed the performance for both male and female
patients and for both models. SMOTE and MedGAN upsampling
improved the performance for both populations and both models,
but TeDi-BERT still outperformed medical BERT 2010-2018
under MedGAN (P=.03 for female patients, P=.002 for male
patients) and SMOTE (P<.001).
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In LOS prediction (Figure 5), downsampling and SMOTE
upsampling harmed medical BERT’s and TeDi-BERT’s

performance, for both patient populations.

Figure 4. Readmission prediction—comparison of TeDi-BERT versus medical BERT under various methods of handling imbalanced data. The
performance is measured in area under the ROC curve, so higher numbers indicate better results. Further, 95% CIs were calculated using bootstrapping
with 2000 resamples over the test set. AUC: area under the receiver operating characteristic curve; ROC: receiver operating characteristic curve;
TeDi-BERT: temporal distribution matching applied on BERT.

Figure 5. Length of stay prediction—comparison of TeDi-BERT versus medical BERT under various methods of handling imbalanced data. The
performance is measured in mean absolute error, so lower numbers indicate better results. MAE: mean absolute error; TeDi-BERT: temporal distribution
matching applied on BERT.

MedGAN sampling did not harm the performance, but it did
not significantly improve it for either of the models. It is possible
that the generated female samples were too noisy to provide
added value. Additionally, these methods were designed for
much more extreme imbalances than in this setting. This is
consistent with several previous works: in multilingual
translation [42], upsampling low-resource languages did not
robustly improve the loss. In a classification of diseases from
textual descriptions of symptoms [43], upsampling rare diseases
led to unstable results and in some cases hurt performance.

Over both tested tasks, both populations, and all 3 imbalanced
learning methods, TeDi-BERT performed better than medical

BERT 2010-2018. We conclude that imbalanced learning
techniques may improve performance, but it is not robust to all
tasks and models. As with many other possible techniques to
improve performance (data cleaning, feature engineering, etc),
imbalanced learning techniques may be applied independently
from the choice of embedding model.

Discussion

Principal Results
In both clinical tasks, TeDi-BERT’s performance for female
patients was significantly improved compared to medical BERT
2010-2018, while improving performance on male patients as
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well. This is even though both models were trained on the same
data set of clinical trial abstracts. The advantages of the
TeDi-BERT method were especially large for population groups
subject to intersectional biases (Multimedia Appendix 7), which
suggests that other than gender inclusion, additional
improvement trends in clinical trials were captured by the
TeDi-BERT model. When analyzing the contribution of our
method for different feature types in the LOS task (Multimedia
Appendix 8), we found that for both models, the primary
diagnosis was more predictive of the LOS than the previous
diagnoses, but TeDi-BERT was able to use the information in
previous diagnoses to reduce the MAE more than medical BERT
2010-2018.

A baseline debiasing method based on the removal of gender
information from word embeddings [18] did not perform well
in the clinical prediction tasks, achieving worse results than
medical BERT 2010-2018. This validates our hypothesis that
the removal of information about a sensitive attribute from the
embeddings is not a suitable strategy for debiasing medical
embeddings since that sensitive attribute contains valuable
clinical information.

In the semantic task of MLM (Section S1 in Multimedia
Appendix 6), TeDi-BERT’s performance surpassed that of
medical BERT 2010-2018, despite the competing objective
functions of the generator and the discriminator. In another
semantic task based on temporal trends (Section S3 in
Multimedia Appendix 6), while both models were trained on
the same data set, TeDi-BERT’s output was more similar to
that of a model trained only on clinical trials from 2020. This
validates our hypothesis that TeDi-BERT is better at capturing
the temporal trends in the data than medical BERT 2010-2018.

When comparing TeDi-BERT to various imbalanced learning
methods, we found that temporal distribution matching had a
consistent contribution to performance, while imbalanced
learning methods harmed performance in some cases.

When comparing TeDi-BERT to gender-sensitive weighting of
the corpus (Multimedia Appendix 2), we found that
gender-sensitive weighting was not a good fit for debiasing
BERT embeddings for health care, despite its success for
Word2vec embeddings. We hypothesize that this is due to the
complexity of the BERT embedding model versus Word2vec
and that a finer method is required for debiasing BERT
embeddings.

The empirical results show the merit of debiasing embeddings
for improving the performance of clinical tasks. Despite the
remaining biases in the newer clinical trials, leveraging the
temporal trends of bias reduction was successful for the
reduction of biases in the embeddings.

Although many works show the trade-off between fairness and
accuracy [44-46], our results show that accuracy for one gender
does not need to be exchanged for bias reduction, but rather that
good science improves clinical results for all.

Limitations
Our work has several limitations. In our TeDi-BERT
implementation, we divided clinical trials into 2 time ranges
(old and new). This approach is inspired by related work in
adversarial domain adaptation [26], where there is a source and
target domain. For future work, we wish to expand the approach
to a continuous prediction. Additionally, the temporal
distribution matching might obfuscate temporal markers such
as new diseases or treatments; this can be mitigated by the
development of techniques to handle out-of-vocabulary words.
Finally, another limitation is the remaining biases in recent
clinical trials and the continued underrepresentation of women
in them. The use of a still-biased data distribution as the
optimization target may cause difficulties in the categorization
of diseases where women are still not studied enough, because
the knowledge captured in the word embeddings about these
conditions may still be partial. However, in many diseases (eg,
cardiovascular diseases, anemia, osteoporosis, and more) the
situation has greatly improved in recent years. As a result,
TeDi-BERT achieved higher performance and lower gender
performance gaps in the tested clinical tasks. While it is not a
perfect solution, the experimental results show that it is in the
correct direction toward fixing the problem. We believe that
temporal distribution matching is a good proxy for bias
mitigation, but more direct approaches should also be tested.

Conclusions
The use of clinical trials as a training corpus for embedding
models should be conducted with care while taking precautions
against the long-existing biases in clinical trials. We presented
TeDi-BERT, a method for training word embeddings while
harnessing a temporal trend in the corpus. The method includes
a novel use of the GAN framework to regularize for temporal
distribution matching on embedded samples. We implemented
our method on BERT, a contextual embedding model that
achieved state-of-the-art results in many NLP tasks, and trained
it on clinical trial abstracts, where biases, and especially
enrollment gender bias, are reduced over time for a significant
portion of researched concepts. In our experimental evaluation,
we demonstrated performance improvement over BERT in
clinical prediction tasks. We found that the performance
particularly improved for female patients for all tasks, and for
male patients either improved or did not harm performance.
This suggests that adjusting for bias in research can benefit
clinical results for all patients.
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Abstract

Background: The COVID-19 pandemic had a devastating global impact. In the United States, there were >98 million COVID-19
cases and >1 million resulting deaths. One consequence of COVID-19 infection has been post–COVID-19 condition (PCC).
People with this syndrome, colloquially called long haulers, experience symptoms that impact their quality of life. The root cause
of PCC and effective treatments remains unknown. Many long haulers have turned to social media for support and guidance.

Objective: In this study, we sought to gain a better understanding of the long hauler experience by investigating what has been
discussed and how information about long haulers is perceived on social media. We specifically investigated the following: (1)
the range of symptoms that are discussed, (2) the ways in which information about long haulers is perceived, (3) informational
and emotional support that is available to long haulers, and (4) discourse between viewers and creators. We selected YouTube
as our data source due to its popularity and wide range of audience.

Methods: We systematically gathered data from 3 different types of content creators: medical sources, news sources, and long
haulers. To computationally understand the video content and viewers’ reactions, we used Biterm, a topic modeling algorithm
created specifically for short texts, to analyze snippets of video transcripts and all top-level comments from the comment section.
To triangulate our findings about viewers’ reactions, we used the Valence Aware Dictionary and Sentiment Reasoner to conduct
sentiment analysis on comments from each type of content creator. We grouped the comments into positive and negative categories
and generated topics for these groups using Biterm. We then manually grouped resulting topics into broader themes for the purpose
of analysis.

Results: We organized the resulting topics into 28 themes across all sources. Examples of medical source transcript themes
were Explanations in layman’s terms and Biological explanations. Examples of news source transcript themes were Negative
experiences and handling the long haul. The 2 long hauler transcript themes were Taking treatments into own hands and Changes
to daily life. News sources received a greater share of negative comments. A few themes of these negative comments included
Misinformation and disinformation and Issues with the health care system. Similarly, negative long hauler comments were
organized into several themes, including Disillusionment with the health care system and Requiring more visibility. In contrast,
positive medical source comments captured themes such as Appreciation of helpful content and Exchange of helpful information.
In addition to this theme, one positive theme found in long hauler comments was Community building.

Conclusions: The results of this study could help public health agencies, policy makers, organizations, and health researchers
understand symptomatology and experiences related to PCC. They could also help these agencies develop their communication
strategy concerning PCC.

(JMIR AI 2024;3:e54501)   doi:10.2196/54501
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Introduction

Background
“It’s like a...like a viral tornado that goes in you and kind of
just messes you up,” Sadi Nagamutu says in between labored
breaths [1]. This is how the account of the battle with
post–COVID-19 condition (PCC) of Sadi Nagamutu, a fitness
instructor aged 44 years, began during a news interview [1]. In
the comment section of the video, one user wrote the following:

I had to pause the video at 2:20. I broke down in tears
because I feel like I’m not alone. I have the same
thing.

At the time of recording, Sadi Nagamutu had been a patient
with PCC for 8 months. By this time, she claims that it had
completely disrupted her life. She notes that she went from
being a trainer to not being able to lift grocery bags and walk
at the same time [1]. It is clear from the comments left under
the 60 minutes video that Sadi Nagamutu is not alone in
experiencing a drastic change in her quality of life.

The COVID-19 pandemic has changed the lives of many, though
one consequence of it has received less attention [2]. PCC has
been identified as a syndrome affecting patients long after their
initial COVID-19 infection has cleared. These patients are
colloquially called long haulers [3]. High ratios of those who
have been infected with COVID-19 have persisting symptoms
that last months after the initial infection.

Studies have shown that PCC has real implications in people’s
everyday lives. The World Health Organization Quality of Life
Brief Version, a quality of life questionnaire, was administered
among patients who had been hospitalized with COVID-19 [4].
The results showed that 30.2% of respondents had PCC, which
affected nearly all domains of quality of life as outlined in the
World Health Organization Quality of Life Brief Version criteria
[4]. Moreover, there have been recent links between PCC and
deteriorating mental health [5].

PCC has negative economic implications as well. Those with
PCC are often not in condition to work and, thus, realize their
full earning potential [2]. Approximately 44% of people with
PCC are completely out of the workplace, whereas 51% have
reduced hours at work [2]. This could result in >US $50 billion
in lost income annually [2].

In addition, some patients do not receive insurance coverage
for PCC-related testing and treatments [6]. This has led to
significant debt for some patients [6]. In May 2023, the Journal
of the American Medical Association estimated that average
PCC-related medical costs could be approximately US $9000
a year [6]. There is also the issue of lost wages due to PCC,
which further complicates the medical debt. Making a case for
those with PCC by uncovering patient experiences could be
useful for public health officials and medical insurance
companies, who may need additional help in understanding how
debilitating PCC can be.

Social media is a rich source of information regarding people’s
experiences and attitudes [7,8] due to the pervasiveness of social
media apps and the freedom with which people engage in

discourse on various topics. Such pervasiveness contributes to
the increased size of health-related data [7]. This has encouraged
researchers to use computational models to analyze social media
texts concerning COVID-19 [7,9-12]. One popular method of
analysis is topic modeling. Topic modeling allows for the
discovery of thematic relationships and patterns within a body
of text using natural language models [10]. Latent Dirichlet
allocation (LDA) is a probabilistic unsupervised classification
method [13]. It has been widely used in studies using topic
modeling on a large set of documents [13].

For example, Mutanga and Abayomi [10] used an LDA topic
model to study COVID-19–related posts in South Africa and
found that conversations revolved around alcohol consumption,
staying at home, vaccine conspiracytheories, police brutality,
statistics training, and 5G [10]. In addition, other authors have
explored public sentiment and discourse on COVID-19 vaccines
on Reddit using an LDA model [9]. They found that posts
covered the broader discussions of vaccines, safetyconcerns,
efficacy, and side effects.

To date, there has been one other study that examined the
experiences of long haulers on YouTube in the hopes of
understanding web-based health communication [7]. However,
Jacques et al [7] did not use any topic modeling methods.
Instead, they manually coded the 100 most viewed PCC videos
based on a predetermined list of themes.

In the following sections, we provide a review of long haulers
and health discussions on YouTube. On the basis of this, we
sought to understand what types of videos are available on
YouTube regarding long haulers and how users respond to
PCC-related content. Next, the procedure of data collection and
analysis is provided. Results are then reported regarding salient
themes for each type of content creator and positive and negative
comments. Finally, we conclude with a discussion of the
theoretical and practical implications of our findings.

Related Work

Long Haulers
Studies have focused on long haulers in the hopes of
understanding their symptoms and concerns [14-16]. By
analyzing Reddit posts, Thompson et al [15] found that
discussions revolved around symptoms, diagnosticconcerns,
broadhealthconcerns, chronicity, support, identity, and anxiety.
In the study by Basch et al [17], news articles and videos were
selected from a news media platform (Google News). They
were then analyzed to identify common symptoms that appeared
in PCC-related content [17]. The authors found that 41% of
news reports mentioned the duration of the symptoms, which
tended to range between 1 month and over a year. Tiredness
and fatigue were the most mentioned symptoms, occurring in
74% of the news content. Though insightful, these studies do
not focus solely on the YouTube platform, wherein there can
be interaction between the creators of long-form content and
those consuming their media.

Health on YouTube
YouTube is a platform that motivates users to create, publish,
and comment on posts [18]. It has been developed to handle
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long-form content. YouTube is unique in that creators of
long-form content can not only share their videos but also
engage with viewers within the comment section. A report from
Statista estimates that, as of April 2022, YouTube has 247
million users in the United States [19]. There have been studies
in which researchers analyzed YouTube comments and
transcripts to understand public sentiment on health-related
matters. These studies have used either manual [20,21] or natural
language processing–based [22,23] approaches.

Noncomputational analyses of YouTube videos have involved
manually coding videos into various groupings. One study on
anorexia-related YouTube videos used the help of 3 physicians
to categorize 140 videos against a predetermined list of
classification criteria [20]. In addition, to understand discourse
on YouTube videos that seeks to destigmatize mental health,
McLellan et al [21] manually coded 100 randomly selected
comments from 20 videos based on predetermined coding
criteria.

In contrast, Aslam et al [22] used computational methods to
understand the transcripts of 1000 COVID-19–related YouTube
videos [16]. They used the Gensim LDA topic model to
understand the transcripts. They found that salient topics
involved symptoms, precautions, and homeremedies [22]. In
their study, Serrano et al [23] fine-tuned the Robustly Optimized
Bidirectional Encoder Representations Approach base to label
comments from factual and misinformative COVID-19–related
videos. In addition, they extracted features from video titles and
comments [23]. These features were used in a linear support
vector machine to detect misinformative videos [23].

We collected YouTube transcripts and comments between
August 3, 2020, and October 29, 2021, to investigate PCC
symptomatology and other related complications. We chose to
use computational methods, more specifically topic modeling,
because they can capture a wider distribution than manual
studies [10]. To the best of our knowledge, this is the first study
to examine YouTube video transcripts and comments related
to PCC experiences. Our research questions (RQs) for this study
were two-fold: (1) What types of videos are available on
YouTube regarding PCC? (RQ 1) (2) How do users respond to
PCC content? (RQ 2).

Methods

Data Collection
YouTube is a free-to-use social media platform that has been
adopted by individuals, organizations, and specialized
professionals from various fields to share relevant and important
information [18]. Because of this, we deemed YouTube to be
a good source of data to capture videos uploaded by different
types of content creators. This allowed for diversity in our data
set.

We used Google’s application programming interface,
googleapiclient.discovery, to capture video comments and
metadata (eg, number of comment likes and responses). Data
from the top 50 videos as a result of searching each of the
following terms were collected: “Covid Long Haulers,”
“COVID-19 Long Haulers,” “Long Covid,” “Long Haul Covid,”

“PASC Covid,” “Post-Covid Symptoms,” and “Post-Covid
Syndrome.”

The search terms were found by first inspecting COVID-19
long hauler–related news articles to find pertinent keywords.
After this, Google Trends was inspected to see whether there
were any additional terms or versions of terms that had already
been identified. We used these terms to find and inspect an
initial list of videos on YouTube. After completing this process,
we were able to rule out the term “Longhauler” as many
references were not related to COVID-19. The resulting videos
were in the date range between August 3, 2020, and October
29, 2021. The videos were collected on November 1, 2021.
After removal of duplicates and irrelevant videos, we collected
152 videos.

We used the Python package YouTubeTranscriptAPI (Python
Software Foundation) to capture transcripts from the videos. It
should be noted that the comments collected in our
data-gathering process only reflect the top-level comments. In
essence, this means that any replies to the original comments
were not captured.

We then manually grouped the videos based on the video source
as previously done in a similar study [24]. This is because the
topic coverage of videos can vary widely depending on the
source of the video. The resulting groups were news sources,
medical sources, and long haulers. News source videos were
those that were uploaded by news entities, including local,
national, and international news stations. News source videos
represented 51.3% (78/152) of the collected videos. Medical
source videos were those that were posted by medical experts
such as physicians, health insurance companies, and medical
schools. We collected 49 such videos. The last 16.4% (25/152)
of the videos belonged to the long hauler grouping, which
represented first-person accounts from those who considered
themselves to have PCC. From these videos, we collected 2845
comments in total: 1258 (44.22%) associated with medical
source videos, 1078 (37.89%) from news source videos, and
509 (17.89%) from long hauler videos.

Ethical Considerations
We only analyzed publicly available documents in this study
and did not analyze identifiable private information or involve
any direct or indirect interactions with individuals. Per (blank
for review) policy (citation: 45 Code of Federal Regulations 46
Definitions), this study is exempt from institutional review board
requirements because it does not meet the regulatory definitions
of human participant research. However, we removed any user
identifiable information (eg, usernames) and paraphrased or
modified comments to preserve user pseudonymity while
maintaining the content’s integrity in the manuscript.

RQ 1 Methods: What Types of Videos Are Available
on YouTube Regarding PCC?
To understand themes within the video content, we used Biterm
to generate topics of video transcripts as well. Biterm topic
model learns topics by modeling the generation of word
co-occurrence patterns in whole documents to counter the sparse
word co-occurrence pattern problem that occurs when evaluating
at the document level [25]. Each group—medical sources, news
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sources, and long haulers—was processed individually to
preserve our groupings. Biterm was created with shorter social
media texts in mind given that they are usually much shorter
than standard document sizes [25]. Because video transcripts
were considerably longer and, thus, could contain multiple
topics, chronological batches of 50 consecutive words were fed
into each model as suggested by previous work on topic
modeling [26]. It was important to divide the transcripts into
shorter portions so that more specific topics would be generated.
After preprocessing our data by lemmatizing words and
removing stop words, we fed our data into the topic models. To
preserve our groupings, we created 6 separate models: one
positive and one negative model for each group (news sources,
medical sources, and long haulers). When fine tuning the number
of topics, we tested 4 numbers (3, 5, 10, and 15). For each
number, we assessed the coherence scores and strength for
words within the same topic co-occurring in the same documents
[25]. Biterm adopted a coherence score proposed by Mimno et
al [27]. In the study by Yan et al [25], the average coherence
score for a Biterm model with 5 topics was between −52.3 and
−52.5. A limitation of the coherence score is that it only accounts
for the most frequent topic words. To compensate for this
limitation, we complemented the evaluation with manual
analysis in addition to considering coherence scores for selecting
the most cohesive model. To elicit unknown, emerging themes
grounded in the labeled topics, we further qualitatively analyzed
comments or transcripts within each topic following an open
coding procedure [28] similar to that in a previous study that
analyzed social media content that included YouTube videos
on COVID-19 [29]. Following the collaborative identification
of a list of topic labels, the research team independently labeled
each topic using up to 50 most salient terms and up to 30
samples of the most representative content followed by grouping
the topics into themes. At each iteration, the research team
resolved any discrepancies through discussion.

RQ 2 Methods: How Do Users Respond to PCC
Content?
We conducted sentiment analysis to understand public sentiment
with regard to the delivered content. We used the Valence Aware
Dictionary and Sentiment Reasoner (VADER) [30] to determine
the sentiment of video comments. VADER is a rule-based model
for sentiment analysis. It was created specifically for social
media contexts as it can recognize slang and emojis. It produces
positive, negative, neutral, and compound scores for each body
of text by summing the valence scores of each word and
normalizing them to be between −1 and 1. We chose VADER
in lieu of other sentiment analysis tools such as AFINN, BING,
or National Resource Council because VADER was specifically
developed for analyzing social media texts.

We used the compound score as the overall sentiment score for
the comment. Positive comments included all comments with
a compound score of >0. Negative comments included all
comments with a score of ≤0 following methodological guidance
from a previous study [31]. This process was completed
independently for each group (medical sources, news sources,
and long haulers).

After we created positive and negative subgroups of the
comments, we created topic models to understand the thematic
make-up of positive and negative comments with regard to each
group. We separated comments into positive and negative
subgroupings before generating topics so that our resulting topic
models would be more cohesive. Similar to the methods for RQ
1, we used Biterm to generate topics and manual review to label
topics and group them according to themes. Because comments
are relatively short in length and typically have 1 topic, we used
the entire comment as a document.

Results

Overview
We organized the resulting topics into 28 themes across all
sources. Medical source transcript themes were Explanations
in layman’s terms, Show housekeeping, and Biological
explanations. News source transcript themes were Sharing
patient experiences, Negative experiences, Experts weighing
in, and Handling the long haul. Long hauler transcript themes
were Taking treatments into own hands, Changes to daily life,
and Choosing homeopathy over pharmaceuticals. Positive news
source comment themes were Extending empathy, Expressing
distrust through sarcasm, and Encouragement for better
outcomes. News source videos received the highest proportion
of negative comments. Negative news source comment themes
were Reproduction of debunked and political theories,
Misinformation and disinformation, and Issues with the health
care system. In contrast, medical source videos received the
highest proportion of positive comments. Positive medical
source comment themes were Appreciation of helpful content,
Hope and encouragement, and Exchange of helpful information.
Negative medical source comment themes were Negative
impacts of long haul, Requiring medical alternatives, and Lack
of needs. Positive long hauler comment themes were
Appreciation, Exchange of helpful information, and Community
building. Negative long hauler comment themes were Exchange
of additional information, Disillusionment with the health care
system, and Requiring more visibility.

RQ 1 Results: What Types of Videos Are Available on
YouTube Regarding PCC?

Overview
We collected the transcripts from 152 videos that were divided
into 3 groups (news sources: n=78, 51.3%; medical sources:
n=49, 32.2%; and long haulers: n=25, 16.4%). Transcripts were
divided into subgroups of 50 consecutive words and fed into
distinct Biterm topic models. The following sections show the
breakdown of videos by source type.

Medical Source Video Transcripts

Overview

The medical source video transcripts were captions from videos
created by an individual or organization in the medical sector.
This included physicians, medical insurance companies, and
medical schools.
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Explanations in Layman’s Terms

The first theme, Explanations in layman’s terms, covered 3
topics: “Symptomatology,” “Symptom etiology,” and “Symptom
management.” As implied by the theme title, the transcript
snippets constituting each topic displayed scientific speech that
was relatively easy for the public to understand. The first topic,
Symptomatology, covered video transcripts in which the speaker
explained the symptoms associated with COVID-19. Some
medical source content creators dedicated entire videos to just
a few symptoms or a particular health system, as was the case
in a video from University of Alabama at Birmingham medicine
dedicated to PCC and hair loss:

...when you go through something stressful and you
have a telogen effluvium, most of your hairs can enter
the resting phase at the same time.

The second topic, “Symptom etiology,” featured transcript
snippets that offered explanations of how PCC symptoms might
have originated. Finally, “Symptom management” featured
transcript snippets wherein medical professionals offered
potential treatments for symptoms.

Show Housekeeping

Show housekeeping was another prevalent theme in medical
source video transcripts. Associated topics were “Introducing
the show or guest,” “Validating guests’ credentials as a reliable
source,” and “Encouraging the audience to keep in touch.” As
the name suggests, these videos routinely introduced each of
the medical experts on the show and expounded on their

credentials. This could potentially be due to the idea that many
information consumers can be critical of the source of their
information. Expounding on the guest speakers’ credentials
could help build credibility and trust between the video publisher
and the audience. The next topic dealt with encouraging the
audience to keep in touch. Some medical source content creators
offered links to other social media platforms where they could
continue the long hauler conversation with engagers.

Biological Explanations

In general, biological explanations comprised transcript snippets
that displayed more advanced scientific language than that
shown in the Explanations in layman’s terms theme. Biological
explanations featured 2 distinct topics: “Immunophenotyping”
and “Explaining the mechanics of immune responses.”
Immunophenotyping is the process of identifying cells based
on antigens or markers [32]. In one video, the speakers discussed
using “proprietary spark dyes,” which can be used for
immunophenotyping [32]. In addition, these videos were
concerned with explaining the mechanics of immune responses.
In this case, a biological perspective of disease etiology was
offered, with less use of layperson terminology.

News Source Video Transcripts

Overview

The news source video transcripts were the captions from news
media outlets. These outlets ranged from local to international
audiences (Table 1).
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Table 1. News source video transcript results.

Sample transcriptsKeywordsTheme and topic label

Sharing patient experiences

“Five months later, she is still short of breath. Doing therapy three
times a week. It often feels like this body is not mine. That the
things that i want to do i can’t do.”

“Patients,” “symptoms,” “life,” “understand,”
“hair,” “feel,” “medical,” “sick,” “protein,” “heart-
beat,” “health,” and “doctors”

Symptoms

“[...] even though there’s not a magic pill yet, to cure a long
COVID, at least we can try to aggressively manage the symptoms,
connect them with other patients, other resources, and try to help
in whatever way we can.”

“Need,” “better,” “understand,” “doctors,”
“months,” “trying,” “research,” “care,” and “an-
swers”

Treatments

Negative experiences

“[...] to those doctors that deny the existence of long covid that
this thing of course it’s really look at the science.”

“Symptoms,” “covid,” “virus,” “physician,” “dr,”
“feeling,” “need,” “progress,” and “says”

Not being believed by
others and doctors

“Differently, less like the flu and more like a condition that can
have lasting repercussions. The moment [...] the sick get to go
home. But for many it’s not the end, it’s just the beginning of a
long and perilous road to recovery.”

“Started,” “need,” “progress,” “end,” “taken,”
“coming,” “time,” “medical,” “virus,” “smell,”
“health,” “watch,” and “feeling”

Explaining the impact
of “long Covid” on
lives

Experts weighing in

“Today chris hrapsky talked with an expert whose theory on this
is gaining attention. Mast cells are the first responders of your
immune system when an infection occurs in under a second these
cells and stuff like histamine to other cells to say, hey, wake up,
something’s wrong here. In some people these mass cells go hay-
wire and overreact like central dispatch calling in the swat team
for a coffee spill at starbucks and this is called mast cell activation
syndrome.”

“Effects,” “infection,” “different,” “virus,” “actual-
ly,” “research,” “seen,” “syndrome,” “persistent,”
and “fatigue”

Etiology of the disease

“The other thing that makes it really challenging, is that symptoms
are not necessarily always correlated or equal to organ dysfunction
that we can measure [...].”

“Struggle,” “lingering,” “illness,” “health,” “syn-
drome,” “persistent,” “group,” “body,” “covid19,”
“physical,” and “related”

Experts explaining
“long Covid”

Handling the long haul

“[...] they sent an occupational therapist to see what they could do
in the house so our washroom has been retrofitted with a brand
new high toilet because he had issues getting on and off the toilet
[...].”

“Test,” “hair,” “brain,” “doctor,” “fatigue,” “pain,”
“disease,” “talk,” “common,” “exercise,” “need,”
“home,” and “levels”

Managing symptoms

“[...] what i suggest is that those of our patients who are having
tachycardia it’s not a bad idea to get themselves screened by their
physicians or cardiologists so that at least we are clear that a patient
does not have baseline pulmonary embolism [...].”

“Oxygen,” “need,” “lung,” “blood,” “chest,” “pain,”
“infection,” “shortness,” “ventilator,” “loss,” “pul-
monary,” “complications,” “attack,” “disease,” and
“breath”

Handling cardiac or
chest problems specifi-
cally

Sharing Patient Experiences

“Symptoms” and “Treatments” are 2 topics that were part of
the Sharing patient experiences theme. The Symptoms-related
video transcripts dealt with interviewees sharing their daily
symptoms to give perspective to audiences. Interviewees
experienced a wide range of symptoms. These symptoms
appeared to have a significant impact on daily life. One
interviewee noted that she would fall due to elevated heart rate
that worsened doing routine tasks such as “just walking from
here to the kitchen.” Guests were also concerned with finding
some type of treatment that could mitigate PCC symptoms.
Patients seemed to have managed expectations regarding
treatment but exhibited some level of hope:

...there’s not a magic pill yet, to cure long Covid...at
least we can try to aggressively manage the symptoms.

Negative Experiences

The Negative experiences theme featured 2 related topics. The
first topic was “Not being believed by others and doctors.” This
was a particularly common topic throughout the text.
Interviewees shared their experiences of being ignored or not
believed. These long haulers sought and could not find
affirmation:

...no one really understands me.

The next topic dealt with explaining the impact of PCC on lives.
Long haulers and news reporters introduced PCC in general
terms as well as the people that it had impacted. One long hauler
explained the following:

...nearly seven months later and I’m still unwell and
I am still a broken woman.
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Experts Weighing In

The Experts weighing in theme had 2 topics: “Etiology of the
disease” and “Experts explaining long Covid.” Similar to
medical source videos, experts took 2 approaches when speaking
about PCC. The first approach, as evidenced in the Etiology of
the disease topic, explained things from a strictly biological
perspective:

Mast cells are the first responders of your immune
system when an infection occurs.

In contrast, in Experts explaining long Covid, more commonly
used colloquial language was used to explain PCC:

...different studies use different thresholds, which
makes it really challenging to compare apples to
apples.

Handling the Long Haul

The last theme had 2 topics as well: “Managing symptoms” and
“Handling cardiac or chest problems specifically.” Managing
symptoms dealt mainly with long haulers finding their own ways
to manage their illness. In addition, cardiac and chest problems
were often discussed. They are common symptoms that were
addressed by experts and patients alike. Experts offered
symptom management advice:

...and it will take three to six months for this
myocarditis to settle.

Long Hauler Video Transcripts

Overview

The long hauler video transcripts were captions from individual
content creators that talked directly about their own personal
experiences with PCC (Table 2).

Table 2. Long hauler video transcript results.

Selected sample transcriptsKeywordsTheme and topic label

Taking treatment into own hands

“Covid was my wake-up call to fix my gut and ultimately fix my health I
was declining I was already declining before covid I was getting weak
[...].”

“New,” “health,” “try,” “better,” “care,”
“fungus,” “changing,” “trusted,” and “bro-
ken”

Alternate remedies

“[...] this is my story right like this is this is what I have to live with for
an indefinite period of time so my very good family friend she runs her
own practice she’s an MD and she said you know like nobody should want
to get Covid because nobody knows the lasting effects of Covid.”

“Changing,” “declining,” “shitty,” “new,”
“life,” and “work”

Dealing with uncertain-
ty

“[...] especially female patients and patients of color the benefit of the
doubt [...] there is so much research on patients reporting doctors not be-
lieving them or not treating them with the same level of compassion [...]
I didn’t think it would happen to me [...].”

“Biases,” “trusted,” “chore,” “dr,” “doc-
tors,” “feel,” “medicine,” and “care”

Not being listened to by
physicians

Changes to daily life

“I am allowed to take a maximum amount of the sleeping aids and they
don’t work I just get a calming feeling along with my multitude of symp-
toms I think along with the drenching sweats and the fevers that just won’t
stop because my husband has to cover me in ice sometimes because even
with medication the fever doesn’t stop climbing.”

“Helped,” “started,” “pills,” “prevent,”
“restless,” “waking,” and “blockers”

Insomnia

“I had to stop eating eggs I recognize that eggs weren’t agreeing with me
anymore and [...] I was eating three eggs every day like that was you know
that was a breakfast staple for me [...].”

“Day,” “symptoms,” “time,” “feel,” “bad,”
“need,” “breath,” “overgrowth,” “taste,”
“chronic,” “fever,” “life,” “nuts,” and “sac-
rifice”

How symptoms inter-
rupt activities

“So like whenever i would get near like the oven or the stove or like the
air fryer or take a shower or try to exercise like whenever my internal body
temperature would rise my face would go bright red it would get swollen
id’ get like weird patches it was super strange [...].”

“Experience,” “fever,” “health,” “day,”
“highly,” “discovering,” “seizures,” “entry,”
and “permanent”

How symptoms present
themselves

Choosing homeopathy over pharmaceuticals

“The cbd and thc gummies that I take to sleep at night [...] I just try to
keep things as natural.”

“Gummies,” “high,” “work,” “try,” “start-
ed,” “need,” and “help”

Use of CBDa and THCb

“[...] so naturally I assume that is still coronavirus so she encouraged me
to take over the counter medication which I don’t do i’ve never done it I
don’t do it I don’t believe in it I don’t have a Tylenol deficiency I don't
have an aspirin deficiency i’m not ibuprofen deficient so I don't think I
should take that.”

“Deficiency,” “vitamin,” “blood,” “differ-
ent,” “taking,” and “bad”

Turning down over-the-
counter medicine

aCBD: cannabidiol.
bTHC: tetrahydrocannabinol.
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Taking Ownership of Treatment

The 3 related topics were “Alternate remedies,” “Dealing with
uncertainties,” and “Not being listened to by physicians.”
Alternate remedies dealt with long haulers sharing alternative
medicine that they used and recommending alternative medicine
to others. In Dealing with uncertainties, long haulers noted that
they were dealing with symptoms for “an indefinite period of
time.” On the basis of their experiences, they had an
understanding that physicians were mystified by PCC and, thus,
treatments were not certain or foolproof. This led to the last
topic, which was “Not being listened to by physicians.” A
recurrent topic thus far in the study, this dealt with patients not
feeling listened to and supported by members of the health care
system. One particularly popular account of this was shared by
one woman in a video titled “I’ve had COVID-19 for a year.
Here’s what I’ve learned.” She shared her experience as a
woman and person of color who felt that she experienced
particularly unfair treatment:

...there is so much research on patients reporting
doctors not believing them or treating them with the
same level of compassion.

Long haulers called for physicians to hold themselves
accountable when confronting their own biases. If not, long
haulers suggested that they were “violating the trust of their
patients and trust is a key element to the patient physician
relationship.”

Changes to Daily Life

Next, long haulers discussed the impact of the long haul on
daily life. Associated topics included “Insomnia,” “How
symptoms interrupt activities,” and “How symptoms present
themselves.” Long haulers discussed how insomnia impacted
their lives. They mentioned that their symptoms impeded their
ability to exercise, eat foods they regularly ate, and even take
showers. Finally, long haulers talked about how the symptoms
initially presented themselves.

Choosing Homeopathy Over Pharmaceuticals

The 2 related topics were “Use of CBD and THC” for treatment
and “Turning down over-the-counter medicine.” One long hauler
looked to tetrahydrocannabinol gummies to cure insomnia in
part because “I don’t like pharmaceuticals, I have never really

liked them.” Other long haulers shared their apprehension about
using pharmaceutical drugs and mentioned turning to more
natural options instead.

RQ 2 Results: How Do Users Respond to PCC
Content?

Overview
To understand how users respond to PCC content, we separated
comments for each category (news sources, medical sources,
and long haulers) into 2 subcategories based on sentiment
(negative and positive). We then used Biterm to generate topics
for these subcategories. When looking at all sources combined,
there was not a large discrepancy between the number of
positive and negative comments. Overall, there were 1463
positive comments and 1382 negative comments.

However, when we began to look at the split of positive and
negative comments by source, we could see that news sources
received a greater share of negative comments. There were 687
negative comments and 391 positive comments. In contrast,
medical sources received more positive than negative comments.
There were 528 negative comments compared to 730 positive
comments. Finally, long hauler videos only showed a 13-point
difference between the number of positive and negative
comments. There were 261 positive comments and 248 negative
comments.

In addition to capturing the comments themselves, we captured
metadata associated with the comments. This included comment
replies, comment likes, and video description. Comment likes
and replies indicate the level of engagement that other YouTube
users had with the comment posted. Medical source video
commenters saw an average of 16.02 (SD 45.09) likes per
comment. The most liked comment received 602 likes. The
most replied to comment received 474 replies. Conversely, news
source video commenters saw an average of 36.46 (SD 168.34)
likes per comment. The most liked comment received 2520
likes. The most replied to comment received 184 replies. Finally,
long hauler video commenters saw an average of 54.55 (SD
246.72) likes per video. The most liked comment received 4127
likes. The most replied to comment received 223 replies (Table
3).

Table 3. Comment metadata.

Most replies on a comment,
N

Number of comment replies,
mean

Most likes on a comment, NNumber of comment likes,
mean

Source

4743.1560216.02Medical source videos

1844.23252036.46News source videos

2233.06412754.55Long hauler videos

News Source Video Comments

Overview
Table 4 shows the resulting topics and themes from positive
comments found under news source videos.
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Table 4. Results of positive comments in news source videos.

Sample commentsKeywordsTheme and topic label

Extending empathy

“omg, i can totally relate.”“People,” “get,” “think,” “symptoms,” “many,” and
“felt”

Relating to others

“It would be terrible to lose your ability to taste or smell. Here’s
to hoping they improve soon.”

“Everyone,” “really,” “hope,” “take,” “care,”
“able,” and “want”

Well wishes

“Your story was gut-wrenching, but still worth the share. Thank
you. People need to hear this.”

“Better,” “still,” “hope,” “people,” “feel,” “heart,”
“help,” “something,” and “good”

Gratitude

Expressing distrust through sarcasm

“Okay so they survived a cold like most do. With a 99.8% survival
rate, I’m sooo surprised.”

“See,” “think,” “often,” “say,” “real,” and “know”Sarcasm

Encouragement for better outcomes

“Phillippians 4:7—And the peace of God, which surpasses all
comprehension, will guard your hearts and your minds in Christ
Jesus.”

“Unto,” “shall,” “ye,” “people,” “peace,” “hath,”
“forgive,” “love,” “reward,” “presence,” “pray,”
“temple,” and “holy”

Prayers and scriptures

“Leronlimab is in clinical trials you guys. Don’t worry, help is on
the way.”

“Ask,” “receive,” “keep,” and “know”Potential solutions and
sharing symptoms

Extending Empathy
Extending empathy comprised the topics “Relating to others,”
“Well wishes,” and “Gratitude.” Comments in which people
related to others involved people explicitly sharing that they
related to the content shown or explaining how their symptoms
were similar to those of the people interviewed in the news
segments. For example, one commenter wrote the following:

You are not alone. I had COVID in April 2020 [...] I
am currently in pulmonary rehab [...] I want others
to know you are not alone. I’m praying for everyone.
God Bless.

Well wishes was the second topic in this theme. In this topic,
commenters sought to verbally empathize with those
experiencing negative COVID-19–related symptoms:

Too bad for that young man, hopes he gets better!

Finally, in the Gratitude topic, commenters were also grateful
that PCC content was being shared at all:

So glad she is sharing her struggles.

Expressing Distrust Through Sarcasm
Although the comments observed in this analysis were rated
neutral or positive by VADER, some comments seemed to take
on a sarcastic tone. For example, one commenter wrote the
following:

The greatest nation in the world is your
imagoNATION.

These sarcastic comments often appeared to exhibit political or
skeptical undertones.

Encouragement for Better Outcomes
The topics within the Encouragement for better outcomes theme
were “Prayers and scriptures” and “Potential solutions and
sharing symptoms.” Many commenters left prayers and
extensive Bible verses underneath videos as a form of
encouragement for those battling PCC:

God heal these people from this virus. Give them
strength.

Finally, Potential solutions and sharing symptoms was a topic
that covered suggestions that commenters made to improve the
symptoms of those dealing with PCC as well as sharing
symptomatology in general:

Leronlimab is in clinical trials you guys. Don’t worry,
help is on the way.

Negative News Source Comments
Table 5 shows the resulting topics and themes from negative
comments found under news source videos.
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Table 5. Results of negative comments in news source videos.

Sample commentsKeywordsTheme and topic label

Reproduction of debunked and political theories

“This is all because of 5G poisoning.”“Vaccine,” “face,” “different,” “affected,” “system,” “situ-
ation,” “avoid,” “dreadful,” “resist,” and “corona”

Conspiracy theories

“They got their butts kicked by Kung flu.”“Capability,” “dreadful,” “never,” “responsible,” “fight,”
and “answer”

Political influences

Misinformation and disinformation

“Something’s coming, and we won’t be able to stop
it.”

“Never,” “stress,” “know,” “affected,” “death,” “worry,”
and “stop”

Fear of impending doom

“Elderly people are susceptible to viruses. This is well
known.”

“Already,” “must,” “know,” “affected,” “response,” “an-
other,” “nothing,” and “personal”

Skepticism or rationalization

Issues with the health care system

“My primary care physician doesn’t believe me either
[...].”

“Medical,” “sick,” “normal,” “pain,” “feeling,” “never,”
“anxiety,” “help,” “see,” “hope,” and “think”

Not believed

“I had this for decades with me/cfs. Imagine dealing
with it for that long [...].”

“Sick,” “heart,” “pain,” “long,” “time,” “blood,” “fatigue,”
“brain,” “chronic,” and “help”

Other illnesses

Reproduction of Debunked and Political Theories
This theme comprised 2 topics: “Conspiracy theories” and
“Political influences.” As an example of the Conspiracy theories
topic, one commenter offered alternate causes of PCC
symptoms, which were based on public disdain for mask
wearing—“‘Long-haulers’ may actually be suffering from
effects of prolonged mask-wearing […]”—instead of on
veritable information. In contrast, Political influences covered
suspected country or political involvement that contributed to
the pandemic. When referring to individual damages incurred
due to PCC, one commenter wrote the following:

...take the cost off the debt to china.

Distrust of Information Shared
This theme comprised 2 topics: “Fear of impending doom” and
“Skepticism or rationalization.” Fear of impending doom
comprised comments that pointed to a grim future for long
haulers or the public:

...they’re just trying to kill all the long haulers when
all you need is some ivermectin [...]

Skepticism or rationalization comprised commenters
who were not convinced that the information
presented on PCC was veritable:

...they had flu colds bacterial lung infections
pneumonia, many caused by face mask, no sunlight,
fear and confinement [...]

Issues With the Health Care System
This theme comprised 2 topics. “Not believed” covered
comments condemning health care workers for dismissing the
symptoms of their patients:

...typical doctor behavior: when in doubt, blame
anxiety.

Other illnesses covered comments in which people drew
similarities between PCC and other chronic illnesses:

This is so real...the Lyme community feels all your
pain. And being denied by Dr’s that this is real. Its
criminal to ignore this.

Medical Source Video Comments

Overview

Table 6 shows the resulting topics and themes from positive
comments found under medical source videos.
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Table 6. Results of positive comments in medical source videos.

Sample commentsKeywordsTheme and topic label

Appreciation of helpful content

“This is the first thing that I have seen that explains anything be-
sides the news trying to sensationalize and leave out important
details.”

“Help,” “medical,” “doctors,” “hope,” “thank,”
“much,” “understand,” and “positive”

Gratitude

“Your lectures are always easy to understand. Thank you Dr.”“Need,” “information,” “understand,” “research,”
“know,” “specific,” and “narrative”

Health literacy

Hope and encouragement

“Jesus loves you [...].”“Hope,” “believe,” “feeling,” and “days”Prayers

“You’ve always cared, been of a sound mind, and shared such in-
sightful information. Thank you.”

“Help,” “know,” “say,” “think,” “test,” and “re-
search”

Voice of reason

“Even though this subject is controversial, you’re still brave enough
to comment on it. Thank you.”

“Research,” “doctor,” “video,” “help,” “know,”
“people,” “feel good,” “positive,” and “believe”

Bravery

Exchange of helpful information

“Has the Dr. released the additional information?”“Symptoms,” “help,” “information,” “video,”
“wonder,” and “please”

Seeking additional infor-
mation

“Can you please translate to Arabic?”“Please” and “videos”Seeking translated infor-
mation

“Yesterday, I saw an article that said we needed to be aware of
[...].”

“Think,” “information,” “help,” “vitamin,” “re-
search,” “medical,” and “may”

Sharing helpful informa-
tion

Appreciation of Helpful Content

This theme covered 2 topics: “Gratitude” and “Health literacy.”
Gratitude covered general professions of thanks for the content
shown. One commenter wrote the following:

Dr. Hansen, this is exactly the information I was
hoping for! Thank you.

Health literacy in this case was covered in a positive light.
Commenters thanked content makers for presenting information
in a clear manner:

...as a lay person with zero medical background, I
learn a lot.

Hope and Encouragement

This included 3 topics: “Prayers,” “Voice of reason,” and
“Bravery.” Prayers included well wishes for those dealing with
PCC or reading the comment section. This included requesting
prayers as well:

Please pray for my mom...she is positive for covid 19.

The Voice of reason topic alluded to the idea that commenters
deemed it important to find useful and truthful information:

Thank you for your commitment to keeping the world
informed.

Finally, Bravery featured comments that alluded to the negativity
that those sharing information about PCC and, more generally,
COVID-19 face. One commenter noted the following:

...this subject is controversial and you’re still brave
enough to comment on it.

Exchange of Helpful Information

This theme covered 3 topics: “Seeking additional information,”
“Seeking translated information,” and “Sharing helpful
information.” Seeking additional information featured those
primarily asking questions such as the following: “What about
cutaneous hyperestesia?” In Seeking translated information,
many sought to understand content by having it translated into
their native language. In Sharing helpful information,
commenters tried to share what they deemed to be helpful to
others:

Find a hyperbaric oxygen therapy chamber and a
doctor checkup for compassionate use.

Negative Medical Source Comments

Table 7 shows the resulting topics and themes from negative
comments found under medical source videos.
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Table 7. Results of negative comments in medical source videos.

Sample commentKeywordsTheme and topic label

Negative impacts of the long haul

“How does this effect those with diabetes. I’m experi-
encing a range of symptoms.”

“Fatigue,” “disease,” “symptoms,” “pain,” “chronic,”
“heart,” “brain,” “chest,” “feel,” “body,” and “diag-
nosed”

Comorbidity

“COVID-19 took my mom last year. I don’t know how
I’ll move on.”

“Family,” “end,” “life,” “months,” and “never”Loss

“I had a headache so bad that I had to seek treatment
[...].”

“Symptoms,” “fatigue,” “disease,” “chest,” “heart,”
“brain,” “taste,” “body,” “severe,” “hearing,” and
“memory”

Symptoms

Requiring medical alternatives

“These doctors have no idea what they’re doing. His
advice makes no sense. I think we’ll be sick forever.”

“Doctor,” “bad,” “know,” “experience,” “need,” “study,”
“poor,” “data,” and “must”

Criticism of physicians

“How could you share so much but not talk about
Ivermectin? You’re doing everyone an injustice.”

“Study,” “poor,” “suffering,” “need,” “research,”
“must,” and “know”

Debunked recommendations

“Misinformation has gotten so bad that my own family
won’t even believe me [...].”

“Vaccine,” “last,” “illness,” “death,” and “bad”Misinformation

Lack of needs

“The vaccine didn’t improve my symptoms.”“Symptoms,” “feel,” “since,” “weeks,” “pain,” “back,”
“effects,” “suffering,” “last,” and “vaccination”

Lack of improvement

“He mentions promising treatments but he never tells
us what they are.”

“Medical,” “would,” “think,” “cause,” “whether,” and
“help”

Lack of information

Negative Impacts of the Long Haul

This theme comprised 3 topics: “Comorbidity,” “Loss,” and
“Symptoms.” Comorbidity featured comments and questions
that sought to relate PCC to other diseases:

Childhood obesity might be a factor [...]

In Loss, some commenters spoke explicitly about those they
lost to PCC or COVID-19. Finally, in Symptoms, commenters
spoke candidly about the symptoms they faced:

I had a headache so bad that I had to seek treatment.

Requiring Medical Alternatives

In this theme, there were 3 topics: “Criticism of physicians,”
“Debunked recommendations,” and “Misinformation.” In
Criticism of physicians, commenters spoke about how they often
felt dismissed by physicians when presenting their symptoms:

...if he went to visit my gp he would tell him he was
stressed and it was in his head told me the same [...]
it turned out to be lung scarring and a tumor.

In Debunked recommendations, commenters pushed for the use
of medications that had already been proven to be not helpful
and even toxic for human consumption. Ivermectin was notably
one of these medications:

...should we be taking Ivermectin since our DNA now
expresses spike protein forever?

Finally, Misinformation comments reverberated common
antimask and antivaccine comments:

John do you have the list of ingredients of the
vaccines? My daughter makes cupcakes and she has
to list every ingredient by law...

Lack of Needs

This theme covered “Lack of improvement” and “Lack of
information.” Lack of improvement largely related to symptoms
not improving despite medical and home remedy attempts. Lack
of information included criticism of content sources for not
providing enough information regarding content (eg, treatment
and research):

...he mentions promising treatments, but he never tells
us what they are.

Long Hauler Video Comments

Overview

Table 8 shows the resulting topics and themes from positive
comments found under long hauler videos.
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Table 8. Results of positive comments in long hauler source videos.

Sample commentsKeywordsTheme and topic label

Appreciation

“Your bravery hasn’t gone unnoticed. Thank you for
all that you do.”

“Sharing,” “thank,” “glad,” “feeling,” “believe,” “recovery,”
“care,” “story,” “bless,” and “post”

Bravery

“what a beautiful person inside and out.”“Bless,” “share,” “thank,” “good,” “feel,” “positive,” “love,” and
“believe”

Compliments

Exchange of helpful information

“...eliminating carbs could potentially make things
better. That’s what worked for me [...].”

“Back,” “still,” “help,” “know,” “could,” “think,” “test,” “say,”
“check,” “treatment,” “better,” “work,” “natural,” “support,” and
“right”

Seeking additional infor-
mation

“If you check my channel you’ll see why you should
check your CRP. It could really help your lungs [...].”

“Support,” “scheduling,” “doctor,” “right,” “treatment,” “better,”
“work,” “great,” “different,” “try,” “may,” and “take”

Sharing additional infor-
mation

Community building

“...is there any way that I can talk to you please or
message you?”

“Need,” “people,” “help,” “sharing,” “video,” “time,” “want,”
“research,” “appreciate,” and “experience”

Reaching out

Appreciation

The Appreciation theme comprised “Bravery” and general
“Compliments.” Commenters lauded the content creator for
being brave enough to share their experiences. This may allude
to the idea that some who speak on their PCC experiences may
face backlash. In addition, commenters gave content creators
various accolades regarding their personalities and their
decisions to share information:

...what a beautiful person, inside and out.

Exchange of Helpful Information

“Seeking additional information” and “Sharing additional
information” were the 2 topics in this theme. Commenters often

initiated or tried to engage in dialogue about topics such as
potential treatments and tests for PCC symptoms:

...if you check my channel, you’ll see why you need
to check your CRP.

Community Building

“Reaching out” was the topic in this theme. Commenters sought
to connect with long haulers to continue conversations
elsewhere.

Negative Long Hauler Source Comments

Table 9 shows the resulting topics and themes from negative
comments found under long hauler videos.

Table 9. Results of negative comments in long hauler source videos.

Sample commentsKeywordsTheme and topic label

Exchange of additional information

“Are you still sick?”“Get,” “think,” “covid,” “would,” “take,” “symptoms,”
“different,” “know,” “since,” “less,” “help,” and
“maybe”

Asking follow-up questions

“You should check into your thyroid levels. I had
issues with mine [...].”

“Symptoms,” “many,” “swollen,” “frustrating,”
“lymph,” “body,” “covid,” “chest,” “get,” “pain,”
“take,” and “help”

Sharing information via experience

“did anyone else experience long COVID anxiety?”“Help,” “feel,” “usually,” “maybe,” “less,” and
“symptoms”

Seeking answers for symptoms

Disillusionment with the health care system

“Overachievers will never admit they don’t know
something.”

“Medical,” “pain,” “enough,” “nurse,” “support,”
“right,” “hard,” “felt,” “know,” “fear,” “frustrating,”
“people,” and “deal”

Disappointment with physicians

“...women and women of color are often treated
this way. i’m not really surprised.”

“People,” “frustrating,” “deal,” “problem,” “felt,”
“hard,” and “know”

Unfair treatment

Requiring more visibility

“My girlfriend has long COVID and she has so
many of these issues.”

“Symptoms,” “sick,” “since,” “without,” “feeling,”
“believe,” and “almost”

Gratitude

“I barely see any information like this in the media.
Why is that?!”

“Weeks,” “always,” “sick,” “bad,” “body,” “infection,”
“low,” “feel,” “know,” and “symptoms”

Wanting more awareness
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Exchange of Additional Information

“Asking follow-up questions,” “Sharing information via
experience,” and “Seeking answers for symptoms” were the 3
topics in this theme. This theme was very similar to the theme
that appeared in the positive long hauler comment analysis.
There were slight differences between the examples in the 2
themes. The theme in this instance focused more on
symptomatology in the case of the content creators or
commenters:

...did anyone else experience long COVID anxiety?

Disillusionment With the Health Care System

The topics in this theme were “Disappointment with physicians”
and “Unfair treatment.” In “Disappointment with physicians,”
commenters mainly criticized the behavior of physicians in the
context of PCC diagnosis or lack thereof. In addition, in “Unfair
treatment,” commenters mentioned how specific groups may
experience worse health care treatment than others:

...female patients and patients of color [...] there is
so much research on patients reporting doctors not
believing them or not treating them with the same
level of compassion.

Requiring More Visibility

This theme comprised “Gratitude” and “Wanting more
awareness.” Interestingly, although these comments were
marked as negative, there were still a number of comments that
expressed gratitude for the content creator sharing their message.
This was often accompanied by sharing of their experiences as
well. Relatedly, “Wanting more awareness” reflected the desire
of commenters to see additional PCC content in the media,
insinuating that there was not yet enough coverage.

Discussion

Principal Findings

Overview
Symptomatology was a prevalent theme across all sources.
Video creators and commenters shared and empathized with
each other regarding symptoms that occurred because of PCC.
These symptoms included prolonged fatigue, cognitive
dysfunction, shortness of breath, cardiac issues, and lingering
pulmonary symptoms. This was consistent with the findings of
several studies [4,14-16,33]. In medical source videos, medical
professionals explained symptomatology and symptom etiology
in both layperson and more scientific terms. In both news source
and long hauler videos, personal experiences were shared, as
well as how PCC symptoms had impacted their daily lives.
Upon inspection of the comments, we found that symptoms
were shared for a range of purposes. At times, it was purely to
exchange knowledge and offer informational support. In
addition, it was used as a means to connect with others to
exchange emotional support [34].

Emotional and Informational Support
The positive themes identified in our findings can be
operationalized as emotional and informational support. The
emotional support category of themes comprised those in which

commenters or video creators sought to empathize with others.
This was through words of encouragement, prayers, sharing of
similar experiences, and community building. Informational
support themes covered themes in which users sought or shared
information.

In both transcripts and comments, people discussed experiences
of not being believed by physicians and having a perilous
relationship with the health care system. This sentiment appeared
to be common across the board; however, 3 groups stood out
in particular: those with other chronic illnesses such as chronic
fatigue syndrome and myalgic encephalomyelitis, women, and
people of color. Those who had been battling chronic diseases
for years before the emergence of PCC empathized with long
haulers who felt that they were not being heard, as can be seen
in Table 5. Complaints centered on being told that they were
overexaggerating their symptoms or insinuations that patients
were hypochondriacs (Table 5).

Women and people of color discussed how they felt dismissed
by health care workers. There was a general sentiment of
distrust. This notion has been backed by an NBC article, wherein
one woman of color explained that she had been brushed off by
physicians and labeled as aggressive [35]. This was despite the
fact that she had lost 30 pounds and sight in her right eye as a
result of PCC [35]. People of color have been disproportionately
affected by PCC [35-37]. A total of 2 studies conducted by the
National Institutes of Health [36,37] found that Hispanic and
African American individuals had greater health problems and
symptoms related to PCC but were less likely to be diagnosed.
This corroborates anecdotal evidence from video comments
(Table 9).

Though these topics occurred in comments with negative
sentiment, there were positive repercussions: emotional and
informational support. This general distrust of the health care
system appears to have led to the adoption of homeopathic
medicine, alternative medicine, and home remedies. In attempts
to take their health into their own hands, users resorted to
alternative treatments even if it put their freedom at risk. These
comments were shared freely between video creators and
commenters, exemplifying informational support. For example,
one commenter noted that they smuggled marijuana into their
state and felt that their insomnia had improved as a result of
consuming it (Table 8). Others suggested changes in dietary
habits (Table 8).

Another aspect of informational support dealt with health
literacy. Health literacy was a theme that appeared most often
in medical source–related videos. Health literacy has been
defined by the Centers for Disease Control and Prevention as
the degree to which individuals have the ability to understand
and use information to make health-related decisions [38]. The
content from medical sources exhibited 2 distinct tones. In the
first case, information was delivered in layperson terms, which
would likely be easier for the average person to understand. In
the second case, scientists presented biological explanations of
PCC in more jargon-filled language. There were mixed
reactions. Commenters noted that, at times, they had issues
understanding the content (Table 7). Issues with health literacy
can impede one’s ability to properly advocate for themselves
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and understand what their options are. In other instances,
commenters thanked the medical professionals for explaining
PCC in a digestible manner, as can be seen in Table 6.

Symptom management was another topic that came up often in
medical source and long hauler video transcripts and comments.

In videos, medical professionals outlined steps that those with
PCC could take to mitigate their symptoms (Table 10). In the
comment section of medical source videos, commenters shared
helpful information as well (Table 6).

Table 10. Medical source video transcript results.

Sample transcriptsKeywordsTheme and topic label

Explanations in layman’s terms

“Cognitive impairments things like word finding difficulty,
short-term memory loss, difficulty with multitasking, poor
concentration as well as anxiety and PTSD especially in pa-
tients who have been hospitalized.”

“Symptoms,” “long,” “fatigue,” “com-
mon,” “brain,” “pain,” “loss,” “breath,”
“chest,” “shortness,” “smell,” “body,”
“fog,” “taste,” “breathing,” and “cough”

Symptomatology

“[...] As I said earlier all of these symptoms, the headache,
the sleep disturbance, the brain fog, they often tend to run to-
gether and sometimes it’s hard to say as to what is leading to
what other symptom. It’s sort of like the chicken and the egg
analogy. Is it because somebody has poor sleep, is that what
leads to headaches because we do know what headaches can
be triggered when the sleep is poor.”

“Syndrome,” “severe,” “illness,”
“chronic,” and “different”

Symptom etiology

“I think the first treatment for that insomnia is really sleep
hygiene so that’s things like um turning off devices a half an
hour before bed time, making sure you go to bed at the same
time with a relaxing bedtime ritual, waking up at the same
time every day, shutting devices off. [...]”

“Vitamin,” “time,” “day,” “sleep,”
“work,” “different,” “need,” “help,” and
“right”

Symptom management

Show housekeeping

“And he has organized several conferences given many lec-
tures and has done live surgeries as demonstrations in several
international conferences and forums [...] and nhs hospitals
in UK [...].”

“Dr,” “going,” “thank,” “time,” “want,”
“talk,” “need,” “help,” “work,” “re-
search,” “medical,” and “information”

Introducing the show or guest and vali-
dating the guest’s credentials as a reli-
able source

“[...] There’s a conversation on X hashtag covered science um
and uh all that remains then is for me to thank everyone that’s
submitted questions. I hope I got through as many as I could.”

“Question,” “talk,” “help,” “data,”
“group,” “better,” and “information”

Encouraging the audience to keep in
touch

Biological explanations

“[...] You know we can apply these variants in multiple appli-
cations, such as immunophenotyping cell sorting and also to
study cell physiology [...].”

“ccr5,” “data,” “number,” “antigen,”
“cd16,” “cd14,” “interleukin,” “dotted,”
“chord,” “monocytic,” and “interstitial”

Immunophenotyping

“[...] What’s really interesting is interleukin-2 and interferon-
gamma are two cytokines that are intimately involved in an-
tiviral immune responses and they are low in active because
it’s an emerging infection our immune system presumably
has not seen that virus before [...] so long covid actually has
an immune response with high interferon-gamma that looks
very much like a typical antiviral immune response.”

“Disease,” “percent,” “inflammation,”
“severe,” “heart,” “illness,” “brain,”
“course,” “study,” and “viral”

Explaining the mechanics of immune
responses

As implied, emotional support was operationalized as comments
that extended empathy and compassion. This could often be
found when there were accounts of personal experiences. Bible
verses were shared as a means of offering hope. Commenters
also thanked creators for sharing their story and offered prayers
(Table 8). There was support from those living with other
long-term illnesses, notably those with chronic fatigue syndrome
or myalgic encephalomyelitis. Such discourse often led to
community building in the comment section. This was
particularly prevalent in the comment section of long hauler
videos. To continue discussion, commenters asked follow-up
questions regarding the progression of symptoms (Table 9). In
addition, they sought other avenues to connect with and support
each other (Table 8).

Skepticism, Misinformation, and Negatively Charged
Comments on News and Medical Source Videos
We also observed a high frequency of negatively charged
content, particularly in the comments for news and medical
source videos. Skepticism regularly appeared in news-related
content. Theories suggested by prominent politicians abounded,
such as ivermectin as a cure for COVID-19. Many also criticized
the credibility of the news sources and their supposed neutrality.
News stations and reporters were, at times, labeled as people
pushing liberal agendas and fear-mongering propaganda.

Misinformation and disinformation were major themes in both
medical source and news source videos and comments. Some
commenters felt that physicians were not sharing correct
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information or were misinterpreting the information that they
had received (Table 7). This was despite the fact that, in many
medical source videos, there was ample time spent expounding
on the credentials of guest speakers, perhaps in an attempt to
boost credibility before information was shared. In contrast,
some commenters shared the opposite—they appreciated the
scientific approach taken by physicians as opposed to news
sensationalism (Table 6).

Other negatively charged comments dealt with the lack of needs:
lack of information, lack of visibility, and lack of improvement.
In general, commenters sought more information from health
care professionals (Table 7). On a related note, commenters
expressed wishes for more visibility regarding PCC.
Commenters noted that their symptoms did not improve even
once given the vaccine.

On the basis of our sentiment analysis, news source videos
received by far the greatest proportion of negative comments.
When assessing the topics and themes that came up in comments
under news source videos, criticism and sharing of
misinformation were dominant. Many of the ideas shared by
commenters reflected those of politicians. In these views, blame
for the spread of COVID-19 and COVID-19–based restrictions
was shifted onto China and liberal politicians. Vaccine hesitancy
and opposition expressed by commenters were reiterated by
some politicians as well. Some commenters appeared to
experience extreme fear with regard to the vaccine. They
mentioned that those administering the vaccine and treating
long haulers had motives to kill (Table 5). This seems to shed
light on the idea that, although many previously debunked
sentiments of politicians were being repeated, there was a
genuine fear of vaccines, the health care system, and some
members of the government. The sentiment analysis of videos
from medical sources revealed that only a smaller portion
(528/1258, 41.97%) of the comments were negative.

Implications
The results of this study could help public health agencies,
policy makers, organizations, and health researchers understand
symptomatology and experiences related to PCC. The
information includes a description of the diverse range of
symptoms and informational and emotional needs of patients
with PCC. This information can help public health professionals
develop and implement effective interventions to manage PCC.
Voices of Long Covid [39] is one campaign promoted by the
US Department of Health and Human Services that emerged in
November 2021 as a community for those with the syndrome.
In addition to providing a forum for patients with PCC to share
their experiences, the campaign offers resources for vaccinations
and updates on developing research. The findings of this study
demonstrate the potential of computational analysis of social
media to provide insights and communication strategies
regarding the public’s responses to future health crises. This
can be used to provide additional perspective and information
to such campaigns.

As referenced in the NBC News article [35], there are patients
with PCC who have been met with resistance by some medical
professionals. For example, one patient felt that she was
dismissed after explaining her PCC symptoms. This dilemma

has led to the creation of long hauler support groups on various
social media platforms [35]. By mining YouTube, a rich source
of our daily experiences, we began to uncover multifaceted
challenges faced by long haulers. Our findings align with the
experiences of patients who have lost work due to PCC and are
unable to receive insurance coverage.

Limitations and Future Work
There are some limitations to this work. Our study was
conducted on YouTube transcripts. In many cases, transcripts
for YouTube videos are automatically generated. This means
that the captioning process is imperfect and, at times, incorrect
words were recorded instead of the words that the speakers said.

In addition, we only reviewed top-level comments related to
our videos, and our analyses on comments does not reflect the
full scope of the discourse in the comment section. Thus, we
may be missing important insights from responses to the
comments. Future studies should extend this study to include
reactions to comments as well. Another limitation is that we
cannot assume that the comments presented underneath the
videos in our study are representative of all viewers. Many
viewers do not comment on videos [40]; thus, their opinions
are not captured.

It is difficult to detect sarcasm and linguistic nuances using
LDA and sentiment analysis. Despite this, sarcasm is often used
in everyday speech. Because of this, the computational models
may have interpreted some texts differently from how they were
originally intended.

Future research could focus on the longitudinal experience of
long haulers to examine how they are perceived and their overall
experience over time. Long hauler sentiments toward the health
care system and physicians could potentially have changed over
time. In addition, as more information has surfaced and more
COVID-19 infections have likely led to more PCC cases, there
may have been a change in the level of skepticism and distrust
when it comes to long hauler experience. Longitudinal studies
would be able to explore this shift in their experience. Future
research could explore the effectiveness of various public health
strategies in mitigating the impact of PCC considering potential
changes in public awareness and understanding fostered by
increased media coverage, including YouTube.

Regarding recent PCC treatments, we started our research before
drugs such as Paxlovid received full Food and Drug
Administration approval on November 2023 [41]. We collected
the videos on November 1, 2021, which included videos made
in August 2020 after the spread of COVID-19 and until October
2021. A future study should investigate how the availability of
PCC treatments changed the perceptions, management, and
psychological impact of PCC.

It is important to acknowledge that the commenters and video
creators in our YouTube study may be subject to selection bias
and have excluded certain geographic and demographic
perspectives. These perspectives hold some weight in how public
sentiment should be perceived [42-45]. However, >95% of the
internet population spanning 88 countries regularly interacts
with YouTube [46]. This highlights the potential opportunity
for broader exploration.
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Conclusions
In this study, we used topic modeling to investigate videos
concerning PCC on YouTube. In addition, we assessed public
responses to these videos by analyzing the comment section
using sentiment analysis and topic modeling. We found that
videos mostly focused on symptomatology, potential treatments,
and sharing experiences. There was a range of response types,
with news source videos receiving the highest proportion of
negative comments and medical source videos receiving the
lowest proportion of negative comments. Some were negative
and often referenced conspiracy theories and distrust of the
shared content. They also included negative experiences

regarding PCC symptoms and treatment. Positive comments
were those that exhibited community building, sharing of
information, and offering of support. This information, which
is based on social media analyses, can assist public health
professionals in comprehending the responses to PCC, includes
a description of the diverse range of symptoms and informational
and emotional needs of patients with PCC, and can help public
health professionals develop and implement effective
interventions to manage PCC. The findings of this study
demonstrate the potential of computational analysis of social
media to provide insights and communication strategies
regarding the public’s responses to future health crises.
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Abstract

Background: The integration of artificial intelligence (AI)–based applications in the medical field has increased significantly,
offering potential improvements in patient care and diagnostics. However, alongside these advancements, there is growing concern
about ethical considerations, such as bias, informed consent, and trust in the development of these technologies.

Objective: This study aims to assess the role of ethics in the development of AI-based applications in medicine. Furthermore,
this study focuses on the potential consequences of neglecting ethical considerations in AI development, particularly their impact
on patients and physicians.

Methods: Qualitative content analysis was used to analyze the responses from expert interviews. Experts were selected based
on their involvement in the research or practical development of AI-based applications in medicine for at least 5 years, leading
to the inclusion of 7 experts in the study.

Results: The analysis revealed 3 main categories and 7 subcategories reflecting a wide range of views on the role of ethics in
AI development. This variance underscores the subjectivity and complexity of integrating ethics into the development of AI in
medicine. Although some experts view ethics as fundamental, others prioritize performance and efficiency, with some perceiving
ethics as potential obstacles to technological progress. This dichotomy of perspectives clearly emphasizes the subjectivity and
complexity surrounding the role of ethics in AI development, reflecting the inherent multifaceted nature of this issue.

Conclusions: Despite the methodological limitations impacting the generalizability of the results, this study underscores the
critical importance of consistent and integrated ethical considerations in AI development for medical applications. It advocates
further research into effective strategies for ethical AI development, emphasizing the need for transparent and responsible practices,
consideration of diverse data sources, physician training, and the establishment of comprehensive ethical and legal frameworks.

(JMIR AI 2024;3:e51204)   doi:10.2196/51204
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Introduction

Background
Artificial intelligence (AI) has been considered a key technology
in medical advancement for several years [1]. Recent
developments in AI, exemplified by the broad availability and
widespread use of advanced AI-based chat applications, such
as ChatGPT, have underscored the capabilities of technology

[2]. This study specifically focuses on AI-based applications in
medicine, highlighting the importance of ethics in their
development, with an emphasis on the role of developers.
Considering the inherent complexities associated with AI and
its applications in medicine along with the multifaceted nature
of AI ethics, this introduction aims to provide a comprehensive
foundation for this publication.
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Artificial Intelligence
Early definitions of AI, such as by McCarthy et al [3], primarily
focused on the potential for machines to simulate all facets of
human intelligence: “...the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made
to simulate it.” Newer definitions, such as the one from the
European Parliament, expand this scope and describe AI as “the
ability of a machine to display a range of humanlike capabilities,
including reasoning, learning, planning, and creativity,”
encompassing a broader spectrum of intelligent behaviors [4].

Following the evolving definitions of AI, the term broadly
encompasses various technologies, each with unique
characteristics and applications. The scientific community
commonly categorizes these technologies as “strong AI” and
“weak AI” [5]. “Strong AI” refers to systems whose cognitive
capabilities are comparable with human intelligence across a
wide range of tasks and contexts [5]. However, most current
applications, particularly in medicine, are categorized as “weak
AI.” This category includes systems designed to perform specific
tasks using cognitive abilities comparable with those of humans
but within a limited scope [6]. Within the category of “weak
AI,” 2 primary subfields are prominent: expert systems and
machine learning (ML) [6]. Expert systems, categorized under
“symbolic AI,” operate based on predefined rules and
instructions set by human experts [7]. In contrast, ML represents
the “statistical AI” subfield [8]. ML focuses on pattern
recognition within large data sets, enabling the system to learn
and make predictions or decisions based on the data [9]. A
notable example of such advancements in “statistical AI” is the
development of large language models, such as ChatGPT, which
demonstrate the evolving capabilities of AI in understanding
and generating humanlike text, offering new possibilities, and
raising unique ethical considerations in their application [10].

Despite the significant technological advances in the field of
AI and, in particular, “weak AI,” “strong AI,” which would
entail cognitive abilities on par with human intelligence across
diverse areas, remains largely theoretical with no substantial
application in medicine to date [11]. Therefore, “weak AI” will
be the foundation of this publication, specifically focusing on
the development and associated ethical considerations of
“symbolic AI” and “statistical AI” applications in medicine.

AI in Medicine
The technological advancements and capabilities of AI in
medicine, as exemplified by a range of AI-based applications
such as ML algorithms and expert systems, are anticipated to
transform various aspects of health care, such as diagnostics or
personalized treatment planning [1].

For example, ML algorithms, a key subset of “statistical AI,”
are of particular interest in medicine because of their capability
to analyze large data sets, including a wide array of medical
images such as x-rays, magnetic resonance imaging, computed
tomography, and dermatological photographs [8]. In radiology,
ML algorithms enhance image interpretation by identifying the
features associated with specific pathologies. For instance, in
mammography, ML assists radiologists in detecting

microcalcifications and subtle changes in the breast tissue, which
may indicate the early stages of breast cancer [12]. Similarly,
in dermatology, ML-powered tools analyze photographic data
of skin lesions and moles, thereby providing critical diagnostic
insights [13]. By distinguishing between benign and malignant
lesions with high accuracy, the early detection of skin cancer
can be improved. The integration of ML in image-based
diagnostics can not only enhance diagnostic accuracy but also
have the potential to speed up the diagnostic process [8]. This
reduction in analysis time leads to quicker diagnostic outcomes,
enabling earlier intervention and treatment, which are crucial
for improving patient care [14].

Expert systems in medicine, a subfield of “symbolic AI,” are
primarily exemplified by Clinical Decision Support Systems
(CDSS) [15]. By leveraging predefined rules and knowledge
from medical experts, these systems can provide
recommendations for diagnosis and therapy options, potentially
enhancing the decision-making process in clinical settings [16].
CDSS often use information from various sources, such as
electronic health records, patient history, and latest medical
research, to offer evidence-based suggestions. In addition to
offering diagnostic and treatment guidance, CDSS can play a
significant role in identifying potential adverse drug events,
which is a critical aspect of patient safety [16]. By
cross-referencing a patient’s current medications with the
proposed treatments, CDSS can alert health care providers to
possible drug-drug interactions, allergic reactions, or
contraindications based on the patient’s medical history or
known conditions [15].

In addition to diagnostic and decision support applications, AI
contributes to other areas of medicine, such as medical research
and drug development. In medical research, AI algorithms are
used to analyze complex information, such as genetic,
environmental, and lifestyle data, which can be used for
personalized medical approaches, enabling more targeted
therapies based on individual patient profiles [17]. Furthermore,
AI can be used to identify potential therapeutic compounds
more quickly and efficiently than traditional methods [18]. AI
systems can simulate and predict how different compounds
interact with biological targets, thereby reducing the time and
cost of drug trials. This capability is particularly crucial in
rapidly responding to emerging global health challenges, such
as the development of vaccines and treatments for new diseases
[18]. Furthermore, although AI-based chat applications, such
as ChatGPT, have not been specifically developed for use in
medicine, they possess extensive medical knowledge, making
their potential application in various medical contexts a subject
of increasing interest [2]. Although advancements in the field
of AI can offer transformative benefits for medicine, they also
introduce new ethical considerations and challenges that warrant
attention [19,20].

AI Ethics
AI ethics can be defined as “a set of values, principles, and
techniques that employ widely accepted standards of right and
wrong to guide moral conduct in the development and use of
AI technologies” [21]. Although this definition does not
specifically focus on or include the field of medicine, it
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emphasizes the importance of values and principles in the
development of AI technologies. In medicine, the fundamental
principles of medical ethics formulated by Beauchamp and
Childress—autonomy, nonmaleficence, beneficence, and
justice—are of paramount influence and relevance [22].

The principle of autonomy emphasizes respecting patients’
rights to make informed decisions regarding their own health.
In the context of AI-based applications in medicine, the principle
of autonomy often refers to the development of technologies
that support and enhance patient decision-making while
maintaining transparency, explainability, and accountability
[23,24]. This also refers to the development of AI-based
applications that not only provide accurate diagnostic and
treatment recommendations but also present their findings in a
manner that is understandable and useful for both patients and
health care professionals. The principle of nonmaleficence,
emphasizing the commitment to do no harm, has become
increasingly important in the context of growing role of AI in
health care. Adhering to this principle requires the establishment
of stringent safety protocols and comprehensive testing of AI
technologies to prevent unintended consequences, such as biases
in decision-making that could lead to misdiagnosis or unequal
treatment of patients [24].

Bias in AI systems, particularly in medical applications, is a
significant concern. For instance, ML algorithms used in
image-based diagnostics, such as those used in radiology or
dermatology, may develop biases based on the data they are
trained on [25]. If these algorithms are primarily trained on data
sets that lack diversity, they might be less accurate in diagnosing
conditions in patient populations that are underrepresented in
the training data [26]. This can lead to disparities in diagnostic
accuracy and effectiveness, potentially harming certain groups
of patients [16,27]. Similarly, in CDSS, which rely on predefined
rules and medical knowledge, there is a risk of inherent biases
being transferred into the system. If the input data or rules within
these systems reflect historical biases or unequal treatment
practices, the CDSS might perpetuate these issues, leading to
recommendations that are not equitable or appropriate for all
patients [16].

Addressing the challenges related to autonomy and
nonmaleficence is fundamental for ensuring that AI in medicine
aligns with the principles of beneficence and justice. The
principle of beneficence, or acting in the best interests of the
patient, emphasizes that AI-based applications in medicine
should be developed with the primary goal of improving patient
outcomes and enhancing quality of care [23]. Finally, the
principle of justice requires that AI technologies in health care
promote fairness and equity. This means ensuring equitable
access to the benefits of AI advancements regardless of a
patient’s socioeconomic status or background [24].

In light of these ethical principles, the role of developers in
creating AI-based applications in medicine has become critically
important. Developers bear a particular responsibility to ensure
that the design and implementation of these technologies adhere
to the ethical standards outlined by autonomy, nonmaleficence,
beneficence, and justice [28]. A deep understanding and
awareness of the ethical implications during the development

process are essential, as the principles and guidelines frequently
discussed in the current literature should be integrated from the
early stages of AI application development [29,30]. This
integration is not just theoretical but requires practical
implementation and consistent consideration throughout the
development process of AI-based applications in health care
[31]. Despite the crucial role that developers play in embedding
these ethical principles into AI technologies, there remains a
gap in the literature regarding how developers perceive and
prioritize ethics in their work [32,33]. Addressing this gap is
essential for ensuring the responsible development and use of
AI in medicine and aligning technological advancements with
the core values of medical ethics.

Objective
The field of AI-based medical applications is rapidly advancing;
however, a significant gap remains in understanding how ethical
considerations are integrated into this development process.
Recognizing the frequent calls in the literature for consistent
inclusion of ethics in AI development, this study aimed to bridge
this gap by exploring the perceptions, priorities, and conflicts
related to ethics among AI experts. Specifically, this study
sought to answer the following questions:

• How do AI experts perceive the role of ethics in the
development of AI-based medical applications?

• How do AI experts perceive the relationship between ethical
considerations and the technical development of AI-based
applications in medicine?

The primary objective of this study is not only to answer these
critical questions but also to provide an in-depth discussion of
the results, particularly focusing on the associated ethical
implications. This exploration is vital for understanding how
ethical considerations can be more effectively integrated into
the development of AI technologies in medical settings with
the aim of contributing to the responsible and beneficial
advancement of this field.

Methods

To address the study’s objective, a secondary analysis of the
exploratory expert interviews was performed using qualitative
content analysis. These interviews were initially conducted to
explore the essential knowledge and understanding of AI in
medicine, with the aim of specifying teaching content on AI for
medical education [34].

Ethical Considerations
Ethics approval was granted by the Research Committee for
Scientific Ethical Questions of the UMIT TIROL—Private
University for Health Sciences and Health Technology, Hall in
Tirol, Austria, for both the initial data collection and secondary
analysis of the data relevant to this study (approval number:
3181; January 16, 2023).

The methodology and reporting of the research findings in this
study were guided by the Standards for Reporting Qualitative
Research to ensure clarity and transparency [35].
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Expert Characteristics
Of the 12 experts included in the primary research study, 7 met
the inclusion criteria for this study and provided information
relevant to the study objective. For this secondary analysis,
individuals were defined as experts if they had been engaged
in the research or practical development of AI-based applications
in medicine for at least 5 years. In this regard, 4 experts were
involved in the development of AI-based applications as part
of their research activities (eg, researchers at the German
Research Center for Artificial Intelligence, professor for medical
informatics), such as enhanced AI-assisted imaging. The
remaining 3 experts were primarily engaged in the practical
development of various AI-based applications for use in
medicine (eg, voice recognition in hospitals or assistance in
diagnosis in medical practices) as part of their main professional

activities in the private sector (eg, software development).
Additional inclusion criteria were sufficient language skills
(German) and consent for the transcription of the interviews
and their evaluation. All 7 participating experts were situated
and working in Germany, providing a national perspective on
the development of AI in medicine. Of the 7 experts included
in this secondary analysis, 6 identified as male and 1 (E2)
identified as female. Although all experts met the inclusion
criteria of being engaged in research or the practical
development of AI-based applications in medicine for at least
5 years, 3 experts (E1, E2, and E4) had more than 10 years of
professional experience in the relevant field. In addition, 3
experts had more than 15 years of experience in the field of
research and practical development of AI-based applications
(E3, E5, and E7). Table 1 presents a detailed overview of the
experts’ characteristics included in this study.

Table 1. Characteristics of the experts included in the secondary analysis.

Domain of expertiseProfessional positionExpert number

Machine learning in pathologyResearch and development (AIa)E1

AI in radiologyData scientistE2

Clinical Decision Support SystemsSenior software developerE3

AI in cancer diagnosisResearch and development (AI)E4

Natural language processing in medicineProfessor for medical informaticsE5

AI-assisted voice analysis for diagnosisData scientistE6

Clinical Decision Support SystemsSenior software developerE7

aAI: artificial intelligence.

Data Collection
In the initial data collection phase of the primary study, experts
were recruited primarily via email. In addition, participants were
asked to recommend other potential experts for the interviews,
thereby expanding the recruitment network. This direct
recommendation approach enabled the inclusion of 2 additional
experts in the primary study. Before the interviews were
recorded, the experts were informed about the study and the
associated data protection regulations during recruitment and
at the beginning of the interviews. All interviews were
conducted using a video service provider (Cisco Webex
Meetings) and were recorded on an audio basis (manual
recording via an analog dictation device; average interview
length 34.02, SD 4.1 minutes).

To ensure the protection of all collected and generated data,
they were stored offline on a password-protected storage device
in a lockable cabinet, with access limited to the researcher. The
anonymized data will be stored for 10 years following the date
of collection to enable reproducibility and deleted after to ensure
confidentiality. All participating experts explicitly consented
to both the initial analysis and the use of their data for future
research purposes, as in the case of this study.

Data Analysis
The expert interviews were transcribed using the transcription
software f4transcript and anonymized according to the
transcription rules of Dresing and Pehl [36]. The evaluation of

the collected data was conducted with software support
(QCAmap, version 1.2.0; Microsoft Excel, version 16.66) and
was rule based according to the methodology of qualitative
content analysis by Mayring (inductive procedure) [37].
Relevant categories were defined directly from the material and
were controlled or revised after viewing 40% of the material.
After defining the categories, the entire material was reviewed,
and relevant text passages were assigned to the respective main
and subcategories.

The interviews were conducted and analyzed in German. For
this publication, all identified and relevant text passages were
translated into the English language. The primary research team
conducted the initial translation, followed by a review and
revision by a professional academic translator.

It is noteworthy that the data analysis in this study was guided
by the research team’s perspective and understanding of ethics.
As such, the interpretation of the data and subsequent
conclusions are shaped by the team’s affiliation with the research
unit for quality and ethics in health care. Consequently, ethical
considerations, particularly in health care and medicine as well
as in the development and application of AI technologies in
these fields, are considered important. The emphasis on ethics
should be considered when interpreting the results of this study.

Furthermore, the aspect of theoretical saturation in this
secondary analysis warrants detailed discussion. Given its
distinct objectives, this study selectively used interviews with
7 of the 12 experts, chosen based on the specific inclusion
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criteria of engagement in research or practical development of
AI-based applications in medicine for over 5 years. The
remaining 5 experts from the primary study, who primarily
focused on teaching and research without a direct emphasis on
developing AI-based applications for medicine, did not meet
the inclusion criteria for this secondary analysis. This selection,
inherent to the secondary nature of the data, led to a focused
but relatively limited breadth in certain areas, resulting in
incomplete saturation in the 2 subcategories. Specifically, the
subcategories of “Data Protection” (section Subcategory 3: Data
Protection) and “Demands” (section Subcategory 3: Data
Protection) demonstrated incomplete saturation, each
substantiated by only a single reference. In contrast, theoretical
saturation for the other categories can be assumed, given the
multiple references that support the established themes and the
lack of new insights, suggesting the need for additional
categories.

Acknowledging this limitation is crucial, particularly in the
context of future research opportunities aimed at more
comprehensively exploring these underrepresented areas.
However, the reliability of the results extends beyond the
theoretical saturation. It is also underscored by the expertise
and extensive experience of the participating experts, each with
at least 5 years of AI research or practical development in
medicine. Their profound insights, combined with the systematic
and iterative analysis methodology, ensured that the extracted
themes were representative and comprehensive, despite the gaps
noted in certain subcategories. Consequently, although the
findings in the “Data Protection” and “Demands” categories
might benefit from further exploration in future studies, the
current analysis offers a robust and insightful understanding of
the primary themes related to ethical considerations in AI
development for medical applications.

To ensure detailed and comprehensive data collection, a
semistructured interview guideline was used for primary data
collection. This interview guideline included questions directly
related to the study’s objectives and incorporated both immanent
and exmanent questioning. Reflecting the research team’s focus
on ethics in health care and medicine, the semistructured
interview guidelines incorporated 2 questions directly relevant
to the study’s objectives:

• How do you perceive the role of ethics in the context of
AI-based medical applications?

• What are your experiences with ethical considerations and
the development of AI-based applications in medicine?

In addition to the 2 questions directly addressing the objective
of this study, an interview guideline was constructed to promote
openness by emphasizing the immanent and exmanent questions.
Examples of the questions used are as follows:

• You have mentioned the challenge of integrating ethics into
AI development. Could you elaborate on the specific ethical
considerations you find most relevant in this context?

• In your view, who should bear responsibility for the ethical
issues in AI-based applications—users or developers?

Using both direct and immanent as well as exmanent question
types, the interviews aimed to provide an in-depth exploration
of the topic of AI in medicine, including the development of
AI-based applications for use in medicine.

Results

Overview
On the basis of the qualitative content analysis of the expert
interviews, 3 main categories with 7 subcategories were defined
using anchor examples. Textbox 1 provides an overview of the
main categories and subcategories defined.

Textbox 1. Overview of the 3 main categories with a total of 7 subcategories from the analysis of interviews with experts in artificial intelligence.

Essential foundation

• Awareness

• Consequences

• Data protection

Results in the foreground

• Performance

• Economic efficiency

Obstacle to progress

• Demands

• Blockade

First Main Category: Essential Foundation
As part of the first main category (“essential foundation”), all
the statements defining ethics as an essential basis for the
development of AI-based applications in medicine were
summarized.

Subcategory 1: Awareness
The first subcategory, “awareness,” highlights the relevance of
ethics in development because of the potential dangers and
consequences associated with AI:
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Because AI is a sharp weapon, [unintelligible] it can
be sharpened arbitrarily. But it must be used wisely.
And I think one of the biggest difficulties is to
anticipate, what does it actually mean when we
develop this? [...] this anticipatory ethical question
is extremely difficult. [E1; quote A.1]

This subcategory emphasizes the importance of developers
being cognizant of the potential uses and challenges that may
arise with the subsequent implementation of AI-based
applications in medical settings. An additional perspective
further reinforces this view:

If we develop something, we always think the
application will be used as anticipated in the clinical
setting. But we can never be sure, and developers
need to be aware of this. [E5; quote A.2]

Subcategory 2: Consequences
The second subcategory “consequences,” further emphasizes
the importance of ethics in practical development and an
associated awareness to prevent consequences such as biases
in the data or other potential forms of discrimination from being
incorporated into the application:

I think everyone working with AI, especially the field
of medicine or [unintelligible], should think of
potential consequences involved with it. This does
not only include the development teams or companies,
but rather anyone. [E4; quote A.3]

Although the previous quote offers a broad view of the ethical
considerations in AI for medicine, the next quote from a
different expert highlights specific concerns, such as bias and
its potential harm to patients:

Yes, well, ethics is super important. [...] Well, when
we talk about this bias, when we talk about these false
negatives, it’s very important. [...] I am mostly afraid
bias. Bias could really harm patients with potentially
fatal outcomes. To limit the risk of any bias, we have
ongoing discussions in the team. [E5; quote A.4]

Subcategory 3: Data Protection
The importance of ethics is also highlighted in terms of the
general use of human data in the development of AI-based
applications, thereby forming the foundation of the third
subcategory:

Well, we actually have this discussion all the time.
We at [...] have an ethics working group, for ethical
processing and also [unintelligible] and equality.
These aspects are always there, especially when you
are working with data and people, [unintelligible]
data generated by people. [E4; quote A.5]

Second Main Category: Results in the Foreground
In the context of the second main category, all statements from
the experts are summarized, in which the “Results are in the
foreground” of the development of AI-based algorithms.

Subcategory 1: Performance
The following quote from the analysis of the third expert
interview reflects the result-oriented nature of the development
of AI-based applications in medicine, which underlies the
formation of the first subcategory:

For me insofar, and I also indirectly deal with it
[ethics], but for me it does not represent the first
thing. So, if it’s for me, let us say, I want to set up a
system first, then it’s also about, I want to set up the
system. Ethical aspects do not play a role for me. [...]
sounds mean now, but when an IT specialist first
trains his models, it’s just about, as banal as it
sounds, it’s just about achieving good performance
first. [E3; quote B.1]

This result and performance-driven perspective was echoed by
another expert, who highlighted the competitive nature of AI
development:

But I also believe that there are, let me say, more
important things than ethics. Especially with the
increased interest in AI, the competition is hard. [...]
Developers as well as the applications do need to
perform well. [E2; quote B.2]

These statements collectively underscore a tendency within the
industry to prioritize performance metrics, which may
occasionally overshadow ethical considerations in the drive to
advance and remain competitive in the rapidly evolving AI
sector.

Subcategory 2: Economic Efficiency
The subordinate significance of ethics in performance is also
clarified by the following statement in the second subcategory:

I think companies that are in competition, even if they
don’t mean it badly, still have the market economic
pressure to deliver results, and this can certainly also
lead to losing sight of maintaining some ethical
boundaries that one would better keep a careful eye
on. [E6; quote B.3]

This sentiment is reiterated by another expert who highlights
the financial imperatives driving company behavior:

In the end, earning money and making a profit is
important to anyone being paid by companies. [...]
This might be different in academia, like research,
but we all need to focus on creating a product that
does financially well, and not trying to be ethically
correct. [Interview E2; quote B.4]

These perspectives elucidate the conflict that experts perceive
between economic efficiency and ethical conduct in the
development of AI-based medical applications.

Third Main Category: Obstacle to Progress
The third main category summarizes statements from experts
who view ethics as an “obstacle to (technological) progress.”

Subcategory 1: Demands
As part of the first subcategory, the “Demands” of ethics are
viewed as potential barriers that can stand in the way of AI
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technology and the technological progress of AI-based
applications in medicine:

I always find it a bit difficult to draw this line between
these ethical demands and the limits that then really
stand in the way of technology and progress. [E6;
quote C.1]

Subcategory 2: Blockade
The perception that ethics can not only hinder current
development but also impede future progress in AI forms the
basis of the “Blockade” subcategory. This is exemplified by the
following statement:

Please stop bothering me on the topic of ethics in AI.
It blocks at all corners and edges. [...] Yes, but if I
don’t start, how should someone else continue in ten,
20 years so that something comes out of it? [E7; quote
C.2]

The aforementioned quote illustrates a dismissive attitude toward
ethics as part of the development process of AI-based
applications in medicine and thus clarifies the assessment of
ethics as an obstacle to (technological) progress. This
perspective was reinforced by an additional quote from another
expert:

I have no doubt that ethics is important, but it does
not help the technological progress of AI. [...] Ethics
can really prevent any meaningful advancement. [E6;
quote C.3]

Together, these quotes highlight a critical perspective within
the AI development community, where ethical concerns,
although important, are sometimes seen as obstructions to both
immediate technological development and long-term innovation
in AI.

Discussion

Principal Findings
The results of the qualitative content analysis revealed a nuanced
spectrum of expert opinions regarding the role of ethics in AI
development for medical applications. Initially, in the “essential
foundation” category, a consensus was observed among experts
(eg, E1 and E5) on the foundational importance of ethics in AI
development. This consensus on the foundational role of ethics
is based on an understanding of AI’s potential risks and
consequences of AI, as exemplified by the anticipatory ethical
questions posed by E1 (quote A.1) and the emphasis on
uncertainty in application outcomes noted by E5 (quote A.2).

Within the “results in the foreground” category, a shift in
perspective becomes apparent. Experts, such as E3 and E2,
express views that prioritize performance and competitive
outcomes over ethical considerations (quotes B.1 and B.2). This
shift suggests a conflict between ethical integrity and
market-driven objectives, with the latter often taking precedence
in the fast-paced competitive landscape of AI development.

In the “obstacle to progress” category, the tension between
ethical demands and technological advancement is further
articulated. Expert E6, for instance, acknowledged the difficulty

of reconciling ethical demands with the limits imposed on
technology and progress (quote C.1). This sentiment is echoed
by expert E7, who expresses frustration with ethics perceived
as a blockade of development (quote C.2). These perspectives
underscore a critical view within the AI development
community, where ethical concerns, although recognized as
important, are sometimes seen as obstacles to immediate
technological development and long-term innovation.

This variety of opinions, ranging from viewing ethics as
foundational to considering them as impediments, reflects the
complex and multifaceted nature of AI development in medicine.
This demonstrates that although there is a general recognition
of the importance of ethics, the extent to which it is prioritized
differs significantly among experts. This diversity highlights
the challenges in balancing ethical considerations with other
developmental goals, such as performance optimization,
economic viability, and technological innovation.

The analysis of the expert interviews identified 3 critical themes:
first, the incompleteness of data and the far-reaching
consequences associated with it; second, the renunciation of
ethical requirements because of economic pressure; and third,
the opinion that adhering to ethical standards would stand in
the way of technological progress. These themes, reflecting a
spectrum of perspectives from foundational importance to
perceived obstacles, are explored in detail in subsequent
sections, providing a deeper understanding of the multifaceted
nature of ethics in AI development for medicine.

Incompleteness of Data
Quote A.4 (section Subcategory 2: Consequences) refers to the
relevance of biases in the data. The lack of representativeness
of the data, which underlies the development of AI-based
applications, has been cited as a fundamental potential bias.
Although awareness of the potential consequences, such as
discrimination against certain population groups, is a crucial
first step, it is not enough to merely recognize the issue to avoid
potentially significant consequences [38]. Therefore, active
measures must be taken to prevent these biases and ensure that
AI-based applications do not perpetuate or exacerbate
inequalities, thereby limiting potential harm.

To mitigate bias risks, developers should adopt comprehensive
strategies, such as inclusive data collection methods, algorithmic
audits, thorough testing across various demographic groups,
and ongoing bias monitoring throughout the AI application
lifecycle. As highlighted in quote A.1, the anticipatory ethical
question in AI development is “extremely difficult,”
underscoring the complexity of ensuring that AI systems are
ethically sound and free from biases that could lead to
discrimination or harm. Interdisciplinary teams, including
ethicists and representatives from diverse communities, should
guide the development process to ensure that ethical
considerations are at the forefront of AI development.

A potential consequence of nonrepresentative data, as
highlighted in quote A.4, includes “false negatives” in medicine,
which are test results that incorrectly turn out to be negative
despite the presence of diagnostic features of the disease under
investigation [25]. However, it is also critical to recognize that
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the same issue of nonrepresentativeness can lead to “false
positives,” where tests incorrectly indicate the presence of a
condition that is actually absent [25]. Both types of diagnostic
inaccuracies have serious implications for patient care and
treatment outcomes. This is further compounded by the
sentiment expressed in quote A.3, where the need for everyone
working with AI, especially in medicine, to consider the
potential consequences of their work is emphasized, indicating
a broader responsibility beyond development teams. This
emphasizes the need for a comprehensive approach to diagnostic
accuracy that accounts for both the presence of representative
data and various factors influencing AI performance, extending
beyond data representativeness [26]. Accuracy is also
determined by the quality and variety of information subject to
analysis from AI-based applications, including clinical,
laboratory, and patient-reported data [39]. Furthermore, how
AI processes and interprets this information, such as through
its underlying algorithms and decision-making logic, is highly
important for diagnostic accuracy [40]. There must be a match
between the design purpose of the algorithm and real-world
scenarios in which it is applied.

Moreover, the diagnostic accuracy of AI-based applications
depends substantially on the proficiency with which health care
professionals use these tools and their capacity to interpret and
act on AI-generated recommendations [41]. For instance, if AI
applications are used beyond their original scope without proper
recalibration or validation for new populations or diseases, there
is a risk of introducing errors, including false negatives and
false positives [25].

False negatives in a clinical context can lead to physicians
feeling a false sense of security and the diseases of patients
remaining untreated for a long time [25]. Conversely, false
positives can result in unnecessary treatments when a test
erroneously indicates the presence of a disease, leading to
significant consequences, such as unwarranted radiation
exposure [25]. The psychological impact on patients, resulting
from both false negatives and false positives, is a further concern
that merits attention because of its effect on patient well-being
and trust in medical systems.

The ethical implications of AI development, particularly when
personal data are used, are highlighted in quote A.5 (section
Subcategory 3: Data Protection). The use of training data for
diagnosing specific diseases requires a careful ethical approach,
particularly to understand the personal and clinical contexts
from which such data are derived. This is particularly important
for diseases that restrict the ability of the affected individuals
to provide informed consent. Furthermore, ongoing discussions
within ethics working groups about ethical processing, as
mentioned in quote A.5, play a crucial role in safeguarding the
dignity and rights of individuals whose data are used in these
systems. Therefore, developers must recognize the sensitivity
of medical data and the need for ethical considerations to be
integrated from the outset of AI development for medical
applications. Such early integration of ethics serves not only to
enhance the accuracy and reliability of AI tools but also to
safeguard the dignity and rights of individuals whose data are
used in these systems.

Economic Pressure
The quotes from the second main category “results in the
foreground” suggest that although the interviewed experts are
aware of the relevance of ethics in the development of AI-based
applications, it is in conflict with their own or demanded result
orientation. A possible reason for the experts’ assessment is
mentioned in quote B.3 (section Subcategory 2: Economic
Efficiency). The profitability of AI developing companies is
cited as one of the reasons why ethics is subordinate to the
results in practice. Companies’ economic success pressure is
decisive for the success pressure of all the employees involved
in development. This conflict is further illustrated in quote B.2,
where an expert highlights the competitive nature of AI
development, suggesting that there are “more important things
than ethics” in the context of existing competition. This
perspective underscores the challenge of balancing ethical
considerations with the need for AI applications to perform well
in competitive markets.

As quote B.1 (section Subcategory 1: Performance) illustrates,
the best possible performance is the focus of the development.
Ethics indirectly plays a role here; quote B.3 implies, in this
sense, the possibility of crossing “ethical boundaries” in favor
of profitability. In addition to the deliberate crossing of
boundaries, this statement also implies the possibility of
unconscious disregard for ethics in the development of AI-based
applications. The subordinate role of ethics in profitability in
development and the associated noncompliance with potential
boundaries is particularly severe, as the field of application is
medicine. The sentiment of economic pressure overshadowing
ethical considerations is also echoed in quote B.4, in which an
expert states the importance of focusing on creating a product
that is financially well, often at the expense of being ethically
correct.

In addition to the relevance of ethics in relation to the use of
human data and the potential consequences of a lack of
representativeness, patient safety should always be at the center
of the development of medical products and technologies. An
excessive focus on the profitability of an application can lead
to the marketing of immature or faulty products, which threaten
patient welfare. Furthermore, as highlighted in quote B.3, the
pursuit of profitability can sometimes lead developers to
overlooking ethical boundaries, potentially resulting in products
that have not been thoroughly evaluated for ethical
considerations and patient safety. In addition to a direct threat
to patient welfare and safety, a high susceptibility to error can
also lead to rejection by users and a potentially irretrievable
loss of trust [42].

Obstacle to Progress
Although the second main category cites result orientation
because of economic pressure as a reason for the subordination
of ethics, the third main category summarizes statements that
view ethics as an “obstacle to progress.” The statements of
experts in this category clearly show a rejection of ethics
because of various demands and boundaries that are perceived
as obstacles to the development of AI-based applications.
Although no specific reasons for this assessment are provided,
based on the knowledge of the steps relevant to development,
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it can be assumed that the statements primarily refer to
regulations and requirements in the sense of a necessary positive
vote by ethics committees. For data collection, use, or evaluation
in the context of developing AI-based applications, compliance
with certain boundaries and regulations is indispensable, not
only in the medical context. However, this essential compliance
is sometimes perceived by experts as a balancing act, where
meeting ethical demands can create challenges in advancing AI
technology (quote C.1).

These boundaries and regulations serve to protect the
participants and their data. If patient data are to be used, a
positive vote from an ethics committee that certifies the safety
of patients and their data is necessary to begin with the
respective research and data use. As ethics committees’
decisions can be time intensive depending on the type of planned
research or data use and often require corrections on the part of
the applicants, it is assumed that the necessity of a positive vote
is one of the reasons that is viewed as an obstacle to progress.
Furthermore, as highlighted in quote C.2, frustration with ethics
being viewed as a blockade is evident: “Please stop bothering
me on the topic of ethics in AI. It blocks at all corners and
edges,” illustrating the tension between the desire for rapid AI
development and the need for ethical oversight. Although it can
be assumed that AI-based applications would be developed
faster if no vote from an ethics committee was necessary and
patient data could be used directly, the resulting consequences
for patients and citizens (think of the insurance industry) at least
require critical evaluation.

Furthermore, although the need for a positive vote by an ethics
committee can be anticipated as a perceived obstacle to progress
in the development of AI by experts, it is also important to
consider ongoing regulatory efforts, such as the proposed
“Artificial Intelligence Act” by the European Parliament [43].
This regulation aims to harmonize rules on AI across the
European Union, focusing on human-centric and trustworthy
AI. The Act emphasizes the protection of health, safety,
fundamental rights, and environmental concerns from potential
harm caused by AI systems. It includes specific
recommendations for high-risk AI systems, such as AI-based
applications for medicine, demanding transparency,
accountability, and accuracy in AI applications, especially those
that may significantly impact individuals’ rights and safety. The
Act further acknowledges the ethical considerations in AI
development and underscores the need for AI systems to adhere
to robust ethical and legal standards. The regulatory requirement
to adhere to ethical standards, as mandated by the Act, could
further reinforce the perception of ethics and regulations being
an obstacle, highlighting the tension between rapid technological
advancement and the need for responsible innovation. In
addition, quote C.3 conveys a sentiment shared by some experts
that although ethical considerations are undeniably important,
they are sometimes viewed as hindrances to meaningful AI
advancement, further highlighting the complex dynamics
between ethical considerations and the pursuit of technological
progress in AI.

Consequences of Neglecting Ethics in the Development
of AI-Based Applications in Medicine

Overview
If ethics is not considered in the development process of
AI-based applications, it can have far-reaching consequences
for patients and physicians, such as loss of trust and erosion of
patient-centered care. This section focuses on the possible
consequences of neglecting ethics when developing AI-based
applications in medicine. In this context, the consequences for
patients and likely main users (physicians) were considered.

Possible Consequences for Patients
If those responsible do not consider or only marginally consider
the basic ethical principles in the development process of
AI-based applications, various indirect and direct consequences
can occur for the patients in whom the respective AI-based
applications are used. The following examples illustrate the
possible consequences of not considering ethical principles in
the development process of AI in medicine:

• Misdiagnosis and diminished therapy outcomes: a lack of
ethical considerations in the practical development process
of AI-based applications can lead to biases in the training
data used for development. For example, if the applications
are used for diagnosis, the lack of representativeness of the
data for certain population groups or individuals can lead
to a higher susceptibility to errors. The results presented
by AI can lead to potentially significant consequences for
patients, such as overtreatment or undertreatment, resulting
in diminished therapeutic outcomes, particularly in the
absence of control by users [11]. These errors, stemming
from a misdiagnosis because of unrepresentative data,
challenge the principle of justice by threatening equitable
medical care and contravene the principle of nonmaleficence
by risking patient harm through inappropriate medical
procedures [24]. Moreover, susceptibility to errors may
directly compromise patient outcomes, especially when
undertreatment occurs because of delayed or missed
treatments from false-negative results [16]. The interrelated
consequences of misdiagnosis and therapy outcomes
highlight the critical need for user oversight and inclusion
of diverse data sets in AI development to uphold ethical
standards and patient care quality.

• Loss of trust: faulty diagnoses and the possibility of
AI-based applications yielding discriminatory results can
significantly undermine patient trust [44]. Such erosion of
trust may lead patients to view AI-based medical
applications skeptically, potentially refraining from using
them in their treatment. This skepticism can hinder the
integration of advanced AI tools in health care, which, if
more accurate than physicians’assessments, could otherwise
enhance patient outcomes. A loss of trust not only impedes
technological adoption but can also indirectly challenge the
principle of care, which is dedicated to optimizing patient
welfare. Furthermore, patient reluctance to embrace AI
solutions may inadvertently perpetuate inequalities in health
care, particularly if AI facilitates more effective and
efficient clinical practice. The reluctance to use AI
technologies could result in disparity in care quality, as
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physicians may be limited in their capabilities without AI
support, ultimately affecting the standard of care provided.
Moreover, an erosion or lack of trust in AI because of
missing ethical oversight in development could extend to
the physician-patient relationship and the overall health
care sector. Moreover, an erosion or lack of trust in AI
because of missing ethical oversight in development could
extend to the physician-patient relationship and the overall
health care sector [45]. This could lead to a general
skepticism toward medical advice and a hesitation to
participate in newer forms of treatment, potentially reverting
to more traditional but less efficient methods. The
physician-patient relationship is foundational to effective
health care, as it relies on mutual trust and the belief that
the best possible treatment options are being used, including
ethically developed AI applications.

• Data misuse: a lack of consideration of ethics in the
development of AI-based applications can lead to violations
of existing data protection laws and misuse of patient data
[46]. Patients who provide their data for research purposes
and for the development of new applications in medicine
must be able to rely on careful and legally compliant
handling of their data, particularly in terms of informed
consent and cybersecurity. Given the lack of traceability,
informed consent is crucial, as patients must have a clear
understanding of how their data will be used and the ability
to consent to specific uses. This is of particular importance
because health-related data include personal and sensitive
information about patients. Ignoring existing regulations
and ethical principles can result in highly sensitive patient
data becoming accessible to companies, organizations, or
individuals without consent [46]. This could have
far-reaching consequences such as compromising patient
privacy, enabling identity theft, or even affecting the
broader integrity of medical research and public trust in the
health care system. Similarly, robust cybersecurity measures
are essential to protect sensitive health information from
unauthorized access and breaches. Failure to implement
such measures can lead to the exposure of personal health
data, resulting in a loss of patient trust, potential harm, and
a violation of the autonomy of patients if they lose control
over their own data.

• Erosion of patient-centered care: the exclusion of patient
values and preferences during the development of AI-based
medical applications can have profound consequences.
When AI systems are designed without a thorough
understanding of patient autonomy, self-determination, and
individual health goals, there is a risk of eroding the essence
of patient-centered care [47]. AI recommendations that do
not account for these personal factors might lead to a
mechanical and less social approach to health care that
could disregard the nuanced needs and desires of patients.
For example, if AI tools are optimized solely for clinical
efficiency without considering patient comfort and personal
treatment preferences, they may suggest interventions that
patients find unacceptable or intrusive. This misalignment
can result in decreased adherence to treatment plans, loss
of trust in the physician-patient relationship, and diminished
health outcomes [48]. Given the importance of autonomy

in the physician-patient relationship and patient care in
general, AI-based applications should be designed to
support a shared decision-making model in which AI assists
the therapeutic process rather than diminishing it. This
would ensure that AI acts as an aid rather than a replacement
for the human element in health care, empowering patients
to be active participants in their treatment decisions rather
than passive recipients of care.

Potential Consequences for Physicians
In addition to the significant consequences for patients, the lack
of ethical consideration in the development process of AI-based
applications in medicine can also lead to equally relevant
impacts on anticipated primary users of the technology.
Although the following examples primarily aim to illustrate the
direct consequences for physicians, they also indirectly affect
the patients being treated:

• Loss of credibility: potential errors in diagnosis or treatment
recommendations resulting from inadequately trained AI
applications can also significantly influence the societal
image of the medical profession and its associated
credibility [49]. Assuming that physicians continue to serve
as the link between technology and patients, erroneous
decisions based on the use of AI in medicine can be directly
associated with the decision-making abilities of physicians,
which can negatively impact their credibility and trust in
the medical community [44]. Knowledge about the potential
for discrimination of certain population groups by AI-based
applications, which do not consider ethical guidelines in
their development, can further shake patients’ beliefs that
physicians guarantee equal treatment for all. Because a
patient’s medical treatment often appears nontransparent
and incomprehensible, the credibility of the medical
community is an essential prerequisite for the
physician-patient relationship [49].

• Rejection: the lack of consideration of ethics in the
development of AI-based applications for use in a clinical
context can lead to both indirect (eg, because of the
consequences of incorrect diagnoses) and direct (eg, because
of the lack of consideration of ethical principles) rejection
of the technology by physicians. The rejection of AI-based
applications can significantly impact the quality of medical
care and the technological progress in medicine. Without
the acceptance and trust of prospective primary users of the
technology, the widespread use of AI-based applications
in medicine is unlikely, as economic incentives for
development are lacking. A rejecting attitude on the part
of physicians can in this context also negatively impact
future medical care quality considering the expected
advantages of using AI in medicine [46].

• Legal consequences: the use of AI-based applications
developed without considering ethical principles can lead
to various legal consequences for users [50]. In addition to
consequences based on state legislation and jurisprudence,
professional legal consequences for physicians are also
conceivable when using AI-based applications without
considering ethical principles, as they form the basis of
medical action. Besides the direct legal implications for
physicians, health care organizations, such as hospitals,

JMIR AI 2024 | vol. 3 | e51204 | p.772https://ai.jmir.org/2024/1/e51204
(page number not for citation purposes)

Weidener & FischerJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


clinics, or research institutions, may also be subject to
significant responsibilities and potential liabilities when
deploying AI-based applications that may not fully align
with ethical and regulatory standards. In the case of
erroneous AI decisions, which directly or indirectly result
in diminished patient outcomes, the question of legal
liability often remains unanswered [51]. As AI-based
applications in medicine are likely to continue to be used
and developed in a supportive role, it is assumed that the
final decision-making and treatment recommendations will
remain the responsibility of physicians. Thus, physicians
not only act as a link between technologies and patients but
also play a central role in adhering to ethical principles in
medical care. Against this background, the use of AI-based
applications in medicine developed without considering
ethics can have legal consequences for both developers and
users. In addition to the legal consequences of erroneous
medical treatments, the use of AI-based applications without
considering ethical principles also raises questions regarding
the liability for violation of existing data protection and
equal treatment laws [51]. In particular, failure to comply
with data protection laws can compound these legal issues.
Violations of patients’ privacy rights through the
mishandling of sensitive patient data, whether because of
inadequate security measures, hacks, or unauthorized data
sharing, may subject various entities, such as hospitals,
clinics, research institutions, AI technology developers, and
users to significant legal liability [50]. These data breaches
not only compromise patient confidentiality but also could
lead to a risk of regulatory sanctions for the involved
entities, including substantial fines and potentially the loss
of professional licenses. Therefore, AI development
processes should incorporate robust data protection
protocols to prevent legal repercussions and consequences
for both patients and physicians. Adherence to ethical and
legal standards should not merely be a regulatory
requirement but a fundamental component of responsible
and trustworthy health care innovation, vital for maintaining
the integrity of patient care and the broader medical
profession.

Limitations
This study’s exploration of expert perspectives on ethics in AI
development for medical applications, although insightful,
encounters several limitations that are important to acknowledge.
First, the geographical focus of the study was confined to
Germany, potentially limiting the applicability of its findings
to a global context in which cultural, legal, and ethical norms
may vary. The selection of experts, although experienced in the
development of AI-based applications in medicine, represents
a relatively small and specific segment of the broader field.
Moreover, the focus of the study, predominantly on experts
with technical backgrounds in the development of AI-based
applications, may lead to a narrowed perspective, given the lack
of input from ethical professionals. Furthermore, the subjective
nature of expert interviews should be considered because the
responses are influenced by each expert’s personal experiences
and potential biases, which may not comprehensively represent
the spectrum of views in the field.

Methodologically, the study’s qualitative approach and reliance
on secondary analysis of expert interviews inherently limits the
generalizability of the results. Interpretations may be influenced
by the research team’s perspectives, and certain nuances in
experts’ statements may be overlooked. Although this study
presents a secondary analysis of existing data, it is important
to recognize the possibility of confirmation and selection bias
during the initial data collection phase. The research
methodology used could have unintentionally emphasized
certain themes or perspectives, potentially aligning with the
original researchers’ preconceived notions or expectations. In
addition, because of the limited number of experts included in
the analysis and incomplete data saturation in some
subcategories, certain aspects may not have been fully explored.

Furthermore, the findings of this study reflect a specific point
in time in a rapidly evolving field. Therefore, the perspectives
and opinions of experts may change as new developments,
regulations, and ethical guidelines emerge. Although substantial,
the focus on the development of AI-based applications in
medicine does not encompass the entire spectrum of AI
applications within the health care sector, excluding
administrative and operational uses. Language and translation
limitations may also have affected the study, as the original
German interviews were translated into the English language.
The subtle nuances of language and cultural context might be
lost or misinterpreted in this translation process.

To address these limitations and enrich future research in this
area, it is recommended that subsequent studies incorporate a
broader and more diverse pool of experts, including
professionals from ethical, legal, and patient advocacy
backgrounds. Expanding the geographical scope to include
experts from various cultural and legal contexts would also
provide a global perspective on the ethical implications of
developing AI-based applications for medicine.
Methodologically, integrating both qualitative and quantitative
approaches could offer a more comprehensive view, although
ongoing research is required, considering the rapid
advancements in AI and evolving ethical standards. By
expanding the scope and methodology of future studies, a more
nuanced and representative exploration of the ethical landscape
of AI development for medical applications can be achieved.

Summary and Outlook
This study explored the importance of ethics in the development
of AI-based medical applications by analyzing interviews with
experts in the field of AI development. There was substantial
variance in the assessment of the importance of ethics in the
development of the AI-based applications. Although some of
the interviewed experts classified ethics as an essential basis
for development, others focused on good performance or
economic efficiency. The results of the qualitative analysis also
suggest that ethics is seen by some experts as an obstacle to
progress, implying that it will be given little importance in the
further development of AI-based applications. In addition to
the subsequent discussion of the content analysis results, a
particular focus was placed on the consequences that could arise
from the lack of ethical considerations in the development of
AI-based applications in medicine.
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Although the results do not allow for generalization, because
of the number of interviewees and the selected qualitative
research method not meeting representative demands, the
statements of the interviewed experts should be seen as an
essential basis for further research and discussions because of
recurring motives and new insights. A lack of ethical
considerations in the development of AI-based applications can
have significant consequences for patients. In addition to the
danger of misconduct (eg, because of a lack of
representativeness of the data sets used for development), a lack
of consideration of ethical principles in the development of
AI-based applications can also lead to a loss of trust from
patients and potentially diminished therapy outcomes. When
considering the possible impacts on physicians, the lack of
consideration of ethics in the development process can lead to
loss of credibility and rejection of technology.

Owing to technological progress in the field of AI, further
reinforced, for example, by the development and broad
availability of AI-based chat applications such as ChatGPT,
there has been ongoing effort to develop guidelines and laws
to guide the development and use of AI. Although such
regulatory efforts, such as the “Artificial Intelligence Act” for
harmonized rules on AI from the European Parliament, aim to
provide a comprehensive regulatory framework and guideline
for the development and use of AI, there is ongoing criticism
and discussion about the adequacy and effectiveness of these
guidelines in the rapidly evolving field of AI. In this context,
it is important to emphasize that the sole availability of
guidelines and laws does not ensure compliance. Therefore,
although guidelines and laws are important to guide the
development and use of AI, especially in the field of medicine,
and when dealing with sensitive patient data, more work needs
to be done to ensure compliance.

Moreover, the question arises as to whether mere adherence to
these guidelines and laws is sufficient for the development of

ethical AI. Guidelines often provide a baseline for legal
compliance, but ethical AI development demands a deeper and
more nuanced understanding and application of ethical
principles. Ethical AI goes beyond legal requirements to
encompass ethical principles, such as respect for autonomy or
justice in its algorithms, data handling, and decision-making
processes. This requires continuous ethical assessment and
reflection throughout the lifecycle of AI-based applications,
from development to deployment, and beyond. Consequently,
although following established guidelines is an important step
in the development of AI, it is not the endpoint. Developers and
users of AI-based applications in medicine need to engage in
an ongoing dialog with diverse stakeholders such as ethicists,
patients, and the broader community to anticipate, identify, and
address emerging ethical challenges. This approach ensures that
the development of AI is not just about complying with
regulations but is intrinsically driven by a commitment to ethical
responsibility and the betterment of patient care.

Furthermore, possible reasons for noncompliance with potential
guidelines and low prioritization of ethics, such as the need for
economic efficiency, should be critically examined. This
includes assessing perspectives that view ethics as an obstacle
to progress, as noted by some participating experts. Such critical
evaluation is vital for ensuring the ethical development of
AI-based applications, particularly in the field of medicine.
Ethical considerations are fundamental to every approval process
for AI-based applications to ensure the best possible and equal
medical care for patients. Therefore, physicians should critically
question the use of AI-based applications in the clinical context.
In this regard, there needs to be a sufficient availability of
opportunities to acquire further competencies to promote an
understanding of technology and the related relevance of ethics.
Only in this manner can the safety and best possible treatment
of patients be ensured, as well as medical and technological
progress, through AI.
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Abstract

Background: The evolution of artificial intelligence (AI) has significantly impacted various sectors, with health care witnessing
some of its most groundbreaking contributions. Contemporary models, such as ChatGPT-4 and Microsoft Bing, have showcased
capabilities beyond just generating text, aiding in complex tasks like literature searches and refining web-based queries.

Objective: This study explores a compelling query: can AI author an academic paper independently? Our assessment focuses
on four core dimensions: relevance (to ensure that AI’s response directly addresses the prompt), accuracy (to ascertain that AI’s
information is both factually correct and current), clarity (to examine AI’s ability to present coherent and logical ideas), and tone
and style (to evaluate whether AI can align with the formality expected in academic writings). Additionally, we will consider the
ethical implications and practicality of integrating AI into academic writing.

Methods: To assess the capabilities of ChatGPT-4 and Microsoft Bing in the context of academic paper assistance in general
practice, we used a systematic approach. ChatGPT-4, an advanced AI language model by Open AI, excels in generating human-like
text and adapting responses based on user interactions, though it has a knowledge cut-off in September 2021. Microsoft Bing's
AI chatbot facilitates user navigation on the Bing search engine, offering tailored search

Results: In terms of relevance, ChatGPT-4 delved deeply into AI’s health care role, citing academic sources and discussing
diverse applications and concerns, while Microsoft Bing provided a concise, less detailed overview. In terms of accuracy,
ChatGPT-4 correctly cited 72% (23/32) of its peer-reviewed articles but included some nonexistent references. Microsoft Bing’s
accuracy stood at 46% (6/13), supplemented by relevant non–peer-reviewed articles. In terms of clarity, both models conveyed
clear, coherent text. ChatGPT-4 was particularly adept at detailing technical concepts, while Microsoft Bing was more general.
In terms of tone, both models maintained an academic tone, but ChatGPT-4 exhibited superior depth and breadth in content
delivery.

Conclusions: Comparing ChatGPT-4 and Microsoft Bing for academic assistance revealed strengths and limitations. ChatGPT-4
excels in depth and relevance but falters in citation accuracy. Microsoft Bing is concise but lacks robust detail. Though both
models have potential, neither can independently handle comprehensive academic tasks. As AI evolves, combining ChatGPT-4’s
depth with Microsoft Bing’s up-to-date referencing could optimize academic support. Researchers should critically assess AI
outputs to maintain academic credibility.

(JMIR AI 2024;3:e49082)   doi:10.2196/49082
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Introduction

Artificial intelligence’s (AI) journey has been nothing short of
incredible. Starting with its early days of rule-based systems,
we have seen it grow and mature, stepping into the realm of
machine learning, and more recently, diving into deep learning.
This transformative journey has shaken up a lot of sectors, but
health care is where AI has truly left an indelible mark.

Today, algorithms can spot issues in our x-rays or magnetic
resonance imaging, sometimes even better than our seasoned
doctors [1]. AI does not just stop there; it even gives us a
heads-up on potential life-threatening situations in intensive
care units, predicting conditions like septic shock hours before
they occur. The world of drug discovery is moving faster than
ever, thanks to AI’s helping hand [2]. However, as with most
things, there are issues. There are big questions about how we
protect our data and ensure different health record systems talk
to each other [3], not to mention the lingering worries about
biases in AI and the sometimes uneasy feeling of trusting a
machine we do not fully “get” [4].

When you look at the big picture, we see ground-breaking
models like GPT-3, ChatGPT-4 [5,6], and Microsoft Bing [7]
making waves. They are not just about churning out text. They
are doing things we had never imagined, like assisting in
literature searches or refining our everyday web-based searches
[8]. Their accomplishments in challenges, such as the Turing
Test [9] and the LAMBADA (LAnguage Modeling Broadened
to Account for Discourse Aspects) tasks [10], just go on to show
how capable they are. Comparing powerhouses like ChatGPT-4
and Bing is not just for fun; it gives us a glimpse into where
AI’s language abilities might be headed, and with new kids on
the block like Google Bard, the sky is the limit [11]. Writing
an academic paper, though? That is still a world where the
human touch shines. From combing through mountains of
literature to connecting the dots in innovative ways, it is a craft
that demands the very best of us, but here is a thought: given
how far AI has come, could it, one day, pen down an academic
masterpiece on its own? This paper is all about that tantalizing
question.

As we embark on this exploration, we will keenly assess a few
critical dimensions:

• Relevance: can AI ensure that its response precisely
addresses the prompt and brings to the table information
that is truly pertinent to the question or topic?

• Accuracy: how reliable is AI in delivering information that
is not just factually correct but also up-to-date with the
current pulse of the academic field?

• Clarity: when we read what is written by AI, does it resonate
with clarity, coherence, and a logical flow of ideas, all
presented with precise and unambiguous language?

• Tone and style: given the seriousness of academic papers,
can AI match the appropriate tone and style, ensuring it
resonates with the formality and professionalism we expect
to see in academic texts?

We are diving deep to see if AI can muster up the relevance,
accuracy, clarity, and tone we associate with academic work,

and of course, while we probe these questions, we are not losing
sight of the overarching ethics and practicality of inviting AI
into the revered domain of academic writing.

Methods

Ethical Considerations
In Denmark, ethical committee approval is only mandatory for
studies that include trials involving liveborn human individuals,
human gametes intended for fertilization, fertilized human eggs,
embryonic cells and embryos, tissue, cells and genetic material
from humans, embryos, etc, or deceased persons. Also included
are clinical trials of medicines in humans and clinical trials of
medical devices. Hence, our study did not require approval from
an ethical committee.

Overview
In this methods section, we have detailed the approach taken
to evaluate and compare the performance of ChatGPT-4 and
Microsoft Bing in the context of assisting with an academic
paper in the realm of general practice. This section outlines the
data collection process, prompt design, evaluation criteria, and
analysis of the AI-generated responses.

Models

ChatGPT-4
ChatGPT-4 is an advanced AI language model developed by
OpenAI [5], based on the ChatGPT-4 architecture. It is designed
to generate human-like text and engage in interactive
conversations with users. Trained on a vast data set, ChatGPT-4
demonstrates a strong understanding of context, language, and
reasoning abilities. When using GPT-4, it is important to
highlight that during a conversation, the information and
discussion are dynamically shaped throughout the interaction.
Indeed, GPT-4 can respond by incorporating the information
the user provides, potentially leading to different outcomes even
for users with similar queries. This dynamic nature is crucial
for understanding how a large language model like GPT-4
operates.

Although ChatGPT-4 can perform various tasks, such as
answering questions, providing recommendations, and
generating content, it has a knowledge cut-off date of September
2021. This means that the model has been trained on a data set
consisting of text and information available up until that point.
Therefore, any events, advancements, or changes in various
fields that have occurred since September 2021 will not be
known to ChatGPT-4. Additionally, it should be noted that
ChatGPT-4, like any AI language model, reflects the data on
which it has been trained. As a result, its knowledge might
contain inaccuracies, biases, or outdated information even for
events and topics within its known time frame.

Microsoft Bing
The Microsoft Bing AI chatbot [7] is an intelligent
conversational agent developed by Microsoft Corporation,
designed to assist users in navigating the Microsoft Bing search
engine and answering various queries. Leveraging AI, natural
language processing, and machine learning, the Microsoft Bing
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AI chatbot understands user inputs and provides relevant
information or search results accordingly. Integrated seamlessly
with the Microsoft Bings platform, the chatbot offers a
user-friendly and interactive way to engage with search
functionalities, enhancing the overall user experience.

Prompt Design
In the context of AI, especially with large language models, a
“prompt” refers to a set of instructions or a question given to
the AI to guide its response. The purpose of a prompt is to set
clear expectations for the AI’s output and to ensure that the
response generated aligns with the user’s intent.

A prompt was designed to secure the AI models’ ability to
understand and generate accurate, relevant, and coherent
responses in a formal and professional tone. Each prompt
provided the AI models with the context of an academic paper
and set the tone and expectations for the responses. The
following specific prompt was used to ensure that both
ChatGPT-4 and Microsoft Bing were primed for the task at
hand:

I need your help with an academic paper. Please
provide me with clear and concise explanations, using
evidence and logical reasoning to support your
responses. Your tone should be formal and
professional, and your language should be free from
errors and ambiguity. I am looking for accurate and
well-supported information that will help me to
achieve my academic goals.

Data Collection
The interview with the 2 models took place on March 9, 2023,
with early access to ChatGPT-4. Both ChatGPT-4 and Microsoft
Bing were asked to provide an outline for a discussion article
on the chosen topic, encompassing various aspects of general
practice. This approach aimed to evaluate the AI models’ability
to synthesize information and structure a coherent,
well-organized outline that could serve as a foundation for a
comprehensive discussion article. As differences between the
outlines are likely, the most comprehensive outline was used
to ensure a meaningful comparison between interviews. The
length of each question was limited to ensure accuracy and
reduce the risk of errors during the conversation.

Evaluation Criteria
It is important to note that the evaluation was conducted solely
by one author, and the assessments were largely based on their
subjective judgment. To compare and assess the quality of the
AI-generated responses, the following evaluation criteria were
established:

• Relevance: the extent to which the AI-generated response
addresses the prompt and provides information pertinent
to the question or topic.

• Accuracy: the degree to which the information provided is
factually correct and up to date, based on the current state
of knowledge in the field.

• Clarity: the clarity and coherence of the AI-generated
response, including the logical flow of ideas and the use of
precise, unambiguous language.

• Tone and style: the appropriateness of the tone and style of
the AI-generated response, considering the formal and
professional context of an academic paper.

To evaluate the evaluation criteria, a comprehensive literature
search was conducted to identify areas where AI might be useful
and implemented in general practice.

Analysis
Each AI-generated response was analyzed independently, using
the evaluation criteria, providing the strengths and weaknesses
of each model. Hereafter, a comparison between the 2 models
was conducted to establish differences. The results of the
evaluation and comparison between the 2 models were then
compiled and analyzed to determine the overall performance
of ChatGPT-4 and Microsoft Bing related to the area of AI use
in general practice and the areas preidentified, aiming at
identifying the strengths and weaknesses of each AI model as
well as any potential areas for improvement.

Results

For a complete comparison, the full conversation with both
ChatGPT-4 and Microsoft Bing models can be found in
Multimedia Appendix 1.

Relevance

Chat-GPT
GPT-4 offers a detailed analysis of AI applications in health
care, focusing on general practice, its limitations, ethical
concerns, and the importance of collaboration between AI and
health care professionals. It provides comprehensive
information, citing academic sources and studies, discussing
AI algorithms, natural language processing, pattern recognition,
evidence-based medicine, and personalized treatment plans.
ChatGPT-4 also addresses data privacy, security concerns, and
technical challenges while emphasizing the need to integrate
AI systems with clinical workflows and patient needs. It
provides a relevant and comprehensive examination of AI’s
potential benefits and challenges in health care, emphasizing
the need for integration with clinical workflows and a balanced
approach to ensure optimal patient care.

Microsoft Bing
Microsoft Bing offers a brief overview of AI in general practice,
addressing advantages and limitations without delving into
specific applications or ethical considerations. It lacks the depth
and citations and does not emphasize the importance of
collaboration between AI and health care professionals.
Although Microsoft Bing touches on themes that are relevant,
it provides neither specific study references nor in-depth
explanations, offering a more concise perspective (Table 1).
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Table 1. Comparison of ChatGPT and Microsoft Bing in terms of topic relevance.

Microsoft BingChatGPT-4Evaluation criteria

Relevance •• A brief overview of AI in general practiceA detailed analysis of AIa applications in healthcare
• •Comprehensive information and citing academic sources Lack of in-depth or specific study citations

•• Offering a more concise perspectiveEmphasizing the need for integration with clinical workflows and a
balanced approach to ensure optimal patient care

aAI: artificial intelligence.

Accuracy

ChatGPT
ChatGPT-4 included 23 of 32 (72%) precise peer-reviewed
articles with high accuracy. The introduction and applications
in general practice were 100% correct. However, it also cited
9 nonexistent articles, with 4 out of 7 inaccuracies in limitations
and all 4 ethical considerations being inaccurately cited.

Microsoft Bing
Microsoft Bing included 6 of 13 (46%) highly accurate,
peer-reviewed articles, along with 7 non–peer-reviewed but
highly relevant articles. Ethical considerations and applications
in general practice cited 3 and 2 non–peer-reviewed articles,
respectively (Table 2).

The references provided from both models, along with the
accuracy distribution, can be found in Multimedia Appendix 2.

Table 2. Comparison of ChatGPT and Microsoft Bing in terms of accuracy.

Microsoft BingChatGPT-4Evaluation criteria

Accuracy •• A total of 6 out of 13 (46%) highly accurate, peer-re-
viewed articles

A total of 23 out of 32 (72%) precise peer-reviewed articles,
with high accuracy

•• A total of 7 non–peer-reviewed but highly relevant arti-
cles

A total of 9 nonexistent articles, with specific inaccuracies

Clarity

Chat GPT-4
Overall, the text generated by ChatGPT demonstrates a high
level of clarity and coherence, exhibiting a logical flow of ideas
and the use of precise, unambiguous language. The text is easy
to follow and understand, even for readers who may not be
familiar with the technical terms and concepts discussed.

Microsoft Bing
Similar to ChatGPT, the text exhibits a high level of clarity and
coherence, with a logical flow of ideas and the use of precise,
unambiguous language. It is easily comprehensible, even for
readers unfamiliar with the technical terms and concepts
discussed. However, the text could be improved by providing
more details and examples to support the points made, as many
areas are discussed in a more general manner (Table 3).

Table 3. Comparison of ChatGPT and Microsoft Bing in terms of clarity.

Microsoft BingChatGPT-4Evaluation Criteria

The text is clear and coherent but could benefit from more detailed
examples.

The text is clear, coherent, and easy to understand, even for
nontechnical readers.

Clarity

Tone (Chat GPT-4 and Microsoft Bing)
Overall, the tone and style of the text are appropriate for the
formal and professional context of an academic paper,

effectively conveying complex ideas in a clear and objective
manner (Table 4).

Table 4. Comparison of ChatGPT and Microsoft Bing in terms of tone.

Microsoft BingChatGPT-4Evaluation criteria

Appropriate for an academic paper, conveying ideas clearly and
objectively

Appropriate for an academic paper, conveying ideas
clearly and objectively

Tone

Discussion

Principal Findings
In recent years, AI has become an increasingly prevalent tool
in various domains, including health care and academic research.
AI language models, such as ChatGPT-4 and Microsoft Bing,
have demonstrated the potential to assist researchers in

generating and organizing content for academic papers. In the
context of general practice, a rapidly evolving field with a
growing need for accurate and relevant information,
understanding the strengths and limitations of these AI models
is crucial for researchers and practitioners alike. This paper
aimed to compare and analyze the performance of ChatGPT-4
and Microsoft Bing in assisting with an academic paper in
general practice, focusing on their relevance, accuracy, clarity,
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as well as tone and style. By examining their respective
contributions and limitations, we seek to provide insights into
their potential uses and areas for improvement in AI-assisted
research.

In terms of relevance, ChatGPT-4 provided a detailed analysis
of AI applications in health care, emphasizing the importance
of collaboration between AI and health care professionals, while
Microsoft Bing offered a concise overview without delving into
specific applications or ethical considerations. As for accuracy,
ChatGPT-4 accurately cited 72% (23/32) of peer-reviewed
articles, but it also inaccurately cited 9 nonexistent articles.
Microsoft Bing, on the other hand, included 6 of 13 (46%)
accurate peer-reviewed articles and 7 non–peer-reviewed but
highly relevant articles.

Regarding clarity, both ChatGPT-4 and Microsoft Bing
demonstrated high levels of clarity and coherence, presenting
a logical flow of ideas with precise, unambiguous language.
Nevertheless, Microsoft Bing could benefit from providing
more details and examples to support its points, as certain areas
were discussed in a more general manner. Lastly, in terms of
tone and style, both AI models used an appropriate tone and
style for the formal and professional context of an academic
paper, effectively conveying complex ideas in a clear and
objective manner.

Comparison With the Existing Literature
The results of this study, which compared the performance of
ChatGPT-4 and Microsoft Bing in assisting with an academic
paper in general practice, can be contextualized within the
broader landscape of AI applications in health care and general
practice research. The findings align with several previous
studies that have highlighted the potential of AI language
models, such as ChatGPT-4, to deliver relevant, detailed, and
coherent information on complex subjects like health care [6,12].

The superior performance of ChatGPT-4 in providing
comprehensive and in-depth analysis aligns with its advanced
architecture and extensive training on a vast data set, which has
been documented to enable the model to generate human-like
text and engage in interactive conversations with users [12].
Similarly, the results are consistent with previous research that
has emphasized the importance of collaboration between AI
and health care professionals to achieve optimal patient care
[13].

However, the observed weaknesses in ChatGPT-4’s accuracy,
specifically in citing nonexistent articles, highlight the
limitations of AI language models in some areas of academic
research. This issue has been acknowledged in existing

literature, where concerns have been raised about the potential
for AI-generated content to include inaccuracies, biases, or
misinformation [14].

In contrast, Microsoft Bing’s more concise approach to
providing information echoes its primary function as a search
engine assistant rather than a specialized AI language model.
This result is consistent with the notion that AI chatbots, while
capable of providing relevant information, may not always
deliver the depth and detail required for more demanding
academic tasks [15].

Strengths
This study has some strengths, as follows:

• Prompt design: the study used a well-crafted prompt to
ensure that both ChatGPT-4 and Microsoft Bing were
primed for the task, which helped in generating accurate,
relevant, and coherent responses in a formal and
professional tone.

• Evaluation criteria: the established evaluation criteria
(relevance, accuracy, clarity, as well as tone and style)
provided a comprehensive framework for comparing and
assessing the quality of the AI-generated responses.

• Analysis: the independent analysis of each AI-generated
response, followed by a comparison between the 2 models,
allowed for a thorough understanding of the strengths and
weaknesses of each AI model.

Weaknesses
The weaknesses of the study are the following:

• Data collection: the study’s data collection method, which
involved interviewing the 2 models, may have been limited
in scope. A more comprehensive approach involving a
larger sample of questions or topics could have provided a
broader understanding of the AI models’ capabilities.

• Knowledge cut-off: ChatGPT-4 has a knowledge cut-off
date of September 2021, which may have limited its ability
to provide up-to-date information in some instances.

• Limited exploration of AI models: the study only compared
2 AI models—ChatGPT-4 and Microsoft Bing. This may
not provide a complete picture of the landscape of AI tools
available for assisting with academic papers in general
practice. Including more AI models, such as Google’s
chatbot—Bard, in the comparison could have yielded a
more comprehensive analysis. However, this model is not
currently available in Denmark.

The strengths and weaknesses of each model are presented in
Table 5.
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Table 5. A side-by-side comparison of the features and aspects of ChatGPT-4 and Microsoft Bing’s artificial intelligence (AI) chatbot.

Microsoft BingChatGPT-4Feature or aspect

Microsoft CorporationOpenAIDeveloper

Assisting users in navigating the Microsoft Bing
search engine and answering queries

Generating human-like text and engaging in in-
teractive conversations

Primary function

Artificial intelligence, natural language process-
ing, and machine learning

Vast data set, context understanding, language,
and reasoning abilities

Training or technology

Integrating with the Bing platform and enhanc-
ing the search experience

Answering questions, providing recommenda-
tions, and generating content

Special features

Limited to 20 prompts25 conversations per 3 hoursConversation limits

YesNoInternet access

Uses OpenAI technology with access to the in-
ternet and thus can acquire the newest informa-
tion

Up to 2021Knowledge cut-off

Closely related to ChatGPT-4 in this areaForgets information within longer conversations
and might stop midsentence in lengthy responses

Memory constraints

Offers a user-friendly and interactive way to
engage with search functionalities

Some responses may require user prompts to be
complete

Additional information

Implications for AI-Assisted Research
The findings of this study have several implications for
researchers and practitioners using AI in general practice and
other academic fields. These implications are as follows:

• Quality of AI-generated content: the comparison between
ChatGPT-4 and Microsoft Bing demonstrates that the
quality of AI-generated content can vary between models.
Researchers and practitioners should be aware of the
strengths and weaknesses of different AI models when
selecting a tool to assist with their work.

• Importance of collaboration: both ChatGPT-4 and Microsoft
Bing highlight the importance of collaboration between AI
and health care professionals. AI systems should be
designed to complement human expertise and foster
collaboration, enhancing the overall quality of research and
practice.

• Relevance and accuracy: ensuring the relevance and
accuracy of AI-generated responses is crucial for researchers
and practitioners. Although AI models can provide valuable
insights, they might also generate inaccuracies or outdated
information. Users must verify the information provided
by AI models and cross-check it with up-to-date, reliable
sources.

• Clarity and tone: AI-generated content should be clear and
coherent; it should maintain an appropriate tone and style
for the intended audience. Although AI models like
ChatGPT-4 and Microsoft Bing show promising results in
these aspects, users should carefully review and edit the
generated content to ensure it meets the required standards.

• Ethical considerations: as AI continues to be integrated into
various aspects of research and practice, ethical
considerations must be addressed. Data privacy, security,
and responsible use of AI-generated content are crucial to
ensuring that AI is used responsibly and effectively in
general practice and other academic fields.

Overall, the findings of this study indicate that AI models, such
as ChatGPT-4 and Microsoft Bing, can provide valuable
assistance in general practice and other academic fields.
However, researchers and practitioners should be aware of the
limitations and potential pitfalls of AI-generated content and
use these tools thoughtfully and responsibly.

Areas for Improvement and Future Research

AI Model Improvements

ChatGPT-4

Although ChatGPT-4 demonstrates strong performance in
relevance, clarity, and tone, there is room for improvement in
terms of accuracy, especially in relation to citing nonexistent
articles. Enhancing the fact-checking and source validation
capabilities of the model could help address this issue.

Microsoft Bing

Microsoft Bing could benefit from improvements in providing
more in-depth, relevant content with proper citations. Enhancing
the model’s understanding of specific academic contexts and
ethical considerations would allow it to provide more
comprehensive and valuable insights to the users.

Methodology Improvements
The methodology improvements required are as follows:

• Expanding the sample size: including more AI models in
the comparison would provide a broader understanding of
the capabilities and limitations of AI-assisted research.

• Diversifying the topics: evaluating AI-generated responses
across a wider range of topics and academic fields could
offer more generalizable insights into the strengths and
weaknesses of AI-assisted research.

• Including human evaluation: adding a panel of human
evaluators to assess the AI-generated content could help
provide a more nuanced understanding of the quality and
relevance of the responses.
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Future Research Directions
Some directions for future research are explained below:

• Longitudinal studies: investigating the evolution of AI
models over time, as they are updated and trained on new
data, could provide valuable insights into the progress of
AI-assisted research and the potential of these tools in
various academic fields.

• Ethical implications: examining the ethical implications of
AI-generated content in academic research, such as issues
related to plagiarism, data privacy, and potential biases,
could help develop best practices and guidelines for
responsible use of AI in research.

• Integration with research workflows: exploring how AI
models can be effectively integrated into existing research
workflows and practices and identifying the most effective
ways to combine AI-generated content with human expertise
would help maximize the benefits of AI-assisted research.

By addressing these areas for improvement and exploring future
research directions, researchers and practitioners can continue
to refine the use of AI models in general practice and other
academic fields, ultimately enhancing the quality, efficiency,
and impact of their work.

Conclusions
Our study comparing ChatGPT-4 and Microsoft Bing in
assisting with writing an academic paper in general practice
yielded several key findings. ChatGPT-4 demonstrated strong
performance in terms of relevance, clarity, and tone, providing
comprehensive information and detailed analysis of AI
applications in health care. However, it exhibited weaknesses
in accuracy, particularly in citing nonexistent articles. Microsoft
Bing offered a more concise perspective, touching on relevant
themes but lacking depth and proper citations.

In terms of methods used, the study incorporated prompt design,
data collection, evaluation criteria, and analysis of AI-generated

responses. The strengths of these methods include the design
of a prompt that effectively engaged both AI models and the
establishment of clear evaluation criteria. However, there is
room for improvement in the methodology, such as expanding
the sample size, diversifying the topics, and including human
evaluation.

When comparing ChatGPT-4 and Microsoft Bing, ChatGPT-4
emerged as a more capable AI model for assisting with an
academic paper in general practice. It provided a more in-depth,
relevant, and coherent analysis of the topic; however,
improvements in accuracy, particularly in source validation,
would further enhance its utility. On the other hand, Microsoft
Bing could benefit from improvements in providing more
comprehensive content and proper citations to better support
academic research.

In conclusion, ChatGPT-4 and Microsoft Bing present distinct
pros and cons in academic writing. ChatGPT-4 excels in
relevance and depth, but both AI models require improvement.
Merging their strengths can produce comprehensive answers
from ChatGPT-4 and up-to-date references from Microsoft
Bing.

Despite their impressive abilities, these tools currently cannot
author articles independently in certain areas. As AI models
advance and incorporate current references and critical thinking,
they may eventually conduct and create research autonomously.

This study’s findings hold substantial implications for
AI-assisted research across diverse fields, emphasizing areas
for refinement and future research directions to optimize AI
models in academia. To mitigate risks, researchers must adopt
a critical approach, corroborate information from various
sources, and stay aware of AI models’ limitations. This approach
allows them to harness AI while preserving the integrity and
rigor of their work.
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Abstract

Background: Amidst the COVID-19 pandemic, misinformation on social media has posed significant threats to public health.
Detecting and predicting the spread of misinformation are crucial for mitigating its adverse effects. However, prevailing frameworks
for these tasks have predominantly focused on post-level signals of misinformation, neglecting features of the broader information
environment where misinformation originates and proliferates.

Objective: This study aims to create a novel framework that integrates the uncertainty of the information environment into
misinformation features, with the goal of enhancing the model’s accuracy in tasks such as misinformation detection and predicting
the scale of dissemination. The objective is to provide better support for online governance efforts during health crises.

Methods: In this study, we embraced uncertainty features within the information environment and introduced a novel
Environmental Uncertainty Perception (EUP) framework for the detection of misinformation and the prediction of its spread on
social media. The framework encompasses uncertainty at 4 scales of the information environment: physical environment,
macro-media environment, micro-communicative environment, and message framing. We assessed the effectiveness of the EUP
using real-world COVID-19 misinformation data sets.

Results: The experimental results demonstrated that the EUP alone achieved notably good performance, with detection accuracy
at 0.753 and prediction accuracy at 0.71. These results were comparable to state-of-the-art baseline models such as bidirectional
long short-term memory (BiLSTM; detection accuracy 0.733 and prediction accuracy 0.707) and bidirectional encoder
representations from transformers (BERT; detection accuracy 0.755 and prediction accuracy 0.728). Additionally, when the
baseline models collaborated with the EUP, they exhibited improved accuracy by an average of 1.98% for the misinformation
detection and 2.4% for spread-prediction tasks. On unbalanced data sets, the EUP yielded relative improvements of 21.5% and
5.7% in macro-F1-score and area under the curve, respectively.

Conclusions: This study makes a significant contribution to the literature by recognizing uncertainty features within information
environments as a crucial factor for improving misinformation detection and spread-prediction algorithms during the pandemic.
The research elaborates on the complexities of uncertain information environments for misinformation across 4 distinct scales,
including the physical environment, macro-media environment, micro-communicative environment, and message framing. The
findings underscore the effectiveness of incorporating uncertainty into misinformation detection and spread prediction, providing
an interdisciplinary and easily implementable framework for the field.

(JMIR AI 2024;3:e47240)   doi:10.2196/47240
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Introduction

Background
The World Health Organization and the United Nations have
issued warnings about an “infodemic,” highlighting the spread
of misinformation alongside the COVID-19 pandemic on social
media [1]. Misinformation is characterized as “factually
incorrect information not backed up by evidence” [2]. This
misleading information frequently encompasses harmful health
advice, misinterpretations of government control measures and
emerging sciences, and conspiracy theories [3]. This
phenomenon has inflicted detrimental impacts on public health,
carrying “severe consequences with regard to people’s quality
of life and even their risk of mortality” [4].

Automatic algorithms are increasingly recognized as valuable
tools in mitigating the harm caused by misinformation. These
techniques can rapidly identify misinformation, predict its
spread, and have demonstrated commendable performance. The
state-of-the-art detection techniques exhibit accuracy ranging
from 65% to 90% [5,6], while spread-prediction techniques
achieve performance levels between 62.5% and 77.21% [7,8].
The high accuracy of these techniques can be largely attributed
to the incorporation of handcrafted or deep-learned linguistic
and social features associated with misinformation [9-11].
Scholars have consistently invested efforts in integrating
theoretically relevant features into algorithmic frameworks to
enhance accuracy further.

Scholars have introduced diverse frameworks for misinformation
detection and spread-prediction algorithms. Nevertheless,
existing frameworks have predominantly concentrated on the
intricate post-level signals of misinformation, emphasizing
linguistic and social features (such as user relationships, replies,
and knowledge sources) associated with misinformation.
Notably, these frameworks have often overlooked the
characteristics of the information environment in which
misinformation originates and proliferates [12]. This neglect
could potentially result in diminished performance for
misinformation detectors when applied in various real-world
misinformation contexts. This is due to the fact that different
misinformation contexts possess unique characteristics within
their information environment, influencing the types of
misinformation that can emerge and thrive [13]. An
indispensable characteristic of the information environment
concerning misinformation is uncertainty. Uncertainty arises
when the details of situations are ambiguous, complex,
unpredictable, or probabilistic, and when information is either
unavailable or inconsistent [14]. In uncertain situations,
individuals tend to generate and disseminate misinformation as
a means of resisting uncertainty and seeking understanding amid
chaotic circumstances [15,16]. The COVID-19 pandemic serves
as a notable example, marked by a lack of understanding of
emerging science [17], uncertainties surrounding official
guidelines and news reports [18], and unknown impacts on
individuals and society [19]. Hence, in this study, we recognize
uncertainty as the pivotal feature in the information environment
of misinformation. Our objective is to formulate a novel
framework for perceiving environmental uncertainty,

specifically tailored for the detection and spread prediction of
misinformation during the COVID-19 pandemic.

Our contributions can be outlined as follows. Theoretically, we
provide a comprehensive exploration of uncertainty across 4
distinct scales of the information environment, namely, the
physical environment, macro-media environment,
micro-communicative environment, and message framing. These
scales collectively contribute to the emergence and
dissemination of misinformation. Furthermore, we hold the
distinction of being the pioneers in integrating Environmental
Uncertainty Perception (EUP) into the realms of misinformation
detection and spread prediction. In terms of methodology, we
introduce the EUP framework, designed to capture uncertainty
signals from the information environment of a given post for
both misinformation detection and spread prediction. Our
experiments conducted on real-life data underscore the
effectiveness of the EUP framework.

This paper unfolds as follows: In the “Related Work” section,
we provide a concise review of the related work. The “Proposed
Theoretical Framework” section elucidates uncertainty features
within the information environment, which are pertinent to
misinformation detection and spread prediction. Moving on to
the “Research Objectives” section, we outline our study
objectives. The “Methods” section details our methodology for
testing the proposed framework. In the “Data Set and
Experiment” section, we present our data set, experiments, and
comprehensive analyses. The “Discussion” section delves into
discussions on our findings, unraveling the theoretical and
practical implications of our work. Finally, the “Conclusions”
section concludes with a summary and outlines directions for
future research.

Related Work
Detecting misinformation on social media represents a
burgeoning research field that has garnered considerable
academic attention. Multiple frameworks have been put forth
for this task, primarily falling into 2 approaches: the post-only
approach and the “zoom-in” approach [12]. In the former,
frameworks focus on studying post features to differentiate
misinformation from general information. Linguistic features,
including novelty, complexity, emotions, and content topics,
are frequently explored [6,11]. Additionally, researchers have
delved into multimodal features, particularly those based on
visuals [20,21]. Deep learning models in natural language
processing have also proven beneficial for the misinformation
detection task [5,22].

The “zoom-in” approach places emphasis on socio-contextual
signals, centering on users’ networking aspects (eg, user
relationships, number of replies, number of created threads;
[23,24]) and network characteristics (eg, degree centrality [25]).
Another line of research underscores the significance of relevant
knowledge sources, including fact-checking websites [26] and
knowledge graphs [27], which can be used to validate specific
claims of interest.

Recently, Sheng et al [12] introduced a “zoom-out” approach,
concentrating on the information environments of
misinformation that can offer signals for detection. In their
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approach, they incorporated the news environment into fake
news detection. Their hypothesis posited that fake news should
not only be relevant but also novel and distinct from recent
popular news, enabling them to capture audience attention and
achieve widespread dissemination. Their findings revealed that
signals of popularity and novelty can enhance the performance
of state-of-the-art misinformation detectors.

In the realm of misinformation detection, misinformation spread
prediction represents another challenging task, albeit one that
has received limited attention. This task involves predicting
whether a piece of misinformation is likely to be disseminated
to a broader audience through actions such as likes, comments,
and shares. Within this context, our specific focus is on
predicting whether misinformation is likely to be retweeted.
This can be viewed as a binary classification task, akin to
misinformation detection. Frameworks for this task typically
incorporate linguistic and social features, which may overlap
with or differ from those used in misinformation detection.
Linguistic features such as persuasive styles, emotional
expressions, and message coherence prove valuable in predicting
the spread of misinformation [28,29]. Additionally, social
features, including user metadata (eg, number of friends,
verification) and tweet metadata (eg, presence of images and
URLs), are identified as relevant factors for predicting
misinformation spread [25].

Proposed Theoretical Framework

Uncertainty as a Central Aspect in Misinformation
Our study builds upon Sheng et al’s [12] “zoom-out” approach,
adopting an interdisciplinary perspective that centers on the
uncertainty within the information environment of
misinformation. The realms of communication and psychology
literature have conceptualized uncertainty as a fundamental
aspect of misinformation. Uncertainty is said to prevail “when
details of situations are ambiguous, complex, unpredictable, or
probabilistic; uncertainty is also present when information is
unavailable or inconsistent, and when individuals feel insecure
about their own state of knowledge or the general state of
knowledge” [14]. Confronted with uncertainty, individuals are
driven to alleviate it by constructing their understanding of the
situation [16]. This constructive process is known as
sensemaking, which encompasses how individuals impart
meaning to their surroundings and use it as a foundation for
subsequent interpretation and action [30]. Sensemaking entails
the utilization of information by individuals to fill gaps in their
understanding [31]. Yet, the utilization of information in this
manner does not always guarantee truth. In situations where
information is slow to emerge, individuals are driven to
comprehend uncertain situations by relying on their existing
knowledge and heuristics for judgment. Unfortunately, this
process often leads to the formation of false beliefs and
misinformation [32]. Additionally, individuals may “turn to
unofficial sources to satisfy their information needs,” potentially
exposing themselves to inaccurate information [33]. As
suggested by Kim et al [34], exposure to misinformation has
the potential to diminish feelings of uncertainty. Moreover, as
individuals integrate more information into their comprehension
of a situation, there is a tendency to seek plausibility, which

may lead to the generation and acceptance of misinformation
[16,35].

The aforementioned tendencies are notably prominent in the
context of the COVID-19 pandemic, as the pandemic represents
a time of heightened uncertainty. The emergence of the
pandemic was marked by a mysterious disease with previously
unseen symptoms. Fundamental questions regarding the origins
of the disease, measures for self-protection, and strategies for
containing the outbreak were not immediately evident. As the
pandemic progressed, uncertainty persisted regarding how and
when the outbreak would be fully contained, as well as the
long-term impact it would have on individuals and society. The
uncertainty stemming from the pandemic, coupled with the
surge of social media as a primary source of information, has
facilitated the spread of misinformation [16].

Although many studies have identified “uncertainty” as a central
aspect of misinformation, they have not thoroughly elucidated
how uncertainty, as a crucial feature of the information
environment, can aid in the detection of misinformation and the
prediction of its spread. The literature frequently treats
uncertainty as a static and holistic feature of a situation.
However, the level of uncertainty within a situation can be
dynamic, evolving as the situation progresses. For instance,
uncertainties about the virus and the initial life changes induced
by the COVID-19 pandemic would have been considerably
higher at its onset than they are at present [36]. Moreover,
uncertainty can manifest differently across various scales of the
information environment. The information environment has
become increasingly intricate with the proliferation of the
internet and communication technologies. Individuals may be
exposed to a substantial volume of information about trending
topics through mainstream mass media (eg, newspapers, TV,
social media trends) within a short time frame, constituting a
macro-media environment. Simultaneously, they may selectively
engage in detailed communications on a specific issue provided
by self-media (eg, subscription accounts, self-broadcasting),
shaping a micro-communicative environment. Uncertainty
manifested in these 2 environments may independently or
interactively influence people’s sensemaking processes and,
consequently, their outputs (eg, misinformation). Additionally,
uncertainty can be inherent in the misinformation itself,
providing cues for its detection and spread prediction. We will
elaborate on the features of uncertainty in the information
environment in the following section.

Uncertainty in the Information Environment

Uncertainty in the Physical Environment

Uncertainty prevails in the physical environment when unknown
risks pose potential threats to our societal systems [15,16].
Scholars refer to such threats as “crises,” which can encompass
natural disasters, large-scale accidents, social security incidents,
and public health emergencies such as the pandemic [37]. Crises
are marked by the existence of uncertainty and the imperative
for timely decision-making [38]. Therefore, a crucial process
during crises is sensemaking. However, the efforts needed for
sensemaking will vary as a crisis progresses through stages.
The Crisis and Emergency Risk Communication Model
delineates 5 common stages in the crisis life cycle, spanning
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“from risk, to eruption, to clean-up and recovery, and on into
evaluation [38].” The eruption of the crisis, also known as the
breakout stage, occurs when a key event triggers the crisis [39].
This is the period when the public becomes initially aware of
the crisis, characterized by mysteries and heightened motivation
to make sense of it. Evidence indicates that the breakout stage
of a crisis harbors the highest level of uncertainty and demands
extensive sensemaking efforts (eg, government updates [40];
social media communication [41]), consequently leading to a
higher incidence of misinformation [42]. This evidence implies
that misinformation is more likely to surface and proliferate in
tandem with uncertainty in the information environment during
the breakout stage compared with other stages throughout a
crisis. These insights offer valuable cues for the detection and
prediction of misinformation during the COVID-19 pandemic.

Uncertainty in the Macro-Media Environment

The macro-media environment encompasses recent media
opinions and public attention to trending topics [12].
Governments and mainstream media play a pivotal role in setting
the agenda for public attention. During crises such as the
COVID-19 pandemic, governments frequently make swift and
crucial decisions to safeguard the public. However, these
decisions are often made without sufficient transparency, leading
to potential uncertainties surrounding their rationale [43]. Such
decisions inevitably draw media and public attention, quickly
becoming trending topics in mainstream media outlets [44,45].
Regrettably, these rapid decisions often leave audiences with a
high level of uncertainty about the reasons behind and the
processes involved in making these decisions, potentially paving
the way for misinformation. Supporting this notion, Lu [3]
identified a correlation between the swift decision to quarantine
Wuhan city and the emergence of misinformation regarding
government control measures during the early stages of the
COVID-19 pandemic in China. The evidence presented indicates
that when public attention is directed toward a trending topic
that carries uncertainty, misinformation is likely to emerge and
spread. In simpler terms, it can be anticipated that when a piece
of information is associated with a trending topic characterized
by high uncertainty (as opposed to low uncertainty), there is a
higher probability that the information could be misinformation
and disseminated.

Uncertainty in the Micro-Communicative Environment

Differing from the macro-media environment, which offers a
macro perspective on what mass audiences have recently read
and focused on, the micro-communicative environment provides
a micro view of the communication surrounding a specific issue.
Both media and individuals tend to communicate using frames
or terms imbued with uncertainty when discussing matters that
lack evidence or consensus, such as those stemming from
emerging science during the COVID-19 pandemic [32,46]. As
an illustration, in the initial phase of the pandemic, when Hong
Kong officials reported the first instance of a dog testing
“weakly positive” for COVID-19 infection, subsequent media
reports highlighted that “Hong Kong scientists aren’t sure
[emphasis added] if the dog is actually infected or if it picked
up the virus from a contaminated surface [47].” Experimental
evidence has shown that such uncertainty frames about scientific
matters can diminish people’s trust in science [48]. Empirical

evidence from real-life social media data further indicates that
a communication style marked by ambiguity can potentially
lead audiences to generate and disseminate misinformation [32].
This body of findings implies that if information is embedded
in uncertain (as opposed to consensus) communication, it is
more likely to be misinformation and disseminated.

Uncertainty in Message Framing

Uncertainty can also manifest within the message through its
framing or word choice. Uncertainty frames are prevalent in
misinformation [15,49]. Oh et al [15] illustrated that source
ambiguity and content ambiguity are 2 significant features of
misinformation. When individuals create a piece of
misinformation that lacks evidence and credibility, they often
use uncertain words to describe the unreliable source (eg,
someone) or the potential rationale (eg, possible, likely) behind
the statement. The incorporation of uncertain words can indeed
facilitate the spread of misinformation [29,50]. The inclusion
of uncertainty expressions in messages leads individuals to
perceive the information as more relevant and suitable for
themselves [51]. Consequently, if misinformation exhibits a
higher level of uncertainty, it is more likely to be accepted and
disseminated by the public.

Research Objectives
Our research objective is to explore whether uncertainty features
within the information environment can enhance the
effectiveness of misinformation detection and spread prediction.
To achieve this, we introduce a novel EUP framework
specifically designed for both tasks. We seek to assess the
standalone effectiveness of the EUP and anticipate that it can
augment the capabilities of existing state-of-the-art
misinformation detectors and predictors. Therefore, we
conducted experiments to answer the following research
questions:

• Research question 1: Can EUP be effective in
misinformation detection and spread prediction?

• Research question 2: Can EUP improve the performances
of the state-of-the-art algorithms for misinformation
detection and spread prediction?

Methods

Overview
Figure 1 offers an overview of the EUP pipeline. The model
consists of 4 uncertainty extraction components. Upon receiving
a post (denoted as p), the initial step involves constructing its
macro-media environment and micro-communicative
environment. This is accomplished by extracting recent news
and social media data, respectively. Subsequently, we use a
probabilistic model and a similarity calculation method to derive
the uncertainty information for the 2 environments mentioned
above, denoted as IM and IC. Likewise, we utilized the
probabilistic model to capture the uncertainty of the post p itself,
resulting in the representation of message framing denoted as
IF. Simultaneously, the operationalization of uncertainty in the
physical environment entails using the number of COVID-19
cases and the volume of news as key indicators, denoted as IP.
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Lastly, the 4 vectors are integrated using a gate guided by the
extracted post feature o (which may not necessarily equal p)
from the misinformation detector, such as bidirectional encoder
representations from transformers (BERT) [52]. The fused

vectors I and o are then input into the final classifier, typically
a multilayer perceptron (MLP), to predict whether p is fake or
real in task 1 and low or high in task 2.

Figure 1. An environmental uncertainty perception (EUP) framework for misinformation detection and spread prediction in the COVID-19 pandemic.

Uncertainty Detection Model
For detecting uncertainty in natural language [53], we used a
probabilistic model that considers the local n-gram features of
sentences. Each n-gram is assigned a weight that reflects its
tendency to convey uncertainty. The definition of each feature
involves a quadruplet (type, size, context, and aggregation).
“Type” signifies the type of n-gram considered, such as lemma
or morphosyntactic pattern. “Size” indicates the size of the
n-gram. “Context” serves as an indicator, specifying whether
the weight is based on the occurrence frequency of the n-gram
in an uncertain sentence or on the occurrence frequency of the
n-gram as an uncertainty marker. “Aggregation” refers to the
method used to consolidate different scores of the n-grams
within a sentence. Multimedia Appendix 1 [49,54-57] furnishes
a summary of the diverse features, denoted as Fi, that are
scrutinized in the uncertainty detection model.

Next, we exemplify the calculation of uncertainty using 1 of
these features, F1, as an illustration. F1 is defined by the
quadruplet (Lemma, 1, uncertainty marker, and sum). For each
lemma w, we can compute the number of occurrences in the
corpus, the number of occurrences in uncertain sentences, and
the number of occurrences as an uncertainty marker, denoted
as Fs, Fu, and Fm, respectively. The conditional probability of
a lemma w becoming an uncertainty marker is calculated using
the following equation:

p(c|w)=Fm/Fs (1)

where c represents the class of context uncertainty under
analysis, specifically whether it pertains to being an uncertainty
marker. Additionally, we introduce a confidence score linked
to the probability of mitigating the impact of instances where
certain lemmas occur infrequently in the corpus yet yield a high
probability:

conf(w)=1–(1–Fs) (2)

F1 takes into account both the conditional probability of each
lemma w and the corresponding confidence score in the sentence
s, and the formula is calculated as follows:

Similarly, other features Fi can be derived using the above
method. We generated the uncertainty of the whole sentence
by mean pooling to represent the average uncertainty signals
of Fi:

FA,Mean (s)=Mean(Norm({Fi(s)}|F|
i=1)) (4)

where Norm(·) denotes the normalization.

Representation of the Macro-Media Environment
We collect news reports from mainstream media outlets released
within T days before the post p is published to construct a
macro-media environment according to the following definition:

M = {e: e ∈ E, 0 ≤ tp – te ≤ T} (5)

where E denotes the set of all collected news items, M denotes
the set of news items in the macro-media environment of the
post p, and tp and te represent the release time of post p and
news e, respectively. For post p or each news item e, the initial
representations are the output of a pretrained language model
(eg, BERT [52]), denoted as p and e, respectively.

The macro-media environment is expected to reflect the impact
of a trending topic with high uncertainty on the veracity of a
post. That is, if a post is related to a trending topic with (vs
without) high uncertainty, it is then expected to be more likely
misinformation and disseminated. To this end, the representation
of the macro-media environment should consider both the
correlation between the post and the environment and the
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uncertainty of the environment. We first calculate cosine
similarity between p and each news item e in E:

S(p,e) = (p·e)/(|p|·|e|) (6)

We combine the similarity and environment representations to
represent the similarity representation of a post p to the
environment:

where eM
i represents each news item in M and is the

Hadamard product operator.

We then measure the uncertainty of the macro-media
environment using the model described in the “Uncertainty
Detection Model” section. The uncertainty representation of
the macro-media environment, denoted as UM, can be expressed
by the following equation:

Finally, the macro-media environment of a post p is represented
as an aggregation of the similarity representation of p to the
environment (SM) and the uncertainty representation of the
environment (UM) using an MLP, denoted as IM:

IM = MLP(SM UM) (9)

where is the concatenation operator. The integration of an
MLP is instrumental in the dual objective of retaining crucial
information while concurrently achieving data dimensionality
reduction. All MLPs are individually parameterized. We omit
their index numbers in the above equations for brevity.

Representation of the Micro-Communicative
Environment
We collected tweets from Twitter (X; X Corp.) published within
T days before the post p was published to construct the
micro-communicative environment. We calculated the similarity
of all tweets to the post p and selected the top k of them, using
them as a micro-communicative environment (C), which is
defined as follows:

C′ = {v:v ∈ V, 0 ≤ tp – tv ≤ T} (10)

where V denotes the set of all collected tweet items and tv
represents the release time of the tweet v.

C = {v: v ∈ Topk(p,C′)} (11)

where Topk(·) represents the operation of selecting the k tweets
that have the highest similarity to p, k = r·|C′|, and r ∈ (0,1)
represents the percentage of extraction.

Using the same approach as in the previous 2 sections, we derive
the similarity representation of the post p to the
micro-communicative environment and the uncertainty
representation of the environment:

Finally, the micro-communicative environment of a post p is
represented as an aggregation of the similarity representation
of a post p to the environment (SC) and the uncertainty
representation of the environment (UC) using an MLP, denoted
as IC:

IC = MLP(SCUC) (14)

Message Framing
To perceive the uncertainty in the message framing of post p,
we used the same approach as described in the “Uncertainty
Detection Model” section to construct the uncertainty
representation of the post p:

IF=MLP[F(p) p] (15)

Physical Environment
To measure uncertainty in the physical environment, we
collected the daily number of new cases from the start of the
COVID-19 outbreak and counted the number of daily news

items related to the outbreak, denoted as NCases and NNews,
respectively. Intuitively, the higher the number of new cases
and news items for a day, the more sensitive the public is to the
social environment and the more uncertain the environment is
on that day. Thus, the uncertainty factor in the physical
environment is defined as follows:

fph
i=Norm(log(1+abs(Ni

Cases – Ni–1
Cases)) ×

log(1+abs(Ni
News – Ni–1

News))) (16)

where fph
i denotes the uncertainty factor at day i and abs is the

absolute value operation. For each post, we can obtain the

uncertainty factor for its corresponding date fph(p).

We added the uncertainty factor of the physical environment to
the representations of macro-media environment (IM),
micro-communicative environment (IC), and post message
framing (IF) to get the representation of the physical
environment, denoted as IP:

IP=(fph × IM) (fph × IC) (fph × IF) (17)

Prediction

Prediction With EUP Alone Without Baseline Models
We concatenate the above 4 environment uncertainty features
and feed the result into an MLP layer and a softmax layer for
the final prediction:

IEUP=IM IC IF IP (18)

Prediction With Baseline Models
We expect that our EUP is compatible with and can empower
various misinformation detection and prediction algorithms.
Therefore, we used an adaptive feature selection approach based
on a gate mechanism to accommodate different misinformation
detectors:
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I=gM IM + gC IC + gF IF + gP IP (20)

where o denotes the last-layer feature from the misinformation
baseline algorithm. The gating vector gM=sigmoid(Linear(

o IM)) and gC, gF, and gP are obtained in the same way. Then,
we concatenated o and I,and fed the result into an MLP layer
and a softmax layer for the final prediction:

During training, we minimize the cross-entropy loss.

Ethical Considerations
The study is exempt from ethical review for human subject
research for the following reasons. First, the study uses data
from 2 publicly available Twitter data sets collected through
the official application programming interface (API) of the
Twitter platform for gathering tweets. The news data set was
obtained from the official websites of news media. Second, the

data used in this study are anonymized and do not contain any
personally identifiable information. It is also impossible to
reidentify individuals from the data set. The data set is stored
on a dedicated secure data server, and the analysis is conducted
on the platform’s designated site. This process is undertaken
for research purposes and adheres to Chinese data privacy laws
and regulations. Third, this study does not involve any
experimental manipulation of human individuals or other ethical
concerns. For instance, it does not include data on children
under 18 years of age, which require legally mandated parental
or guardian supervision. It also does not encompass sensitive
aspects of participants’ behavior or pose any physical,
psychological, or economic harm or risk to the research
participants.

Data Set and Experiment

Data Set
The statistics and description of our experimental data set are
shown in Tables 1 and 2, respectively.

Table 1. Statistics of the data set.a,b

Total, nSpread prediction, nMisinformation detection, nData set

HighLowFakeReal

2225117110541324901Train

742382360430312Value

742384358432310Test

aNews items in M=58,095. The corresponding mean and range are 988 and 10-2511, respectively.
bTweet items in C=321,656. The corresponding mean and range are 793, 138-1214, respectively.

Table 2. Descriptions of the data set.

Size, nFeaturesData

3709Content, created time, retweet count, veracity label, retweeted labelPost

58,095Content, created timeNews

321,656Content, created timeTweets

Post
We processed and integrated 2 existing COVID-19 data sets,
FibVID [58] and CMU_MisCov19 [59], for our experiments.
Both data sets have been labeled for veracity by experts,
providing ground-truth labels for our experimental evaluations.
For FibVID, we extracted data related to COVID-19, assigning
veracity tags as 0 (COVID true) or 1 (COVID fake). We
relabeled CMU_MisCov19, classifying calling out or correction,
true public health response, and true prevention as real tags,
and conspiracy, fake cure, sarcasm or satire, false fact or
prevention, fake treatment, and false public health response as
fake tags. Furthermore, we used the Twitter API to retrieve the
number of retweets for all tweets in both data sets. Subsequently,
we categorized the retweet labels as low (when the retweet count
is 0) and high (when the retweet count is >0) following an
analysis of the distribution of retweet numbers. The data
revealed that misinformation was predominantly observed from
January to July 2020, coinciding with the period of heightened
uncertainty during the pandemic outbreak. Consequently, our

focus was directed solely to this specific period, resulting in the
extraction of 3709 posts from January to July of 2020.

Macro-Media Environment
We gathered all the news headlines and brief descriptions from
the Huffington Post, NPR, and Daily Mail from January to July
2020, as per the methodology outlined previously [12]. Notably,
these 3 outlets represent the left-, center-, and right-wing
perspectives, contributing to the diversity of news items for our
analysis. We then used the keywords “covid,” “coronavirus,”
“pneumonia,” “pandemic,” “epidemic,” “infection,”
“prevalence,” and “symptom” to filter these data to ensure that
the collected data were relevant to COVID-19. We ended up
with 58,095 news items from January to July 2020.

Micro-Communicative Environment
We obtained the tweet IDs associated with COVID-19 from an
ongoing project [60]. Given the substantial volume, we
randomly sampled 1% of these IDs (amounting to approximately
205,581,778 records). Subsequently, using the Twitter API, we
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retrieved the content associated with these IDs, resulting in a
data set comprising 321,656 tweets spanning from January to
July 2020.

Physical Environment
We compiled the daily count of new worldwide COVID-19
cases starting from January 2020, utilizing the Our World in
Data database. Additionally, the daily volume of news data
corresponds to the information we gathered during the same
period.

Experimental Setup

Tasks
We used the proposed model for 2 tasks:

Task 1. Misinformation Detection
The objective was to analyze the text content of a tweet and
ascertain whether it contained misinformation.

Task 2: Spread Prediction
The objective was to evaluate the text content of a tweet to
determine whether it is likely to be retweeted.

Uncertainty Features
Following Jean et al [53], we used WikiWeasel [61], a
comprehensive corpus consisting of paragraphs extracted from
Wikipedia, to compute the frequency of each lemma. The
uncertainty score for each sentence is determined using mean

pooling FA,Mean. We leverage [62] to acquire sentence
representations, relying on pretrained BERT models [52] and
subsequent posttraining on news items. In the macro-media
environment and the micro-communicative environment, we
set T=3, r=0.1, |C|min=10.

Baseline Models
The baseline models considered are listed in Textbox 1.

Textbox 1. Baseline models.

1. Bidirectional long short-term memory

Bidirectional long short-term memory (BiLSTM) [63] is a type of recurrent neural network architecture designed for sequence modeling tasks,
particularly in natural language processing. It processes input sequences in both forward and backward directions simultaneously, allowing the
model to capture information from both past and future contexts.

2. Event adversarial neural networks

Event adversarial neural networks (EANNT) [64] is a model using adversarial training to eliminate event-specific features derived from a
convolutional neural network for text (ie, TextCNN).

3. BERT

Bidirectional encoder representations from transformers (BERT) [52] is a pretrained language model based on deep bidirectional transformers.

4. BERT-Emo

BERT-Emo [65] is a fake news detection model that integrates multiple sentiment features into BERT.

Evaluation Metrics
For both tasks, we used accuracy and macro-F1-score as
evaluation metrics. Additionally, in task 1, we used F1-scores
for fake (F1fake) and real (F1real), while in task 2, we considered
F1-scores for low (F1low) and high (F1high). Further
implementation details can be found in Multimedia Appendix
1.

Results

Overview
Tables 3 and 4 showcase the performances of the EUP without
baseline models and those of various baseline models, with and
without EUP, for the misinformation detection and spread
prediction tasks, respectively. The results indicate that the
performances of EUP are comparable to those of state-of-the-art
baseline models in both tasks. Moreover, it is noteworthy that
all baseline models exhibit performance improvements when
incorporating EUP for both tasks. These observations suggest
the effectiveness of our proposed EUP.
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Table 3. Model performance comparison on the misinformation detection task without the baseline algorithm or without the EUPa module.b

F 1 realF 1 fakeMacro-F1-scoreAccuracyModel

0.6770.8000.7390.753EUP

0.6830.7830.7290.733BiLSTMc

0.6880.7980.7430.755BiLSTM + EUP

0.6640.7950.7300.745EANNT
d

0.7080.8060.7650.767EANNT + EUP

0.6890.7970.7430.755BERTe

0.7380.7960.7670.771BERT + EUP

0.6910.7890.7400.749BERT-Emo

0.7260.7990.7630.768BERT-Emo + EUP

aEUP: Environmental Uncertainty Perception.
bThe best result in each group is in italics.
cBiLSTM: bidirectional long short-term memory.
dEANNT: event adversarial neural networks.
eBERT: bidirectional encoder representations from transformers.

Table 4. Model performance comparison on the spread prediction task without the baseline algorithm or without the EUPa module.b

F 1 highF 1 lowMacro-F1-scoreAccuracyModel

0.7010.7190.7100.710EUP

0.7260.6840.7050.707BiLSTMc

0.7290.7380.7330.734BiLSTM + EUP

0.6980.7340.7160.717EANNT
d

0.7160.7360.7260.726EANNT + EUP

0.7280.7280.7280.728BERTe

0.7340.7520.7430.743BERT + EUP

0.7370.7300.7330.733BERT-Emo

0.7490.7330.7410.741BERT-Emo + EUP

aEUP: Environmental Uncertainty Perception.
bThe best result in each group is in italics.
cBiLSTM: bidirectional long short-term memory.
dEANNT: event adversarial neural networks.
eBERT: bidirectional encoder representations from transformers.

Ablation Study
We systematically eliminated individual components, namely,
macro-media environment, micro-communicative environment,
message framing, and physical environment, and assessed the
modeling performances on the data set. Tables 5 and 6 illustrate

that, under all experimental conditions, performance degrades
when any of these components are removed. These results
underscore the effectiveness of all 4 uncertainty features of the
information environment for both misinformation detection and
spread prediction.
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Table 5. Ablation study on the misinformation detection task.a

F 1 realF 1 fakeMacro-F1-scoreAccuracyModel

0.6770.8000.7390.753EUPb

0.6870.7900.7380.748Without IM

0.6370.8030.7200.745Without IC

0.6730.7780.7340.739Without IF

0.6630.7970.7300.747Without IP

0.6880.7980.7430.755BiLSTMc + EUP

0.6690.7930.7410.745Without IM

0.6680.7880.7280.741Without IC

0.6780.7910.7350.747Without IF

0.6650.7960.7420.746Without IP

0.7380.7960.7670.771BERTd + EUP

0.7070.8010.7540.762Without IM

0.6960.8070.7610.764Without IC

0.7050.8000.7520.761Without IF

0.7070.7950.7510.758Without IP

aThe best result in each group is in italics.
bEUP: Environmental Uncertainty Perception.
cBiLSTM: bidirectional long short-term memory.
dBERT: bidirectional encoder representations from transformers.
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Table 6. Ablation study on the spread prediction task.a

F 1 highF 1 lowMacro-F1-scoreAccuracyModel

0.7010.7190.7100.710EUPb

0.6760.7150.6960.697Without IM

0.6770.7120.6940.695Without IC

0.6890.7140.7020.702Without IF

0.6920.7210.7070.708Without IP

0.7290.7380.7330.734BiLSTMc + EUP

0.7110.7350.7230.724Without IM

0.7260.7160.7210.721Without IC

0.7020.7310.7160.717Without IF

0.6930.7530.7230.726Without IP

0.7340.7520.7430.743BERTd + EUP

0.7130.7640.7390.741Without IM

0.7110.7660.7380.741Without IC

0.7160.7530.7350.736Without IF

0.7170.7590.7380.740Without IP

aThe best result in each group is in italics.
bEUP: Environmental Uncertainty Perception.
cBiLSTM: bidirectional long short-term memory.
dBERT: bidirectional encoder representations from transformers.

The Effect of the Day Parameter T
To explore the impact of the day parameter (T) on the results
during the construction of the macro-media environment and
the micro-communicative environment, we experimented with
different values of T. Specifically, we sequentially set T=1, 3,

5, 7, and 9 for the BERT + EUP model, and the experimental
results are depicted in Figure 2. Despite the fact that increasing
T results in larger macro-media and micro-communicative
environments, the optimal performance was achieved when
T=1.

Figure 2. The effect of the day parameter T. Lines show the accuracies of both tasks and bars show the average number of news and tweet items in the
environments.
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The Effect of the Rate Parameter r
We maintained the setting T=3 and systematically varied r,
using values of 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 on the BERT

+ EUP model to examine the impact of r on the experimental
results, as illustrated in Figure 3. The accuracy performance
exhibited fluctuations with varying values of r. Notably, the
highest accuracy for both tasks was observed when r=0.1.

Figure 3. The effect of the rate parameter r. Lines show the accuracies of both tasks and bars show the average number of tweet items in the environment.

Evaluation on Imbalanced Data
In real-world scenarios, the distribution of real and fake
information often exhibits significant imbalance. To evaluate
the efficacy of our proposed EUP framework on unbalanced
data sets, we conducted tests on data sets with varying ratios of
real to fake data, ranging from 10:1 to 100:1. We measured and

reported macro-F1-scores and standardized partial area under
the curve (AUC) with a false-positive rate of at most 0.1 (ie,
spAUCFPR≤0.1 [66]) to assess the effectiveness of our EUP
framework in handling nonbalanced data sets. As depicted in
Figure 4, EUP yields relative improvements of 21.5% and 5.7%
in macro-F1-score and spAUCFPR≤0.1, demonstrating its
effectiveness on unbalanced data sets.

Figure 4. Performance of macroF1 and spAUC values across datasets with varying ratios.

Discussion

Principal Findings
First, this study enhances scholars’ comprehension of the
misinformation detection and spread prediction problem by
highlighting the significance of uncertainty in information
environments. Notably, this research contributes to the literature
by recognizing uncertainty features in the information
environments of misinformation as a pivotal factor for

improving detection and prediction algorithms during a
pandemic. Our findings underscore that the EUP alone is
sufficient for both tasks and has the potential to enhance the
capabilities of state-of-the-art algorithms. In contrast to prior
misinformation research that primarily concentrates on post
content (such as post theme, sentiments, and linguistic
characteristics, as seen in [6,11,29]) and network connections
(eg, number of followers [25]) on social media, this study
advances scholars’understanding of the misinformation problem
by emphasizing the importance of uncertainty in information
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environments. Recognizing and incorporating uncertainty as a
fundamental concept in misinformation detection and spread
prediction during crises hold theoretical significance. This is
particularly relevant as a crisis is characterized by its
unpredictable, unexpected, and nonroutine nature, inherently
giving rise to uncertainty [38,67]. This uncertainty has been
theorized to compel individuals to seek information as a coping
mechanism for dealing with the anxiety and pressure generated
by uncertainty. This process allows people to diminish
uncertainty, restore a sense of normalcy, and alleviate anxiety
[14,68]. Regrettably, this coping mechanism can inadvertently
fuel the proliferation and dissemination of misinformation,
particularly when there is a lack of timely and accurate
information, contributing to the concurrent occurrence of an
infodemic [6,11,50]. The current research seeks to advance the
literature by establishing the legitimacy of uncertainty in the
information environments of misinformation as a central
indicator for the detection and prediction of misinformation
during public health crises.

Second, this study delves into the intricacies of uncertain
information environments for misinformation across 4 distinct
scales, namely, the physical environment, macro-media
environment, micro-communicative environment, and message
framing. Our findings demonstrate the effectiveness of all 4
uncertainty features in misinformation detection and spread
prediction. In contrast to prior misinformation literature during
the COVID-19 pandemic, which often overlooked the role of
the information environment in increasing the likelihood of
misinformation dissemination, our research emphasizes the
importance of considering uncertainty beyond the content of
misinformation itself, such as ambiguous wording [29,50]. Our
study broadens the concept of linguistic uncertainty in
misinformation message framing to encompass a more
comprehensive uncertainty across various information
environments. We define uncertainty in information
environments using a multiscale approach that highlights the
significance of the interaction between the physical environment
and macro-/micro-media environments. This approach diverges
from focusing on a single dimension, such as ambiguities about
official guidelines and news reports [18], or the misinformation
framing strategy on social media [29].

Third, our findings indicate that uncertainties in information
environments play a crucial role as motivators for the emergence
and spread of misinformation. While previous studies have
provided preliminary evidence suggesting that uncertainty
stemming from government policies and news media could
coincide with the occurrence of related misinformation during
the COVID-19 pandemic, often relying on descriptive big data
analyses [3,32], our study contributes stronger empirical
evidence. We leverage machine learning techniques to
demonstrate that uncertainty arising from the crisis and crisis
communication through media can indeed incentivize
individuals to generate and disseminate misinformation.
Significantly, our findings revealed that the algorithm achieved
its best performance for both detection and spread prediction
tasks when incorporating items from the information
environments published 1 day before the post (T=1). This
discovery emphasizes the acute impact of uncertainty in the

information environment on the emergence and spread of
misinformation, underscoring the importance of timely
uncertainty reduction in crisis communication. Furthermore,
the algorithm attained the highest accuracies when it included
items highly relevant to the post but with an appropriate size
(r=0.1). This rationale is reasonable, as a too-small r may fail
to encompass enough misinformation-related items, while a
larger r might include a significant amount of irrelevant
information. The evidence theoretically establishes a connection
between crisis communication research and misinformation
research, reinforcing the notion that crisis communication and
misinformation containment are 2 intertwined aspects of crisis
management [3].

This study offers significant practical implications for
misinformation detection and spread prediction. First, unlike
previous studies that separately investigated computational
frameworks for these tasks [24,29], this study introduces a
unified uncertainty–based framework capable of addressing
both tasks simultaneously. Second, our framework operates
instantaneously, as it only requires easily accessible data such
as posts, mainstream news, and relevant social media discussions
published a few days prior. Moreover, the uncertainty detection
algorithm has been trained using external data, rendering our
algorithm easy to implement and capable of providing timely
detection and prediction for streaming textual data. Third, this
study affirms the effectiveness of uncertainty in various
information environments for detecting and predicting
misinformation on social media. Hence, the 4 proposed
uncertainty components in information environments could be
leveraged by social media platforms to improve the accuracy
of misinformation detection and spread prediction, thereby
safeguarding individuals from harm caused by infodemic. The
benefits offered by our algorithm may serve as an impetus for
integrating uncertainty components into practical systems.

Limitations and Future Work
This study is the first to incorporate the uncertainty present in
the information environment of a post for both misinformation
detection and spread prediction. However, it has some
limitations. First, our framework concentrated solely on
text-only detection and prediction. Future work should extend
the framework to incorporate multimodal and social graph–based
detection. Second, we used an uncertainty detection algorithm
developed from a generic corpus sourced from Wikipedia.
Nevertheless, past research has indicated that expressions of
uncertainty may vary slightly across domains [53]. In other
words, uncertainty expressions in the context of the COVID-19
pandemic may differ from those in general situations. Therefore,
future work should aim to enhance our uncertainty measure by
utilizing a corpus specifically designed for uncertainty detection
in the discourse related to COVID-19.

Conclusions
We introduced an EUP framework for both misinformation
detection and spread prediction. Our framework delves into
uncertainty within information environments across 4 scales:
the physical environment, macro-media environment,
micro-communicative environment, and message framing. The
experiments demonstrated the effectiveness of our proposed
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uncertainty components in enhancing the performance of
existing models. There are several directions for further
investigation and extension of this work. First, we can explore
the impact of different news and social media environments
(eg, biased vs neutral; left wing vs right wing) on the emergence
and spread of misinformation. Second, extending our algorithms
to include multimodal misinformation detection could be

beneficial, as misinformation increasingly incorporates images
and videos. Third, investigating the interaction between
misinformation detection and spread prediction using a
multitask, transfer-learning model is a promising avenue, given
the shared uncertainty framework identified in this study for
both tasks.
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Abstract

Background: The discourse surrounding medical artificial intelligence (AI) often focuses on narratives that either hype the
technology’s potential or predict dystopian futures. AI narratives have a significant influence on the direction of research, funding,
and public opinion and thus shape the future of medicine.

Objective: The paper aims to offer critical reflections on AI narratives, with a specific focus on medical AI, and to raise awareness
as to how people working with medical AI talk about AI and discharge their “narrative responsibility.”

Methods: Qualitative semistructured interviews were conducted with 41 participants from different disciplines who were
exposed to medical AI in their profession. The research represents a secondary analysis of data using a thematic narrative approach.
The analysis resulted in 2 main themes, each with 2 other subthemes.

Results: Stories about the AI-physician interaction depicted either a competitive or collaborative relationship. Some participants
argued that AI might replace physicians, as it performs better than physicians. However, others believed that physicians should
not be replaced and that AI should rather assist and support physicians. The idea of excessive technological deferral and automation
bias was discussed, highlighting the risk of “losing” decisional power. The possibility that AI could relieve physicians from
burnout and allow them to spend more time with patients was also considered. Finally, a few participants reported an extremely
optimistic account of medical AI, while the majority criticized this type of story. The latter lamented the existence of a “magical
theory” of medical AI, identified with techno-solutionist positions.

Conclusions: Most of the participants reported a nuanced view of technology, recognizing both its benefits and challenges and
avoiding polarized narratives. However, some participants did contribute to the hype surrounding medical AI, comparing it to
human capabilities and depicting it as superior. Overall, the majority agreed that medical AI should assist rather than replace
clinicians. The study concludes that a balanced narrative (that focuses on the technology’s present capabilities and limitations)
is necessary to fully realize the potential of medical AI while avoiding unrealistic expectations and hype.

(JMIR AI 2024;3:e49795)   doi:10.2196/49795
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Introduction

Background
Artificial intelligence (AI) technologies are steadily emerging
and intertwining with humans’ everyday lives and practices.
Their applications are broad and diverse: in the field of health
care, AI tools are supporting administrative tasks, predicting
patients’prognoses, monitoring health through wearable devices,
reading computed tomography scans, accelerating drug
discovery and development, and many more applications [1].
Particularly relevant for the present analysis are AI-enabled
wearable devices (eg, smartwatches) and clinical decision
support systems (CDSSs). CDSSs are AI-based tools that
provide diagnostic and treatment suggestions based on patient
data and test results [2,3]. They bear the potential to impact
physicians’ clinical judgment, decision-making process, and
their relationship with patients [4]. Lately, CDSSs are being
combined with machine learning and deep learning techniques,
thus generating hopes for faster and more accurate medical
decisions and diagnoses [5]. Machine learning and deep learning
are types of AI that continuously learn from the data they are
fed [6]. Both wearables and CDSSs are artificial narrow
intelligence as they are designed to perform only specific tasks.
On the contrary, humans have general intelligence: they can
excel in speech recognition, pattern recognition,
decision-making, and creating. This is also the goal of AI
research: with artificial general intelligence, the aim is to apply
the same tool to different areas with similar satisfactory results
and performance [7]. As artificial general intelligence is not
currently a possibility, this paper focuses on artificial narrow
intelligence applied in the medical context as CDSSs or wearable
devices.

Our work rests on 2 pillars: the first is medical AI, and the
second is the creation and perpetuation of AI narratives by
people exposed to AI in their profession. It is in the nature of
humans to make sense of things, events, and situations. One
way of doing this is through the construction of narratives that
link together complex and multifaceted realities while assigning
roles, identities, and values. Narratives are, therefore, stories

we tell about our lives in a nuanced meaning-making effort [8].
It is important to analyze narratives because they reveal our
attitudes, opinions, relationships, and emotions [9]. There is a
multitude of general AI narratives (Figure 1), which come
mainly from news outlets, science fiction accounts, the
technology industry, and academic research. Prominent general
AI narratives extensively concentrate on the struggle between
humans and machines on different levels (ie, comparing their
performances, worrying about job displacement, and wondering
to which extent humans will relent control to AI). On the one
hand, envisioning a world where AI takes over routine and
tedious chores can be uplifting. On the other hand, it seems
impossible to put to rest the underlying fear that it will take over
everything else too, including more enjoyable and creative tasks
[10]. Consequently, job displacement narratives are created
based on the preoccupation that AI will render many jobs
obsolete, particularly the ones revolving around menial tasks
that could easily be automated [11]. This worry is exacerbated
by the relentless comparison between humans’ and AI’s
performances, as a means to validate AI’s capabilities [12]. In
this human-machine struggle, AI is depicted as a superefficient
tool at the service of a heartless capitalistic system [10]. At the
same time, AI is appreciated exactly because it holds the
potential to simplify humans’ lives: it is designed to help humans
accomplish more with less effort. AI’s achievements are often
publicly praised; this is continuously underlined when its
performance excels humans’capabilities. Accordingly, positive
emotions and optimism are prevalent in social media posts about
AI, also when the authors are experts in the field [13]. However,
what is not acknowledged as much is that these successes are
confined to very specific tasks: an AI that can excel in facial
recognition will not automatically perform better than humans
in driving cars. The lack of generalizability in AI means that
human control and oversight are still pretty much needed.
Having said that, narratives on AI taking control of human lives
and societies are vastly popular [14]. What is usually incorrectly
implied behind these narratives is that AI shares the human
desire for greediness and its survival instincts, thus attributing
these qualities to anthropomorphized machines [10,15].

Figure 1. Summary of general artificial intelligence (AI) narratives identified in the literature and pertinent to this analysis.

Dominant AI narratives are often mistrusted or criticized in
light of their extremism: they frequently depict either utopian
or dystopian futures, light-years away from the complex and

mundane reality, that misrepresent the present state of the
technology [16]. For example, the way AI fails in the real world
is far less epic and catastrophic from Hollywood conceptions:

JMIR AI 2024 | vol. 3 | e49795 | p.805https://ai.jmir.org/2024/1/e49795
(page number not for citation purposes)

Lorenzini et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


these failures usually happen when the AI does what it is
programmed to do but with unintended consequences, that is,
a robot trained to behave in ways that would meet humans’
approval pretending to be doing something useful [14,17]. The
perpetuation of unrealistic AI failures inflates implausible fears
while failing to address the real ways in which AI could fail
[14]. The debate about AI is very polarized, and as opposed to
apocalyptic predictions, there are overly optimistic accounts.
The idea of AI being a “master technology” that would be able
to unlock all sorts of useful technologies, including those that
could help humanity achieve immortality, is common [18]. This
leads to the imagination that AI could be considered a form of
“holy grail” that bears the potential not only to provide for
humanity’s needs but also to fulfill its wildest desires and
dreams [18].

Narratives can have different functions for different authors and
in different situations; in this analysis, the focus is on how
narratives could influence medical AI development and uptake
and particularly how they could foster a climate where medical
AI supports physicians. Indeed, narratives on AI have the power
to influence the further development of these technologies, the
availability of funding, the directions of research, and the
opinions and expectations of both experts and the public. They
influence how new sociotechnical realities are accepted and
address both the concerns and the hopes surrounding AI [19].
Therefore, they form the background against which AI is being
developed, interpreted, and assessed [16]. While general AI
narratives are widely studied and debated, particularly in the
Western world [14,19-21], little data are available on AI
applications in specific sectors. The lack of research on medical
AI narratives, coupled with the perception of AI being
particularly promising in the field of health care [22,23], calls
for more attention to the topic. Humans have a “narrative
responsibility” [24]: there is a duty to make sense of medical
AI and to do it responsibly because these sensemaking processes
concretely impact its development, implementation, and uptake.
Since the stories humans tell about medical AI shape the future
of health care, narratives cannot be conceived as normatively
neutral. Narratives that support how we wish medicine to be
for the years to come should be preferred [8].

Objective
This paper offers a critical reflection on the existing literature
on AI narratives. It is one of the first studies to examine the
stories told by people who are professionally exposed to medical
AI about its applications. This study compares these stories with
the existing dominant general AI narratives so as to uncover
meaningful similarities and differences. This study aims to raise
awareness of how we talk about medical AI and how this can
shape the future experiences of both patients and physicians. It
is expected that some general AI narratives will be present in
medical AI narratives. However, as this medical AI is
implemented in a specific sector, namely, health care, with its
particular features and challenges, some narratives will be
unique for this context. The goal is to understand these
similarities and differences to better evaluate medical AI
narratives. Consequently, this study aims to recommend a more
ethical approach when creating and perpetuating these

narratives, considering their impact on physicians’ jobs and the
physician-patient relationship.

Methods

Overview
The data used for this manuscript are part of a larger research
project titled Ethical and Legal issues of Mobile Health-Data:
Improving Understanding and Explainability of Digital
Transformation and Data Technologies Using Artificial
Intelligence (EXPLaiN), which aims to clarify the legal and
ethical issues that need to be resolved for the collection, use,
and analysis of health data with AI methods. The project is
funded by the Swiss National Science Foundation. The first part
of the study consisted of 41 semistructured interviews with
participants who are exposed to medical AI. These participants
were from a range of disciplines: medicine, philosophy, law,
ethics, public health, and computer science. The interviews
focused on the barriers and facilitators for the implementation
of AI in clinical settings, particularly regarding CDSSs and
wearable devices. The original study aimed to examine the
current views, attitudes, knowledge, and barriers to using AI
models in the analysis of health data and to support physicians
and patients in their decision-making.

This analysis is a secondary analysis of these data and focuses
on a subset of the data collected. While coding the data, it
became apparent that narratives were often discussed. This
justified a secondary analysis that was attentive to this aspect
of the data. A second code tree was created based on the
narratives identified in the literature, and the interviews were
recoded. Of the 41 interviews, 30 (73%) were selected for the
secondary analysis based on the presence of narrative elements
about AI in health care. This selection, inherent to the secondary
nature of the analysis, resulted in incomplete saturation in 1
subtheme, namely, “welcoming the holy grail.”

The data subset was analyzed using a thematic narrative
approach that identified and reported stories participants told
about medical AI [25,26]. This approach was chosen for its
flexibility and ability to allow large data sets to be managed
and reduced into themes [25]. The topic and the format of the
data are not conducive to a structural narrative approach, as the
narrative segments were relatively short and lacked common
narrative characteristics (eg, characters with roles, a narrator, a
complication, a resolution, and a coda) [27,28]. Therefore, a
narrative thematic analysis was chosen, as it enabled single
units of meaning, primarily phrases, and short paragraphs to be
formed into themes and interpreted narratively [29]. With a
narrative thematic approach, we could better describe how
people exposed to AI in their profession experienced and
understood medical AI, as well as how they made sense of it.
This allowed for the analysis of underlying assumptions and
values [27,30].

Participants
Participants were purposively sampled and came from various
disciplines and backgrounds: medicine, bioethics, public health,
philosophy, psychology, economy, law, and computer science.
Inclusion criteria, other than being exposed to medical AI in
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their profession, were the holding of a senior position, either in
academia or in the private sector, hence excluding PhD students,
interns, and junior professionals. Participants’ profiles were,
for example, full professorship at a university, chief executive
officer of a company working with AI, or a data protection
officer at a hospital. Participants were recruited internationally;
however, there was a focus on European and Swiss participants
since the EXPLaiN project aimed to especially explore their
attitudes. Participants were recruited because they were working
with medical AI through projects, products, research, and
development. Identification of participants occurred through
publications or affiliations with companies working in the field
of medical AI. Their email addresses were found on the web
through their institution or company’s website. At the end of
the interview, participants were asked if they knew someone
meeting the inclusion criteria who would be interested in
participating (snowball sampling).

First contact with participants was through email where they
were invited to be interviewed by introducing the project and
explaining the aims and the implications of their participation
(eg, time commitment, voice recording, the method of
transcription, and data pseudonymization format).

Data Collection and Analysis
LAO and GL, who recruited the participants and conducted the
one-on-one semistructured interviews, did not personally know
the participants. LAO has a background in medicine and public
health, while GL studied philosophy with a focus on ethics and

philosophy of science. At the time of the data collection, both
were PhD candidates in bioethics at the Institute of Biomedical
Ethics of Basel.

Data were collected from November 2021 to April 2022
(therefore preceding some breakthrough such as ChatGPT; it
could be hypothesized that after the most recent novelties in the
AI field, such as natural language processing tools, narratives
about AI might be different also in the health care sector)
through semistructured interviews that lasted an average of 50
minutes. All the interviews of this subset were conducted on
the web and recorded directly via Zoom (Zoom Video
Communication, Inc). The original interview guide was
composed of 13 questions, each with several prompts or
follow-ups. The interview guide made use of 3 vignettes to
better clarify and contextualize the questions. The questions
were divided into 6 blocks: introductory questions (about the
experience of the participant), general questions about using AI
in medical practice, context-related questions about AI-patient
relationships (vignette 1 involving a wearable device),
context-related questions about physician-patient relationships
with AI (vignette 2 involving CDSSs), context-related questions
about private-public relationships (vignette 3), and closing
questions. The more significant questions (reported in Textbox
1) for this analysis were questions numbered 3 and 4, as well
as 3 prompts for question 8. However, relevant data were found
elsewhere in the data set as the interviews were semistructured,
and participants had some freedom in guiding the topics of the
interview.

Textbox 1. Relevant questions and prompts from the interview guide.

Question numbers and questions

• 3: I would like to start discussing clinical usability. What do you think about using artificial intelligence (AI) in clinical practice?

• 4: What would you consider the biggest challenges of using AI in health care?

• 8.6: How important it is that the physician understands AI?

• 8.8: Would AI have an impact on the physician-patient relationship?

• 8.9: Would AI challenge the traditional model of shared decision-making?

The interviews were transcribed verbatim by LAO, GL, and 2
students at the University of Basel using MAXQDA (VERBI
GmbH), a software application designed to assist with qualitative
analysis methods. LAO and GL checked all the transcripts and
compared their correctness with the audio of the interviews. All
data were securely stored on the server of the University of
Basel and pseudonymized. Potentially reidentifiable information
was removed from the transcripts.

After the original inductive coding, conducted equally by GL
and LAO, GL reorganized the relevant coded sections for the
secondary analysis. Upon consulting existing literature to
identify dominant narratives, a new code tree was created, and
the selected segments were deductively recoded. The selected
data subset was interpreted through the lens of the existing
categories of general AI narratives [31]. The new code tree
composed the dominant AI narratives found in the literature.
GL then selected the most significant codes and grouped them
into themes.

Ethical Considerations
All methods were approved by the Ethics Committee of
Northwest and Central Switzerland, under Switzerland’s Human
Research Act (HRA) Article 51 [32]. The methods were carried
out in accordance with the relevant HRA guidelines and
regulations. After revision, the Ethics Committee of Northwest
and Central Switzerland concluded that interviewing AI
professionals falls outside the HRA and requires only verbal
consent at the beginning of an interview (declaration of no
objection AO_2021-00045).

All personal data were pseudonymized and safely stored on the
server at University of Basel. The key is accessible only to the
research team. Potentially reidentifiable data were omitted from
publication. No compensation was offered to participants.
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Results

Overview
For this analysis, we used 30 interviews and reported at least 1
quote from each. We selected this subset because narratives
were not prominent in all interviews. It was challenging to
categorize participants into disciplines, as AI is notoriously an
interdisciplinary field. More often than not, participants had
mixed backgrounds and were dealing with medical AI from
different points of view. In categorizing participants, we picked
their main expertise: 9 (30%) participants had a background in
medicine, 6 (20%) in bioethics, 6 (20%) in law, 3 (10%) in
computer science, 2 (7%) in public health, 2 (7%) in philosophy,

1 (3%) in psychology, and 1 (3%) in economy. The vast majority
of the selected participants (21/30, 70%) were male (female
participants: n=9, 30%). Only 5 (17%) participants were located
outside Europe: 3 (10%) in the United States, 1 (3%) in Canada,
and 1 (3%) in South Africa (for more details on the participants,
please refer to the Multimedia Appendix 1).

Our analysis identified 2 main themes and various subthemes
(Figure 2). Representative anonymized quotes were taken from
the interviews to illustrate the reported results. Participants are
identified with the abbreviation of their main expertise and a
number: bioethics (BE), computer science (CS), economy (EC),
law (LW), medicine (ME), public health (PH), philosophy (PL),
and psychology (PS).

Figure 2. Themes and subthemes that emerged from the thematic narrative analysis. AI: artificial intelligence; MAI: medical artificial intelligence.

Medical AI as a Game Changer

Overview
With regard to physicians and medical AI relationships, attitudes
fell into 2 main groups. Some participants depicted a rather
competitive relationship and compared the performances and
capabilities of medical AI to those of physicians. The majority,
however, emphasized how AI can support clinicians, thus
outlining a more collaborative relationship and focusing on the
benefits of this cooperation. Nevertheless, these 2 groups shared
the underlying idea that AI would be a game changer for
medicine, and both emphasized how it could be useful in health
care.

A Competitive Relationship

Medical AI Competing With Physicians

Some participants described AI as a competitor to physicians
and argued that not only clinicians are dependent on AI but also
they could even be replaced by it. Medical AI was said to
outperform clinicians in pattern recognition and data processing.
AI was believed to notice aspects that physicians would miss,
hence emphasizing the limitations of human capabilities and
describing AI as being faster, more accurate, and less costly
than human physicians:

AI is able to grasp so many ideas within a very small
time interval [and] also integrate information that
physicians might even oversee that this might be even
like more precise than physicians. And I think this is
also an advantage. [ME7]

The AI tool uncovers a pattern that the clinician did
not pick up or maybe could not have picked up within
a human limited abilities. [BE5]

[Medical AI is] very inexpensive to use. In principle,
like once you’ve trained the system for let’s say a
diagnosis, you can basically use these things on a
regular laptop or smartphone even..... It doesn’t come
for free, but it is rather inexpensive and easy to get.
[BE4]

Comparing physicians and AI performance, abilities, and costs
sometimes resulted in claims about the obsolescence of
physicians since AI would be better in many aspects of a
physician’s role, while also being faster and cheaper, and it
seemed to be preferable to delegating tasks to AI. It was rarely
implied that physicians as a whole would be replaced. More
commonly, it was suggested that some specific tasks could be
carried out by AI. A common limitation was that AI could not
interact with patients as at present it lacked the necessary skills.
Presuming that AI capacities would steadily improve, a few
participants wondered whether in the future medical AI might
be able to assume all physicians’ duties:

Nowadays there are certain things that might not be
outsourced to machines in terms of human
interactions. But on the other side, I think, if we wait
long enough, we can basically outsource everything
to machines. [PH1]

I’m pretty sure that the physician will be quite
cautious, at least in the beginning, when they know
that they use these kinds of products [medical AI],
but maybe with time, you know, when they are used
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to it, in like 5 years, 10 years, 15 years, maybe with
time they could lose probably autonomy. [LW6]

You will actually have better outcomes if you don’t
involve humans. [ME9]

Things were different for image recognition: several participants
mentioned that medical AI gave outstanding results in radiology.
This led to the possibility of outsourcing routine cases to AI
while consulting radiologists only for peculiar cases:

I think one of the big places where it’s already
implemented is in radiology. Meaning, recognition
of patterns in pictures; machines are better at it than
we are. [ME1]

What people have been doing in radiology, I think
it’s also awesome.... The machine can give you
feedback right away and maybe you just use the
humans for very specific cases. [CS1]

And as more people use that tool, there might be the
temptation that therefore maybe we don’t need as
many dermatologists. Or as many specialists in
certain areas, like radiology. Because we have very
good AI that is able to detect cancer from X-rays. Or
covid from X-rays of lungs. [PS1]

The Risk of Technological Deferral

While pondering the idea of a more autonomous medical AI,
many participants worried about the risks of excessive
technological deferral (giving too much power to technology).
Automation bias, namely, the tendency to overrely on automatic
decision-making tools, was mentioned as an issue in areas of
practice that are time-sensitive:

In the long run [physicians] end up with them just
following what the machine says. [PL1]

There is a very real risk, especially in areas of
practice that have time pressure, that we will see
automation bias, that we will see AI systems that
formally were advisory, actually being the ones who
decide treatment choices. [BE2]

This tension on who holds the final decision-making
responsibility was framed as an actual conflict, with potentially
detrimental consequences if the humans were to “lose” their
decision-making power. Physicians might also be intimidated
by this outstanding tool and therefore would struggle to override
its decisions even when they did not agree with it:

Can you even win, so to speak? So, that might be the
bigger danger, where you say like “well, the machine
says that, so therefore it is correct.” [PL2]

The recurrent mentioned consequences of deferring
decision-making powers to medical AI were dependency on
technology, with fewer and fewer specialists trained and a
gradual loss of autonomy for physicians. Many participants in
this group worried about physicians’ autonomy being
endangered by medical AI and described the technology as
authoritarian or tyrannical:

Well, if the algorithms prove to be better than
physicians then you would have to change the role of

physicians from decision-makers to more just like
people, in the end, giving injections. [CS2]

A Collaborative Relationship

The Question of Irreplaceability

For many participants, physicians are not to be replaced by AI;
rather, AI enables them and supports their daily practice and
decision-making activities:

It should go in the direction that the systems are not
seen as a competitor to the physicians but more as a
cooperation between both. And I think what it’s
worthwhile, what it’s important, it’s that the
cooperation leads to better results. [EC1]

The use of technology is going to assist the physician
and not harm because in the end it’s called a clinical
decision support tool, not a clinical decision maker
tool. [ME3]

But I think it will never, never replace the main
diagnosis of a physician. So, this will always be a
support tool. Which has to be as well validated
beforehand. [LW2]

We need to be clear that AI is not just coming along
to replace physicians and when they go to the GP
[general practitioner], they’re going to see a robot
instead and the robot won’t understand anything
about them and it’ll just give them a stamp
prescription that is the same as everyone else. That’s
not what AI is. And certainly not in the next few
decades, will it be used for anything other than
decision support. [ME5]

Some interviewees noted how humanity is irreplaceable, while
others described medical AI as an assistive tool that is not
designed to replace physicians but to empower them.
Participants in this group emphasized the idea of medical AI
“assisting,” “helping,” “empowering,” and “supporting”
clinicians rather than comparing their ability, accuracy, and
cost.

When emphasizing physicians’ irreplaceability, participants
referred to the sensibility, emotivity, and empathy that are
needed in medical decision-making. Given the current state of
the art, medical AI is unable to grasp the complex totality of
the patient’s situation. Many participants also questioned
patients’ willingness to relinquish the physician-patient
relationship in favor of an AI-patient relationship. They argued
that communication with AI would not be authentic, as it would
not consider patients’personhood. Therefore, these participants
concluded that medical AI should never override physicians’
decisions; rather, it should promote and preserve physicians’
agency:

The patient needs a person he can talk [to], a person
that can read their emotions, feelings. [LW4]

I think medicine has a certain degree of nuances, that
only a person might catch and not a computer. And
you can’t let these computers or AI run autonomously.
[ME4]
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Independently from AI capabilities (whether it outperforms
physicians or not and whether it is limited or not), physicians
remain essential: medical AI should always be considered in
the light of physicians’ clinical judgment and never left
unsupervised. According to this description of medical AI,
physicians should always keep an active role in
decision-making:

I think the one who has the responsibility to make
decisions is, or will always be, the physician. [LW4]

I expect that the technology will help you give an
assessment, but that you will still have a clinician that
will evaluate further that kind of technical assessment
by software. So it’s not fully replacing an intervention
as such. It’s helping, supporting a development.
[LW5]

I think that the physician has to make a decision based
on their training. That’s their responsibility. [ME8]

Medical AI Freeing Physicians

The collaborative relationship narrative does not depict
physicians as dependent on their tools; rather, it suggests that
medical AI could constitute an important resource. The
relationship is described as a fruitful partnership, and the
outcome would be a general improvement to both physicians’
practice and their work conditions. Medical AI could free
physicians from burdensome tasks, hence relieving them from
burnout and allowing them to spend more quality time with
patients:

[Medical AI] could improve the physician-patient
communication.... So I am kind of hoping that, in that
way, because of AI certain aspects of healthcare could
be simplified and automated, but that equally should
generate room for more empathy between physicians
and patients. [PS1]

[Medical AI] is helping physicians to really focus on,
or be able to have more time for patients and less to
spend with tools. [CS3]

What I hope it’ll do it’s improve the relationship
between the patient and the physician. What I mean
by this is [that] the physician is going to be relieved
from the burnout. [ME3]

The Power of Medical AI

Overview
Most of the participants were optimistic about the future of
medicine when AI was involved and reported an overall positive
impact, or potential, of this technology. While a large part of
the answers balanced medical AI’s advantages with the
challenges it introduces, some focused only on the benefits of
the technology. At the same time, many interviewees identified
a hype-type narrative of medical AI and problematized it. In
this context, hype is understood as an exaggeratedly optimistic
rhetoric about an emerging technology [33].

Welcoming the Holy Grail
In a few interviews, medical AI was discussed mainly in positive
terms. These participants did not see any negative aspects or

concerns about the technology. Medical AI was deemed always
useful, and if it was not useful for something yet, it surely would
be in the future. It encapsulated so many opportunities for health
care that 1 participant referred to it as “the holy grail.”
Consequently, medical AI was expected to solve a wide range
of problems:

I basically don’t see any negative effects, like, I can’t
really see any negative effects. [LW1]

So, it seems to me that it’s both inevitable and good
that we have it [medical AI]. [BE2]

What do you think about using AI or machine learning
in clinical practice? [GL] I think it’s the Holy Grail.
[CS1]

Well, it [medical AI]’s a game changer. And I think
that our wild dream about getting personalized
medicine is really at hand. [LW3]

Medical AI Is Not Magical
A significant part of the participants addressed the
romanticization of this technology and highlighted the
importance of promoting a more truthful narrative. “Truth” and
“reality” were terms often mentioned when discussing the
medical AI hype: it was deemed untruthful, unhelpful, and
unrealistic, and this was judged problematic:

The problem is that this enthusiasm is so uncritical
and then we build into this. This is not giving us the
truth and not helping us to generate probabilities.
This is the problem that I hugely see. [BE3]

According to the participants, one of the consequences of the
hype around medical AI is that it is impossible to live up to the
expectations that it builds. Therefore, some participants were
profoundly critical toward overhyped accounts of the capabilities
of medical AI:

There is so much hype in this field [medical AI] and
this builds narratives and expectations. And to live
up to those expectations is always challenging. [ME2]

So that has, probably now backwards looking, not
been so clever to phrase it as the silver bullet solution
to everything, to patient autonomy, or patient
empowerment, to more efficient and better healthcare.
[BE1]

The outcome of this ideology is that medical AI is portrayed as
the appropriate means to tackle every pressing issue of health
care: AI is the hammer that fixes everything. Techno-solutionist
narratives would misunderstand AI and promote a representation
of the technology as if it were some kind of magical tool:

The hype around the technology at the moment, you
know, that people think that it can solve everything.
It’s like they have a hammer and everything is a nail.
[PH2]

I think a lot of people and a lot of physicians kind of
have the magical theory of machine learning, where
you just kind of throw the numbers in the hopper,
shake it out, and you get the results by magic. [BE6]
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The major problem of deep learning today are the
people doing deep learning because they think they
will solve everything with that and the ignorant people
because they don’t understand what is deep learning
and they think it’s magic that will solve everything.
[ME6]

Discussion

Principal Findings
The accounts of medical AI that emerged from these interviews
are more realistic and less influenced by science fiction
narratives than the general discourse on AI. Dystopian futures
were not reported, and only a few participants described AI as
a utopian technology that would address all challenges faced
by the health care sector. While general AI narratives are usually
polarized, describing AI as either the milestone of a better future
for humanity or the cause of all evils [19,34,35], study
participants often found a middle path between medical AI’s
promises and risks, thus avoiding alignment with extreme
positions and providing instead a more nuanced depiction of
the technology. We hypothesize that people exposed to AI in
their profession are less prone to exaggerated and polarized
narratives, while lay people tend to be more susceptible to these
narratives as they feel they have less control over the technology
[36]. The lack of a strongly polarized discourse in medical AI
can be regarded as positive: the contradictions present in
narratives that are diametrically opposed and irreconcilable
hinder a nuanced and sophisticated understanding of the
technology [21].

However, our study sample was not exempt from hype narratives
that uncritically focused on the expected benefits of medical
AI. This confirmed the existence of hype narratives, which are
already reported in the literature as well as the conceptualization
of AI as a “holy grail” technology [22,23,34].

Claims about superiority are very popular in AI narratives, not
only in fictional and media narratives but also in the scientific
discourse, as researchers frequently compare AI with humans’
capabilities and performances as a means of validating the
technology [12,37]. The physician-AI juxtaposition ends with
depicting the classical human-machine struggle panorama, where
physicians are menaced by an authoritarian machine that
outperforms them and that leaves humans dependent on it, no
longer in control, and stripped of their agency [12,14,19,35].
Indeed, 1 participant described this struggle as a real win-lose
situation.

While a few participants hyped medical AI, the majority
recognized both the advantages and the challenges introduced
by AI in health care. Therefore, stronger than the hype narrative
were the cautionary tales of avoiding a “myopic
techno-solutionism” and the criticism of this hype [34].
Techno-solutionism is the ideology in which every kind of
problem (technical, social, economic, political, psychological,
or physical) can be ameliorated with an “appropriately designed”
technological solution [38]. Attributing magical properties to
AI, meaning that it can somehow address every problem, reveals
a shallow understanding of the technology. This requires better
education, which can be achieved through the establishment of

a more balanced narrative that realistically assesses medical
AI’s current capabilities and shortcomings [37].

Participants confirmed the idea that medical AI narratives can
sometimes be detached from the everyday reality of the
technology and that the hyping of AI leads to unrealistic
expectations and overpromising while obscuring technological
bottlenecks [19,21]. Therefore, our findings demonstrate that
the current dominant narratives can mislead the understandings
of medical AI, even in people working with it. Instead,
“narratives should focus on the realities of AI’s present
capabilities” [34] and take into account the narrative
responsibility that is always entailed when the future of medicine
with AI is imagined. Every story we tell about medical AI
shapes its development, adoption, and perception in health care
in ways that are not normatively neutral.

Accordingly, almost all participants recognized the limitations
of AI. There is a risk that by failing to acknowledge the potential
problems and shortcomings of medical AI, the hype narrative
might further exacerbate these hidden specters. The need for a
more realistic narrative that returns the image of the actual state
of the art is commonly present both in the interviews and in the
debate about AI narratives [14,19,34].

With the exception of a few participants, there was a general
agreement that AI could not and would not replace human
clinicians. This finding is present in the literature about the
future of medicine with AI; for example, patients appeared less
prone to seek medical assistance if AI provides it, even if it was
better than a human expert [39]. When it comes to this topic,
there is an alignment between different narratives that appear
to share similar moral codes according to which medical AI
cannot entirely replace the physician’s role or human interaction
[40]. Therefore, this could be regarded as the “proper narrative”
of the AI-physician relationship, and, as such, it might take the
form of a collective narrative or “imaginary,” judged true
without a need for further justification [41]. The prevailing idea
remains: “patients will always need human physicians” [42].

Having determined that medical AI is to assist clinicians, it
remains to be assessed whether it will have an impact on the
physician-patient relationship. Some participants believed that
medical AI would ameliorate their relationships, for example,
by allowing physicians to spend more time with patients. This
is also a popular idea in the literature to the extent that some
claim that medical AI could be an opportunity to make
physicians more human and empathetic [43-47]. However, as
with many things about AI, opinions are divided, and this idea
is also widely criticized. It could be that physicians will visit
more patients in the time AI saved, thus maintaining the status
quo or worsening care provisions [12,48,49]. Consequently,
medical AI might not necessarily have a positive impact on the
physician-patient relationship as either the participants in our
study or many prominent voices in research think.

Limitations
There is a clear prevalence of a Western perspective in our
study. Hence, it remains questionable whether our findings are
valid in other contexts.
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The interview guide that we used for this study focused on
certain applications of AI in medicine, namely, CDSSs and
wearable devices (eg, smartwatches). This may have limited
the discourse on possible outcomes and futures. Moreover,
question 8.8. discusses the “traditional” model of shared
decision-making; this wording could be considered nonneutral
and leading.

Before commencing this analysis, we have conducted theoretical
research on the ethical issues of medical AI. This led us to
publications where we took a position on the role of AI in health
care and the physician-patient relationship. We concluded that
medical AI is currently, and should continue to be, an assistive
tool that should support physicians’ and patients’
decision-making. We acknowledge that this belief was already
sedimented at the time of data collection and analysis, thus
possibly shaping the way in which we presented the results.

Conclusions
Through the establishment of a more realistic and nuanced
medical AI narrative, it is easier to describe AI tools as assistive.
The discourse about their benefits, risks, and possible
applications is less spectacular. Narratives that support the idea
of AI augmenting humans’ capabilities, rather than substituting
them, should be preferred as these narratives better correspond
to the current reality of the technology [34]. It is also
fundamental to raise awareness of the narrative responsibility
that humans have to make sense of, interpret, and narrate
medical AI in a way that shapes a positive future for medicine.

Similarly, humans are responsible for scrutinizing the dominant
narratives and evaluating them [24]. Everyone has this
responsibility when talking about medical AI, including
researchers, since we all can impact the future of technology,
although to different degrees. Failing to exercise this narrative
responsibility would entail relinquishing our sense-making task
to other narrators (eg, big tech, transhumanists, governments,
etc). The consequence would be a world in which we live in the
narrative created by others for us. This world would be one in
which the majority of humanity delegated the construction of
our future to a few, in that they did not participate in the process
that would shape what mattered most in the present [24,50].

Disproportionate fears and expectations could halt the
development of medical AI, for example, by generating
opposition or disillusionment when the technology does not
live up to its promised expectations [19,21]. Medical AI
narratives shape the role of AI in societies in ways that are
ethically and politically relevant and can influence the
perceptions of citizens, policy makers, politicians, health care
personnel, and researchers [8,16]. Therefore, narratives have a
constitutive role that is more than strictly descriptive: it is
performative. Narratives have the power to decide the future of
medical AI [51,52]. We argue that it is important to recognize
the role that narratives of technologies play for humanity and
reflect on which type of narrative is dominant in medical AI.
This is a fundamental ethical issue that cannot be overlooked.
It must be addressed so as to shape our desired future for
medicine.
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