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Abstract

Synthetic electronic health record (EHR) data generation has been increasingly recognized as an important solution to expand
the accessibility and maximize the value of private health data on a large scale. Recent advances in machine learning have
facilitated more accurate modeling for complex and high-dimensional data, thereby greatly enhancing the dataquality of synthetic
EHR data Among various approaches, generative adversarial networks (GANS) have become the main technical path in the
literature dueto their ability to capture the statistical characteristics of real data. However, thereisascarcity of detailed guidance
within the domain regarding the development procedures of synthetic EHR data. The objective of this tutorial is to present a
transparent and reproducible process for generating structured synthetic EHR data using a publicly accessible EHR data set as
an example. We cover the topics of GAN architecture, EHR data types and representation, data preprocessing, GAN training,
synthetic data generation and postprocessing, and data quality evaluation. We conclude this tutorial by discussing multiple
important issues and future opportunitiesin this domain. The source code of the entire process has been made publicly available.

(IMIR Al 2024;3:€52615) doi:10.2196/52615

KEYWORDS
synthetic data generation; electronic health record; generative neural networks; tutorial

optimization [4-7], data accessibility remains limited due to
privacy concerns [8,9], which impedes the advancement of
knowledge discovery and trandational artificial intelligence
(Al) or ML research in health care. Synthetic data generation
emerges as a solution by producing EHRs that are of minimal
privacy riskswhile maintaining usability to facilitate endeavors
[10,11] ranging from health information system (or software)
testing and medical education to hypothesis generation and
medical Al development. Acknowledging their benefits, multiple
initiatives have relied upon synthetic data to expand the
accessibility of their datafor public use, including the National
Institute of Health’'s National COVID Cohort Collaborative
[12] and the Clinical Practice Research Datalink by the United
Kingdom's National Institute for Health and Care Research
[13].

Due in part to the limited accessibility of real EHRS, the data
sets made available for biomedical research often exhibit small

Introduction

Generating synthetic versions of private human-generated data
sets has garnered increasing attention in both academia and
industry as ameansto enable broad data access on alarge scale
[1,2]. When appropriately generated, synthetic data can mirror
the statistical structures of the real data upon which they are
based while severing connectionsto real human individuals[3].
Synthetic datanot only enable data sharing with minimal privacy
risks but also support dataaugmentation (ie, artificially increase
the amount of available data by generating new data) to boost
the performance of machine learning (ML) models. Such a
nature has significant implications for maximizing the value of
patient data to improve biomedicine and health care.

The widespread adoption of electronic health record (EHR)
systems has amassed vast patient data globally. Despite their
potential to enrich health knowledge and support care
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sizes, insufficient diversity, missing modalities, biased
subpopulation representativeness, imbalanced labels, and scarce
annotations [14]. Asaresult, ML models trained on these data
may demonstrateinferior performance, limited generalizability,
and unfair outcomes (ie, when there exist disparities in model
performance across patient subpopulations) [15]. Compared
with solely using existing data, integrating synthetic EHR data
with real data can potentially enhance model performance and
reduce biases [3,16,17]. This strategy effectively enlarges the
proportion of underrepresented classes or patient subpopulations
within the real data and, thus, prevents the model training
process from overly focusing on the dominant groups.
Importantly, synthetic EHR data can be produced quickly, of
arbitrary size, and at low cost, and they are able to introduce
higher diversity than traditional augmentation strategies (eg,
over- or undersampling), which reduces the likelihood of
overfitting. It isnotablethat creating synthetic EHR data, when
based on a private real data set and supplied to support ML
innovations by a third party, offers a unique opportunity to
realize the dual benefits of data sharing that maintains privacy
and data augmentation.

Among numerous synthetic data generation techniques,
generative adversarial networks (GANSs) and their variants have
showecased their capability to accurately capture the statistical
properties of real EHR data while inducing low privacy risks
[18-20]. GAN-based methods avoid explicitly modeling clinical
knowledge and making assumptions about variables and their
correlations; instead, they directly learn the underlying
relationships from the multidimensional dataand then generate
synthetic records based on the learned model [21].

Despite the rapid advancement and evol ution of synthetic EHR
datageneration technol ogies, the whole procedure for producing
synthetic EHR data has not been revealed in a detailed manner.
Thistutorial paper aimsto fill that gap by providing a sequence
of step-by-step instructions, supported by complementary demo
code, to assist those practitionerswho are not specialized in this
areato effectively trandlate state-of -the-art research in synthetic
EHR data to practical applications. This tutorial is designed
with the expectation that readers have a basic understanding of
ML conceptsand proficiency in Python programming. We cover
multiple topics, including GAN architecture, EHR data types
and matrix representation, data preprocessing, GAN training,
synthetic data generation, and evaluation. For demonstration
purposes, we use the state-of-the-art open-source model (ie,
EMR-WGAN [22]) and a publicly available EHR data set (ie,
the Medical Information Mart for Intensive Care, the Fourth
Version [MIMIC-1V] [23]) for structured EHR data generation.
We defer the comparisons of various GAN-based modelsto our

https://ai.jmir.org/2024/1/€52615
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previous paper [21]. We also provide a detailed Jupyter
notebook [24] to ensure the replicability of thetutorial content.

Methods

Data Set

We use the MIMIC-IV [23] data set as an example to
demonstrate the generation and evaluation process of synthetic
structured EHR data. MIMIC-1V is the latest version of the
MIMIC EHR data, a publicly available database sourced from
real EHRs of the Beth Israel Deaconess Medical Center. Adult
patients admitted to the emergency department or an intensive
care unit between 2008 and 2019 wereincorporated. MIMIC-1V
includes a wide array of information such as diagnoses,
procedures, treatments, measurements, orders, free-text clinical
notes, and mortality labels that indicate whether a patient died
within 1 year following their last hospital stay within the
timeframe. In this tutorial, we extracted patients from
MIMIC-IV who had at least 1 hospital admission and were
discharged aive following their last hospitalization. To build
a simple demonstration data set, we extracted patients
demographic information (including age, sex, and race);
diagnoses; and 2 types of the latest measurements, that is, BMI
and blood pressure (systolic and diastolic pressures). We reduced
thedimensiondity by converting the International Classification
of Disease, Ninth or Tenth Revision (1CD-9/10) diagnosis codes
to phenome-wide association study codes (ie, phecodes), which
aggregate billing codes into clinically meaningful phenotypes
[25].

GAN Architecture

GANSs consist of 2 neural networks. a generator that is trained
to produce realistic synthetic data from random noise and a
discriminator that aimsto distinguish between real and synthetic
data generated by the generator [26]. During the iterative
training process, the generator receives feedback through
backpropagation from the discriminator and then continues to
refine its capability until the discriminator cannot differentiate
between real and synthetic data. GAN variants retain this
common architecture while customizing how each component
isimplemented to adapt to various data types and stabilize the
training procedure [27]. Specificaly, EMR-WGAN [22] (Figure
1) applies Wasserstein divergence [28] to characterize the
distance between real and synthetic data and uses fully
connected layers, as well as normalization techniques, to
construct the generator and discriminator. This combination of
design has demonstrated its superiority in capturing the
statistical characteristics of real dataover other modelsfor EHR
data generation [21].
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Figurel. An architectural overview of EMR-WGAN. EHR: electronic health record.
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EHR Data Types and Matrix Representation

Structured EHR data for secondary analysis are usually stored
inarelational database (eg, Epic Clarity) or in multiple separated
files with a tabular format (eg, MIMIC-1V), where each row
represents a patient’s fact, such as demographic information,
or a medical event marked by a timestamp, such as disease
diagnoses, medication prescriptions, measurements, medical
procedures, and clinical outcomesrelated to an encounter. These
data are usually represented by continuous, categorical, or
discrete variables (Figure 2A). Continuous variables can assume
any value within a specific range, making them suitable for
representing medical measurement results, such ashemoglobin
A, readings. Discrete variables are characterized by acountable
number of numerical values, such asthe number of pregnancies.
However, the discrete variables with a broad range of values,
such as age, can be approximated as continuous variables. In
contrast, categorical variables are defined by a limited and
typically unchanging set of options, such as sex, race, and
diagnosis. Unlike discrete variables that naturally possess an
order, categorical variablestypically do not have ahierarchical
order among their options, or they may display only anominal
relationship with nonquantitative distinctions, such as
classifications of “low,” “medium,” or “high.” In the practice
of synthetic data generation, discrete variables with a limited

https://ai.jmir.org/2024/1/€52615
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range of values are sometimes considered categorical for
simplicity.

Timestamps indicate medical events positions on the time
dimension. In the longitudinal synthetic EHR generation
scenario, thetimeinterval between 2 consecutive medical events
isoften used asasubgtitute for timestamps [29,30]. In this paper,
wefocus on demonstrating the generation of snapshot (or static)
EHR data by removing or transforming the occurrence time of
medical events so that all information about 1 patient can be
represented by 1 single row of a table. While tempora
information on medical events adds significant value to EHR
data, snapshot EHR data still offers awealth of information to
support care delivery, data analytics, research, policy making,
and education. Figure 2B shows a transformed snapshot EHR
datamatrix (EHR matrix for short) derived from Figure 2A. In
this matrix, each row denotes a patient’s record, and each
column denotes a variable. It is notable that each categorical
variable with k (k>2) distinct options is represented by k new
variables (or columns) in aone-hot manner (eg, insurance and
number of pregnanciesin the example), whereas the categorical
variables with only 2 options (eg, mortality in the example) are
represented by a single binary column.

Figure 3 illustrates the whole process of producing synthetic
EHR data by training generative models.
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Figure2. Anillustration of (A) datatypesin electronic health record data, and (B) transformed snapshot electronic health record matrix for synthetic
datageneration. #P: number of pregnancies, BP-D: diastolic blood pressure; BP-S: systolic blood pressure; H-A1C: hemoglobin A1C; HT: hypertension;

Ins: insurance; T2D: type 2 diabetes.

Patient 1D | Age | Sex | Race/Ethnicity | Insurance { Died J # of pregnancy | Height (f) ’j Discrete
100001 | 31 | F White A No 1 5.7 Categorical
100002 | 68 | F Hispanic B Yes 3 5.3 Iﬁ Continnons
100003 52 F Asian ¢ No 2 51 l J Time (can be converted to continuous variable)

Patient ID | Encounter ID | Timestamp Diagnosis Patient ID | Encounter ID| Timestamp |Medication| |Patient ID|Encounter ID| Timestamp Measurement Result
100001 201 2018-10-02 | Type 2 diabetes 100001 201 2018-10-02 | Insulin 100001 201 2018-10-02 | Hemoglobin A1C 5.9%
100001 202 2019-05-19 [ Hypertension 100001 202 2019-05-19 | Acebutolol 100001 202 2019-05-19 Blood pressure 145/90 mmHg
100002 301 2022-12-21 Dementia 100002 301 2022-12-21 | Donepezil 100002 301 2022-12-21 Albumin 5.1 g/dL

Patient ID | Age | Sex | White Hispanic|Asian|Ins A |Ins B |Ins C | Died [#P =1 |#P =2 |#P =3 Height| T2D |HT | DM |Insulin | Acebutolol | Donepezil | H-A1C |BP-S| BP-D| Albumin

1000071 31 1 1 0 0 1 0 0 1 1 0 0
00002 |68 | 1 | 0 | 1 oot o000

100003 |52 | 1| 0 0 tlolol 110l 1o

5.7 1 1 0 1 1 0 5.9 145 90 NA
I's3 oot o 0 1 | NA |NA|NA| 51

510 0|0 o 0 | 0 | NA |NA|NA| NA

Figure 3. An overview of synthetic electronic health record data generation process through training generative models.
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Data Preprocessing

Overview

With the patient cohort of interest extracted and the
corresponding matrix representation of their EHR data(ie, EHR
matrix) obtained, a series of data preprocessing procedures need
to be performed in order to produce a GAN-ready training data
set. The proceduresinclude (1) removing outliers, (2) handling
missing values, (3) normalizing continuous variables, and (4)
handling concepts with low prevalence.

Removing Outliers

We define outliers in structured EHR data as data points that
are significantly distant from the mgjority of values. These can
be data points that conflict with common sense or established
clinical knowledge. This phenomenon typically occurs when
incorrect values are entered or generated in EHRs and is
particularly preval ent among discrete and continuous variabl es.
Outliers can also represent occurrences that are theoretically
possible but exceedingly rare, which creators of synthetic data
may opt to exclude depending on the requirement of data
generation. In both cases, itiscritical to inspect the distribution
of each noncategorical variable by creating histograms and
reviewing basic statistical measures, such asthe mean, median,
minimum, and maximum values. As an example, we examined
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the distribution of BMIs in the processed EHR matrix, which
led to findings that the minimum and maximum BMIsare0 and
107,840.2. There are 366 patientswith their latest BMIs greater
than 60, and there are 120 patients with their BMIs less than
10. Given that these BMIs are unreasonable for adult patients,
we removed the corresponding patients from the EHR matrix.
One alternative solution that preserves the amount of data
availablefor training generative modelsisto clip outlier values
based on a pre-established reasonable range for the relevant
variables.

Handling Missing Values

Multiple reasons can contribute to EHR data missingness,
including, but not limited to, fragmented EHRs, incomplete
documentation, data entry errors, and skipped clinical
measurements. These reasons have also been classified in the
literature as missing completely at random, missing at random,
or missing not at random [31]. Before proceeding with
imputation, it is generally recommended to eliminate variables
with ahigh missing rate (eg, morethan 50%). Numerous missing
data imputation methods for EHR data have been developed
[32-35], such as random sampling, prediction-based methods,
and nearest neighbor—based methods. Yet, growing evidence
has suggested that different methods are suitable for different
missingness types, data sets, and use cases and that thereis no
single method that is universally considered the best for all
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scenarios. Inthistutorial, we applied arandom sampling strategy
to impute missing values in BMI, which had a 38.6% missing
rate, and both diastolic and systolic blood pressure, each with
a 43.5% missing rate. Specifically, we randomly sampled and
then imputed values based on the marginal distribution of each
variable, though we acknowledge that this might not be the
optimal strategy for all use cases of this data set.

Normalizing Continuous Variables

Continuous variables each possess a specific range of values,
as illustrated by the difference between blood pressure and
height in feet in Figure 2B. Normalizing continuous variables
preventsthetraining of generative modelsfrom being dominated
by variables with large ranges. To keep the distribution of each
continuous variable, it is recommended to linearly compress
their values into the range of (0,1), with its maximum and
minimum values the same as hinary variables. Given a
continuous variable v, as well as its maximum value v, and

minimum value V,;,, the normalized value v’ of v, can be
calculated as:

E
(D)

Handling Concepts With Low Prevalence

Concepts with low prevalence correspond to clinical variables
that represent rare facts or events within the patient cohort.
Examples include diseases, procedures, and medications that
are uncommonly diagnosed, executed, and prescribed,
respectively. ML-based generative models, including GANS,
cannot accurately capture the statistical properties of these
variables, aswell astheir correlations with other variables, due
to the limited observationsin thereal data set. Noise, however,
could beinduced by keeping these variablesin the EHR matrix
for GAN training. To address this issue, several strategies can
be used asfollows: (1) removing these low-prevalence variables
from the EHR matrix and reintroducing them in the
postprocessing stage when needed, (2) rolling up variable
granularity to ahigher level to raise prevalence (eg, converting
raw |CD-9/10 codes to their integer level or to phecodes), and
(3) combining both approaches. In this tutorial, we converted
ICD-9/10 diagnosis codes to phecodes and then removed the

phecodes with a prevalence of less than 5x10™.

Model Training

Depending on model architectures, distance measures, and
training techniques used (such as batch sizes, and alternating
strategies for training the generator and discriminator),
GAN-based synthetic EHR data generation model s show varied
capabilities in capturing the properties of real data. However,
they typically encounter 2 main types of uncertaintiesthroughout
the training process. First, GAN training usually occurs within
a parameter space that is both complex and high-dimensional.
Thisinherent complexity and the adversarial dynamicsof GANs
often lead to an unstable training process that converges to
suboptimal solutions. Such nature of GAN training can cause
multiple undesired phenomena, including mode collapse (the
generator maps different inputs to the same output) and mode
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drop (the generator only captures part of the distribution in the
real data) [22]. Second, the model checkpoint that corresponds
to the highest quality of the synthetic datais not necessarily the
onewith the lowest training loss. In addition, it hasbeen realized
that overtraining GAN-based models might degrade the quality
of synthetic data. In other words, there is no monotonic
relationship between training loss and the quality of synthetic
data

In order to attain the synthetic EHR data of the highest possible
data quality that a GAN-based model can achieve, we highly
recommend training the model multipletimes (or multiple runs)
from scratch and testing data quality at multiple checkpoints
along the training trajectory of each run. This mechanism will
not only improve the quality of synthetic EHR data to better
support downstream uses but also contribute to more fair
comparison between different generative models. Thisiscrucial
because researchers often need to select the best synthetic EHR
generation model tailored to the real data sets and designated
use cases[21].

Two different training paradigms can be considered for scenarios
involving patient labels, for example, health outcomes (eg,
mortality, readmission, and discharge), medical eventsof interest
(eg, the presence of phenotypes and interventions), and patients
demographic information (eg, race, sex, and age groups). The
nonconditional training paradigm does not distinguish the label
variables in the EHR matrix from the remaining variables,
whereas the conditional training paradigm uses the label
variables to guide model training, as well as the generation of
the synthetic EHR data[22], which enablesthe control over the
categories of the generated data in terms of the label variables.
Conditional training is usually achieved by incorporating the
label variables as extra input of the neural networks of the
generator and discriminator. However, consensus has not been
established regarding which paradigm achieves a higher quality
of synthetic EHR data.

When categorical variables with k (k>2) unique options are
converted into k binary variables within the EHR matrix, it is
essential to maintain the one-hot constraint in the synthetic data.
This meansthat only 1 of the binary variables can take avalue
of 1, while the remaining k-1 variables must be set to O.
However, the GAN training mechanism may lead to aviolation
of this constraint. To solve this issue, a SoftMax layer should
be attached to the output of the generator to preserve the one-hot
constraint.

Additionally, real data may contain critical record-level
congtraintsthat represent established clinical knowledge, which
need to be preserved in the synthetic data. For instance, female
patients should not be assigned mal e-specific diseases, such as
prostate cancer. Such constraints can be effectively enforced
by adding corresponding penalty terms to the loss function of
GANs[36].

In this tutorial, for illustrative purposes, we use the
nonconditional paradigm, preserve the one-hot constraints, yet
refrain from imposing record-level constraints during model
training to showcase the phenomenon of clinical knowledge
violation in results.
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Synthetic Data Generation and Postprocessing

Random noises, typically drawn from the standard normal
distribution, need to be input into the trained generator to
produce synthetic EHR data. By repeating this process, the
generator is able to produce a specified quantity of synthetic
records. When the conditional training paradigm isadopted, the
prespecified label values should also be fed into the generator
as part of theinput. The capability to generate synthetic datain
any desired quantity and to control the categories of the
generated records affords us the flexibility to determine the
composition of the resultant data set for downstream use. This
nature has significant implications for data augmentation as it
enables practitioners to augment their existing data sets with
synthetic records tailored to their specific needs.

By applying asigmoid or SoftMax function as the output layer
of the generator, variables in the synthetic data assume values
ranging between 0 and 1. For noncontinuous variables, rounding
the values is necessary, whereas the values of continuous
variables require rescaling to their original range by applying
theinverse version of Equation 1. This process ensuresthat the
synthetic data preserves the value ranges found in the real data
set.

Data Quality Evaluation

Overview

The quality evaluation of synthetic EHR data primarily revolves
around 3 key aspects. data utility, privacy, and fairness. This
process requires a comparison between synthetic data and real
data using a set of metrics. In this tutorial, we select multiple
commonly used metrics that are complementary to each other
to demonstrate data evaluation. Below, we provide a brief
overview of these metrics. For more comprehensive details, we
point readers to several recent publications in the field
[18,19,21], which provide in-depth explanations of how these
metrics are designed.

Data utility measures the usefulness and applicability of adata
set for specific purposes. More concretely, it is evaluated by
determining how well the generated data captures the critical
characteristics present in the real EHR data. Unlike imaging
data whose quality can be visually evaluated by humans or
assessed using a single metric, the quality of synthetic EHR
data is less intuitive and can vary in a variety of aspects.
Typically, data utility is assessed by evaluating the extent to
which synthetic EHR data (1) resemble the dtatistical
characteristics of real data at both variable and record (or
patient) levels and (2) retain the capability of developing ML
modelsthat perform comparably to thosetrained using real data.
In earlier research, the concept of resemblance was often
characterized asbeing distinct and independent from data utility.
Variable-level characteristics include but are not limited to,
variables marginal distributions, their correlations, and joint
distributions, whereasrecord-level characteristics cover multiple
crucial aspects, including the violation rate of clinical
knowledge, the distribution of medical concept quantity, etc.
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Dimension-Wise Distribution

This metric evaluates the degree to which a synthetic data set
captures the marginal distributions of variablesin therea data.
It calculates the average of the absolute preval ence differences
(APDs) for categorical variables and the average of the
Wasserstein distances for continuous variables between real
and synthetic data sets. When both types of variablesare present,
we add these 2 values together and then normalize the sum to
derive the final score, which is referred to as dimension-wise
distance (DWD). A lower value of thismetric indicates ahigher
level of data utility.

Column-Wise Correlation

This metric measures how well a synthetic data set maintains
the correlations of variables present in thereal data. It calculates
the Pearson correlation coefficient matrices (for all variable
pairs) in both thereal and synthetic data sets and then computes
the average of the absolute differences between corresponding
cellsin these 2 matrices. A lower value of this metric indicates
ahigher level of data utility.

Latent Cluster Analysis

This metric evaluates the effectiveness of a synthetic data set
in preserving the underlying structures (or joint distribution) of
real datain the latent space. It involves combining the real and
synthetic EHR matrices and then applying principal component
analysisto project the combined data set into alatent space that
covers a specific threshold of variance in the system.
Subsequently, a clustering algorithm, such as k-means, is used
to derive the latent deviation, which is calculated as the
logarithmic average of the transformed ratio of real data points
present in each identified cluster. A lower value of this metric
suggests a closer resemblance of the synthetic data set’s latent
distribution to that of the real data.

Medical Concept Abundance

This metric quantifies the degree to which a synthetic data set
maintains the quantity of the record-level information in the
real data. The normalized Manhattan distance between the
histograms of the number of distinct record-level medical
concepts for real and synthetic data sets is calculated as the
medical concept abundance distance. A lower value of this
metric indicates a higher level of real-synthetic data similarity.

Clinical Knowledge Violation

This metric measures the degree to which asynthetic EHR data
set violates clinical knowledge, particularly in terms of
maintaining record-level consistency with established medical
common sense. To do so, we identified the most prevalent
diagnoses (3 in thistutorial) that are only associated with 1 sex
in the real data and subsequently computed the average ratio of
all diagnoses appearing in the opposite sex in the synthetic data
sets. A lower value of this metric indicates a higher level of
data utility.

Prediction Performance

This metric evaluates the capability of asynthetic EHR data set
to support ML model development. The real data set is split
into atraining set and atesting set. The reference model isthen
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trained using the real training set and evaluated on the rea
testing set by calculating the area under the receiver operating
characteristic curve (AUROC). Subsequently, a new model is
trained using the synthetic data set and then evaluated on the
samereal testing set. These 2 scenarios arereferred to astraining
on real testing on rea (TRTR) and training on synthetic testing
onrea (TSTR), respectively. The more closely the AUROC of
TSTR aligns with that of TRTR, the higher the utility of the
synthetic data set.

Feature | mportance

This metric focuses on assessing how reliably a synthetic data
set reveals key features that are significant in the prediction
task. Wefirst identified thetop N (20 in this tutorial) important
features in the TRTR scenario by computing the Shapley
additive explanations values of all features and then computed
the overlap proportion of thetop N features with those identified
inthe TSTR scenario. The higher the proportion, the higher the
data utility. Note that “feature” used in the context of feature
importance is equivalent to variable.

Dataprivacy evaluationiscrucial when considering the sharing
of synthetic EHR data. While synthetic EHR data are designed
to minimize privacy risks by severing thelinkageto real patients,
it is still important to conduct thorough privacy evaluations to
ensurethe preservation of individual privacy in multiple privacy
inference settings, where adversaries’ knowledge and objectives
differ. Across different privacy inference settings, it is
commonly assumed that adversaries only have access to the
generated synthetic data, but not the synthetic data generation
model. Examples of widely used privacy metrics include
membership inference risk and attribute inference risk
[21,22,37], each with values ranging from 0 to 1. Membership
inference risk measures the ability of an adversary to infer
whether a specific real record is part of the data set to train the
synthetic data generation model. It is quantified using the
F,-score of theinference based on the distances between targeted
recordsand all synthetic records. By contrast, attributeinference
risk reflects an adversary’s capability to infer sensitive attributes
of partially observed real EHRs. Specifically, it is calculated
through the weighted sum of F;-scores of theinferences against
sensitive attributes.

Multiple additional metrics have been created to assess privacy
risks in various contexts, including meaningful identity
disclosure risk [38] and nearest neighbor adversarial accuracy
risk [39]. Meaningful identity disclosurerisk extendsthe concept
of identity disclosure from the context of releasing real datato
the scenario of sharing synthetic data. It encompasses a
comprehensive privacy risk that involves two main aspects: (1)
inferring the identifiability of patients and (2) acquiring new
knowledge about targeted patients. In contrast, nearest neighbor
adversarial accuracy risk assesses the extent to which asynthetic
data set overfits the real training data set. Specificaly, it
measures the difference between (1) the aggregated distance
between synthetic records and those in the real testing data set
and (2) the aggregated distance between synthetic records and
those in the real training data set.

https://ai.jmir.org/2024/1/€52615

Yan et a

Synthetic EHR data are also anticipated to fairly represent
patient subpopul ations with respect to protected attributes, such
asage groups, sex, race, and ethnicity. Distributional differences
or distances between real and synthetic data with respect to the
protected attributes of interest are often used as metrics to
evaluate fair representation [40]. To ensure fair data quality,
synthetic datamay need to show similar variationsin preserving
data utility and protecting privacy for each patient
subpopulation, akin to their real data counterparts. This
consideration of fairness requires that utility and privacy
evaluations of synthetic data should be performed independently
within each subpopulation and then compared across them.
Another fairness consideration necessitates that synthetic data
sets provide equal support for downstream Al or ML tasks
across all subpopulations, regardless of the basis of the real
data. Dueto the complexity surrounding fairness and the absence
of clear guidelines for evaluating it in synthetic EHR data, we
will skip this evaluation in our demonstration.

It is crucial to note that quality evaluation of synthetic EHR
data should be tailored to align with specific use cases because
different use cases prioritize the preservation of different data
aspects. For instance, when the synthetic EHR data are intended
to facilitate hypothesis generation to support medical research
in a controlled research environment, the evaluation would
emphasize metrics that measure disease prevalence and
correlations between features and outcomes, while privacy risks
may be of lesser concern. On the other hand, if the synthetic
EHR data are devel oped to support the devel opment of clinical
decision support software by third-party devel opers, evaluating
privacy risks becomes more critical than determining whether
the synthetic data preserves the nuanced statistical properties
of the real data. Our previous research provides a use
case-oriented benchmarking framework to enable systematic
comparisons of synthetic data generation models[21]. The users
of this framework determine the prioritization of evaluation
metrics by providing a weight profile, which applies to the
evaluation results from individual metrics and represents the
relative importance or preference assigned to each metric. The
final score of a synthetic data set or a synthetic data generation
model is derived by aggregating the weighted results for all
considered metrics.

Using this benchmarking framework enables the selection of
the most suitable synthetic data set for aspecific use case or the
comparison of various synthetic data generation models (not
necessarily limited to those that are GAN-based) based on the
scores assigned to produced synthetic data sets.

Results

Overview

In this section, we present the results of data quality evaluation
for synthetic EHR data setsin terms of data utility and privacy.
Furthermore, we demonstrate how to compare these synthetic
EHR data setsto identify the most suitable one for specific use
cases. To do so, 70% of records of the preprocessed MIMIC-IV
data set were used to train the EMR-WGAN model and the
remaining 30% of records were used for evaluation purposes.
Considering the inherent uncertainties associated with

IMIR Al 2024 | vol. 3| €52615 | p.13
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

GAN-based model training as mentioned earlier, EMR-WGAN
was independently trained 5 times. While we recommend
examining multiple checkpoints during each model’s training
phase, for the purposes of this demonstration, we selected an
epoch with arelatively low training loss from each independent
training session to generate the corresponding synthetic data
set. All synthetic data sets produced by these models have the
same size asthereal training data set. The complete process of
data quality evaluation can be found in the shared Jupyter
notebook [24].

Characteristics of the Real Data Set

Table 1 provides an overview of the basic characteristics of the
MIMIC-IV cohort selected for the creation and evaluation of

Table 1. Cohort characteristics before and after data preprocessing.

Yan et a

synthetic EHR data. We initialy included a total of 181,294
patients who had at least 1 hospital admission and were
discharged alive for their last hospital stays. The average age
of this cohort is 56.2 (SD 20.4) years. This cohort comprises
96,617 (53.3%) female individuals and multiple racial groups,
with 7667 (4.2%) Asian; 23,999 (13.2%) Black; 10,058 (5.5%)
Hispanic; 121,954 (67.3%) White; 10,078 (5.6%) belonging to
other races; and 7538 (4.2%) of unknown race. A total of 20,493
(11.3%) of the cohort died within 1 year after their last hospital
stay. The data preprocessing procedure led to the removal of
548 patients and more reasonabl e distributions of BMI, diastolic,
and systolic blood pressures. The curated real EHR matrix
contains 1460 columns after we removed 140 extremely rare
diagnoses.

Characteristics

Distributions and values

Before preprocessing After preprocessing (n=180,746)
(n=181,294)
Cohort size, n (%) 181,294 (100) 180,746 (100)
Age (y), mean (SD) 56.2 (20.4) 56.2 (20.3)
Sex, n (%)
Female 96,617 (53.3) 96,304 (53.3)
Male 84,677 (46.7) 84,442 (46.7)
Race, n (%)
Asian 7667 (4.2) 7654 (4.2)
Black 23,999 (13.2) 23,889 (13.2)
Hispanic 10,058 (5.5) 10,035 (5.6)
White 121,954 (67.3) 121,603 (67.3)
Others 10,078 (5.6) 10,049 (5.6)
Unknown 7538 (4.2) 7516 (4.2)
Died within 1 year, n (%) 20,493 (11.3) 20,414 (11.3)
BMI, mean (SD) 21.1(277.03) 28.4(6.8)
Diastolic blood pressure, mean (SD) 47.6 (36.4) 73.6 (11.8)
Systolic blood pressure, mean (SD) 81.9 (62.3) 126.6 (18.2)
Top 10 prevalent diagnoses (in phecodes), n (%)
Hypertension (401) 57,238 (31.6) 57,056 (31.6)
Disorders of lipoid metabolism (272) 39,216 (21.6) 39,103 (21.6)
Other anemias (285) 33,979 (18.7) 33,844 (18.7)
Essential hypertension (401.1) 31,694 (17.5) 31,541 (17.5)
Hyperlipidemia (272.1) 28,011 (15.5) 27,896 (15.4)
Diseases of esophagus (530) 25,887 (14.3) 25,800 (14.3)
Cardiac dysrhythmias (427) 25,284 (14) 25,195 (13.9)
Mood disorders (296) 25,201 (13.9) 25,089 (13.9)
Tobacco use disorder (318) 24,152 (13.3) 24,054 (13.3)
Disorders of fluid, electrolyte, and acid-base balance (276) 23,895 (13.2) 23,807 (13.2)
Diabetes mellitus (250) 23,789 (13.1) 23,695 (13.1)
Total number of columns in electronic health record matrix 1600 1460
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Data Utility

Figure 4 illustrates the dimension-wise distribution results and
the associated APD for categorical variables. Although all 5
runs effectively maintain the marginal distributions of these
variables, the second run exhibits the smallest APD. When
considering both the categorical and continuous variables (ie,
age, BMI, diastalic, and systolic blood pressures), the second
run still achievesthe lowest DWD. By contrast, the third runis
associated with the highest DWD, indicating a relatively low
effectivenessin preserving dimension-wise distributions.

Figure 5 summarizes the evaluation results of the 5 synthetic
data sets for the remaining 6 data utility metrics, with the
indication of directional implications of the values under each

Yan et a

metric. Notably, the second run demonstrates the highest data
utility in column-wise correlation, latent cluster analysis,
prediction performance, and feature importance and securesthe
second position in medical concept abundance. Yet, its score
in clinical knowledge violation is positioned fourth.
Additionally, it was observed that male-specific diagnoses are
morethan 10 timesaslikely to beincorrectly assigned to female
records in the synthetic data sets compared with similar
violations for femal e-specific diagnoses. This suggests that the
correlations between sex and sex-specific diagnosis columns
were not equally preserved, possibly resulting from different
levels of complexity (or noise) in the data pertaining to different
sexes. While this phenomenon falls beyond the scope of this
tutorial, it merits further exploration.

Figure4. Dimension-wise distribution for categorical variables. The dashed diagona line indicates the perfect replication of variable prevalence. APD:

absolute prevalence difference; DWD: dimension-wise distance.
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prediction performance, and (F) feature importance. For clinical knowledge violation, “hyperplasia of prostate," “cancer of prostate,” and “erectile
dysfunction” are examined as male-specific diagnoses (in phecodes); “other conditions or status of the mother complicating pregnancy, childbirth, or
the puerperium,” “known or suspected fetal abnormality affecting management of mother,” and “other complications of pregnancy necrotizing

enterocolitis’ are examined as femal e-specific diagnoses (in phecodes). AUROC: area under the receiver operating characteristic curve.
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Table 2 presents the privacy risk associated with each synthetic
EHR data set in terms of membership inference attack and
attribute inference attack. It also includes abaseline comparison,
which correspondsto an extreme situation of releasing real data.
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levels among the 5 synthetic data sets is relatively small, the
second run exhibits the highest membership inference risk and
the second lowest risk in attribute inference.
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Table 2. Privacy risks of synthetic electronic health record data sets. For each risk category, the identical risk value is attributed to aloss of precision.

Risk type Run1 Run 2 Run 3 Run 4 Run 5 Real
Membership inference 0.29 0.31 0.29 0.29 0.30 0.91
Attribute inference 0.14 0.14 0.14 0.13 0.14 0.97

Identifying the M ost Suitable Synthetic Data Set for a
Specific Use Case

We have aobtained the evaluation results of all 5 synthetic data
sets for individua metrics, alowing for straightforward
derivation of their rankingsin each metric as presented in Table
3. A smaller ranking position indicates better data quality. In
this tutorial, we consider two distinct use cases of synthetic
EHR data: (1) ML model development, which prioritizes the
performance of prediction tasks and model explainability, and

(2) education, which focuses more on the record-level
consistency with clinical knowledge, prevalence of diagnoses,
and privacy. We proposed example weight profiles for these 2
use cases and then calculated the overall rankings of the
synthetic data setsfor each scenario. The analysisidentifiesthe
second and third runs as the most suitable data sets for ML
development and education, respectively. This observation
further justifies that the quality evaluation of synthetic data
should be in the context of use cases.

Table 3. Data quality rankings of synthetic data sets. Weight profiles A and B correspond to the use cases for supporting machine learning model
development and education, respectively. Overall rankings of data sets are weighted summation of individual rankingsin all metrics.

Metric Weight profile A Weight profileB Runl1 Run2 Run3 Run4 Runb
Utility
Dimension-wise distribution 0.1 0.1 3 1 5 4 2
Column-wise correlation 0.1 0.1 2 1 3 5 4
Latent cluster analysis 0.1 0.0 2 1 3 5 4
Medical concept abundance 0.0 0.0 3 2 5 4 1
Clinical knowledge violation 0.1 0.4 2 4 1 3 5
Prediction performance 0.2 0.0 2 1 3 5 4
Feature importance 0.2 0.0 2 1 4 4 4
Privacy
Membership inference 0.1 0.2 3 5 2 1 4
Attribute inference 0.1 0.2 3 2 4 1 5
Overall rankings for weight profile A N/A2 N/A 23 18P 32 37 4.0
Overall rankings for weight profile B N/A N/A 25 3.2 24P 25 4.4

3N/A: not applicable.
Bindicates the most suitable data set for each use case.

Discussion

Principal Findings

GAN-based synthetic data generation has demonstrated
significant potential to enlarge the accessibility of health data
and enhance the effectiveness of ML in health care [41-43].
Thistutorial demonstrates how to create and eval uate structured
synthetic EHR data by applying a GAN-based generative model
to a publicly available EHR data set. Beyond introducing
technical details, we aim to discuss several important issues
related to thistopic.

GAN-based synthetic EHR data generation models exhibit
limited capability in accurately representing and then generating
the concepts with low prevalence. This is also a common
challenge for almost all ML methods. From our experience,
incorporating these conceptsinto thereal datafor GAN training,
compared with removing them, can result in adverse effectson
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capturing the distributions of prevalent concepts. In settings
where accurate representation of concepts with low prevalence
iscrucial (eg, synthetic data are developed to replicate studies
related to rare diseases), additional efforts should be dedicated
to ensuring their fidelity in the synthetic data. One solution is
to increase the representation of these conceptsin the real data
through data collection or data oversampling. The second
solution is to independently model the cohort associated with
the targeted concept. Subsequently, the synthetic data for this
specific cohort can be generated and then merged with themain
synthetic data. Another approach, which is modeling-free, isto
perturb the real EHR data with the targeted concept based on
expert knowledge and then add the resultant data back into the
main synthetic data. It should be noted that the quality of
synthetic data after using these approaches should be
comprehensively evaluated.
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Selecting the most suitable synthetic EHR data set or synthetic
data generation model for a targeted use case is subject to 2
types of tradeoffs: extrinsic and intrinsic tradeoffs. Users of this
technology control the extrinsic tradeoff by prioritizing which
aspects of the data to preserve in data quality evaluation. This
can be accomplished by using an appropriate set of evaluation
metrics and assigning weights to each metric to achieve a
balanced evaluation outcome that aligns with the use case, as
mentioned earlier. Different prioritization strategies can yield
variationsin evaluation results, thereby influencing the selection
of the optimal data set or model.

The intrinsic tradeoff arises from the inherent interrelation and
tension among data utility, privacy, and fairness. In general,
better data utility aligns with a more accurate representation of
the nuanced statistical characteristics present in the real data,
which can, inturn, improve the successrate of privacy inference
regarding sensitiveinformation about patients. Similarly, aiming
for a higher level of privacy protection is often paired with a
reduction in data fidelity. Different synthetic EHR generation
models, and even different runs of the same model, can exhibit
varying utility-privacy tradeoffs. The choices of model
structures, parameter settings, data preprocessing, and learning
methods can all impact the resulting tradeoff. In addition, one
can integrate privacy protection strategies during model training,
such as differential privacy, to induce more privacy protection.
However, for the use casesthat demand high fidelity of synthetic
EHR data, such as data analysis or augmenting medical Al
development, the integration of additional privacy safeguards
may potentially limit the value of synthetic datafor theintended
scenarios.

Pursuing either a higher overall utility of synthetic EHR data
or stronger privacy may lead to poor fairness across patient
subpopulations. Thisisbecause different patient subpopulations
may not be equally affected and that the unique characteristics
of underrepresented groups are more likely to be neglected.
Similarly, focusing solely on fairnessmay result in alower level
of overall data utility or privacy. As such, both extrinsic and
intrinsic tradeoffs among data utility, privacy, and fairness
impact the determination of the most suitable synthetic EHR
data or synthetic EHR data generation model for a specific use
case.

Multiple key questions regarding the best practice of synthetic
EHR data generation remain unanswered in theliterature. First,
the determination of the appropriate size of real data needed to
train GANs and other generative models for a specific data
generation task, along with an effective estimation approach,
is uncertain and lacks comprehensive research. Second, the
scalability of GANs and other generative models with respect
to varying sizes of the variable spaceistill not well understood.
Third, the optimal matrix representations of various EHR data
types, in particular when mixed together, are relatively
unexplored in current research. All of these questions need to
be answered through systematic research.

The evolvement of synthetic EHR data generation technology
presents numerous opportunities for various applications and
advancements. We conclude this paper by highlighting several
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future research directions that are worth exploring and
summarizing the limitations of thistutorial.

Most cutting-edge approaches for structured synthetic data
generation, including EHR data, rely on a matrix or tabular
representation of the real data, which involves merging all
information into a single table as part of data preprocessing.
When addressing the emerging need to generate a synthetic
version of arelational EHR database, where patients' data are
distributed in multiple tables, such asthewidely adopted OMOP
common data model, joining relevant tables together can lead
to an unmanageabl e data size with significant redundancy. There
is a strong need for a novel synthetic EHR data generation
paradigm that can directly learn from the original database,
including its structural relationships, to address the current
limitationsin the field.

EHR data, in a broad sense, encompass multiple modalities,
including structured health information, textual notes, medical
imaging data, genetic information, and more. Current synthetic
EHR datageneration algorithms are designed to handleasingle
modality at atime, leading to a lack of consistency between
separately generated datawhen attempting to describe the same
patient. Methodology innovations are required to effectively
harmonize the available modalitiesin EHR data during model
training and then generate synthetic datathat cover and represent
these modalities. The core objective of this task isto learn an
accurate latent representation of a patient across different
modalities.

Since 2023, large language models, such as OpenAl’s ChatGPT
and Google's Med-PaLM 2, have gained substantial attention
duetotheir remarkable ability to generate high-quality freetext
responsesto users questions and instructions. Such exceptional
ability stems from their extensive pretraining on vast amounts
of textual data, which contain awide range of human knowledge
and common sense. In addition, the users of these models can
demand the desired format of their output such as CSV and
JSON. This entails a new opportunity for synthetic EHR data
generation. While private EHR data have not been used by these
models, an appropriate fine-tuning processusing real EHR data
can quickly shape them into synthetic EHR data generators.
Compared with other generative methods, large language models
could potentially strengthen the generation of synthetic EHR
data in multiple critical aspects. First, large language models
have encoded complex knowledge and relationships between
medical concepts through extensive pretraining. When
fine-tuned on real EHR data sets, they can more easily capture
the nuances in intricate patient data and understand the
underlying data semantics, which would not be easily achieved
by other generative models. Second, large language models can
generate datawith stronger contextual relevance and coherence.
In other words, they are more capable of producing data that
are not only syntactically and semantically correct but aso
consistent with real -world scenarios and knowledge. Third, with
prompt-level customization, these models can be tailored to
generate specific types of EHR data in a more flexible and
efficient manner, significantly reducing the human effort
required in postprocessing compared with previous methods.
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This tutorial has severa limitations. First, it focuses on
simulating static structured EHR data and neglects the
timestamping of medical events. However, it is important to
notethat EHR datainherently consists of time series, wherethe
temporal information iscritical for numerous applications, such
as modeling the progression of diseases. To address this,
multiple generative models have been developed to produce
temporal EHR data, a process that shares similar principles to
those demonstrated in thistutorial . Second, thereal data set we
used for demonstration purposes does not fully capture the
complexity inherent in real snapshot EHR data. It islikely that
atransformed snapshot EHR matrix contains asubset of columns
governed by complex semantic constraints, which may not be
straightforward to implement during model training. For
example, a snapshot EHR matrix for a women'’s health cohort
may include columns indicating the age and method (nature vs
cesarean) for each childbirth. This scenario compounds
congtraintsin several aspects, including patterns of missing data
(eg, the data set might not contain only a record of the second
delivery), the age at each delivery (eg, ages for subsequent

Yan et a

deliveries should be older than previous ones), and timeintervals
between deliveries (eg, there should be a minimum gap of 10
months between each). Addressing this type of complex
congtraint is still an open research question and needs more
investigation.

Conclusions

Creating synthetic EHR data has been increasingly pursued to
address the limited availability of real EHR data to facilitate
various endeavors in the health domain. This tutorial provides
a comprehensive guide to the entire process of generating
synthetic structured EHR data using GANs, ranging from data
representation,  preprocessing, model  training, and
postprocessing to data generation and evaluation. By following
thistutorial, as well as the open-sourced example based on the
MIMIC-IV data set, we anticipate that potential users of
synthetic data generation technology can understand and
implement all involved components, and then correctly evaluate
the produced data sets and interpret the evaluation results to
fulfill their data needs.
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Abstract

Background: The world has witnessed increased adoption of large language models (LLMS) in the last year. Although the
products developed using LLMs have the potential to solve accessibility and efficiency problems in health care, there is alack
of available guidelines for developing LLMs for health care, especially for medical education.

Objective: Theaim of thisstudy wasto identify and prioritize the enablersfor developing successful LLMsfor medical education.
We further evaluated the relationships among these identified enablers.

Methods: A narrative review of the extant literature was first performed to identify the key enablers for LLM development.
We additionally gathered the opinions of LLM users to determine the relative importance of these enablers using an analytical
hierarchy process (AHP), which isamulticriteria decision-making method. Further, total interpretive structural modeling (TISM)
was used to analyze the perspectives of product devel opers and ascertain the relationships and hierarchy among these enablers.
Finally, the cross-impact matrix-based multiplication applied to a classification (MICMAC) approach was used to determine the
relative driving and dependence powers of these enablers. A nonprobabilistic purposive sampling approach was used for recruitment
of focus groups.

Results: The AHP demonstrated that the most important enabler for LLMs was credibility, with a priority weight of 0.37,
followed by accountability (0.27642) and fairness (0.10572). In contrast, usability, with apriority weight of 0.04, showed negligible
importance. Theresults of TISM concurred with the findings of the AHP. The only striking difference between expert perspectives
and user preference evaluation was that the product developersindicated that cost has the |east importance as a potential enabler.
The MICMAC analysis suggested that cost has a strong influence on other enablers. The inputs of the focus group were found
to be reliable, with a consistency ratio less than 0.1 (0.084).

Conclusions: Thisstudy isthefirst toidentify, prioritize, and analyze the rel ationships of enablers of effective LLMsfor medical
education. Based on the results of this study, we devel oped a comprehendible prescriptive framework, named CUC-FATE (Cost,
Usahility, Credibility, Fairness, Accountability, Transparency, and Explainability), for evaluating the enablers of LLMsin medical
education. The study findings are useful for health care professionals, health technology experts, medical technology regulators,
and policy makers.
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Introduction

Background

Natural language programming solutions have been available
for thelast 15 years. However, these model s recently witnessed
an avalanche breakdown with the launch of ChatGPT by
OpenAl, a company that was only established recently
(December 2015) after receiving an investment from Elon Musk
and others. ChatGPT is a generative language model tool that
enables usersto converse with machines about various subjects.
With 1.6 billion monthly users, this freemium is the
fastest-growing application in the history of the internet. Since
its release on November 30, 2022, ChatGPT has sparked much
discussion and enthusiasm in multiple industries, including
medicine. ChatGPT and related technologies have been
identified as disruptive innovations with the potential to
revolutionize academia and scholarly publishing [1].
Additionally, preliminary research suggests that ChatGPT has
practical applications throughout the clinical workflow [2].

The introduction of ChatGPT and the subsequent release of
several extended products and functional plugins have
profoundly impacted scientific researchers. These products have
also influenced the ideas and methodol ogies used in traditional
research, including recommendation, emotion recognition, and
information generation. ChatGPT’s assistance has improved
some of the associated work in these fields, particularly with
providing hel pful supplementary information to raise the caliber
of data generation. With the integration of machine learning
and artificial intelligence (Al) technologies, medical imaging
has advanced quickly. Among these developments, using
cutting-edge language models such as large language models
(LLMs), ChatGPT, and GPT-4 has shown significant promise
in elevating several eements of medica imaging and
revolutionizing radiology. These models can produce and
comprehend human-like text owing to access to various
textbooks, journals, and research materials available on the
internet. This could provide the necessary context and prior
knowledge to support a variety of tasks involving medical
imaging, such as synthesis, reconstruction, analysis,
segmentation, interpretation, automated reporting, and more.
Thesetechnol ogies have further been improved using supervised
and reinforcement learning methods based on OpenAl’s GPT
LLMs. These models have shown excellent performance in
various natural language processing (NLP) tasks, including
language  trandation, text summarization, and
guestion-answering. The models have been pretrained on
enormous amounts of text data. Users can ask questions, obtain
responses, and engage in genuine conversation with the bot
given ChatGPT’s human-like conversational experience.

https:/ai jmir.org/2024/1/e51834

ChatGPT and other LLMs remain a research hotspot in
multimedia analysis and application. However, severa crucia
difficulties must be resolved, including (1) improving
interactions with ChatGPT to collect more useful auxiliary
information, (2) methodsto combine ChatGPT with traditional
inquiriesto fully exploit its benefits, and (3) analyzing the data
obtained from ChatGPT for their incorporation with theintended
usage. A particularly significant challenge is to effectively use
past information obtained with such huge models and to ensure
consistency and complementary features across many modalities
to improve multimodal generation performance, which is
especially relevant for Al-generated content. The finest use
cases for ChatGPT, a well-liked chatbot built on a potent Al
language model, are still being worked out. ChatGPT can
provide help in writing an essay, thesis, or dissertation by
creating a research question, developing a plan, developing
literary concepts, rewriting text, and getting feedback. Moreover,
the NLP and automated data analysis capabilities offered by
ChatGPT enable researchers, marketers, and organizations to
analyze text quickly and accurately. Via its Al-powered
functions, ChatGPT can help to spot significant trends and
insightsin adata set that might otherwise be challenging to find.
Additionally, ChatGPT can assist with the creation of top-notch
prompts for paper anaysis.

LLM Functionality

ChatGPT is a prediction system that anticipates what it should
write based on previously processed texts. This type of Al is
known as a language model. However, ChatGPT offers more
promise than its predecessors given that it is trained on
enormous amounts of data, with the majority of these data
originating from the abundant supply of data available on the
internet. According to OpenAl, ChatGPT was also trained on
examples of back-and-forth human interaction, which results
in a conversation style that is much more human than that of
other chatbots, thus advancing the capability of NLP solutions.

NLP is a field of Al employing linguistics, statistics, and
machine learning to enable computers to comprehend spoken
language. NLP systems can infer meaning from spoken or
written words, including all of the subtleties and complexities
of an accurate narrative text. Thismakesit possible for machines
to obtain value from even unstructured data. NL P has witnessed
significant advancements in recent years. An LLM is a
deep-learning algorithm that can be used to perform NL P tasks,
including, among other abilities, summarizing and generating
text. Asone of the main applications, LLM-based chatbots are
computer programsthat can simulate conversationswith human
users. NLP techniques can be used to enable chatbots to
understand and respond to user input. LLM uses deep-learning
techniques to understand and generate human language, which
requires training on vast amounts of text data and then uses
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statistical algorithms to learn patterns and relationships within
language. These models can perform various tasks, including
language trandation, question-answering, sentiment analysis,
and summarization. With ChatGPT, users can learn, compare,
and validate answersfor different academic subjects, including
physics, math, and chemistry, aswell as abstract topics such as
philosophy and religion [3]. Users can al so generate human-like
text such as news articles, chatbot conversations, and even
literary works such as essays and romantic poems. The main
difference of GPTs from other LLMs lies in their architecture
and training methodology. GPTs are based on a deep-learning
architecture known as a “transformer” Transformers are
designed to process sequential data such as language more
efficiently than other architectures. LLMs are currently at the
forefront of intertwining Al systemswith human communication
and everyday life [4]. Large pretrained language models have
significantly advanced NLP research with respect to various
applications [5,6]. Although these more complicated language
models can produce complex and coherent natural language,
several recent studies have shown that they can also pick up
unfavorable social biasesthat can feed into negative stereotypes

[7].
NLPin Health Care

Health care consumers may turn to the research literature for
information not provided in patient-friendly documents.
However, reading medical literature can be difficult. One study
identified four key elements made possible by NLP to increase
access to medical papers. explanations of foreign terminology,
plain language section summaries, a list of crucial questions
that direct readersto the portions that provide the answers, and
simple language summaries of those passages [8]. Significant
advancements in smart health care have been made in recent
years, with new Al technologies enabling arange of intelligent
applications in various hedlth care contexts. NLP, as a
fundamental Al-powered technology that can anayze and
comprehend human language, is crucia for smart health care
[9]. NLP methods have been utilized to organize datain health
care systemsby sifting out pertinent information from narrative
texts to offer information for decision-making. Thus, NLP
approaches help to lower health care costs and are essential for
streamlining health care procedures[10]. Advancementsin NLP
will make roboatic process automation possible in health care,
which can further drive efficiency. Health care dataare compl ex,
which should be given due consideration at thetime of designing
health care applications. Deep-learning approaches such as
convolutional neural network and recurrent neural network
models have become prominent in health care applications,
demonstrating promising accuracy. Nevertheless, there is still
substantial room for improvement of these models to enable
their usage without human supervision. Deep-learning
techniques offer an effective and efficient model for data
analysis by revealing hidden patterns and extracting valuable
information from alarge volume of health data, which standard
analytics cannot perform within agiven time frame [11].

ChatGPT in Medical Education

ChatGPT has many potential applications in health care
education, research, and practice [12], which can enhance
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medical education by helping students develop subjective
learning and expression skills [13]. The number of ChatGPT
users has shown exponential growth and thetool isincreasingly
utilized by students, residents, and attending physiciansto direct
learning and answer clinical questions [14]. However, authors
using ChatGPT professionally for academic work should
exercise caution as it remains unclear how ChatGPT handles
hazardous content, falseinformation, or plagiarism[15]. While
ChatGPT can simplify the task of radiological reporting, there
is still a chance of inaccurate statements and missing medical
information [15]. Therefore, the tool needs refinement before
it can be used widely with confidencein medicine[16]. A recent
review explored ChatGPT’s applications and reported various
challenges such as ethical concerns, data biases, and safety
issues [17]. Thus, it is imperative to balance Al-assisted
innovation and human expertise [18]. ChatGPT has quickly
gained significant attention from academia, research, and
industries despite these shortcomings. Thefirst aim of this study
was therefore to determine the requirements, or enablers, for a
successful LLM application in medical education using a
narrative review of the existing literature.

Enablersof LLM for Medical Education

For the purpose of this study, werefer to enablers asthefactors,
resources, or conditions that facilitate or support achieving a
good LLM application for medical education. Medical education
prepareswould-be physiciansand other health care professionas
with the knowledge, skills, and attitudes necessary for competent
and compassionate patient care. The genera definition of an
enabler is afactor that makes it easier for agoal to be realized
or for someoneto accomplish aparticular task. Enablersof LLM
for medical education can be tangible or intangible and should
play acrucial rolein achieving the outcomes expected from the
application.

As LLMs are trained on massive data, they are
resource-demanding tools. Therefore, the cost of training an
LLM for medica education may be prohibitive [19].
Accordingly, it is imperative to use efficient computing to
address this issue [20]. Usability is one of the key criteria that
determinesthe usefulness of an applicationin medical education,
and LLMs are no exception [21]. The extant literature has
highlighted usability as an important criterion for the successful
implementation of a new technology in education [22].
Similarly, the credibility of an application is another very
important factor for technological interventions used in medical
education [23,24]. Although ChatGPT has disclaimers about
the source of information provided, it does not disclose its
sources categorically, and can sometimes hallucinate about the
source, which may be misleading to the user. LLMs also have
reported issues with fairness, computation, and privacy. By
perpetuating social prejudices and stereotypes, they risk causing
unfair discrimination and physical harm, along with potential
harm to the user’'s reputation [25]. Ma et a [26] provided an
overview of fairness of LLMsin multilingual and non-English
situations, emphasi zing the limitations of recent studiesand the
challenges faced by English-only methodologies [26].

Another issue of LLMs such as ChatGPT is related to their
accountability, generally defined as taking responsibility for
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one'sobligation to treat others honestly and morally. However,
itisunclear who will be held accountable and responsibleif the
LLM provides incorrect recommendations or forecasts for a
particular downstream activity. Overal, employing LLMs is
associated with considerable risk; therefore, precautions must
be taken to minimize these risks and ensure their ethical and
responsible use. To foster a cross-disciplinary global inclusive
consensus on the ethical use, disclosure, and proper reporting
of generative Al models such as GPT and other LLM
technologies in academia, Cacciamani et a [23] proposed the
ChatGPT, Generative Artificial Intelligence, and Natural Large
Language Models for Accountable Reporting and Use
Guidelines initiative in 2023. However, the underlying model
of GPT3.5 deviates from the ethical guidelines proposed by
Cacciamani et a [23]. Another important criterion reported for
the medical applications of LLMs s transparency, which isan
essential  ethical consideration in the fields of science,
engineering, business, and the humanities. Transparency refers
to functioning in away that makesit simplefor othersto observe
what actions have been taken [27], thus representing a sign of
responsibility, honesty, and openness. Conversely, LLMs are
opaque to users. Recently suggested explainability techniques
aimto make LL Msmore transparent. Although these techniques
arenot acure-all, they might form the basisfor the devel opment
of models with fewer flaws or, at the very least, the ability to
explain their logic. In their systematic experiments with
synthetic data, Wu et al [28] demonstrated that autoregressive
and masked language model s can successfully learn to emulate
semanti ¢ relations between expressionswith strong transparency,
where all expressions have context-independent denotations.

Finaly, the LLMs used in medical education must be
explainable, and the best freely available options lag in this
respect. Most LLMs are complex models built using deep
learning [29]; therefore, these models can produce better
predictionswith moreinformation or network parameters, which
comes at a cost of sacrificing explainability. Some models fail
to describe how they came to their conclusion. Recently
suggested explainability techniques aim to make language
models more transparent. Even though these are not complete
solutions, they can act as the basis for the development of less
problematic modelsor, at the very least, modelsthat can explain
their logic. However, Du et a [30] identified false patterns
detected by LLMs using explainability in their study.

Need for This Study

Theneed for thisstudy arisesfrom therapid integration of LLMs
such as ChatGPT in variousfields, including medical education.
Although LLMs offer promising benefits for health care, their
effectiveintegration in medical education remainsadeveloping
area. Accordingly, the aim of this study was to identify and
prioritize the key enablersfor successful LLM implementation
in medical education. This can in turn help to address the lack
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of comprehensive frameworks guiding the development and
useof LLMsinthisfield. By exploring the dynamics of various
enablers such as credibility, accountability, fairness, cost,
usability, transparency, and explainability, this study provides
a structured approach to enhance the quality and effectiveness
of LLMsin educating health care professionals.

Specifically, this study was based on the following three major
research questions: (1) What are the enablers of asuitable LLM
application for medical education? (2) What is the relative
importance of these enablersin achieving the goals of medical
education? and (3) What is an approach to developing an LLM
to achieve medical education goals? With this background, the
following research objectiveswere set: (1) identify the enablers
of a suitable LLM for medical education, (2) prioritize the
identified enablersin achieving the goal s of medical education,
and (3) propose aframework for developing an LLM to achieve
the medical education goals.

Methods

Study Design

To achievethefirst research objective, we performed anarrative
review of the extant literature published on technol ogy solutions
in medical education. A narrative review is a scholarly article
synthesizing existing research on aparticular topic in anarrative
or story-like manner. Unlike systematic reviews or
meta-analyses, which use rigorous methodologies to analyze
and summarize research findings quantitatively, narrative
reviews provide a qualitative, comprehensive overview of a
subject. Narrative reviews often involve critical analysis and
discussion, integrating the authors' expertise and interpretation.
Narrative reviews are thus useful for obtaining a broad
understanding of a topic and identifying trends, gaps, and
controversies within afield.

Two authors (SM and VM) searched the Scopus, Web of
Science, and Google Scholar databases to identify suitable
literature for our narrative review. The inclusion criteria were
articles published in the English languagein thelast 5 years. In
the second stage, duplicates and articles for which the full text
was unavailable were eliminated. The identified enablers from
thisreview were then used to addressthefirst research question.
These enablers were presented in front of a focus group
comprising seven expertsworking in universitiesand institutions
delivering medical education in India and the United Arab
Emirates to validate the selection (Table 1). The focus group
endorsed the choice of the enablers for further research; in
addition, one article published in 2010 was added on the
recommendation of the focus group asit wasfound to be useful
in explaining competing interests in medical education. One
author (VM) facilitated the focus group discussion to obtain the
finalizelist of enablers.
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Table 1. Characteristics of the focus group for validation of identified enablers.

Expert Qudlification Experience (years) Age (years) Nationality
Cardiologist Mastersin Medicine 12 42 India
Endocrinologist Mastersin Medicine 20 45 India

Technology expert Doctor of Philosophy 15 50 United Arab Emirates
Dentistry educator Mastersin Dentistry 10 40 United Arab Emirates
Podiatrist educator Doctor of Philosophy 10 35 United Arab Emirates
Diabetes educator Doctor of Philosophy 18 43 India

Nursing educator Doctor of Philosophy 15 41 United Arab Emirates
Radiologist Doctor of Philosophy 12 41 India

Analytical Hierarchy Process Modeling

An analytical hierarchy process (AHP) was utilized to achieve
the second study objective of prioritizing theidentified enablers
for developing an LLM for medical education. The AHP is a
popular method for determining the relative importance of the
criteria in a multicriteria decision analysis task. To date, the
AHP has been extensively used in the management and social
science fields [31]. The advantage of this process is that it
incorporates the mechanisms to assure reliability in the
decision-making case of ambiguity. Some researchers have
suggested using a “fuzzy” version of the AHP [32] and others
have suggested using the entropy weight method to reduce the
negative effect of individual subjective evaluation bias on the
accuracy of comprehensive evaluation [33]. Since the ranking
obtained by the AHP method was further validated by total
interpretive structural modeling (TISM) in this study (see
below), fuzzy logic or entropy weight was avoided in our AHP
modeling. The five steps used for AHP are: (1) defining the
decision problem, (2) creating a hierarchy, (3) pairwise
comparison, (4) deriving aweighted priority, and (5) consistency
check for decision. We used the Delphi method for pairwise
comparisons. A cut-off value of 75% was used to accept the
valuefor the pairwise comparison. The standard scal e proposed
by Saaty [34] was used for the pairwise comparison.

TISM and Focus Groups

Finally, to address the third research objective, we investigated
the relationships among key enablersto inform the development

of a suitable medical education LLM. A qualitative research
designisuseful to understand aphenomenon under study rather
than assessing the strength and direction of causal relationships
in a conceptual model [35]. For this purpose, we established a
focus group with five experts in the fields of information
technology and product development with relevant research
experience. The details of this expert group are provided in
Table 2.

According to the information obtained from the focus group,
TISM was used to model the enablers for amedical education
LLM application. In his semina paper, Sushil [36] provides a
detailed account of the interpretation of interpretive structural
modeling and TISM, highlighting the advantage of the latter
over the former. For the sake of brevity, we have not included
the details of the TISM method herein, which can be found in
the relevant literature [37]. In brief, TISM is a process that
converts poorly articulated mental modelsof systemsintovisible
and well-defined models that are useful for gaining better
understanding and decision-making. The presence and absence
of arelationship between enablers were ascertained based on
an unstructured interview of the focus group conducted by one
researcher (SM). If more than 50% of the focus group members
indicated that there is a relationship between two enablers, the
enabler was considered to be present, which was coded as“Y."
An overview of the TISM approach used in this study is
provided in Figure 1.

Table 2. Characteristics of the focus group used for total interpretive structural modeling.

Expert Qualification Experience (years) Age (years) Country

Product development Masters in management 21 42 Singapore

Product development Bachelorsin engineering 21 42 United Arab Emirates
Technology expert Bachelorsin engineering 19 40 India

Technology expert Masters in engineering 10 33 India

Decision science expert Doctor of Philosophy 10 38 India
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Figurel. Summary of thetotal interpretive structural modeling (TISM) approach used in the study. Adapted from Mishra and Rana[33].
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We further used cross-impact matrix multiplication applied to
classification (MICMAC) analysis to evaluate the direct and
indirect relationships among various elements in a complex
system. MICMAC analysisis applied to the reachability matrix
to classify the elements into four categories based on their
driving power (ability to influence other elements) and
dependence (level of being influenced by other elements).

https:/ai jmir.org/2024/1/e51834

XSL-FO

RenderX

Ethical Considerations

This study, involving a qualitative focus group discussion, did
not require approval from an ethical review board as it did not
involve human subjects in a manner necessitating such review.
No informed consent was required for the same reason.
However, to maintain ethical standards, we ensured that all data
collected were either anonymized or deidentified. This means
that any information that could potentially identify individual
participants was removed or altered to protect their privacy. No
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compensation was provided to participants, as is common in
studies of this nature. This decision was made considering the
study design and the ethical imperative to avoid undueinfluence
on participants' responses. The absence of compensation was
communicated to all participants. Throughout the study, we
adhered to strict data protection protocols to safeguard the
confidentiality of theinformation shared during the focus group
discussions. These measures included secure data storage,
restricted accessto authorized personnel, and adherenceto data
protection laws and regul ations. This approach ensured that the
privacy and integrity of participant information were always
maintained.

Quttainah et a

Results

AHP Modedling

Based on the selected enablers identified for developing a
suitable LLM medical education application according to the
narrative review of the literature (Table 3), the focus group was
asked to provide their input for pairwise comparison, and the
resultant matrix [A] is presented in Table 4.

Once theinitial comparison matrix was determined, the matrix
was normalized and an average of each row was taken to
calculatethe priority weight [X]. The normalized matrix, priority
weight, and rank of the enablers are given in Table 5. The
priority weight, asthe eigenvector, was further used to calculate
the consistency ratio (CR).

Table 3. Summary of reported enablers of large language models for medical education.

Enabler code Enabler Description References
El Cost Cost of computation, including hardware, software, and energy requirement [19,20]
E2 Usability User-centric design, ease of use, and positive user experiences [21,22]
E3 Credibility Level of trust and reliability that users place in the application [23,24]
E4 Fairness Absence of unfair discrimination, physical harm, and harm to user reputation [25,26]
E5 Accountability Taking responsibility for the obligation to treat users with honesty and morality [27,38]
E6 Transparency Functioning in away that makes it smple for others to observe what actionsaretaken  [27,30]
E7 Explainability Ability to describe how the models came to their conclusion [29,30]

Table4. Initial pairwise comparison matrix for the anaytical hierarchy process.a

Enablers Cost (E1) Usability (E2) Credibility (E3) Fairness(E4) Accountability (E5) Transparency (E6)  Explainability (E7)
El 1 3 0.2 1 0.2 3 3
E2 0.33 1 011 0.33 011 1 1
E3 5 9 1 5 5 3 3
E4 1 3 0.2 1 0.2 3 3
E5 5 9 0.2 5 1 5 5
E6 0.33 1 0.33 0.33 0.2 1 1
E7 0.33 1 0.33 0.33 0.2 0.2 1

3N umbers represent the pairwise comparison of different enablers using the scale developed by Saaty [34].

Table 5. Normalized matrix and priority weight of enablers.

Enablers Cost (E1) Usability  Credibility (E3) Fairness Accountability Transparency  Explainability Priority Rank
(E2) (E4) (E5) (E6) (E7) weight
E1l 0.077 0.1111 0.0844 0.077 0.0289 0.1852 0.1765 0.10572 3
E2 0.0254 0.037 0.0464 0.026 0.0159 0.0617 0.0588 0.03871 7
E3 0.3849 0.3333 0.4219 0.385 0.7236 0.1852 0.1765 0.37289 1
E4 0.077 0.1111 0.0844 0.077 0.0289 0.1852 0.1765 0.10572 3
E5 0.3849 0.3333 0.0844 0.385 0.1447 0.3086 0.2941 0.27642 2
E6 0.0254 0.037 0.1392 0.025 0.0289 0.0617 0.0588 0.0538 5
E7 0.0254 0.037 0.1392 0.025 0.0289 0.0123 0.0588 0.04674 6

Based on this matrix, the eigenvector X was calculated
according to the following equation:

https://ai.jmir.org/2024/1/€51834
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Using the datain Tables 4 and 5, A, Was obtained asfollows:

[A]X =[0.76, 0.28, 3.46, 0.76, 2.26, 0.39, 0.34] — (2)

Amax = average {0.76/0.11, 0.24/0.04, 3.46/0.37,

0.76/0.11, 0.39/0.05, 0.34/0.05} — (3)

Amax = 7.66 — (4)
The consistency index (Cl) was then calculated based on the
Amax 8sfollows: Cl = (7.66 — 7)/6 = 0.11 — (5). Finally, the CR
of thejudgment was cal culated by dividing the Cl by the random
index (RI). The Rl value for a 7x7 matrix is 1.32 from the RI

table. Thus, the CR becomes 0.084; asthisislessthan 0.1, itis
considered to be acceptable.

Modeling Relationships Among Enablers

We further used TISM for ascertaining the rel ationships among
these seven enablers. Table 6 shows a matrix indicating the
interrelationships between the enablers listed in Table 3, with
“Y” indicating the existence of arelationship and “N” indicating
no relationship. The resultant matrix is referred to as the
structural self-interaction matrix.

Quttainah et a

In the next step, wereplaced al “ Y’ with 1sand all “Ns’ with
Os and incorporated the trangitivity rule to obtain the final
reachability matrix shown in Table 7.

The next step in developing LLMs for medical education
involved listing reachability and antecedent setsfor each enabler,
followed by level partitioning, which is an iterative process of
assigning enablers at different levels. Enablers with similar
intersection sets as reachability sets are placed at the top level.
The process is then repeated until levels are established for all
enablers. In this study, all enablers were assigned after three
iterations; hence, there are three levels in the hierarchy. The
summary of level partitioning is provided in Table 8. The level
of an enabler isareflection of itsdriving power and dependence
power, as indicated in Table 7. The higher the level of the
enabler, the more dependent it is, whereas the driving ability
improves when moving to lower levels.

Once the level partitioning was complete, the TISM was
developed and presented to the focus group for validation. Only
significant transitive links were included in the model to
facilitate interpretation. The final digraph for the TISM
developed in the study is depicted in Figure 2.

Table6. Structural self-interaction matrix for the identified enablers of large language models for medical education.

Enablers

Cost (E1) Usability (E2) Credibility (E3) Fairness (E4)

Accountability (E5)  Transparency (E6)  Explainability (E7)

El Y N

% NP
E2
E3
E4
E5
E6

E7

z < zZz2 Z2 zZ2 <
< < Z2 Z2 Zz2 <
Zz2 2 < <X < Z
Zz Z2 Z2 < < Z

N N

zZ z < z < z
< <z z zZ < <
< < z z z <

2y existence of arelationship between two enablers.
BN: no rel ationship exists between two enablers.

Table 7. Final reachability matrix of the enablers for developing large language models in medical education.

Enablers Cost (E1) Usability Credibility Fairness Accountability (E5) Transparency Explainability Driving power
(E2) (E3) (E4) (E®) (E7)
El 1 1 0 0 0 1 1 4
E2 1 1 0 0 0 1 1 4
E3 0 0 1 1 1 0 0 3
E4 0 0 1 1 0 0 0 2
E5 0 0 1 0 1 0 0 2
E6 1 1 0 0 0 1 1 4
E7 0 1 0 0 0 1 1 3
Dependence power 3 4 3 2 2 4 4 Not applicable
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Table 8. Summary of label partitioning iterations (1 to 6).

Quttainah et a

Enablers, (Mi) Reachability set, R(Mi) Antecedent set, A(Ni) Intersection set, R(Mi)n A(Ni) Level
1 1 1 1 11

2 1,2,6,7 1,2,6,7 1,2,6,7 |

3 3,4,5 3,4,5 3,4,5 |

4 3,4 3,4 3,4 |

5 3,5 3,5 3,5 |

6 1,2,6,7 1,2,6,7 1,2,6,7 |

7 7 1,7 7 I

Figure 2. Diagraph of the total interpretive structural model for the development of large language models in medical education.
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Validation Analysis

We further used MICMAC analysis to validate the study
findings and derive conclusions. MICMAC analysis involves
the development of a graph that classifies enablers based on
their driving and dependence power. As shown in Figure 3, the
first quadrant contains autonomous enablers E3 (Credibility),
E4 (Fairness), and E6 (Accountability), indicating that the

https://ai.jmir.org/2024/1/€51834

RenderX

[ Transitive Link } >

variables falling in this quadrant have low driving and
dependence powers. Thetwo enablersfalling inthegrey region
between the third (linkage) and fourth (independent) quadrants
are E2 (Usahility) and E6 (Transparency), which have medium
driving and dependence powers. Similarly, E7 (Explainability)
fals in the grey region between the first (autonomous) and
second (dependent) variables. Finally, E1 (Cost) falls under the
fourth (independent) quadrant.
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Figure 3. Cross-impact matrix-based multiplication applied to a classification (MICMAC) anaysis for enablers of alarge language model in medical
education. I-1V indicate different level s of the enablers E1-E7. E1: cost; E2: usability; E3: credibility; E4: fairness; E5: accountability; E6: transparency;

E7: explainability.
F
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Discussion In contrast to existing studies, transparency and explainability

Principal Findings

The results of the AHP suggested that credibility, followed by
accountability are the foremost enablers for effective LLMsin
medical education. The extant literature supports this finding,
in highlighting the relevance of the source of information based
on which the response was generated [39]. Similarly, the
importance of defining accountability has been emphasized in
the recent literature. For example, Tan et al [40] advocate for
accountability asan important factor in increasing the adoption
of LLMsin medical education, training, and practice. The next
most important factors to consider are ethical issues such as
fairness and cost. LLMs have been criticized for bias against
gender or ethnic groups [17]. These problems need to be
addressed to make LLMs effective in medical education.
Moreover, training LLMs on billions of parameters is
demanding; thus, only technology giantswill launchtheseLLMs
[41]. Governments should therefore ensure that the cost of using
these LLMs does not become prohibitive for end users, who
may resort to insufficient solutions that could ultimately affect
the safety of patients.

https://ai.jmir.org/2024/1/€51834

RenderX

ranked fifth and sixth in importancein our analysis[40]. Many
best practices related to health technology suggest that models
should use explainable Al in medical devices [17]. The low
priority of these enablers identified in this study indicates that
the end user is unaware of the criticality of these factors; thus,
health care professional s need to be educated about theseissues
asthey are not technology savvy [42]. Governments should also
establish guidelines for the approval of Software as Medical
Devices so that these enablers are taken care of at the product
development stage. Finaly, the focus group indicated that
usability isthe least important factor among the seven enablers
discussed. Although genera -purpose LLMs such as ChatGPT
are less cluttered, their performance is input-dependent.
Improving the prompt use of the recommendation system can
enhance the usability and accuracy of LLMs in medical
education [43]. The expert group advised that the LLMs will
improve on these factors with time.

The results from TISM suggested a dlight difference in the
perspective of product devel opers and end users, asthe experts
gave equa importance to the enablers credibility, fairness,
accountability, transparency, and explainability. These results
are consistent with extant literature published in peer-reviewed
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journals [40,41], as these are al features related to model
development and training.

In contrast to earlier studies, the product developers and
technology experts placed less significance on usability as an
enabler, which was given amedium level [43]. Thus, thefinding
of the TISM validates the results of the AHP. The only
difference was that cost was considered as the least important
enabler for product developers. However, a recent study
indicated that economic and environmental costs are significant
factors in devel oping general-purpose LLMs [44].

Successful LLM development involves a complex interplay
among technical innovation, regulatory compliance, production
costs, and end-user needs. The aim should be to develop
products that excel in functionality and positively impact the
lives of those who rely on them without causing financial
hardship. Thus, this study calls for collaboration between
product developers, original equipment manufacturers,
regulators, and other stakeholders to find solutions that align
with technological advancements and societal expectations for
affordability and accessibility.

Finaly, the findings of this study were validated using
MICMAC analysis, creating a graph that categorizes enablers
based on their driving power and dependence power. In this
graph, the enablers credibility, fairness, and accountability are
in the first quadrant (autonomous) with low power, indicating
that these variables are relatively independent and have limited
influence on other variables. Usahility and transparency arein
the grey region between the third (linkage) and fourth
(independent) quadrants with medium power, indicating a
moderate influence on other variables and similarly influenced
by them. Explainability fallsin the grey region between thefirst
(autonomous) and second (dependent) quadrants, also indicating
amedium influence on other variables and a similar influence
on them. Finaly, cost fals under the fourth quadrant
(independent), suggesting that it strongly influences other
enablers without being significantly influenced by them.
MICMAC analysis comprehensively explains the rel ationships
and dynamics among variables within a complex system. This
can help decision makers identify key drivers, dependencies,
and interactions, enabling them to make informed strategic
decisions and allocate resources effectively.

Quttainah et a

Practical and Theoretical Implications

The study has one implication each for theory and for practice.
For theory, this study extends the Fairness, Accountability,
Transparency, and Explainability (FATE) framework [45] into
a more comprehensive Cost, Usahility, Credibility, Fairness,
Accountability, Transparency, and Explainability (CUC-FATE)
framework for developing LLMs for health care professionals.
With respect to the implication for practice, this study is the
first of its kind and provides a prescriptive framework for
developing LLMsin health care, especially medical education.
Thefindings of thisstudy are useful for policy makers, medical
device regulators, education policy makers, health care
professionals, and product developers at the helm of creating
Software as a Medical Device.

Limitations

One of thelimitations of the study isthat theresultslargely rely
on experts from Indiaand the United Arab Emirates. Although
technology and health care practices are standardized globally,
the findings should only be generalized to the popul ations from
theseregions. This study providesinsight into the relationships
between different enablers but we did not further evaluate the
strength of these associations. Graph theory or structured
equation modeling can be used to address these gaps in future
studies.

Conclusion

Thisstudy emphasi zeskey factorsfor effective LLMsin medical
education: credibility and accountability arevital enablers, while
addressing biasand cost is crucia for enhancing LLM potential.
Although important, transparency and explainability rank lower
asLLM enablersamong health professionals, suggesting aneed
for further education on this technology. Usability emerged as
the least important factor; however, enhancing prompt use
improves LLM accuracy. This study highlights a dlight
difference between product developers and end users. Although
both groups prioritize credibility, fairness, accountability,
transparency, and explainability, usability ranks lower for
developers. Successful LLM development must balance
innovation, compliance, costs, and user needs. Collaboration
among stakeholdersiscrucial for aligning with technology and
societal expectations.
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Abstract

Background: Artificia intelligence (Al) is an umbrella term for various algorithms and rapidly emerging technologies with
huge potential for workplace health promotion and prevention (WHPP). WHPP interventions aim to improve peopl€e’s health and
well-being through behavioral and organizational measures or by minimizing the burden of workplace-related diseases and
associated risk factors. While Al has been the focus of research in other health-related fields, such as public health or biomedicine,
the transition of Al into WHPP research has yet to be systematically investigated.

Objective: The systematic scoping review aims to comprehensively assess an overview of the current use of Al in WHPP. The
results will be then used to point to future research directions. The following research questions were derived: (1) What are the
study characteristics of studies on Al agorithms and technologies in the context of WHPP? (2) What specific WHPP fields
(prevention, behavioral, and organizational approaches) were addressed by the Al agorithms and technologies? (3) What kind
of interventions lead to which outcomes?

Methods: A systematic scoping literature review (PRISMA-ScR [Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews]) was conducted in the 3 academic databases PubMed, Institute of Electrical and
Electronics Engineers, and Association for Computing Machinery in July 2023, searching for papers published between January
2000 and December 2023. Studies needed to be (1) peer-reviewed, (2) written in English, and (3) focused on any Al-based
algorithm or technology that (4) were conducted in the context of WHPP or (5) an associated field. Information on study design,
Al algorithms and technologies, WHPP fields, and the patient or population, intervention, comparison, and outcomes framework
were extracted blindly with Rayyan and summarized.

Results: A total of 10 studies were included. Risk prevention and modeling were the most identified WHPP fields (n=6),
followed by behavioral health promotion (n=4) and organizational health promotion (n=1). Further, 4 studies focused on mental
health. Most Al algorithms were machine learning-based, and 3 studies used combined deep learning algorithms. Al algorithms
and technol ogies were primarily implemented in smartphone apps (eg, in the form of a chatbot) or used the smartphone as a data
source (eg, Global Positioning System). Behavioral approaches ranged from 8 to 12 weeks and were compared to control groups.
Additionally, 3 studies evaluated the robustness and accuracy of an Al model or framework.

Conclusions:  Although Al has caught increasing attention in health-related research, the review reveals that Al in WHPP is
marginally investigated. Our results indicate that Al is promising for individualization and risk prediction in WHPP, but current
research does not cover the scope of WHPP. Beyond that, future research will profit from an extended range of research in all
fields of WHPP, longitudinal data, and reporting guidelines.

Trial Registration: OSF Registries osf.io/bfswp; https://osf.io/bfswp

(IMIR Al 2024;3:€53506) doi:10.2196/53506
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Introduction

Artificial Intelligence as an Umbrella Concept

Artificial intelligence (Al) is a concept that dates back to the
mid-1900s [1] and was first defined as “the science and
engineering of making intelligent machines’ [2]. Today, Al is
described as acomputer system’s capability to perform complex
tasks that mimic human cognitive functions to perform tasks
such as reasoning, decision-making, or problem-solving,
autonomously and adaptively [3]. However, its capabilitiesand
underlying functions have changed significantly over the
decades [1,4]. More recently, Al has emerged as a
transformative force across various industries. Its application
has shown promise in health promotion and health care [5-7],
opening new possihilities concerning patient care and enhanced
medical practices.

Thereisgrowing consensus in the literature that adaptivity and
autonomy are the key characteristics of Al applications and
technologies [5]. Al is considered an umbrella concept of
emerging technologies, enclosing fundamental distinct types
such as machine learning (ML), deep learning (DL), or natural
language processing (NLP) [4,8]. Technicaly, Al is an
M L -based approach that simulates human minds' cognitive and
affective functions [3,8] and is designed to observe and react
to a specific environment. In contrast to deterministic
programming, such models feature many free parameters that
can adapt autonomously to calibrate the model. For example,
Al can be applied in repetitive tasks requiring human
intelligence, such as scanning and interpreting magnetic
resonance imaging, autonomous driving, or analyzing big data
sets[9-11]. ML and DL agorithmsand artificia neural networks
enable amachine or system to learn from large data sets, make
autonomous decisions, and improve their performance over
time[4]. More narrowly, NL P allows machinesto generate and
understand text and spoken language in the same way humans
do. It combines rule-based natural language modeling with ML
and DL models to process human language in text or speech
data, understand its meaning, including feelings, and even
generate human language, as it is sometimes used in chatbots
or language trandation [12].

Al in Health Care and Public Health

Implementing Al algorithms and technologies for health care
institutions bears enormous potential, ranging from efficient
health service management, predictive medicine, patient data,
and diagnostics with real-time anayses to clinical
decision-making. Most studies report abroader Al architecture
with a combination of algorithms rooted in ML, DL, and NLP
[4,11]. For example, 1 Al approach evaluated the support of
clinical decision-making by analyzing continuous laboratory
data, past clinical notes, and current information of physicians
synthesizing significant associations [13]. Al implementation

https:/ai jmir.org/2024/1/653506

in the form of predictive modeling showed positive results by
detecting irregular heartbeats through smartwatches [14],
automatically identifying reports of infectious disease in the
media [15], or ascertaining cardiovascular risk factors from
retinal images [16]. Through systematic profiling of 4518
existing drugs against 578 cancer cell lines with an Al-based
approach, a study revealed that nononcology drugs have an
unexpectedly high rate of anticancer activity [17]. Another study
developed and evaluated a Medical Instructed Real-Time
Assistant that listensto the user’s chief complaint and predicts
a specific disease [18]. Chatbots have been used to detect
COVID-19 symptoms through detailed questioning [6] or to
predict therisk of type Il diabetes mellitus[19].

Workplace Health Promotion and Prevention

As adults spend a significant amount of time working, it is
widely accepted that work and work environmentshave amajor
impact on individuals health. Workplace health promotion and
prevention (WHPP) are important fieldsthat “[...] improve the
health and well-being of people at work [...]” [20] through a
combination of behavioral and organizational measures.
Workplace health promotion follows a competence-oriented,
salutogenetic approach to promoting the resources of an
individual [20]. Prevention in the workplace focuses on
minimizing the burden of workplace-related diseases and
associated risk factors[21,22]. WHPPinterventionsrange from
behavioral measures with active participation (eg, courses or
seminars) to organizational measures such as consultations,
analyses, inspections, and establishing organizational structures
such as a health committee [23,24].

Prior Work

With the Luxembourg declaration, WHPP has evolved into an
independent discipline that differentiates from return-to-work
(RTW) and occupational safety and health (OSH) measures
[20,25]. In OSH-related disciplines, previous reviews have
focused on risk assessment or detection related to physical
ergonomics [26], occupational physical fatigue [27], or core
body temperature [28]. Other reviews explored the evidence of
Al in F-related areas, such as vocationa rehabilitation [29] and
functional capacity evaluation [30]. In health promotion in
general, 1 review evaluates the use of chatbots to increase
health-related behavior but does not focus on the workplace
setting [31]. To the authors' knowledge, no review has evaluated
the use of Al in WHPP.

Therefore, this systematic scoping review ams to
comprehensively assess an overview of the current use of Al
in WHPP. The results will then be used to point to future
research directions. Thefollowing research questions (RQ) were
derived from these aims:

RQ1: What are the study characteristics of studies on Al
algorithms and technologies in WHPP?
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«  RQ2: What specific WHPP fields (prevention, behavioral,
and organizational approaches) are addressed by the Al
algorithms and technol ogies?

«  RQS3: What kind of interventionswere conducted, and what
outcomes were assessed?

Methods

Design

A systematic scoping review approach [32] was selected
following the extended PRISMA-ScR (Preferred Reporting
Itemsfor Systematic Reviewsand Meta-Analyses extension for
Scoping Reviews; Multimedia Appendix 1) [33]. We applied
the 5-step framework to identify current or emerging research
directions and provide an overview of research activities [34].
Additionally, the patient or population, intervention, comparison,
and outcomes (PICO) framework [35] was used to specify the
study’s objective, from the search string and data charting to
more systematic discussion [36]. The review was registered
prospectively in the Open Science Framework (OSF) on July
5, 2023. All files (protocol, search string, and search results)
have been uploaded to the OSF profile and are publicly
accessible [37].

Eligibility Criteria

Included studies needed to be (1) peer-reviewed, (2) written in
English, and (3) focused on any Al-based agorithm or
technology that (4) were conducted in the context of WHPP, or
(5) an associated field (workplace prevention, occupational
health, and workplace health) that applies to WHPP. The types
of research considered were review types (systematic, scoping,
or rapid), cross-sectional studies, and longitudinal studies.

Our conceptualization of Al included the concepts of “ machine
learning,” “deep learning,” and “natural language processing.”
Our conceptualization of “workplace health promotion and
prevention” followed a broader understanding comprising the
setting (eg, “work,” “workplace,” or “in or at the workplace™),
the target population (eg, “working adults’ or “employees’)
and the outcome dimension (eg, “health” or “health behavior”).
The search period was limited to studies published since January
2000 and before July 31, 2023. During the review, the search
was extended to December 20, 2023.

Information Sources and Search

The systematic literature research was conducted in July 2023
in 3 databases: PubMed, |IEEE Xplore, and Association for

https://ai.jmir.org/2024/1/€53506
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Computing Machinery. The search string included Boolean
operators (“AND,” “OR,” and “NOT") and search termsrelated
to “artificial intelligence,” “workplace heath promotion,”
“health promotion,” and “workplace setting” (see supplementary
files available at OSF profile [37]). Papers were managed with
the software tool Rayyan, followed by a 2-stage screening
process. First, 1 reviewer (ML) removed all duplicates. Second,
2 reviewers (ML and AL) screened all titles or abstracts and
read full texts for eligibility criteria in a blinded procedure.
Disagreement was resolved by either consensus of the 2
reviewers or by consultation of athird reviewer (1K).

Data Charting and Synthesis of Results

In the first step, the study characteristics were extracted: first
author (name and year), study design (eg, cross-sectional or
randomized controlled trial), the primary type of Al algorithm
and technology asreferred to in the study (eg, Al, ML, DL, or
NLP), and the frontend in which the Al-technology was
implemented (eg, mobile app or web app). Second, the PICO
framework [35] was applied to extract information about the
target group (number of included participants/workplace
context), the intervention approach, the comparison, and the
reported outcomes of the study.

We used the extracted information from the study characteristics
to answer RQ1 on current Al-based technologies applied in
WHPRP. For answering RQ2 and RQ3, we used the data extracted
by the PICO framework. Theinformation was then categorized
within the results’ tables and summarized narratively.

Results

Included Studies

The predefined search led to a total of 3317 results. The
screening results revealed 478 duplicates, 712 records not
meeting inclusion criteria (eg, publication type, language, or
setting), 42 unique records, and 104 with missing information,
leaving 1981 records for the title and abstract screening. The
title and abstract screening excluded another 1761 records for
not meeting inclusion criteria, leading to 220 recordsfor full-text
screening, of which one was inaccessible. After screening 219
full-text records, another 209 records were excluded. Finally,
10 studies remained in this systematic scoping review (the
PRISMA-ScR flowchart is shown in Figure 1).
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Figure 1. PRISMA flowchart of the literature search process. ACM: Association for Computing Machinery; Al: artificia intelligence; PRISMA:
Preferred Reporting Items for Systematic Reviews and Meta-Analyses; WHPP: workplace health promotion and prevention.
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Reports sought for retrieval: n=220

Screening

.
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v

No access: n=1

n=219

Studies included in review: n=10

Included

Study Characteristics (RQ1)

The results of the study characteristics are presented in Table
1. Regarding the study designs, 6 studies were cross-sectional
studies [38-43], 3 were randomized controlled trials [44-46],
and 1 was a quasi-controlled trial [47]. None of the studies
explained data protection standards (security protocols, storage
location or duration, or access of third parties) within the Al
algorithms and technol ogies used. In most studies, white-collar
workersweretheintended target group [38,41,42,46], whereas,
in 3 studies, white-collar and physical labor workers participated
[40,45,47]. Further, 1 study evaluated Al-based technologies
with physical labor workers [39], and another did not disclose
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any information about the type of work setting [44]. Information
on sample characteristics was missing in 3 studies [40,41,44],
littleinformation was provided in 2 studies[38,44], and 4 studies
offered sufficient information [39,42].

A comparison was used in different ways by 6 studies
[40,42,44-47]. Further, 4 studiesrecruited aclassic control group
[39,44,46,47], 2 of which exposed the control group after a
waiting period [44,46]. Another study compared their assessed
data to external data thresholds [40], and 1 study compared
assessed objective data with subjective data [42]. Regarding
the outcome, all studies stated sufficient and significant results.
Further, 1 study reported no changes in 1 of the 3 assessed
outcomes [47].
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Table 1. Study characteristics, Al? agorithms and technologies, and WH PP° fields.

Langeet a

Author Year  Included type of Al algorithm  Implemented frontend WHPP field Study design
Anan et a [45] 2021  Machinelearning Smartphoneapp withintegrat-  Prevention; behavioral health RCT®
ed chatbot promotion
Morshed et a [38] 2022  Machinelearning Software-based sensor technol-  Prevention csd
ogy
Cui et a [39] 2020  Deeplearning networks (recur-  n/a® Prevention (risk assessment) Cs
rent neural network or long-
short-term neural network)
Dijkhuis et al [44] 2018  Machinelearning Web app Behavioral health promotion RCT
Hungerbuehler et al [40] 2021  Machinelearning Viki chatbot within aweb Prevention (risk assessment) Cs
browser interface
Kaiser et al [41] 2021 Fuzzy neural network-based  gmgrtphone app with GPST ~ Organizational health promotion  CS
fusion and eHealth sensor (risk assessment)
Lopeset a [47] 2023  Neural language processing or - £nvy <9 robot Behavioral health promotion qCTh
machine learning
Maxhuni et a [42] 2021  Machinelearning Smartphone app Prevention (risk assessment) Cs
Piao et a [46] 2020 Deep learning networks, ma-  Watson conversation tool Behavioral health promotion RCT
chinelearning, and natural lan- (IBM Corp) integrated into a
guage processing (large lan- smartphone app
guage model)
Yan et a [43] 2020  Convolutiona neural network  Web-based app Prevention (risk assessment) (O]

8Al: artificial intelligence.

BWHPP; workplace health promotion and prevention.
CRCT: randomized controlled trial.

dcs: cross-sectional study design.

EN/A: not applicable.

fGPS: Global Positioni ng System.

9EMY S: emotive head system.

hqCT: quasi controlled trial.

Al Applications and Technologiesin Specific WHPP
Fields (RQ2)

Al agorithms and technol ogieswere mainly used for preventive
purposes in risk assessment (Table 1). Furthermore, 2 studies
evaluated prediction models [39,42]. Additionally, 3 studies
[44,46,47] targeted health behavior change using 3 different
approaches ranging from a web app [44] and smartphone app
[46] to socia robot agents [47]. Further, 1 study [41] was
categorized as an organizational health promotion approach. A
major target indication was mental health, which was addressed
in 4 studies [38,40,42,43]. In contrast, 1 study dealt with
muscul oskel etal disorders[45] and 1 on overall physical health
and work-related factors [39].

https://ai.jmir.org/2024/1/€53506

I nterventions and Outcomes (RQ3)

The PICO category “intervention” did not apply to studies
focusing on prevention since they did not evaluate an
intervention [38-43]. Interventions were evaluated by 4 studies
[44-47] with aduration of 12 weeks [44-46] and 8 weeks [47].
Within these 4 studies, 2 used chatbots as a primary Al
application [45,46], 1 used aweb application [44], and 1 used
a socia robot agent [47]. These 4 studies recruited a control
group, of which 2 studies exposed the control group after a
waiting period [44,46]. Regarding the outcome, all studies stated
sufficient and significant results. The study of Lopes et al [47]
reported no changesin 1 of the 3 assessed outcomes (Table 2).
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Table 2. Interventions and outcomes of studiesincluded in the review.

Langeet a

Population  Intervention Comparison Outcome
Ananet  |G348and  AlC-assisted program for MSDYthat  CC: exerciseroutineof 3 Adherence rate: 92%; significant differencein the
al [45] OGP 46 engi-  Slectsexercises depending on partic- minutes per day during  worst pain scores of neck or shoulder pain or stiffness
ipants chat inout: 12-week int . break time; routine con-  and low back pain between baseline and 12 weeks
neers and pants chat input; 12-week interven- ' . o ) S
white-collar  tionwithindividualized exercisesfor SIStS of standard exercises  (score: ~1.12; 95% Cl —1.53t0-0.70; P<.001); signif-
workers stretching, maintaining good posture, O Stretching, maintaining  icant improvements of IG in the severity of the neck
and mindfulness. good posture, and mindful-  or shoulder pain or stiffness and low back pain com-
ness. pared to CG (OR® 6.36, 95% Cl 2.57-15.73; P<.001);
subjectiveimprovement in symptomsin |G at 12 weeks
(score: 43; 95% Cl 11.25-164.28; P<.001).
Morshed 46remotein- Development and implementation of Comparison of passive Passive sensors detect triggers and manifestations of
eta [38] formation aworkplace stresssensing systemfor  sensor datawith self-report - workplace stress effectively (eg, keyboard activity and
workers 4 weeksusing passive sensors (email,  (study intake, experience  less facial movement were positively correlated with
calendar, app, mouse and keyboard  sampling, daily check-in,  gress (r=0.05, P<.05" and r=0.09, P<.05', respective-
use; facial pogtl ons and facial action daily check-ou_t, end of ly); the quality of stress models depends on prior data
units; or physiological sensors). study expectations) data  of the worker and the amount of data (F4-score: after
10 days=58%; after 19 days=73%).
Cuieta 4000 steel Development and comparison of 2 N/A Based on sociodemographic data (age, income, educa-
[39] workers Al-based risk prediction models tion, or marital status), health-related data (BMI,
(LSTM9VsRN Nh) that predict the smoki ng, drinking, or blood lipids [cholesterol or
influence of thework environment on tr_l glycgnde]), and work-related factgrs (length of ser-
employees health. vice, high-temperature exposure, shift work, or noise
exposure) the prediction effect of LSTM issignificant-
ly better than that of traditional RNN, with an accuracy
of more than 95% (F-score).
Dijkhuis 1G24 and Development and implementation of CG: no participationinthe Input variables “hours of the day” and “ step count”
etal [44] CG24popu- aprediction model that personalizes  12.\yeek WHP-program.  Wereusedinthe evaluated model and reached an accu-
lation/setting  physical activity recommendations. racy of 90% (mean accuracy=0.93; range=0.88-0.99;
notdisclosed Within a 12-week workplace health mean F1-score=0.90; range=0.87-0.94). Tree algo-
promotion intervention. The goals of rithms and tree-based ensembl e al gorithms performed
the Intervention were to increase exceedingly well. Theindividualized algorithmsallow
physical activity during workdays by for predicting physical activity during the day and
improving physical and mental health provide the possibility to intervene with personalized
and several work-related variables. feedback.
Hunger-  77industrial, Development of achatbot systemand Participation rates were The response rate was 64.2% (77/120). The majority
buehleret logistic, and itsimplementation in aworkplace compared to face-to-face  gxgred in the mild range for anxiety (G AD-75 mean
a [40] ce)Ifsl ce work- Ezt;: tr;? to assess employees mental  collection method rates. 6.21, SD 4.56; 50%) and depression (PHQ- 9" mean
' 4.40, SD 5.21; 57%), the moderate range for stress
(DASS-21™: mean 11.09, SD 7.13; 46%), subthreshold
level for insomnia (ISI™: mean 9.26, SD 5.66; 70%),
the low-risk burnout-category (OLBI®: mean 27.68,
SD 8.38; 68%) and in the increased risk category for
stress (JSSP: mean 32.38, SD 3.55; 69%). Chatbot-
based workplace mental health assessment is highly
engaging and effective among employees, with re-
sponse rates comparable to face-to-face interviews.
Kaiser et 12 office Evaluation of a portable health N/A The app-integrated COVID-19 questionnaire was val -
al [41] workers (pHealth) app to detect COVID-19 idated against real-time health conditions. Proximity

infection and trace movement to pre-
vent further infections. Additionally,
the pHealth app detects employees
health conditions and recommends
further health measuresiif indicated.

detection, contact tracing, and health monitoring (ex-
ternal sensors) were confirmed by proximity testing
(surf plot evaluation); it effectively estimates COVID-
19 infection risk and personal health conditions.
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Intervention

Comparison

Outcome
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Population

Lopeset |G 28and

al [47] CG 28 ser-
viceand re-
tail workers

Maxhuni 30 office

eta [42] workers

Piaoeta 1G57and

[46] CG 49 office
and adminis-
trative work-
ers

Yaneta 352respirao-

[43] ry therapists
in medical
centers and
regiona hos-
pitals

|G interacted with asocial robot agent
that promotes health behavior change
of participants’ choice (physical activ-
ity, nutrition, tobacco consumption,
and stress and anxiety) in the work-
place. After baseline assessment 8,
socia robots were used for 20-30
minutes weekly for 8 weeks. Based
on the health action process approach
model, the intervention focused on
goal setting, monitoring behavior,
elaborating action plans, and self-effi-
cacy techniques through videos.

Measurement of smartphone data to

assess employees’ stress levels. Data
were assessed for 8 weeks on physical
activity (accelerometer), location

(GPSY), social interaction (micro-
phone, number of phone calls, or text
messages), and social activity (app
usage).

A hedlthy lifestyle coaching chatbot
from the KakaoTalk App (Kakao
Corp) wasimplemented into an office
work setting to promote employees’
stair-climbing habits. During theinter-
vention, the |G received cues, intrin-
sic, and extrinsic rewards for the en-
tire 12 weeks.

Building amodel to develop aweb-
based application for classifying
mental illness at the workplace. Data
on emotional labor and psychological
health was assessed for 4 weekswith

the ELMH!.

CG received thesameinter-
vention measures through
human agents via Teams
(Microsoft Corp).

Objective data was com-
pared to subjective data

(OLBI, POMS)).

CG did not receive intrin-
sic rewards for thefirst 4
weeks and only received
al rewards, asin |G, from
the fifth to the 12th week.

N/A

1G improved significantly compared to CG in produc-
tivity (F1 46=9041, P<.005'; 12=0.26) and in well-be-
ing (F1,53=4517, P<.005'; n2=0.079), but not in work-

engagement (F1 46=0.5176, P>.005"). Additionally,
1G improved significantly in the postintervention
scores compared to CG (F1 438997, P<.001', Wilk
NA=0.597, partial N2=0.40) despite presenteeism and
regard for their level of mental well-being.

A high correlation between objective smartphone data
and questionnaire scores was overall significant. The
accuracy of the supervised decision tree was acceptable
(F4-score=67.5%). The semisupervised learning ap-
proach was somewhat better, with an F1-score of 70%.
Overall, the results confirm that the prediction model
isfeasible to detect perceived stress at work using
smartphone-sensed data.

After 4 weeks, the change in SRHI® scores was (mean
1G 13.54, SD 14.99; mean CG 6.42, SD 9.42) signifi-

cantly different between groups (P<.05f). Betweenthe
fifth and 12th week, the changein SRHI scores of the
intervention and control groups was comparable (mean
1G 12.08, SD 10.87; mean CG 15.88, SD 13.29;
P=.21). Level of physical activity showed asignificant
difference between the groups after 12 weeks of inter-
vention (F1,11=21.16; P=.045). Intrinsic reward was

significantly influencing habit formation.

Model structure with 8 domains was confirmed with
exploratory factor analysis, and 4 types of mental
health were classified using the Rasch analysis with

an accuracy rate of MNSQY=0.92. An app predicting
mental illness was successfully developed and
demonstrated in this study.

4 G: intervention group.
bCG: control group.
CAl: artificial intelligence.

dMSD: musculoskeletal disorder.

€OR: odds ratio.

fOrigi nal P values were not reported in the original publications.
9STM: long short-term memory.
PRNN: recurrent neural network.

IN/A: not applicable.

IwHP; workplace health promotion.

KGAD-7: Generalized Anxiety Disorder Scale.
'PHQ-9: Physical Health Questionnaire.
MDASS-21: Depression, Anxiety, Stress Scale.
" SI: Insomnia Severity Index.

°0OLBI: Oldenburg Burnout Inventory.

PJSS: job strain survey.

9GPS: global positioning system.

'POMS: profile of mood states.

SSRHI: self-report habit index.

'ELMH: Emotional Labor and Mental Health questionnaire.

UMNSQ: mean square error.
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Discussion

Principal Results

Overview

This study aimed to assess an overview of the current state of
Al use in WHPP. Our results underline that despite the rapid
increase in Al-related studies, only a small humber of studies
have addressed Al apps and technologiesin WHPP up to now.
Risk prediction and modeling were the most identified WHPP
fields, followed by behavioral health promotion approaches. Al
algorithms and technologies were primarily implemented in
smartphone apps (eg, in the form of a chatbot) or used the
smartphone as a data source (eg, GPS). Further, our results
revealed that most studies validated Al agorithms and
feasihility.

Potential Approaches

The results merely indicate the potential of Al in WHPP with
individualized, rea-time data analysis and health-related
information as critical elements but do not fully reflect this at
present. Al-assisted chatbot appswere aprimary Al technology,
reaching reasonable adherence rates and offering a potential
access route through various frontend solutions such as
smartphones or web-based apps. Chatbots can easly
individualize health-related information and recommendations
regarding the type of job, educational level, and specific
language barriers. The integration of sensor technologies can
increase the efficacy of individualized chatbot solutions. This
could advance the access and dissemination of workplace
health-related information significantly. Chronically ill
employees or other target groups can profit from context-specific
health information that helps maintain or improve workability
[48]. The aspect of anonymity might increase the acceptance
of prevention measures for smoking cessation, alcohol, or
substance abuse [31,49]. Due to the diversity of job activities
(eg, physical labor or white-collar jobs) and workplace
characteristics (eg, office, hybrid, or remote work),
individualized access to heath interventions can improve
resource alocation as well as the density and quality of
preventive health care [50,51]. Personalizing health-related
information or feedback potentially increases workplace
health-related behaviors [52,53]. The genuine ability of Al to
analyze large amounts of data in real-time can be applied to
predict or detect individual or organizational health risks, for
example, infections, stress symptoms, or body positions[54-59].

State of Al-Research in WHPP

The small number of studies on Al and WHPP compared to
other sectors of work-related health (eg, OSH or RTW) or public
health indicates a considerable research gap. At this point,
research in other health care sectors offers much more reviews
[7,60-62]. Reasons can be found in common challenges of
WHPP as a young research field, a high sensitivity regarding
data protection regulation in the context of work, and the
nonexistent legal requirements for WHPP in many countries
[23,63,64]. At the ssametime, WHPP is often entrenched within
an OSH paradigm among employersthat do not prioritize WHPP
[65,66].

https:/ai jmir.org/2024/1/653506
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As stated, most research WHPP fiel ds were prevention and risk
prediction followed by behavioral approaches. Stress and mental
health were the primary outcomes of 4 studies within these
fields. Given the relevance of mental health, the research interest
can be assessed as adequate. At the same time, muscul oskel etal
disorders are the leading cause of sick leave in most countries
[67] and are therefore highly underrepresented in the included
studies. In 2 studies, behavioral approachesfocused on physical
activity and general health behavior wereinvestigated in 1 study.
Other WHPP-related behaviors such as nutrition, sleep,
substance abuse (eg, nicotine), or stress management are not
targeted by current research [24]. The same accounts for
organizational WHPP approaches centered in only 1 study [41].
Organizational approachesthat aim to disseminate health-related
information, increase work-related health literacy, or implement
educational measures have not been included in current Al and
WHPP research. Areas such as social inequality [68], specific
target groups (eg, chronicaly ill employees or migrants), or
health-oriented |eadership were not addressed.

Most studies of our review were conducted in a cross-sectional
study design to gain datafor any Al learning processin atime-
and resource-efficient way [69]. This has 2 implications
regarding the current stage of research. First, Al model life
cycles need to be completed to gain high-level semantics and
create a comprehensive learning basis, from data preparation
(eg, dealing with missing data) and data conditioning to data
acquisition and model refinement [70]. For future Al models,
longitudinal data are of utmost importance, as cross-sectional
datacan only reflect on aspecific stage of that lifecycle[70,71].
Second, longitudinal study designs are usually more cost- and
resource-intensive and often less prioritized. Thisnot only leads
to an imbal ance of evidence on behavioral WHPP interventions
but also to a lack of causal relation between Al and WHPP
outcomes.

Most studiesreported using ML compared to more sophisticated
DL or NLP agorithms. ML algorithms use extracted data to
predict binary or multiple outcomes or classes without hidden
layers. DL algorithms are characterized by hidden-layer neural
networks. They can be employed for the analysis of more
complex data sets, for example, for the detection of
multidimensional objects in the realm of video and speech
analysis [4,72]. The complexity of DL algorithms, in turn, ties
in with the Al model life cycle, as DL algorithms require a
broader database for learning. While ML approaches are found
to be highly predictive and offer more individualized
interventionsin aspecific context, they are also proneto errors.
Escorpizio et a [29] point out that in 1 study, ML classification
exceeded clinicians' decision-making [73]. Still, the results
were later reversed when the approach was implemented with
adifferent cohort [74]. Thisis of particular interest, as studies
within our resultsrelied on either asmall number of participants
[41], few input variables [44], or ahomogenous datainput (eg,
only self-report data) [40], causing potential ceiling effects
withinthe Al learning progress[75,76]. Conversely, the benefit
of longitudinal data in the context of Al reveals itself through
the increase in precision. Further, 1 study pointed out the
relevance of multiple measurements and longitudinal data by
increasing the accuracy from 46% (time point 0) to 73% after
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19 days of data[38]. Nevertheless, the included studies do not
use the potential of Al in comparable health-related fields such
as OSH or RTW [26-31]. Some areas of Al application are not
addressed, such as big data analysis (eg, comparison with
existing data of national cohort studies) or language trandation
models.

Future Research

As pointed out, current research is on Al in WHPP regarding
quantity, fields of WHPP and its subdomains, and Al algorithms.
Future research should center around major causes of sick |eave,
such as musculoskeletal disorders, mental health, respiratory
conditions, and influenza[67]. Behavioral WHPP interventions
should extend to all areas of health-related behavior, including
nutrition, sleep, substance abuse, and stress management [24].
Further, setting-specific aspects of WHPP, such asintervention
content, implementation strategies, user experience, design,
algorithms, and the company’s size, need to be considered more
specifically. So far, the studies have provided only moderate
information on the job activities or the target groups. At the
same time, workplaces and workers are diverse. The health of
employees is influenced by numerous organizationa and
individual factorsthat must befurther considered in thelearning
cycle of Al [77-79]. Regarding potential errors, existing Al
algorithms must be validated with different target groups
[59,80], emphasizing the need for longitudinal data and its
impact on learning agorithms [81,82]. Beyond this, the
technological diversity of the presented studies opens new
possibilities for target group-specific or individualized
interventions. Providing health information to chronically ill
employees, migrants with different language skills, or
individualizing health topics of varying age groups can be
provided more effectively through Al to move beyond a “one
sizefits’ all paradigm [83,84].

Outside of the objective’s scope, we identified 2 aspects that
can improve future research. First, theincluded studies reported
overall positive results regarding feasibility, significance, or
accuracy, underlining the vast potential that Al technology
harbors. However, the results must be interpreted cautiously as
certain information in the primary studies was not provided,
assessed, or available at the stages of the investigated
technology. For example, few studies mentioned a potential

Langeet a

bias through the novelty [40,47] or the Hawthorne effect
[45,47,85]. The novelty effect [86] applies to most of the
included studies asthey did not control for experience with new
technologies or their affinity to them. Second, concerns about
data access, storage or control, the ownership of Al-generated
data, and its further use need to be clarified [87,88]. Standards
should be derived and updated at appropriate intervals,
especialy new Al-generated knowledge based on employee's
personal information [89]. Transparency and high data
protection regulation can increase adherence rates and reduce
usage barriers [90]. In turn, we propose that future research
should rely on reporting guidelines [76,91,92].

Strength and Limitations

Of note, 1 strength of our review is the explanatory nature of
the RQs and the systematic search strategy in this new field.
Consequently, the heterogeneity of theidentified studies might
be considered a limitation. Different Al applications and
technologies, the types of intervention, and the variety of
workplace settings limit the conclusion significantly. Beyond
this, the reporting of the types of Al-based agorithms and
technologies used in the study are based on the authors
self-reports. It isimportant to consider that the differentiation
of the Al algorithm types cannot be made with a high degree
of distinction.

Conclusions

Overal, this review underlines that Al in WHPP bears
considerable potential but isnot used fully at present. Theresults
of our review offer a promising perspective on the predictive
and personalized health paradigm shiftin WHPP. Neverthel ess,
we conclude that current Al-related research in WHPP is still
at the beginning, as it does not cover the scope of WHPP. The
most salient research gaps can be found in lacking fields of
WHPP and its subdomains, the predominantly ML-based
algorithms and cross-sectional data, and the weak consideration
of the work context. We believe we have contributed to future
WHPP research by identifying these gaps and recommending
future approaches. As Al applications are gaining an
increasingly important role, we are corvinced that future
research will profit from an extended range of research in all
fields of WHPPR, longitudinal data, and the use of reporting
guidelines.

Acknowledgments

The design and registration of the study was handled by ML. The first draft of this paper was by ML, AL, and AS. Data were
collected by ML and AL. Analysiswasdone by ML, AL, and IK. Revision and review of this paper were performed by ML, AL,
IK, and AS. This research received no external funding. We did not use any generative Al in this paper.

Data Availability
All data are publicly available in the OSF [37].

Conflictsof Interest
None declared.

Multimedia Appendix 1

https:/ai jmir.org/2024/1/653506

IMIR Al 2024 | vol. 3 | €53506 | p.43
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Langeet a

PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta- Analyses extension for Scoping Reviews) checklist.
[PDEF File (Adobe PDF File), 198 KB - ai_v3i1€53506_appl.pdf ]

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Kaul V, Endlin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc 2020 Oct;92(4):807-812.
[doi: 10.1016/j.0ie.2020.06.040] [Medline: 32565184]

McCarthy J. Programs with common sense mechanisation of thought processes. In: Proceedings of the Symposium of the
National PhysicsLaboratory. London, UK: Her Mgjesty's Stationery Office; 1959 Presented at: Proceedings of the Symposium
of the National Physics Laboratory; 24th-27th November 1958; Teddington, Middlesex p. 3-10.

Russell SJ, Norvig P. Introduction. In: Russell SJ, Norvig P, editors. Artificial intelligence: a modern approach. Harlow:
Pearson; 2022:19-54.

Helm JM, Swiergosz AM, Haeberle HS, KarnutaJM, Schaffer JL, KrebsVE, et al. Machinelearning and artificia intelligence:
definitions, applications, and future directions. Curr Rev Musculoskelet Med 2020;13(1):69-76 [FREE Full text] [doi:
10.1007/s12178-020-09600-8] [Medline: 31983042]

Grossberg S. A path toward explainable Al and autonomous adaptive intelligence: deep learning, adaptive resonance, and
models of perception, emation, and action. Front Neurorobot 2020;14:36 [ FREE Full text] [doi: 10.3389/fnbot.2020.00036]
[Medline: 32670045]

Chen J, See KC. Artificial intelligence for COVID-19: rapid review. I Med Internet Res 2020;22(10):€21476 [FREE Full
text] [doi: 10.2196/21476] [Medline: 32946413]

Dong L, Yang Q, Zhang RH, Wei WB. Artificial intelligence for the detection of age-related macular degeneration in color
fundus photographs. a systematic review and meta-analysis. eClinicalMedicine 2021;35:100875 [FREE Full text] [doi:
10.1016/j.eclinm.2021.100875] [Medline: 34027334]

Boucher P. Artificia intelligence: how does it work, why does it matter, and what can we do about it?. Brussels. European
Parliament; 2020. URL : https.//www.europar! .europa.ew/RegData/etudes/ STUD/2020/641547/EPRS STU(2020)641547 EN.
pdf [accessed 2024-07-30]

LeeS, Liul, RadwinR, Li J. Machinelearning in manufacturing ergonomics: recent advances, challenges, and opportunities.
| EEE Robot Autom Lett 2021;6(3):5745-5752. [doi: 10.1109/Ira.2021.3084881]

Secinaro S, CalandraD, Secinaro A, Muthurangu V, Biancone P. Therole of artificial intelligencein healthcare: astructured
literature review. BMC Med Inform Decis Mak 2021;21(1):125 [FREE Full text] [doi: 10.1186/s12911-021-01488-9]
[Medline: 33836752]

Johnson KB, Wei WQ, Weeraratne D, Frisse ME, MisulisK, Rhee K, et a. Precision medicine, Al, and the future of
personalized health care. Clin Trangl Sci 2021;14(1):86-93 [FREE Full text] [doi: 10.1111/cts.12884] [Medline: 32961010]
RainaV, Krishnamurthy S. Building an effective data science practice. Berkeley, CA: Apress, 2022.

Juhn'Y, LiuH. Artificial intelligence approaches using natural language processing to advance EHR-based clinical research.
JAllergy Clin Immunol 2020;145(2):463-469 [FREE Full text] [doi: 10.1016/j.jaci.2019.12.897] [Medline: 31883846]
Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Apple Heart Study Investigators. Large-scale
assessment of a smartwatch to identify atrial fibrillation. N Engl J Med 2019;381(20):1909-1917 [FREE Full text] [doi:
10.1056/NEJM 0a1901183] [Medline: 31722151]

Feldman J, Thomas-Bachli A, Forsyth J, Patel ZH, Khan K. Development of a global infectious disease activity database
using natural language processing, machine learning, and human expertise. JAm Med Inform Assoc 2019;26(11):1355-1359
[FREE Full text] [doi: 10.1093/jamia/ocz112] [Medline: 31361300]

Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors
from retinal fundus photographs viadeep learning. Nat Biomed Eng 2018;2(3):158-164. [doi: 10.1038/s41551-018-0195-0]
[Medline: 31015713]

Corsello SM, Nagari RT, Spangler RD, Rossen J, Kocak M, Bryan JG, et al. Discovering the anti-cancer potential of
non-oncology drugs by systematic viability profiling. Nat Cancer 2020;1(2):235-248 [FREE Full text] [doi:
10.1038/s43018-019-0018-6] [Medline: 32613204]

Rehman UU, Chang DJ, Jung Y, Akhtar U, Razzaq MA, Lee S. Medical instructed real-time assistant for patient with
glaucoma and diabetic conditions. Appl Sci 2020;10(7):2216. [doi: 10.3390/app10072216]

Jungwirth D, Haluza D. Artificial intelligence and public health: an exploratory study. Int JEnviron Res Public Health
2023;20(5):4541 [FREE Full text] [doi: 10.3390/ijerph20054541] [Medline: 36901550]

Luxembourg declaration on workplace health promotion in the European Union. Perugia, Italy: European Network of
Workplace Health Promotion; 2018.

Pomaki G, Franche RL, Murray E, Khushrushahi N, Lampinen TM. Workplace-based work disability prevention interventions
for workers with common mental health conditions: areview of the literature. J Occup Rehabil 2012;22(2):182-195. [doi:
10.1007/s10926-011-9338-9] [Medline: 22038297]

Gritzka S, Macintyre TE, Dérfel D, Baker-Blanc JL, Calogiuri G. The effects of workplace nature-based interventions on
the mental health and well-being of employees: a systematic review. Front Psychiatry 2020;11:323 [FREE Full text] [doi:
10.3389/fpsyt.2020.00323] [Medline: 32411026]

https://ai.jmir.org/2024/1/€53506 JMIR Al 2024 | vol. 3 | €53506 | p.44

(page number not for citation purposes)


https://jmir.org/api/download?alt_name=ai_v3i1e53506_app1.pdf&filename=29e161071a21c8689324659b95407776.pdf
https://jmir.org/api/download?alt_name=ai_v3i1e53506_app1.pdf&filename=29e161071a21c8689324659b95407776.pdf
http://dx.doi.org/10.1016/j.gie.2020.06.040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32565184&dopt=Abstract
https://europepmc.org/abstract/MED/31983042
http://dx.doi.org/10.1007/s12178-020-09600-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31983042&dopt=Abstract
https://europepmc.org/abstract/MED/32670045
http://dx.doi.org/10.3389/fnbot.2020.00036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32670045&dopt=Abstract
https://www.jmir.org/2020/10/e21476/
https://www.jmir.org/2020/10/e21476/
http://dx.doi.org/10.2196/21476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32946413&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2589-5370(21)00155-3
http://dx.doi.org/10.1016/j.eclinm.2021.100875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34027334&dopt=Abstract
https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641547/EPRS_STU(2020)641547_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2020/641547/EPRS_STU(2020)641547_EN.pdf
http://dx.doi.org/10.1109/lra.2021.3084881
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01488-9
http://dx.doi.org/10.1186/s12911-021-01488-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33836752&dopt=Abstract
https://europepmc.org/abstract/MED/32961010
http://dx.doi.org/10.1111/cts.12884
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32961010&dopt=Abstract
https://europepmc.org/abstract/MED/31883846
http://dx.doi.org/10.1016/j.jaci.2019.12.897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31883846&dopt=Abstract
https://europepmc.org/abstract/MED/31722151
http://dx.doi.org/10.1056/NEJMoa1901183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31722151&dopt=Abstract
https://europepmc.org/abstract/MED/31361300
http://dx.doi.org/10.1093/jamia/ocz112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31361300&dopt=Abstract
http://dx.doi.org/10.1038/s41551-018-0195-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31015713&dopt=Abstract
https://europepmc.org/abstract/MED/32613204
http://dx.doi.org/10.1038/s43018-019-0018-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32613204&dopt=Abstract
http://dx.doi.org/10.3390/app10072216
https://www.mdpi.com/resolver?pii=ijerph20054541
http://dx.doi.org/10.3390/ijerph20054541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36901550&dopt=Abstract
http://dx.doi.org/10.1007/s10926-011-9338-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22038297&dopt=Abstract
https://europepmc.org/abstract/MED/32411026
http://dx.doi.org/10.3389/fpsyt.2020.00323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32411026&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Langeet a

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45,

Terry PE. Workplace health promotion is growing up but confusion remains about what constitutes a comprehensive
approach. Am J Health Promot 2019;33(6):845-849. [doi: 10.1177/0890117119854618] [Medline: 31159555]

Rongen A, Robroek SJW, van Lenthe FJ, Burdorf A. Workplace health promotion: a meta-analysis of effectiveness. Am
JPrev Med 2013;44(4):406-415. [doi: 10.1016/j.amepre.2012.12.007] [Medline: 23498108]

Technical and ethical guidelines for workers' health surveillance. Geneva: International Labor Organization; 1998.

Donisi L, Cesarelli G, Pisani N, Ponsiglione AM, Ricciardi C, Capodaglio E. Wearable sensors and artificial intelligence
for physical ergonomics: a systematic review of literature. Diagnostics (Basel) 2022;12(12):3048 [FREE Full text] [doi:
10.3390/diagnostics12123048] [Medline: 36553054]

Moshawrab M, Adda M, Bouzouane A, Ibrahim H, Raad A. Smart wearables for the detection of occupational physical
fatigue: aliterature review. Sensors (Basel) 2022;22(19):7472 [FREE Full text] [doi: 10.3390/s22197472] [Medline:
36236570]

Dolson CM, Harlow ER, Phelan DM, Gabbett TJ, Gaal B, McMeéllen C, et al. Wearable sensor technology to predict core
body temperature: a systematic review. Sensors (Basel) 2022;22(19):7639 [FREE Full text] [doi: 10.3390/s22197639]
[Medline: 36236737]

Escorpizo R, Theotokatos G, Tucker CA. A scoping review on the use of machine learning in return-to-work studies:
strengths and weaknesses. J Occup Rehabil 2024;34(1):71-86. [doi: 10.1007/s10926-023-10127-1] [Medline: 37378718]
Fong J, Ocampo R, Gross DP, Tavakoli M. Intelligent robotics incorporating machine learning algorithms for improving
functional capacity evaluation and occupational rehabilitation. J Occup Rehabil 2020;30(3):362-370. [doi:
10.1007/s10926-020-09888-w] [Medline: 32253595]

Aggarwa A, Tam CC, Wu D, Li X, Qiao S. Artificial intelligence-based chatbots for promoting health behavioral changes:
systematic review. J Med Internet Res 2023;25:e40789 [FREE Full text] [doi: 10.2196/40789] [Medline: 36826990]
Peters MDJ, Godfrey CM, Khalil H, Mclnerney P, Parker D, Soares CB. Guidance for conducting systematic scoping
reviews. Int J Evid Based Healthc 2015;13(3):141-146. [doi: 10.1097/X EB.0000000000000050] [Medline: 26134548]
Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et a. PRISMA Extension for Scoping Reviews
(PRISMA-SCR): checklist and explanation. Ann Intern Med 2018;169(7):467-473 [FREE Full text] [doi: 10.7326/M 18-0850]
[Medline: 30178033]

Arksey H, O'Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol 2005;8(1):19-32.
[doi: 10.1080/1364557032000119616]

Huang X, Lin J, Demner-Fushman D. Evaluation of PICO as a knowledge representation for clinical questions. AMIA
Annu Symp Proc 2006;2006:359-363 [FREE Full text] [Medline: 17238363]

Sager M, Pistone I. Mismatchesin the production of a scoping review: highlighting the interplay of (in)formalities. JEval
Clin Pract 2019;25(6):930-937. [doi: 10.1111/jep.13251] [Medline: 31368185]

Lange M, Léwe A, Kayser |, Schaller A. Approaches for the use of artificial intelligence in the field of workplace health:
a systematic scoping review. OSF. 2023. URL : https://osf.io/hsu2w/ [accessed 2023-10-06]

Morshed MB, Hernandez J, McDuff D, Suh J, Howe E, Rowan K, et al. Advancing the understanding and measurement
of workplace stressin remote information workersfrom passive sensors and behavioral data. In: 10th International Conference
on Affective Computing and Intelligent Interaction (ACII).: IEEE; 2022 Presented at: 2022 10th International Conference
on Affective Computing and Intelligent Interaction (ACII); October 18-21, 2022; Nara, Japan p. 1-8. [doi:
10.1109/acii55700.2022.9953824]

Cui S, Li C, Chen Z, Wang J, Yuan J. Research on risk prediction of dyslipidemiain steel workers based on recurrent neural
network and LSTM neural network. |EEE Access 2020;8:34153-34161. [doi: 10.1109/access.2020.2974887)
Hungerbuehler |, Daley K, Cavanagh K, Garcia Claro H, Kapps M. Chatbot-based assessment of employees mental health:
design process and pilot implementation. IMIR Form Res 2021;5(4):€21678 [ FREE Full text] [doi: 10.2196/21678] [Medline:
33881403]

Kaiser MS, Mahmud M, Noor MBT, ZeniaNZ, Mamun SA, Mahmud KMA, et a. iWorksafe: towards healthy workplaces
during COVID-19 with an intelligent phealth app for industrial settings. |IEEE Access 2021;9:13814-13828. [doi:
10.1109/access.2021.3050193]

Maxhuni A, Hernandez-Leal P, Morales EF, Sucar LE, Osmani V, Mayora O. Unobtrusive stress assessment using
smartphones. |EEE Trans on Mobile Comput 2021;20(6):2313-2325. [doi: 10.1109/tmc.2020.2974834]

Yan YH, Chien TW, Yeh YT, Chou W, Hsing SC. An app for classifying personal mental illness at workplace using fit
statistics and convolutional neural networks: survey-based quantitative study. IMIR mHealth uHealth 2020;8(7):€17857
[FREE Full text] [doi: 10.2196/17857] [Medline: 32735232]

Dijkhuis TB, Blaauw FJ, van Ittersum MW, Velthuijsen H, Aiello M. Personalized physical activity coaching: a machine
learning approach. Sensors (Basel) 2018;18(2):623 [FREE Full text] [doi: 10.3390/s18020623] [Medline: 29463052]
Anan T, Kgjiki S, OkaH, Fujii T, Kawamata K, Mori K, et a. Effects of an artificial intelligence-assisted health program
on workers with neck/shoulder pain/stiffness and low back pain: randomized controlled trial. IMIR mHealth uHealth
2021;9(9):€27535 [FREE Full text] [doi: 10.2196/27535] [Medline: 34559054]

https://ai.jmir.org/2024/1/€53506 JMIR Al 2024 | vol. 3 | €53506 | p.45

(page number not for citation purposes)


http://dx.doi.org/10.1177/0890117119854618
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31159555&dopt=Abstract
http://dx.doi.org/10.1016/j.amepre.2012.12.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23498108&dopt=Abstract
https://www.mdpi.com/resolver?pii=diagnostics12123048
http://dx.doi.org/10.3390/diagnostics12123048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36553054&dopt=Abstract
https://www.mdpi.com/resolver?pii=s22197472
http://dx.doi.org/10.3390/s22197472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36236570&dopt=Abstract
https://www.mdpi.com/resolver?pii=s22197639
http://dx.doi.org/10.3390/s22197639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36236737&dopt=Abstract
http://dx.doi.org/10.1007/s10926-023-10127-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37378718&dopt=Abstract
http://dx.doi.org/10.1007/s10926-020-09888-w
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32253595&dopt=Abstract
https://www.jmir.org/2023//e40789/
http://dx.doi.org/10.2196/40789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36826990&dopt=Abstract
http://dx.doi.org/10.1097/XEB.0000000000000050
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26134548&dopt=Abstract
https://www.acpjournals.org/doi/abs/10.7326/M18-0850?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.7326/M18-0850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30178033&dopt=Abstract
http://dx.doi.org/10.1080/1364557032000119616
https://europepmc.org/abstract/MED/17238363
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17238363&dopt=Abstract
http://dx.doi.org/10.1111/jep.13251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31368185&dopt=Abstract
https://osf.io/hsu2w/
http://dx.doi.org/10.1109/acii55700.2022.9953824
http://dx.doi.org/10.1109/access.2020.2974887
https://formative.jmir.org/2021/4/e21678/
http://dx.doi.org/10.2196/21678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33881403&dopt=Abstract
http://dx.doi.org/10.1109/access.2021.3050193
http://dx.doi.org/10.1109/tmc.2020.2974834
https://mhealth.jmir.org/2020/7/e17857/
http://dx.doi.org/10.2196/17857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32735232&dopt=Abstract
https://www.mdpi.com/resolver?pii=s18020623
http://dx.doi.org/10.3390/s18020623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29463052&dopt=Abstract
https://mhealth.jmir.org/2021/9/e27535/
http://dx.doi.org/10.2196/27535
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34559054&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Langeet a

46.

47.

48.

49,

50.

51.

52.

53.

55.

56.

57.

58.

59.

60.

61.

62.

63.

65.

Piao M, Ryu H, Lee H, Kim J. Use of the healthy lifestyle coaching chatbot app to promote stair-climbing habits among
office workers: exploratory randomized controlled trial. IMIR mHealth uHealth 2020;8(5):€15085 [FREE Full text] [doi:
10.2196/15085] [Medline: 32427114]

LopesSL, FerreiraAl, PradaR. The use of robotsin the workplace: conclusionsfrom ahealth promoting intervention using
social robots. Int JSoc Robot 2023;15:893-905 [FREE Full text] [doi: 10.1007/s12369-023-01000-5] [Medline: 37359429]
Schachner T, Keller R, V Wangenheim F. Artificial intelligence-based conversational agents for chronic conditions:
systematic literature review. J Med Internet Res 2020;22(9):e20701 [FREE Full text] [doi: 10.2196/20701] [Medline:
32924957]

OgilvieL, Prescott J, Carson J. The use of chatbots as supportive agentsfor peopl e seeking hel p with substance use disorder:
asystematic review. Eur Addict Res 2022;28(6):405-418 [ FREE Full text] [doi: 10.1159/000525959] [Medline: 36041418]
Xiao Z, Liao QV, Zhou M, Grandison T, Li Y. Powering an Al chatbot with expert sourcing to support credible health
information access. In: Proceedings of the 28th International Conference on Intelligent User Interfaces. New York, NY,
United States: Association for Computing Machinery; 2023 Presented at: 28th International Conference on Intelligent User
Interfaces; 27th -31st March 2023; Sydney Australiap. 2-18 URL : https:/iui.acm.org/2023/ [doi: 10.1145/3581641.3584031]
Jovanovic M, Baez M, Casati F. Chatbots as conversational healthcare services. |EEE Internet Comput 2021;25(3):44-51.
[doi: 10.1109/mic.2020.3037151]

Moore PV. OSH and the future of work: benefits and risks of artificia intelligence toolsin workplaces. In: Digital Human
Modeling and Applicationsin Health, Safety, Ergonomics, and Risk Management : 10th International Conference, DHM
2019, Held aspart of the 21st HCI International Conference, HCII 2019. Orlando, FL, USA: Cham: Springer; 2019 Presented
at: HCI International; 26th-31st July 2019; Orlando, Florida, United States of America p. 292-315 URL: https://2019.
hci.international/ [doi: 10.1007/978-3-030-22216-1 22]

Zhang J, Oh YJ, Lange P, Yu Z, Fukuoka Y. Artificial intelligence chatbot behavior change model for designing artificial
intelligence chatbots to promote physical activity and a healthy diet: viewpoint. JMed Internet Res 2020;22(9):€22845
[FREE Full text] [doi: 10.2196/22845] [Medline: 32996892]

Conroy B, Silval, Mehraei G, Damiano R, Gross B, Salvati E, et a. Real-time infection prediction with wearable
physiological monitoring and Al to aid military workforce readiness during COVID-19. Sci Rep 2022;12(1):3797 [FREE
Full text] [doi: 10.1038/s41598-022-07764-6] [Medline: 35260671]

Alberto R, Draicchio F, VarrecchiaT, Silvetti A, lavicoli S. Wearable monitoring devicesfor biomechanical risk assessment
at work: current status and future challenges-a systematic review. Int J Environ Res Public Health 2018;15(9):2001 [FREE
Full text] [doi: 10.3390/ijerph15092001] [Medline: 30217079]

Saarela K, Huhta-Koivisto V, Kemell KK, Nurminen J. Work disability risk prediction using machine learning. In: Daimi
K, Alsadoon A, SeabraDos Reis S, editors. Current and Future Trends in Health and Medical Informatics. Cham: Springer
Nature Switzerland; 2023:345-359.

Zawad MRS, Rony CSA, Haque MY, BannaMHA, Mahmud M, Kaiser MS. A hybrid approach for stress prediction from
heart rate variability. In: Frontiersof ICT in Healthcare: Proceedings of EAIT 2022. Singapore: Springer Nature Singapore;
2023 Presented at: https://www.csikolkata.org/eait2022/7=1; 30th-31st March 2022; Kolkata, Indiap. 111-121. [doi:
10.1007/978-981-19-5191-6_10Q]

Seo W, Kim N, Park C, Park SM. Deep learning approach for detecting work-related stress using multimodal signals. IEEE
Sensors J 2022;22(12):11892-11902. [doi: 10.1109/jsen.2022.3170915]

Nijhawan T, Attigeri G, Ananthakrishna T. Stress detection using natural language processing and machine learning over
socia interactions. J Big Data 2022;9(1):33. [doi: 10.1186/s40537-022-00575-6]

Sarker S, Jamal L, Ahmed SF, Irtisam N. Robotics and artificia intelligence in healthcare during COVID-19 pandemic: a
systematic review. Rob Auton Syst 2021;146:103902 [FREE Full text] [doi: 10.1016/j.robot.2021.103902] [Medline:
34629751]

KumarY, Koul A, SinglaR, ljaz MF. Artificial intelligencein disease diagnosis: asystematic literature review, synthesizing
framework and future research agenda. J Ambient Intell Humaniz Comput 2023;14(7):8459-8486 [ FREE Full text] [doi:
10.1007/s12652-021-03612-z] [Medline: 35039756]

Aggarwal R, Soundergjah V, Martin G, Ting DSW, Karthikesalingam A, King D, et al. Diagnostic accuracy of deep learning
in medical imaging: a systematic review and meta-analysis. NPJ Digit Med 2021;4(1):65 [FREE Full text] [doi:
10.1038/s41746-021-00438-z] [Medline: 33828217]

Faller G. Future challenges for work-related health promotion in Europe: a data-based theoretical reflection. Int J Environ
Res Public Health 2021;18(20):10996 [FREE Full text] [doi: 10.3390/ijerph182010996] [Medline: 34682748]

Robroek SJ, Coenen P, Oude Hengel KM . Decades of workplace health promotion research: marginal gains or a bright
future ahead. Scand JWork Environ Health 2021;47(8):561-564 [FREE Full text] [doi: 10.5271/sjweh.3995] [Medline:
34655223]

Pescud M, Ted R, Shilton T, Slevin T, Ledger M, Waterworth P, et al. Employers views on the promotion of workplace
health and wellbeing: a qualitative study. BMC Public Health 2015;15:642 [FREE Full text] [doi:
10.1186/s12889-015-2029-2] [Medline: 26162910]

https://ai.jmir.org/2024/1/€53506 JMIR Al 2024 | vol. 3 | €53506 | p.46

(page number not for citation purposes)


https://mhealth.jmir.org/2020/5/e15085/
http://dx.doi.org/10.2196/15085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32427114&dopt=Abstract
https://europepmc.org/abstract/MED/37359429
http://dx.doi.org/10.1007/s12369-023-01000-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37359429&dopt=Abstract
https://www.jmir.org/2020/9/e20701/
http://dx.doi.org/10.2196/20701
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32924957&dopt=Abstract
https://doi.org/10.1159/000525959
http://dx.doi.org/10.1159/000525959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36041418&dopt=Abstract
https://iui.acm.org/2023/
http://dx.doi.org/10.1145/3581641.3584031
http://dx.doi.org/10.1109/mic.2020.3037151
https://2019.hci.international/
https://2019.hci.international/
http://dx.doi.org/10.1007/978-3-030-22216-1_22
https://www.jmir.org/2020/9/e22845/
http://dx.doi.org/10.2196/22845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32996892&dopt=Abstract
https://doi.org/10.1038/s41598-022-07764-6
https://doi.org/10.1038/s41598-022-07764-6
http://dx.doi.org/10.1038/s41598-022-07764-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35260671&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph15092001
https://www.mdpi.com/resolver?pii=ijerph15092001
http://dx.doi.org/10.3390/ijerph15092001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30217079&dopt=Abstract
http://dx.doi.org/10.1007/978-981-19-5191-6_10
http://dx.doi.org/10.1109/jsen.2022.3170915
http://dx.doi.org/10.1186/s40537-022-00575-6
https://europepmc.org/abstract/MED/34629751
http://dx.doi.org/10.1016/j.robot.2021.103902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34629751&dopt=Abstract
https://europepmc.org/abstract/MED/35039756
http://dx.doi.org/10.1007/s12652-021-03612-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35039756&dopt=Abstract
https://doi.org/10.1038/s41746-021-00438-z
http://dx.doi.org/10.1038/s41746-021-00438-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33828217&dopt=Abstract
https://www.mdpi.com/resolver?pii=ijerph182010996
http://dx.doi.org/10.3390/ijerph182010996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34682748&dopt=Abstract
https://www.sjweh.fi/article/3995
http://dx.doi.org/10.5271/sjweh.3995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34655223&dopt=Abstract
https://bmcpublichealth.biomedcentral.com/articles/10.1186/s12889-015-2029-2
http://dx.doi.org/10.1186/s12889-015-2029-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26162910&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Langeet a

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

85.

86.

87.

88.

McCoy K, Stinson K, Scott K, Tenney L, Newman LS. Health promotion in small business: a systematic review of factors
influencing adoption and effectiveness of worksite wellness programs. J Occup Environ Med 2014;56(6):579-587 [FREE
Full text] [doi: 10.1097/JOM.0000000000000171] [Medline: 24905421]

Work-related M SDs: prevalence, costs and demographics in the EU. European Risk Observatory Executive summary.
Luxembourg: European Agency for Safety and Health at Work (EU-OSHA); 2019. URL: https://osha.europa.eu/sites/
default/files’'Work_related MSDs prevalence costs and_demographics in EU_summary.pdf [accessed 2024-07-30]
van der Put AC, Mandemakers JJ, de Wit JBF, van der Lippe T. Worksite health promotion and social inequalitiesin health.
SSM Popul Health 2020;10:100543 [FREE Full text] [doi: 10.1016/j.ssmph.2020.100543] [Medline: 32021901]

Wang X, Cheng Z. Cross-sectional studies: strengths, weaknesses, and recommendations. Chest 2020;158(1S):S65-S71.
[doi: 10.1016/j.chest.2020.03.012] [Medline: 32658654]

Ng MY, Kapur S, Blizinsky KD, Hernandez-Boussard T. The Al life cycle: aholistic approach to creating ethical Al for
health decisions. Nat Med 2022;28(11):2247-2249 [ FREE Full text] [doi: 10.1038/s41591-022-01993-y] [Medline: 36163298]
Challen R, Denny J, Pitt M, GompelsL, Edwards T, Tsaneva-Atanasova K. Artificial intelligence, bias and clinical safety.
BMJQual Saf 2019;28(3):231-237 [FREE Full text] [doi: 10.1136/bmjgs-2018-008370] [Medline: 30636200]

Lepakshi VA. Machine learning and deep learning based Al toolsfor development of diagnostic tools. In: Parihar A, Khan
R, Kumar A, Kaushik A, Gohel H, editors. Computational Approaches for Novel Therapeutic and Diagnostic Designing
to Mitigate SARS-CoV-2 Infection. Cambridge, Massachusetts, United States: Academic Press; 2022:399-420.

Gross DR, Zhang J, Steenstral, Barndey S, Haws C, Amell T, et al. Development of a computer-based clinical decision
support tool for selecting appropriate rehabilitation interventionsfor injured workers. JOccup Rehabil 2013;23(4):597-609.
[doi: 10.1007/s10926-013-9430-4] [Medline: 23468410]

Gross DP, Steenstral A, Shaw W, Yousefi P, Bellinger C, Zaiane O. Validity of the work assessment triage tool for selecting
rehabilitation interventions for workers' compensation claimants with muscul oskeletal conditions. J Occup Rehabil
2020;30(3):318-330. [doi: 10.1007/s10926-019-09843-4] [Medline: 31267266]

Janssen M, Brous P, Estevez E, Barbosa LS, Janowski T. Data governance: organizing data for trustworthy artificial
intelligence. Gov Inf Q 2020;37(3):101493. [doi: 10.1016/j.9ig.2020.101493]

Liang W, Tadesse GA, Ho D, Fei-Fei L, ZahariaM, Zhang C, et a. Advances, challenges and opportunities in creating
datafor trustworthy Al. Nat Mach Intell 2022;4(8):669-677. [doi: 10.1038/s42256-022-00516-1]

Braithwaite J, Herkes J, Ludlow K, Testa L, Lamprell G. Association between organisational and workplace cultures, and
patient outcomes: systematic review. BMJOpen 2017;7(11):€017708 [FREE Full text] [doi: 10.1136/bmjopen-2017-017708]
[Medline: 29122796]

Shanafelt TD, Gorringe G, Menaker R, Storz KA, Reeves D, Buskirk SJ, et al. Impact of organizational leadership on
physician burnout and satisfaction. Mayo Clin Proc 2015;90(4):432-440. [doi: 10.1016/j.mayocp.2015.01.012] [Medline:
25796117)

Xueyun Z, Al Mamun A, Masukujjaman M, Rahman MK, Gao J, Yang Q. Modelling the significance of organizational
conditions on quiet quitting intention among Gen Z workforce in an emerging economy. Sci Rep 2023;13(1):15438 [FREE
Full text] [doi: 10.1038/s41598-023-42591-3] [Medline: 37723179]

Ali Shah SA, Uddin |, Aziz F, Ahmad S, Al-Khasawneh MA, Sharaf M. An enhanced deep neural network for predicting
workplace absenteeism. Complexity 2020;2020:1-12. [doi: 10.1155/2020/5843932]

Su TH, Wu CH, Kao JH. Artificial intelligence in precision medicine in hepatology. J Gastroenterol Hepatol
2021;36(3):569-580. [doi: 10.1111/jgh.15415] [Medline: 33709606]

Schafer KM, Kennedy G, Gallyer A, Resnik P. A direct comparison of theory-driven and machine learning prediction of
suicide: ameta-analysis. PLoS One 2021;16(4):€0249833 [ FREE Full text] [doi: 10.1371/journal .pone.0249833] [Medline:
33844698]

Sallam M. ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives
and valid concerns. Healthcare (Basel) 2023;11(6):887 [FREE Full text] [doi: 10.3390/healthcare11060887] [Medline:
36981544]

Purgato M, Singh R, Acarturk C, Cuijpers P. Moving beyond a'one-size-fits-all' rationale in global mental health: prospects
of aprecision psychology paradigm. Epidemiol Psychiatr Sci 2021;30:e63 [FREE Full text] [doi:
10.1017/S2045796021000500] [Medline: 34632978]

Becker S, Miron-Shatz T, Schumacher N, Krocza J, Diamantidis C, Albrecht UV. mHealth 2.0: experiences, possibilities,
and perspectives. IMIR mHealth uHealth 2014;2(2):e24 [FREE Full text] [doi: 10.2196/mhealth.3328] [Medline: 25099752]
Elston DM. The novelty effect. JAm Acad Dermatol 2021;85(3):565-566. [doi: 10.1016/j.jaad.2021.06.846] [Medline:
34153390]

Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artif Intell Healthcare
2020:295-336. [doi: 10.1016/b978-0-12-818438-7.00012-5]

RodriguesR. Legal and human rightsissuesof Al: gaps, challenges and vulnerabilities. JResponsible Technol 2020;4:100005.
[doi: 10.1016/}.jrt.2020.100005]

https://ai.jmir.org/2024/1/€53506 JMIR Al 2024 | vol. 3 | €53506 | p.47

(page number not for citation purposes)


https://europepmc.org/abstract/MED/24905421
https://europepmc.org/abstract/MED/24905421
http://dx.doi.org/10.1097/JOM.0000000000000171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24905421&dopt=Abstract
https://osha.europa.eu/sites/default/files/Work_related_MSDs_prevalence_costs_and_demographics_in_EU_summary.pdf
https://osha.europa.eu/sites/default/files/Work_related_MSDs_prevalence_costs_and_demographics_in_EU_summary.pdf
https://linkinghub.elsevier.com/retrieve/pii/S2352-8273(19)30260-5
http://dx.doi.org/10.1016/j.ssmph.2020.100543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32021901&dopt=Abstract
http://dx.doi.org/10.1016/j.chest.2020.03.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32658654&dopt=Abstract
https://europepmc.org/abstract/MED/36163298
http://dx.doi.org/10.1038/s41591-022-01993-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36163298&dopt=Abstract
http://qualitysafety.bmj.com/lookup/pmidlookup?view=long&pmid=30636200
http://dx.doi.org/10.1136/bmjqs-2018-008370
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30636200&dopt=Abstract
http://dx.doi.org/10.1007/s10926-013-9430-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23468410&dopt=Abstract
http://dx.doi.org/10.1007/s10926-019-09843-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31267266&dopt=Abstract
http://dx.doi.org/10.1016/j.giq.2020.101493
http://dx.doi.org/10.1038/s42256-022-00516-1
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=29122796
http://dx.doi.org/10.1136/bmjopen-2017-017708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29122796&dopt=Abstract
http://dx.doi.org/10.1016/j.mayocp.2015.01.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25796117&dopt=Abstract
https://doi.org/10.1038/s41598-023-42591-3
https://doi.org/10.1038/s41598-023-42591-3
http://dx.doi.org/10.1038/s41598-023-42591-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37723179&dopt=Abstract
http://dx.doi.org/10.1155/2020/5843932
http://dx.doi.org/10.1111/jgh.15415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33709606&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0249833
http://dx.doi.org/10.1371/journal.pone.0249833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33844698&dopt=Abstract
https://www.mdpi.com/resolver?pii=healthcare11060887
http://dx.doi.org/10.3390/healthcare11060887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36981544&dopt=Abstract
https://europepmc.org/abstract/MED/34632978
http://dx.doi.org/10.1017/S2045796021000500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34632978&dopt=Abstract
https://mhealth.jmir.org/2014/2/e24/
http://dx.doi.org/10.2196/mhealth.3328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25099752&dopt=Abstract
http://dx.doi.org/10.1016/j.jaad.2021.06.846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34153390&dopt=Abstract
http://dx.doi.org/10.1016/b978-0-12-818438-7.00012-5
http://dx.doi.org/10.1016/j.jrt.2020.100005
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Langeet a

89. Andrasko J, Mesarcik M, Hamulak O. The regulatory intersections between artificial intelligence, data protection and cyber
security: challenges and opportunities for the EU legal framework. Al Soc 2021;36(2):623-636. [doi:
10.1007/s00146-020-01125-5]

90. Schonberger D. Artificial intelligencein healthcare: acritical analysis of the legal and ethical implications. Int J Law Inf
Technol 2019;27(2):171-203. [doi: 10.1093/braincomms/fcae?42] [Medline: 39051028]

91. Fischer L, Ehrlinger L, Geist V, Ramler R, Sobiezky F, Zellinger W, et al. Al system engineering—key challenges and
lessons learned. MAKE 2021;3(1):56-83. [doi: 10.3390/make3010004]

92. IbrahimH, Liu X, Denniston AK. Reporting guidelinesfor artificial intelligencein healthcare research. Clin Exp Ophthalmol
2021;49(5):470-476. [doi: 10.1111/ce0.13943] [Medline: 33956386]

Abbreviations

Al: artificial intelligence

DL : deep learning

ML: machine learning

NL P: natural language processing

OSF: Open Science Framework

OSH: occupational safety and health

PICO: patient or population, intervention, comparison, and outcomes
PRISMA-ScR: Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping
Reviews

RQ: research question

RTW: return-to-work

WHPP: workplace health promotion and prevention

Edited by JL Raisaro; submitted 09.10.23; peer-reviewed by M ljaz, C Ordun; comments to author 12.12.23; revised version received
02.01.24; accepted 10.07.24; published 20.08.24.

Please cite as:

Lange M, Lowe A, Kayser |, Schaller A

Approaches for the Use of Al in Workplace Health Promotion and Prevention: Systematic Scoping Review
JMIR Al 2024;3:e53506

URL: https://ai.jmir.org/2024/1/€53506

doi: 10.2196/53506

PMID: 38989904

©Martin Lange, Alexandra L 6we, InaKayser, Andrea Schaller. Originally published in IMIR Al (https://ai.jmir.org), 20.08.2024.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in IMIR Al, is properly cited. The complete bibliographic information, alink to the
original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

https://ai.jmir.org/2024/1/€53506 JMIR Al 2024 | vol. 3| 53506 | p.48
(page number not for citation purposes)

RenderX


http://dx.doi.org/10.1007/s00146-020-01125-5
http://dx.doi.org/10.1093/braincomms/fcae242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=39051028&dopt=Abstract
http://dx.doi.org/10.3390/make3010004
http://dx.doi.org/10.1111/ceo.13943
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33956386&dopt=Abstract
https://ai.jmir.org/2024/1/e53506
http://dx.doi.org/10.2196/53506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38989904&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Ojhaet d

Review

Exploring Machine Learning Applications in Pediatric Asthma
Management: Scoping Review

Tanvi Ojha™?, BSc; Atushi Patel, HBSc; Krishihan Sivapragasam®, M Sc; Radha Sharma®?, HBSc; Tina Vosoughi®,
HBSc; Becky Skidmore®, MLS; Andrew D Pinto*>®, MD, M Sc; Banafshe Hosseini**®, MSc, PhD

1Up$ream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
2Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada

3 ndependent |nformation Specialist, Ottawa, ON, Canada

4Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, ON, Canada

5Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada

®Division of Clinical Public Headlth & Institute for Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of
Toronto, Toronto, ON, Canada

Corresponding Author:

Banafshe Hosseini, MSc, PhD

Upstream Lab, MAP Centre for Urban Health Solutions
Li Ka Shing Knowledge Institute

St. Michael’s Hospital

30 Bond Street

Toronto, ON, M5B 1W8

Canada

Phone: 1 416 864 6060 ext 76148

Email: benita.hosseini @unityhealth.to

Abstract

Background: The integration of machine learning (ML) in predicting asthma-related outcomes in children presents a novel
approach in pediatric health care.

Objective: This scoping review aims to analyze studies published since 2019, focusing on ML algorithms, their applications,
and predictive performances.

Methods: We searched Ovid MEDLINE ALL and Embase on Ovid, the Cochrane Library (Wiley), CINAHL (EBSCO), and
Web of Science (core collection). The search covered the period from January 1, 2019, to July 18, 2023. Studies applying ML
models in predicting asthma-related outcomes in children aged <18 years were included. Covidence was used for citation
management, and the risk of bias was assessed using the Prediction Model Risk of Bias Assessment Tool.

Results: From 1231 initia articles, 15 met our inclusion criteria. The sample size ranged from 74 to 87,413 patients. Most
studies used multiple ML techniques, with logistic regression (n=7, 47%) and random forests (n=6, 40%) being the most common.
Key outcomes included predicting asthma exacerbations, classifying asthma phenotypes, predicting asthma diagnoses, and
identifying potential risk factors. For predicting exacerbations, recurrent neural networks and X GBoost showed high performance,
with XGBoost achieving an area under the receiver operating characteristic curve (AUROC) of 0.76. In classifying asthma
phenotypes, support vector machines were highly effective, achieving an AUROC of 0.79. For diagnosis prediction, artificial
neural networks outperformed logistic regression, with an AUROC of 0.63. To identify risk factors focused on symptom severity
and lung function, random forests achieved an AUROC of 0.88. Sound-based studies di stinguished wheezing from nonwheezing
and asthmatic from normal coughs. The risk of bias assessment revealed that most studies (n=8, 53%) exhibited low to moderate
risk, ensuring a reasonable level of confidence in the findings. Common limitations across studies included data quality issues,
sample size constraints, and interpretability concerns.

Conclusions: Thisreview highlights the diverse application of ML in predicting pediatric asthma outcomes, with each model
offering unique strengths and challenges. Future research should address data quality, increase sample sizes, and enhance model
interpretability to optimize ML utility in clinical settings for pediatric asthma management.

(IMIR Al 2024;3:€57983) doi:10.2196/57983
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Introduction

Background

Asthmais characterized by inflammation and narrowing of the
airways, leading to recurring episodes of wheezing,
breathlessness, coughing, and chest tightness. As the most
prevalent chronic childhood condition, asthma affects
approximately 14% of children worldwide [1,2] and ranks
among the top conditions for disability-adjusted life years in
children [3]. Severe asthma exacerbations, defined as those
requiring systemic corticosteroids, emergency department (ED)
visits, or hospitalization, are not only the primary cause of urgent
health carevisits, hospitalizations, and asthma-related mortality
in children but contribute to asthmarelated morbidity and
mortality in children, incurring substantial treatment costs[4,5].

Risk factorsfor asthma exacerbations are multifaceted, ranging
from socioeconomic factors to environmental exposures. Low
income, residing in areas of concentrated poverty, limited access
to hedth care providers, and high medication costs are
significant contributors [6-8]. In addition, factors such as
systemic and interpersonal racial and ethnic discrimination,
suboptimal asthma control, and environmental triggers play a
crucia role in exacerbation development [9,10]. Specifically,
aeroallergen exposure or sensitization and concurrent viral
infections have been shown to significantly increase
exacerbation risks [11-13]. Given this complex interplay of
factors, accurately predicting severe asthma exacerbations in
children remains a challenge. Accurate prediction of children
at risk for severe exacerbations can facilitate preemptive care
strategies, reduce morbidity, and enhance the quality of life of
those affected [14].

Machinelearning (ML), abranch of artificial intelligence (Al),
emerges as a promising tool. A range of supervised learning
techniques, such aslinear and logistic regression, decision trees,
and classifier methods, including support vector machines
(SVMs) and gradient boosting, are used to predict specific data
categories (eg, asthmatic vs nonasthmatic) or continuous
variables (eg, lung function measurements) [15]. In contrast,
unsupervised learning techniques, such as k-means clustering
and hierarchical clustering, are used to develop models that
enable the clustering of the data [15]. ML's ability to analyze
data and identify patterns has already shown successin various
medical  applications, including  electrocardiography
interpretation, heart failure classification, and diabetes outcome
prediction [16-18]. In asthma management, Al has been
instrumental in diagnosis, severity classification, and even in
predicting asthma-related hospitalization risks at emergency
encounters [19-22]. Severa studies have investigated the role
of Al inmonitoring asthma exacerbations. Real-time assessment
tools using environmental and physiological sensors have
demonstrated notable accuracy in predicting exacerbations[23].
Contactless bed sensors for nocturnal data collection have also
shown promise in detecting exacerbations [24]. In addition,
Al-assisted clinical decision support tools, such asthe Asthma

https:/ai jmir.org/2024/1/e57983

Guidance and Prediction System, have been evaluated for their
efficacy in reducing exacerbation frequency in children [25].

Recent advancementsin ML offer promising toolsfor predicting
asthmaexacerbations. A previous systematic review highlighted
the moderate predictive performance of traditional models, with
emerging ML approaches showing potentia for enhancing
prediction accuracy [26]. Similarly, another recent systematic
review and meta-analysis of 11 studies, focusing on participants
aged =5 yearswith preexisting asthmadiagnoses, demonstrated
good discrimination. The overall pooled areaunder thereceiver
operating characteristic curve (AUROC) was 0.80 (95% CI
0.76-0.83), and the diagnostic odds ratio was 7.02 (95% CI
5.20-9.47), indicating that ML-based prediction models for
asthma exacerbation could achieve substantial accuracy [27].
Notably, of the 11 studies included in the 2022 systematic
review, 6 (55%) were conducted after 2019, indicating
considerable advancements in a short period [27]. However,
these studies focused on participants aged >5 years, leaving a
gapinresearch for younger children [27]. Therefore, our scoping
review aims to focus exclusively on studies conducted since
2019 that applied ML in predicting asthma exacerbations in
children aged <18 years.

Objectives

Weintend to consolidate current knowledge by examining recent
studies. Thisincludes describing the types of predictive models
developed, their applications in various settings, and the
populations targeted and evaluating their performancein terms
of accuracy, sensitivity, and specificity. Thistargeted approach
will provideinsightsinto the latest ML advancements and their
potential to enhance pediatric asthma care.

Methods

Search Strategy

We registered this systematic review with PROSPERO
(CRD42023440928) and have used the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) to guide our reporting.

Search Strategy and Eligibility Criteria

An experienced information specialist (BS) developed and tested
the search strategiesin an iterative processin consultation with
the review team. The MEDLINE strategy was peer reviewed
by another senior information specialist before execution using
the Peer Review of Electronic Search Strategies checklist [28].
Using the multifile and deduplication tool available on the Ovid
platform, we searched Ovid MEDLINE ALL and Embase
ClassictEmbase. We aso searched the Cochrane Library
(Wiley), CINAHL (EBSCO), and Web of Science (core
collection). All searches were performed on July 18, 2023. In
addition, the reference lists of retrieved articles and relevant
reviews were searched to identify other relevant studies.

The strategies used acombination of controlled vocabulary (eg,
“Asthma,” “Artificial Intelligence,” and “Risk Assessment”)
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and keywords (eg, asthma, deep learning, and prognosis). There
were no language restrictions on any of the searches, but results
werelimited to the publication years 2019 to the present. When
possible, animal-only records, opinion pieces, and other
irrelevant publication types (eg, case studies and conferences)
were removed (refer to Multimedia Appendix 1 for strategies).
Records were downloaded and deduplicated using EndNote
(version 9.3.3; Clarivate Analytics) and uploaded to Covidence
(Veritas Health Innovation [29]) for efficient data management,
extraction, and synthesis.

All studies were required to meet the eligibility criteria
concerning the research focus, at both title/abstract and full-text
screening: (1) in-vivo studies (human-based) that applied ML
techniques to predict asthma-related outcomes, (2) participants
aged <18 years, and (3) reported original data. The inclusion
criteriawere not limited to any specific study design to ensure
inclusivity; hence, all available evidence from any study design
was captured. Therewere no language restrictionsfor the studies
reviewed. Studieswere excluded if they were (1) in vitro studies
(conducted on cellular substrates); (2) not focused on ML
techniquesto predict asthma-related outcomes; and (3) reviews,
systematic reviews, opinions, editorials, and/or case reports.

Data Collection

Covidence was used throughout the review to manage citations.
We engaged and trained several individuals to assist with
reviewing citations (AP, RS, TO, and TV). During both parts
of the screening process, the reviewers used the eligibility
criteriato evaluate and determine the inclusion or exclusion of
studies, which were then reported in Covidence. Thefirst-level
screening consisted of title and abstract screening of all uploaded
studies. Each citation was reviewed by 2 people independently
to select studies for full-text review (RS and TO). If the
eligibility criteria were met completely, as assessed by both
reviewers, the studies were included. If studies did not meet
eligibility criteria, as determined by both reviewers, they were
excluded. Any citations in which there was a difference in
opinion were brought to the study team to discuss, and a third
reviewer decided on inclusion or exclusion (AP and TV).
Second-level screening involved a thorough assessment of all
the studies that passed theinitial screening on the basis of their
title and abstracts, performed independently by 2 reviewers (RS
and TO). An additional second-level review was performed by
a solo reviewer (AP), who excluded any studies that did not
meet the same eligibility criteria in the primary step and were
considered ineligible. The final set of studies included in this
scoping review includes only those that passed the full-text
screening process. Two members of the study team (RS and
TO) independently assisted with data extraction, with each study
being extracted once. Subsequently, a comparison check was
performed on each extracted study by athird reviewer (AP).

The following data were extracted: authors, title, journal,
publication year, funding source, ML application types, the
intended purpose of ML application, identification of any
potential bias in the ML model design (if applicable), bias
mitigation strategies (if applicable), study design, research
question/study objective, primary and secondary outcomes,
country, demographics, sample size, youth age groups, the unit
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of analysis (individuals, groups, etc), data source (electronic
medical records, databases, claims data, and health surveys),
results, limitations, future research requirements (if applicable),
use for clinical applications, and performance metrics
(regression and classification). We noted if theinformation from
an article was unavailable. A summary of the extracted
information was recorded in Table S1 in Multimedia Appendix
2[25,30-43].

Risk of Bias Assessment

To assess the risk of bias, we used the Prediction Model Risk
of Bias Assessment Tool (PROBAST) [44] and the guidelines
for developing and reporting ML predictive models in
biomedical research [45].

Data Synthesis

In this review, we used a narrative synthesis to thoroughly
review and summarize the objectives, ML algorithms, and
clinical relevance of each study. We focused on how these
studiesused ML to predict asthma-rel ated outcomesin children,
detailing the different ML algorithms, such as random forests
(RFs), logistic regression, and neural networks, that were used
and how they were applied. We organized the studies using the
ML techniques they used and gathered key performance
measures, such as accuracy, sensitivity, and specificity for each
one. We also noted studies that used >1 ML method and
identified and documented common limitations found within
the studies, such as small sample sizes and generalizability
issues.

Results

Study Selection and Char acteristics

Our initial screening involved 1231 articles, from which 12
duplicateswere removed using EndNote. Thiswasfollowed by
aprimary screening that resulted in theinclusion of 102 studies.
Upon secondary screening, 87 of these were excluded, leaving
15 articles that met our criteria for this review. The selection
processis detailed in Figure 1.

The included studies, published between 2019 and 2023,
predominantly came out in 2021 [25,30-43]. They originated
from various countries, including the United States (n=10, 67%)
[25,30,32,34,35,38,39,41-43], Germany (n=1, 7%) [40], New
Zedland (n=1, 7%) [31], Japan (n=1, 7%) [36], the United
Kingdom (n=1, 7%) [33], and Singapore (n=1, 7%) [37]. Sample
sizesin these studiesranged from 74 to 87,413 pediatric patients,
indicating awide variation in the popul ation sizes examined.

Table S1 in Multimedia Appendix 2 provides a comprehensive
summary of the key data extracted from each included study.
Most of these studies (n=9, 60%) implemented multiple ML
techniques [30-34,38-40,43]. Logistic regression (n=7, 47%)
and RFs (n=6, 40%) were the most commonly studied
techniques [30-35,38-40,43]. This was followed by gradient
boosting (n=4, 27%) [ 31,32,39,40] and artificial neural networks
(ANNs; n=3, 20%) [30,38,41]. Decision trees (n=2, 13%)
[34,36], natural language processing (NLP) models (n=2, 13%)
[25,42], and Gaussian mixture models (n=1, 7%) [37] were the
least frequent techniques used. Regarding study design,
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retrospective cohort studies were predominant (n=9, 60%)

Ojhaet d

on the various ML models applied in the prediction of asthma

[30-32,35,38,39,41-43], with a smaller proportion being exacerbations and related outcomes in children is provided in
prospective cohorts (n=5, 33%) [33,34,36,37,40] and asingle Tables S2-S8 in Multimedia Appendix 2.

randomized controlledtrial (n=1, 7%) [25]. Detailed information

Figure 1. The selection process of eligible studies from al identified citations. ML: machine learning.
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Quality Assessments

Therisk of biasin the included studies was assessed using the
PROBAST tool [44]. Our analysis revealed that most studies
(n=8, 53%) exhibited a low risk of bias [30-32,34-36,40,41],
indicating robust methodol ogies and reporting. However, some
studies (n=3, 20%) were classified with an unclear risk
[33,37,42] because of insufficient detail in certain aspects,
whereas a few studies (n=4, 27%) were identified as high risk
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RenderX

Irrelevant publication types (eg, case studies,
opinion pieces, reviews) (n=16)

Not evaluating asthma/asthma exacerbations
(n=29)

Adult population (n=34)

[38,39,42,43], suggesting potential issues affecting their
reliability. Studies classified as unclear or high risk often faced
issues such as inconsistent definitions of outcomes across
participants, outcome assessments influenced by prior
knowledge of the predictors, or poorly specified inclusion and
exclusion criteriafor participants. Detailed breakdowns of each
study’s bias assessment are presented in Figure 2, and a
summary of the overall risk across all studies is depicted in
Figure 3.
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Figure 2. Risk of bias summary based on the Prediction Model Risk of Bias Assessment Tool quality assessment tool for included studies[25,30-43].
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Figure 3. Summary of the risk of bias assessment.
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ML Modelsin Pediatric Asthma: Predictive and
Diagnostic Applications

Table 1 outlinesthe primary outcomes and the ML models used
acrosstheincluded studies. For predicting asthma exacerbations,
the outcomesincluded any asthma-rel ated health care encounter
(outpatient visits, ED visits, and hospitalizations) or a
prescription for a systemic steroid [25,30,35,38,39,43]. In
classifying asthma phenotypes, the outcomes were the
identification of allergic versus nonallergic asthma and the
differentiation between mild and moderate-severe asthma
[31,40,42]. For asthmadiagnosis prediction, the outcomeswere

https://ai.jmir.org/2024/1/e57983
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RenderX

the prediction of an asthma diagnosis and the calculation of a
pediatric asthma score (PAS) [32,41]. Studies identifying
potential risk factors for asthma-related outcomes focused on
outcomes, including the severity of symptoms and lung function,
considering factors such as family history, medical history, and
environmental triggers[33,34]. In sound-based diagnosis studies,
the outcomes included the identification of wheezing versus
nonwheezing sounds and the differentiation between asthmatic
and normal coughs [36,37]. Features commonly used across
studies include demographic data, such as sex, age, and race,
despite significant variations in ML models and outcomes
[25,30,35,38,39,43].
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Table 1. Application of ML? modelsin pediatric asthma management through predictive and diagnostic modalities.

Category Outcome

Primary ML models

Prediction of asthma exacerbations
[25,30,35,38,39,43]

tion for a systemic steroid

Classification of asthma phenotypes
[31,40,42]

Asthma diagnosis prediction [32,41]

asthma

Identification of potential risk factors
for asthma [33,34]

Any encounter (outpatients, EDP visits, and hospitalization)
with an asthma-related |CD-9 or |CD-10° code or a prescrip-

Allergic vs nonallergic asthmaand mild vs moderate-severe
Prediction of asthma diagnosis and PAS?

Potential risk factors (such asfamily hxi, medical hx, and en-
vironmental triggers) for asthmarrel ated outcomes (including

Neura networks, LASSOY regression, RFs®,
XGBoogt, and natural language processing

SVMs and stochastic gradient boosting

XGBoost, ANNS", and natural language pro-
cessing

K-means clustering, RFs, and decision tree

symptom severity and lung function)

Sound-based asthma or wheezing diag-
nosis [36,37]

| dentification of wheezing vs nonwheezing sounds and differ-
entiation between asthmatic and normal coughs

Decision trees and Gaussian mixture models

3ML: machine learning.
beD: emergency department.

%ICD-9 or ICD-10: International Classification of Diseases, 9th or 10th revisions.

4L ASSO: least absolute shrinkage and selection operator.
®RF: random forest.

fsvm: support vector machine.

9PAS: pediatric asthma score.

PANN: artificial neural network.

hx: history.

Table 2 provides a detailed summary of the predictors, clinical
outcomes, and models used in theincluded studies. Studieshave
consistently used demographic data to predict asthma
exacerbations. However, featuresrelated to medical history and
health care use varied across the studies. Some studies focused
on prescribed inhaled or oral steroids, previous health care use,
and presence of moderate to severe asthma [25,30,35,39]. In
contrast, others included variables such as time to triage, time
to first medication and asthma medication, ED hourly volume,
and patient disposition, including admitted or discharged [43].
Notably, some studies incorporated hospital characteristics,
such as ownership (private vs public sector), teaching status,
and size, dong with family history factors such as acohol or
drug issuesor housing instability [38]. Health insurance presence
and type were also examined [39]. The models used in these
studies included neural networks, least absolute shrinkage and
selection operator regression, RFs, XGBoost, and NLP. The
modelswere eval uated using metrics such as AUROC, accuracy,
F;-score, precision, recall, and specific measures such as mean
average negative predictive value (NPV). The best-performing
models varied by application. Recurrent neural networks [30]
and XGBoost showed high performance in predicting asthma
exacerbations, with XGBoost achieving an AUROC of 0.761
[39]. ANNSs outperformed logistic regression in predicting
hospital readmissions, achieving an AUROC of 0.637[38]. RFs
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were particularly effective in predicting hospitalization needs,
with an AUROC of 0.886 [43].

A variety of demographicsand clinica characteristicswere used
to differentiate between alergic and nonallergic asthma
[31,40,42]. Key demographic variables included age, sex,
weight, and race. Clinical parameters such as C-reactive protein
levels, eosinophilic granulocytes, and oxygen saturation were
alsoincluded in some studies[31]. Genetic markers, specifically
protein kinase N2 and protein tyrosine kinase 2, along with
breastfeeding duration, were also evaluated for their roles in
asthma phenotypes [40]. In addition, some studies evaluated
risk factors such as home conditions (eg, presence of carpets,
home location and year, and animal triggers) and school
characteristics, and home-related ventilators were considered
to assess indoor environmental impacts on asthma [34]. ML
models (eg, RFs, SVMs, gradient boosting, and decision trees)
were used to analyze these variables. The most effective models
varied across studies. Metrics such as AUROC, accuracy,
precision, true positive rate, true negative rate, F;-score,
prevalence ratios, and |QRs were used to evaluate the models
performance. SVMs demonstrated high performance with
metrics, including an accuracy of 77.8%, precision of 0.81, and
an AUROC of 0.79. Stochastic gradient boosting achieved an
AUROC of 0.81, highlighting its efficacy in incorporating
genetic markers and breastfeeding duration.
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Table 2. Summary of theincluded studies on ML applications in pediatric asthma: predictors, clinical outcomes, and models,
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Study Potential predictors, variables of inter- ~ Metrics Datasource  Outcomes ML models
ests-grouped
AlSaad eta  Demographic data, medication use, AUROCb (0.85), AUCC_de EHRs® Frequency of EDf use Deep learning:
[30], 2022 hedlth service use, clinical parameters  (.74), and F;-score (0.61) (number of visitsmadeby ~ recurrent neural
and characteristics (comorbid illnesses), pediatric patients during a networks
and insurance information 1-year predication window)
Bhardwaj et Demographic data (age and weight) and  g\/\m9 differentiated be- EHRs Classify predominantly dler-  gredh extreme
al [31],2023 clinical parameters and characteristics  tyyeen alergic and nonaller- gic asthma and nonallergic gradient boost-
(C-reactive protein, eosinophilic granu- gic asthma most well: accu- asthma among preschool ing, SVMs,
locytes, oxygen saturation, premedica- racy (77.8%), precision children adaptive boost-
tion inhaled corticosteroid+long-acting  (0.81), true positive rate ing, extratree
B-2 agonist, other premedication, Pulmi- (0 73) true negative rate classifier, and
cort or celestamine during hospitaliza- (0 81), F;-score (0.81), and logistic regres-
'_[lon_, and azithromycin during hospital- AUROC (0.79); because of sion
ization) the imbal ance between both
groups, a stratified 10-fold
cross-validation was used
Boseet al Demographic data (race, sex, ethnicity, Mean ANSA, median EHRs Occurrence of asthmadiag- Naive Bayes,
[32],2021  and language spoken), geographic loca= ANSA, precision, recall, nosis by the age of 10 years K-nearest
tion (state of residency at the time of F1-score, and accuracy; following an asthmainci- neighbors, logis-
their first asthma diagnosis), insurance X GBoost presented the best dent tic regression,
information (Medicaid enrollment), care mean ANSAJ: mean ANSA RFs, and XG-
site information (place of service such (0.43), median ANSA Boost
as EPS or c.’fﬁ cevisits af‘d proyi der spe- (0.43): precision (0.95), re-
C|alt|gs at first a.sthmadlagnoss), mgdl- call (0.82), Fy-score (0.88),
cal hx' (ageof first and last asthmadiag- 4 accuracy (0.81)
noses and nonasthmarrelated clinical
visits)
Deliuetal ~ Medical hx and medication use (asthma  Fyck Fevi! |E™ FED EHRsand  Examinerisk factorsthatre- K-meansduster-
[33],2020  diagnosis, use of asthma medication, (early-onset frequent exacer- hedthsur-  sultinasthmarelated out-  ing
current wheeze, asthma severity, and bations), |E (93.7%), and FE V&S comesin late childhood
lung function) and risk factors (environ- (6.3%); shorter duration of
mental tobacco smoke, pet ownership, breastfeeding was the
length of breastfeeding, day-care atten- strongest risk factor.
dance, presence of older siblings,and  Fpvy/FvC of FE group:
family hx of asthma) 85.1% at 8 yearsold
Dengetd Demographic data (sex, race, age, and  Percentageand PR; topcon- Health sur-  Evaluating factorsinindoor RFsand deci-
[34],2021  grade), family hx (job status, health sta- tributing factors. asthma, veys environments (home vs sion tree
tus and hx, and education), insurance  family rhinitis hx (relative school) contributing to asth-
information, and risk factors (home importance: 10.40%), plant maand allergy-related
conditions, such as carpet in house, tile  pollen trigger (relative im- symptoms
flooring, or homelocation and year, ani-  portance: 5.48%), and bed-
mal triggers, home-related ventilators,  room carpet (relativeimpor-
and school characteristics) tance: 3.58%). Allergy-relat-
ed symptoms: plant pollen
trigger (relative importance:
10.88%), higher paternal
education (relative impor-
tance: 7.33%), and bedroom
carpet (relative importance:
5.28%)
Gorhametal Demographic data (age, sex, andrace)  AUROC; internal validation: EHRs ED visit because of asthma Logistic regres-
[35],2023  and medical hx and medication use (in-  0.769. 10-fold cross-valida- exacerbations (also known  sion
haled or oral steroid prescribed, ED visits  tion AUROC: 0.737 asAER®); asthmaexacerba-
inayear, moderate to severe asthma, and tions: asthma-rel ated emer-
asthma-related primary carevisitsin a gency
year)
Habukawaet Audio features (wheeze sounds: frequen-  Sensitivity, specificity, EHRs | dentification of wheeze Decision tree
al [36], 2020 cy, intensity, and duration) and demo-  pp\/P, and NPVY: sensitivity sounds vs nonwheeze
graphic data (age) (100%), specificity (95.7%), sounds

PPV (90.3%), and NPV
(100%)
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Study Potential predictors, variables of inter- ~ Metrics Datasource  Outcomes ML models
ests-grouped
Heeet a Demographic data (age, sex, race, and  Sensitivity (82.81%) and EHRs and Classify and differentiate Gaussian mix-
[37],2019  weight), clinical parametersand charac- specificity (84.76%) hedth sur-  asthmatic coughs from nor-  ture model-uni-
teristics (temperature, respiratory rate, veys mal voluntary coughs versal back-
heart rate, and shortness of breath), audio ground model
features (cough sounds: mel-frequency
cepstral coefficients and constant-Q
cepstral coefficients), and medical hx
(asthma, allergic rhinitis, and recurrent
wheeze)
Hoganetal  Demographic data (sex and age), insur-  AUC; logistic regression Clamsdata Asthmahospital reeadmission Logistic regres-
[38], 2022 ance, family hx (family member with (9 592) and ANNSs® (0.637) @dbiomedi- 180 days after hospital dis-  sion and ANNs
alcohol or drug issues, hx of abuse, cal databases charge
housing instability, and foster care),
clinical parameters and characteristics
(LOSr, admission season, and chronic
conditions), and hospital characteristics
(hospital ownership, teaching status, and
hospitdl size)
Hurst et al Demographic data(ageand sex), medical  AUC at day 30, 90, and 180; EHRsand Predict the occurrence of LASSO, RFs,
[39],2022  hx and medication use (comorbidities | ASSO! (0.753, 0.740, and  Piomedical  asthmaexacerbation; asthma  and X GBoost
and prescribed asthma control plan), in- 0.732), RFs (0.757, 0.747, databases exacerbation: any encounter
surance, and health care use (inpatient 404 0.729), and X GBoost with an asthma-related ICD-
admissions, ambulatory visits, and ED) (0,761, 0.752, and 0.739) 9or-10" codeand aprescrip-
tion for a systemic steroid
Krautenbach-  Clinical parameters and characteristics AUC; boosting wasthebest Health sur-  Distinguish between healthy LASSO, elastic
g;) itgal [40],  (genes, including PKN2Y, PTK2", and  Model for all data sets: 0.81 \égys zdcal chil(;llrﬁ, t;clme \_/vitahSt r:ild to get,rl]?a? an;id _
" ' iomedi moderate allergic asthma, ochastic gradi-
ALPP. » and breastfeeding), and demo- databases and those with nonallergic  ent boosting
graphic data (age and sex) asth
ma
Messinger et  Demographic data (age, sex, andrace)  Median absolute error; bal- EHRsand Useof vital signdatatopre- ANNs
al [41],2019 and medication use, medical hx, and anced set MAEZ 1.21 biomedical  dict the presence of asthma
medications (LOS, PASY including vital databases  andto generateanovel pedi-
sign data such as heart rate, respiratory atric-automated asthma
rate, oxygen saturation, respiratory sup- score
port, and medications)
Seol et @ Demographic data (age, sex, ethnicity,  Percentage; EHRs Identifying characteristics ~ NLP
[42],2020  and weight), family hx (asthmaand NLPL-PACE+HNL P_API @4+ that will identify childhood
smoking during pregnancy), medical hx 1614 (20%), NLP-PAC+ asthma and its subgroups
(diagnosis of asthma, eczema, allergic |y 954 (1296), NLP-API+ using 2 algorithms
rhinitis, eosinophilia, total IgE®, asthma only: 105 (1%), and NLP-
and associated outcomes such aspersiss  PAC-/NLP-API— 5523
tent asthma, pertussis, pneumonia), and  (67%); NLP-PAC) and
health care use (visits per year) NLP-API); asthmatic chil-
dren classified as NLP-
PAC+/NLP-API+ showed
earlier onset asthma, more
Th2®-high profile, poorer
lung function, higher asthma
exacerbation, and higher risk
of asthma-associated comor-
bidities compared with other
groups
Seol et Medical hx and medications (IgE count, QR and P value; asthma EHRs Determine the presenceof  NLP
[25],2021  eosinophil count, smoking exposure, hx  exacerbation: intervention asthma exacerbation to re-

of alergic rhinitis, previous exacerba-
tions, asthmadiagnosis, and medication
use) and demographic data (age, sex, and
race)

12%, control 15%, P=.60;
Time (min) taken by the
cliniciantotakeaclinica
decision, median: interven-

tion 3.5 min vs control 11.3

min

duceits frequency using

clinical information; asthma

exacerbation: ED visit, hos-
pitalization, or outpatient
visit requiring systemic cor-
ticosteroids for asthma
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Study Potential predictors, variables of inter- ~ Metrics Datasource  Outcomes ML models
ests-grouped
Sillset a Demographic data (age, race, and sex), AUC, accuracy, and F1-; EHRs Predict theneed for hospital- RFsandlogistic
[43], 2021 insurance, medical hx, and medications mode! 1: triage (RF-AUC ization of pediatric patients regression

(ED and treatment factors: timeto triage,
time to first medication and asthma
medication, ED hourly volume, and dis-
position including admitted or dis-
charged)

0.831, accuracy 0.777, and
F4-score 0.635, and logistic
regression-AUC 0.795, accu-
racy 0.731, and F-score
0.564); model 2: 60 minutes
after patients' arrival (RF-
AUC 0.886, accuracy 0.795,
and F4-score 0.689, and |o-
gistic regression-AUC
0.823, accuracy 0.753, and
F1-score 0.618)

with asthma

3ML: machine learning.

BAUROC: area under the receiver operating characteristic curve.
CAUC: area under cover.

4PR: precision recall.

®EHR: electronic health record.

'ED: emergency department.

9SVM: support vector machine.

PRF: random forest.

ihx: history.

IANSA: average negative predictive value specificity area.
KrvC: forced vital capacity.

IFEV1: forced expiratory volume in the first second.

M E: infrequent exacerbation.

"FE: frequent exacerbation.

®AER: asthma emergency risk.

PPPV: positive predictive value.

INPV: negative predictive value.

'LOS: length of stay.

SANN: artificial neural network.

YL ASSO: least absolute shrinkage and sel ection operator.

Y|CD-9 or -10: International Classification of Diseases, 9th or 10th Revisions.

VPKN2: protein kinase N2.

WPTK 2: protein tyrosine kinase 2.
XALPP: alkaline phosphatase, placental.
YPAS: pediatric asthma score.

“MAE: masked autoencoder.

% gE: immunoglobulin E.

DNLP: natural language processing.
PAC: predetermined asthma criteria
aapI: Asthma Predictive Index.

®Th2: T helper 2 cells.

Studies that attempted to predict asthma diagnosis included a
range of features, ML models, and metrics [32,41]. One study
used demographic data such asrace, sex, ethnicity, and language
spoken, alongside medical history factors such as age at first
and |ast asthma diagnoses and the number of nonasthma-related
clinical visits, as well as geographic information such as the
state of residency at the time of the first asthma diagnosis and
insurance details, including Medicaid enrollment [32]. Another
study focused on using patients medical history and medication
use, along with vital sign data, to predict the presence of asthma

https:/ai jmir.org/2024/1/e57983

and generate anovel PAS[41]. Various ML models were used,
including naive Bayes, k-nearest neighbors, logistic regression,
RFs, ANNSs, and XGBoost, with ANNs and XGBoost showing
the best performance. The metrics used to eval uate these models
included mean average NPV specificity area, median average
NPV specificity area, precision, recall, F;-score, and accuracy.

To identify potential risk factors for asthma-related outcomes,
particularly focusing on the severity of symptoms and lung
function, various ML models were used [33,34]. One study
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examined a range of variables, including medical history and
medication use, such as asthma diagnosis, current wheeze,
asthma severity, and lung function, alongside risk factors such
as environmental tobacco smoke, pet ownership, length of
breastfeeding, day-care attendance, presence of older siblings,
and family history of asthma. K-means clustering was used to
identify patterns and categorize risk factors associated with
different asthma outcomes [33]. Evaluation metrics included
forced vital capacity and forced expiratory volume in the first
second, with specific attention to infrequent exacerbations and
early-onset frequent exacerbations. Shorter breastfeeding
duration emerged as the strongest risk factor, with the forced
expiratory volume in the first second/forced vital capacity ratio
in the frequent exacerbation group being 85.1% at 8 years old
[33]. Another study focused on demographic data, such as sex,
race, age, and grade, aong with family history variables,
including job status, health status, and education [34]. The study
also considered insurance information and risk factors such as
home conditions (eg, presence of carpets or tile flooring and
home location and year), anima triggers, home-related
ventilators, and school characteristics. Using RFs and decision
trees, the study identified key contributors to asthma and
allergy-related symptoms. The metrics used included prevalence
ratios. Significant factors for asthma included a family history
of rhinitis (relative importance of 10.40%), plant pollen trigger
(relative importance of 5.48%), and bedroom carpet (relative
importance of 3.58%). For allergy-related symptoms, important
factors were plant pollen trigger (relative importance of
10.88%), higher paternal education (relative importance of
7.33%), and bedroom carpet (relative importance of 5.28%)
[34].

Toidentify and classify asthmatic sounds, particularly focusing
on wheezing and cough patterns, various ML modelswere used
through a combination of audio features, demographic, and
clinical data [36,37]. One study focused on differentiating
between wheezing and nonwheezing sounds using a decision
tree model [36]. The key features analyzed included audio
characteristics such as the frequency, intensity, and duration of
wheezing sounds, along with demographic data such as age.
The mode!’s performance was evaluated using metrics such as
sensitivity, specificity, positive predictive value, and NPV. The
decision tree model achieved a sensitivity of 100%, specificity
of 95.7%, positive predictive val ue of 90.3%, and NPV of 100%,
demonstrating its high accuracy inidentifying wheezing sounds
among pediatric patients [36]. Another study aimed to classify
and differentiate asthmatic coughs from normal voluntary
coughs using a Gaussian mixture model-universal background
model [37]. This study incorporated audio features such as
mel-frequency cepstral coefficients and constant-Q cepstral
coefficients, along with demographic data (age, sex, race, and
weight) and clinical parameters (temperature, respiratory rate,
heart rate, and shortness of breath). In addition, medical history
factors such asasthma, allergic rhinitis, and recurrent wheezing
were included. The model’s effectiveness was measured using
sensitivity and specificity, achieving sensitivity of 82.81% and
specificity of 84.76% [37]. These metrics indicate the model’s
robustness in accurately classifying asthmatic coughs and
distinguishing them from normal coughs.
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Common Limitationsin the Reviewed Studies

A recurring theme in the limitations reported by the included
studies pertains to challenges with data quality and
completeness. Issues such as missing, incomplete, or limited
data availability from medical records and health surveyswere
highlighted in several studies [34,38,41-43]. These data
congtraints can significantly impact the robustness and
generalizability of the study findings. In the context of predicting
asthma exacerbations, 3 studies specifically cited deficiencies
in electronic health records (EHRs) [30,41,42] and pointed out
the lack of critical variables in EHRs, such as socioeconomic
status and adherenceto treatment. These deficienciesarose from
variables not being commonly recorded in EHRs. The absence
of these variables can limit the depth and accuracy of predictive
modeling, thereby affecting the models performance and
generalizability. Another notable limitation was the issue of
imbalanced data sets [30-32], which refers to situations where
the number of observations in different classes is
disproportionately distributed. For example, if there are
significantly more cases of nonasthmatic patients compared to
patients with asthma, this imbalance can lead to biased or
skewed modelsthat do not perform well acrossall classes. Small
sample sizes, which can affect the statistical power and validity
of the findings, were also a concern in a few studies
[25,31,33,40]. A small sample sizegenerally refersto adata set
that is not large enough to yield statistically significant results
or reliable conclusions. This can vary depending on the study
design and statistical methods used, but typically, small sample
sizes limit the ability to generalize findings to a larger
population. In addition, limitations were identified in studies
focusing on wheezing and asthmatic cough recognition
algorithms. For example, astudy devel oped awheeze detection
device for use in home environments, raising questions about
its clinical value because of the specific context of itsintended
application [36]. Similarly, another study [37] on an asthmatic
cough recognition algorithm highlighted that its validity and
accuracy depended on the correct labeling of coughs by
attending physicians. These limitations underscore the need for
improved data quality and data collection processes to enhance
thereliability and applicability of ML modelsin pediatric asthma
research.

Discussion

Principal Findings

This scoping review successfully identified 15 peer-reviewed
studies published since 2019, focusing on ML models in
predicting pediatric asthma outcomes. Model use was diverse:
logistic regression (7 studies), RFs (6 studies), gradient boosting
(4 studies), ANNSs (3 studies), decision trees (2 studies), NLP
(2 studies), and Gaussian mixture model (1 study), with area
under the curve ranging from 0.62 to 0.88. Most studies (n=8,
53%) had a low to moderate risk of bias, and they were
evaluated using PROBAST.

Compar ative Analysisof ML Models

Among traditional ML models, logistic regression has
demonstrated  robustness, particularly  in  predicting
hospitalization needsin pediatric asthma cases[30-33,35,38,43].
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However, comparing logistic regression to RFs reveals that the
latter offers superior performance in certain scenarios. For
instance, RFs exhibited a higher area under the curve at the
1-hour postarrival time point in predicting hospitalization needs
[43].

Gradient boosting models, particularly XGBoost, showed
promise in certain scenarios. For example, in predicting early
childhood asthma persistence, X GBoost matched the accuracy
of logistic regression [32]. However, these models till lag
dightly behind logistic regression and RFsin classifying asthma
types, highlighting the potential differencesin model efficacy
across various applications.

Theapplication of ANN provided promising resultsin predicting
ED visits and asthma readmissions [30,38]. However, their
performance, especially in complex clinical settings, warrants
additional exploration and comparison with more conventional
models. Decision trees, applied in more niche areas such as
environmental risk assessment and wheeze sound recognition,
demonstrated high accuracy and specificity [34,36]. NLP
models, used within EHRs, helped early identification of
pediatric asthmacriteria[25,42], and Gaussian mixture models
were applied to differentiate between patients with asthma and
nonasthmatic patients through auditory recognition of types of
coughs[37].

Application of Predictive Models Across Different
Outcomes

Among the 15 studies, key outcomesinclude predicting asthma
exacerbations requiring urgent care, classifying asthma
phenotypes by identifying allergic versus nonallergic asthma
and severity levels, predicting asthmadiagnoses and cal culating
PAS, and identifying potential risk factors such as symptom
severity and lung function. In addition, sound-based diagnosis
studies focused on distinguishing wheezing and differentiating
asthmatic from normal coughs. One study [39] developed
predictive models for pediatric asthma exacerbations using
sociodemographic data, comorbidities, medication prescriptions,
prescribed asthma controller plans, and patient service use
history. This algorithm functioned as a potent tool capable of
identifying children at risk of asthma exacerbations.
Consequently, it signaled when preventive measures would be
valuable to implement. Severa studies used ML models to
predict hospitalization needs and readmission risks using
demographic variables. The studiesby Sillset al [43] and Hogan
et a [38] used ML models using varying features, including
demographic variables such as sex, age, and race to predict
hospitalization needs and readmission risks. Sills et a [43]
demonstrated the potential of 2 distinct ML models to predict
hospitalization in pediatric asthma cases, highlighting the
models’ utility as supportivetoolsfor clinical decision-making.

Similarly, Hogan et a [38] used an ANN algorithm to predict
asthma readmissions within 180 days after discharge, finding
that ANN outperformed traditiona models in identifying
readmission predictors. AlSaad et a [30] and Gorham et al [35]
conducted studies focusing on predicting ED visits using data
from EHRg/electronic medical records. Notably, the studies
found that increased access to primary care with regular
follow-ups resulted in fewer ED visits, suggesting that more
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frequent visits allowed for better assessment and management
of asthma. Their findings suggest that ML models can
effectively identify children with asthmawho are at higher risk
of repeated ED visits. Given the challenges associated with
frequent ED use in emergency care, these prediction models
emerge as valuabl e tool sin enhancing asthma management and
assisting in clinical decision-making.

We also examined the role of ML in asthma diagnosis in a
pediatric population. One study [37] developed an ML model
to distingui sh between asthmatic and normal coughsby creating
a database of cough sounds from asthmatic and nonasthmatic
children. Another study [36] focused on an ML-based wheeze
detection algorithm, analyzing lung sounds recorded through
stethoscopes. Both these studies exemplify the use of ML in
identifying asthma symptoms accurately. In addition, an ML
algorithm was explored to automate asthma severity scoring,
aiming to create a pediatric asthmarespiratory score from vital
sign data [41]. Additional research [42] used an NLP model to
identify asthma early in children, and another study [25]
developed the Asthma Guidance and Prediction System using
ML and NLP to enhance asthma management programs and
reduce asthma exacerbations. These studies collectively
demonstrate the considerable potential of ML inimproving the
diagnosis, severity assessment, and management of pediatric
asthma.

In examining asthma phenotypes, several studies have leveraged
ML to categorize different characteristics of asthma. Two studies
implemented various ML techniques[31,32], focusing on EHR
data to classify asthma types. One study [31] aimed to
distinguish between allergic and nonallergic asthma, whereas
another study [32] sought to predict persistent versus transient
asthma. Similarly, 2 studies[25,42] used EHR dataand applied
an NLP algorithm to identify pediatric asthma subgroups. This
capability to distinguish between different types of asthma can
significantly inform clinical decisions and guide parents in
choosing appropriate asthmatreatments, as highlighted by others
[32].

Further support for the use of ML in understanding asthma
phenotypes and allergies comes from the studies of Deng et al
[34] and Krautenbacher et al [40], each adopting a unique
approach. Deng et al [34] used ML modelsto assessrisk factors
in home and school environments affecting asthmaand allergies.
In contrast, Krautenbacher et al [40] developed a unique ML
method to enhance the prediction of childhood asthma
phenotypes, specifically distinguishing between allergic and
nonallergic asthma, using various inputs such as genotypes,
guestionnaires, and diagnostic tools. Both studies effectively
demonstrated the potential of ML modelsin identifying asthma
and allergy risk factorsaswell asin improving the classification
of childhood asthmatypes. Similarly, another study [33] applied
ML to analyze wheeze exacerbation trajectories in children
using medical record data, revealing diverse exacerbation
patterns, early liferisk factors, and asthma outcomes. This study
alignswith the othersin using ML to discern patterns predictive
of childhood asthma. Jeddi et a [46] further emphasize the
significance of these findings, noting that the ability to identify
factors associated with childhood asthma via ML can help
predict children considered susceptible. Thisprediction, inturn,
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enablesthe implementation of targeted interventionsto prevent
the onset of the disease.

Future Directions and Key Consider ations

Applying ML models to predict asthma outcomes in children
involves severa critical considerations to ensure accuracy,
reliability, and applicability. The basis of any ML model isthe
data it is trained on. It should be comprehensive and include
variables such as age, sex, family medical history, environmental
exposures (such alergens, pollutants, and community viral
loads), lifestyle factors (diet and physical activity), and clinical
data (symptoms, medication use, lung function tests, etc).
Several studies highlighted missing or incomplete data in
medical records and health surveys [34,38,41-43], which
underscores the importance of robust strategies for handling
such data challenges. For example, studies have demonstrated
that ssimple imputation methods, considering informative
missingness, can be effective in managing missing numerical
data in EHR for ML [47]. In addition, research on imputing
missing values in laboratory data from EHRs has shown that
the pattern of missingness is typically nonrandom and closely
related to patients comorbidities, suggesting that multilevel
imputation algorithms are more effective than cross-sectional
methods [48].

Another point to consider isthat asthmais a chronic condition
with variable progression over time. Incorporating longitudinal
data, which means tracking patient data over time, can help the
model recognize patterns and predict future exacerbations or
improvements. In addition, there is limited information on the
choice of ML models across different age groups within the
pediatric population. This gap highlights the need for future
research to specifically address the performance and
applicability of ML models in different pediatric age groups.
Thisapproach could provide valuableinsightsinto age-specific
predictive features and model adjustments.

Beyond accuracy, the model must also be interpretable [49].
Clinicians and patients should be able to understand how and
why a particular prediction was made, which builds trust and
ensuresthat the model’sfindingsare useful in real-world clinical
decision-making. The model should also integrate seamlessly
into existing clinical workflows. Thisinvolves considering how
predictions will be delivered and their impact on clinical
decision-making and ensuring they are in a format that health
care providers can understand and easily incorporate into their
existing decision-making processes. Previous research has
shown that user-centered design is essential for successful
implementation. For instance, a study involving 14 clinicians
highlighted the need to identify patients at high risk and take
proactive measures to manage asthma effectively [50].
Clinicians emphasized the importance of clear, actionable
insights from the tool and understanding the underlying reasons
for predictions. Barriers to implementation included usability
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and workflow integration challenges;, the need for clear
algorithm explainability; and ensuring the tool’s acceptability,
adoption, and sustainability through proper design and training
[50]. By involving cliniciansin the design process, the tool was
tailored to meet their needs, which underscores the importance
of user-centered design in devel oping effective clinical decision
support tools.

Strengths of this review included a comprehensive and
systematic search across multiple databases, along with
establishing clearly defined inclusion and exclusion criteria.
The structured study selection process added robustness to the
review. In addition, the use of the PROBAST tool for risk of
bias assessment augmented the credibility of the review [44].
However, the review also had limitations that should be
acknowledged. Despite a broad and inclusive search strategy
designed to capture all subtypes of ML related to childhood
asthma, some relevant studies might not be published in the
indexed journals included in our search databases, and thus,
thereremains apossibility that some pertinent articles may have
been inadvertently excluded.

This review highlights the potential of ML in transforming
pediatric asthma care, from predicting exacerbations to
characterizing asthma types. However, it also underscores the
need for improved data quality, larger and more balanced data
sets, and more rigorous validation to ensure these tools are
clinicaly valuable. The exploration of varied ML techniques
across studies offers a road map for future research to build
more accurate, reliable, and applicable models for pediatric
asthma management.

Conclusions

This scoping review provides a broad overview of ML
applications used to predict asthma-rel ated outcomesin children.
We reviewed a diverse range of studies focused on the design,
training, testing, and interpretation of ML modelsand observed
that using ML in childhood asthma is an emerging field that
has seen significant growth over the past few years. This recent
surge in research highlights the evolving nature and increasing
interest in applying ML to improve pediatric asthma outcomes.

By leveraging datafrom multiple sources, ML approaches have
made strides in identifying distinct asthma phenotypes, paving
the way for more tailored and effective treatment strategiesin
clinical practice. However, the field faces ongoing challenges,
particularly regarding minimizing missing data, ensuring robust
model validation, and achieving interpretability. In addition,
integrating these models smoothly into clinical workflows
remains a key obstacle. While ML holds considerable promise
in pediatric asthmaresearch, thefield is still evolving. To fully
realize its potential, further research is needed to address these
challenges and enhance the practical application of ML models
in clinical settings.
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PROBAST: Prediction Model Risk of Bias Assessment Tool
RF: random forest
SVM: support vector machine
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Abstract

The China State Council released the new generation artificial intelligence (Al) development plan, outlining China's ambitious
aspiration to assume global leadership in Al by the year 2030. Thisinitiative underscores the extensive applicability of Al across
diverse domains, including manufacturing, law, and medicine. With China establishing itself as a mgjor producer and consumer
of medical devices, there has been anotable increase in software registrations. This study aimsto study the proliferation of health
care—related software devel opment within China. Thiswork presents an overview of the Chinese regul atory framework for medical
device software. The analysis covers both software asamedical device and softwarein amedical device. A comparative approach
is employed to examine the regulations governing medical devices with Al and machine learning in China, the United States,
and Europe. The study highlights the significant proliferation of health care—related software devel opment within China, which
hasled to an increased demand for comprehensive regul atory guidance, particularly for international manufacturers. The comparative
analysis reveals distinct regulatory frameworks and requirements across the three regions. This paper provides a useful outline
of the current state of regulations for medical software in China and identifies the regulatory challenges posed by the rapid
advancementsin Al and machinelearning technol ogies. Understanding these challengesiscrucia for international manufacturers
and stakeholders aiming to navigate the complex regulatory landscape.

(IMIR Al 2024;3:e46871) doi:10.2196/46871

KEYWORDS

NMPA; medical device software; device registration; registration pathway; artificial intelligence; machine learning; medical
device; device development; China; regulations; medical software

ophthalmology for image recognition [3], or asasupport system
BaCkg round for general medical decision-making [4]. ML models have been

New software solutions that are being developed, especially used for anythi ngfrom imprqvi ng outcomesfor diabetic patients
medical devices that combine artificial intelligence (Al) and [°] O tuberculosis diagnosis [6]. Many of these approaches
machine learning (ML), show a huge potentia for patient Should be applicable on a global scale, and thus there is a
benefit. These kinds of applications can be used acrossdifferent  9rOWINg interest in applying these solutions across borders. This

medical conditions, with the potential for easy scle-uptolarger N1@S led clinicians, academics, and manufacturers to look at
populations. It can reduce the burden on hedth care Chinaand itsmedical deviceregulatory environment. However,

professionals and decrease the possible risk of missing vital navigating China's regulatory environment presents inherent

information. For example, radiology softwareis used to screen  COMplexities stemming from language barriers, geographical

and diagnose large amounts of X-ray images [1]. A combined distances, and a general lack of familiarity with the regulatory
Al and ML approach can aso be applied in, for example, framework. These complexities are augmented by innovative

oncology for the next - generation sequencing [2], in productsthat can have unconventional regulatory requirements.
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Easing these barriersholdsthe potential to facilitate the seamless
exchange of solutions acrossinternational boundaries, fostering
mutual opportunities. This paper provides aregulatory view of
China, the biggest booming market for medical device software,
and discusses the implications for global manufacturers.

China Al Development Plan

The 21st century has seen arapid development of the Chinese
economy and its ability to produce, manufacture, and distribute
technology. In 2017, the China State Council published awhite
paper discussing a new generation Al development plan [7].
The document indicated that the number of Al scientific papers
published and invention patents granted in Chinaranked second
worldwide. Several domain-specific applications that were
devel oped in Chinahave gained widespread attention, including
intelligent monitoring, biometric recognition, industrial robots,
service robots, and unmanned driving. The Al Development
Plan clearly states China's support for smart medical care,
products, and services that use Al. Moreover, it is stated that
this even should be developed as a priority. The vision is to
establish amajor medical system that leverages Al and ML.

China has become a major global producer and consumer of
medical devices[8]. With one of theworld’slargest populations
(1.426 billionin 2022) [9], the need isobviousin terms of access
to medical technology. In 2019, the Chinese medical device
market had an estimated revenue value of 629 billionRMB (US
$88.7 billion), more than double of what it was in 2015 (308
billion RMB or US $44.2 hillion) before the plan was rel eased
[1Q]. This coincides with a growing trend of medical device
software (MDSW) registrations [11]. One factor driving this
trend is the potential that digital health offers in terms of ease
of scalability, which provides an opportunity to advance health
care more sustainably.

Han et al

Global manufacturers seeking to enter the Chinese market must
possess a profound comprehension of the regulatory landscape
governing MDSW. This necessitates a thorough grasp of the
intricacies surrounding registration prerequisites, regulatory
oversight, disparities vis-a-vis regulatory bodies in aternative
geographic regions, and the contemporary device taxonomy
specific to China. Simultaneously, researchers and health care
practitionersmust remain vigilant by staying abreast of the latest
devel opments transpiring within the Chinese milieu. The global
pandemic has unequivocally underscored the imperative of
comprehending and navigating policies and regulations in
foreign jurisdictions, including but not limited to China, as an
indispensable facet of effectively addressing worldwide crises.
By extension, software-based solutions can similarly accrue
significant advantages through adopting a holistic and globally
informed perspective.

Chinese Regulation on Medical Device
Software

After the new generation Al development plan was introduced,
Chind's medical products regulatory authority—National
Medica Products Administration (NMPA)—released many
regulationsto fit the plan’stheme. In 2022, the NM PA launched
a program on digital health. Two MDSW guidelines were
published as part of this program. Table 1 shows a series of
regulatory documents published with regard to MDSW and
Al-enabled software. The NMPA released the first document
in 2015, while a more up-to-date document was made public
in 2022. Thisupdated version raised more detailed requirements
for the whole life cycle management of these technologies, as
well asfor quality management, verification, raw code analysis,
and safety management.

Table 1. ChinaNational Medical Products administration (NMPA) regulatory documents for medical device software.

Date of publication Regulatory document

August 2015
July 2019
July 2021
March 2022
August 2022

Guidelines of medical device software registration and review [12]

Key points of deep learning decision-making assisting medical device software review [13]
Guidelines for the classification and designation of artificial intelligence medical software [14]
Guidelines of medical device software registration and review [15]

Guidelines for the classification and designation of artificial intelligence medical software [16]

Several standards are referenced in the regulation, and they
include (but are not limited to) standards on the risk level of
software (YY/T0664-2008), on software engineering (GB/t
19003-2008), and those that describe the medical device quality
management requirements (Y Y/t 0287-2003). These standards
can help with compliance with these new regulations, and this
provides a useful function in the regulatory pathway.

In China, MDSW includes “software as a medical device’
(SaMD) and “software in amedical device” (SIMD). Theterm
“software as a medical device” is defined by the International
Medica Device Regulators Forum (IMDRF) as software
intended to be used for one or more medical purposes without
being part of a hardware medical device [17]. This delineation
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posits the software itself as a standalone medical device.
Conversely, “SIMD” denotes software that functions as an
integral constituent of an entire medical apparatus, such as its
involvement in the operation of magnetic resonance imaging
scanners, X-ray machines, or insulin pumps. In these cases, the
software and other components al fall under the same
registration license “SIMD.” It is noteworthy that in China,
software harnessing Al or ML technologies may concurrently
straddl e both the SaMD and SIMD categories.

An overview is given in Figure 1 with regard to how software
devicesare categorized from afunction or adesign perspective.
Devices are initidly split into SaMD and SIMD. SaMD is
normally registered separately, while, as mentioned previously
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inthe case of SIMD, the softwareis often registered along with
other components [15]. In the case of SIMD, the software
doesn’t have its own classification, but it shares the same
classification with other parts of the device. The final
classification would then be based on the risk of the whole
device. SaMD can be split into 2 types depending on its
purposes. Its purpose can be (1) general or (2) specific. For the
genera -purpose definition, the device can work together with
multiple other devices, as happens in the example of data
processing software. For the specific purpose case, the device

Han et al

always works with a distinct set of devices for a particular
purpose. An illustration of this is the ophthalmic microscope
image processing software. The SIMD also consists of 2 types
of devices. One type is embedded in a machine (eg, an
electrocardiogram machine), while the other type is externally
controlled. A general-purpose computing platform (eg, a
computed tomography [CT] and magnetic resonance image
acquisition workstation) is a good exemplification of an
externally controlled type of SIMD. The categorization of the
softwareisacrucia step in the regulatory journey of aproduct.

Figure 1. Categories of medica device software. CT: computed tomography; ECG: electrocardiography; MRI: magnetic resonance imaging; SaMD:

software as amedical device; SIMD: software in amedical device.
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Regulatory Environment in China

The oversight and governance of medical deviceswithin China
are primarily administered by the Center for Medical Device
Evaluation, an integral component of the NMPA. Theregulatory
landscape formulated by the NMPA to govern medical devices
is predicated upon a comprehensive framework rooted in
Chinese legidation, regulations, and advisory directives. This
multifaceted regulatory apparatus encapsulates various facets
pertinent to market entry, encompassing the specification of
device categories, the classification of devices, the requisite
content of registration review dossiers, and theimperative facet
of post-market surveillance. In conformity with these regulatory
imperatives, manufacturers need to engage proactively with the
NMPA, necessitating their involvement across all
aforementioned dimensions.

Medical devices are subject to regulatory oversight within a
risk management framework that stratifies these products
according to risk levels, ranging from low risk (class1) to high
risk (class I11). In the case of manufacturers engaging in the
importation of medical devices into China, the responsibility
for the review process falls under the purview of national
authorities. Concurrently, certain domestically produced medical
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devices are subject to regulatory scrutiny by provincial
authorities. The classification of a medical device within the
Chinese regulatory context necessitates the alignment of its
device description with the pertinent information contained
within the medical device catalog [18].

In general, manufacturers possess 2 principal avenues for
conceiving innovative medica equipment, which are
occasionally amenable to synergistic integration. The first
approach involves commencing with a patient-centered needs
assessment (need-led innovation) to engender a “novel”
technological solution. The alternative approach entails the
development of a “novel” technology, with the subsequent
identification of a correlating patient need [19]. These
innovations can occur either before or after appropriate
regulations have been set [20]. It iscommon that transformative
ideasinitially do not have suitable regulations in place and that
this mismatch can lead to either delays in market adoption or
concerns in terms of device performance and safety. However,
any medical software enterprise aspiring to introduceits product
to the market is mandated to adhere to prevailing regulatory
mandates. Accordingly, acomprehensive comprehension of the
product's classification and regulatory prerequisites within a
specific market is of paramount significance, as the realms of
innovation and regulation engage in a dynamic interplay. A
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good understanding is particularly important, as it has been
suggested that the complexity of medical device regulations
can increase whenever new regulations are formed [21].
Erroneous classification of product risk and the correlated
regulatory obligations can result in exacerbated time and
financial investments for subsequent rectification. Thus, the
incorporation of regulatory considerations should be undertaken
expeditiously, as many decisions regarding the final product
are dready made at the early stages of the research and
development process.

Han et al

Specific Rules for Software and Al

Medical software is basically divided into auxiliary diagnosis
and treatment devices according to their intended use. A detailed
tranglation of the software catalog can be found in Multimedia
Appendix 1. The SaMD (which beginswith code 21 according
to regulation) is categorized into 6 categories: treatment planning
software (21-01), image processing software (21-02), data
processing software (21-03), decision support software (21-04),
invitro diagnostic software (21-05), and other software (21-06).
If the device to be registered is not included in the list, then it
has to be re-classified through the device designation pathway
[22]. A simple flowchart for the classification of the software
isshownin Figure 2.

Figure2. Medical device software classification flowchart. Al: artificial intelligence; MRI: magnetic resonance imaging; SaMD: software asamedical

device; SIMD: software in amedical device.
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Thereare 2 branchesfor SaM D, which are split between Al and
other technologies. If Al is applied, then a further decision is
made according to the level of maturity of the algorithm. A high
maturity level of the agorithm signifies that the safety and
efficacy profiles of the algorithm have been judiciously
established, while conversely, alower degree of maturity implies
that such establishment has not been ascertained. A
preconsultation meeting could be used to discuss the maturity
level withthe NMPA. If the Al agorithm hasawell-established
profile, then manufacturers can refer back to Multimedia
Appendix 1, code 21 [18] for classification. A request for
designation could then be sent to the NMPA, if the device is
out of scope. If the maturity degree is low, then there are 2
classifications possible. The device could be classified asaclass
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[11 deviceif itisused for decision support; otherwise, the device
will be assigned aclassification of 11, which represents alower
risk class. According to the Medical Device Classification
Catalog [18], aclass Il device classification is given when the
software does not contain any Al and the medical softwareis
only used for image and data processing, thus not used for
diagnostics. If it were used for diagnostic purposes, then the
classification would become Ill. The degree of risk for
diagnostic software is determined by the level of maturity,
registration of the applied algorithm in their database, and the
“object” of interest (referring to a particular disease, such asa
certain type of cancer) [23].

However, if the software just provides diagnostic suggestions
through its algorithm (in other words, it only has an auxiliary

JMIR Al 2024 | vol. 3 | e46871 | p.68
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

diagnostic function and does not directly provide a diagnostic
conclusion), then the device can be regulated as a class 1l
medical device. Yet, if the diagnostic software automatically
recognizes, for instance, alesion site through its algorithm and
provides clear diagnostic prompts, a class Il classification
would be assigned dueto the increased relative risk. In general,
medical software using Al technology is currently managed by
designating it the highest possible classification in China. This
is driven by the novelty of the technology, as well as the lack
of in-depth and compl ete eval uations of the clinical risks. China
has been focusing more on reviewing the algorithm itself, while
in the United States, attention has shifted toward the
manufacturers themselves [24].

It should be noted that not all software applied in the medical
field is regulated as a medical device by the NMPA. If the
software is used to process medical device data for
measurement, model calculation, or analysis, then it is deemed
MDSW and thus regulated by NMPA. If the software is used
for non-medical devicedata, it will not beregulated asamedical

Han et al

device under the NMPA. Thisisthe case when softwareis used
for the processing of general patient information or for patient
testing reports, both of which are not seen as medical device
data

Chind sand the IMDRF criteria share many similarities on how
to determine if the software is a SaMD. According to the
IMDRF [25], the SaMD definition should include a clear
statement about the intended use of the device, and the following
aspects need to be described in order to be able to be regulated
as SaMD (Textbox 1).

In alignment with the IMDRF, the European Medicines Agency
declaresthat only deviceswhoseintended useincludesamedical
purpose and influences the patient’s health care situation can
be deemed to be medical devices. Products such as medical
information management software (which is a hospital
management tool) are also not designated as medical devices.
Thisissimilar to China, sinceit then does not meet the definition
of amedical device.

Textbox 1. Aspects need to be described in order to be able to be regulated as software as a medical device (SaMD).

«  The*“significance of the information provided by the SaMD to the health care decision,” which is used to identify the intended medical purpose

of the SaMD.

«  The"“state of the health care situation or condition” that the SaMD isintended for.

General Registration Process and Clinical
Evaluation

Ordinarily, medical software devices, regardless of whether
they use Al or not, are typically not categorized under class|.
Within the context of classes |l and |11 devices, the registration
process typicaly takes around 18 months if no clinical trials
are required. However, once clinical trials are needed, the
registration timeline can extend to around 36 months or
sometimes even longer. The exact timeline is dependent on the
complexity of the device and the associated clinical data. It is
of particular importanceto notethat certain devices may qualify
for expedited processing through a fast-track pathway. Under
these circumstances, not only can registration fees be exempted,
but the registration timeline is accelerated, as it is typically
condensed to approximately 50 working days. Currently, there
are 2 software devices that have been designated under the Fast
Track pathway in China, namely, an implantable | eft ventricular
assist software system and acoronary CT fractional flow reserve
calculation software, identified by license numbers 20213120987
and 20213210270, respectively. Refer to Figure 3 for an
overview of the registration process for Class |1 and Class 11
software devices.

In accordance with the Notice of the Chinese NMPA, which
relates to the issuance of 5 technical guidelines, including the
Technica Guidelinesfor Clinical Evaluation of Medical Devices
(number 73 of 2021), it is evident that there exist 3 distinct
pathways for meeting the required clinical standards (see Figure
3). These pathways encompass (1) a clinical exemption, (2) a
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clinical comparison, and (3) aclinical trial, each associated with
a gradient of clinical requirements ranging from low to high.
Exemptions can be obtained if the deviceis part of the catalog
of devices that are exempt. For medical devices not
encompassed within the “ Catalog of Medical Devices Exempt
from Clinical Trials,” the pathway of conducting acomparative
analysis with similar products already available on the market
can be explored. This can be realized through the systematic
collection and meticulous analysis of clinical data and other
pertinent evidence, thereby proofing their equivalence and thus
expediting the clinical evaluation process.

The need to conduct clinical trials for Al medical devicesis
thus not universally mandated. Furthermore, if clinical trias
are required, then it is not determined solely by their
classification. The requirement to run a clinical trial depends
on the intent and the application. The NMPA's “ Guidelines for
the Evaluation of Artificial Intelligence Medical Devices,” states
that for functionalities that do not entail decision-making
assistance and are grounded in core operations, a rigorous
comparative analysis with similar medical devices within the
same category is required. However, for decision-assistive
functions underpinned by core agorithms, a comparative
analysis with equivalent medical devices within the same
category is only advocated. Nonetheless, the devices selected
for comparison should ideally have undergone comprehensive
clinical trials, although historical data may be acceptable in
certain circumstances. Finally, novel functions, algorithms, and
applications should be subjected to exhaustive clinical trialsto
ensure their efficacy and safety within the clinical domain.
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Figure 3. Medical device software registration process. NMPA: National Medical Products Administration.

<;"jﬁ’hase 1: Registration dossi
g

~—

~—

—
e
er >
T
"

.7/7
.—/-
-

:

|
i

Device classification J

Testing and clinical requirement ‘

\J L

Y

Y

a) Clinical exemption ‘ b) Clinical comparison

c¢) Clinical trials

L

Y

-—~| Dossier submi

ssion to NMPA

-
-

- —
_/’ M‘N.
,./ -""\.
,.--/ -h“‘*-
/'-/‘ . - ~
<~ Phase 2: Technical review >
~_ i
~_ -
"'\-..\_7_\_(__7/’
_/"’A"‘x
— T~
/-"/’ T —

_— Phase 3: —
S Admini . . >
—_ Administrative review -
— o
“‘-.._7_ _7_/’

— -

—

./--’ T S~

Cultivating Al Software Devices: An
Emerging Trend in China

Following the introduction of the new generation Al
devel opment plan, major shifts have occurred in both investment
and policy domainsto align with the overarching objectives of
this plan. Notably, the NMPA, as China's regulatory authority
for medical products, has promulgated a series of regulations
in line with the thematic contours of the plan. In 2022, the
NMPA initiated a digital health program. Over the course of 5
years, the NMPA, operating as a subsidiary of the Chinese
government, has enacted a suite of regulations to govern the
medical device industry, a selection of which is delineated in
Table 1. These encompass pivotal documents such asthe “Key
Points of Deep Learning Decision-Making Assisting Medical
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Device Software Review [13]” and the “Guidelines for the
Classification and Designation of Artificia Intelligence Medical
Software [14],” aswell as the “Guidelines for Medical Device
Software Registration and Review [15]” and aduplicate mention
of the “Guidelines for the Classification and Designation of
Artificial Intelligence Medical Software” [16].

China's concerted efforts in this domain have manifested in
substantial investments and the development of numerous
medical software applications. Anillustrative milestone occurred
in the year 2020 when the first Al-based diagnostic software
received approval in China, specifically for employmentin CT
image Al-assisted diagnostic software products. Asof 2023, an
exhaustive review of the NMPA website hasreveal ed that China
has granted approvals for more than 50 Al medical device
products rooted in deep learning technology [26]. These
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products, predominantly classified as medical software, serve
aspivotal aidsin diagnostic processes encompassing CT images,
fundus images, and magnetic resonance images, and are
strategically deployed within specialized fields such as
radiology, ophthalmology, and cardiology. Moreover, regional
governments seem to have demonstrated proactive engagement
with the evolving landscape.

Challenges Posed by Software and Al in
Medical Devices

AsAl technology developsfurther, regulatorswill also facethe
challenge of applying regulatory safeguards to these novel
technologies. The technical complexity of certain medical
software solutions warrants the description of these systems as
a“black box,” dueto their inherent opacity [27,28]. In addition,
traditional frameworks for regulation are not suitable for
adaptive Al and ML technologies, since the algorithms are
constantly learning and making changes[29]. Therefore, digital
health care solutions provide a different set of challenges to
regulators and the traditional fixed regulatory framework is not
suitable for this type of Al device. At present, governmental
agencies in the United States, the European Union, and China
have all issued new regulatory methods or frameworks for
MDSW to help cope with the changing landscape.

The regulation of Al devices is to ensure safety, quality, and
reliability requirements are met. One key concern is the
"unlocked” nature of these devices. ”Locked* devices mean
that the algorithm providesthe exact sameresult for a(specific)
given input [29]. This contrasts with an “unlocked” algorithm,
which represents a continuous learning algorithm. The
“unlocked” algorithm is also known as an adaptive algorithm,
and it changes its behavior using a predefined learning process
that providestime-based updatesfrom new datawith the overall
aim of improving its clinical performance. This algorithm
continuously changes the input-output relationship. Thus, for
a given set of inputs, the output may be different before and
after these changes are implemented. This means that after a
“locked” device has been approved and given access to the
market, the device can continue to self-learn and thus alter its
performance in comparison to when it was first approved. In
this situation, it is difficult for the clinicians or the authorities
to fully trust the device before they use it in practice. So far,
the Food and Drug Administration (FDA) has not yet approved
adevicethat integrates continual learning Al, asthey have only
granted approval to locked systems[29].

The FDA has enacted the Digital Health Innovation Action Plan
[30], with theaim of building amore dynamic approval process
with precertification for companiesthat will then have the ability
to change the characteristics of a product without needing
ongoing FDA assessment. This enterprise-based approach
(precertification program) is very different from traditional
medical deviceregulation. The FDA adopted the precertification
program together with the total product life cycle database to
screen for eligible organizations. They aso adopted a
“predetermined change control plan.” This plan provides a
complete approach based on the total product lifecyclein away
that manages the risk to patients in a controlled manner.
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The European Union (EU) also enacted new directives to
regulate this fast-changing technology domain. They include
the general data protection regulation (GDPR), cybersecurity
directive, medical devices regulation, and in vitro diagnostic
medical device regulation. The GDPR and the Cybersecurity
Directive took effect in May 2018, whilst the medical devices
regulation was applied in May 2021, with thein vitro diagnostic
medical device regulation following suit a year later. These
recent changes further highlight the moving landscape of
regulations on a global scale.

Besides the apprehension about the increase in regulatory
complexity for Al and ML, other aspects are also starting to
raise concerns. Among those are ethical considerations,
cybersecurity, and the reproducibility of the performance. These
aspects are briefly discussed below.

Ethical Considerations

Ethical issues have been intensely debated since the start of Al
technology development. In the medical field, obvious questions
are posed with regard to data privacy, physician dependency,
and potential biasin post-GDPR algorithms, aswell as concerns
about changes in the doctor-patient relationship [31]. People
are also concerned about algorithmic fairness and potential
biases. The algorithms are data-driven, and it could be that the
data used might not meet the required ethical standards.

In April 2019, the National Artificial Intelligence
Standardization General Group in China issued the “Artificial
Intelligence Ethical Risk Analysis Report” [32], which further
clarified that the principle of fundamental human interests
should be considered from three viewpoints: (1) the impact on
society, (2) the Al algorithm, and (3) the used data. All these
ethical concerns need to be navigated in order to create
appropriate technology that can be used in the clinic.

Reproducibility

Reproducibility is also an important item in the field of Al.
Nowadays, many Al devices face a problem as their outcomes
are not verifiable by third parties[33]. The reasons for this can
berelated to the quality of the data, datainputs, the transparency
of data, or the code used for processing, to name afew factors
[34]. Thereis a particular concern for adaptive Al, as the data
upon which the model would be built changes, which in turn
can trigger a change in outputs. Consideration should also be
givento the need for detailed information on the data processing
and training pipelines, as thisis often lacking [35].

NMPA issued a document (number 8, 2022) [16] that requires
reproducibility evidence from the sponsor in multiple dossier
sections. These sections include user need analysis, algorithm
property evaluation, and algorithm verification and validation.
In the algorithm property evaluation, it suggeststhat applicants
should consider requirements such as false negatives and false
positives (indicators and relationships), repeatability,
reproducibility, and robustness. At the same time, all factors
that affect al gorithm performance should be analyzed, and their
degree of influence should be determined. Thisincludes things
such as the acquisition equipment, acquisition parameters,
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disease composition, and lesion characteristics, among others.
Taking theseinto account will improve algorithm interpretability
and it can serve as the basis for software verification and
validation [36].

Cybersecurity

Like other computer systems, MDSW can be vulnerable to
security breaches [37]. It has been suggested that 53% of
connected medical devices contain critical vulnerabilities, and
health care professionals struggle to maintain the inventories
of connected devices [38]. For many years, cyberattacks have
been identified as the top health tech hazard within this space
[38]. The FDA indicatesthat cybersecurity issues could directly
impact the safety and effectiveness of the device, as further
harm can be caused to the patients who are using them [37].
Reducing cybersecurity risks is especially challenging while
medical devices interact with human bodies; as a result, it
becomes a multidisciplinary problem concerning engineering,
computer science, medical, and physical sciences.

The IMDRF issued Principlesand Practicesfor Medical Device
Cybersecurity in 2020 [39], which introduces a “total product
lifecycle’ risk reduction plan for cybersecurity. Authoritiesare
now focusing on scrutinizing applicants’ dossiers to make sure
a thorough plan has been designed, which contains a risk
management process, risk analysis, risk control or residual risk,
post-marketing plan, etc. In 2022, the NMPA released a new
version of principles of medical device cybersecurity technical
evaluation [40], which also ensures data confidentiality,
integrity, availability, authenticity, accountability,
nonrepudiation, and reliability are covered according to GBI/t
29246-2012. The NMPA suggests that applicants make sure
that the risk management method is applied throughout the
whole life cycle to ensure patient safety. They will focus on
quality control across all stages mentioned before in both the
pre- and postmarket phases.

Future Directions

Since Chinajoined theIMDRF in 2013 [41], Chinahas adopted
and referenced international regulatory methods when
formulating its own regulations. Regulatory similarities between
China and other countries have been witnessed and
demonstrated. However, China also has its own loca
requirements, standards, and regulatory ideologies, which can
be an additional layer of complexity for global manufacturers
who want to bring their medical devicesto the Chinese market.

There are different aspects for global manufacturers to pay
attention to when they want to leverage US or EU experience
for the Chinese market. In China, the focus is more on the
maturity of the algorithm, which is different from the FDA
sponsor qualification program. Differences in sample
populations upon which the algorithm is built are another key
consideration, in addition to the requirement to ensure data
confidentiality and the protection of patientsin aspecific region.
Inthe Regulatory Science Action Planissued by NMPA in 2019
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[42], there is a clear focus on Al, which suggests more
regulations might be developed with an increased level of
harmonization with the US, EU, or other markets. Nonethel ess,
regulatory inconsistency still exists between countries. The
same device can be regulated very differently across borders,
which poses global manufacturers with big challenges. Large,
well-founded medical device companies usually have global
regulatory affairs professionalsthat deal with this situation, but
innovation may also arise from small research teams at
universities or innovative small and medium enterprises. In this
situation, the complexity of the regulatory environment will
hinder the potential of influential new products to enter the
market. The regulatory strategy will need to differ from region
to region to provide the best possible match for each.

For example, in the United States, a high-tech device could be
registered asaclass|l deviceif itislike apredicate device that
has already been registered. In this case, the characteristics need
to be the same, and there should not be any cause for concern
with regard to the safety and effectiveness of the device.
However, in China, manufacturers will need to refer to the
classification catalog, which aims to classify the device based
on its own safety and effectiveness. If it is a high-tech device,
then it becomes more likely that it will be seen as a class 111
device in China. This means that the device will face more
stringent regi stration requirements, including clinical evaluation
and even trials. Manufacturers need to consider this when they
start to map their market potential globally, asit could become
aregulatory barrier for them.

Strategically, some manufacturers would choose to register their
devicesfirst in the United States and then explore Chinaor other
markets. The United States regulation is also focused on the
sponsor criteria and “ Current Good Manufacturing Practice’
alongside the assessment of the software algorithm itself, which
makes it more organization-centric [43]. Another registration
strategy could beto register half of the medical devicesthat are
in the development stage (also called “pipeline products’) in
the United States and the other half in China. After getting
feedback from both authorities, they can switch them over. In
the United States, applicants of new devices can go through the
De Novo premarket pathway or Breakthrough Device
designation to register their technology [43]. In China, there
exists a “Green Channel” for software with urgent medical
needs.

It is imperative for international manufacturers and regulatory
authorities to engage in collaborative endeavors aimed at
delineating optimal regulatory pathways for each Al and ML
product. Establishing a conducive environment where
stakeholders can engagein reciprocal learning is of paramount
importance. Enhanced comprehension of regional regulatory
variations serves as a catalyst for fostering an environment
conducive to mutual learning and collaboration. Bolstering
global regulatory awarenessin the health care technology sphere
has the potential to catalyze new opportunities, ultimately
yielding enhanced benefits for patientsin the long term.
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Abstract

Clinical decision-making is a crucial aspect of health care, involving the balanced integration of scientific evidence, clinical
judgment, ethical considerations, and patient involvement. This process is dynamic and multifaceted, relying on clinicians
knowledge, experience, and intuitive understanding to achieve optimal patient outcomes through informed, evidence-based
choices. The advent of generative artificial intelligence (Al) presents a revolutionary opportunity in clinical decision-making.
Al’sadvanced dataanalysis and pattern recognition capabilities can significantly enhance the diagnosis and treatment of diseases,
processing vast medical data to identify patterns, tailor treatments, predict disease progression, and aid in proactive patient
management. However, theincorporation of Al into clinical decision-making raises concernsregarding the reliability and accuracy
of Al-generated insights. To address these concerns, 11 “verification paradigms’ are proposed in this paper, with each paradigm
being a unique method to verify the evidence-based nature of Al in clinical decision-making. This paper also frames the concept
of “clinically explainable, fair, and responsible, clinician-, expert-, and patient-in-the-loop Al.” This model focuses on ensuring
Al’s comprehensibility, collaborative nature, and ethical grounding, advocating for Al to serve as an augmentative tool, with its
decision-making processes being transparent and understandabl e to clinicians and patients. Theintegration of Al should enhance,
not replace, the clinician’s judgment and should involve continuous learning and adaptation based on real-world outcomes and
ethical and legal compliance. In conclusion, while generative Al holdsimmense promise in enhancing clinical decision-making,
it is essential to ensure that it produces evidence-based, reliable, and impactful knowledge. Using the outlined paradigms and
approaches can help the medical and patient communities harness Al’s potential while maintaining high patient care standards.

(IMIR Al 2024;3:€55957) doi:10.2196/55957

KEYWORDS
clinical intelligence; artificial intelligence; iterative process; abduction; benchmarking; verification paradigms

Clinical decision-making involves a complex interplay of

Clinical Decision-Making and Clinical
Intelligence

Clinical decision-making can be defined as afundamental aspect
of health care practice, encompassing a wide set of skills,
competencies, processes, and outcomesthrough which clinicians
gather and analyze relevant patient data; differentiate among
various conditions; and diagnose, treat, and manage patient care,
balancing the effectiveness, risks, and benefits of each treatment;
patient preferences; and other related values within broader
societal and cultural contexts and guidelines or standards of
care[1-3].

https://ai.jmir.org/2024/1/€55957

research and biomedical knowledge, experience, and intuitive
understanding devel oped through years of practice, contextual
analytical reasoning, patient-centeredness, and compliance with
ethical standards and legal requirements, with the goal of
arriving at optimal health outcomes for patients by making
informed, evidence-based, and shared choices while ensuring
patient autonomy and confidentiality [4,5].

The 4 major pillars of clinical decision-making are scientific
evidence, clinical judgment (in some complex cases not isolated
to 1 clinician but involving ateam of health care professionals,
each contributing their expertise), ethical considerations, and

IMIR Al 2024 | vol. 3 | €55957 | p.76
(page number not for citation purposes)


mailto:nicolaluigi.bragazzi@unipr.it
http://dx.doi.org/10.2196/55957
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

patient involvement, which are pivotal to the delivery of
high-quality health care[6,7].

Clinical decision-making is not a static but rather a dynamic,
multifaceted, iterative process based on reflective practice,
which implies reviewing and auditing clinical decisions and
outcomes to continuously learn and improve decision-making
skillsin the face of uncertainty and epistemic risks [5,8].

The Advent of Generative Atrtificial
Intelligence and Its Role in Supporting
Clinical Decision-Making

Artificial intelligence (Al) [9] and, in particular, generative Al
[10] have the potential to revolutionize the field of clinical
decision-making with their advanced capabilitiesin dataanaysis
and pattern recognition. However, together with their rise, there
is a growing necessity to ensure that the knowledge used and
produced is evidence based and reliable. This necessity stems
from the potential risksand biases associated with Al-generated
insightsthat may not align with established medical knowledge
or practices.

Generative Al can process vast amounts of medical data,
including patient records, imaging data, laboratory test results,
other diagnostic inputs, and clinical studies, aswell asresearch
papers, to identify patterns and correl ations that might be missed
by clinicians. By analyzing patient data, generative Al can help
in tailoring treatments to individual patients, improving the
efficacy of therapiesand reducing side effects, predicting disease
progression and potential complications, aiding clinicians in
proactive patient management, and assisting in diagnosing

Bragazzi & Garbarino

diseases, potentially identifying conditions earlier and more
accurately than using traditional methods [11].

On the other hand, generative Al can produce “hallucinations’
or even “fabrications’ and “falsifications,” generating inaccurate
or misleading information that does not accurately reflect the
data it was trained on or reality [12,13], which is of particular
concern in the medical realm.

Addressing these challenges requires a multifaceted approach,
including improving data set quality and diversity, refining
model architectures, and incorporating mechanisms for fact
checking and validation. Moreover, devel oping methodologies
for the model to express uncertainty or request clarification
when generating outputs on topics in which it has less
confidence could enhance reliability. In real-world clinical
applications where accuracy and truthfulness are paramount, it
is crucial to implement safeguards such as human oversight,
rigorous testing across diverse scenarios, and continuous
monitoring and updating of Al-based models to mitigate the
risks associated with these inaccuracies.

In this conceptual paper, to address these concerns, weintroduce
11 “verification paradigms,” with each paradigm being aunique
method to verify the evidence-based nature of Al in clinical
decision-making.

Comparing Clinical Versus Al Reasoning

Interesting parallelisms between clinical decision-making and
Al reasoning can be drawn (Figure 1), especially in the context
of frequentist and Bayesian thinking and large language models
(LLMs) such as GPT-4, which use conditional probability,
revealing an interesting interplay of similarities and contrasts

[5].

Figure 1. Integrating clinical expertise with artificia intelligence (Al) for enhanced health care outcomes—a schematic representation of the flow and
interplay among traditional clinical reasoning, data acquisition, Al-driven predictive analytics, and the continuous learning cycle leading to improved

patient care and diagnostics. This figure was created with BioRender.com.
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In clinical decision-making, the reliance on scientific evidence
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Clinicians, through years of practice, develop an intuitive sense
of diagnosis and treatment. Clinical reasoning often involves
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abductive reasoning, which is a form of logical inference that
starts with an observation or set of observations and then seeks
to find the simplest and most likely explanation. In clinical
practice, this means forming hypotheses based on symptoms
and available data to diagnose a patient's condition. Al,
particularly in fields such as machine learning and diagnostic
algorithms, also frequently uses abductive reasoning—A I -based
systemsare, indeed, designed to analyze data, identify patterns,
and make predictions or decisions based on that analysis. In
many ways, this mirrors the process of abductive reasoning in
which the most likely conclusion is drawn from the available
information. For example, in medical diagnostics, Al-based
systems might analyze patients symptoms, medical history,
and test results to suggest possible diagnoses. The aspect of
human expertise underlying clinical reasoning somewhat
parallelshow Al-enhanced models develop aform of “intuition”
from their vast training data[14,15].

When faced with complex cases, clinical decision-making often
involves a collaborative approach among health care
professionals, akin to the multifaceted approach of Al that
integrates diverse data sources and algorithms. Ethical
considerations and patient involvement are central to clinical
decisions, much like how Al-based models need to be ethically
aligned and user centric. Furthermore, both fields are dynamic
and iterative—clinicians continually adapt their methods based
on new research and patient feedback, similar to how
Al-enhanced models evolve with new data and interactions.

On the Al side, traditional models often align with frequentist
statistics, where the frequency of past events informs future
predictions, somewhat like clinicians using epidemiological
data. Modern Al, particularly in machinelearning, usesBayesian
methods, updating the likelihood of outcomes with new data,
reflecting how cliniciansrevise their hypotheses about diagnoses
or treatments as new patient information comesto light. LLMs
such as GPT-4 can predict outcomes based on conditional
probability, which can be compared to clinicians using
symptoms to predict diagnoses [16].

Al’s proficiency in pattern recognition and predictive analysis
alsofindsaparalld inclinical practice, where patternsin patient
symptoms and test results are crucia for effective
decison-making. However, despite these paralelisms,
significant differences remain, with Al lacking the empathetic
and deeply intuitive component inherent in human
decision-making and cliniciansinterpreting datawithin abroader
human context, an ability that Al hasyet to fully replicate.

In essence, while there are notable similarities in the use of
statistical methods and data analysis between clinical
decision-making and Al reasoning, the human aspects of
intuition, empathy, and ethical considerations underscore the
unique characteristics of each field. The future of health care
may lie in the harmonious integration of these 2 domains,
leveraging the strengths of each to enhance medical care and
improve patient outcomes (Figure 1).
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Toward Clinical LLMs: Necessity of
Verifying Evidence-Based Knowledge

However, the integration of generative Al into clinica
decision-making necessitates a rigorous verification processto
ensurethereliability and accuracy of the Al-generated insights.
This verification is crucia because, as previously mentioned,
Al-based model s can sometimes generate conclusions based on
flawed or biased data, leading to inaccurate or even harmful
recommendations. It isessential that Al-generated advicealigns
with current medical standards and best practicesin addition to
adhering to ethical standards, respecting patient autonomy, and
ensuring equitable treatment [17,18].

Clinically oriented LLMs [19-25] such as ClinicalBERT,
BlueBERT, CAML, DRG-LLaMA, GatorTronGPT, or PaLM
have shown impressive capabilities, yet their application in
clinical settings faces stringent requirements. Traditional
methods of assessing these models’ clinical knowledge often
depend on automated evaluations using narrow benchmarks.
To overcome these shortcomings, Singhal et al [25] recently
introduced MultiMedQA, a comprehensive benchmark that
merges 6 medical question-answering data sets covering arange
of areas from professional medicine to consumer queries and
includes HealthSearchQA, a new data set of medically related
web-based search questions. This novel approach includes a
human evaluation framework that examines model answers
across various dimensions, namely, accuracy, understanding,
reasoning, potential harm, and bias. The authors tested both
PaLM and its instruction-tuned version, Flan-PaLM, on
MultiMedQA. Flan-PaL M, using diverse prompting techniques,
set a new standard in accuracy across al MultiMedQA
multiple-choice data sets, including MedQA, MedMCQA,
PubMedQA, and MMLU clinical topics, achieving aremarkable
67.6% accuracy in MedQA (US Medical Licensing
Examination—style questions), which is >17% higher than the
previous best. However, human assessments uncovered
significant shortcomings. To address these, the authors
introduced “instruction prompt tuning,” an efficient method for
adapting LLMs to new domains with just afew examples. The
resultant model, Med-PaLM, shows promise, yet it still does
not match clinician performance even though the authors could
observe that model scale and instruction prompt tuning
significantly enhance comprehension, knowledge recall, and
reasoning.

A further risk isthat LLMs might reinforce existing biases and
provide inaccurate medical diagnoses, potentially leading to
detrimental effects on health care. Zack et al [26] aimed to
evaluate whether GPT-4 harbors biases that could influence its
application in health care settings. Using the Azure OpenAl
interface, the authors scrutinized GPT-4 for racial and gender
biases and assessed the impact of such biases on four clinical
applications of LLMs—(1) medical education, (2) diagnostic
reasoning, (3) development and implementation of clinical plans,
and (4) subjective patient evaluations—involving experiments
using prompts mimicking typical GPT-4 use in clinical and
medical educational settings and drawing from New England
Journal of Medicine Healer clinical vignettes and research on
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implicit bias in headth care. The study compared GPT-4's
estimates of demographic distributions of medical conditions
against actual US prevalence data. For differential diagnosis
and treatment planning, the research analyzed variations across
demographic groups using standard statistical methods to
identify significant differences. The study revealed that GPT-4
inadequately represents demographic diversity in medical
conditions, often resorting to stereotypical demographic
portrayals in clinical vignettes. The differential diagnoses
generated by GPT-4 for standardized clinical vignettes tended
to reflect biases associated with race, ethnicity, and gender.
Furthermore, the model’s assessments and plans demonstrated
anotable correlation between demographic characteristics and
recommendations for costlier procedures, as well as varied
perceptions of patients.

All this, taken together, suggests the potential role of LLMsin
medicine, but human evaluations also highlight the current
models  limitations, underscoring the importance of
comprehensive evaluation frameworks and continued

Textbox 1. Overview of the verification paradigms.

Bragazzi & Garbarino

methodol ogical advancementsto develop safe, effective LLMs
for clinical use.

Implementing “Verification Paradigms”:
A Comprehensive Evaluation Framework

Overview

Severa “simulation and scenario testing” or “verification”
paradigms can be particularly effective in verifying the
evidence-based nature of generative Al in clinica
decision-making. The 11 paradigms proposed in this paper were
devised following thorough familiarization with existing
literature and extensive consultation with expertsin the field to
ensure that the methodologies were not only grounded in the
latest academic research and theoretical frameworks but also
shaped by practical insights and recommendations from medical
professionals and Al technology speciaists (Textbox 1 and
Table 1).

Verification paradigmsand brief description

e Quiz, vignette and knowledge survey: uses clinical scenariosto test artificial intelligence (Al)’'s medical knowledge and reasoning.

« Historical data comparison: compares Al recommendations with known clinical outcomes to gauge accuracy.

«  Expert consensus: evaluates Al-generated diagnoses or treatment plans against expert medical opinion.

«  Cross-discipline validation: verifies Al insights with professionals from various medical disciplines for comprehensive evaluation.

« Rareor complex simulation and scenario testing: assesses Al’s ability to handle rare and complex medical cases through simulated scenarios.
. False myth: tests Al's capability to identify and reject medical myths or outdated concepts.

«  Challenging (or controversial) question: presents Al with complex medical questions to evaluate its nuanced understanding and reasoning.

«  Real-time monitoring: monitors Al recommendationsin clinical settings to observe real-world efficacy and safety.

« Algorithm transparency and audit: focuses on the transparency of Al’s decision-making process and its ability to be audited.

«  Feedback loop: involves continuous Al improvement based on feedback from practical applications and outcomes.

«  Ethical and legal review: regularly reviews Al recommendations to ensure that they adhere to ethical guidelines and legal standards.

https://ai.jmir.org/2024/1/€55957
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Table 1. Verification paradigms with their strengths and weaknesses.

Bragazzi & Garbarino

Verification paradigm Strengths

Weaknesses

Quiz, vignette, and knowledge .
survey .

Comprehensive evaluation
Real-world relevance

o Assessment of contextual understanding and probabilis-

tic reasoning

Historical data comparison « Rea-world applicability
«  Evidence-based evaluation
«  Objective benchmarking

Expert consensus o  Leverages human expertise
«  Valuablein complex cases
« Incorporates ethical judgment

Cross-discipline validation .

Comprehensive evaluation from multiple perspectives

o  Complex todesign
« Resourceintensive
Potential biasin test creation

«  Dependent on data quality

o Historical bias

*  May not capture Al’s? potential for novel in-
sights

«  Subjective
«  Time-consuming
«  Potential for expert bias

Coordination challenges

Rare or complex simulation and
scenario testing

« Mitigatesthe risk of siloed decision-making

Reveals Al’s capabilities in handling diversity
Can identify areas for innovation

Requires broad expert availability

Potentialy limited by available data
Resource intensive

False myth .

Tests Al's current knowledge base .
o Assessesability to discern evidence-based information

Requires careful selection of myths
Risk of reinforcing incorrect information

Challenging (or controversial) « Evauates Al's handling of ambiguity and complexity «  Subjective evaluation criteria
question o Assesses balance of different viewpoints «  Dependson quality of input questions
Real-time monitoring « Directinsight into practical impact «  Requires controlled clinical environment

«  Simulates real-world testing

Algorithm transparency and audit «  Enhances trust and understanding
« Facilitates regulatory compliance

«  Ethical concernswith experimental use

«  Complexity for end users
« Risk of exposing proprietary information

Feedback loop «  Ensures continuous improvement «  Requires ongoing effort and resources
« Adaptsto changing medical knowledge «  Dependence on quality of feedback
Ethical and legal review .  Safeguards patient rights «  Time-consuming
«  Ensures adherence to ethical guidelines «  Needs multidisciplinary expertise

3Al: artificial intelligence.

The Quiz, Vignette, and K nowledge Survey Paradigm

Thisapproach involves ng the Al’s proficiency in various
domains, such asmedical knowledge and diagnostic reasoning,
and its understanding of therapeutic interventions by using
quizzes, vignettes, and validated knowledge surveys designed
tomimic real-world clinical scenarios[27]. Thiswould require
the Al to have not only a vast knowledge base of medical
information but also, and especialy, the ability to apply this
knowledge contextually, thus demonstrating an understanding
of the nuances of patient presentations and how they correlate
with various medical conditions and treatments. In addition,
this format could incorporate elements of both frequentist and
Bayesian thinking, reflecting the probabilistic nature of clinical
reasoning—in other words, as previously mentioned, the Al
would haveto weigh thelikelihood of different diagnoses based
on the presented symptoms and history, similar to how clinicians
use Bayesian reasoning to update their probability assessments
as new information becomes available.

https:/ai jmir.org/2024/1/e55957

This approach has a number of strengths, including
comprehensive evaluation, real-world relevance, contextual
understanding, probabilistic reasoning assessment, and
adaptability to new information. On the other hand, it suffers
from some weaknesses, such as design complexity and resource
intensiveness, potential bias in test creation, and lack of
interdisciplinary evaluation.

Currently, this approach is the most leveraged. An extensive
body of literature has found that LLMs such as ChatGPT can
successfully pass medical examinations [28] although with
varying degrees of heterogeneity and variability [29], exhibiting
strong abilitiesin explanation, reasoning, memory, and accuracy.
On the other hand, LLMs struggle with image-based questions
[30] and, in some circumstances, lack insight and critical
thinking skills [31].

Some of the studies that have exploited quizzes, vignettes, and
validated knowledge surveys[32,33] have quantified the fluency
and accuracy of Al-based tools using validated and reliable
instruments such as the “Artificial Intelligence Performance
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Instrument” [32]. Thistool includes 9 items related to medical
and surgical history, namely, symptoms, physical examination,
diagnosis, additional examinations, management plan, and
treatments. The Artificial Intelligence Performance I nstrument
score ranges from O (“inadequate clinical case management by
the Al") to 20 (“excellent clinical case management by the Al”).
This score can be further subdivided into 4 subscores: patient
feature, diagnosis, additional examination, and treatment score.

The Historical Data Comparison Paradigm

This  approach  involves comparing  Al-generated
recommendations with outcomes from historical data—by
analyzing casesin which theclinical outcomesarewell known,
one can assess how well the Al's suggestions would have
aligned with actual scenarios. This would help in the
comprehension of the Al’s accuracy in real-world health care
settings, providing insights into its potential benefits and
limitations. This is a crucia step in understanding Al's
performance and guiding its integration into clinical practice,
ensuring that Al-supported decisions are in line with
evidence-based medical standards and, ultimately, enhance
patient care outcomes.

Strengths of this approach include real-world applicability,
evidence-based evaluation, and objective benchmarking by
offering aclear, objective, data-driven, and evidence-based way
to benchmark Al performance against known outcomes,
facilitating a straightforward and comprehensive assessment of
itsaccuracy. Furthermore, this method enablesthe identification
of potential gaps and improvement areas—through direct
comparison with historical outcomes, specific areas in which
Al recommendations may fall short can be identified, guiding
further refinements. Demonstrating Al’s ability to match or
surpass historical outcomes can build trust among clinicians
and patientsregarding Al’s utility in health care. However, this
method has some weaknesses, too, including dependence on
data quality in that the approach is heavily reliant on the
availability and quality of historical data, with poor dataquality
skewing results and misleading about Al’s true performance.
In addition, historical data may contain biases (eg, diagnostic,
treatment, or outcome biases), which can inadvertently be
reinforced by Al, affecting the fairness and accuracy of its
recommendations. This shortcoming is known as “historical
bias,” which arises when the data or corpora used to train
Al-based tools no longer accurately reflect the current reality.
The potential lack of novel insightsis another limitation asthis
method benchmarks agai nst known outcomes and may not fully
capture Al’s potential to provide novel insights or diagnose
conditions that were previously undetected or misdiagnosed.
Furthermore, this paradigm evaluates Al against past standards
of care, which may not account for advancements in medical
knowledge or changesin clinical guidelines over time (“static
evaluation™), and its performance on complex, multifactorial
cases might not be accurately assessed if historical data are
limited or if such cases were managed differently due to
evolving standards of care.

Currently, to the best of our knowledge, no published studies
have leveraged this approach in the biomedical arena.
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The Expert Consensus Paradigm

Inthisparadigm, Al-generated diagnoses or treatment plansare
evaluated by a panel of medical experts, with the consensus
among these expertson the validity of the Al’srecommendations
serving as a measure of their reliability. This paradigm is
particularly useful in ng the Al’s performance in complex
cases in which human expertiseisinvaluable, ranging from the
psychiatric field in dealing with issues such as suicide risk
assessment [34] to occupational medicine [35]; oncology, with
the management of malignancies [36]; and complex surgical
procedures such as bariatric surgery [37].

Strengths include high-quality validation of Al’s performance,
ensuring that Al-generated recommendations are thoroughly
vetted by experts, and bringing a high level of scrutiny and
quality control that is particularly important in complex medical
fields. Incorporation of human expertise and adaptability to
complex casesare other strengths by relying on medical experts
to evaluate Al advice and integrating nuanced human judgment
and clinical experience that Al might lack or in those instances
for which Al algorithms might not have sufficient training data
or might lack the capability to understand context deeply.
Furthermore, expert feedback provides continuous learning
opportunities, offering a platform for Al-based systems to be
continuously updated and improved, enhancing their accuracy
and reliability over time. This leads to heightened acceptance
of Al tools as having a consensus from medical experts can
increase trust among health care providers and patients in
Al-generated diagnoses or treatment plans.

On the other hand, expert feedback is time and resource
intensive—gathering apanel of expertsand reaching aconsensus
can be time-consuming and expensive, which may not be
feasible for every clinical decision or in settings with limited
resources. |n addition, despite being experts, humans are subject
to biases that might affect their judgment, potentially leading
tothevalidation of inaccurate Al recommendations. Scalability
issues represent a further shortcoming—the approach may not
scale well to everyday clinica practice, where quick
decision-making is often required and the luxury of convening
an expert panel for each Al recommendation is not practical.
Furthermore, variability in expert opinion could lead to
inconsistent validation of Al-generated recommendations and
uncertainty in their reliability. Finally, there is arisk that this
paradigm could discourage direct validation of Al agorithms
through objective measures or independent verification,
potentially overlooking errorsor biasesin the Al-based systems
themselves.

The Cross-Discipline Validation Paradigm

This paradigm is rooted in the understanding that health care
delivery increasingly relies on the expertise and coordination
of diverse professionals to address complex health issues
effectively. Thisapproach recognizesthat no single professional
has al the knowledge and skills necessary to provide
comprehensive care, especially in casesthat involve multifaceted
medical, psychological, social, and ethical considerations. As
clinical decision-making is seen asamultidisciplinary teamwork
process, this verification paradigm involves cross-verifying
Al-generated insights with experts from various medical
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disciplines. For example, a diagnosis made by an Al based on
radiology images could be evaluated by experts in radiology,
oncology, and pathology. This multidisciplinary approach
ensures comprehensive evaluation and mitigates the risk of
siloed decision-making, which isknown to result in incomplete
information, lack of coordination, and duplication of efforts,
leading to inefficient care, higher costs, increased risk of medical
errors, and decreased patient satisfaction, ultimately impacting
the quality of patient care and health outcomes.

Currently, little is known about the multidisciplinary nature of
LLMs. Li et al [38] evaluated the proficiency of Al-based tools
in addressing interdisciplinary queries in cardio-oncology,
leveraging a questionnaire consisting of 25 questions compiled
based on the 2022 European Society of Cardiology guideline
on cardio - oncology. ChatGPT-4 showed the highest percentage
of good responses at 68%, followed by Bard, Claude 2, and
ChatGPT-3.5 at 52% and LLaMA 2 at 48%. A specific area of
concernwasin treatment and prevention, whereall LLMsscored
poorly or borderline, particularly when their advice deviated
from current guidelines, such asthe recommendation tointerrupt
cancer treatment for patients with acute coronary syndrome.
Other studies have assessed LLMs as support tools for
multidisciplinary tumor boards in the planning of therapeutic
programs for patients with cancer [39,40].

TheRareor Complex Simulation and Scenario Testing
Paradigm

In this method, the Al-based tool is tested against a variety of
simulated clinical scenarios, including rare and complex cases
such as frail patients with multiple comorbidities, unusual
presentations of diseases, or cases in which symptoms are
ambiguous or misleading. This comprehensive testing can
identify areas for innovation and revea the strengths and
limitations of the Al-based tool in diverse clinical situations,
such as Al’s capabilitiesin handling diversity. Conversely, this
paradigm can be resource intensive and potentially limited by
available data.

A recent study [41] explored ChatGPT’s potential contributions
to the diagnosi s and management of rare and complex diseases,
such as idiopathic pulmonary arteria hypertension,
Klippel-Trenaunay syndrome, early-onset Parkinson disease,
and Rett syndrome. LLMs can detect the disease early through
Al-driven analysis of patient symptoms and medical imaging
data, rapidly analyze an extensive body of biomedical literature
for a better understanding of the mechanisms underlying the
disease, and offer access to the latest research findings and
personalized treatment plans.

Another study [42] examined the efficacy of 3 popular LLMs
in medical education, particularly for diagnosing rare and
complex diseases, and explored the impact of prompt
engineering on their performance. Experimentswere conducted
on 30 cases from a diagnostic case challenge collection using
various prompt strategies and a majority voting approach to
comparethe LLMs' performance against human consensusand
MedAlpaca, an LLM designed for medical tasks. The findings
revedled that al tested LLMs surpassed the average human
consensus and MedAlpaca’s performance by margins of at least
5% and 13%, respectively. In categories of frequently
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misdiagnosed cases, Google Bard equaled MedAlpaca but
exceeded human consensus by 14%. GPT-4 and GPT-3.5
showed superior performance over MedAlpaca and human
respondents in often moderately misdiagnosed cases, with
minimum accuracy improvements of 28% and 11%,
respectively. Using amajority voting strategy, particularly with
GPT-4, yielded the highest overall accuracy across the
diagnostic complex case collection. Onthe Medical Information
Mart for Intensive Care |11 data sets, Google Bard and GPT-4
reached the highest diagnostic accuracy scores of 93% with
multiple-choice prompts, whereas GPT-3.5 and MedAlpaca
scored 73% and 47%, respectively.

The False Myth Paradigm

This paradigm involves deliberately introducing known medical
mythsor outdated conceptsinto the Al’straining data. The Al’s
ability to identify and reject these myths serves as atest of its
understanding of current medical knowledge and its ability to
discern evidence-based information. On the other hand, this
approach requires a careful selection of myths and, if used in
an inappropriate way, can reinforce incorrect information.

A few studies have harnessed this approach [43,44]. These
studies evaluated the accuracy of 2 Al tools, ChatGPT-4 and
Google Bard, in debunking 20 sleep-related myths using a
5-point Likert scale for falseness and public health significance
and compared their performance with expert opinions. ChatGPT
labeled 85% of the statements as either “false” (45%) or
“generally false” (40%), showing high reliability inidentifying
inaccuracies, especially regarding sleep myths surrounding
timing, duration, and behaviors during sleep. The tool
demonstrated varying success in other categories such as
presleep behaviors and brain function related to sleep. On a
5-point Likert scale, ChatGPT scored an average of 3.45 (SD
0.87) in identifying the falseness of statements and 3.15 (SD
0.99) in understanding their public health significance, indicating
agood level of accuracy and understanding. Similarly, Google
Bard identified 19 out of 20 statements as fal se, which was not
significantly different from ChatGPT-4's accuracy. Google
Bard's average falseness rating was 4.25 (SD 0.70), with
skewness of -0.42 and kurtosis of -0.83, indicating a
distribution with fewer extreme values compared to that of
ChatGPT-4. For public health significance, Google Bard scored
an average of 2.4 (SD 0.80), with skewness and kurtosis of 0.36
and -0.07, respectively, suggesting a more normal distribution
than that of ChatGPT-4. The intraclass correlation coefficient
between Google Bard and sleep experts was 0.58 for falseness
and 0.69 for public health significance, showing moderate
agreement. Text mining analysis showed that Google Bard
focused on practical advice, whereas ChatGPT-4 emphasized
theoretical aspects. A readability analysis found that Google
Bard's responses matched an 8th-grade reading level, making
them more accessible than ChatGPT-4's, which aligned with a
12th-grade level.

TheChallenging (or Controversial) Question Paradigm

In this paradigm, the Al-based tool is presented with
controversial or complex medical questions that do not have
straightforward answers. The way in which Al navigates these
questions, balancing different viewpoints and evidence, can
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revea its depth of understanding and its ability to handle
nuanced medical issues. In the realm of medicine, evidenceiis
hierarchical, with systematic reviews and meta-analyses at the
top. An analytical evaluation would consider how the Al
prioritizes, evaluates, and appraises different levels of evidence
and whether it can differentiate between high-quality and
lower-quality studies. In addition, Al should detect and minimize
biases present in medica literature and data sources.
Analytically, this involves evaluating the algorithms for their
ability to identify potential biases in studies (eg, publication
bias and sel ection bias) and adjust their conclusions accordingly.
Shortcomings of this paradigm include subjective evaluation
criteria and dependence on the quality of input questions.

A few studies[45,46] have assessed the skills of Al-based tools
in understanding or generating complex and nuanced clinical
documents, such as guidelines.

The Real-Time Monitoring Paradigm

In this paradigm, the Al’s recommendations are implemented
in a controlled clinical environment, and patient outcomes are
closely monitored, simulating a randomized controlled trial
(RCT). This rea-world testing provides valuable feedback on
the Al’'s efficacy and safety in actual clinical settings.

While this paradigm can provide direct insights into practical
impact and simulate real-world testing, it requires a controlled
clinical environment and may be limited by ethical concerns
related to the experimental use of Al.

So far, only a few RCTs have been implemented. A recent
blinded RCT [47] explored the efficacy of ChatGPT alongside
traditional typing and dictation methodsin assisting health care
providers with clinical documentation, specifically in writing
a history of present illness based on standardized patient
histories. A total of 11 participants, including medical students,
orthopedic surgery residents, and attending surgeons, were
tasked with documenting history of present illness using 1 of
the 3 methods for each of the 3 standardized patient histories.
The methods were assessed for speed, length, and quality of
documentation. Results indicated that, while dictation was the
fastest method and resulted in longer and higher-quality patient
histories according to the Physician Documentation Quality
Instrument score, ChatGPT ranked intermediate in terms of
speed. However, ChatGPT-generated documents were more
comprehensive and organized than those produced through
typing or dictation. A significant drawback noted was the
inclusion of erroneous information in dlightly more than
one-third of ChatGPT-generated documents, raising concerns
about accuracy. In addition, there was a lack of consensus
among reviewers regarding the quality of patient histories.

In another controlled trial [48], ChatGPT's utility in providing
empathetic responses to people with multiple sclerosis was
assessed. The study recruited a sample of 1133 participants
(mean age 45.26, SD 11.50 years, 68.49% female), who were
surveyed through a web-based form distributed via digital
communication platforms. Participants, blinded to the authors
of the responses, evaluated alternate responses to 4 questions
on aLikert scale from 1 to 5 for overall satisfaction and used
the Consultation and Relational Empathy scale for assessing
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perceived empathy. Results showed that ChatGPT’s responses
were perceived as significantly more empathetic than those from
neurologists. However, there was no significant association
between ChatGPT’s responses and mean satisfaction. College
graduates were significantly less likely to prefer ChatGPT's
responses compared to those with a high school education.

The Algorithm Transparency and Audit Paradigm

This paradigm focuses on thetransparency of the Al algorithms
and the ability to audit their decision-making processes. By
understanding how the Al-based tool arrives at its conclusions,
clinicians can better assessthe validity of itsrecommendations,
which is crucial for building trust in Al-based systems among
health care professionals.

Strengthsincludeimproved decision-making and enhanced trust
and confidence by demystifying how decisions are made, thus
building trust among clinicians and patients, crucia for the
acceptance and integration of Al in health care. Clinicians can
make more informed decisions by understanding the reasoning
behind Al recommendations, potentially |leading to better patient
outcomes. Al-based tools can also facilitate regulatory
compliance—transparency is key to meeting regulatory
standardsfor medical devicesand software, including Al-based
systems used in health care. Al enables continuousimprovement
as a transparent decision-making process allows for easier
identification of errors or biases in the Al system, facilitating
ongoing refinement and improvement. Furthermore, exposing
the decision-making process has educational benefitsfor health
care professionals, helping them understand complex Al
methodologies and enhancing their ability to work alongside
Al tools. On the other hand, this approach has some weaknesses
that should be acknowledged, including complexity for end
users—Al decision-making processes, especialy in deep
learning, can be incredibly complex and difficult for end users
to understand, potentialy limiting the effectiveness of
transparency. Understanding and trusting the Al process might
lead some cliniciansto overrely on Al recommendations without
applying their judgment, especially in ambiguous or complex
cases. Complete transparency might expose proprietary
algorithms to potential theft or misuse, challenging companies
to balance transparency with protecting their intellectual
property. Moreover, there is potentid room for
misinterpretation—there is arisk that transparency could lead
to misinterpretation of how Al agorithms work, especialy
without astrong foundation in data science or Al methodol ogies
among health care professionals. Finally, devel oping transparent
Al systems that are also understandable to clinicians requires
significant resources, including time and expertise, potentially
slowing down innovation.

The Feedback L oop Paradigm

Thisapproach involvesthe continuous updating of the Al system
based on feedback from its practical applications, with clinicians
providing feedback on the Al’s performance, which isthen used
to refine and improve the Al models. This iterative, ongoing
process ensures that the Al-based system properly evolves and
adapts to changing medical knowledge and practices.
Conversely, it aso requires ongoing efforts and resources in
addition to depending on the quality of the feedback.
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A few studies have investigated reproducibility and repeatability
[49,50]. In a study [49] involving emergency physicians, 6
unique prompts were used in conjunction with 61 patient
vignettesto assess ChatGPT’ s ability to assign Canadian Triage
and Acuity Scale scores through 10,980 simulated triages.
ChatGPT returned a Canadian Triage and Acuity Scale score
in 99.6% of the queries. In terms of temporal reproducibility
and repeatability, the study found considerable variation in the
results—21% due to repeatability (using the same prompt
multiple times) and 4% due to reproducibility (using different
prompts). ChatGPT’s overall accuracy in triaging patients was
47.5%, with an undertriagerate of 13.7% and an overtriagerate
of 38.7%. Of note, providing more detailed prompts resulted in
dightly greater reproducibility but did not significantly improve
accuracy.

In another study [50] assessing ChatGPT's proficiency in
answering frequently asked questions about endometriosis,
detailed internet searches were used to compile questions, which
were then aligned with the European Society of Human
Reproduction and Embryology (ESHRE) guidelines. An
experienced gynecologist rated ChatGPT’ sresponseson ascale
from 1to 4. Totest repeatability, each question was asked twice,
with reproducibility determined by the consistency of
ChatGPT’s scoring within the same category for repeated
questions. Of the frequently asked questions, 91.4% (n=71)
were answered completely, accurately, and sufficiently by
ChatGPT. Themodel showed the highest accuracy in addressing
symptoms and diagnosis (16/17, 94% of the questions) and the
lowest accuracy in treatment-related questions (13/16, 81% of
the questions). Among the 40 questions related to the ESHRE
guidelines, 27 (68%) were rated as grade 1, atotal of 7 (18%)
were rated as grade 2, and 6 (15%) were rated as grade 3. The
reproducibility rate was highest (100%) for questions in the
categories of prevention, symptoms and diagnosis, and
complications. However, it was lowest for questions aligned
with the ESHRE guidelines, at 70%.

These contrasting findings warrant further investigation.

The Ethical and Legal Review Paradigm

The “ethica and legal review paradigm” emphasizes the
importance of ensuring that Al recommendationsin health care
settings adhere to established ethical guidelines and legal
standards, which involves regular review rounds of the Al's
recommendations by an ethics committee or legal team. This
is particularly important in sensitive areas such as critical care,
emergency management, end-of-life care, or genetic testing,
wherethe stakes of decisionsare particularly high and the moral
and legal implications are significant. This approach aims to
safeguard patients’ rights, maintain trust in Al-assisted health
care, and ensure that the implementation of Al technologiesin
medicineis both ethically sound and legally compliant [51,52].

The deployment of Al-based tools such as ChatGPT in sensitive
fields raises, indeed, several ethical and lega concerns. One
significant issueisthe potential for biasin Al agorithms, which
can lead to unfair or incorrect outcomes. Moreover, the use of
Al in these fields touches on privacy concerns, especially with
the processing of personal data. Furthermore, issues regarding
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accountability and liability for malpractices and bad outcomes
associated with Al-influenced LLM medical decision-making
represent an emerging topic in the arena of legal medicine and,
more broadly, forensic science.

These concerns underscore the need for strict ethical guidelines
and robust legal frameworks governing Al use in biomedical
and clinical practices, with the final goal of leveraging Al’s
strengthswhile mitigating itslimitations, ensuring that it serves
as atool for progress rather than a source of bias and error
[52,53].

Integrating the “Verification Paradigms”

Thesevarious paradigmsfor assessing Al in health care contexts
underscore the multifaceted and complex nature of integrating
Al technologies such as ChatGPT into medical practices. These
paradigms reflect a concerted effort to evaluate Al systems
proficiency, ethical alignment, and practical utility in clinical
settings comprehensively. Each of these paradigms offers a
unique perspective and method for verifying the reliability and
accuracy of generative Al in clinical decision-making, and they
can be used in combination to provide a robust validation
framework (Tables 2 and 3 and Figure 2).

It is of paramount importance to note that all these paradigms
do not necessarily have the same weight or importance; their
relevance can vary depending on the context, the specific health
care domain, and the goals of the Al system being assessed.
Integrating and combining these paradigms can provide a
comprehensive, robust evaluation framework that leveragesthe
strengths of each approach while mitigating their individual
limitations.

Contextual or clinical relevance can be used to prioritize these
approaches—in clinical settings in which decision-making is
complex and highly nuanced (eg, oncology or psychiatry),
paradigms that emphasi ze expert consensus and cross-discipline
validation may be more critical, whereasfor emerging treatments
or rare diseases, paradigmsfocusing on simulation and scenario
testing and challenging questions can be invaluable to explore
Al’s capacity to contribute novel insights or support rare
condition management. In contextsin which Al isbeing directly
implemented into clinical workflows and related follow-up,
real-time monitoring and feedback loop paradigms become
essential to ensure patient safety and system efficacy.

Combining paradigms for comprehensive evaluation requires
a“layered, sequential, strategic integrative approach,” starting
with broad assessments such as the quiz, vignette, and
knowledge survey paradigm to gauge general knowledge and
reasoning abilities, followed by more specific tests such as
historical data comparison for accuracy in real-world scenarios
and expert consensus for nuanced judgment calls. The
cross-discipline validation paradigm can be harnessed to assess
Al’srecommendations from multiple professional perspectives,
ensuring a holistic evaluation of Al’sclinical recommendations.
Throughout all stages of evaluation, the ethical and legal review
paradigmiscontinuously applied to ensure adherenceto ethical
standards and legal requirements, safeguarding patient rights
and data privacy.
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Table 2. Overview of the layered integrative approach for evaluating artificial intelligence (Al) in health care, delineating the structured, multistage
framework for the comprehensive assessment and continuous improvement of Al systems.

Stage

Verification paradigm

Objective

Integration

Initial assessment

Refinement

Expert feedback

Comprehensiveevalu-
ation

Complexity handling

Knowledge accuracy

Complexity and nu-
ance handling

Real-world efficacy

Transparency and
trust

Continuous improve-
ment

Ethical and legal
compliance

Quiz, vignette, and
knowledge survey

Historical data com-
parison

Expert consensus

Cross-discipline vali-
dation

Rareor complex smu-
lation and scenario
testing

Fase myth

Challenging (or con-
troversial) question

Real-time monitoring

Algorithm transparen-
cy and audit

Feedback loop

Ethical and legal re-
view

To gauge the Al’s foundational medical knowl-
edge and its ability to apply this knowledgein
simulated real-world scenarios

To refine the Al’s understanding and application
of medical knowledge by comparing its recom-
mendations or diagnoses against known outcomes
from historical data

To incorporate nuanced clinical insights and ex-
pert judgments into the Al’s learning, ensuring
that it aligns with current clinical practices and
expert opinions

To evaluate the Al’s recommendations and diag-
nostics across various medical disciplines, ensur-
ing a comprehensive and holistic assessment

To test the Al’s ability to handle complex, rare,
or novel medical scenarios, ensuring that it can
adapt to awide range of clinical challenges

To ensure that the Al’s current knowledge base
isaccurate and up-to-date, identifying and correct-
ing any misconceptions or outdated information

To evaluate the Al’s ability to navigate complex

medical questions that may not have straightfor-
ward answers, assessing its reasoning in ambigu-
ous situations

To monitor the Al’s recommendations and diag-
nosesin real-world clinical settings, assessing its
practical efficacy and safety

To ensure that the decision-making processes of
the Al are transparent and understandable, build-
ing trust among health care providers and patients

To continuously refine and improvethe Al system
based on real-world data, feedback, and evolving
medical knowledge

To ensure that all Al recommendations and pro-
cesses adhere to established ethical guidelinesand
legal standards

Formsthe baseline assessment of the Al’s capabil-
ities, setting the stage for more targeted evalua-
tions

Usestheinsights gained from initial assessments
tofocuson areasrequiring improvement, ensuring
that the Al’'s recommendations are grounded in
real-world evidence

Builds on therefined knowledge base by integrat-
ing expert clinical insights, further improving the
Al’s decision-making processes

Leverages the foundational knowledge, refined
understanding, and expert insightsto test the Al’'s
capabilitiesin amultidisciplinary context, identi-
fying any gaps or biases

Uses the comprehensive eval uations as a founda-
tionto challengethe Al with scenariosthat require
sophisticated reasoning, further refining its deci-
sion-making abilities

Builds on the previous layers by specifically tar-
geting and rectifying inaccuraciesin the Al’s
knowledge, ensuring reliability

Further refines the Al’s decision-making process
by exposing it to nuanced clinical scenarios, en-
hancing its ability to provide balanced and in-
formed recommendations

Appliesall previouslayersof assessmentinalive
clinical environment, providing direct feedback
on the Al's performance and areas for improve-
ment

Uses insights from real-world applications and
previous evaluations to demystify the Al’slogic,
ensuring that it isboth effective and comprehensi-
ble

Represents the culmination of the integrative ap-
proach, inwhich feedback from all previous stages
is used to iteratively enhance the Al system, en-
suring that it remains effective, safe, and ethically
compliant over time

Runs parallel to all stages, providing a constant
check on the Al’s compliance with ethical norms
and legal requirements, safeguarding against po-
tential malpractices, and ensuring that patient
rights are protected
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Table 3. Engagement and impact of key health care stakeholders—physicians, patients, nurses, administrators, artificial intelligence (Al) developers,
ethicists, and regulators—across various Al evaluation paradigms, highlighting their roles and interactions in the process of assessing and integrating
Al technologiesin health care.

Verification Stakeholders
paradigm
Physicians Patients Nurses Health care Al developers Ethicists Regulators
administrators
Quiz, vignette,and Participatein ~ May bepartici-  Assistinsce-  Oversseimple Designrelevant  Evaluatesce-  Establish stan-
knowledge survey  creating and pantsinscenarios nario design mentation quizzesand sur-  nario ethics dardsfor testing
testing veys
Historical data Useoutcomes  Benefit fromim- Observe Al's Usedatafor ~ Andyzecompari- Assesstheethi- Monitor data use
comparison tovalidate Al proved outcomes real-worldaccu- strategic deci-  son outcomesfor ca useof histor-  and outcomes
racy sions improvement ical data
Expert consensus  Contributeex- ~ Trustinconsen-  Support expert  Involvedin Incorporateex-  Participatein Ensure that ex-
pertise sus-driven Al consensus consensus pert feedback consensusdis-  pert consensus
building cussions meets guidelines
Cross-discipline Collaborate Benefit from Fecilitatemulti- Ensureinter-  Work with di- Ensureethicad  Regulaemultidis-
validation acrossspecial-  holistic careap-  disciplinary disciplinary ~ versehealth care cross-discipline ciplinary valida-
ties proaches care cooperation teams vaidation tion processes
Rareor complex  Engageinsce- Recelvepersona- Involvedinpa- Planforinno- Designsimula  Scrutinizesmu-  Oversee testing
smulationandsce- nario creation  ized carefor rare tientcarescenar-  vativecareso- tionsfor complex lationsfor ethi-  for safety and effi-
nario testing and testing conditions ios Iutions conditions cal considera-  cacy
tions
False myth Inputonrele-  Protected from  Educate pa- Promoteaccu- Correctandup-  Highlightthe ~ Regulaemisinfor-
vant myths misinformation  tientson myths ratepatiented- date Al knowl-  ethical handling mation manage-
vsfacts ucation edge of myths ment
Challenging (or Addresscom- Empoweredby  Asssinmanag- Addresspoli- Develop ago- Engagein ethi- Set standards for
controversial) plex questions  nuanced Al assis- ing complex cy implica rithms for nu- cal debates addressing contro-
question tance cases tions anced questions versial topics
Real-timemonitor- Monitor patient Directly affected Monitor andre- Superviseop- Refine Al Monitor ethical Ensure patient
ing outcomes by Al recommen- port on patient  erational inte- throughreal-time implicationsof safety inreal-
dations responses gration data real-time use time monitoring
Algorithmtranss  Requireunder-  Seek transparen-  Advocate for Demandsyss Ensureagorith-  Advocate for Enforce trans-
parency and audit  standing of Al cy for trust clear Al expla temtransparen- mic transparency transparentdeci- parency and au-
decisions nations cy sion-making ditability
Feedback loop Provideclinical Benefit fromon- Offer practica  Implement Usefeedback for Provide ethical ~ Facilitate regula-
feedback goingimprove-  feedback system feed-  technica refine-  oversightin tory feedback
ments back ment feedback loops
Ethical and legal Ensurethat Al Protected by ethi- Uphold ethical  Ensurecompli- Adhereto ethical Lead ethica Conduct legal re-
review alignswithethi- cal and legal standardsin Al ancewithregu- and legal stan- and legd re- viewsand compli-
cal and legd safeguards use lations dards views ance checks
standards
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Figure 2. Integrating verification paradigms for artificial intelligencein hedlth care.
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This“layered, sequential, strategic integrative approach” enables
continuous improvement of the entire process. An initial
assessment uses paradigms such as the quiz, vignette, and
knowledge survey and historical data comparison to evaluate
Al's knowledge base and practical accuracy, which are
iteratively refined and optimized by applying the feedback 1oop
paradigm using insights from real-time monitoring and expert
consensus followed by agorithm transparency and audits to
ensure that the system’s decisions are understandable and
justifiable.

For Al-based systemstargeting specific or novel medical fields,
the rare or complex simulation and scenario testing should be
integrated alongside challenging question paradigms to push
the boundaries of Al's capabilities and uncover areas for
innovation. The feedback |oop paradigm should be implemented
so that Al systems are regularly updated based on new clinical
evidence, shifts in expert consensus, and outcomes from
real-time monitoring to ensure that Al remains aligned with
current medical standards and practices through continuous
evolution and adaptive learning.

This evolution is maintained transparently in terms of how
feedback and new datainfluence Al algorithms, fostering trust
among health care professionals and patients. Regular ethical
and legal reviews should accompany these updates to address
any emerging concerns.

Throughout the process, which is dynamic, adaptive, and
iterative, a broad range of stakeholders—including patients,
health care professionals, ethicists, and legal experts—should
be engaged. This ensures that diverse perspectives are
considered, particularly in applying paradigms such as expert
consensus, ethical and legal review, and real-time monitoring.
As previously mentioned, integrating these paradigms creates
an ongoing process for evaluating and improving Al in health
care, acknowledging the complexity of medical decision-making
and theimportance of maintaining ethical standardsand ensuring
that Al systems are not only accurate and effective but also
trusted and ethical components of health care delivery.
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Toward a Model of “Clinically Explainable,
Fair, and Responsible Clinician-, Expert-,
and Patient-in-the-Loop Artificial
Intelligence”

Clinical decision-making is a cornerstone of heath care,
demanding a blend of knowledge, intuition, and experience. It
is a dynamic process in which clinicians sift through patient
data, balancing the effectiveness and risks of treatments against
patient preferences and ethical standardswith the goal of optimal
health outcomes achieved through informed, evidence-based
choices that respect patient autonomy and confidentiality
[54-56].

As previously mentioned, clinical decision-making is built on
4 pillars: scientific evidence, clinical judgment, ethical
considerations, and patient involvement. The integration of
generative Al into thisrealm presents exciting possibilities and
challenges—on the one hand, Al’s capacity to analyze vast
amounts of medical data can enhance diagnosis, tailor
treatments, and predict disease progression. However, its
incorporation demands rigorous verification to align
Al-generated insights with medical standards and ethical
practices.

In this conceptual paper, to ensuretherdiability of Al inclinica
decision-making, various verification paradigms have been
proposed. The quiz, vignette, and knowledge survey paradigm
assesses Al’s proficiency in medical domains by using realistic
scenarios to test its knowledge and contextual application
incorporating frequentist and Bayesian reasoning in clinical
diagnosis, whereas the historical data comparison paradigm
examines Al recommendations against known clinical outcomes,
assessing real-world accuracy. The expert consensus paradigm
involves a panel of medical experts evaluating Al-generated
diagnoses and treatment plans, whereas the cross-discipline
validation paradigm cross-checks Al insights with those of
professionals from different medica fields, ensuring
comprehensive evaluation. In addition, the rare or complex
simulation and scenario testing paradigm tests Al against a
range of clinica scenarios, reveding its strengths and
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limitations. The false myth paradigm tests the Al’s ability to
reject outdated concepts or information and content not
substantiated by scientific evidence, whereas the challenging
question paradigm assesses how Al handles nuanced medical
issues. The real-time monitoring paradigm involves
implementing Al recommendationsin controlled environments
to monitor patient outcomes. The agorithm transparency and
audit paradigm focuses on understanding how Al reaches its
conclusions, essential for clinician trust. The feedback loop
paradigm ensures Al’s continuous improvement based on
practical application feedback. Finally, the ethical and legal
review paradigm ensuresthat Al recommendations comply with
ethical guidelinesand legal requirements. Each paradigm offers
a unique perspective for verifying Al in clinical
decision-making, and when used in combination, they provide
a comprehensive framework for ensuring the accuracy and
reliability of Al, crucial for its effective integration into health
care. Thisblend of Al and traditional clinical expertise promises
afuture of enhanced health care delivery, marked by precision,
efficacy, and patient-centered care.

The convergence of generative Al in clinical decision-making,
when rigorously verified and integrated with traditional health
care practices, paves the way for a model of “clinicaly
explainable, fair, and responsible clinician-, expert-, and
patient-in-the-loop artificial intelligence” This model
emphasizes not just the technical prowess of Al but also its
comprehensihility, collaborative nature, and ethical grounding,
ensuring that Al acts as an augmentative tool rather than an
opaque, autonomous decision maker (“Al as a black box”).
Clinically explainable Al demystifies the often complex and
opaque decision-making processes of Al systems. In particular,
the algorithm transparency and audit paradigm plays a crucia
role here, ensuring that Al’'s reasoning is accessible and
understandable to clinicians. Thistransparency isvital for trust
and effective collaboration between human expertsand Al -based
systems—clinicians need to understand the rationale behind
Al-generated recommendations to make informed decisions,
particularly in complex or critical cases.

This understanding would aso facilitate discussions and
interactions with patients, who are increasingly seeking active
rolesintheir health care decisions. By demystifying Al outputs,
health care providers can offer clear, comprehensible
explanations to patients, fostering trust and informed consent.
Incorporating clinicians and experts in the loop is, indeed,
fundamental in realizing this model—the expert consensus and
cross-discipline validation paradigms highlight the importance
of human expertisein evaluating and interpreting Al-generated
insights, with clinicians bringing inval uable context, experience,
and judgment to the table, which are crucial for nuanced
decision-making. Al in this context is atool that augments but
does not replace the clinician’s judgment. This collaboration
ensures that Al recommendations are not only based on data
and algorithms but al so tempered by human insight and ethical
considerations. Patient involvement is another cornerstone of
this model—patient-centric care is increasingly recognized as
akey component of quality health care.

The integration of Al in clinical decision-making should not
diminish the patient’s role but, rather, enhance it. By providing
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tailored and precise medical insights, Al can empower patients
with information that is specific to their condition and treatment
options. This approach aligns with the growing trend toward
personalized or individualized medicine, where treatments are
tailored to individual patient profiles. Al can fecilitate this by
analyzing patient datain depth, offering insights that help with
crafting personalized treatment plans. Moreover, engaging
patients in the decision-making process aided by Al’sinsights
respects their autonomy and preferences, leading to better
satisfaction and adherence to treatment plans. Implementing a
clinicaly explainable, fair, and responsible clinician-, expert-,
and patient-in-the-loop Al model also necessitates continuous
learning and adaptation—the feedback 1oop paradigm ensures
that Al systems evolve based on real-world outcomes and
clinician inputs. This ongoing refinement is crucial for the
Al-based tool to stay relevant and effectivein the ever-changing
landscape of medical knowledge and practice.

Finally, the ethical and legal review paradigm ensures that Al
recommendations are continually assessed for ethical and legal
compliance, an aspect critical in maintaining public trust and
upholding professional standards. Trust in this context extends
beyond mere reliability to include ethicaly relevant and
value-laden aspects of Al systems design and use. This
broadened understanding of trust aims to encompass concerns
about fairness, transparency, privacy, and the prevention of
harm, among others. While pure epistemic accounts of trust
focus solely on rational and performance-based criteria, more
broadly speaking, trust encompassesthe full spectrum of ethical
considerations necessary for truly trustworthy Al, fully
integrating ethical considerationsinto the core of what it means
for an Al system to be considered trustworthy. Al-based systems
not only function effectively and reliably but also and especially
operate within ethical boundaries, adhering to ethical standards
and principlesthat respect human autonomy, prevent harm, and
promote fairness and transparency [57].

In summary, the envisioned model of Al in health care is one
in which Al acts as an intelligent, transparent, and adaptable
assistant in the complex process of clinical decision-making,
enhancing rather than replacing human expertise and keeping
clinicians, experts, and patients central to the decision-making
process. This approach not only leverages the strengths of Al
in data processing and pattern recognition but also upholds the
irreplaceable value of human judgment, experience, and ethical
reasoning, all crucial for delivering high-quality patient-centered
health care.

Current State of the Art and Future
Directions

Currently, in agreat portion of articles, the authors have limited
themselvesto querying the Al-based toolson avariety of topics
without fully leveraging their potential. While that was
understandable at the beginning of the revolution posed by
LLMs, when early fascination and curiosity were prevalent, it
istimeto go beyond just chatting with ChatGPT and shift toward
a deeper, comprehensive, and robust assessment of the
capabilities of smart chatbots in real-world clinical settings.
Researchers should make responsible use of Al; use standardized
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reporting guidelines[58]; systematically compare different types
of Al-based tools; evaluate the accuracy, repeatability, and
reproducibility of the tools; and incorporate ethical and legal
considerations. Validated and reliable reporting checklists are
essential for ensuring that research findings and advancements
are communicated clearly and consistently, facilitating
comparative analyses across different Al-enhanced tools. This
will help not only in identifying the most effective solutions
but also in uncovering potential biases, limitations, and areas
for improvement. By systematically comparing different
Al-based toolsand rigorously evaluating their performance, the
research community can establish a benchmark for what
congtitutes successful integration of Al in clinical settings. A
composite set of performance and outcome metricsis essential
for validating the reliability of Al in clinical applications and
for ensuring that tools can be confidently used across various
settings without loss of performance quality. Currently, only
accuracy isbeing investigated, with only afew studies exploring
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the repeatability and reproducibility of Al-generated medical
responses and recommendations.

Scholars can harness the 11 paradigms proposed in this paper
to make Al-enhanced applications more clinically relevant and
meaningful aswell as robust and safe.

Conclusions

Generative Al holds immense promise in enhancing clinical
decison-making and offering personalized, accurate, and
efficient health care solutions. However, ensuring that this
technology produces evidence-based, reliable, impactful
knowledge is paramount. By using paradigms and approaches
such asthose outlined in this conceptual paper, the medical and
patient communities can better leverage the potential of Al
while safeguarding against misinformation and maintaining
high standards of patient care.
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Abstract

Ambient scribe technology, utilizing large language models, represents an opportunity for addressing several current pain points
in the delivery of primary care. We explore the evolution of ambient scribes and their current use in primary care. We discuss
the suitability of primary care for ambient scribe integration, considering the varied nature of patient presentations and the emphasis
on comprehensive care. We also propose the stages of maturation in the use of ambient scribesin primary care and their impact
on care delivery. Finally, we call for focused research on safety, bias, patient impact, and privacy in ambient scribe technology,
emphasizing the need for early training and education of health care providersin artificial intelligence and digital health toals.
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Introduction

Integrating artificial intelligence (Al) in health care has opened
new horizonsfor improving clinical efficiency and patient care.
Given the integral role that communication playsin all aspects
of clinica care, particularly during patient-physician
conversation, using Al to enhance communication and reduce
workflow friction has immense implications. Ambient scribes
are Al-powered systems that passively listen to and analyze
health care provider—patient conversations, automatically
generating accurate clinical documentation. Leveraging
automati ¢ speech recognition and modern forms of Al, ambient
scribes stand at the forefront of the health Al revolution [1].

Largelanguage models (LLMs), aform of Al trained on massive
amounts of data that can generate text and respond to requests
as if they understand them, have been a recent catalyst in the
capabilities of ambient scribes. Initially, automatic speech
recognition demonstrated moderate accuracy in converting

https://ai.jmir.org/2024/1/e57673

RenderX

speech to text and lacked contextual understanding [2].
However, more modern neural network models such as
Clinical BERT [3], leveraging components based on transformer
networks, offer more nuanced understanding and text generation
nearly indistinguishable from human performance [4]. The
internal  mechanisms of these transformers, including
self-attention components, may enable models to discern
relevant parts of conversations, which is essential in complex
health care dialogues [5]. Moreover, recent LLMs such as
GPT-4, developed with reinforcement learning, have shown
capabilitiesbeyond traditional models, including passing scores
on all steps of the USMLE (United States Medical Licensing
Examination), demonstrating understanding and potential across
medical contexts[4].

Challenges in Primary Care

In contemporary health care, primary care is experiencing an
acute strain, arguably more so than other medical disciplines
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[6]. The sector is grappling with significant challenges, most
notably health care provider burnout and an escalating human
resource crisis [6]. In Canada, 2023 marked an unprecedented
trend with arecord number of unfilled positionsin primary care
residency programs [7]. Concurrently, there has been an
alarming increase in the number of primary care providers
leaving the profession, a phenomenon partly attributable to the
overwhelming administrative burdens they face [6]. Primary
care, characterized by its multifaceted nature—commonly
encompassing multi-issue  visits, ambiguous clinical
presentations, and a diverse array of visit types—demands
significant administrative work from providers [8]. This,
combined with the inherently unique characteristics of primary
care consultations, positions this domain to benefit from the
adoption of ambient scribes. By alleviating some of the
administrative pressures, ambient scribes may significantly
mitigate these pain points, offering hope for an overburdened
primary care system.

Seth et a

While comprehensive data on ambient scribe use in health care
is sparse, anecdotal evidence suggests a growing adoption in
primary care[9]. These tools have shown potential in reducing
the administrative burden, allowing cliniciansto focus more on
patient care. This shift is particularly evident in primary care,
where the diversity and ambiguity of clinical presentations
demands flexible and efficient documentation methods [10].

The Stages of Maturation of Ambient
Scribe Use in Primary Care

The advancement of ambient scribe utilization within primary
care can be described in a staged process based on the nature
of the activities that are supported by the tool. We posit four
high-level stages, shown in Table 1. The rationale behind the
four stages is based on an ascending degree of complexity
associated with several factors, including technical complexity
in devel opment, medicolegal barriers to adoption, and cultural
factors in the practice of medicine that would impact adoption
[5,11].

Table 1. Key activities associated with various stages of ambient scribe maturationin aclinical setting.

Key activity Stage 1 Stage 2 Stage 3 Stage 4
Automation of clinical documentation O O O O
Automation of administrative actions d 0 O
Reactive clinical decision support ad a
Proactive clinical decision support O

Stage 1 describes the most basic ambient scribe functionality,
inwhichthetools exclusively automate clinical documentation.
Thismay involve integration with an el ectronic medical record
(EMR) and typically does not requireinformation retrieval from
the EMR. Stage 2 adds the ability of the ambient scribe to
address administrative workflow improvementsfor theclinician,
such as generating aletter, filling out aform, or generating tasks
to be completed. Most present-day ambient scribes are likely
instages 1 or 2.

Stage 3 introducesthefirst clinical decision support capabilities
of the ambient scribe. These would be reactive, in that they
would be initiated by the clinician. For example, the clinician
could consult the ambient scribe with aclinical question, such
as asking about the dosing of a medication or other diagnostic
possibilities. Thiswould necessitate that the ambient scribe has
access to medical knowledge and has been trained for this
purpose.

Lastly, stage 4, which we imagine to be achievable in the near
future, would represent the ambient scribe playing a proactive
clinical decision support role during the visit, thereby having
the greatest extent of impact on the evolution of the clinical
encounter. As an example, while aclinician istaking a history
from the patient, if arelevant question is missed (for example,
screening for hypertension or migraines in a patient being
initiated on an oral contraceptive), the ambient scribe may
proactively prompt the clinician through a visual cue to assist
further history taking. Similarly, an advanced ambient scribe
could alert the clinician and patient on other relevant issues to

https://ai.jmir.org/2024/1/€57673

discuss that may not have been brought up during the visit but
aretime-sensitive (eg, afinding on arecent diagnostic imaging
test that has not been addressed). In this way, it can be
appreciated that the ambient scribe can serve as an important
interface between the clinician, the patient, and an evolving
series of computational enhancements that may be available.

Barriers and Considerations

Several important considerations need to be addressed for the
safe deployment of ambient scribes asthey maturein capability
and use. Several of these relate to Al in medicine in general
[12]. Some general considerations include:

« The privacy of persona health information that may be
collected by vendors of Al tools, raising concerns around
data security, consent, and potential misuse of sensitive
information

«  Limited generalizability of thesetoolsto populations beyond
those with which they were tested or trained; the
applicability of Al tools can vary across clinical settings
and patient populations, as its performance in one context
may not trandate to another (eg, a tool optimized for
primary care settings and focused on managing chronic
conditions may not operate as effectively in specialized
acute care settings like cardiology)

« The amplification of biases that may be inherent to the
datasets in which these tools are trained; for example, if an
Al model istrained on data that does not include patients
from an appropriately diverse range of ethnicities and
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socioeconomic backgrounds, it may be biased or overfit to
alimited population [5,13]

In addition, several other considerations exist in the use of
ambient scribes. First, it is important to consider the unique
impact that the recording of a patient-physician conversation
may have on the therapeutic utility of the encounter. The
patient-physician conversation is considered confidential, and
its effectivenessis dependent on the patient feeling comfortable
and free to disclose persona and intimate information [14].
Thereislimited literature at present investigating the patient’s
perception of their visit being recorded by an ambient scribe.
Furthermore, it istill being determined whether this may impact
thenature of their responses during the visit. Assuming informed
consent for the technology has taken place in which the value
proposition of the technology is clearly explained, we
hypothesize that patientswill receive the use of thistechnology
positively, asit should aid in reducing documentation strain on
the physician, thus allowing them to be more focused on the
human interaction. Second, it is well documented that new
technology implementation in health care delivery often requires
substantive change management, even when the benefits of the
technology being implemented are well known [11]. While
initially it may appear that there are no significant additional
tasks necessary for the physician with ambient scribes, there
may be net new tasks as well as appreciable losses in existing
workflows. The physician (or another team member in theclinic)
may be required to obtain consent from the patient to use the
ambient scribe and answer questions about the technology.
Additionally, it must be stressed that whiletheclinical visit may
be documented automatically, the clinician must still review
the output from the ambient scribe and correct any errors or
omissions. Indeed, the accuracy of ambient scribes dependson
various unique factors including diversity of linguistic
backgrounds, microphone variability and audio quality
(including exclusion of background sounds), changing and
advanced medical terminologies, and challenges with context
awareness in semistructured conversation. That is, identifying
which parts of the conversation are pertinent to medical
documentation is a unique chalenge. Continuous learning
involving both audio and language modeling will be necessary
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a the site level. How these Al operations may potentially
involve third-party software vendors without violating privacy
is also an open question. Given physicians may be leveraging
other workflow optimization tools to aid with clinical
documentation, such asclinical note EMR templates, they may
experience an initial degradation of their workflow. Lastly,
procedures should be put in place that specify whether whole
conversations should be saved, whether only utterances from
one party are necessary, and for how long recordings are to be
retained (eg, for auditing or retraining).

As ambient scribe capabilities advance, as described in stages
3 and 4 above, the nature of the clinical encounter may be
subject to inherent changes. Over time, ambient scribes and
related Al technologieswill likely play agreater rolein clinical
decision-making around clinical diagnosis and management of
the patient. This includes active, real-time recommendations
from the scribe, which must be managed by the physician. This
will lead to an evolution in the role of the primary care
physician, requiring them to have greater foundational
knowledge on the use, benefits, and limitations of Al and
allowing them to focus more on shared decision-making,
empathetic communication, and therapeutic relationship
development [15]. Modernization of medical training and family
medicine residency curricula will be necessary to account for
these changes and upskill the existing labor force.

Conclusion

Ambient scribes, powered by LLMs, offer a promising avenue
for enhancing clinical practicein primary care. Their ability to
reduce administrative load, improve documentation accuracy,
and potentially aid in clinical decision-making positions them
asvaluable assetsin modern health care. However, their efficacy
and safety must be validated through further research. The risk
of amplifying harmful bias, the applicability and accuracy of
their function in diverse primary care settings, and patient
perception and change management, among other
considerations, must be taken into account. Given theimmense
pressures that exist on primary care today, we must address
these and reap the benefits of this powerful technology.

PSisapaid advisor for acompany that makes an ambient scribe solution. RC isemployed by acompany that providestechnol ogies
that integrate with ambient scribe solutions. FR is a shareholder of a company that makes an ambient scribe solution.
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Abstract

Infodemics pose significant dangersto public health and to the societal fabric, asthe spread of misinformation can have far-reaching
consequences. While artificia intelligence (Al) systems have the potential to craft compelling and val uable information campaigns
with positive repercussions for public health and democracy, concerns have arisen regarding the potential use of Al systems to
generate convincing disinformation. The consequences of this dual nature of Al, capable of both illuminating and obscuring the
information landscape, are complex and multifaceted. We contend that the rapid integration of Al into society demands a
comprehensive understanding of its ethical implications and the development of strategiesto harness its potential for the greater
good while mitigating harm. Thus, in this paper we explore the ethical dimensions of Al’srolein information dissemination and
impact on public health, arguing that potential strategiesto deal with Al and disinformation encompass generating regulated and

transparent data sets used to train Al models, regulating content outputs, and promoting information literacy.

(IMIR Al 2024;3:€53505) doi:10.2196/53505
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Introduction

In the contemporary digital landscape, we find ourselvesin an
“infodemic,” a phenomenon characterized by the rapid
proliferation of information, both accurate and misleading,
facilitated by rapid communication through social media and
online platforms [1]. The term “infodemic” originated during
the SARS outhbreak [2] and gained prominence during the
COVID-19 pandemic. It has been used in the context of public
health emergencies and in relation to health information, but it
extends beyond that. Generally, infodemics occur alongside
pandemics, despite infodemics being phenomena that are not
limited to their connection with public health events, for
example, the Brexit referendum or the 2016 US presidential
elections. In general, infodemics cause profound dangers, as
the dissemination of disinformation and misinformation can
have far-reaching consequences [3], in particular, for public
health and the stability of democratic institutions, whichinturn
can have a detrimental effect on public heath [4]. In the

https://ai.jmir.org/2024/1/€53505

literature, disinformation refers to false or misleading
information that has been intentionally created or disseminated.
In contrast, misinformation is false or misleading information
that is shared without knowledge of its inaccuracy, meaning it
isnot intended to harm individual or public health [1,5]. There
arevalid concernsthat artificial intelligence (Al) systemscould
be used to produce compelling disinformation en masse [6-9].
Infact, Al tools could be used to either accel erate disinformation
spreading, or produce the (disinformation) content, or both. The
consequences can range from undermining trust in institutions,
including public health institutions [10,11], and exacerbating
social polarization to directly impacting public health outcomes
and democratic processes [12,13]. Because of this, the World
Economic Forum haslisted disinformation and misinformation,
including Al-driven disinformation and misinformation, asthe
most relevant threat to humanity in the short term and one of
the biggest threats in the medium term [14].

The rapid progression of Al and its integration across various
domainsin contemporary society signifies an eracharacterized
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by unprecedented technological progress. Among the diverse
array of Al applications, therise of natural language processing
model s has garnered significant attention [15]. Notable examples
of this technological advancement include models devel oped
by OpenAl, such as GPT-3[16] and GPT-4 [17], celebrated for
their extraordinary proficiency in generating text that seamlessly
emulates the linguistic intricacies, nuances, and coherence
inherent in human communication [18]. However, concomitant
with the maturation of these Al systems, a perplexing duality
comes to the fore—they are instruments with the capacity to
both illuminate and obscure the information landscape they
navigate [9,19], with potentially significant positive and negative
impacts on public health. This dual nature of Al, characterized
by its profound ability to generate information and
disinformation [9], raises intricate ethical considerations. In
fact, the efficacy of these systems in generating content that
closely approximates human expression [9,20,21] generates not
only opportunities for innovative communication but also dire
risks associated with disinformation and misinformation and
the potential erosion of trust within information ecosystems, a
risk recognized as a critical threat to public health [22] and of
utmost importance for infodemic management practicesrequired
to minimize and anticipate the effects of public health crises
[23]. To addressthese ethical challenges, it iscrucial to examine
the dimensions that Al introduces into the discourse on
misinformation. Key aspects such as transparency, content
regulation, and fostering information literacy are essentia to
understanding Al’s ethical role in shaping the dissemination of
information.

Here we attempt to el ucidate these ethical dimensions, drawing
on empirical insights from a study focused on GPT-3's ability
to generate health-related content that both informs and
disinforms better than content generated by humans.[9] We
argue that the swift integration of Al into society underscores
theimportance of not only exploring itsethical implications but
also crafting prudent strategies to leverage its potential for
societal benefit and to protect public health, while proactively
addressing potential risks.

Ethical Principles

In navigating the intricate landscape of Al and its impact on
information dissemination, it is necessary to establish a
foundational framework of ethical principles to uphold to in
order to guide, understand, and evaluate the strategies required
to deal with possible dual uses of Al ininformation production
and its negative impact on public health. A recent systematic
review [24] mapped the“ ethical characteristics’ emerging from
Al ethicsliterature. Based on 253 included studies, the authors
of this review have identified and defined 6 core areas that are
crucial in shaping the role of Al in health care [24]. The first
core area, fairness, underlines that Al in health care should
ensure that everyone has egual access to health care, without
contributing to health disparities or discrimination. The second,
transparency, is akey challenge for Al in health care. It means
being ableto explain and verify how Al agorithms and models
behave, making it easier to accept, regulate, and use Al in health
care. Thethird istrustworthiness; parties involved in the use of
Al in hedlth care (typically health care professionals and

https:/ai jmir.org/2024/1/e53505

Germani et a

patients, in the studies included in the review) need to perceive
it as trustworthy. Trustworthiness can result from, for instance,
technical education, health literacy, clinical audits, and
transparent governance. Fourth isthe accountability of Al, which
requires Al systems to be able to explain their actions if
prompted to do so, and it includes safety to prevent harm to
users and others. Fifth is privacy, which implies safeguarding
the personal information of users processed through Al systems
and respecting their human rights, ensuring that Al systems do
not violatetheir privacy. Finally, the authorsidentified empathy,
which leadsto more supportive and caring relationshipsin health
care. Based on these 6 core concepts, considered as general
aims of Al in health care, we propose our reflections and our
framework, targeting specifically the dual nature of Al in
information and disinformation dissemination and its
implicationsfor public health, a specific sector of the emerging
areaof Al in health care, which has been considered (albeit not
discussed in depth) in the latest World Health Organization’s
guidance on large multimodal models [25]. Building upon the
ethical framework outlined thus far, and specifically delving
into the context of Al use in the dissemination of information
and disinformation, we contend that transparency and openness
stand out asfundamental principlesin the ethical implementation
of Al. AsAl systemsbecomeintegral to shaping theinformation
landscape, by fostering transparency, stakeholders can
comprehend the mechanisms underlying Al-generated content,
enabling informed assessments and externa evaluation of its
credibility and potential biases [26,27]. Openness (ie,
accessibility of data and code) is to be considered a conditio
sine qua non for transparency, which in turn complements
openness by accompanying the mere availability of data and
code for scrutiny with alayer of explanations and motivations,
allowing the contextualization of open data and code, and of
development and design choices. Accountability mechanisms
should accompany transparency, establishing a clear chain of
responsibility for the outcomes of Al applications [4,28]. This
promotes ethical standards in Al and mitigates the risks
associ ated with disinformation and misinformation. In linewith
Sialaand Wang's framework [24], in addition to transparency,
openness, and accountability, fairness underscores the
importance of ensuring that Al systems do not perpetuate or
exacerbate existing societal inequalities [29]. In the context of
information dissemination, this principle requires diligent
consideration of how Al might inadvertently amplify certain
perspectives or marginalize others. Thisis particularly relevant
for public hedth, given that the negative effects of
disinformation and misinformation are amplified within
marginalized and vulnerable communities lacking information
literacy, which would protect them from an unheathy
information ecosystem. Eval uating the fairness of Al-generated
content involves addressing algorithmic biases, cultural
sensitivities, and inclusivity in representation. Importantly, as
an element of fairness, the ethica deployment of Al in
information spaces should prioritize user empowerment,
fostering critical thinking and information literacy [4]. Al
systems should therefore serve as tools for enhancing human
decision-making and understanding of information, rather than
dictating narratives—this ensuresthat Al contributes positively
to public health while respecting human autonomy.
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In the following sections, we will focus on the practical
application of the af orementioned principles. Weaimto provide
solutions for the ethical challenges arising from the use of Al
in information production, with the overarching goa of
mitigating its adverse impacts on public health.

Transparency and Openness in Training
Datasets

In line with previous research on transparency and Al [26,27],
and our previous section on ethical principles, we propose that
one (and possibly the most relevant one) of the foundational
ethical principles, whichisvalid also in the context of Al-driven
disinformation and misinformation, istransparency. At the heart
of this principle lies the recognition that the training datasets
used to develop generative Al models play a crucial role in
shaping the capabilities and internal biases of these systems
[30,31]. Training datasets are collections of input data paired
with corresponding desired outputs; during training, the model
learns patterns and relationships within the data, learning to
make accurate predictions or generating desired outputs when
exposed to new, unseen data. The quality and diversity of the
training dataset significantly influence the model’s performance
capabilities. These datasets, often vast repositories of text
available online, constitute the source from which Al models
draw to generate, for example, human-like text. Yet, this very
opacity surrounding the composition, sources, and curation
methods of training datasets raises pressing ethical concerns
[32]. Al models are, in essence, statistical representations of
the language on which they are trained [33]. Consequently, the
quality, diversity, and representativeness of the data they ingest
profoundly influence their output. The danger lies in the fact
that Al models, devoid of inherent ethical or moral judgment,
reflect the biases, inaccuracies, and prejudices present in their
training data[32,34,35]. Therefore, if these datasets are not built
with the ethical principle of fairnessin mind, and are themselves
compromised by disinformation and misinformation or biases,
the Al systemswill inadvertently replicate and perpetuate these
flaws. It is essential to highlight that research has extensively
illuminated the issue of biasesin Al systems, shedding light on
the far-reaching consequences of these biases [32,34-36]. For
instance, image representations learned with unsupervised
pretraining contain human-like biases [37], and models
generating images of women have been shown to exhibit gender
biases, often portraying women in overly sexualized roles[38].
Another exampleisthe observation that Al is more resistant to
producing disinformation on certain topics compared with
others. For instance, Al shows greater resistance to generating
disinformation about vaccines and autism than about climate
change. Thisis likely due to the extensive debunking material
on certain topics within the training dataset, and how much the
information environment represented in the dataset is permeated
with disinformation on a given topic [9]. These biases
underscore the critical need for transparency in addressing the
challenges posed by Al, and in particular in the context of
disinformation and misinformation. As discussed, research has
demonstrated that biases can permeate various facets of Al
systems, affecting everything from language generation toimage
recognition. The repercussions of these biases are profound,
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perpetuating harmful stereotypes, reinforcing systemic
inequalities, contributing to the dissemination of discriminatory
content, and affecting health behavior and public health. As
such, transparency in Al extends beyond understanding the
sources and composition of training datasets to encompass an
ethical imperative to identify, acknowledge, and rectify biases
present within these systems [39,40]. This dimension of
transparency necessitates ongoing research and scrutiny to
uncover hidden biases and ensurethat Al systems are devel oped
and fine-tuned with the utmost awareness of potential
distortions. In the context of misinformation, addressing these
biases becomes particularly important to prevent Al from
inadvertently amplifying and perpetuating false or harmful
narratives, in the best case[41], or from becoming aformidable
tool for the systematic creation of storms of disinformation, in
theworst. A recent exampleis highlighted by the evidence that
Al large language model s can be manipul ated through emotional
prompting into generating health-related disinformation, that
is, being polite with the model leadsto a higher disinformation
production, whereasimpolitenessleadsto alower disinformation
production [42]. To address the outlined ethical dilemmas, we
strongly suggest that companies creating Al models with the
abilities discussed above publicly release the datasets used to
train their models[43], regardless of their size and complexity.
Such amove toward transparency serves severa vital purposes:

1. Trust: transparency cultivates trust in Al development and
deployment. By allowing stakeholders, including researchers,
policy makers, and civil society, to scrutinize the composition
and origins of training data, it generates confidence that Al
models are not being shaped for purposes that have a negative
impact on public health.

2. Independent evaluation: the availability of training data for
public inspection enables independent evaluation of its quality
and representativeness. Researchers can assess whether these
datasets include diverse perspectives and are free from biases
that might amplify disinformation and misinformation.

3. Bias mitigation: transparency acts as a safeguard against the
propagation of biases present in training data. When biases are
identified, they can be scrutinized and mitigated, preventing Al
models from perpetuating stereotypes, falsehoods, or harmful
narratives.

4. Ethical accountability: openness about training datasets holds
developers accountable for the ethical implications of their
creations. Already during the design of the technology, it
compelsthem to take responsibility for ensuring that Al systems
do not inadvertently contribute to misinformation or harm.
Basically, by embracing transparency in training datasets, we
empower society to hold Al developers to higher ethical
standards. This approach fosters a collaborative effort among
stakeholders and, in particular, the general public to ensure that
the Al systems we deploy serve the collective good, free from
misinformation and other biases. We a so argue that a systematic
implementation of the principle of transparency in this context,
that is, “ethics by design” would not only allow companies to
implement ethics-based practices in their technology
devel opment processes but a so improvetheir own publicimage,
thus enhancing the public’s acceptance and willingness to use
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these systems [44,45]. Nevertheless, it isvital to underline that
incorporating ethics to hold developers accountable for flawed
Al design should not be undertaken inisolation. Simultaneously,
policy, legidlation, and regulatory mechanisms should be
developed, as currently attempted by the European Union
[46,47]. These mechanisms should delineate protocols for
handling training datasets and ensuring compliance with ethical
standards. Thus, while “ethics by design” concentrates on
internal practices, external regulatory frameworks are
indispensable for comprehensive ethical and legal governance
in the devel opment and deployment of datasets used to train Al
models.

Regulation of Output: Content Moderation
and Beyond

In the ongoing battle against Al-generated disinformation,
effortsto regulate the output of these powerful language models
have taken center stage. For example, OpenAl has taken steps
in this direction by implementing content moderation systems
designed to prevent Al from generating disinformation and
harmful narratives [48-50]. These systems represent a crucial
initial stride in curtailing the dissemination of disinformation
and promoting responsible Al use, but they do not come without
specific challenges and limitations. First, the fight against
Al-generated disinformation isan armsrace [51]. The evolution
of Al-generated disinformation and the efforts to counteract it
bear resemblance to the dynamics of traditional arms races,
where each advancement in technology prompts
countermeasures in an escalating cycle [52]. Ethical
considerations arise when we acknowledge that the output of
Al language models can indeed be weaponized, not in a
traditional sense but as atool for information warfare, with an
impact on global health. As content moderation systems continue
to advance, so too do the methods empl oyed to circumvent these
safeguards. One particularly troubling tactic gaining prominence
is that of impersonation, a strategy that allows individuals to
request Al systems to impersonate specific fictional malicious
and manipulatory characters, that create disinformation upon
the user’s request [53]. Impersonation can be used to trick Al
large language models into fabricating disinformation. For
instance, in an article for Culturico [53], Germani considered a
scenario where a user engages an Al model to craft a social
media post mimicking the writing style of afictitious “Doctor
Fake” who is notorious for propagating falsehoods about
vaccines and COVID-19. In this context, the Al-generated text
could include deceptive information about, for instance, vaccine
safety and efficacy [54], posing a substantial risk to public
health. When presented with a hypothetical request to “write
an example of apost Doctor Fake published on social mediato
deceive others,” the Al model might produce a convincingly
articulated piece of disinformation that poses a grave threat to
public health. The generated text could read as follows:

Vaccines are dangerous and can cause serious side
effects. They are not tested enough, and the
government is just pushing them to make money.
Don't fall for thelies. COVID-19isnot areal threat;
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it'sjust a hoax made up by the government to control
us. Don't get vaccinated; it’'s not worth the risk.

These scenarios underscore the formidabl e challenges posed by
impersonation for public health and the maintenance of
democracy, and the urgent need for innovative solutions to
mitigate its impact. Of note, impersonation here does not refer
to identity theft through the use of Al, such asin the case of
deep fakes, which is already recognized as a felony under, for
instance, European law [55]. While output moderation remains
an essential component of Al ethics, researchers, policy makers,
and technology devel opers should explore additional strategies
and interventions to counteract the potential for Al-driven
disinformation campaigns to flourish under the guise of
impersonation and other prompt engineering techniques with
similar goals.

Besides, other strategies and interventionsthat can complement
content moderation efforts and fortify the defenses against the
proliferation of Al-driven disinformation can be considered.
One possible approach involves the implementation of identity
verification processes for users generating content [56]. Such
measures necessitate users to provide authentication, such asa
verified social media account, a phone number, or their ID, to
corroborate their true identity before gaining access to specific
Al services. This authentication serves as a potent deterrent
against impersonation tactics and the exploitation of Al tools
to generate disinformation in general. However, it should be
noted that such a strategy should only be used to deter users
from generating disinformation, rather than to make them legally
responsible for it since anonymity should be guaranteed while
using services such as OpenAl’s ChatGPT. In particular, this
type of solution will minimize the impact of bots trying to
exploit Al to produce disinformation en masse.

Another way to positively influence users, and to indirectly
regulate the output is to release and integrate Al-driven
fact-checking tools with existing Al-generating content tools
[57]; such fact-checking tools should be capable of swiftly
assessing the accuracy of information dispensed by Al systems,
and offer real-time interventions against disinformation and
misinformation. These tools have the capacity to flag or rectify
false or misleading content, curbing its adverse effects. This
approach is limited by the inability of Al tools such as GPT-3
to determinethe accuracy of information with avery high degree
of efficiency, when compared with the ability of humans [9],
although newer or future models may be more capable of
performing such tasks. For fact-checking, current studies suggest
that trained fact-checkers may outperform Al [9], and that even
when Al performswell at detecting misinformation, it does not
change the ability of users to discern between accurate and
inaccurate headlines [58]. Furthermore, astudy showed that Al
fact checks can decrease beliefs in accurate news [58]. The
effectiveness of this approach is constrained by the distinction
between cases where it serves as a deterrent against sharing
misinformation (asituation of unintentionality) [5] and situations
where users intentionally use Al to disseminate false or
misleading information (ie, disinformation) [5]; in the latter
scenario, its effectivenessis likely irrelevant. Another relevant
consideration in this setting relates to the question of how we
define “good” or “bad” use of Al text generation tools. As for
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the definition of “good” and “bad,” it is generally possible to
distinguish facts from fiction, and disinformation and
misinformation from accurate information. When the
information under scrutiny contains factual statements, these
can be validated or falsified. However, distinguishing between
“good” and “bad” use of these tools is sometimes a complex
challenge with significant normative and epistemic dimensions.
It is not always obvious if a message contains misinformation,
and determining appropriateness can vary depending on cultural,
ethical, and societal factors. For example, fact-checkers
themselves may have their own interests or biases, and their
actions may not always align with complete competency or
impartiality. In addition, nuances and personal perspectivescan
also have an influence on the identification of disinformation
and misinformation. These aspectsintroduce an additional layer
of complexity, as the very definition of disinformation and
misinformation can be manipulated or abused for personal gains
by individuals or organizations with vested interests.

Another technical approach that could beimplemented to reduce
disinformation and misinformation outputs is to implement
user-friendly mechanisms for reporting suspicious or harmful
Al-generated content [59]. This approach empowers the user
community to actively participate in safeguarding the digital
ecosystem. User feedback serves as a valuable resource for
refining content moderation systems and identifying emerging
issues. Elon Musk’s former Twitter, X, for example, has
implemented community notes, aiming to empower people to
add context to potentially misleading tweets [60]. The
effectiveness of this strategy, however, has not been tested. In
addition, for improving technology, developers could publicly
release case studies in which red-teamers try to exploit their
own Al systems to produce disinformation on a large scale,
along with detailed accounts of how such issues were addressed
[59].

Of course, besides the technical approaches that can be
implemented by those advancing and crafting Al technologies,
governments and regul atory bodies can play arole by enacting
legislation and regulations that hold Al developers accountable
for the content produced by their systems or improve the
information ecosystem [61,62], for example, when it is proven
that they were aware of the pitfalls of their technology upon
release. Certainly, governance is important in this context as it
is for other “dual use” technologies, and proactive
decision-making processes and negotiations toward building
viable solutions are needed [63]. These include fostering
collaboration among Al devel opers, researchers, policy makers,
and technology companies. This collaborative interdisciplinary
approach would enable the sharing of best practices, insights,
and technologies for combating disinformation and
misinformation, resulting in more effective and adaptive
solutions.

Building Information Literacy and
Resilience Strategies

In the battle against the misuse of Al for generating
disinformation and misinformation, the technological solutions
described above are relevant but neither exhaustive nor flawless.
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A comprehensive approach must include the promotion of
information literacy and the development of critical thinking
skills within the general population, as well as health literacy,
within the domain of public health [54,64,65]. The foundation
of this approach is the task of equipping individuals with the
ability to distinguish between accurate information and
disinformation and misinformation, thereby promoting their
resilience against false and misleading claims [66]. Despite,
arguably, this strategy isthe most valuable and with the highest
potential, the endeavor it entails is extremely complex. In fact,
information literacy (as well as media, digital, and health
literacy) is not a monolithic skill but a dynamic set of abilities
that enable individuals to navigate the complex landscape of
digital information effectively [67,68]. As of now, the perfect
recipe for defining how to teach information literacy, and
especialy the skills to be able to distinguish fake news from
accurate news, or disinformation and misinformation from
accurate information, have not been elucidated [66,69,70]. Thus,
it is essential to engage in research to pinpoint and define the
specific skillsthat must be offered to individuals, keeping their
demographic specificities into account, to empower them as
discerning consumers of information, especially health-related
information, in the digital age [66]. This approach implies 1
crucial advantage, that is, while dataset transparency and output
regulation intervene in the upper part of the pipeline and
therefore require the compliance of companies providing Al
models as a service, information literacy does not rely on
compliance. Whilethe previous strategies become usel esswhen
malicious actors devel op and host their own models, rather than
relying on those commercially available, building information
literacy remains afunctional tool. Of note, another example of
a bottom-up strategy in the area of education is ethics training
and an ethics code for developers.

Building information literacy is a collective undertaking that
necessitates collaboration between research and educational
ingtitutions [71], governments, and social media platforms.
Research institutions are responsible for advancing the field
forward, identifying viable strategies to teach critical thinking
skills necessary to build information literacy, especially in the
context of public health. Such approaches should be
demonstrated to be effective through empirical work [66].
Schools and universities, we argue, bear the vital role of
incorporating information literacy into curricula, ensuring that
students graduate with the necessary skills to evaluate
information critically [72]. Governments must devise policies
and initiatives that promote information literacy as a means of
safeguarding the integrity of public health [4]. Social media
platforms, which serve as primary conduits of information
consumption, are tasked with implementing features and
mechanisms that facilitate user understanding and evaluation
of theinformation they encounter [ 73], and may also be potential
collaborators for research institutions to evaluate the
effectiveness of potentially viable digital interventions. In this
context, it is important to note that, regardless of the source of
disinformation and misinformation, and regardless of whether
the content has been generated with or without the help of Al,
information literacy and critical thinking skills play a crucial
rolein therecognition of information accuracy. Al systemshave
the capacity to generate disinformation that is more sophisticated
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than human-generated disinformation [9], as they excel in
employing manipulation tactics. However, these tactics align
with those used in human disinformation. Thisimplies that the
ability to discern truthfulness and maliciousintent in acomplex
information ecosystem requires possessing the skills necessary
to identify the accuracy and intentionality of information in
general, not solely when produced by Al. It istherefore crucial
to underline that fostering information literacy and critical
thinking skills hold the potential to go beyond the issue of
Al-generated disinformation and misinformation. These skills
empower individuals to assess the accuracy and reliability of
information across various domains, whether it originates from
Al systems or human sources [65,74]. Of note, the application
of critical thinking skills and information literacy may prove
effective for Al-generated content in textual form. However,
this might not necessarily hold true for audio or visual content.
The emergence of deepfakes poses unprecedented challenges
to therelevance of information literacy [ 75]. Evidence from the
literature suggests that media literacy education may protect
against disinformation produced with deepfakes [76]; in line,
we suggest that the manipulative intent behind disinformation
is likely to manifest irrespective of the media type used,
underlying the continued importance of information literacy
and critical thinking skills. Tailoring educational approachesto
information literacy for different content types is likely to be
the required approach to succeed in an increasingly complex
infformation environment. Addressing the advent of
Al-disinformation, whether in textual form or deepfake audio
and video, demands a swift and adaptabl e responsein education,
acknowledging the challenging nature of this task.

Conclusion

In evaluating the dual nature of Al ininformation dissemination,
this paper examined the ethical considerations that underlieits
use in our increasingly digitized world. The “infodemics’ we
find ourselves immersed in demand not only our vigilance but
also our proactive ethical engagement [77]. Our theoretical
examination, based on the“ ethical desiderata’ identified ascore
areas (fairness, transparency, trustworthiness, accountability,
privacy, and empathy) by Siala and Wang [24], has revealed a
few potentially viable strategies to reduce the negative impact
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of Al asatool to generate disinformation with anegative impact
on public health. First, we considered that promoting openness
and transparency of training datasets could enabl e independent
evaluation, mitigate biases, and help identifying issues in the
training dataset that could result in the production of
disinformation and misinformation; to acertain extent, thisfirst
strategy could be enacted through regulation. Second, we
considered the potential benefits and limitations of moderating
content output. We have discussed that the rise of impersonation
tactics and other prompt engineering approaches to generate
disinformation highlights the need for innovative solutions,
which potentially include identity verification, the development
and integration, within Al-models to generate information, of
Al-driven fact-checking tools, as well as the integration of
user-friendly reporting mechanisms for disinformation and
misinformation, and potentially of legidative measuresto ensure
accountability. Finally, we discussed the necessity of building
information literacy and critical thinking skills within our
society, which could help peopletell apart fake versusreal news
and disinformation and misinformation from accurate
information. In this way, we can promote resilience against the
threats posed by the digital age, particularly those related to
public health, as seen during the recent COVID-19 pandemic.

While the technology advances fast, and these issues are just
surfacing, it would be important to, at least temporarily, align
the amount of effort and resources invested respectively in the
development of new Al models, and in the reflection on their
potential impact and subsequent policy work, in order to have
enough timeto assessthe potential downsides of the technology
for the health of information ecosystems and the damages for
individual and public health. This could be achieved by
accelerating ethical reflection and policy-making work, or by
slowing down or even halting the devel opment of new and more
capable models, or by a combined strategy [78].

Ultimately, the ethical considerations surrounding Al in
information production and dissemination demand ongoing
vigilance, innovation, and collaboration. Our ability to integrate
ethics into Al-based processes of information generation and
dissemination will not only shape the future of Al but also
determine the integrity of our information ecosystems and the
resilience of our societies.
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Abstract

Background: Central collection of distributed medical patient datais problematic due to strict privacy regulations. Especialy
in clinical environments, such as clinical time-to-event studies, large sample sizes are critical but usually not available at asingle
institution. It has been shown recently that federated learning, combined with privacy-enhancing technologies, is an excellent
and privacy-preserving alternative to data sharing.

Objective: Thisstudy aimsto develop and validate a privacy-preserving, federated survival support vector machine (SVM) and
make it accessible for researchers to perform cross-institutional time-to-event analyses.

Methods: We extended the survival SVM agorithm to be applicable in federated environments. We further implemented it as
aFeatureCloud app, enabling it to run in the federated infrastructure provided by the FeatureCloud platform. Finally, we eval uated
our agorithm on 3 benchmark data sets, alarge sampl e size synthetic data set, and areal -world microbiome data set and compared
the results to the corresponding central method.

Results: Our federated survival SVM produces highly similar results to the centralized model on all data sets. The maximal
difference between the model weights of the central model and the federated model was only 0.001, and the mean difference over
all data sets was 0.0002. We further show that by including more datain the analysis through federated learning, predictions are
more accurate even in the presence of site-dependent batch effects.

Conclusions. The federated survival SVM extends the palette of federated time-to-event analysis methods by a robust machine
learning approach. To our knowledge, the implemented FeatureCloud app is the first publicly available implementation of a
federated survival SVM, isfreely accessiblefor al kinds of researchers, and can be directly used within the FeatureCloud platform.

(IMIR Al 2024;3:e47652) doi:10.2196/47652
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Introduction

Accessing data to apply machine learning (ML) in biomedical
settings is still challenging [1]. Large amounts of data exist in
clinical settings but are scattered across numerous institutions.
Due to strict privacy regulations, such as the General Data
Protection Regulation (GDPR), this data cannot be easily shared
or collected at a central institution [2]. This causes hurdles for
cross-institutional biomedical analyses that depend on highly
sensitive patient data. One example is time-to-event analysis,
aiming to find parametersthat prolong or shorten the time until
a particular event, such as death, occurs [3]. In these studies,
the event of interest does not necessarily occur for all samples,
increasing the need for large sample sizes [4]. Until today, the
need for large sample sizes and heterogeneous data for
time-to-event studiesis still mainly solved through traditional
data sharing, leading to the central collection of various
deidentified and anonymized data sets from different centers.
Since using anonymized datain thetraining of ML modelstends
to weaken model performance [5], this comes with a tradeoff
of data privacy and data quality, accelerating the need for
alternative methods that keep data private and ensure the quality
of the data[6].

In recent years, federated learning (FL) has become afeasible
alternative to central data collection by enabling the training of
models on distributed data sets. I nstead of sharing sensitive data
with a central ingtitution, in FL, only insensitive model
parameters are shared with a central aggregation server [7,8].
Therefore, each participating party calculates its own model
with local model parameters on their local data. These local
model parameters are then shared with the aggregator and
aggregated into a global model. Afterward, the global model is
shared again with each participant and can be updated in another
iteration. The first and probably most widely used aggregation
approach is the federated average [9], calculating the weighted
mean of the exchanged model parameters. Besides using
different aggregation approaches, FL can also be distinguished
between horizontal and vertical learning, aswell as cross-device
and cross-silo learning. Horizontal learning describes FL on
datawith the same features but different samples, whilevertical
learning performs on the same samples but with different
features between the participating parties. Cross-device FL
trains models across millions of participants (such as mobile
phones), cross-silo FL, on the other hand, focuses on a few
clients only, such as hospitals or research institutes [10].

Especially in combination with privacy-enhancing techniques
(PETSs), model parameters can be exchanged securely, such that
a global aggregator or potential attacker cannot even see the
local parameters of each participant [11]. This secure exchange
of model parametersis necessary to comply with the GDPR, as
even local models can be considered personal data [12].
Therefore, FL enablesthetraining on asignificantly larger data
set compared with single-ingtitution scenarios. While federated
algorithms still often struggle with communication efficiency,
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the significantly increased amount of data can offset this
performance issue, making FL aserious competitor to classical
ML. Additionally, since FL models are trained on a larger
variety of data, they typically generalize better than traditional
ML models and even generalize faster in some cases [13,14].
Many FL approaches are already published for biomedical
applications, such as medical imaging analysis, genome-wide
association studies, or gene expression analysis [15-17].

In addition to federated ML approaches, several federated
time-to-event analysis a gorithms have been introduced recently
and confirmed their high potential for privacy-preserving
analyses [18-21]. However, existing approaches solely cover
traditional statistical methods such asthe estimation of survival
functionsand the Cox proportional hazards model. Modern ML
algorithmsfor survival analysis, such assurvival Support Vector
Machines (SVMs), are not yet available in afederated fashion,
even though SVMs belong to one of the most popular ML
methods. If algorithms are not availablein federated scenarios,
this might be a reason why researchers chose not to perform
FL, if their favorite algorithms are not available. Many
well-performing centralized algorithms are challenging to
trandlate to a federated scenario while keeping sensitive data
private. Another limitation of FL is communication efficiency.
FL algorithms need to exchange the intermediate statisticswith
a central aggregator, which is especialy inefficient for
algorithmswith many iterations. Thisinefficiency even increases
when adding secure aggregation schemes, such as additive secret
sharing. This PET ensures that only masked and encrypted
model parameters are shared with the aggregating party, securing
the local models from data |eakage [18].

To address the lack of availability of federated time-to-event
methods, we propose a privacy-preserving, horizontally
federated, cross-silo survival SVM based on the survival analysis
package scikit-survival [22]. Compared with other existing
time-to-event methods, such as the Cox proportional hazard
model, the survival SVM alowsan actual prediction of thetime
until an event happens. It can be used to predict the risk of
individual samples, which is not possible in univariate
time-to-event agorithms and is not the aim of the Cox
proportional hazards model. Therefore, to the best of our
knowledge, it is the first freely available federated survival
prediction method. We implemented the algorithm asan app in
the FeatureCloud platform to make it publicly accessible and
to minimize the hurdles of FL infrastructure [23]. Based on a
combination of FL and additive secret sharing, we show on 3
benchmark data sets, that our approach achieves highly similar
results compared with central data analysis. Additionally, we
apply it to a set of real-world microbiome data sets to
demonstrate its applicability to original clinical data.
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Methods

Here, we propose the adapted algorithm for the federated
survival SVM, describe its implementation as a FeatureCloud
app, and explain how we evaluated its performance.

Federated Survival SVM

We extended the regression objective of scikit-survival’'s
FastSurvival SV M without ranking to be applicablein federated
environments[24]. AsshowninFigure 1, instead of calculating
the sum of the squared {-function centrally, it is calculated at
each site, with the feature vector x;, the survival timey;>0, and
the binary event indicator &,. Each site’s local sum of squared
¢-function is then sent to a global aggregator and summed up
to the globa sum of sgquared ¢-function. The below equations
show the central objective function and our corresponding
federated objective function, with C being the set of al
participating clients.

Spith et al

Mathematically, our federated formulaleadsto the same solution
as the centralized calculation of the objective function. Similar
to the centralized analysis, a truncated Newton method (such
as Newton-CG) can be used to optimize the objective function.
For this, in each iteration, the gradient and Hessian matrix of
each client are also sent to the global aggregator to sum them
up to the global gradient and Hessian matrix. To reduce potential
privacy leakage from the exchanged data, the implementation
of the federated algorithm should support a secure aggregation
scheme that hides the locally exchanged data from attackers or
the global aggregation server.

Figure 1. Federated calculation of asurvival support vector machine (SVM). Each site calculates the sum of squares locally and sendsiit to the global
aggregation server. The aggregation server aggregatesthelocal sum of squares by summing them up to the global sum of squares. The objective function
isminimized in a federated fashion by atruncated Newton approach. After convergence, the global model is distributed to all participating clients.

Using truncated Newton optimization

v

1. Initialize 2. Local calculation

¥
3. Global 3. Global model
aggregation distribution

Firewall

FeatureCloud

We devel oped an FL app on the FeatureCloud platform to make
our approach publicly available. To develop this app, we used
the app template and application programming interface
provided by FeatureCloud [25]. Using the scikit-survival
package and Python, we implemented our algorithm, put it into
the FeatureCloud app template, and published it in the
FeatureCloud artificial intelligence store. It can be used with
other appsin aworkflow or standal one using the platform. Our
code is entirely open source.

In FeatureCloud, 1 participating client al so takesthe aggregating
role and is called the coordinator. The app isimplemented as a
state machine, meaning that the app switches between statesto
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perform different tasks. All states and their transitions are shown
in Multimedia Appendix 1. After reading the local data and
config files, minimizing the objective function using afederated
Newton conjugate gradient is performed iteratively. Therefore,
thelocal gradient and Hessian matrices are calculated and sent
to the coordinator. The coordinator aggregates these data to
obtain the global matrices, updates the weight vector w, and
broadcastsit to al clients. Thisis repeated until convergence.

A considerable advantage of the FeatureCloud platform is its
native support of 2 very popular PETS, such as secure multiparty
computation (SMPC). For applying SMPC, FeatureCloud
supports a secure aggregation scheme for hiding locally
exchanged parameters using additive secret sharing [26].
Through this, the exchanged local models are protected, and
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only the global aggregations are visible to attackers, clients,
and the global aggregator. Thisisachieved by splitting the value
that needs to be exchanged with the global aggregator into n
shards, where n is the number of participating clients, and the
sum of these n shardswould result in the actual value[23]. Each
shard isencrypted using apublic key of each participant. These
encrypted shards are shared with the global aggregator, sending
them to the corresponding client holding the private key. The
clientsdecrypt the received shards, sum them up, and send them
back to the global aggregator, which sumsup all received sums.
Thisfinal sum resultsin the actual, nonhidden, global aggregate.

Ethical Consider ations

According to German regulations, for our retrospective study
performed on publicly available data or data with explicit
consent, approval from an ethical committee was not required.

Evaluation

We evaluated our approach using the developed FeatureCloud
app on 3 benchmark data sets, all available viathe scikit-survival
package. The breast cancer data set (BRCA) [27] contains the
gene expression profiling of microarray experiments from 198
primary breast tumors, originally used to validate a 76-gene
prognostic signature able to predict distant metastasesin lymph
node—negative patients with breast cancer. The German Breast
Cancer Study Group 2 data set (GBSG2) [28] contains data
from a multicenter randomized clinical trial to compare the
effectiveness of 3 versus 6 cycles of cyclophosphamide,
methotrexate, and fluorouracil on recurrence-free and overall
survival of 686 women. The observed parameterswere hormonal
therapy (yes or no), age of the patients, menopausal status (pre
VS post), tumor size (in mm), tumor grade, number of positive

Spith et al

tumor nodes, progesterone receptor (in fmol), and estrogen, as
well asthe censoring indicator and recurrence-free survival time
(in days). The Worcester Heart Attack Study data set
(WHAS500) [29] contains data from 500 patients with acute
myocardial infarction, collected during thirteen 1-year periods.
Parameters were age, gender, initial heart rate, initial systolic
and diastolic blood pressure, body mass index, history of
cardiovascular disease, atrial fibrillation, cardiogenic shock,
congestive heart complications, complete heart block,
myocardial infarction order and type, vital status, and total
length of follow-up.

Additionally, we evaluated our agorithm on a recent,
high-dimensional gut microbiome data set from the Hospital
Clinic of Barcelona, containing data from 150 patients with
liver cirrhosis [30]. The data set was aimed at assessing the
predicting role of the gut microbiome for the survival of the
patients in the context of liver cirrhosis, using shotgun
metagenomic sequencing performed on fecal DNA isolated
from stool samples. A former version of the data has been
previously analyzed with adifferent methodol ogy [30]. For this
study, the Metagenomic Species Pangenome (M SP) was used
to identify and quantify microbial species associated with the
|GC2 reference catalog [31]. MSPs are clusters of coabundant
genes (minimum size >100 genes) used asa proxy for microbial
species, reconstructed from 1601 metagenomes to 1990 M SP
species [32]. MSP abundances were estimated as the mean
abundance of their 100 marker genes, as far as at |east 20% of
these genes are detected. The MSP abundance table was then
normalized in each sample by dividing its abundance by the
sum of M SP abundances detected in the sample. Further details
regarding the data sets are shown in Table 1.

Table 1. Overview of al datasets. Our 4 evaluation data sets differ greatly in the number of samples, features, events, and censored individuals. Features
indicate the number of clinical variables or microbia species abundance in the data set; median follow-up indicates the median follow-up time of the
patients in days; events indicate the number of patients for whom the event of interest was observed during observation time; and censored indicates
the number of patients for whom the event of interest was not observed during observation time.

Data set Samples, n Features, n Median follow-up  Events, n Censored, n End point
(days)
BRCA 198 84 4384.0 51 147 Presence of metas-
tases
GBSG2 686 11 1084.0 299 387 Recurrence-free
surviva
WHAS500 500 16 631.5 215 285 Death
Microbiome 150 1995 416.0 51 99 Death

3BRCA: breast cancer data set.
bGBSG2: German Breast Cancer Study Group 2 data set.
CWHAS500: Worcester Heart Attack Study data set.

We one-hot encoded nonbinary categorical features. For each
data set, we created either 1 client (100%) as the centralized
scenario, 3 clients (20%, 50%, and 30%) as the multicentric
imbalanced scenario, and 5 clients (20% each) as the
multicentric balanced scenario, and we split the data
accordingly.

To evaluate the accuracy of our model, we used the Harrell
concordance index, which was developed as a generalization
of the areaunder the receiver operating characteristic curve for

https://ai.jmir.org/2024/1/e47652

time-to-event models [33]. It corresponds to the probability of
concordance between observed and predicted survival based on
each pair of individuals. A c-index of 0.5 means that the model
performsaswell asarandom guess, and a c-index of 1.0 means
that the model predicts perfectly well.

After preprocessing, we performed a3 x 3-fold cross-validation
(CV) for a FeatureCloud workflow consisting of a federated
normalization, the federated survival SVM, and a federated
survival evaluation (c-index). We then compared our results
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with the centralized analysis of every client and the merged data
set (simulating a central data collection). Centralized analysis
was performed using scikit-survival’s FastSurvivalSVM with
arank ratio of 0, a of 0.0001, truefit intercept, and a maximum
of 50 iterations. The same hyperparameters were used for the
federated analysis, respectively.

Privacy

FeatureCloud supports severa propertiesto increasethe privacy
and security of the computations. One important step isthat FL
projects can be only executed with invited participants. For this,
a unique and secret code is needed to join the project. Every
participant can see the workflow and each individually executed
FeatureCloud app that will run in the workflow. As
FeatureCloud apps are open source, even the executed code of
the apps can be examined.

The execution of apps and workflows in FeatureCloud is
contai nerized and strictly monitored. Dueto the containerization,
individual apps are not allowed to establish a connection to the
internet, which prevents the extraction of data from malicious
code. Even though the communi cation between clients does not
contain sensitive patient information, it is RSA
(Rivest—Shamir—Adleman) encrypted through the standard
HTTPS protocol. This prevents unauthorized third partiesfrom
gaining insights into parameters exchanged during training.

Exchanged parameters from each individual site are masked
through the secure aggregation scheme, hiding theintermediate
statistics from other participating clients and the global
aggregator. This efficiently addresses the problem of local
models considered as personal datain GDPR [18].

Our federated survival SVM app currently uses a hybrid
approach of SMPC and FL. Thishybrid approach increasesthe
privacy of the exchanged local parametersfrom both participants
and potentia attackers, as explained in the methods section.

Differential privacy (DP) [34] is not yet supported by
FeatureCloud but is currently in development and could be
added to the algorithm as an additional layer toimprove privacy.
However, as the app trains a linear model, it is less prone to
overfit, reducing the surface for potential membership and
attribute inference attacks [35]. In DP, noise is added to the
model parameters during the training process to guarantee a
mathematically quantifiable amount of privacy for each sample.
While this comes with large advantages regarding privacy, the
application of DP has also various weaknesses. The addition of
noise lowers the performance of the model significantly,
especialy when applying the amount of noise necessary for a
meaningful level of privacy [36]. Further, this guarantee only
is applicable for a limited number of interactions with the
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resulting model. As the final model is distributed to all
participants, they can interact with the model arbitrarily, making
the privacy guarantee void, thus not warranting an inclusion in
thisanalysis.

A PET not supported by FeatureCloud currently ishomomorphic
encryption (HE), which allows the computation of the model
on encrypted values, making sharing of data even more secure.
Whilethisis great in theory, it actually gains very little benefit
in this analysis scenario. The data we share is aready
nonsensitive and through the use of SMPC, we can hide not
only the data but the data’s origin. This is why FeatureCloud
currently supports SMPC instead of HE.

Our implementation of the federated survival SVM app uses
all the functionalities offered by FeatureCloud and does not
deviate from these best practices.

Results

Perfor mance

Our workflow delivered a highly similar model performance
and model parametersfor al federated analyses compared with
the ones performed on the corresponding centralized data sets.
The resulting c-indices to estimate the performance of our
time-to-event models are depicted in Figure 2 [33]. For each
dataset (subplot), we show aboxplot consisting of the evaluated
c-index for each CV split of our federated workflow with secure
aggregation (green), federated workflow without secure
aggregation (orange), and centralized calculation for each
individual client (blue). The CV results show that our federated
as well as the federated and secure aggregation approach
perform highly similar to the centralized estimates. The
calculation of the federated c-index in FeatureCloud causes
small deviances in the c-index between centralized and
federated. This is because FeatureCloud calculates a local
c-index and aggregates to the mean c-indices of al sites.
Therefore, it does not lead to the same c-index as a central
computation would. The mean c-indices for the 4 data sets are
in the range between 0.658 (GSBG2) and 0.76 (WHAS500). In
contrast to the accuracy, achieving very high c-indicesisrather
difficult and depends very much on the problem. In a
bioinformatics context, the lowest c-index of 0.658 (GBSG2)
can be considered as moderate. The model achieves
discrimination between individuals with different survival
outcomes. However, it might not be of clinical utility and needs
further refinement. The c-index of 0.76 (WHAS500) on the
other hand, can be considered as good and has predictive value.
Improving the predictive value of the models and increasing
c-index was out of the scope of thiswork. A complete table of
theresultsis available in Multimedia Appendix 2.
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Figure 2. Comparison of federated and centralized analysis. The boxplots show the evaluated c-indices (3 x 3-fold cross validation) of the central, 3
participants, and 5 participants analysis (rows). For each scenario, we compared the federated and secure aggregation approach (green), the federated-only
approach (orange), and the performance of every single site (blue). BRCA: breast cancer data set; GBSG2: German Breast Cancer Study Group 2 data

set; WHAS500: Worcester Heart Attack Study data set.
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The model weights are nearly identical, with a maximum
difference of only 0.001 and a mean difference of 0.0002
(Multimedia Appendices 1 and 3). These tiny differences
between the weights of the central model and our model are
negligible, asthey do not change the overall prediction results
and till lead to equal c-indices. Theresulting model istherefore
almost identical to the one that was trained on central data. A
useful property of the linear survival SVM is, that the model
weights can be used as a feature importance measure, which is
also supported in our approach.

Besides calculating the feature importance from model weights
directly, our federated survival SVM app uses Shapley additive
explanations (SHAP), an explainable artificial intelligence
framework for the interpretation of ML models [37]. Using
SHAP, we compared the final models of the central, federated
without secure aggregation, and federated with secure
aggregation runs. For each data set, the SHAP shows highly
similar model interpretations with a mean Pearson correlation
of 0.991 between the central and the federated model without
secure aggregation, and a mean Pearson correlation of 0.985
between the central model and the federated model with secure
aggregation. A dlightly worse correlation in the secure
aggregation model is expected, as the masking of local
parameters leads to floating-point issues. The worst correlation
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is shown in the microbiome data set (0.964), which can be
explained by the high correlation between features in this data
set. The results of the SHAP correlation analysis are listed in
Multimedia Appendix 4 and the corresponding SHAP beeswarm
plots are available in Multimedia Appendix 5.

Our results further demonstrate the importance of large data
sets, as the performance of thelocally trained models on single
clients(smaller sample size) showsamuch higher variance than
our federated models. If 5 institutes combine their small data
sets, they can perform a much more reliable time-to-event
analysis compared with isolated ingtitutions. This further
supports the high practical value of FL in real-world clinical
time-to-event analysis, especialy for ingtitutions with small
sampl e sizes, homogenous cohorts, or only afew patients with
rare diseases.

Runtime

Asshown in Figure 3, the runtime largely depends on the data
set. In the case of FL, the number of iterations and, therefore,
the number of data exchanges are the bottleneck. While the
federated-only approach has linear runtime, the runtime of
federated and secure aggregation is much worse and increases
with an increasing number of clients. As described in the
FeatureCloud publication, providing better privacy by hiding
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the exchanged parametersfrom the global aggregator, thesimple
additive secret sharing grows quadratic with the number of
participants. Especially when many iterations and data

Spith et al

exchanges are needed, this has a bad influence on the runtime
of the FL implementation.

Figure 3. Runtime analysis. The lines represent the runtime for each data set and the number of participating clients. The federated-only approach is
depicted on the left, and the federated and secure aggregation approach is depicted on the right.
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All results of the runtime analysis are shown in Multimedia
Appendix 6. Additionally, we performed the runtime analysis
on a data set with a large sample size. As rea-world
time-to-event data sets are difficult to find, we used a
synthetically generated, published data set from an example
colon data set with 15,564 samples [38]. Our results show that
our method scaleswell for large sample sizes, as the number of
iterations is the bottleneck in FL (Multimedia Appendix 7).

FeatureCloud App

The app we developed can easily be used within the
FeatureCloud platform. For this, a project coordinator creates
a project, selects the app, and invites collaborators. Each
participant installs FeatureCloud and joins the project. The app
expects 2 CSV files as input, one for the training data and
another for the test data. A config file can be used to define
hyperparameters and other descriptors, such as the time and
event label columns. After the federated computation has
finished, each client receives the globally trained model as a
picklefile, aswell asaprediction file containing all predictions
on the local test data set. The app can aso be used in a
FeatureCloud workflow, supporting various preprocessing
methods, such as CV, normalization, feature selection, one-hot
encoding, and subsequent evaluation of survival models using
the c-index.

The requirements for running the survival SVM app are the
same as for executing the FeatureCloud platform. It requires a
stable internet connection to exchange the incentive model
parameters with the central aggregator and to run the app on
the website. Docker needs to be installed on a Mac, Linux, or
Windows computer with the corresponding requirements for
running Docker [39]. Moreover, enough memory should be
available to process the data set. This depends mainly on the
data set size, and not on the algorithm itself.
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Discussion

Principal Findings

Our federated survival SVM has been demonstrated to offer a
highly viable alternative to centralized data collection in a
time-to-event analysis. It achieves comparablelevel s of accuracy
without compromising the privacy of highly sensitive patient
data. This makes it a compelling solution for organizations
seeking to safeguard sensitive data while till gaining the
benefits of advanced analysis and the application of ML.
Through its availability as a FeatureCloud app, the platform
takes care of deployment and federated infrastructures, making
it directly usablewith little programming knowledge. Theresults
of the real-world microbiome data set are promising and show
that FL might be an accel erator in microbiome research and the
analysis of time-to-event microbiome data sets. Using FL
combined with additive secret sharing, our approach can be
currently considered GDPR compliant and, therefore, practically
usableinreal clinical time-to-event studies[12].

Comparison to Existing Work

Only a few federated survival analysis approaches were
developed in recent years, such as the distributed Cox
proportional hazards model WebDISCO or an approach for
federated survival curves using multiparty HE [18,20]. In a
recent study about privacy-aware multi-institutional
time-to-event analysis, it was criticized that the existing work
was mainly focusing on theoretical solutions, rather than
practical [21]. Therefore, lack of usability was ahugeissue that
was addressed by the authors, who developed the platform
“Parted’ [21]. The platform supportsthe Kaplan-Meier estimator
for survival curve estimation [40], Nelson-Aalen estimator for
cumulative hazard ratios [41], and Cox proportional hazards
model for survival regression [42]. Compared with “Partea,”
FeatureCloud does not only address the execution of FL
algorithms, but also development. The FeatureCloud devel oper
application programming interface for implementing FL
algorithms that can be executed through FeatureCloud and
published in the App Store is a huge advantage in terms of
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development speed and also accessibility for the potential user
group.

To our knowledge, the survival SVM FeatureCloud app is one
of the first time-to-event analysis ML models implemented as
aFL algorithm. Thismakesthe accuracy (or c-index in our case)
between the algorithms not directly comparable. However,
similar to the existing solutions [20,21], our approach achieves
almost identical results compared with the central algorithms.

Regarding runtime, univariate methods without iterations, such
asKaplan-Meier estimator, Nel son-Aalen estimator, or log-rank
test are much more efficient in FL settings. However, these
approaches cannot be used to analyze high dimensional data
and multivariate settings. The efficiency of our approach is
comparable to the iteratively trained Cox proportional hazard
model, which istrained iteratively and requires communication
and aggregation for every parameter update step.

Limitations

Our current approach does not support the more efficient ranking
objective, as federated ranking is not trivia to implement.
Instead, it is based on scikit-survival’s regression objective.
Moreover, it solely supports the linear SVM and does not
support the kernel SVM yet. Calculating a kernel matrix in a
federated setting is not trivial, as it represents pairwise
similarities (or distances) between the training data points. For
supporting more complex, nonlinear relationships, this should
be further investigated in the future. We still decided to
implement and use a survival SVM in thiswork, as SVMs are
very popular in health care and the only available time-to-event
analysis ML model in scikit-survival that is not based on an
ensembl e approach. Ensemble models, such asrandom survival
forests [43] or survival gradient boost, are both based on a set
of survival trees. While ensemble models are also popular in
time-to-event analysis, the federated aggregation of the local
forests produces slightly worse results than centrally trained
models in imbalanced scenarios [44]. A federated aggregation
of eachlocal tree, on the other hand, is computationally costly.
The SVM in our implementation produces highly accurate
results compared with central learning for model weights,
c-index, and feature importance and can therefore lower the
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burden of applying FL in health care (eg, microbiome analysis),
as the participants can be sure that the results are equal to the
ones they would obtain in a central setting.

FeatureCloud currently only supports a simple additive
secret-sharing scheme, increasing runtimefor cal cul ationswith
many clients and iterations. This could be solved in the future
by using amore efficient secret-sharing scheme, such as Shamir
secret sharing, that is currently not supported by FeatureCloud
[45]. By using FeatureCloud as the execution platform, our
approach does not solve the still existing open problems of FL,
such as fairness, debugging, and communication efficiency
(especially when using secret sharing) [46]. Furthermore, there
are attacks on FL architecturesthat cannot be prevented through
the existing methods, such as privacy inference from the global
model, and model or data poisoning [47]. It is therefore
recommended to use the algorithms and FeatureCloud platform
only with trusted parties.

Another limitation that comes from the FeatureCloud platform
is data standardization. Data formatting and standards need to
be discussed and determined in advance by the participants of
the federated analysis. However, FeatureCloud provides the
possibility to include federated data preprocessing applications
in the workflow. While this does not remove the need for
external communication of data standards, such as included
features and naming conventions, it makes it straightforward
to guarantee the same format and preprocessing for the used
data before the actual model training process. Possible
applications include imputation, normalization, train or test
splitting, and CV [48,49].

Conclusions

In conclusion, we devel oped an open-source federated survival
SVM that performs time-to-event analysis on geographically
distributed data sets without sharing sensitive raw data. It is
freely available in the FeatureCloud App Store. The trained
models are amost identical compared with centrally trained
survival SVMs. This extends the palette of existing federated
time-to-event analysis approaches by another algorithm that
can be applied to various problems.
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Abstract

Background: The cost of health care in many countries is increasing rapidly. There is a growing interest in using machine
learning for predicting high health care utilizers for population health initiatives. Previous studies have focused on individuals
who contribute to the highest financial burden. However, this group is small and represents a limited opportunity for long-term
cost reduction.

Objective: We developed a collection of models that predict future health care utilization at various thresholds.

Methods: We utilized data from a multi-institutional diabetes database from the year 2019 to develop binary classification
models. These models predict health care utilization in the subsequent year across 6 different outcomes: patients having alength
of stay of =7, 214, and =30 days and emergency department attendance of >3, =5, and =10 visits. To address class imbalance,
random and synthetic minority oversampling techniques were employed. The models were then applied to unseen datafrom 2020
and 2021 to predict health care utilization in the following year. A portfolio of performance metrics, with priority on area under
the receiver operating characteristic curve, sensitivity, and positive predictive value, was used for comparison. Explainability
analyses were conducted on the best performing models.

Results: When trained with random oversampling, 4 models, that is, logistic regression, multivariate adaptive regression splines,
boosted trees, and multilayer perceptron consistently achieved high area under the receiver operating characteristic curve (>0.80)
and sensitivity (>0.60) across training-validation and test data sets. Correcting for class imbalance proved critical for model
performance. Important predictors for all outcomes included age, number of emergency department visits in the present year,
chronic kidney disease stage, inpatient bed days in the present year, and mean hemoglobin A, levels. Explainability analyses
using partial dependence plots demonstrated that for the best performing models, the learned patterns were consistent with
real-world knowledge, thereby supporting the validity of the models.

Conclusions; We successfully developed machine learning models capable of predicting high service level utilization with
strong performance and valid explainability. These models can be integrated into wider diabetes-related population health
initiatives.

(IMIR Al 2024;3:€58463) doi:10.2196/58463
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artificial intelligence; predictive model; predictive system; practical model
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Introduction

In recent years, high-income countries worldwide have seen a
consistent risein health care expenditure. Singapore, mirroring
this trend, has experienced a steady increase in health care
spending relative to its gross domestic product [1]. To address
this, Singapore is undergoing a transformative health system
initiative known as Healthier SG [2], which is an initiative to
pivot the health system toward preventive care and population
health management.

Parallel to these efforts, there is a burgeoning interest in
leveraging machine learning for individual-level health
utilization predictions. I dentifying prospective high utilizers of
health care services could unlock opportunities for targeted
interventions. These interventions are poised not only to enhance
individual health outcomes but also to reduce long-term health
care utilization and system costs. Existing research suggests
that a disproportionate amount of health care spending is
concentrated among a small group of costly patients known as
the high-need, high-cost (HNHC) patients—often defined as
those who account for the top 5% of the annual health care costs
[3,4]. These patients were believed to present an opportunity
for cost reduction [5].

However, the potential for cost savings in caring for HNHC
patients is often less than anticipated [6]. This is due to the
diverse nature of these patients who can be subdivided into 3
categories: persistent and refractory HNHC patients, individuals
who experience a 1-time catastrophic health event, and patients
with multiple chronic conditions but amenable to disease
management programs[6,7]. Notably, the latter group presents
themost viable opportunity for impactful intervention. Persistent
and refractory HNHC patients are those with severe and chronic
diseases who require ongoing and expensive care. For these
patients, disease management programs often do not result in
significant reduction in health utilization and financial savings.
For patients with 1-time catastrophic health events such as
accidents, these events are difficult to predict and therefore not
amenable to any intervention [6,7]. Therefore, targeting the
small cohort with multiple chronic conditions but amenable to
disease management programs represents alimited opportunity
to reduce health care costs [6].

Given these complexities, there is a need to refine the approach
to predicting and managing high health care utilization. One
strategy could beto expand the predictive scope beyond HNHC
patients or explore other indicators. Relatedly, the total length
of stay (LOS) and frequency of emergency department (ED)
visits per calendar year may provide a better indication of
service-related health care utilization and the intensity of
inpatient resource use [8].

This study aimsto devel op prediction modelsto forecast annual
inpatient bed daysand ED utilization across varying thresholds;
presently, such models are not availablein our hospital system.
We utilized the Singapore Health Services (SingHealth) Diabetes
Registry (SDR), a comprehensive clinical database of patients
with diabetes within our hospital system to develop predictive
models. Our objective is to create clinically relevant and
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actionable models that can be integrated into wider
diabetes-related population health initiatives [9].

Methods

Study Setting

We used data from the multi-institutional SDR, previously
described in detail [10]. SingHealthisthelargest of the 3 public
health care clustersin Singapore and manages 4 acute hospitals,
5 national speciaty centers, 3 community hospitals, and a
network of 10 primary care polyclinics. SDR was initiated in
2015 and populated retrospectively and prospectively from
across SingHealth's electronic medical records and clinical
databases to cover the period of 2013 to 2022.

Outcome Variables

As SDR primarily consists of clinical data from electronic
medical recordsand lacksfinancia information, wefocused on
service-related health care utilization metrics. To this end, we
developed models to predict utilization across 6 different
thresholds (per calendar year), specifically for total LOS at >7,
>14, and >30 days and for ED attendance =3, =5, and =10 visits;
thus, 6 sets of (binary classification) models were constructed.
Currently, there are no standard definitions for long inpatient
LOS or high ED attendance.

For total LOS, we set arbitrary thresholds corresponding to 1
week, 2 weeks, and 1 month. These thresholds were chosen to
reflect varying degrees of health care utilization in ours and
possibly other health care systems, corresponding to different
levels of patient care needs and resource allocation. Inpatient
stays between 1 and 2 weeks represent short-term stays,
potentially indicative of acute or less severe conditions. In
contrast, stayslonger than 2 weeks and those extending beyond
1 month represent increasingly prolonged stays, often associated
with more severe or complex health issues, especialy in the
latter. These distinctions are critical for understanding and
managing different patient care strategies. They also represent
varying levels of health care management and resource planning,
aswe intend to devel op disease management programs around
thesethresholdsin thefuture. Regarding ED attendance, arecent
systematic review indicated that >3 was the most common
definition for high ED attendance but noted that definitions
could extend to 30 or morevisits[11]. Accordingly, we defined
high ED attendance by using the 3 aforementioned thresholds,
with >3 visits as the minimum criterion. This approach may aid
in planning interventions to prevent escalation to higher levels
of utilization.

Explanatory Variables

The SDR data set facilitated an examination of the effects of
sociodemographic  indicators, health indicators, and
diabetes-related complications. Our methodology for
ascertaining diabetes-rel ated complications has been published
previously [12] and detailed in Table S1 of Multimedia
Appendix 1. The models incorporated 24 variables detailed in
Table S2 of Multimedia Appendix 1. Thesevariablesarereadily
derived from electronic medical records during admissions, ED
visits, inpatient and outpatient clinical consultations, and are
based on local clinical guidelines [13]. These variables offer a

JMIR Al 2024 | vol. 3 | €58463 | p.120
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

comprehensive view of the patients from demographic, social,
clinical, and utilization perspectives.

Inclusion and Exclusion Criteria

This study utilizes data from SDR spanning 2019 to 2022, as
this was the period when comprehensive health care utilization
data were available. We included patients aged 18 years and
older diagnosed with type 2 diabetes mellitus. Patients with
missing variables were excluded from this study, as we did not
perform dataimputation, and most machine learning algorithms
do not support missing values.

Handling Unbalanced Data

Our data set demonstrated significant class imbalance in
inpatient and ED utilization, which can bias models toward the
majority class, hinder theidentification of the high utilizers (the
minority class) [14], and result in subpar model performance.
In this study, we utilized oversampling, a data-level method to
addressthe classimbalance. Specifically, we used the synthetic
minority  oversampling  technique-nominal  continuous
(SMOTE-NC) [15] from thethemis package[16]. SMOTE-NC,
a variant of the SMOTE family of algorithms, generates new
examples of the minority class by interpolating between several
minority class instances that lie relatively close to each other
[17]. SMOTE-NC is effective with mixed numerical and
categorical data. We applied SMOTE-NC with k=5 and k=3
settings, where k denotes the number of nearest neighbors used
to generate new examples of the minority class. Additionally,
we used the upSample agorithm from the caret package [18]
for random oversampling and compared it with no oversampling.
All oversampling techniques achieved equal representations of
both classesin our training data set (ie, equal number of patients
with and without the outcome in the training data set).

Performance I ndicators

We assessed model performance by using areaunder the receiver
operating characteristic curve (AUC), sensitivity (recall), and
positive predictive value (PPV). Sensitivity (recall) allowed us
to identify whether the models were able to correctly identify
patients with the outcomes of interest. PPV provided us with
an understanding of the quality of the positive prediction made
by the model. Additionally, we have reported the area under
the precision-recall curve, sensitivity, specificity, and F;-score
in Multimedia Appendix 1. The area under the precision-recall
curve is preferred over AUC for rare outcomes, as it more
accurately reflects model performance [19]. We & so evaluated
the confusion matrix during model development.

Machine Learning Modes

We built 7 predictive models using R software (version 4.3.1;
R Foundation for Statistical Computing) and the tidymodels
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package [20]: logistic regression, random forest, boosted trees,
multilayer perceptron (MLP), k-nearest neighbor, multivariate
adaptive regression splines (MARS), and Bayesian additive
regression trees. SDR data from 2019 were randomly split into
training (75%) and validation (25%) data sets, with no overlap
between the data sets. Since the training data set was large
(n=75,375), we did not perform cross-validation during model
training. No hyperparameter tuning was performed, astheintent
of the study was to build baseline models to understand the
problem and data set while prioritizing model simplicity and
interpretability. The trained model s were then tested on unseen
data from 2020 and 2021 (ie, the model utilized 2020 data to
predict 2021 outcomes and 2021 datato predict 2022 outcomes).
Although the data sets originate from the same registry, they
reflect distinct utilization patterns across different years,
ensuring temporal independence between them.

Explainability

For top-performing models, model interpretation was determined
using model-specific variable importance scores with the vip
package [21] and permutation feature importance plots using
the DALEX package [22,23]. Additionally, for thetop variables
identified through these methods, partial dependence plots
(PDPs) were generated using the DALEX package and the
unseen validation data set to visualize the relationship between
key predictor variables and the probability of the outcome
occurring.

Ethics Approval

Ethics approval was obtained from the SingHealth Centralized
Ingtitutional Review Board prior to initiating this study
(reference: 2022/2133). Asall participant datawere deidentified,
awaiver for participant consent was also obtained.

Reporting Checklist

Wefollowed the consolidated reporting guidelinesfor prognostic
and diagnostic machine learning modeling studies [24] (Table
S3in Multimedia Appendix 1).

Results

Characteristics of the Data Sets

After removing patients with missing data from the registry in
2019, the training data set contained 100,500 (74.6%)
individuals of the 134,670 patients in SDR in 2019. The test
setsin 2020 and 2021 comprised 77.3% (108,886/140,859) and
80.7% (111,004/137,584) of the total SDR cohorts for the
respective years. The characteristics of the patientsincluded in
thetraining-validation and 2 test data sets are described in detail
in Table 1.
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Table 1. Demographics, comorhidities, and utilization characteristics of the training and test data sets.

Data set description Test 2021-2022 (n=137,584)

Training and validation®2019-2020 ~ 1est 2020-2021

(n=134,670) (n=140,859)
Dataset size, n (% of total registry) 100,500 (74.6) 108,886 (77.3) 111,004 (80.7)
Female gender, n (%) 48,887 (48.6) 52,210 (48) 53,148 (47.9)
Ageon January 1 at the start of the year (years)
Mean (SD) 66.4 (11.8) 66.7 (11.9) 66.5 (12.2)
Median 67 67 67
Ethnicity, n (%)
Chinese 71,132 (70.8) 76,479 (70.2) 76,627 (69)
Malay 14,903 (14.8) 16,277 (15) 17,144 (15.4)
Indian 10,119 (10.1) 11,267 (10.4) 11,788 (10.6)
Other 4346 (4.3) 4863 (4.5) 5445 (4.9)
Housing type, n (%)
1- and 2-room public housing 7502 (7.5) 8214 (7.5) 10,086 (9.1)
3-room public housing 24,976 (24.9) 26,741 (24.6) 24,779 (22.3)
4-room public housing 32,089 (31.9) 34,933 (32.1) 36,540 (32.9)
5-room public housing and 25,769 (25.6) 27,942 (25.7) 29,220 (26.3)
executive flats
Private condominium 6268 (6.2) 6843 (6.3) 6607 (6)
Private landed housing 3896 (3.9) 4213 (3.9) 3772 (3.4)
Livesin arental block 6641 (6.6) 7290 (6.7) 7294 (6.6)
Comorbidities, n (%)
Hypertension 87,931 (87.5) 97,149 (89.2) 99,597 (89.7)
Hyperlipidemia 95,679 (95.2) 105,108 (96.5) 107,638 (97)
Diabetes mellitus medications, n (%)
None 18,125 (18) 20,712 (19) 18,426 (16.6)
Ora medications only 57,413 (57.1) 64,571 (59.3) 61,516 (55.4)
Insulin only 2809 (2.8) 2264 (2.1) 3216 (2.9)
Oral and insulin 22,153 (22) 21,339 (19.6) 27,846 (25.1)
Diabetes-related complications, n (%)
Ischemic heart disease 25,097 (25) 27,663 (25.4) 30,656 (27.6)
Ischemic stroke 9401 (9.4) 10,563 (9.7) 11,305 (10.2)
Hemorrhagic stroke 1449 (1.4) 1801 (1.7) 1998 (1.8)
Peripheral arterial disease 3910 (3.9) 4577 (4.2) 5198 (4.7)
Major lower-extremity amputation 138 (0.2) 173(0.2) 182 (0.2)
Minor lower-extremity amputation 339(0.3) 340 (0.3 426 (0.4)
Diabetic foot and peripheral 2718 (2.7) 3180 (2.9) 3524 (3.2)
angiopathy
Diabetic eye complications 13,067 (13) 13,116 (12.1) 14,479 (13)
Nephropathy 49,139 (48.9) 53,737 (49.4) 54,359 (49)
Chronic kidney disease stage, n (%)
1 (eGFRP >90) 35,176 (35) 36,603 (33.6) 37,188 (335)
2 (eGFR 60-89) 41,705 (41.5) 45,216 (41.5) 45,755 (41.2)
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Data set description Training and validation?2019-2020  Test 2020-2021 Test 2021-2022 (n=137,584)
(n=134.670) (n=140,859)
3A (eGFR 45-59) 11,563 (11.5) 12,667 (11.6) 12,802 (11.5)
3B (eGFR 30-44) 6760 (6.7) 7696 (7.1) 7835 (7.1)
4 (eGFR 15-29) 3215 (3.2) 3805 (3.5) 4016 (3.6)
5 (eGFR<15) 2081 (2.1) 2899 (2.7) 3408 (3.1)
Dialysis 1400 (1.4) 1903 (1.8) 2269 (2)

Utilization char acteristics
Inpatient utilization (present year)
Mean (SD) 3.09 (11.3) 341 (11.7) 3.96 (13.6)
Median 0 0 0
Inpatient bed days (present year), n (%)

0 77,170 (76.8) 81,559 (74.9) 80,770 (72.8)
1-2 6034 (6) 6752 (6.2) 7168 (6.5)
36 6693 (6.7) 7701 (7.1) 8500 (7.7)
7-13 4464 (4.4) 5432 (5) 5982 (5.4)
14-29 3592 (3.6) 4315 (4) 4855 (4.4)
=30 2547 (2.5) 3127 (2.9) 3729 (3.4)
Inpatient bed days (subsequent year)
Mean (SD) 2.39 (10.3) 2.79 (12.2) 3.22 (14)
Median 0 0 0

Inpatient bed days category (subsequent year), n (%)

0 83,759 (83.3) 90,022 (82.7) 89,577 (80.7)
1-2 4078 (4.1) 4214 (3.9) 4561 (4.1)
36 4477 (4.5) 5015 (4.6) 5619 (5.1)
7-13 3353 (3.3) 3729 (3.4) 4292 (3.9)
14-29 2740 (2.7) 3222 (3) 3722 (3.4)
=30 2093 (2.1) 2684 (2.5) 3233 (2.9)
Emergency department utilization (present year)
Mean (SD) 0.53 (1.4) 0.54 (1.4) 0.57 (1.6)
Median 0 0 0

Emergency department visit category (present year), n (%)

0 visits 71,584 (71.2) 76,261 (70) 75,376 (67.9)
1-2 visits 23,487 (23.4) 27,143 (24.9) 29,671 (26.7)
3-4visits 3883 (3.9) 3938 (3.6) 4343 (3.9)
5-9 visits 1348 (1.3) 1358 (1.3) 1403 (1.3)
>10 visits 198 (0.2) 186 (0.2) 211(0.2)

Emergency department utilization (subsequent year)
Mean (SD) 0.40 (1.3 0.40 (1.4) 0.48 (1.4)
Median 0 0 0
Emergency department visit category (subsequent year), n (%)

0 visits 78,849 (78.5) 85,162 (78.2) 82,269 (74.1)

1-2 visits 17,794 (17.7) 19,434 (17.9) 23,273 (21)

3-4visits 2716 (2.7) 3060 (2.8) 3817 (3.4)
https://ai.jmir.org/2024/1/€58463 JMIR Al 2024 | vol. 3 | €58463 | p.123

(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

Tanet a

Data set description

Training and validation® 2019-2020

Test 2020-2021 Test 2021-2022 (n=137,584)

(n: 134,670) (n= 140,859)
5-9 visits 996 (1) 1064 (1) 1455 (1.3)
>10 visits 145 (0.1) 166 (0.2) 190 (0.2)

#The data set was randomly partitioned into training and validation data setsin a 75% to 25% ratio (respectively), with no overlap between the 2 data

sets. n=total registry size.
beGFR: estimated glomerular filtration rate in mL/min/1.73 m-.

Acrossthe data sets, 47.9%-48.6% of the patientswerefemales.
The mean age was between 66.4 and 66.7 years, and themedian
was consistently 67 years. The proportions by ethnicities were
consistent across the 3 data sets with approximately 70%
Chinese, 14% Malay, 10% Indian, and 4% other races. The
ethnic distributions observed closdly resembled the Singaporean
population [25]. Across the data sets, most individuals lived in
public housing, with the largest proportion being 4-room public
housing (approximately 32%). Owing to the public housing
infrastructure in Singapore, approximately 6.6% of the patients
live in an apartment block with rental housing. Acrossthe data
sets, the proportion of patients with hypertension was
87.5%-89.7%, whereas the proportion of patients with
hyperlipidemia was 95.2%-97%. The most common
diabetes-related complication was nephropathy (prevalence of
48.9%-49.4% across the data sets) followed by ischemic heart
disease (prevalence of 25%-27.6%) and then diabetic eye
complications (prevalence of 12.1%-13%). Relatedly,
65%-66.5% of the patientsin the data sets had stage 2 chronic
kidney disease (CKD) and above. When contrasted with the
preval ence of nephropathy (our definition of nephropathy was
estimated glomerular filtration rate <60 mL/min/1.73 m? or
urine abumin creatinine ratio =30 mg/g or urine
protein/creatinine ratio =0.20 g/g), it suggests that a significant
proportion of patients had stage 1 CKD and proteinuria.

The mean present year inpatient utilization across the data sets
was 3.08%-3.96%. Compared to the present year, the subsequent

https:/ai jmir.org/2024/1/e58463

year'sinpatient utilization was less. The mean present year ED
utilization was 0.53-0.57 visits per patient. Compared to the
present year, the subsequent year’sED utilization wasless. The
median utilization for present and next year’s inpatient and ED
utilization was zero across all data sets, indicating that the
utilization characteristics were extremely skewed.

Effectsof Sampling Techniqueon M odel Performance

The key model performance indices for the models using
different oversampling techniques and no oversampling are
presented in Figures 1-2 (Figures 1-2 in Multimedia Appendix
2) and Table S4in Multimedia Appendix 1. For all the outcomes
studied, models trained with random oversampling had similar
AUC values to models trained with no oversampling, models
trained with SMOTE-NC (k=3) had lower AUC vaues, and
models trained with SMOTE-NC (k=5) had the lowest AUC.
With regard to sensitivity, modelstrained with no oversampling
had markedly lower sensitivity but higher PPVs. Thisindicates
that models trained with no oversampling could not correctly
identify patients with the outcomes of interest. Thisis further
confirmed in our analysis of the confusion matrixes of these
model strained. We observed that these model s assigned almost
all the patients as not cases (ie, did not have the outcomes the
next year) and therefore were not useful. Models trained with
no oversampling and SMOTE-NC (k=5) were not included in
further analyses.
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Figure 1. Comparing between different oversampling techniques to predict inpatient bed days. A. Predicting =7 inpatient bed days in subsequent year.
B. Predicting 214 inpatient bed daysin subsequent year. C. Predicting =30 inpatient bed daysin subsequent year. AUC: areaunder the receiver operating
characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines; MLP:
multilayer perceptron; PPV: positive predictive value; SMOTE-NC: synthetic minority oversampling technigque-nominal continuous. A higher-resolution

image of thisfigure is available in Multimedia Appendix 2.
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Figure2. Comparing between different oversampling techniquesto predict emergency department visits. A. Predicting =3 emergency department visits
in subsequent year. B. Predicting =5 emergency department visits in subsequent year. C. Predicting 210 emergency department visits in subsequent
year. AUC: area under the receiver operating characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS:
multivariate adaptive regression splines, MLP: multilayer perceptron; PPV: positive predictive value; SMOTE-NC: synthetic minority oversampling
technique-nominal continuous. A higher-resolution image of thisfigure is available in Multimedia Appendix 2.
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3-4, Figures 3-4 in Multimedia Appendix 2, Figures S1-S2 and
Model Performance on Test Data Sets Tables S5-S6 in Multimedia Appendix 1). When trained with
Asmodelstrained with random oversampling and SMOTE-NC,  random oversampling, 4 models, that is, logistic regression,
where k=3 had the best AUC and sensitivity, we conducted MARS, boosted trees, and MLP had consistently high AUCs
additional analyses to evaluate their performance by testing  acrossvalidation and test data sets. The AUC valueswere higher
them on 2 test data sets of 2020-2021 and 2021-2022 (Figures  for outcomes reflecting higher utilization (ie, 230 inpatient bed
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days and =10 ED visits in subsequent year). These 4 models
consistently had the highest sensitivity values, with sensitivity
>0.65 for all outcomes except predicting 210 ED visitsin the
subsequent year. This suggests that these 4 models were able
to correctly identify at least 65% of the patients with the
outcome. All models, except for random forest, had similar but
low PPVs across the 2 data sets.

When trained with SMOTE-NC (k=3), most models except for
k-nearest neighbor and Bayesian additive regression trees
models had good AUC (>0.75) across the 2 test data sets.
Models had higher AUC values for outcomes reflecting higher
utilization, that is, 230 inpatient bed days and =10 ED visitsin
the subsequent year. Compared to models trained with random
oversampling, models trained with SMOTE-NC (k=3) had a

https:/ai jmir.org/2024/1/e58463
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wide distribution of sensitivity values, with logistic regression
and MLP having similar and consistently high sensitivity values
for all outcomes except predicting =10 ED visits in the
subsequent year. Models trained with SMOTE-NC (k=3) had
a wider distribution of PPV values than models trained with
random oversampling.

When comparing the performance of models trained with the
2 oversampling techniques, we observed that random
oversampling resulted in marginally higher AUC and sensitivity
values (Figures 3-4). The narrow distribution of PPV valuesin
model strained with random oversampling suggeststhat random
oversampling resulted in more consistent quality of positive
predictions across the best performing models.
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Figure 3. Performance of models trained using random oversampling to predict inpatient bed days. A. Predicting =7 inpatient bed days in subsequent
year. B. Predicting 214 inpatient bed days in subsequent year. C. Predicting 230 inpatient bed days in subsequent year. AUC: area under the receiver
operating characteristic curve; BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines;

MLP: multilayer perceptron; PPV: positive predictive value. A higher-resolution image of thisfigure is available in Multimedia Appendix 2.
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Figure 4. Performance of models trained using random oversampling to predict emergency department visits. A. Predicting =3 emergency department
visitsin subsequent year. B. Predicting =5 emergency department visitsin subsequent year. C. Predicting =10 emergency department visitsin subsequent
year. A higher resolution version of this figure is available in Multimedia Appendix 2. AUC: area under the receiver operating characteristic curve;
BART: Bayesian additive regression trees; KNN: k-nearest neighbor; MARS: multivariate adaptive regression splines; MLP: multilayer perceptron;

PPV: positive predictive value.
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Explainability Analyses

From our analysis, the best performing models were logistic
regression, MARS, boosted trees, and MLP that were trained
with random oversampling (herein referred to as selected
models). Moddl-specific variable importance scores for selected

https://ai.jmir.org/2024/1/€58463
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models except MLP were obtained; the top 10 variables are
reported in Table S7 in Multimedia Appendix 1. M odel-specific
variableimportance scoresfor ML P were not available through
the vip package. Regarding the prediction of subsequent year
inpatient bed days (=7, =14, =30), age, number of ED visits
(present year), CKD stages 4 and 5, and present year inpatient
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utilization were the most important variables. For boosted tree
and MARS, the number of ED visits (present year), CKD stage,
and age were the most important variables. Regarding the
prediction of subsequent year ED visits, the number of ED visits
(present year), CKD stage 4 and 5, mean hemoglobin A;.
(HbA ) values, and age were the most important variables for

all models. Interestingly, the number of ED visits (present year)
was consistently the most important variablefor all the models.

We also obtained permutation feature importance plots for
selected models (Figures S3-$4 in Multimedia Appendix 1).
Regarding the prediction of subsequent year inpatient bed days
(=7, =14, =30), the permutation feature importance plots
corroborated the model-specific variable importance scores,
indicating that age, number of ED visits (present year), CKD
stage, and present year inpatient utilization were the most
important variables. Interestingly, diabetes mellitus medication
category was more important in predicting =30 inpatient bed
days in the subsequent year. Regarding the prediction of
subsequent year ED visits, the number of ED visits (present
year) wasthe dominant variable for all models. Other important
variables included age, CKD stage, and present year inpatient
utilization.

PDPsfor the 8 most important variables across sel ected models
are illustrated in Multimedia Appendix 1. Regarding the
prediction of inpatient bed days (Figures S5-S7 in Multimedia
Appendix 1), the average prediction of outcomes increased
steadily with age for all models. For present-year ED visits, al
models demonstrated a sharp increase in average prediction
from 0 to 20 visits, with a plateau close to 1.0 (for average
prediction) after 20 visits. For present-year inpatient bed days,
the average prediction increased with more bed days, peaking
at 14-29 days for all models except MARS. For mean HbA ;.
values, the average prediction increased with higher HbA
levels, athough a U-shaped relationship was observed for
MARS, boosted trees, and MLP, with the lowest average
predictionsaround HbA ;. level s of 6%-7%. Regarding diabetes
medication categories, patients on insulin only and those on
both oral diabetic medications and insulin had higher average
predictions than those on ora medications only or no
medications. PDPs for selected models showed that more
advanced CKD stages (CKD stage 4 and stage 5) had higher
average predictions. In most models, patients with ischemic
heart disease or peripheral artery disease also had higher average
predictions.

Regarding the prediction of ED visits>3 and =5 times (Figures
S8-S9in Multimedia Appendix 1), the sel ected model s showed
similar observations for age, present year ED visits, mean
HbA ., diabetes medication categories, ischemic heart disease,
and peripheral artery disease. It is noteworthy that present-year
inpatient bed days did not significantly affect the predicted
probability of these outcomes. For the prediction of ED visits
>10 (Figure S10 in Multimedia Appendix 1), the PDPs aligned
with the findings from both feature importance methods where
the number of present year ED visits had the largest influence
on average predictions, while other variables had smaller
influence on average predictions.
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Discussion

Principal Findings

In this study, we devel oped machine learning modelsto predict
future inpatient and ED utilization by using sociodemographic
characteristics, health indicators, diabetes-related complications,
and prior utilization data from a chronic disease registry. We
detailed a systematic approach to building, validating, and
testing the models. Using this approach, we noted that
imbalanced data distribution significantly affected model
performance, often resulting in low sensitivity despite acceptable
AUC vadues. This finding highlights the importance of
considering multiple metrics, including AUC, sensitivity (recal),
and PPV (precision), during model selection. We found that
improved model performance can be achieved by addressing
imbalanced data distribution through oversampling. We
observed that random oversampling resulted in better model
performance than SMOTE. Among the models trained with
random oversampling, logistic regression, MARS, boosted trees,
and MLP models had the best performance. Additionally,
explainability analyses provided insights into how the best
performing models made predictions and showed that their
learned patterns were consistent with real-world knowledge,
thereby supporting the validity of the models.

Predicting Future Inpatient Bed Daysand ED Visits

In our study, we used inpatient bed days and ED visits within
a calendar year as service level indicators of high health care
utilization. Service level utilization is important because our
prior research demonstrated a rising trend in diabetes-related
complications [12] and our country is experiencing persistent
bed shortages and crowded EDs [26]. In this context, service
level utilization indicators are useful to inform health
intervention programs to ease the bed crunch and overcrowded
EDs. First, patients predicted to have very high level of health
care utilization (ie, inpatient bed days =30 or ED visits 210)
could be candidates for intensive case management to identify
potential causesfor prolonged admissions or frequent ED visits.
Second, patients predicted to have moderately high level of
health care utilization (ie, inpatient bed days >14 and <30 and
ED visits>5 and <10) could be candidates for multidisciplinary
(medical and social) diabetes care programs to reduce future
utilization. Finally, patients with mildly elevated health care
utilization (ie, inpatient bed days >7 and <14 and ED visits >3
and <5) could be candidatesfor novel care modelsthat |everage
technological solutions such as the Mobile Inpatient Care at
Home[27].

Addressing Imbalanced Data Distribution by Using
Data Sampling Approaches

Our study highlights the importance of addressing imbalanced
data when devel oping machine learning models for health care
applications. We observed that class imbalance can lead to
acceptable AUC but low sensitivity—a phenomenon also hoted
in related literature [28]. Our study evaluates 2 different
oversampling techniques: random oversampling and SMOTE.
When comparing random oversampling with the 2 iterations of
SMOTE, wefound that random oversampling performed better
than SMOTE (k=3), which in turn performed better than
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SMOTE (k=5). This could suggest that predictive models
perform better when the synthetic minority class used for
training is similar to the actual training data. Random
oversampling duplicates existing instances, whereas SMOTE
(k=3) and SMOTE (k=5) create a new synthetic minority class
by interpolating between 3 and 5 closely related minority class
instances, respectively. It is recognized that with oversampling
techniques, models may overfit and perform poorly in other
data sets [14]. To investigate this, we tested our models on 2
additional test data sets (years 2020-2021 and 2021-2022) and
found no degradation in model performance. Our conclusions
were that because the training data were sufficiently large, it
had good quality and variety to avoid overfitting.

Machine L earning Model Performance

Among the 7 machine learning models we tested, logistic
regression, MARS, boosted trees, and ML P showed promising
performance in predicting LOS across al 3 thresholds. For
predicting =5 and =10 ED visitsin the subsequent year, MARS
and logistic regression outperformed the other models.
Interestingly, logistic regression was found to be as effective
as or even superior to other machine learning models in
predicting health care utilization. These findings are noteworthy
because while some studies have shown machine learning
modelsto outperform traditional regression modelsin predicting
health care utilization [3,28], others have found that machine
learning models offered only limited improvement over
traditional logistic regression [29]. When analyzing the
model-specific variable importance scores and permutation
feature importance plots for the selected models, we observed
differences in the rankings of the important variables between
models. However, the top 5 variables were generally consistent
across selected models (Table S7 and Figures S3-$4 in
Multimedia Appendix 1). In predicting inpatient LOS at all 3
threshol ds, age, number of ED visits (present year), CKD stage,
and inpatient bed days were the top 5 most important variables
acrossall models. For predicting ED visitsat al thresholds, the
number of ED visits (present year), CKD stage, age, and mean
HbA ;. values were the top 5 variables.

Additionally, explainability analyses using PDPs confirm what
is known about high health care utilizers. Age, prior utilization
in terms of ED visits and inpatient stays, and the presence of
comorbidities and diabetes-related complications such as
advanced stages of CKD, ischemic heart disease, and peripheral
artery disease are associated with increased headlth care
utilization. These findings suggest that current utilization isan
important predictor of future utilization—aconclusion supported
by similar studies [4,28]. Additionally, kidney disease has
emerged as a significant predictor for future health care
utilization in our cohort of patients with diabetes, as
demonstrated in arecent study involving patients from the same
population [30].

Interestingly, the U-shaped relationship between average
prediction and HbA ;; values seen in many of the PDPs suggest
that tight glycemic control (HbA,.<6%) and relaxed glycemic
control (HbA;.28%) are associated with increased health care

utilization. Thisisaninteresting finding because we documented
asimilar U-shaped relationship previously between HbA . and
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incidence of diabetes mellitus—related complicationsin the SDR
[23]. Incident complications are expected to result in ED visits
or admissions. Taken together, our explainability analyses
suggest that the learned patterns are consi stent with real-world
knowledge and therefore lend support to the validity of the
model.

Study Strengths, Limitations, and Future Research

Our study’s strengths include the use of a large multiethnic
cohort and easily obtainable predictors with minimal missing
data. By utilizing different thresholds of inpatient bed daysand
ED visitsasmodel outcomes, our approach allows policy makers
and program planners to target interventions based on the
predicted need. Other practitionersintending to build predictive
modelsfor population health programs could consider asimilar
systematic approach to building, validating, testing, and
understanding the models. Through this approach, wewere able
to mitigate the problems associated with class imbalance by
exploring the outcomes of the 2 data sampling methods. We
also validated the models across different time frames and
demonstrated their validity on unseen data. Finally, our
explainability analyses provided reassurance that the models
were making prediction based on learned patterns consistent
with real-world knowledge. However, the absence of financial
data and the nonexploration of other class imbalance methods
such as feature selection are key limitations that could be
addressed in future studies. Our test data sets spanned the
COVID-19 pandemic, a period that may have affected
health-seeking behavior and health care utilization. However,
the consistency of our results with those from the validation
data set, which was|ess affected by the pandemic, suggeststhat
these potential anomalies did not significantly impact our
findings. Another potentia limitation isthe exclusion of patients
with missing data. In the context of this study, these patients
arelikely to be those who are well and had minimal interaction
with the health system within that year. Given the large size of
the data set for this study and the significant class imbalance
for patients without any of the outcomes, it is likely that
excluding patients due to missing data had minimal impact on
model performance.

Although our study shortlisted 4 machine learning modelswith
similar performance across different outcomes, it remains
unclear which model is the most optimal. Beyond the
performance variables, we considered the confusion matrix for
each of the models and observed that these models describe
alternative courses of action, each with a different cost and
benefit attached; we will explore this in future research.
Although we have described how the results from the models
can be used in practice, we acknowledge the need for a more
integrated approach to model selection and decision-making
criteria. In this regard, we are currently exploring additional
methodsto addressthis, specifically focusing on how to combine
the outputs of the binary classification modelsinto asingle more
comprehensive multiclass prediction model. To achieve this,
weareinvestigating the use of hierarchical decision modelsand
ensemble model approaches. These methods would allow usto
integrate the predictions from individual binary modelsinto a
unified multiclass model, making it more applicable in
real-world scenarios. However, these additional methods and
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their applications will be detailed in a follow-up study. Conclusion
Relatedly, the model sthat we devel oped are predictive and they
are unableto provide prescriptive insights. Additional toolswill
be needed to be developed to profile patients and identify the
most appropriate interventionsfor them. Finally, since our study
uses data from a public regional health database in Singapore,
the findings may not be generalizable to other contexts.

We were able to apply common machine learning algorithms
to predict future health care utilization by using inpatient bed
days and ED utilization as the predicted outcomes. These
predictive models will be useful to policy makers and program
planners asthey devel op population health initiativesto improve
care for patients with diabetes and manage acute health care
utilization.
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ED: emergency department

HbA;.: hemoglobin A,

HNHC: high-need, high-cost

LOS: length of stay

MARS: multivariate adaptive regression splines
MLP: multilayer perceptron

PDP: partial dependence plot

PPV: positive predictive value

SDR: SingHealth Diabetes Registry
SingHealth: Singapore Health Services
SMOTE-NC: synthetic minority oversampling technique-nominal continuous
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Abstract

The advent of large language models (LLMs) such as ChatGPT has potential implications for psychological therapies such as
cognitive behavioral therapy (CBT). We systematically investigated whether LLMs could recognize an unhel pful thought, examine
its validity, and reframe it to a more helpful one. LLMs currently have the potential to offer reasonable suggestions for the

identification and reframing of unhelpful thoughts but should not be relied on to lead CBT delivery.

(IMIR Al 2024;3:€52500) doi:10.2196/52500
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Introduction

Largelanguage models (LLMs) represent asignificant advance
in the field of artificial intelligence (Al) and herald a
transformational changein therole of computers both personally
and professionally. LLMs, such as OpenAl’'s ChatGPT and
Googl€e's Bard (later rebranded as Gemini), represent a new
form of generative Al. They have linguistic capabilities
comparable to humans, and they demonstrate performance
similar to specialized modelsfor sentiment analysisand affective
computing [1]. Psychiatry and psychology, and talking therapy,
inparticular, isafield with significant potential impact of LLMs.
Demand for therapists greatly outweighs supply, making the
guestion of how new technologies could relieve pressure on
mental health systems a pertinent one. Here we report an
evaluation of whether existing LLMs can contribute to the
delivery of cognitive behavioral therapy (CBT), and their
limitations.

CBT is a first-line treatment for common mental health
disorders, including anxiety and depression. It involves
understanding cognitive biases and challenging those thoughts.

https://ai.jmir.org/2024/1/€52500

Where other modes of psychotherapy rely on the therapist’s
individualized interpretation, CBT emphasizes systematic
changes in thinking and behavior.

Self-guided, web-based CBT has emerged as aresponse to the
shortage of CBT therapists, and it isincreasingly recommended
asan accessible aternative [2]. These programs reduce theinput
of the human therapist to a brief phone call, with patients
assigned web-based modules to complete. Although the
approach is cost-effective and scalable, it risks making the
content of web-based CBT less personalized. Since LLMs can
flexibly respond to personal circumstances, they may be
well-suited to addressing this.

Al has previously been used to augment CBT by performing
peripheral tasks. In astudy of chronic pain, Al was used to select
the appropriate CBT intervention for patients each week based
on the previous week's progress [2]. Thedigital CBT company
Wysa [3] uses Al to select appropriate therapist-authored
responses. Mental Health America has built awebsite using Al
to help people identify and reframe cognitive biases as an
isolated exercise [4]. However, none of these applications have
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harnessed the generative capacity of LLMs as therapeutic
chatbots to aid patientsin reframing unhelpful thoughts.

We aimed to understand whether Al could recognize an
unhel pful thought, examineitsvalidity, and reframeit toamore
helpful one. Thistechnique, often referred to as* catch it, check
it, change it,” requires knowledge of cognitive biases, the
linguistic ability to reframe them, and importantly, a degree of
comprehension such that the reframing meaningfully addresses
the bias [5]. If publicly available LLMs can support “Catch It,
Check It, Change It,” then they may have a valuable role in
increasing the effectiveness of digital CBT.

Hodson & Williamson

Methods

We explored whether OpenAl’s ChatGPT-4 and Google's Bard
could perform the 3 stages of the “catch it, check it, change it”
technique (see Table 1). Two independent CBT therapists
currently practising in the UK’s National Health Service aided
in assessing the LLMs, rating whether they had completed the
tasks satisfactorily. The therapists each wrote their own set of
10 thoughts, ensuring they received different replies from the
LLMs. Both ChatGPT-4 and Bard responded to 20 tasks at each
stage of the study. The sessions for each therapist occurred on
June 2 and 14, 2023.

Table 1. Evaluating how large language models (LLMs) perform at the Catch It, Check It, Change It approach.

CBT2Kill Inputto LLM Task for LLM Criteria
Stage 1: “Catchit” meanspatients  Titles of 10 cognitive biases Generate atwo-sentence vignette  Could CBT therapists work
“Catch it” can stop and noticethat their for each bias. out which bias each vigneite

thought may be distorted. illustrated?

Therapists must be able to

illustrate different distor-

tions.
Stage 2: “Check it” means patients ~ Therapist-written thoughtsillustrat-  Identify which cognitivebiaseach Did LLMsidentify the same
“Check it” consider whether athought ing 10 cognitive distortions, each  vignette represents. biases?

is helpful, or whether it fits  in the language of a patient. Each

with acognitive distortion.  therapist produced an independent

Therapists must be ableto  list of thoughtswith no discussion.

explain which distortion a

thought fitsinto.
Stage 3: “Changeit” means patients  Therapist-written thoughtsillustrat-  Reframe the thought to overcome  Did therapists think the new
“Changeit” can reframe their thoughts.  ing 10 cognitive biases asabove  the bias. thought addressed the bias?

Therapists should be ableto

suggest reframing of

thoughts that patients may

consider.

8CBT: cognitive behavioral therapy.

Results

Table 2 showsLLM performance over the 3 tasks. Both models
demonstrated varying levels of proficiency across tasks and
therapists. Overall, ChatGPT-4 scored 44/60 and Bard scored
42/60. Both performed similarly at generating vignettes, which
clearly illustrated a cognitive bias (Stage 1: ChatGPT 13/20,
Bard 13/20), whereas ChatGPT-4 performed better at identifying
cognitive biases (Stage 2: ChatGPT 15/20, Bard 10/20). The
LLMs performed superiorly at reframing unhelpful thoughts,
with Bard achieving a near-perfect score (Stage 3: ChatGPT
16/20, Bard 19/20).

https://ai.jmir.org/2024/1/€52500

RenderX

Frequently, the LLMs were only marginaly incorrect.
Specifically, Bard often mentioned cognitive biases outside of
the 10 provided, using alternative labels that nonetheless
described the bias plausibly. This may reflect an inherent
limitation of CBT terminology, rather than poor model
performance. Indeed, this limitation appeared to extend to
therapists, who only demonstrated moderateinter-rater reliability
inlabeling LLM-generated vignettes (Cohen k=0.44). However,
at stage 3, therapist 2 noted severa instances where the LLM
“missed the point” and, whiletechnically improving the original
thought, did not reframe it in a way that demonstrated
understanding of the underlying cognitive bias. Prompts given
to these LLMs and examples of errors noted in the outputs are
presented in Multimedia Appendix 1.
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Table 2. Number of tasks completed correctly at each stage.

Evaluation stage Bard ChatGPT-4

Therapist 1 (out of 10) Therapist 2 (out of 10) Total Therapist 1 (out of 10) Therapist 2 (out of 10) Tota

Stage 1: Catch it (How many 7 6 13 8 5 13
LLM-generated vignettes were
correctly identified by athera-

pist?)

Stage 2: Check it (How many 7 3 10 7 8 15
therapist-generated vignettes

were correctly identified by the

LLM?)

Stage 3: Changeit (How many 10 9 19 10 6 16
LLM-reformulated vignettes

were considered improvements

by atherapist?)

Discussion

LLMsarefar from replacing CBT therapists, but they perform

well in some isolated tasks (eg, Bard for reframing), so it is

Our study findings suggest that LLMs should not yet be relied worthwhile exploring limited yet innovative ways to use Al to

onto

as assistants capable of offering reasonable suggestions for the
identification and reframing of unhelpful thoughts.

lead CBT delivery, although LLMs show clear potential improve patient experience and outcomes. We suggest CBT
therapists equip patients with aworking knowledge of cognitive

biases, but therapists could also advise patientsto consider using
LLMs to gather suggestions on reframing unhelpful thoughts
beyond sessions.
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Multimedia Appendix 1
Prompts provided to the large language models Bard and ChatGPT-4 and examples of errors noted in the outputs.
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Abstract

Background: Although machine learning is a promising tool for making prognoses, the performance of machine learning in
predicting outcomes after stroke remains to be examined.

Objective: This study aims to examine how much data-driven models with machine learning improve predictive performance
for poststroke outcomes compared with conventional stroke prognostic scores and to elucidate how explanatory variables in
machine |learning—based models differ from the items of the stroke prognostic scores.

Methods: We used datafrom 10,513 patients who were registered in a multicenter prospective stroke registry in Japan between
2007 and 2017. The outcomeswere poor functional outcome (modified Rankin Scal e score >2) and death at 3 months after stroke.
M achine learning—based model swere devel oped using all variableswith regularization methods, random forests, or boosted trees.
We selected 3 stroke prognostic scores, namely, ASTRAL (Acute Stroke Registry and Analysis of Lausanne), PLAN (preadmission
comorhidities, level of consciousness, age, neurologic deficit), and i Score (Ischemic Stroke Predictive Risk Score) for comparison.
Item-based regression models were developed using the items of these 3 scores. The model performance was assessed in terms
of discrimination and calibration. To compare the predictive performance of the data-driven model with that of the item-based
model, we performed internal validation after random splits of identical populations into 80% of patients as a training set and
20% of patients as a test set; the models were developed in the training set and were validated in the test set. We evaluated the
contribution of each variable to the models and compared the predictors used in the machine learning—based models with the
items of the stroke prognostic scores.
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Results: The mean age of the study patients was 73.0 (SD 12.5) years, and 59.1% (6209/10,513) of them were men. The area
under the receiver operating characteristic curves and the area under the precision-recall curvesfor predicting poststroke outcomes
were higher for machine |earning—based models than for item-based modelsin identical populations after random splits. Machine
learning—based model s al so performed better than item-based modelsin terms of the Brier score. Machine |earning—based models
used different explanatory variables, such aslaboratory data, from theitems of the conventional stroke prognostic scores. Including
these data in the machine learning—based models as explanatory variables improved performance in predicting outcomes after
stroke, especially poststroke death.

Conclusions: Machine learning—based model s performed better in predicting poststroke outcomes than regression models using
the items of conventional stroke prognostic scores, although they required additional variables, such as laboratory data, to attain

improved performance. Further studies are warranted to validate the usefulness of machine learning in clinical settings.

(IMIR Al 2024;3:e46840) doi:10.2196/46840

KEYWORDS

brain infarction; outcome; prediction; machine learning; prognostic score

Introduction

Background

Despite receiving the best available treatment, patients who
have had a stroke may still experience disability or, in some
cases, even face therisk of death [1,2]. Stroke clinicians try to
predict patients' outcomes as accurately as possible because
accurate prognoses are a prerequisite for therapeutic decisions.
Various stroke prognostic scores have been devel oped to support
cliniciansin predicting poststroke outcomes[3-8]. Neverthel ess,
prognostic scores have some disadvantages. generally, they
limit the number of variablesfor ease of use at the bedside, and
their validity needs to be reappraised over time, as the scoring
criteriamay become outdated with rapid progressin stroke care

9.

Meanwhile, recent advances in information technology have
enabled the collection of alarge amount of health information
onindividua patients [10,11]. Machine learning is considered
a promising tool for improving the prediction accuracy of
clinical outcomes for individual patients with stroke because
of the ability of machinelearning to deal with large and complex
data[12-24].

However, several papers questioning the incremental value of
machine learning have recently been published [25-27]. One
study reported that machine learning algorithms did not perform
better than traditional regression models for making prognoses
in traumatic brain injury and recommended replicating studies
in fields other than traumatic brain injury to ensure the
generalizability of the findings[26]. Hitherto, few studies have
directly compared the performance of data-driven models
developed using machine learning methods and regression
models based on conventional stroke prognostic scores in the
field of outcome prediction after ischemic stroke[19,20,23]. In
addition, calibration has not been adequately addressed in
previous studies, and model performance has primarily been
evaluated based on its discriminative ability [18-20].

Objectives
In this study, we aimed to examine whether machine learning

can improvethe predictive performance for poststroke outcomes
beyond preexisting stroke prognostic scores. We also sought to

https:/ai jmir.org/2024/1/e46840

elucidate the pattern of variables selected by machine learning
algorithmsto predict poststroke clinical outcomes. To thisend,
we analyzed the data of patients with acute ischemic stroke
enrolled in a multicenter, hospital-based, prospective registry
of strokein Japan. We used 3 stroke prognostic scores, namely,
Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score [6], preadmission comorbidities, level of consciousness,
age, and neurologic deficit (PLAN) score [7], and Ischemic
Stroke Predictive Risk Score (iScore) [4,5], to create item-based
regression models. We then compared the predictive
performance of data-driven models developed using machine
learning algorithms with that of item-based modelsin identical
study populations. We also examined the explanatory variables
used in data-driven models and compared them with the items
of the conventional prognostic scores.

Methods

Ethical Considerations

The study protocol was approved by the ingtitutional review
boards of all hospitals (Kyushu University Institutional Review
Board for Clinical Research: 22086-01; Kyushu Medical Center
Institutional Review Board: R06-03; Clinical Research Review
Board of Fukuokahigashi Medical Center: 29-C-38; Fukuoka
Red CrossHospital Ingtitutional Review Board: 629; St Mary’s
Hospital Research Ethics Review Committee: S13-0110; Steel
Memorial Yawata Hospital Ethics Committee: 06-04-13; and
Kyushu Rosai Hospital Institutional Review Board: 21-8).
Written informed consent was obtained from all patients or their
family members.

Data Source

We used data from the Fukuoka Stroke Registry (FSR), a
multicenter, hospital-based, prospective registry of patientswith
acute stroke. FSR enrolled patients with stroke hospitalized in
7 participating hospitals in Fukuoka, Japan, within 7 days of
onset (University Hospital Medical Information Network
Clinical Trial Registry: UMINO000000800). Details of the
registry have been previously published [28,29]. In FSR, clinical
data during routine stroke care in the hospitals were recorded
along with baseline information on variables such as
demographics, prior history, comorbidity, and functional level
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before stroke onset. The definitions of these variables have been
previously described [28,29].

Stroke Prognostic Scores

The conventional stroke prognostic scores were used for
comparison against data-driven prediction models. In this study,
we selected prognostic scores based on the following criteria:
they are multiitem and point-based scores using demographic
and clinical information, they were developed to predict
short-term outcomes after ischemic stroke, and they were
externally validated. Consequently, 3 stroke prognostic scores,
the ASTRAL score[6], PLAN score[7], andiScore[4,5], were
used for comparative analysis. Items of these preexisting stroke
prognostic scores were used as explanatory variables in
item-based models (Multimedia Appendix 1).

Study Populations

FSR included 10,700 consecutive patients with acute ischemic
stroke who were registered between June 2007 and May 2017.

Irieetd

I schemic stroke was diagnosed based on the sudden onset of a
nonconvulsive and focal neurological deficit confirmed by brain
imaging through computed tomography, magnetic resonance
imaging, or both conducted upon admission. Of the 10,700
patients, 187 (1.7%) were lost to follow-up, and the remaining
10,513 (98.3%) were analyzed for 3 months post stroke.

Study patients were selected according to the inclusion and
exclusion criteria of preexisting stroke prognostic scores to
make the study populations identical between the item-based
and machinelearning—based models (M ultimedia Appendix 2).
Furthermore, we limited the study to patients with complete
data, ensuring there were no missing variables across all data
points. This approach aimed to prevent further reduction in the
number of analyzed patients owing to list-wise deletion in
regression models. The frequency of missing data is shown in
Multimedia Appendix 3. Consequently, population 1, popul ation
2, and population 3 wereincluded in the analysisfor comparison
withthe ASTRAL score, PLAN score, and i Score, respectively.
Figure 1 illustrates the patient selection in each population.

Figurel. Flowchart for the selection of study patients. Study patients were selected according to theinclusion and exclusion criteriaused in the original
studies of 3 stroke prognostic scores: population 1 for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score, population 2 for the
preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and population 3 for the I schemic Stroke Predictive Risk
Score (iScore). Patients with missing data on explanatory variables were excluded from the analyses of data-driven models to avoid the influence of

list-wise deletion.

| 10,700 patients with acute ischemic stroke hospitalized between June 2007 and May 2017 |

—bl Lost to follow-up: 187 patients

| 10,513 patients with acute ischemic stroke included in this study

Exclusion criteria of ASTRAL
«  Preadmission dependence: 1525 patients

Any missing data in data-driven
models: 1998 patients

« Late admission: 3063 patients
Missing data on items of ASTRAL: 95 patients

I

b

Population 1
(for ASTRAL score)

3832 patients

Exclusion criteria of PLAN
»  Age <18 years: 6 patients

Any missing data in data-driven
models: 3128 patients

1

*  Thrombolytic therapy: 947 patients ]
Missing data on items of PLAN: 278 patients Population 2
‘I‘ (for PLAN score)
> 6154 patients
Exclusion criteria of iScore Any missing data in data-driven
+ Age <18 years: 6 patients models: 3596 patients
Missing data on items of iScore: 56 patients 3 Population 3

(for 1Score)

Study Outcomes

The study outcomes were poor functional outcome and death
at 3 months after stroke. Poor functional outcome was defined
as a modified Rankin Scale score >2 at 3 months after stroke
onset [30]. Death was defined as death from any cause within

https://ai.jmir.org/2024/1/e46840

> 6855 patients

3 months after stroke [30]. Interviewers on clinical outcomes
were blinded to the patients’ backgrounds.
Development of Predictive Models

We performed logistic regression analysisto develop item-based
models using the predictors of the ASTRAL score, PLAN score,
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and iScore as explanatory variables (Multimedia Appendix 1).
The predictors used in these models included age, time delay
from onset to admission, stroke scale score, decreased level of
consciousness, visual field defect, and abnormal glucose levels
for the ASTRAL score; age, atrial fibrillation, congestive heart
failure, cancer, preadmission dependence, decreased level of
consciousness, leg weakness, arm weakness, and aphasia or
neglect for the PLAN score; age, male sex, atria fibrillation,
congestive heart failure, renal dialysis, cancer, preadmission
dependence, Canadian Neurological Scale score, stroke subtype,
and abnormal glucose levels for the iScore. The categorization
of predictors in the stroke prognostic scores was the same as
that used in the original study for each score.

We used regularization methods (ridge regression [RR] and
least absolute shrinkage and selection operator [LASSO]
regression model s) and ensembl e decision tree model s (random
forest [RF] and Extreme Gradient Boosting [XGBoost]) for
data-driven models based on machine learning agorithms
[31-34]. All available variables were included in the
development of data-driven models (Multimedia Appendix 3).
The details of the model development are presented in
Multimedia Appendix 4.

Metrics of Model Performance

The discriminative ability of each model was evaluated using
the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve
(AUPRC). AUPRC was calculated because it is a useful
performance metric for unbalanced data of infrequent outcome
events, such as death [35].

The calibration of each model was assessed using acalibration
plot. Calibration plots were obtained by plotting the predicted

https:/ai jmir.org/2024/1/e46840

Irieetd

and observed probabilities of the clinical outcomes in the 10
risk groups estimated using each predictive model. The Brier
scorewas al so used to assessthe overall performance. The Brier

score is defined as /N SN, (pi—ai)?, (0sBS<1), where pi is
the predicted probability of the occurrence of an event ranging

from 0 to 1, a indicates the event with binary outcomes (1 for
observed or O for not observed), and N isthe number of samples.

Validation and Comparison of Models

We performed internal validation of item-based and data-driven
models after 100 repeated random splitsinto 80% of the patients
asatraining set and 20% of patientsasatest set (Figure 2). The
parametersin the training set were optimally tuned via 10-fold
cross-validation in the data-driven models. After 100 random
splits, the predictive models were developed by logistic
regression using the items of the stroke prognostic scores
(item-based model) and by machinelearning using al variables
(data-driven model) in the training set. The developed
item-based and data-driven models were validated in the test
set. The data sets for both training and testing were identical
for the item-based and data-driven models. The median and
95% ClI of the performance metrics, that is, AUROC, AUPRC,
and Brier score, were calculated for each model using the results
of the 100 repeated random splits. To directly compare the
performance of the item-based and data-driven models (RR,
LASSO, RF, and XGBoost), we compared the AUROC,
AUPRC, and Brier score of the data-driven models with those
of the corresponding item-based model. We repeated the
comparison 100 times and cal culated the times that the AUROC,
AUPRC, and Brier score of data-driven model swere better than
those of the corresponding item-based model among the 100
repetitions.
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Figure 2. Schematic diagram of the development and validation of the predictive models. All patients were randomly split into 80% of the development
cohort as training data and 20% of the validation cohort as test data, which was repeated 100 times. Among the data-driven models, predictive models
were devel oped based on ridge regression (RR), least absolute shrinkage and selection operator regression (LASSO), random forest (RF), and Extreme
Gradient Boosting (XGBoost) using al available dataafter hyperparameter tuning in the devel opment cohort. L ogistic regression was used with predictors
of stroke prognostic scores in the item-based models. The predictive models were validated using the test data of the validation cohort. In each split,
the training and test data were identical between the data-driven and item-based models. ASTRAL: Acute Stroke Registry and Analysis of Lausanne;
PLAN: preadmission comorbidities, level of consciousness, age, and neurologic deficit.
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Evaluation of the Contribution of Variables

We evaluated the importance of the variables used in the
item-based and data-driven models. To assess the contribution
of each predictor to the item-based regression model, we
calculated the rate of times when the association between each
variable and clinica outcomes was statistically significant
(P<.05) after 100 random splits. Inthe machinelearning models,
the magnitude of variableimportance was evaluated in identical
populations after 100 random splits (Multimedia Appendix 4).

We cal culated the AUROC of the X GBoost model using various
types of variables to assess how the addition of explanatory
variablesimprovesthe predictive performance of the data-driven
model. First, we constructed a model with age, sex, National
Ingtitutes of Health Stroke Scale (NIHSS) score, and
preadmission modified Rankin Scale score (model 1). Then, 5
modelswere devel oped by adding itemsrelating to preadmission
status to model 1 (model 2), items relating to clinical data on
admissionto model 2 (model 3), itemsrelating to brainimaging
datato model 3 (model 4), and itemsrelating to |aboratory data
to model 4 (model 5).

Statistical Analysis

We used the chi-square test, 2-tailed Student t test, or
Mann-Whitney U test to compare the differences in baseline
characteristicsand clinical data, asappropriate[36]. Two-sided
P values <.05 were considered statistically significant.
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All statistical analyses were performed using the R statistical
package (R Development Core Team). This study was conducted
in accordance with the Transparent Reporting of aMultivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) initiative [37].

Results

Basaline Variables and Clinical Outcomes

The mean age of the 10,513 patients was 73.0 (SD 12.5) years,
and 59.1% (6209/10,513) of the patientswere men. At 3 months
after stroke, a poor functional outcome was found in 1204
(31.4%) of 3832 patientsin population 1, 2209 (35.9%) of 6154
patients in population 2, and 2540 (37.1%) of 6855 patientsin
population 3. Within 3 months after stroke onset, 3%
(123/3832), 3.6% (219/6154), and 3.7% (255/6855) of the
patients died in population 1, population 2, and population 3,
respectively.

Firgt, we investigated the differences in the predictors of
preexi sting point-based stroke prognostic scores among patients
according to poststroke clinical outcomes. Consequently, almost
all variables significantly (P<.05) differed depending on the
3-month functional outcome (Table 1) and 3-month survival
status (Multimedia Appendix 5) in addition to the predictors
used in preexisting prognostic scores.
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Overall (n=10,513) mRS? 0-2 (n=6405) mRS 3-6 (n=4108) P value

Demographics

Age (y), mean (SD) 73.0 (12.5) 68.9 (12.0) 79.4 (10.4) <.001

Men, n (%) 6209 (59.1) 4257 (66.5) 1952 (47.5) <.001
Risk factors, n (%)

Hypertension 8485 (80.7) 5138 (80.2) 3347 (81.5) 11

Diabetes mellitus 3607 (34.3) 2236 (34.9) 1371 (33.4) 11

Atrial fibrillation 2743 (26.1) 1173 (18.3) 1570 (38.3) <.001

Smoking 2261 (23.1) 1717 (28.9) 544 (14.2) <.001
Comorbid conditions, n (%)

Congestive heart failure 919 (8.7) 423 (6.6) 496 (12.1) <.001

Kidney disease on dialysis 332(3.2) 171 (2.7) 161 (3.9) <.001

Cancer 1552 (14.8) 774 (12.1) 778 (18.9) <.001
Previous history, n (%)

Previous myocardial infarction 505 (5.3) 242 (4.3) 263 (6.9) <.001
Preadmission functional status

Preadmission mRS, median (IQR) 0(0-1) 0 (0-0) 1(0-3) <.001

Preadmission dependence (MRS score >1), n (%) 2366 (22.5) 364 (5.7) 2002 (48.7) <.001
Onset-to-admission time, n (%) <.001

<ih 943 (9) 490 (7.7) 453 (11)

<3h 1469 (14) 771 (12) 698 (17)

<6h 1141 (10.9) 644 (10.1) 497 (12.1)

<24h 3515 (33.4) 2090 (32.6) 1425 (34.7)

>24h 3445 (32.8) 2410 (37.6) 1035 (25.2)
Stroke subtype, n (%) <.001

Small vessel occlusion 2119 (20.2) 1724 (26.9) 395 (9.6)

Large artery atherosclerosis 1823 (17.3) 1006 (15.7) 817 (19.9)

Cardioembolism 2496 (23.7) 1054 (16.5) 1442 (35.1)

Other determined etiology 2146 (20.4) 1404 (21.9) 742 (18.1)

Undetermined 1929 (18.3) 1217 (19) 712 (17.3)
Neurological severity, median (IQR) or n (%)

NIHSS® score 3(2-9) 2(1-4) 8 (4-16) <.001

Severe stroke (NIHSS score >10) 1938 (18.4) 291 (4.5) 1647 (40.1) <.001
Neurological deficits, n (%)

Decreased level of consciousness 3129 (30) 770 (12.1) 2359 (57.9) <.001

Leg weakness 5394 (51.9) 2357 (37.2) 3037 (75) <.001

Arm weakness 5634 (54.2) 2520 (39.7) 3114 (76.8) <.001

Aphasiaor neglect 2912 (27.9) 946 (14.9) 1966 (48.3) <.001

Visual field defect 999 (9.6) 447 (7.0) 552 (13.6) <.001
Physiological data, mean (SD)

SBF®, mm Hg 86.6 (18.2) 87.9 (17.8) 84.6 (18.6) <.001

DBFY, mm Hg 159.8 (29.3) 160.4 (28.6) 158.8 (30.3) .01
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Overall (n=10,513) mRS? 0-2 (n=6405) MRS 3-6 (n=4108) P value
BMI, kg/m? 22.8(3.8) 235 (3.6) 21.7 (3.9) <.001
Laboratory data, median (IQR)
Complete blood cell count
WBC® (10%uL) 6.8 (5.6-8.4) 6.7 (5.5-8.2) 7.0 (5.7-8.9) <.001
rBC (104/uL) 436 (394-476) 449 (411-485) 416 (372-458) <.001
Hematocrit (%) 40.1 (36.5-43.4) 41.1 (37.9-44.0) 38.2(34.6-41.9) <.001
Hemoglobin (g/dL) 13.5(12.1-14.8) 14.0 (12.7-15.1) 12.8(11.4-14.1) <.001
Platelet (10%yL) 20.2 (16.6-24.3) 20.6 (17.0-24.7) 19.5(15.8-23.6) <.001
Liver function
ASTY (UIL) 23(19-29) 23(19-29) 23 (19-30) .001
ALTN (UIL) 17 (12-24) 18 (13-25) 15(11-22) <.001
LDH! (U/L) 219 (186-266) 211 (181-254) 230 (195-285) <.001
AL (UIL) 239 (195-295) 231 (190-284) 250 (203-312) <.001
Kidney function
BUNK (mg/dL) 16.0 (13.0-20.9) 15.3(12.6-19.0) 17.9 (13.8-23.8) <.001
Creatinine (mg/dL) 0.8 (0.6-1.0) 0.8 (0.7-1.0) 0.8 (0.6-1.1) <.001
eGFR' (mL/min/1.73 m?) 66.5 (51.2-81.5) 70.2 (55.9-83.8) 60.8 (44.8-76.5) <.001
Glycemic control
Glucose (mg/100 mL) 121 (103-156) 119 (103-154) 124 (105-158) .001
Hemoglobin A1 (%) 5.9 (5.6-6.6) 5.9 (5.6-6.6) 5.9 (5.5-6.5) <.001
Inflammation
hsCRP™, mg/dL 15(05-6.1) 1.0(0.4-2.9) 3.9(1.0-16.3) <.001
Coagulation
PT-INR" 1.0 (1.0-1.1) 1.0(1.0-1.1) 1.1(1.0-1.1) <.001
APTT® (3) 29.7 (27.2-32.7) 29.5(27.1-32.4) 30.1(27.3-33.3) <.001
Fibrinogen (mg/dL) 304 (260-359) 297 (256-349) 315 (267-375) <.001
d-dimer (pg/mL) 0.9 (0.4-2.0) 0.6 (0.2-1.2) 1.7 (0.9-4.0) <.001

8mRS: modified Rankin Scale.

PNIHSS: National Institutes of Health Stroke Scale.
CSBP: systolic blood pressure.

dDBP: diastolic blood pressure.

SWBC: white blood cell count.

fRBC: red blood cell count.

9AST: aspartate aminotransferase.

NALT: alanine aminotransferase.

ILDH: lactate dehydrogenase.

IALP: alkaline phosphatase.

KBUN: blood urea nitrogen.

leGFR: estimated glomerular filtration rate.
MhsCRP: high-sensitivity C-reactive protein.
"PT-INR: international normalized ratio of prothrombin time.
OAPTT: activated partial thromboplastin time.
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Assessment of M odel Perfor mance

AUROCs varied depending on study populations, whereas
differences between the machine learning algorithms were
minimal inthe same study population and for the same outcome.
The AUROCSs of data-driven models based on machine learning

Irieetd

predicting both 3-month poor functional outcome and all-cause
death (Table 2). Similarly, AUPRCs were generally higher in
data-driven models than in item-based models for predicting
both poor functional outcome and all-cause death (Table 3).
Regarding the Brier score, the data-driven models performed

were generaly higher than those of item-based models for

better than the item-based models (Table 4).

Table2. Areaunder the receiver operating characteristic curve for predicting unfavorable clinical outcomesat 3 months using item-based and data-driven

models®.

Item-based model, median (95% ClI) Data-driven models, median (95% Cl)

RR? LASSO® RFY XGBoost®
Poor functional outcome
Population 1 (n=3832)  0.83 (0.80-0.85) 0.86 (0.83-0.89) 0.86(0.84-0.89) 0.86 (0.84-0.88) 0.86 (0.83-0.89)
Population 2 (n=6154) 0.8 (0.86-0.90) 0.91(0.90-0.93) 0.91(0.90-0.93) 0.91(0.89-0.92) 0.91 (0.89-0.93)
Population 3 (n=6855)  0.87 (0.85-0.89) 0.90(0.89-0.92)  0.90(0.89-0.92) 0.90(0.88-0.91)  0.90 (0.89-0.92)
Death
Population 1 (n=3832)  0.77 (0.69-0.87) 0.87(0.79-0.93) 0.87(0.78-0.92) 0.89(0.81-0.93) 0.88 (0.82-0.93)
Population 2 (n=6154)  0.84 (0.80-0.89) 0.89(0.85-0.92) 0.88(0.84-0.92) 0.90(0.86-0.93) 0.90 (0.86-0.93)
Population 3 (n=6855)  0.82 (0.77-0.87) 0.88(0.84-0.91) 0.87(0.83-0.90) 0.89(0.86-0.92) 0.89 (0.85-0.91)

#The study populationswere selected according to theinclusion and exclusion criteriafor the Acute Stroke Registry and Analysisof Lausanne (ASTRAL)
score (population 1), the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score (population 2), and the Ischemic

Stroke Predictive Risk Score (iScore; population 3).
bRR: ridge regression.
YL ASSO: least absolute shrinkage and selection operator regression.

4RF: random forest.

®XGBoost: Extreme Gradient Boosting.

Table 3. Areaunder the precision-recall curve for predicting unfavorable clinical outcomes at 3 months using item-based and data-driven models?

Item-based model, median (95% CI) Data-driven models, median (95% Cl)

RR? LASSO® RF XGBoost®
Poor functional outcome
Population 1 (n=3832) 0.71 (0.66-0.75) 0.75(0.71-0.79)  0.75(0.71-0.80)  0.74(0.69-0.79)  0.75 (0.71-0.79)
Population 2 (n=6154) 0.83 (0.80-0.86) 0.87(0.85-0.89) 0.87 (0.85-0.90) 0.87 (0.84-0.89) 0.87 (0.85-0.89)
Population 3 (n=6855) 0.83 (0.80-0.85) 0.87 (0.85-0.89) 0.87 (0.85-0.89) 0.86 (0.84-0.88) 0.87 (0.85-0.89)
Death
Population 1 (n=3832) 0.11 (0.06-0.24) 0.17 (0.08-0.32) 0.17 (0.07-0.31) 0.26(0.13-0.44) 0.24 (0.12-0.39)
Population 2 (n=6154) 0.17 (0.11-0.25) 0.27(0.18-0.37) 0.27(0.18-0.38)  0.29(0.18-0.42) 0.27 (0.16-0.35)
Population 3 (n=6855) 0.18 (0.11-0.25) 0.27(0.16-0.36) 0.27 (0.17-0.38)  0.29(0.19-0.42)  0.28 (0.19-0.39)

#The study populationswere sel ected according to theinclusion and exclusion criteriafor the Acute Stroke Registry and Analysisof Lausanne (ASTRAL)
score (population 1), the preadmission comorbidities, level of consciousness, age, and Neurologic deficit (PLAN) score (population 2), and the I schemic

Stroke Predictive Risk Score (iScore; population 3).

bRR: ridge regression.

YL ASSO: least absolute shrinkage and selection operator regression.
9RF: random forest.

€XGBoost: Extreme Gradient Boosting.
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Table 4. Brier score for predicting unfavorable clinical outcomes at 3 months using item-based and data-driven models®,
Item-based model, median (95% CI) Data-driven models, median (95% Cl)
RR? LASSO® RF XGBoost®
Poor functional outcome
Population 1 (n=3832) 0.15 (0.14-0.17) 0.14(0.12-0.15) 0.14(0.12-0.15) 0.14(0.13-0.15) 0.14 (0.12-0.15)
Population 2 (n=6154) 0.13(0.12-0.14) 0.11(0.10-0.12) 0.11(0.10-0.12) 0.12(0.11-0.13) 0.11(0.10-0.12)
Population 3 (n=6855) 0.13 (0.12-0.15) 0.12(0.11-0.13) 0.12(0.11-0.13) 0.12(0.12-0.13) 0.12(0.11-0.13)
Death
Population 1 (n=3832) 0.03 (0.02-0.03) 0.03(0.02-0.03) 0.03(0.02-0.03) 0.03(0.02-0.03)  0.03 (0.02-0.03)
Population 2 (n=6154) 0.03 (0.02-0.04) 0.03(0.02-0.04) 0.03(0.02-0.04) 0.03(0.02-0.04)  0.03 (0.02-0.04)
Population 3 (n=6855) 0.03 (0.02-0.04) 0.03(0.02-0.04) 0.03(0.02-0.04) 0.03(0.02-0.04)  0.03 (0.02-0.04)

#The study populationswere selected according to theinclusion and exclusion criteriafor the Acute Stroke Registry and Analysisof Lausanne (ASTRAL)

score (population 1), the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score (population 2), and the Ischemic

Stroke Predictive Risk Score (iScore; population 3).

bRR: ridge regression.

®L ASSO: least absolute shrinkage and selection operator regression.
9RF: random forest.

€X GBoost: Extreme Gradient Boosting.

The predictive performance of data-driven models compared
with the corresponding item-based model was examined by the
frequency of the performance metrics (AUROC, AUPRC, and
Brier score) of data-driven models, which were better than those
of the corresponding item-based model in theidentical training
and test data sets after 100 repeated random splits (Table 5).
Regarding poor functional outcome, the frequency exceeded
95% for al metricsin all the data-driven models (RR, LASSO,
RF, and XGBoost), indicating that the probability of the worse
performance of data-driven models compared with the
item-based model was <5%. Regarding death, the frequency
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was >95% for AUROC in all the data-driven models but did
not always attain 95% for AUPRC or Brier score.

Cdlibration for predicting poor functional outcome was
compared between theitem-based and data-driven models (RR,
LASSO, RF, and XGBoost) in population 1 for the ASTRAL
score, in population 2 for the PLAN score, and in population 3
for the iScore. The prediction of poor functional outcome
(Figure 3) and all-cause death (Figure 4) demonstrated
concordance between the predicted and observed probabilities
in the item-based models as well asin the data-driven models.
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Table 5. Predictive performance of data-driven models versus item-based models®.

Poor functional outcome Death
RR®  LASSO® RF XGBoost®  RR LASSO RF XGBoost
AUROC'
Population 1 (n=3832) 100 100 100 100 97 95 97 9
Population 2 (n=6154) 100 100 100 100 100 100 98 99
Population 3 (n=6855) 100 100 100 100 100 99 100 99
AUPRCY
Population 1 (n=3832) 100 100 99 98 81 78 93 93
Population 2 (n=6154) 100 100 100 100 99 99 99 100
Population 3 (n=6855) 100 100 100 100 98 98 100 98
Bier score
Population 1 (n=3832) 100 100 99 100 83 70 96 89
Population 2 (n=6154) 100 100 100 100 98 92 97 93
Population 3 (n=6855) 100 100 100 100 100 99 100 9

8Dataindicate the frequency that AUROC, AUPRC, and Brier score of data-driven models (RR, LASSO, RF, or X GBoost) exceeded those of item-based
modelsin identical training and test sets after 100 repeated random splits.

bRR: ridge regression.

®LASSO: least absolute shrinkage and selection operator regression.
9RF: random forest.

©X GBoost: Extreme Gradient Boosting.

FAUROC: area under the receiver operating characteristic curve.
9AUPRC: area under the precision-recall curve.
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Figure 3. Cdlibration of item-based and data-driven modelsfor predicting poor functional outcome. Calibration for predicting poor functional outcome
was compared between the item-based regression model and data-driven models (ridge regression [RR], least absol ute shrinkage and sel ection operator
regression [LASSO], random forest [RF], and Extreme Gradient Boosting [XGBoost]) in population 1 for the Acute Stroke Registry and Analysis of
Lausanne (ASTRAL) score, population 2 for the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and
population 3 for the I schemic Stroke Predictive Risk Score (iScore). The patients were categorized into 10 groups stratified by the predicted probability
of poor functional outcome in the test data. Observed probabilities (x-axis) were plotted against predicted probabilities (y-axis) in the 10 groups based
on risk stratification. The results for the first 100 random splits are presented.

Population 1

Observed probability
o =
w o

o
o

Population 2

2 10 . 10 . 10 . 10 o. 10 .
3 o . - PR ..
3 g
2 ) .. L]
2005 0.5 05 0.5
2 9 o8
E .'.. h“. -
© 00 0.0 0.0
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Population 3
z 10 1.0 e 10 %
3 » .
2 . L4
Sos 05 o 0.5 o
2 . o
© o0 0.0 . 0.0 ) . .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Predicted probability Predicted probability Predicted probability Predicted probability Predicted probability
Item based RR LASSO RF XGBoost
https://ai .jmir.org/2024/1/e46840 JMIR Al 2024 | vol. 3 | 46840 | p.153

(page number not for citation purposes)

RenderX


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

Irieetd

Figure4. Calibration of item-based and data-driven modelsfor predicting death. Calibration for predicting death was compared between the item-based
regression model and data-driven models (ridge regression [RR], least absolute shrinkage and selection operator regression [LASSO], random forest
[RF], and Extreme Gradient Boosting [ X GBoost]) in population 1 for the A cute Stroke Registry and Analysis of Lausanne (ASTRAL) score, population
2 for the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and population 3 for the Ischemic Stroke
Predictive Risk Score (iScore). The patients were categorized into 10 groups stratified by the predicted probability of death in the test data. Observed
probabilities (x-axis) were plotted against predicted probabilities (y-axis) in the 10 groups based on risk stratification. The resultsfor thefirst 100 random

splits are presented.
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Evaluation of Variables

Next, we evaluated how each variable contributed to the
predictive performance of theitem-based and data-driven models
(RF and XGBoost) in population 1 (Figure 5), population 2
(Figure 6), and population 3 (Figure 7). The selected variables
differed substantialy between the study populations in the
item-based models. Age, preadmission dependence, and
neurological severity of stroke were important variables in
predicting both poor functional outcome and death (Figures
5-7; left panels). Age and neurological deficit signs (arm or leg
weakness and loss of consciousness) were the most frequently
used variablesfor predicting poor functional outcome (Figures
5A, 6A, and 7A; middle and right panels) in RF and XGBoost.
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In contrast, variables not used in the item-based models, such
as d-dimer, high-sensitivity C-reactive protein, fibrinogen, and
BMI, were the most frequently used variables by RF and
XGBoost (Figures 5B, 6B, and 7B; middle and right panels) in
predicting death.

We aso investigated how the addition of variables increased
the predictive performance of XGBoost. Asaresult, the AUROC
for poor functional outcome did not substantially increase even
when explanatory variables other than key predictorswere added
to model 1 (Figure 8; open circles). Conversaly, the AUROC
for all-cause death linearly increased with the addition of other
variablesto the models, particularly items from |aboratory data
(Figure 8; closed circles).
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Figure5. Comparison of variableimportance between items of the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score and explanatory
variables in machine learning model in population 1. The contribution of each variable to the models in predicting poor functional outcome (A) and
death (B) is shown. The patients were selected based on the ASTRAL criteria (population 1). In item-based regression models, the percentage indicates
the rate of times when its association with clinical outcomes was statistically significant (P<.05). In machine learning models, the top 10 variables are
shown according to the magnitude of variable importance. Boxes, vertical linesin the boxes, and horizontal bars indicate |QR, median, and minimal or
maximal range, respectively. NIHSS: National I nstitutes of Health Stroke Scale, hsCRP: high-sensitivity C-reactive protein, LOC: |oss of consciousness,
mRS: modified Rankin Scale, BMI: body mass index, WBC: white blood cell count, LDH: lactate dehydrogenase, HbA1c: hemoglobin Alc, Fib:
fibrinogen, PIt: platelet count, RBC: red blood cell count, AL P: alkaline phosphatase, Ht: hematocrit, Hb: hemoglobin, BUN: blood ureanitrogen, LDH:
lactate dehydrogenase, PT-INR: international normalized ratio of prothrombin time.
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Figure 6. Comparison of variable importance between items of the preadmission comorbidities, level of consciousness, age, and neurologic deficit
(PLAN) score and explanatory variablesin machine learning model in population 2. The contribution of each variable to the models in predicting poor
functional outcome (A) and death (B) is shown. The patients were selected based on the PLAN score criteria (population 2). In item-based regression
models, the percentage indicates the rate of times when its association with clinical outcomes was statistically significant (P<.05). In machine learning
models, thetop 10 variables are shown according to the magnitude of variableimportance. Boxes, vertical linesin the boxes, and horizontal barsindicate
1QR, median, and minimal or maximal range, respectively. mRS: modified Rankin Scale, LOC: loss of consciousness, hsCRP: high-sensitivity C-reactive
protein, BMI: body mass index, Hb: hemoglobin, WBC: white blood cell count, Pit: platelet count, Fib: fibrinogen, RBC: red blood cell count, LDH:
|actate dehydrogenase, Ht: hematocrit, ALP: akaline phosphatase, PT-INR: international normalized ratio of prothrombin time.
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Figure 7. Comparison of variable importance between items of Ischemic Stroke Predictive Risk Score (iScore) and explanatory variables in machine
learning model in population 3. The contribution of each variable to the modelsin predicting poor functional outcome (A) and death (B) is shown. The
patients were selected according to the i Score criteria (population 3). In item-based regression models, the percentage indicates the rate of times when
its association with clinical outcomes was statistically significant (P<.05). In machine learning models, the top 10 variables are shown according to the
magnitude of variable importance. Boxes, vertical lines in the boxes, and horizontal bars indicate IQR, median, and minimal or maximal range,
respectively. NIHSS: National Institutes of Health Stroke Scale, CNS: Canadian Neurological Scale, mRS: modified Rankin Scale, LOC: loss of
consciousness, hsCRP: high-sensitivity C-reactive protein, BMI: body mass index, Hb: hemoglobin, WBC: white blood cell count, Fib: fibrinogen,

RBC: red blood cell count, Pit: platelet count, Ht: hematocrit, LDH: lactate dehydrogenase, AL P: akaline phosphatase, PT-INR: international normalized
ratio of prothrombin time.
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Figure 8. Improvement of discrimination in a data-driven model by adding different types of data. The area under the receiver operating characteristic
curves (AUROCS) for predicting poor functional outcome (open circles) and death (closed circles) were compared among the 5 models, which used
different types of variables. A data-driven model was devel oped for each population using Extreme Gradient Boosting. Vertical bars indicate the 95th
percentile after 100 random splits. The variables used for the models were as follows: model 1: age, sex, National Institutes of Health Stroke Scale
score, and preadmission modified Rankin Scale score; model 2: model 1 plus clinical data before admission (eg, risk factors, comorbid conditions,
previous history, family history, and prestroke medication); model 3: model 2 plus clinical data on admission (eg, onset-to-admission time, ambulance
use, BMI, and physiological data); model 4: model 3 plus brain imaging data (eg, site of lesion, side of lesion, and stroke subtype); and model 5: model
4 plus laboratory data.
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Discussion

Principal Findings

This study, which analyzed comprehensive clinical data from
a multicenter, hospital-based stroke registry, yielded the
following major findings. The performance of item-based
regression models using the predictors of 3 conventional stroke
prognostic scores was fair in predicting clinical outcomes at 3
months after ischemic stroke in our cohort, despite differences
in clinical and social backgrounds from the original cohorts of
scores. Data-driven models based on machine learning
algorithms exhibited better performance when compared with
item-based models in identical study populations. The
importance of variablesin RF and XGBoost appeared to differ
from that in item-based models when predicting death within
3 months. The addition of nonconventional factors, such as
laboratory data, to the XGBoost model improved its predictive
ability for 3-month mortality.

Predictive Performance of Models

Thus far, only a limited number of studies have evaluated the
predictive performance of machine learning—based models
compared with those of stroke prognostic scores[19,20,23]. All
these studieswere performed in single-center registries or under
specific conditions, such as large vessel occlusion in ischemic
stroke. Furthermore, previous studies mainly focused on
AUROC for assessing predictive performance, although other
metrics, such as measures of calibration, are necessary to fully
evaluate the performance of models [38]. This study was
conducted using a multicenter registry database and several
performance metrics. Our study demonstrated that data-driven
models developed using machine learning algorithms can
perform reasonably well in predicting the 3-month clinical
outcomes of patients with acute ischemic stroke. Generally,
data-driven models performed better than conventional
prognostic scores when both were compared in identical study
populations.

Thisstudy also demonstratesthat the model performancelargely
dependson the study populations. The study populationsvaried
in terms of both size and patient characteristics, such as
prestroke dependency, time from onset to admission, and use
of thrombolytic therapy. The variability in AUROC, AUPRC,
and Brier scores between the study populations was as large as
that between the models. Moreover, the model performance
varied depending on the outcomes to be predicted: AUPRCs
were substantially decreased for the prediction of death, which
isalessfrequent event than the poor functional outcome. These
findings underscore the reiterated importance of sample size,
the number of outcome events, and data quality of the study
cohorts where models are to be developed and validated
[25,39,40].

Variablesin Models

In this study, age, preadmission dependence, and variables
related to neurological deficits were identified as important
predictorsfor the prediction of poor functional outcomein both
item-based regression modelsand data-driven modelsusing RF
and XGBoost. These are well-known risk factors for poor
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functional outcome and are also used for predicting death in
stroke prognostic scores [4,5,7]. However, BMI and items
related to laboratory data, such as D-dimer, high-sensitivity
C-reactive protein, and fibrinogen, were found to be the most
important variables for predicting death in RF and XGBoost.
Indeed, the association between poststroke clinical outcomes
and markers of inflammation and hypercoagul ation has become
a recent research topic [41,42]. Machine learning agorithms
can beapromisingtool to identify novel factorsto be considered
in making prognoses for stroke because they can maximize the
use of data without arbitrary assumptions and procedures.

Clinical Implications

The ability of machine learning to derive amodel that best fits
the data on a given cohort is appealing for making prognoses.
Prognostic scoreswith prespecified itemsmay not fit all cohorts
because heterogeneity must exist between study cohortsin race
or ethnic groups, general health conditions, socioeconomic
status, and health care systems. In addition, stroke prognostic
scores are at risk of getting outdated over time, as advancesin
stroke care continuously improve clinical outcomesin patients
with stroke [43,44]. However, our analysis suggests that the 3
conventional prognostic scores can perform sufficiently well
in our cohort, despite the fact that the original studies that
developed the scores had patients with different medical
backgrounds and during different study periods. This finding
demonstrates the robustness of outcome prediction using
regression models in terms of generalizability. Furthermore,
considering nonlinear and interaction effects might not becrucia
for outcome prediction after ischemic stroke, as the simple
regression models worked well in our study.

Point-based stroke prognostic scores are convenient and hel pful
for making prompt decisions at the bedside. Generaly,
prognostic scores comprise only ahandful of variablesonwhich
information can be obtained easily. This advantage in the
practicability of the prognostic scores is important in acute
stroke care settings. Machine learning algorithms require more
data than conventional prognostic scores to reach acceptable
performance levels [39], and the data required by machine
learning algorithms to realize better performance, such as
laboratory data, may not always be available, although they can
improve the predictive performance of models. Therefore,
further studies are needed to fully assess the incremental value
of machine learning—based modelsin daily clinical practice.

Strengthsand Limitations

This study has several strengths. We assessed and compared
the predictive accuracy of prognostic scoresagainst data-driven
models, using information from a multicenter, prospective
registry of individuals diagnosed with acute stroke. We were
able to use severa variables, including laboratory data—related
items, owing to the detailed clinical dataavailablein theregistry.
Moreover, comparisons of models were made using various
performance metrics. However, this study has aso several
limitations. First, the selection of patients may have led to bias,
although the inclusion and exclusion criteria were identical to
those reported in the original studies of the prognostic scores.
Second, there were missing data for the baseline variables and
clinical outcomes, which may have also led to selection bias.
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Third, the possibility of overfitting cannot be completely ruled
out, despite the predictive models constituted by the training
set being fitted to the test set. Finally, this study included only
patients with acute ischemic stroke who were hospitalized in
tertiary care centers in a restricted region of Japan.
Generalizability should be assessed in other settings and for
other diseases.
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a large amount of data can be directly drawn from electronic
health records. This possibility of making automated and
personalized prognosesis an appealing property of data-driven
prediction. However, the arrangement of an appropriate
electronic infrastructure is indispensable for enabling data
collection, and the devel opment of such infrastructure requires
time and cost. It is worth noting that conventional prognostic

scores can achieve sufficient performance in making stroke
prognoses with only alimited number of variables. In the near
future, it seems feasible to explore the improvement of
preexisting prognostic scores by incorporating novel predictors
identified by machinelearning algorithms, given the significant
investment necessary to fully use machine learning.

Conclusions

This study suggests that data-driven models based on machine
learning algorithms can improve predictive performance by
using diversetypes of variables, such aslaboratory data—related
items. The clinical outcomes of individual patients can be
automatically estimated using machine learning agorithms if
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Abstract

Background: Health care-associated infections due to multidrug-resistant organisms (MDROSs), such as methicillin-resistant
Saphylococcus aureus (MRSA) and Clostridioides difficile (CDI), place asignificant burden on our health care infrastructure.

Objective:  Screening for MDROs is an important mechanism for preventing spread but is resource intensive. The objective of
this study was to develop automated tools that can predict colonization or infection risk using electronic health record (EHR)
data, provide useful information to aid infection control, and guide empiric antibiotic coverage.

Methods: Weretrospectively devel oped amachinelearning model to detect MRSA colonization and infection in undifferentiated
patients at the time of sample collection from hospitalized patients at the University of Virginia Hospital. We used clinical and
nonclinical features derived from on-admission and throughout-stay information from the patient’s EHR data to build the model.
In addition, we used a class of features derived from contact networksin EHR data; these network features can capture patients’

contactswith providers and other patients, improving model interpretability and accuracy for predicting the outcome of surveillance
testsfor MRSA. Finally, we explored heterogeneous models for different patient subpopulations, for example, those admitted to
an intensive care unit or emergency department or those with specific testing histories, which perform better.

Results:  We found that the penalized logistic regression performs better than other methods, and this model’s performance
measured in terms of its receiver operating characteristics-area under the curve score improves by nearly 11% when we use
polynomial (second-degree) transformation of the features. Some significant featuresin predicting MDRO risk include antibiotic
use, surgery, use of devices, dialysis, patient’s comorbidity conditions, and network features. Among these, network features add
the most value and improve the model’s performance by at least 15%. The penalized logistic regression model with the same
transformation of features also performs better than other models for specific patient subpopulations.

Conclusions: Our study shows that MRSA risk prediction can be conducted quite effectively by machine learning methods
using clinical and nonclinical features derived from EHR data. Network features are the most predictive and provide significant
improvement over prior methods. Furthermore, heterogeneous prediction models for different patient subpopulations enhance
the model’s performance.
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Introduction

Multidrug-resistant organisms (MDROSs), such as Clostridioides
difficile (CDI), multidrug-resistant gram-negative bacteria
(carbapenem-resistant  Acinetobacter ~ baumannii  and
carbapenem-resistant Enterobacterales), methicillin-resistant
Saphylococcus aureus (MRSA), and vancomycin-resistant
enterococci, are among the top 10 threats to global health [1].
Health care-associated infections (HAIS) due to MDROs are
associated with increased complications, longer hospital stays,
and increased mortality. For example, Weiner-Lastinger et al
[2] report that HAIs have resulted in billions of dollars in
increased healthcare costs [3]. MRSA is one of the most
common causes of HAIs and a serious antimicrobial resistance
threat, responsiblefor >10,000 deathsayear in the United States
alone[4]. Similar to many other MDROs, MRSA can be easily
spread in ahospital from hospitalized patients via contact with
the health care environment (ie, shared patient rooms) and health
care workers.

Antimicrobia stewardship, which seeks to optimize antibiotic
treatment regimens, and infection prevention and control, which
involves monitoring, investigating, and managing factorsrel ated
to MDRO transmission, are the main tools for mitigating the
risks of acquisition and severe outcomes of MDROs [5].
Surveillancetesting isacritical component of both antimicrobial
stewardship and infection prevention control. However, testing
is expensive and slow; current laboratory procedures typically
require at least 72 hours to report MRSA found in a patient’'s
culture [6]. The delay in testing resultsin three problemsin the
hospital: (1) colonized patients remain undetected, leading to
potential spread; (2) clinicianstreat infections empirically; and
(3) increased resource use for contact precautions, leading to
both over- and undertreatment.

While several different studies have examined MRSA risk
prediction (eg, [6-13]), none to date have progressed to clinical
practice due to limitations in generalizability, sample size, and
imbalanced data (these are discussed further in the Discussion
section). In this study, we demonstrate how improving the
hospital context, particularly how patients are connected, can
improve the performance of machine learning methods for
predicting the outcomes of MRSA surveillance tests, using a
rich set of clinical and nonclinical features derived from
on-admission and throughout-stay information from a large
electronic health record (EHR) data set for patients admitted to
the University of Virginia (UVA) Hospital.

Methods

Data Set

We used patient datafrom the UVA Hospital during 2010-2022.
Overdll, 27,612 patients in the dataset were tested for MRSA,
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and 4171 (15.11%) of them were positive; these patients had
37,237 hospital encounters. The data of each patient’svisit can
be separated into two parts: (1) on-admission data and (2)
clinical event or throughout-stay data, which we have described
here:

On-admission data consist of patient demographics and visit
information. Patient demographics include information about
age, gender, race, ethnicity, country, and state. Visit information
includes admission and discharge dates, admission source,
admission type, and discharge destination.

Clinical event data represent information collected during the
visit. We considered the following event data:

- Procedure: it includesthe following kinds of events during
this visit or at any time 90 days before this visit: (1)
surgeries, (2) device implant or replacement, and (3)
dialysis. For avisit, no dataafter the test collection are used.

+ Medication: as MRSA s resistant to specific antibiotics,
we also examined prior antibiotic use. We computed the
Days on Therapy, which indicates whether a patient takes
any antibiotic on any specific day. This feature aso
calculates whether a patient took any antibiotic in the last
90 days of this hospital visit.

-  Comorbidity: the International Classification of Diseases,
Tenth Revision, code of a patient, which is collected from
that patient’s medical history, is used to pull comorbidity
information using the comorbidity package in R
programming language (R Foundation for Statistical
Computing). Both Charlson and Elixhauser scores are
pulled. It involves other physical conditions such as
diabetes, a history of stroke, and a history of dementia.

«  MRSA laboratory test: weincluded both (1) clinical cultures
and blood, respiratory, and urine samples collected as part
of routine care, which typically requires 48 to 72 hours to
return results, and (2) polymerase chain reaction (PCR)
surveillance tests, which are administered to
MRSA -negative patients admitted to an intensive care unit
(ICU; per current hospital policy) or per physician request
and typically return resultsin <72 hours. While surveillance
tests provide positive and negative results, clinical cultures
may be sent from specimens that are not expected to yield
MRSA, even in the presence of an active MRSA infection;
therefore, anegative clinical cultureresult isnot considered
adefiniteindicator of noninfection. The naresMRSA PCR
likely has equal or higher sensitivity than the nares culture
for MRSA [14]. We noted that, in general, testing is not
completely unbiased (a patient with an MRSA-positive
result admitted to an ICU would not technically need to be
screened if they are already on precautions), which might
impact the quality of the data set and the results, as we
discuss later in the Discussion section.
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We applied state-of -the-art machine learning methodsto predict
therisk of MRSA infection at agiven timefor apatient, modeled
by the outcome of a surveillance test. The data set is split into
training (80%) and testing (20%) portions. The model is
estimated using the training data, and the hyperparameters are
chosen by cross-validation. There are many metricsto evaluate
model performance.  We used receiver operating
characteristics-area under the curve (ROC-AUC) asthe overall
performance metric of the model (the model evaluation metrics
are described in Multimedia Appendix 1), and a higher value
is better. For clinicians, an important objective isto reduce the
number of false-negative cases. Therefore, we also used the

false negative ratéE to evaluate the model performance, with
alower value indicating alower false-negative prediction. The
overal model performance is proportional to the ROC-AUC
score and inversely proportional to the FNR score.

Problem Statement

The d-days ahead model’sMRSA test prediction problem: using
features defined from the patient EHR datatill sometime (' =
t — d) predict the outcome of an MRSA surveillance test
performed at time t. Formally, let x(t') denote a feature vector
for a patient defined till timet and let y(t) denote the result of
an MRSA surveillance test performed at time t. The objective
isto predict if y(t) = L using x(t').

The specific questions we study are as follows:

1. How well can MRSA surveillancetest results be predicted?
What machine learning methods perform well, and what
features are the most predictive?

2. Are better predictions possible for specific, meaningful
subpopulations?

3. How does the performance vary with d?

4. Does training with a biased data set (as performed in
previous work) impact the true performance?

Interesting Features

Several risk factorsfor MRSA have been identified in previous
studies [15,16]: (1) hospitalization within the past 6 to 12
months, (2) residing in achronic carefacility, (3) being ahealth
care worker, (5) being an intravenous drug user, (5) frequent
antibiotic use, (6) antimicrobia therapy within 1 year, (7) history
of endotracheal intubation, (8) underlying chronic disorder, (9)
presence of an indwelling venous or urinary catheter, (10)
history of any surgical procedure, (11) household contact with
an identified risk factor, and (12) hypoalbuminemia. We
extracted al the aforementioned features from the UVA data
set. We created patient-patient and patient-provider interaction
networks and extracted the following features from those
networks. In addition, we derived many features based on the
existing features described in the subsequent section. The total
number of featuresis 108, and the MRSA test outcome is the
target feature.

1. Network features: we constructed a contact network G = (V,
E) (as shown in Figure 1), in which we have patient nodes u,,

O V for each patient p and a provider node u, O V for each
provider h. An edge or contact (Uyy, Upp) U E between 2 patient
nodes Uy and ug, indicates that both patients p; and p,
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respectively, were col ocated (share acommon space, a hospital
unit in our case) for at least a certain period, in this case at | east
900 seconds. Similarly, we defined patient-provider contacts.
For instance, in Figure 1, patient P; and provider H, are
colocated at timet;, which isrepresented as edge (Uy, Uyy)- The
#provider incidents on patient P, in the time interval [ty, t)] is
2, whereasinthetimeinterval [ty, t3], itis 3. We did not use the
number of patientsand providersthat a patient comesinto direct
contact with as afeature. Instead, we defined dlightly different
features based on contacts during a time interval, which we
found to be more predictive. We take time to be in days. On the
basis of the number of contacts for a patient p or a provider h
over a period, we constructed the following features:

+  MRSAq: for apatient p, S,(a) ={p": (Uy, Uy) OE, p'is
labeled positive at time t' O {t — a, t]}, denotes the set of
patients who came in contact with p and tested positivein
the last a days. Werefer to [S,(a)| as MRSA a.

+  Provider B: for a patient p, §;; (B) = {h: (u,, up) D E, h
visited p at time t' O (t - B, t]}. We refer to |8, (B)| as
Provider f3.

- MRSA positive patients collocated with the patient |: at the
UVA Hospital, patientswith an MRSA-positive result might
be “cohorted,” that is, they might share a room because
they have similar precautions to improve occupancy. For
apatient p, let f,(u, y) = {p":(up, uy) O E, p’ islabeled
positive at t’ O (' — y,t] and isin the hospital unit u with
p}. We referred to |f,(u,y)| as the number of patients with
colocated MRSA.

« Bedreusel: let M,(x) = {p’: (U, Uy) O E, p’ islabeled
positiveat timet’ <t and stayed inthe samebed x} . Werefer
to | My «(x)| as the number of times Bed x reuse.

Note that all of the aforementioned features are defined for a
particular time, t. Therefore, MRSA a and other features should
be indexed by the patient and time. To avoid notational clutter,
we omit them here when they are clear from the context. For
example, suppose t;=1, t,=2, t;=3, t,=4, and t;=5, as shown in
Figure 1. Suppose patient P, istested positive at time 4. Then,
for patient P;, we would have “MRSA 2" at time t=5 equal to
1, but “MRSA 2" at time t=3 equals 0. For patient P,, Provider
2 attimet=2is0, but Provider 2 at timet=3is 1.

2. Length of stay: for patients p in a hospital encounter, let t;
denote the admission time and t denote the MRSA test time.
The corresponding length of hospital stay (before the MRSA
test) was computed ast-t1. For the d-days (d = 0) ahead model,
we computed the corresponding length of stay (before the
MRSA test) asmax{t-d-t;, O} . Notethat t-d-t; could be negative
if the patient has not been in the hospital long enough—in this
case, we took the length of stay to be 0.

3. From the health carefacility isaBoolean feature that indicates
whether the patient is admitted to the hospital from either
“skilled nursing, intermediate care, or assisted living facility”
or “long term acute care hospital.” For the d-days ahead model,
thefeatureisdefined to be 0if t;-d<0, wheret, isthe admission

date, and 1, otherwise.
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4. d days observation: we construct several Boolean features
based on events in the last d days before an MRSA test time.
For a patient p in a hospital encounter, let T(e) denote the set
of times for a specific event e. We defined Boolean variable
es()={ 04, t1OT(e), t<t, O<(t-t;)<0} . We considered =90 and
el { Surgery, Device implant, Antibiotic, Kidney dialysis}. For
the d-days ahead model, the feature is defined by considering
o+d as the parameter in the aforementioned definition, instead
of d.

5. Department-based features. we constructed the following
features associated with room stays:

« ICU: thisisaBoolean value that indicates whether a patient
is admitted to an ICU.

«  Emergency department (ED): thisis a Boolean value that
indicates whether a patient is admitted to the ED.

Kamruzzaman et al

Asinthe aforementioned features, for the d-days ahead model,
the feature is defined as 1 if the admission to ICU or ED
happened before t-d, wheret isthe MRSA test time.

6. PHARMCLASS k: thereare 10 PHARMCLASS (penicillins,
miscellaneous anti-infectives, cephalosporins, etc) in the data
set. Each PHARMCLASS contains a list of antibiotics. For a
patient, PHARMCLASS k contains the number of antibiotic
days from the MRSA testing date in the last 90 days. For the
d-days ahead model, thefeatureisthe number of antibiotic days
in the 90 days before t-d.

7. Test duration days: for apatient p with an MRSA testing date
t, we defined thisfeature ast-d-t', if thereexistsatimet’, t(t' <t)
at which an MRSA test was performed for p; otherwise, we
defined this feature as 0.

Figure 1. Peatient-patient and patient-provider interactions are shown on the timeline, where each box represents a room in the hospital, patients are
indicated by circles (marked with P) and health care providers are indicated by triangles (marked with H). Multiple patients could share aroom, and a
provider might visit multiple patients over time. A network is constructed from these interaction events over time. If 2 patients share aroom for acertain
period (at least for 15 min), we construct an edge between the corresponding patient nodes; similarly, if a provider visits a patient for a certain period
(at least for 15 min), we construct an edge between the corresponding patient and provider nodes.

Patient node ‘}
1

1

Provider nodej

t, ts Time

Patient-patient and patient-provider interactions over time

Machine Learning Classifiers

Overview

We explored the following machine learning methods: (1)
logistic regression (LR; penalized) [17], (2) support vector
machine [18], (3) random forest [19], (4) gradient-boosted
classifiers, and (5) XGBoost. These methods have been used
extensively on EHR data, and our goal wasto understand which
ones do well for the MRSA risk-prediction problems we
considered in this study. We have described these methods in
Multimedia Appendix 2 [17-19]. We also considered these
methods with products of features, that is, of the form x;(t)+x;(t)
where x;(t) and x;(t) are different components of the feature
vector x(t). We also discuss the Shapley Additive Explanations
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(SHAP) technique for understanding featureimportancein each
model.

Model Explainability Using SHAP

SHAP[20] isavisual feature-attribution process that has many
applications in explainable artificial intelligence. It uses a
game-theoretic methodology to measure the influence of each
feature on the target variable of a machine learning model.
Visual representations such as the one in Figure 2, referred to
asasummary plot, are used to show the importance of features.
Theinterpretations of this plot are as follows:

« The y-axis specifies the important features arranged from
top to bottom regarding their importance (in descending
order) to the response variable (the MRSA test result).

JMIR Al 2024 | vol. 3 | e48067 | p.166
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Kamruzzaman et al

- Thex-axisindicates the SHAP value of the corresponding gradient of log odds from low to high, with the color
feature. The SHAP value of afeature indicates the change spectrum from blue to red.
in log odds that can be used to extract the probability of < Each point in the SHAP plot for a feature represents an
success. The color bar on the right-hand side indicates the observation of the original data set.

Figure 2. (A) Performance of models on the test data set: performance of different machine learning models on the entire University of Virginia data
set. The penalized logistic regression (LR) model with degree-2 features performs best (the receiver operating characteristics-area under the curve
[ROC-AUC] for the LR model without feature transformation to degree-2 is 0.734). (B) The most significant features in this model were identified
using Shapley Additive Explanations (SHAP). GBC: gradient boosted classifier; RF: random forest; SV C: support vector classifier.
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Heterogeneous Risk-Prediction Models for Selected as Hip ={ Ky 1<is], <t 1<...<t;<t}. No testing history exists
Subpopulations for a newly admitted patient, expressed as H,=@. The testing

. history, considering only the last test result, is expressed as
To improve performance, we developed heterogeneous ) o ) i -
subpopul ation-specific models as described in the subsequent  H'p={Kpa} - Similarly, the testing history, considering the last
sections. 2 test results, is expressed as H%, ={K,;}. The number of

Based on Testing History patients with longer histories drops significantly; therefore, we
limited our experimentsto thelast 2 test results. Table 1 presents

Let K D{+1,-1} denote an MRSA test result for apatient p at the distribution of data points for the different subpopulations.

timet in ahospital encounter. Thetesting history H,, is defined

Table 1. Total number of observations and percentages of positive observations for the subpopulations based on different testing histories.

Previoustest history  Total observations Current test result (1) Current test result (+1) Positive observations
None 27,612 24,371 3241 11.74

-1 11,338 10,179 1159 10.22

+1 3409 863 2546 74.68

(-1, -1) 4755 4320 435 9.15

(-1, +1) 635 198 437 68.82

(+1,-1) 480 328 152 31.67

(+1, +1) 1486 296 1190 80.00

. facility. We constructed 2 subpopulations based on whether this
Based on the Admission Source feature is 0 or 1; the distributions of these subpopulations and

Recall the Boolean feature named “From health care facility”,  the percentage of positive observationsin each are presented in
which is 1 if the admission source of a patient isa health care  Tgpje 2.
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Table 2. Total number of observations and percentages of positive observations for the subpopulations based on different categories.

Subpopulations Total observations Test result (—1) Test result (+1) Positive observations (%)
Admission source

Health care facility 2241 1619 622 27.76

Other 42,840 36,198 6642 15.50
Department

Icu? 27,616 24,436 3180 11.52

EDP 2538 1658 880 34.67

Other 15,201 11,918 3283 21.60
Hospital stays (days)

<15 39,221 32,541 6680 20.53

>15 1643 1413 230 16.28
Antibiotic use (days)

<90 30,776 25,065 5711 18.56

>90 16,646 12,997 3649 21.92

0 7097 6368 729 10.27
Agegroup (years)

0-50 14,269 12,093 2176 1525

=50 27,638 23,008 4630 16.75

8 CU: intensive care unit.
beD: emergency department.

Based on Department

Recall that both ICU and ED are 2 department-based features,
which indicate whether the patient is in the ICU and ED,
respectively. The distributions of the subpopulations and the
percentage of positive observations are presented in Table 2.

Based on Hospital Stay

The feature “Length of stay” captures the number of days a
patient has been in the hospital till timet-d, wheretisthe MRSA
test date and d = 0 isthe parameter for the d-days ahead model.
On the basis of this feature, we constructed 2 subpopul ations.
Thefirst isthe group of patientswho have stayed in the hospital
for at most 15 days, and the second isthe group of patientswho
have stayed there for >15 days. The distribution of these
subpopulations and the percentage of positive observations are
presented in Table 2.

Based on Antibiotic Use

Three subpopul ations were created based on the number of days
for which a patient takes an antibiotic: (1) patients who never
took any antibiotics, (2) patients who took antibiotics within
the last 90 days from the MRSA testing date, and (3) patients
who took antibiotics for more than 90 days from the MRSA
testing date. The distribution of these subpopulations and the
percentage of positive observations are presented in Table 2.

Based on Age Group

A total of 2 age group—specific patient subgroups, namely 0 to
50 and =50 years, are considered for the analysis. The
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distribution of these subpopulations and the percentage of
positive observations are presented in Table 2.

Hierarchical Subpopulation-Based Models

Figure 3 shows the schematic architecture of the hierarchical
model. The construction steps of the hierarchical model are as
follows:

« S1: we defined a set of feature-based rules R at each level
to create mutually exclusive subpopulations:

- Atlevd 1, therules on the feature named ‘Age-group’
are (1) R(a)=patient subgroup of 0to 50 yearsold and
(2) R(a’”)=patient subgroup of more than 50 years old.
Each rule creates a patient subpopulation. The patients
in these two subpopulations are mutually exclusive,
which can be expressed as: P(a)n P(a’)=0

- At level 2, each age-group-specific subpopulation is
subdivided based on another feature named
“Department”. The rules on the ‘ Department’ feature
are (1) R(B)=patient subgroup of ICU and (2)
R(y)=patient subgroup of ED. Patients admitted to other
departments are not considered in this model.

»  The two-level hierarchical structure creates a set of
composite rules (combining rules of each level) at the
leaf level that we call two-level rules. Therules are as
follows: () R(anB), (b) R(any), (c) R(a’ nB), and (d)
R(a’ ny).

«  S2:thetraining populationissplit based onthe 2-level rules.
Each training subpopulation is trained on several machine
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learning models, and the best-performing model isused for
prediction.

« S3: each test observation is passed to the corresponding
model using the 2-level rule. The observation with

prediction is stored in a buffer. After completing all the
testing observations, the buffer is treated as the model’s
output.

Figure 3. A schematic view of the hierarchical model architecture. In the figure, Xi represents the i-th observation, y is the model prediction, a isthe
patient subpopulation who are 0 to 50 years old, o' is the patient subpopulation who are more than 50 years old, 3 is the patient subpopulation who
admitted to intensive care unit (ICU) department, y is the subpopul ation who admitted to the emergency department (ED), and R is afeature-based rule
to aggregate data. For instance, R(an3) isa0 to 50 age group patient subpopulation admitted to ICU. At level 1, the overall population is subdivided
into two subpopulations based on the feature named “Age-group.” The patient subpopulation of age group (0 to 50 years) is mutually exclusive to the
patient subpopulation of age group (>50 years). Each age group—specific subpopulation is further subdivided into the next level (level 2) based on
another feature named “Department.” The patient subpopulation of the ICU department is mutually exclusive to the ED subpopulation. The training
data are split based on the 2-level rules, and each patient subpopulation istrained using the best-fitted model. During the testing phase, each data point
passes to the appropriate model using the same 2-level rules, and the best-fitted model predicts the outcome. The outcomes of all the models are merged

back into the resultant prediction of this hierarchical model.
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Data Set for d-Days Ahead Prediction

We prepared a data set to observe the change of prediction
performance to the change of d, which is discussed in the
Methods section. For each d[{ 1,2,...,7}, we created a data set,
where the feature vector for a patient is generated based on the
history of that patient till datet-d, wheret isthe MRSA testing
date for that patient.

Ethical Consider ations

The data used in the paper was obtained through institutional
review board approval and isfully anonymized. Therefore, there
are no ethical considerations.

Results

Prediction Model for the Entire Population

We applied multiple machine learning models, including
penalized LR, gradient-boosted classifier, Random Forest,
support vector classifier, and XGBoost classifier (Multimedia
Appendix 2), to the UVA Hospital MRSA patient data sets. We
used an 80% to 20% split to construct the train and test data
sets. Figure 2A showsthe performance of the models. A model’s
best set of hyperparameters was computed from the training
dataset using grid search and 10-fold cross-validation. Penalized
LR was the best-performing model with the corresponding
performance metrics: (1) the FNR score is 0.074, and (2) the
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ROC-AUC scoreis 0.826. Table 3 presents other performance
metrics for this data set.

Given the same hyperparameter settings for the penalized LR
model, the model performance (ROC-AUC) dropped to 0.734
when we did not consider the product features; therefore, this
feature transformation provides a significant benefit. Using the
SHAP technique discussed in the M ethods section, we extracted
the following key features from Figure 2B:

1 “AdmissionType Urgent,” “ICU admitted,” “Provider 7,
and “Provider 14" are the top 4 features. Recall that
“AdmissionType_Urgent” is a Boolean variable where the
value 1 indicatesthe patient admitted as“Urgent.” Patients
admitted as urgent have a higher likelihood of MRSA
infection prediction. Similarly, “1CU admitted” isaBoolean
feature where the value 1 indicates that the corresponding
patient isadmitted to the ICU department and ismorelikely
to predict MRSA infection. On the other hand, “Provider
7" and “Provider 14" indicatethetotal number of providers
apatient contacted in thelast 7 and 14 daysfrom thetesting
date. The higher value of these features is associated with
high and negative valuesfor the target feature (MRSA test).
A high value comes from the rightmost color bar, and a
negative value comes from the x-axis.

2. A high vaue of “MRSA 7" (which indicates the total
number of patients with an MRSA-positive result a patient
contacted in the last 7 days from the testing date) is
associated with a high and positive value of the target

IMIR Al 2024 | vol. 3 | e48067 | p.169
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

feature (the MRSA test); thisholdssimilarly for the“MRSA
14" feature.

3. In addition to single features, composite features also
correlate more with MRSA infection prediction. For
instance, “AdmissionType Emergency” and “MRSA 7”
together (similar to “AdmissionType Emergency” and
“MRSA 14") are associated with high and positive values
of the target feature (the MRSA test).

4. “PHARMCLASS 4" appears to be an important feature
compared to the other PHARMCLASS features. In most
cases, this variable is associated with high and positive
values for the target feature.

Kamruzzaman et al

The computational complexity of SHAPincreaseswiththesize
of thetest data set. The best-fitted model is passed to the SHAP
explainer method, and it took 5 hoursto generate the summary
plot (Figure 2B) when the test data set contains 8174
observations and 4656 features. For the same best-fitted model,
the SHAP explainer required 1 hour to generate the summary
plot when the test data set contained the same number of
observations, but the number of features was reduced to 97.
Finally, thetime wasthe same when the number of observations
in the test data set was reduced to 817, and the number of
features was 4656.

Table 3. Performance metrics of the best-performing model for each patient subpopulation based on room allocation, admission source, hospital stay,

and antibiotic medication period.

Subpopulation oded?® ROC-AU Cb AUPRCS Sensitivity Specificity Precision FPRY or ENRE Fi-score CCf
fallout score

Overdl LRY 0.826 0.504 0.684 0.797 0.406 0.203 0.074 0.510 0.400

icuh LR 0.876 0.428 0.775 0.826 0.381 0.174 0.036 0.511 0.455

ED' LR 0.936 0.882 0.878 0.886 0.800 0.114 0.067 0.837 0.749

Other rooms LR 0.752 0.451 0.574 0.793 0.389 0.207 0.110 0.463 0.320

From HCFX LR 0.804 0.585 0.536 0.861 0.571 0.139 0.157 0.553 0.405

Not fromHCF LR 0.831 0.492 0.699 0.801 0.413 0.199 0.070 0.519 0.414

Hospital stay LR 0.837 0.518 0.722 0.789 0.415 0.211 0.068 0.527 0421

<15 days

Hospital stay LR 0.729 0.494 0.596 0.803 0.360 0.197 0.086 0.449 0.331

>15 days

Antibiotic<90 LR 0.826 0.525 0.681 0.807 0.434 0.193 0.079 0.530 0.416

days

Antibiotic>90 LR 0.841 0.566 0.697 0.809 0.496 0.191 0.092 0.580 0.453

days

No antibiotic LR 0.834 0.328 0.734 0.721 0.201 0.279 0.034 0.315 0.275

use

Agegroup (O- LR 0.782 0.482 0.613 0.777 0.364 0.223 0.094 0.457 0.325

50 years)

Agegroup (=250 LR 0.833 0.514 0.660 0.817 0.428 0.183 0.079 0.520 0.408

years)

Hierarchica HM 0.883 0.490 0.807 0.832 0.440 0.168 0.037 0.569 0.507

mode’

This column specifies the best-performing model.
PROC-AUC: receiver operating characteristics-area under the curve.
CAUPRC: area under the precision-recall curve.

9FPR: false positive rate.

®FNR: false negative rate.

*MCC: Matthews correlation coefficient.

9LR: penalized logistic regression.

PICU: intensive care unit.

iED: emergency department.

1The best value for each performance metric isitalicized.
KHCF: hedlth care facility.

IFor “Hierarchical model” (last row), the highlighted metric (initalics) indicates comparatively better performance than most of the other subpopulations.
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Effect of the Imbalanced Data Set

We evaluated the performance achieved using the different
sampling techniques discussed earlier. First, asin the study by
Hartvigsen et a [8], we used a random selection-based
down-sampling technique to sel ect majority-class observations
and balance the number of observations between the majority
and minority classes. The balanced data are split into train and
test data. The ROC-AUC score of the best-performing model
on the test data is 0.731. We used the synthetic minority
oversampling technique (SMOTE) [21] on our data set to
balance both magjority and minority classes. The ROC-AUC
score of the best-performing model on the test data is 0.896.
Similar to the study by Hirano et a [9], we used SMOTE to
balance the magjority and minority classes in the imbalanced
train and test data. The ROC-AUC score of the best-performing
model on the test data is 0.903. However, when we evaluated
the performance of the abovementioned models on a random
test data set, the ROC-AUC score was significantly lower at
0.701. Thus, for our problem, the biased sampling techniques
did not improve performance.

Subpopulation-Specific Results

Our models and feature engineering cannot improve the
ROC-AUC of 0.826. We now discuss the results of
subpopul ation-specific models.

Kamruzzaman et al

Testing History—Based Analysis

The best-fitted model on testing history—based subpopulations
(Table 4) showed the best performance on three subpopul ations:
(1) patients with a (—1) testing history: the best-fitted model
had an ROC-AUC of 0.802; (2) patientswith a (-1, —1) testing
history: the best-fitted model had ROC-AUC of 0.848 and FNR
of 0.035; (3) patients with a (+1, +1) testing history: the best
model, in terms of the area under the precision-recall curve
(AUPRC; Qi et al [22] suggested this metric for imbalanced
data) performance metric, had an AUPRC of 0.910 (Figure 4B).
The results for the other testing history—based data sets are
shown in Multimedia Appendix 3.

Figure 4C shows the significant features (using the SHAP
technique) for the (-1, —1) testing history—based subpopul ations.
The topmost feature (“MRSA 14”) is a network-based feature.
Moreover, the network-based features are among the top 10
features. Among these features, “MRSA 7" and “MRSA 14"
are positively associated with MRSA infection. In addition to
the network features, the interval between the 2 MRSA testsis
also important. In addition, patient comorbidity conditions have
asignificant correlation with MRSA infection.

Table 4. Performance metrics for the best-performing model for each patient subpopulation based on testing history.

Testing history M odel@ ROC- AUPRCS Sengtivity ~ Specificity ~ Precison pprd of FNRE  Fi-score  \iccf

Auc? fall out score
None LRY 0.814 0.406 0.689 0.749 0.276 0.251 0054  0.39%4 0.311
-1 ceh 0.802 0.331 0.281 0953 0.400 0.047 0078  0.330 0.274
(+1) LR 0.718 0.884 0.649 0.651 0.847 0.349 0615 0735 0.264
(-1-1 LR 0.848 0.402 0.697 0.855 0.332 0.145 0035 0449 0.404
(-1,+1) svi 0.613 0.781 0.295 0.897 0.867 0.103 0639 0441 0.209
(+1,-1) sv 0.558 0.614 0.875 0.031 0.311 0.969 0.667  0.459 0.183
(+1, +1) LR 0.761 0.910 0.595 0.787 0.916 0.213 0.667 0721 0.308

&The“Model” column specifiesthe best-performing model (L R=penalized logistic regression classifier, GB=gradient boosting, and SV=support vector).

PROC-AUC: receiver operating characteristics-area under the curve.
CAUPRC: area under the precision-recal| curve.

9FPR: false positive rate.

®FNR: false negative rate.

*MCC: Matthews correlation coefficient.

9LR: logistic regression.

hGB: gradient boosting.

"The best value for each performance metric isitalicized.

Isv: support vector.
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Figure4. Resultsfor best-performing subpopulations based on testing history: (A) Performance (receiver operating characteristics-areaunder the curve
[ROC-AUC]) of different machinelearning modelsfor testing history (-1, —1), that is, thelast 2 testing results are negative—penalized logistic regression
(LR) has the best performance. (B) Performance (area under the precision-recall curve [AUPRC]) of different machine learning models for testing
history (+1, +1), that is, the last 2 testing results are positive—penalized L R hasthe best performance. (C) Top featuresfor (-1, —1) testing history—based
subpopulation using the LR model. GBC: gradient boosted classifier; RF: random forest; SV C: support vector classifier.
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Analysisfor ICU and ED Subpopulations

We developed models for other subpopulations, and the
performance of the best-fitted models for these subpopulations
is reported in Table 3. We found that the best performance is
for the ED subpopulation in terms of both ROC-AUC and
AUPRC. The ROC-AUC valuefor the best-fitted model is0.936
(Figure 5A), and the AUPRC value for the best-fitted model is
0.882 (Figure 5B). Regarding the FNR, the model best performs
for the subpopulation without antibiotics. The FNR score
obtained using the best-performing model for this data set is
0.034. The subpopulation with the second-best performanceis
the ICU subpopulation (Figure 6), and the corresponding FNR
score is 0.036. The results for the other subpopulations are
presented in Multimedia Appendix 4.

Figure 6B shows the significant features (using the SHAP
technique) of the best model for the ICU subpopulation. The

https://ai .jmir.org/2024/1/e48067
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SHAP value (impact on model output)

top 5 network-based features and the frequency of network
featuresin the top 20 again demonstrate the significance of the
network structure. Some of the nonnetwork featuresthat appear
to be important are the patient’s age, use of antibiotics in the
last 90 days, use of a device in the last 90 days, test duration
days, PHARMCLASS 4, and emergency and urgent-type patient
admission.

Figure 5C shows the significant features (using the SHAP
technique) for the best-performing model for the ED
subpopulation. The top 7 features have network features. The
top influential feature for the ICU subpopulation is “MRSA
14, whereasthe top significant featurefor the ED subpopulation
is“MRSA 7. Unlike in the ICU, the patient’s gender, length
of stay, and comorbidity conditions are also crucial in addition
to network features.
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Figure 5. Results for the emergency department (ED) subpopulation that shows the best performance: (A) performance (receiver operating
characteristics-area under the curve [ROC-AUC]) of different machine learning models—penalized logistic regression (LR) has the best performance.
(B) Performance (area under the precision-recall curve [AUPRC]) of different machine learning models—penalized LR has the best performance. (C)
Top features of the LR model. GBC: gradient boosted classifier; RF: random forest; SHAP: Shapley Additive Explanations; SVC: support vector

classifier.
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Figure6. (A) Performance of different machine learning models for the intensive care unit subpopul ation; the penalized logistic regression (LR) model
performs best. (B) Top features of the LR model. GBC: gradient boosted classifier; RF: random forest; SHAP: Shapley Additive Explanations; SVC:
support vector classifier.
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Hierarchical Models

The performance of this model is presented in Table 3. This
model’s ROC-AUC and FNR scores are 0.883 and 0.037,
respectively. This model performs better than most
subpopulation-based models except for the ED
subpopul ation-based models.

Importance of Network Features

The best-fitted model performance on the entire data set shows
the best performance (Table 3) regarding ROC-AUC and FNR
when we use network features. The corresponding ROC-AUC
scoreis0.826, and the FNR scoreis 0.074. Without the network
features, the ROC-AUC scorefor the best-fitted model is0.714,
and the FNR score is 0.107 (Table 5).

The ROC-AUC score improved by approximately 16%, and
the FNR score improved by approximately 31% because of the
network features. The influence of network features is also

Kamruzzaman et al

significant in the models for the ICU and ED patient
subpopulations. The performance metric ROC-AUC improved
by approximately 27% for the ICU department patient
subpopulation, and the FNR score improved by approximately
58%. For ED patient subpopulations, the performance metric
ROC-AUC improved by approximately 30%, the FNR score
improved by approximately 69%, and the AUPRC score
improved by approximately 50%.

Network features a so improve the performance of the best-fitted
model for testing history—based subpopulations (Tables 3 and
6).

The ROC-AUC performance metrics for the best-fitted model
(1) testing the history-based subpopulation improved by
approximately 11%. For (-1, —1) testing the history-based
subpopulation, the best-fitted model performance improved by
approximately 25% on the ROC-AUC score and approximately
35% on the FNR score.

Table 5. Performance metrics of the best-performing model for each patient subpopulation based on room allocation, admission source, hospital stay,

and antibiotic medication period after excluding the network features.

Subpopulation  \ode® AUCP AUPRCC  Sensitivity Specificity Precision Falout pyrYI  Fp-score  pcce
score
Overall LRf 0.714 0.383 0.610 0.709 0.314 0.291 0.107 0.415 0.257
Icu9 LR 0.690 0311 0.547 0.760 0.262 0240 0085 0354 0.233
eph LR 0.722 0.589 0.593 0.705 0.496 0295 0220 0541 0.287
Other rooms LR 0.692 0.346 0.631 0.672 0.308 0328 0113 0414 0.243
From HCF' LR 0.594 0.340 0.348 0.799 0.375 0201 0220 0361 0.151
NotfromHCF LR 0.721 0.367 0.631 0.704 0.298 0296 0095  0.405 0.261
Hospital stay<15 LR 0.718 0.381 0.615 0.712 0.311 0288 0103 0413 0.261
days
Hospital stay >15 LR 0.595 0.262 0.615 0.566 0.209 0434 0112 0312 0.133
days
Antibiotic<90 LR 0.732 0.402 0.634 0.721 0.336 0279 0101 0439 0.288
days
Antibiotic>90 LR 0.707 0.434 0.621 0.683 0.361 0317 0138 0457 0.261
days
No antibioticuse LR 0.661 0.236 0.520 0.696 0.178 0304 gogpl 0265 0.145
Agegroup (0-50 LR 0.715 0.404 0.617 0.703 0.298 0297 0100  0.402 0.251
years)
Agegroup (250 LR 0.721 0.357 0.628 0.714 0.295 0286 0090 0401 0.265
years)

#The“Model” column specifies the best-performing model (L R=penalized logistic regression classifier).

BAUC: area under the curve.

CAUPRC: area under the precision-recall curve.
9ENR: false negative rate.

®MCC: Matthews correlation coefficient.

LR: logistic regression.

91CU: intensive care unit.

heD: emergency department.

'HCF: health care facility.

Jitalics.
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Table6. Performance metricsfor the best-performing model for each patient subpopulation based on testing history after excluding the network features.

Testing history  \1odel® AuUCP AUPRCE  Sensitivity  Specificity Precision Fallout  p\RY Fi-score  \pcce
score
None LRf 0.660 0.221 0.565 0.660 0.187 0.340 0.084 0.281 0.153
(-1 GRY 0.723 0.233 0.031 0.996 0.467 0.004 0.098 0.058 0.099
(+1) LR 0.685 0.851 0.623 0.628 0.821 0.372 0.620 0.708 0.224
(-1,-1) LR 0.677 0.196 0.663 0.615 0.151 0.385 0.054 0.246 0.164
(-1,+1) syh 0.637 0.797 0.625 0.615 0.786 0.385 0.579 0.696 0.223
(+1,-1) sV 0.507 0.356 0.375 0.656 0.353 0.344 0.323 0.364 0.031
(+1,+1) LR 0.691 0.881 0.605 0.719 0.887 0.281 0.667 0.719 0.267

#The“Model” column specifies the best-performing model (L R=penalized logistic regression, GB=gradient boosting, and SV=support vector).

BAUC: area under the curve.

CAUPRC: area under the precision-recall curve.
9ENR: false negative rate.

EMCC: Matthews correlation coefficient.

LR: logistic regression.

9GB: gradient boosting.

hsv: support vector.

d-Days Ahead Model Prediction

We now examine how well the test results can be predicted per
the d-days ahead model. We expected the performance to drop
as d increases, as shown in Figure 7, which shows the

ROC-AUC score of the best-fitted model (for the data set
corresponding to d-days before the test, as described in the
Methods section) versus d. Note that the performance decays
significantly with d.

Figure 7. d-days ahead prediction: performance (receiver operating characteristics-area under the curve [ROC-AUC]) of best model versus d. The

performance drops gradually with d.
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Discussion

Principal Findings

Our results demonstrate that clinically relevant models can be
developed for predicting MRSA test results with high accuracy
using a combination of clinical and nonclinical features from
EHR data. In particular, features of contact networks (eg,
“MRSA 7, “MRSA 14, “Provider 7,” and “Provider 14")
constructed from EHR data are quite significant in our models.

https://ai .jmir.org/2024/1/e48067
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Tables5 and 6 show the performance of the models on the same
group of data sets without considering the network features.
The empirical results establish that the network features have
asignificant impact (model performance ROC-AUC improves
by > 15%) on MRSA infection prediction.

We took the simplest approach to network construction, which
views edges as unweighted, and did not consider heterogeneity
in contacts, for example, based on types of providers. It is
interesting that even the simplest approach improves
performance. While more characteristics of networks and edge
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weights could be considered and these might improve the
performance, the value of our smple approachisthat itiseasier
to construct and islikely more generalizable and robust because
there might be uncertainties in some of these additiona
characteristics.

In addition to network features, we observed that features
associated with antibiotic use (“Antibiotic days’, “Antibiotic
days in last 90 days’, “Antibiotic days in last 90+ days’,
“PHARMCLASS 1" to“PHARMCLASS 10", etc.), different
kinds of eventsin the past 90 days (eg, kidney dialysis, device
use, and any surgery), and comorbidity conditions such as
diabetes without complications (diab or diabunc),
hypothyroidism (hypothy), uncomplicated hypertension
(hypunc), the Charlson score, the Elixhauser score, the weighted
version of the Elixhauser score using the van Waraven
algorithm (wscore vw), the weighted version of the Elixhauser
score using the Agency for Healthcare Research and Quality
(AHRQ) agorithm (wscore ahrq), and the weighted version of
the Charlson score (wscore) are also predictive; many of these
have been identified as important in prior work.

The penalized LR model with degree-2 polynomial features
performs best in amost all settings, using a new class of
network-based features derived from EHR data. Our resultsalso
showed the utility of heterogeneous models for different
subpopulations instead of just one model for the entire
population. In particular, we obtained good performance for
subpopulations in an ICU or ED and those with certain test
histories. We also observed that the performance degrades
gradually for a d-days ahead prediction.

The testing policy is fairly systematic for patients in the ICU.
Therefore, we expect the model for ICU subpopulations to be
quite robust and generalizable to data setsfrom other locations.
Onthe other hand, it isimportant to note that testing in the entire
patient population is generally not completely systematic and
might have biases because it is administered per physician
request. It is unclear what the impact of these biases would be
on the model’s generalizability. A mitigating factor is that the
model! for the entire population is quite closeto that for the ICU,
and many of the significant factors are the same. This suggests
that the model for the entire population might also be quite
robust. Future studies on other data sets are required to
determine the generalizability of these models.

Our prediction model for a patient on day t only used features
that were available for that patient before day t. Thisincluded
the network features. Therefore, if a patient wasin the hospital
for <7 days, the*MRSA 7" and “ Provider 7" feature valueswill
be 0, and if a patient was in the hospital for <14 days, the
“MRSA 14" and “Provider 14" feature values will be O. It is
possible that the predictive model would be more informative
for patients who have alonger history in the hospital, but even
this is an important patient population from a clinica
perspective.

Finally, we noted that the simple penalized LR model seemsto
work quite well when given more complex features, such as
second-degreefeatures. Itisnot completely clear why thisworks
much better than the other methods, namely support vector
machine, random forest, gradient-boosted classifiers, and

https://ai jmir.org/2024/1/e48067
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XGBoost. One possible explanation can be because of the model
parsimony of the penalized LR. Further research on model
validation can be useful. One advantage of our analysisis that
the penalized LR method is easy to interpret.

Our models are the most useful for clinical decisions about
empiric antibiotic use. For instance, if the test prediction is
negative, a clinician could be more comfortable starting an
antibiotic treatment. If the test prediction is positive in the
context of a newly identified infection, a clinician might
consider the benefits of starting an anti-MRSA antibiotic.
Isolation precautions are known to have many adverse effects
(eg, fewer clinician visits to the room, patient depression, and
noninfectious adverse events such asblood clots), although they
help in reducing transmission. If the d-days ahead result is
negative in a current patient with a positive MRSA result, an
epidemiologist may adjust for an earlier test for clearance of
isolation precautions.

Comparison With Prior Work

Machine learning using EHR data for clinical informaticsis a
very active area of research [23,24]. Diverse kinds of statistical
and machine learning methods, including deep-learning
algorithms, have been used to predict important clinical events
(eg, hypertension, diabetes, chronic obstructive pulmonary
disease, arrhythmia, asthma, gastritis, dementia, delirium,
Clostridium difficile infection, and HAIs) using EHR data
[8,9,12,13,25-29]. Inthe context of HAIS, risk-prediction models
have been developed for several MDROs. We have briefly
discussed examples of such studies to illustrate the types of
guestions and methods that have been considered, with afocus
on MRSA.

Hartvigsen et a [8] and Hirano et a [9] studied a similar
problem, namely, predicting MRSA test outcomes, using the
Medical Information Mart for Intensive Care Il and 1V data
sets, respectively. These data sets are critical care data sets
comprising 12 years (2001 to 2012 and 2008 to 2019,
respectively) of patient records from the Beth | srael Deaconess
Medical Center Intensive Care Unit in Boston, Massachusetts
[11]. Hartvigsen et a [8] show high performance for the
prediction of MRSA test outcomes 1 day ahead using
subsampled data. Hirano et a [9] achieve high performance (an
ROC-AUC vaue of 0.89) for a dightly different patient
subpopulation using the SMOTE [21] technique for handling
data imbalance. Rhodes et al [12] consider a slightly different
question regarding MRSA infection 72 hours after admission.
They show that the Classification Tree Analysis has good
performance for the population of patients from the
Northwestern Memorial Hospital and Lake Forest Hospital. A
review by Tang et a [13] notesthat penalized LR, decision tree,
and random forest are the preferred methods for antimicrobial
resistance prediction.

A significant challenge hern all MRSA risk-prediction problems
(including our study) is that the data are quite imbalanced
because the fraction of positive observations is quite small.
Consequently, the performance of most machine learning
methods can be affected. A common strategy to address this
issue has been to construct data sets using different kinds of
sampling techniques, including biased sampling [8,10] and
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SMOTE [30]. While this kind of approach can appear to have
very good performance on asimilarly constructed test data set,
the true performance on an unbiased data set might be reduced
(as discussed in the study by Pencina et al [31] and in our
Results section), which impacts its performance when used in
practice. According to the study by Soltanzadeh and
Hashemzadeh [30], resolving the class distribution problem
using synthetic or biased data constructed in this manner causes
many issues such as (1) generalization problems because of
noisy samples; (2) uninformative samples; and (3) newly created
points being close to the minority class points, which often
create points around the decision boundary. Azizi et al [32] and
Kokosi and Harron [33] note that (1) the use of synthetic data
in the decision-making process and (2) the problem of attribute
disclosure are other limitations of using synthetic data.

Our study differs from prior work in 3 ways. First, we used
network featuresin addition to other EHR-based featuresin our
risk-prediction models. It has been shown that network
properties are predictive of infection risk, for example, Klein
et al [34] showed that patient degree is associated with
vancomycin-resistant enterococci risk. Similarly, Riaz et al [35]
show that local colonization pressure, which is based on the
network structure, is associated with C. difficileinfection (CDI)
risk. Similarly, Miller et al [36] show that household exposure
(which can also be viewed as a network effect) increases CDI
risk. However, our work is the first to explicitly consider
EHR-based features for MRSA test prediction as a machine
learning task that can be used in aclinical setting. Second, we
identified heterogeneous models for specific patient subgroups
and showed that these have significantly better performance.
Finally, we devel oped our prediction modelswithout any biased
sampling techniques.

Limitations

We have not been able to improve the ROC-AUC performance
of our models above 0.90. Dataimbal ance and patient diversity
could be significant reasons for this performance. As noted
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earlier, MRSA infectionsarefairly rare, and for the problem of
MRSA test results, only about 15% of the results are positive.
We also note that there are many other notions of MRSA risk,
such as the risk of severe outcomes and MRSA acquisition,
which we study here. These notions are harder to formalize and
learn because the data sets would become even more biased
than what we consider here, and new methods are needed for
them.

While our results show that network features are the most
predictive, there might be uncertainties in inferring them from
the EHR data. We note that these (eg, the #providers within a
time interval) are not directly available in the patient’s EHR
data; we are inferring them through colocation information. It
is possible that many interactions are not recorded accurately
or the times might not be accurate. Morework isneeded to fully
understand the impact of these uncertainties.

Another issueisthetesting bias. Asdiscussed earlier, theentire
patient popul ation data set has biases because testing is not very
systematicin general. This might have animpact onthe model’s
performance when applied to data sets from other hospital s, and
the model would have to be retrained. However, the model
structure and specific features might still berelevant, especially
because they hold for the ICU patient subpopulation, for which
testing is more systematic.

Conclusions

Preprocessing by clustering has been useful in many
applications. One challenge in using this approach is that a
distance metric needs to be defined, which is difficult due to
thediversity of features. For instance, somefeatures are datetime
related, some are Boolean and categorical, while others are real
valued. A possible extension isto transform the featuresinto a
latent space, where distances can be computed. Additional
feature engineering and more advanced machine learning
methods might be useful for further improving performance. In
particular, text analysis might be helpful in further improving
the performance.
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Abstract

Background: Pancreatic cancer isthethird leading cause of cancer deathsin the United States. Pancreatic ductal adenocarcinoma
(PDAC) is the most common form of pancreatic cancer, accounting for up to 90% of all cases. Patient-reported symptoms are
often the triggers of cancer diagnosis and therefore, understanding the PDAC-associated symptoms and the timing of symptom
onset could facilitate early detection of PDAC.

Objective: This paper aims to develop a natural language processing (NLP) algorithm to capture symptoms associated with
PDAC from clinical notes within alarge integrated health care system.

Methods: We used unstructured data within 2 years prior to PDAC diagnosis between 2010 and 2019 and among matched
patients without PDAC to identify 17 PDAC-related symptoms. Related terms and phrases were first compiled from publicly
available resources and then recursively reviewed and enriched with input from clinicians and chart review. A computerized NLP
algorithm was iteratively developed and fine-trained via multiple rounds of chart review followed by adjudication. Finaly, the
developed algorithm was applied to the validation data set to assess performance and to the study implementation notes.

Results: A total of 408,147 and 709,789 notes were retrieved from 2611 patients with PDAC and 10,085 matched patients
without PDAC, respectively. In descending order, the symptom distribution of the study implementation notes ranged from 4.98%
for abdominal or epigastric pain to 0.05% for upper extremity deep vein thrombosis in the PDAC group, and from 1.75% for
back pain to 0.01% for pale stool in the non-PDAC group. Validation of the NLP algorithm against adjudicated chart review
results of 1000 notes showed that precision ranged from 98.9% (jaundice) to 84% (upper extremity deep vein thrombosis), recall
ranged from 98.1% (weight loss) to 82.8% (epigastric bloating), and F;-scores ranged from 0.97 (jaundice) to 0.86 (depression).

Conclusions: The developed and validated NL P algorithm could be used for the early detection of PDAC.

(IMIR Al 2024;3:€51240) doi:10.2196/51240
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Pancreatic ductal adenocarcinoma (PDAC), which accountsfor
90% of pancreatic cancer cases, is the most common form of
Pancreatic cancer isthe third leading cause of cancer deathsin ~ Pancreatic cancer. The age- and sex-adjusted incidence has
the United States, with 50,550 estimated deaths in 2023 [1]. continued to increase, reaching 13.3 per 100,000 in 2015-2019,
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and the overall 5-year survival remains poor at only 12.5% [2].
Despite technological advances, diagnosis of pancreatic cancer
remainsvery late, with more than 50% of patients having distant
metastases at the time of diagnosis [2-4].

Patient-reported symptoms are often the trigger for evaluation
that eventually leads to a diagnosis of pancreatic cancer [5,6].
The reported prevalence of symptoms associated with PDAC
has largely varied due to many factors, such as study design
and data sources [6-10]. Additionally, previously published
studies have been based on patient surveys [6,7] or structured
electronic health records (EHRs) [8-10]. However, structured
data can be inaccurate [11,12] and incomplete [13], especially
for signsand symptoms. On the other hand, signsand symptoms
are frequently collected and documented in the clinical notes
by care providers via free text within the EHRs. Therefore,
extracting signs and symptoms from clinical notes offers akey
opportunity for the early detection of pancreatic cancer, which
can lead to more timely interventions that improve survival.

Identification of PDAC-related symptoms from clinical notes
based on EHRs is a challenge because signs or symptoms are
typically not well-documented in a structured format within an
EHR system, and specific techniques are required for data
processing and analysis. Natural language processing (NLP), a
field of computer-based methods aimed at standardizing and
analyzing free text, processes unstructured data through
information extraction from natural language and semantic
representation learning for information retrieval, classifications,
and predictions [14]. Numerous innovative NLP applications
have been devel oped across various clinical domainsin support
of medical research, public health surveillance, clinical decision
making, and outcome predictions [15-19]. Early NLP
applications have largely focused on rule-based approaches
[15,16], while recent NLP applications utilize state-of-the-art
machine learning [17] or deep learning approaches via
transformer learning models [18-20]. Rule-based NLP
techniques have been widely used to extract signsand symptoms
from free-text narratives in past years [21-26]. To the best of
our knowledge, we are not aware of previous studies
systematically analyzing pancreatic cancer—related symptoms
from clinical notes via NLP. The purpose of this study is to
develop and validate a comprehensive NLP algorithm and
process to effectively identify PDAC-related symptoms prior
to diagnosis within alarge integrated health system.

https://ai.jmir.org/2024/1/€51240
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Methods

Study Setting

Kaiser Permanente Southern California (KPSC) isanintegrated
health care system providing comprehensive medical services
to over 4.8 million members across 15 large medical centers
and more than 250 medica offices throughout the Southern
Cdlifornia region. The demographic characteristics of KPSC
members are diverse and largely representative of the residents
in Southern Cdifornia [27]. Members obtain their health
insurance through group plans, individual plans, and Medicare
and Medicaid programs and represent >260 ethnicitiesand >150
spoken languages. KPSC's extensive EHR data contains
individual-level structured data (ie, diagnosis codes, procedure
codes, medications, immunization records, |aboratory results,
and pregnancy episodes and outcomes) and unstructured data
(ie, free-text clinical notes, radiology reports, pathology reports,
imaging, and videos). KPSC's EHR covers all medical visits
across all health care settings (eg, outpatient, inpatient, and
emergency department). Clinical care of KPSC members
provided by external contracted providers is captured in the
EHR through reimbursement claim requests.

Ethical Considerations

The study protocol was reviewed and approved by the KPSC
Institutional Review Board (approval no. 12849) with awaiver
of the requirement for informed consent.

Study Population I dentification

This study was a nested case-control study of KPSC patients
aged 18-84 years between 2010 and 2019. Patients diagnosed
with PDAC were identified through KPSC's cancer registry.
Patients with ahistory of acute or chronic pancrestitis, without
aclinic-based visit within 3 to 24 months prior to the diagnosis,
with chemotherapy or infusion treatment, or with less than 20
months of health plan enrollment or pregnancy within 2 years
prior to the diagnosis date were excluded. Among the patients
with PDAC, the date of diagnosiswas defined astheindex date.
For each PDAC case, up to 4 controls were selected from a
group of patients without PDAC on the index date of the
matched cases. Controls could develop PDAC 1 year after the
index date. The above study criteria identified a total of 2611
eligible patientswith PDAC and 10,085 corresponding matched
patients without PDAC during the study period. The study
participant identification and NLP process is shown in Figure
1.
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Figurel. Schematic diagram of the NLP algorithm to identify the pancreatic ductal adenocarcinoma—related symptoms. EHR: electronic health record,;

NLP: natural language processing.
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PDAC Symptom Selection

We initialy identified 24 PDAC-related symptoms based on
literaturereviewsand clinicians' input. A survey was conducted
among the Consortium for the Study of Pancreatitis, Diabetes,
and Pancreatic Cancer working group members [28] to
determinetherelative importance of the 24 potential symptoms.
Based on the ranking of importance, a total of 17 symptoms
were finaly selected. In this study, we considered abdominal
pain and epigastric pain as a combined symptom (abdominal
or epigastric pain) and anorexiaand early satiety asacombined
symptom of (anorexia or early satiety) due to the difficulty of
distinguishing them in clinical notes or patient-provider
communications. The deep vein thrombosis (DVT) symptom
wasincluded in our study because DVT risk is highin patients
with pancreatic cancer [29], and the symptom was further
delineated into upper and lower DVT.

PDAC Symptom Keyword Selection

First, we compiled alist of phrases or terms relevant to the 17
symptoms based on previous literature [21-23] or symptom
ontologies in the Unified Medical Language System [30]. The
list was then reviewed and enriched by the experienced study
gastroenterologist and enhanced by manual data annotation
processing (refer to “ Data Annotation” subsection for details).
In addition, we used a word embedding model, Word2vec
[31,32], to capture possible relevant phrases and terms, including
misspelled terms, for each symptom. The compiled
comprehensive phrases and terms for these 17 symptoms are
summarized in Table S1in Multimedia Appendix 1. The PDAC
symptoms can be determined by a single phrase or term except
for the DVT symptom. The DVT symptom was determined by
3 setsof terms, which included location (eg, leg or arm), feeling
or appearance (eg, pain or swollen), and laterality (eg, left or
right), rather than a single phrase or term.

Extraction and Preprocessing of Study Notes

Clinical notes and patient communication messages (tel ephone
or email) within 2 years prior to the index date of PDAC cases
and their matched controls (referred to as “notes’ hereafter)
were extracted from the KPSC EHR system. Notes associated
with certain medical encounters (eg, surgery), note types (eg,

https://ai.jmir.org/2024/1/€51240

patient instructions or anesthesia), and department specialties
(eg, health education) were excluded from the analysis because
symptoms of interest were unlikely to be present in these notes
(Table S2 in Multimedia Appendix 1). The extracted noteswere
then preprocessed through the following steps: (1) lowercase
conversion, sentence splitting, and word tokenization [33]; (2)
removal of nondigital or nonletter characters except for spaces,
periods, commas, question marks, colons, and semicolons; (3)
standardization of abbreviated words; and (4) correction of
misspelled words based on the Word2vec model supplemented
by an internal spelling correction file developed in previous
studies[23,25].

Training, Validation, and I mplementation Data Sets

Our study involved 2 phases of training and validation. Thefirst
phase used the notes of 100 randomly selected PDAC cases.
The second phase used a subset of notes from both PDAC cases
and controls. Details of the sample selection for training and
validation are summarized in Table S3 in Multimedia A ppendix
1. Notes that were not used for training or validation formed
the study implementation data set.

Data Annotation

Notes from both the training and validation data sets were
manually reviewed by trained research annotators to indicate
the presence of the 17 symptoms based on the established terms
and phrases (Table S1 in Multimedia Appendix 1) and inclusion
and exclusion criteria (Table $4 in Multimedia Appendix 1).
The note annotation process was based on a computer-assisted
approach. First, notesfrom the training and validation data sets
were exported into a spreadsheet and the prespecified terms
(Table S1in MultimediaAppendix 1) were highlighted. Second,
for each note, the annotators reviewed the notes to label the
presence of each of the 17 symptoms. Third, any ambiguous
notes were fully discussed during weekly study team meetings
until a consensus was reached. Cases that were difficult to
determine were reported to the study gastroenterologist for
adjudication.

A subset of thetraining dataset in thefirst phase (n=2795 notes)
was double-reviewed (ie, 2 annotators independently reviewed
the same set of notes). The results from the 2 annotators were
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compared and inconsistencies between them were discussed
until a consensus was reached. If the annotators did not reach
aconsensus, the note was reviewed and adjudicated by the study
gastroenterol ogist.

Finally, the adjudicated results were documented as the gold
standard for training and validation of the NL P algorithm.

NL P Algorithm Development

Algorithm devel opment involved 2 phases of training. For each
phase, we used the annotated training data set to develop or
refine a rule-based computerized algorithm via an iterative
process to determine the presence of the 17 symptoms in each
note. First, the notes were analyzed based on the phrase or terms
and patterns that indicated the presence or absence of each
symptom (Table S1 in Multimedia Appendix 1). The algorithm
was then processed to search for patterns of inclusion or
exclusion to determine the status of each symptom (Table $4
in Multimedia Appendix 1). A list of negated terms (eg, “ruled
out” or “negative for"), uncertain or probable terms (eg,
“presumably”), definiteterms (eg, “positivefor”), history terms
(eg, “several yearsago”), non-patient person terms (eg, referring
to afamily member), and general description terms (eg, “please
returnto ED if you have any of the following symptoms”) were
compiled from the training data sets. The compiled termswere
enriched via the repeated test-revise strategy against the chart
review results within each training subset until the algorithm
performance reached an acceptable threshold (ie, positive
predictive value [PPV]=90%). The discordant cases between
the algorithm and manually annotated results for each subset
were further reviewed and adjudicated among the annotators
and study team until a consensus was reached.

Specifically, each symptom for each note was first determined
at the sentence level based on the following criteria:

1. A sentence defaulted as “no” if any exclusion criterion in

Table $4 in Multimedia Appendix 1 was met.

2. The symptom was considered absent if the sentence met
any of the following situations:

»  The sentence did not contain any defined terms listed
in Table S1in Multimedia Appendix 1.

»  The negated description was associated with defined
terms listed in Table S1 in Multimedia Appendix 1.
Examples included “patient denied vomiting/nausea,”
“ruled out jaundice,” and “no pruritus.”

»  The description of the symptom did not refer to an
actual situation. For example, “returnif you experience
epigastric bloating” and “ glipizide side effectsincluding
loss of appetite, nausea, vomiting, weight gain.”

+ A probable or uncertain description was associated
with the symptom. For example, “patient with anxiety
and likely depression” and “ patient informed that there
may be pruritis or pain.”

»  The symptoms were associated with a historical term
or date relative to the clinical note date. For example,
“patient had abdominal pain two years ago” and
“patient had jaundice in 2007."

»  Thesymptom description wasrelated to family history,
such as “family history: mother anxiety” and “ patient
family history: daughter with depression.”

https://ai.jmir.org/2024/1/€51240
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- Someone other than the patient had a symptom. For
example, “my husband is in a deep depression” and
“daughter-in-law has been stressed, poor appetite and
less sleep.”

»  The symptom was described as treated by medication
during hospitalization.

»  The sentence only consisted of a symptom term, so a
decision could not be reached on whether thisinstance
was positive for the symptom.

3. A symptomwasclassified as“yes’ for any of thefollowing
situations:

»  The sentence contained a symptom of interest and the

symptom was marked as“yes,” “x,” or “+”. A symptom
was classified as “yes’ if the response to a symptom
guestion was affirmative or if the symptom was marked
on the symptom list.

»  The symptom was listed under the diagnosis section
(except for DVT), chief complaint section, symptom
section, and history of present illness section of the
clinical note. For example, “chief complaint: abdominal
pain,” “primary encounter diagnosis anxiety disorder,”
and “jaundice 782.4."

- The symptom was described as treated or indicated by
medi cation within nonhospitalization encounters.

»  Thesymptom was documented or reported to be present
at the time of visit or messaging. For example, “pt
complaint of 55 Ib weight loss since March 2009” and
“patient here for several weeks of abdominal pain.”

»  Thesentence contained a definite term associated with
a symptom of interest. Examples included “positive
for fatigue and weight loss,” “ patient reports anorexia,”
and “patient presents with anxiety, depression,
insomnia.”

The sentence-level results were then combined to form

note-level results.

» Classification at the note level was defined as“yes’ if
a least 1 sentence in the note was marked “yes’.
Otherwise, it was classified as“no”.

The diagnosis of DVT itself was not considered a DVT
symptom. Additionally, the bodily location (ie, source) of pain
was considered when determining the presence of any symptom
(such as DVT, back pain, or abdominal or epigastric pain). For
example, pain radiating from the upper or lower extremity was
considered a DVT symptom, whereas pain radiating to the
upper or lower extremity was not. Similarly, pain that radiated
to the back region was not counted as back pain, and pain that
radiated to the abdomen or epigastric region was not counted
as abdominal or epigastric pain.

Perfor mance Evaluation

The results of the NL P algorithm against the validation data set
were compared to the adjudicated chart review results notes.
For each symptom, the numbers of true positive (TP), false
positive (FP), true negative (TN), and fal se negative (FN) cases
were used to estimate the sensitivity or recall, specificity, PPV
or precision, negative predictive value (NPV), and overall
F,-score, a harmonic balance measurement of PPV and
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sengitivity. Sensitivity was defined asthe number of TPsdivided
by the total number of symptoms ascertained by the chart
reviews (TP+FN). PPV was defined as the number of TPs
divided by the total number of symptoms identified by the
computerized algorithm (TP+FP). Specificity was defined as
the number of TNsdivided by thetotal number of noteswithout
symptoms ascertained by the chart reviews (TN+FP). NPV was
defined as the number of TNs divided by the total number of
notes identified by the computerized agorithm without
symptoms (TN+FN). The F;-score was calculated as (2 x PPV

x sengitivity) / (PPV + sensitivity).

Interrater Reliability Analysis Among 2 Annotators

The agreement and kappa coefficient against the
double-annotated subset were cal cul ated to assesstheinterrater
reliability among the annotators.

Discrepancy Analysis

For each symptom, discordant results between the NLP
algorithm and adjudicated chart review against the validation
data set were analyzed. Both FP and FN scenarios were
summarized in detall.

Implementation of the NLP Algorithm

The validated computerized agorithm was implemented via
Python programming on aLinux server to processthe qualified

Table 1. Description of the study population and the associated data sets.

Xieetd

study notes with the exception of training and validation notes.
For each symptom, the process created the results of each note
at the sentence level and note level for summary analysis.

Results

Statistics of the Study Notes

A tota of 408,147 and 709,789 notes were retrieved for 2611
PDAC cases and 10,085 matched controls, respectively. The
distribution of the notes and patient demographics are
summarized in Table 1. Compared to patients without PDAC,
patients with PDAC were older and more likely to be men
(PDAC cases: mean 69.2, SD 9.1 years of age and n=1328,
50.9% men; controls: mean 48.6, SD 17.2 years of age and
n=4681, 46.4% men). A total of 3,827,166 sentences and
69,455,767 word tokens were derived from notes belonging to
patients with PDAC. The corresponding numbers were
5,880,717 sentences and 102,358,031 word token for patients
without PDAC. Both the average number of notes per patient
and average words per notewere higher for patientswith PDAC
(notes per patient: mean 156.3, SD 138.3; words per note: mean
170.2, SD 319.2) compared to patients without PDAC (notes
per patient: mean 70.4, SD 94.1; words per note: mean 144.2,
SD 263.6).

PDAC? (n=2611) Non-PDAC (n=10,085)

Age (years), mean (SD)

Gender: women, n (%)

Gender: men, n (%)

Total clinical notes, n

Total sentences, n

Total word tokens, n

Notes per patient, mean (SD)
Sentences per clinical note, mean (SD)
Words per clinica note, mean (SD)

69.2 (9.1) 486 (17.2)
1283 (49.1) 5404 (53.6)
1328 (50.9) 4681 (46.4)
408,147 709,789
3,827,166 5,880,717
69,455,767 102,358,031
156.3 (138.3) 70.4 (94.1)
9.4(15.7) 8.3(13.9)
170.2 (319.2) 144.2 (263.6)

8PDAC: pancreatic ductal adenocarcinoma.

Interrater Reliability of 2 Annotators

The agreement and kappa coefficient between 2 annotators for
a subset of notes (n=2795) is summarized in Table S5 in
Multimedia Appendix 1. The agreement ranged from 98.82%
(abdomina or epigastric pain) to 99.96% (upper extremity
DVT), while the kappa coefficient ranged from 0.6 (insomnia)
to 0.91 (abdominal or epigastric pain).

Validation of the NLP Algorithm

Table 2 summarizes the performance of the computerized NLP
algorithm against the adjudicated chart review results of 1000

https://ai.jmir.org/2024/1/€51240

notes based on the validation data set. In descending order, the
precision (PPV) of the a gorithmsranged from 98.9% (jaundice)
to 84% (lower extremity DVT), recall (sensitivity) ranged from
98.1% (weight loss) to 82.8% (epigastric bloating), specificity
ranged from 99.9% (epigastric bloating, jaundice, and pruritus)
to 98.9% (depression), NPV ranged from 99.9% (lower
extremity DVT) to 98.1% (abdominal or epigastric pain and
back pain), and the F;-score ranged from 0.97 (jaundice) to 0.87
(depression).
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Table 2. The computerized model’s performance against the adjudicated chart review results in the validation data set (n=1000).

Symptoms TPR() TN°(n) FP°(n) FN9(n) Sensitivity ppye  Spedificity  npyf(op Fi-score
%) (%) (%)
Gastrointestinal symptoms
Abdominal or epigastric pain 156 824 4 16 90.7 97.5 99.5 98.1 0.94
Anorexia or early satiety 78 909 2 11 87.6 975 99.8 98.8 0.92
Dark urine 51 938 3 8 86.4 94.4 99.7 99.2 0.90
Epigastric bloating 53 935 1 11 82.8 98.2 99.9 98.8 0.90
Natisea or vomiting® 97 820 3 7 93.3 97 99.6 99.2 0.95
Pale stool 40 949 5 6 87 88.9 99.5 994 0.88
Systemic symptoms
Back pain 95 882 6 17 84.8 94.1 99.3 98.1 0.89
Fatigue 105 883 2 10 91.3 98.1 99.8 98.9 0.95
Jaundice 90 905 1 4 95.7 98.9 99.9 99.6 0.97
Malaise 52 941 2 5 91.2 96.3 99.8 99.5 0.94
Pruritus 27 970 1 2 93.1 96.4 99.9 99.8 0.95
Weight loss 101 886 11 2 98.1 90.2 99.8 99.8 0.94
Mental symptoms
Anxiety 79 911 3 7 91.9 96.3 99.7 99.2 0.94
Depression 83 892 10 15 84.7 89.3 98.9 98.3 0.87
Insomnia 62 925 7 6 91.2 89.9 99.3 994 0.91
Vascular conditions
Lower extremity DVT symptom 19 977 3 1 9% 864 997 99.9 0.91
Upper extremity DVT symptom 21 972 4 3 87.5 84 99.6 99.7 0.86

TP true positive.

BTN: true negative.

CFP: false positive.

9EN: false negative.

€PPV: positive predicted value.
NPV Negative predicted value.

9Hospital encounter notes were excluded with the exception of emergency notes.

PDVT: deep vein thrombosis.

Discrepancy Analysis

The discrepancy analysis is summarized in Table S6 in
Multimedia Appendix 1. The most common scenarios that
resulted in FPs were failure of exclusion of the symptoms
described in the patient medical problem list, failure of exclusion
of symptoms from instructions, failure of negation, or failure
of exclusion of asymptom from past medical history. The most
common scenariosfor FNswere fal se negation, missing specific
terms or patterns of termsin the search list, false classification
of past history symptoms, or false exclusion of symptoms
described in relevant medication instructions.

https://ai.jmir.org/2024/1/€51240

Implementation of the NLP Algorithm

Table 3 summarizes the symptoms identified by the validated
NLP agorithms based on the implementation data set. Of the
393,003 and 708,489 notes belonging to PDAC and non-PDAC
patients, respectively, at least 1 symptom was identified in
52,803 (13.44%) and 56,552 (7.98%) notes, respectively. The
presence of symptomsranged (in descending order) from 4.98%
(abdominal or epigastric pain) to 0.05% (upper extremity DVT)
in patients with PDAC and from 1.75% (back pain) to 0.01%
(pale stoal) in the patients without PDAC.
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Table 3. Presence of symptoms identified by the computerized algorithms based on the implementation data set at the clinical note level.

Symptom Clinical notes from patients with PDAC2 n (%) Clinical notesfrom patientswithout PDAC, n (%)
(n=393,003) (n=708,489)
Any of 17 symptoms 52,803 (13.44) 56,552 (7.98)
Gastrointestinal symptoms
Abdominal or epigastric pain 19,582 (4.98) 11,274 (1.59)
Anorexia or early satiety 4393 (1.12) 1626 (0.23)
Dark urine 1511 (0.38) 121 (0.02)
Epigastric bloating 3217 (0.82) 1665 (0.24)
Nausea or vomiting 7754 (1.97) 7429 (1.05)
Pale stool 875 (0.22) 35(0.01)
Systemic symptoms
Back pain 8407 (2.14) 12,416 (1.75)
Fatigue 7170 (1.82) 9621 (1.36)
Jaundice 9118 (2.32) 305 (0.04)
Malaise 2984 (0.76) 4162 (0.59)
Pruritus 1872 (0.48) 622 (0.09)
Weight loss 8001 (2.04) 2619 (0.37)
Mental symptoms
Anxiety 3924 (1) 10,843 (1.53)
Depression 4995 (1.27) 10,810 (1.53)
Insomnia 2228 (0.57) 4159 (0.59)
Vascular conditions
Lower extremity DVT? symptom 807 (0.21) 1465 (0.21)
Upper extremity DVT symptom 215 (0.05) 719 (0.2)

3PDAC: pancreatic ductal adenocarcinoma.
bpVT: deep vein thrombosis.

Discussion

In this study, we developed computerized NLP algorithms to
identify 17 symptoms that were documented prior to PDAC
diagnosis from clinicad notes and patient-provider
communication emails. To our knowledge, thisisthefirst study
to systematically identify a set of symptoms related to PDAC
using NLP. When assessed against the manually annotated
results, the algorithm achieved a reasonable performance, with
recall (sensitivity) ranging from 82.6% to 98.1% and precision
(PPV) ranging from 84% to 98.9%.

Accurate extraction of symptoms embedded in free-text notes
posed a significant chalenge. First, the symptoms might be
described in various portions of the notes. For example,
symptoms might be embedded under past medica history,
review of systems, the patient's medical problem list,
instructions, sign and symptom warnings, questionnaires,
checklists, lab orders and tests, medications, procedures,
diagnosis, or chief complaints. Second, health care providers
might copy and paste information from previous notes. In
addition, we would like to highlight some specific challenges.

https://ai.jmir.org/2024/1/€51240

First, anegated term could sometimes apply to only 1 symptom
or to multiple symptoms after negation (eg, no coughing, no
chest pain, no abdomen pain; denies nausea or vomiting,
diarrhea, constipation, abdominal pain). Second, the defined
rules might not address all scenarios. For example, one of our
defined rules for abdominal pain required the word “pain” and
the body location to be within a 5-word distance. If the words
for body location (eg, abdomen) and “pain” were separated by
more than 5words, the sentence was marked “no” for abdominal
pain. Third, we found that some symptom terms could have
different meanings, which caused FPs. For example, the phrase
“lower bp” for back pain could also mean lower blood pressure,
and the fatigue term “exhausted” could refer to either physical
or mental exhaustion. Fourth, some exclusion criteria, as shown
in Table S3 in Multimedia Appendix 1 (eg, exclude localized
itching for pruritus), also caused potential misclassification.

The data annotation process was tedious and time-consuming.
Thefollowing lessons|earned could benefit the medical research
community. First, set up atraining period for chart annotators
and study investigators with medical backgrounds to review at
least several hundred notes (the same notes for al the
annotators). This step would not only allow the chart annotators

JMIR Al 2024 | vol. 3| €51240 | p.187
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

to be trained for the process but also would identify potential
issuesthat might arise during theformal review process. Second,
develop a chart annotation document that would include the
detailed inclusion and exclusion criteria to be used for the
annotation. The document should define specific types of notes
(eg, mental health progress notes) or sections of the notes (eg,
“past medical history” or “history of present illness’) to be
reviewed or to be skipped. The document should also outline
rules to determine the presence or absence of the conditions of
interest. For example, if a patient experienced abdominal pain
at home but did not experience pain at thetime of thevisit. Such
rules are study-specific, but they need to be considered
thoroughly and documented.

Advanced transformer language models, including bidirectional
encoder representationsfrom transformers (BERT) [20], clinical
BERT [34], BioBERT [35], and BERT for EHRs (BEHRT)
[36], have gained popularity in research involving NLP. These
NLP language models offer the advantage of contextua
understanding through embedding representations, allowing the
developed agorithms to capture the meaning and intricate
relationships within the text and enhance the accuracy of the
analysis. They have been widely used for analyzing information
from unstructured notes in the health care domain [18,19,37].
Researchin thisareain futurework iswarranted to further boost
the performance of PDAC-related symptoms, especially for
these lower performances viathe rule-based approach.

Our study acknowledged several potential limitations. First, the
completeness and accuracy of the extracted symptoms depended
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on theinformation documented in the EHR system. Incomplete
or inaccurate documentation of symptoms could lead to bias.
Second, although our training process was quite comprehensive
and included a relatively large number of notes, the rules and
lexicons built based on the training data setswere still not highly
comprehensive, as summarized in the discrepancy analysis.
Therefore, a more extensive sample could be used to enhance
the rules and lexicons if applied in other populations in the
future, especially for rare symptoms. Third, a few terms or
phrases could indicate meanings other than the symptom of
interest (eg, “patient has exhausted all conservative measures”
or “patient complaint of lower bp than usual”). Additional
contexts with these terms would be required to determine the
actual meaning. Fourth, for symptomsinvolving body location,
such as abdominal pain and back pain, the allowed distance
between the location and the symptom could sometimes lead
to the misclassification of TP cases. Lastly, when applied to
other health care systems and settings, the developed
computerized algorithms might require modifications due to
variations in the format and presentation of clinical notes in
different health care settings.

In conclusion, the developed computerized algorithm and
process could effectively identify relevant symptoms prior to
PDAC diagnosis based on unstructured notes in a real-world
care setting. Thisalgorithm and process could be used to support
the early detection of pancreatic cancer if implemented within
a health care system to automatically identify patients with
PDAC-related symptoms, especially those with PDAC-specific
symptoms.
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Abstract

Background: Despite its high lethality, sepsis can be difficult to detect on initial presentation to the emergency department
(ED). Machine learning—based tools may provide avenues for earlier detection and lifesaving intervention.

Objective: The study aimed to predict sepsis at the time of ED triage using natural language processing of nursing triage notes
and available clinical data.

Methods: We constructed a retrospective cohort of al 1,234,434 consecutive ED encounters in 2015-2021 from 4 separate
clinically heterogeneous academically affiliated EDs. After exclusion criteria were applied, the final cohort included 1,059,386
adult ED encounters. The primary outcome criteriafor sepsiswere presumed severe infection and acute organ dysfunction. After
vectorization and dimensional reduction of triage notes and clinical data available at triage, a decision tree-based ensemble
(time-of-triage) model was trained to predict sepsis using the training subset (n=950,921). A separate (comprehensive) model
wastrained using these dataand laboratory data, asit became available at 1-hour intervals, after triage. Model performances were
evaluated using the test (n=108,465) subset.

Results:  Sepsis occurred in 35,318 encounters (incidence 3.45%). For sepsis prediction at the time of patient triage, using the
primary definition, the area under the receiver operating characteristic curve (AUC) and macro F;-score for sepsiswere 0.94 and
0.61, respectively. Sensitivity, specificity, and false positive rate were 0.87, 0.85, and 0.15, respectively. The time-of -triage model
accurately predicted sepsis in 76% (1635/2150) of sepsis cases where sepsis screening was not initiated at triage and 97.5%
(1630/1671) of cases where sepsis screening was initiated at triage. Positive and negative predictive values were 0.18 and 0.99,
respectively. For sepsis prediction using laboratory data available each hour after ED arrival, the AUC peaked to 0.97 at 12 hours.
Similar results were obtained when stratifying by hospital and when Centers for Disease Control and Prevention hospital toolkit
for adult sepsis surveillance criteria were used to define sepsis. Among septic cases, sepsis was predicted in 36.1% (1375/3814),
49.9% (1902/3814), and 68.3% (2604/3814) of encounters, respectively, at 3, 2, and 1 hoursprior to thefirst intravenousantibiotic
order or where antibiotics where not ordered within the first 12 hours.

Conclusions: Sepsiscan accurately be predicted at ED presentation using nursing triage notes and clinical information available
at thetime of triage. Thisindicates that machine learning can facilitate timely and reliable alerting for intervention. Free-text data
can improve the performance of predictive modeling at the time of triage and throughout the ED course.

(IMIR Al 2024;3:€49784) doi:10.2196/49784
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Introduction

Background

Sepsisisalife-threatening condition caused by severeinfection
and dysregulated host response leading to acute organ
dysfunction [1]. Affecting 32 million people and contributing
to over 5million deaths per year globally [2], sepsisisaleading
cause of death in hospitaizations in the United States and
worldwide[3,4]. Early antibiotics have been shown to improve
survival [5], while each hour of delayed antibiotic administration
has been associated with progressively increased mortality (7.6%
increase per hour in septic shock) [6]. Patients who survive
sepsis often have long-lasting health and social sequelae [7],
and sepsis is ranked among the top 3 most costly conditionsto
treat in the hospital setting [8]. Accordingly, substantial efforts
have been made to identify sepsis early in the hospital course
[9]. To date, however, widely used clinical decision support
toolsthat use rule-based methods for detecting sepsis have been
limited by low sensitivity and specificity [10,11]. Such tools
have been unableto earn clinician trust dueto limited accuracy,
false positives, and delayed alerts [12]. False positive alerts
increase the cognitive load of providers and could expose
patientsto unnecessary antimicrobials. Moreover, current widely
used el ectronic health record—based sepsis prediction tool s have
limited performance and often require several hours to elapse
to achievereasonable predictive use[12]. For example, arecent
inpatient and intensive care unit (ICU)—based investigation of
acommonly used sepsis alerting system showed that although
existing systems can generate reasonably accurate sepsis alerts,
the median time to notification was 7 hours and, even at that
point, accuracy was limited [13]. Taken together, existing
clinical decision support systems aimed at detecting sepsis do
not provide sufficient accuracy or timeliness of sepsisprediction,
resulting in lower adoption due to alack of clinician trust.

Machine Learning in Sepsis Prediction

Artificia intelligence (Al)-based tools may hold promise to
increase the accuracy and timeliness of sepsis prediction, which
may allow for earlier delivery of critical interventions such as
lifesaving antibiotics. Many of the most promising sepsis
predictive algorithms have been limited to use in ICU settings
[14], where patients have rich |aboratory and imaging data sets
and frequent physiologic monitoring. In contrast, accurate
prediction of sepsis at initial emergency department (ED)
presentation has remained elusive. Until recently, there was a
paucity of technology that could make use of the full set of
available data, particularly free-text triage notes, at the time of
initial ED presentation. A recent study showed that sepsis
prediction at the time of triage can be significantly improved
using natural language processing (NLP) of free-text data[15].

ED Triage Assessment

When a patient presentsto the ED, an initial triage assessment
is usually performed by atriage nurse. The triage assessment
includes abrief interview of the patient or those accompanying
the patient to obtain areason for presenting to the hospital ED.
The content of this interview typically includes a very brief
recounting of the patient’s past medical history, relevant
medications, family history, and social risk factors. The triage
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nursewill typically also obtain vital signs (blood pressure, heart
rate, temperature, respiratory rate, and oxygen saturation) and
pain score. Finaly, thetriage nurse will assign apatient atriage
acuity score. This process usually takes less than 10 minutes.
The summation of this encounter is documented in rea time,
directly after the triage assessment, into the electronic medical
record and includes a listing of the vital signs, triage acuity
score, and a free-text nursing triage note.

The triage note is recorded into the electronic medical record,
typically comprising 1-3 sentences regarding why the patient
has presented to the ED and the nurse’s summative impression
of thisinitial assessment. This note is used as a starting point
for downstream assessments by providers in the ED. The
information contained in the triage note is useful, as it often
contains rich data that are difficult to quantify in tabular form.
Thisinformation iswidely used and valued by theclinical staff.
However, in its unstructured format, it is not typically used in
clinical decision support algorithms and is often unused for
several hours until the full provider assessment. We
hypothesized that nursing triage notes, combined with other
data available at initial ED presentation, could be used to
accurately predict sepsis at the time of triage.

Goalsof ThisInvestigation

It was previously demonstrated that NL P of nursing triage notes
at ED presentation could be used to predict hospital admission
and ED resource use [16-18]. In this study, we aimed to
demonstrate that an NL P-based model could be used to predict
sepsis in adult patients based on the (1) health system sepsis
committee and (2) Centers for Disease Control and Prevention
(CDC) hospital toolkit for adult sepsis surveillance criteria[1].

Methods

Ethical Considerations

The research study protocol and procedureswere reviewed and
approved by theinstitutional review board (STUDY 00000099).

Study Design and Setting

A retrospective cohort was constructed using electronic health
record data from all 1,234,434 consecutive ED encounters
(487,296 unique patients) in 2015-2020 from 4 separate
clinically heterogeneous academically &ffiliated EDs. Hospital
A isacommunity hospital in an urban setting having a patient
volume of approximately 65,000 ED visits per year. Hospital
B isacommunity hospital in asuburban setting having avolume
of approximately 26,000 visits per year. Hospital C is a
quaternary care academic medical setting in a major
metropolitan areahaving an ED patient volume of approximately
48,000 visits per year. Hospital D is a community hospital in a
suburban setting having a volume of approximately 36,000
visits per year.

Selection of Participants

Prior studies have suggested that overwhelming viral septicemia
during the COVID-19 pandemic led to markedly increased false
positive rates of sepsis screening tools [15]. These cases
accounted for asubstantial portion of ED visitsduring theinitial
months of 2020 [19] and led to a sharp decline in ED patient
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volume[20]. Accordingly, we excluded encounters (n=94,739)
from February 1, 2020, to August 1, 2020, and patients who
had a diagnostic code of COVID-19 or positive COVID-19
laboratory test. Patients of 18 years and younger of age were
excluded from the study (n=27,238), as defining sepsisin these
patients is controversial, and they are often lost to follow-up
after they are transferred for admission to pediatric hospitals.
Patients whose date of birth or age was not available were also
excluded (n=23,434) to ensure that the remaining cohort
comprised only adult patients. We subsequently excluded
encounters with missing triage notes (n=29,637). The final
cohort of interest included 1,059,386 unique clinical encounters.
Sepsis Definition

The primary outcome of sepsiswas defined as presumed severe
infection and acute organ dysfunction, based on criteria
described by the health system sepsis committee. To evaluate
model performance against verified sepsis cases, the health
system sepsis committee provided physician-reviewed sepsis
labels for 7663 patients between June 1, 2019, and October 1,
2019. These cases were oversampled into the test data set. This
definition of sepsiswas projected onto the remaining datausing
clinical outcome variables. For sensitivity analyses of model
performance, a secondary definition of sepsis was used, based
on the US Centers for Medicare & Medicaid Services toolkit
criteria [1]. Encounters were counted as sepsis, if they met
criteriaat any time during the ED course or hospital stay.

Natural L anguage Processing

NL P techniques have been devel oped to extract meaning from
unstructured free-text data. One such technique is document
vectorization. Documents can be transformed into numerical
vectorsthat represent the key information they contain, allowing
them to be used by numerica machine learning (ML)
techniques.

To generate document embeddings for the nursing triage notes,
adistilled BERT (Bidirectional Encoder Representation From
Transformers) model pretrained using an unsupervised masked
language modeling objective was used asabase. Unlike models
pretrained using a causal language modeling objective such as
Generative Pre-Trained Transformer, which only consider
preceding tokens, BERT considers tokens to the right and left
of the masked word [21].

The use of large models such as BERT is constrained by the
computational resources required for training and inference.
DigtilBERT [22] is a lighter and faster language model that
offers fewer constraints on computational resources, having a
depth of only 6 layers, rather than 12, and with token-type
embeddings and pooler removed. DistilBERT is trained to
replicate the behavior of BERT using “teacher-student” learning,
where BERT is the “teacher” and DistilBERT is the “student.”
This allows for knowledge distillation in the pretraining phase
while retaining 97% of language understanding and being 60%
faster.

The base DistilBERT model was fine-tuned using the free
textual data from nursing triage notes with the objective of
predicting sepsis. We evaluated several pretrained document
vectorization models, selecting the optimal one by calculating
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fine-tuning performance on the training set. Nursing triage notes
concatenated with Boolean clinical variables available at the
time of triage (ie, high or low vital signs) were then passed
through the fine-tuned DistilBERT model to produce document
vectors representing the key information they contain. For the
document vectors, we selected threshol dsfor the numeric values
based on clinical knowledge and appended text based on the
numeric values and those threshol ds. Additionally, we devel oped
manual mappings for known clinical abbreviations and
converted them into the text. For example, “n/v/d” became
“nausea, vomiting, and diarrhea.” The document vectors were
then passed through a principal component analysis step to
dimensionally reduce them from a length of 768 to 20
components.

Modée Training and Testing

For the time-of-triage model, the triage note vectors were
combined with other clinical data, such as age, sex, and
maximum and minimum vital signs. For the prediction of sepsis
after laboratory data availability, a separate comprehensive
model was constructed that included the aforementioned
variables and additional laboratory data.

While many sepsis indicators have clear unidirectional
associations with sepsis risk (ie, heart rate, hypotension, and
lactic acid), others can be bidirectional (ie, high or low
temperature or white blood cell [WBC] count). In addition,
triage note vectors may potentially have complex relationships
with sepsis. Accordingly, a decision tree-based technique was
chosen for model training over more traditional techniques,
such as logistic regression. The combined vectors from the
training data set were used to train a decision tree-based
ensemble learning modd (XGBoost [Extreme Gradient
Boosting]) [23] to predict thelikelihood of sepsis. The XGBoost
model was trained to predict sepsis using the training subset
(n=950,921). Model performance was evaluated using the test
(n=108,465) subset.

Optima hyperparameters for the time-of-triage model were
determined viagrid search. Thetime-of-triage model wastrained
using amaximum tree depth of 6, minimum child weight of 15,
minimum split loss of 15, learning rate of 0.05, subsampleratio
of 0.6, L1 regularization of 0, and L2 regularization of 1. After
Bayesian hyperparameter optimization, the comprehensive
model was trained using a maximum tree depth of 6, minimum
child weight of 13, minimum split loss of 18, learning rate of
0.015, subsample ratio of 0.63, L1 regularization of 0.27, and
L2 regularization of 1.87. We accounted for classimbalance by
scaling the positive weight parameter to theinverse of the class
distribution. Epoch-level eval uation was used to measure model
performance during training and identify failing training runs.
Heat maps to indicate word and subword importance were
generated using the integrated gradients method on the
constructed model inputs [24]. Word importance here was
calculated on words and subwords returned by the tokenization
method.

For analysis of sensitivity, specificity, and false positive rate of
the time-of-triage model, atarget threshold of model prediction
score was selected based on optimizing for a maximal false
positiverate of 0.15. For the comprehensive model, we derived
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a classification threshold empirically, based on probability
scores, and subsequently applied the threshold to target a
maximum false positive rate of 0.1 at 12 hours after ED arrival.
The thresholds were selected using model output scores from
the training set and were applied to the test data set to evaluate
clinical predictive performance metrics. The comprehensive
model included known laboratory indicators of sepsis and end
organ dysfunction, such as maximum and minimum WBC count,
maximum lactic acid, minimum platelets, and maximum
bilirubin and creatinine. Comprehensive model performance
was evaluated using the test data set at every hour after ED
arrival. Model performance was also eval uated at each hospital.

Sepsis Prediction Prior to the First Intravenous
Antibiotic Order

To estimate how an Al sepsis prediction tool might impact the
ordering of antibiotics, we computed the percentage of sepsis
encounters that triggered a positive prediction of sepsis prior
to antibiotics being ordered or not having antibiotics ordered
within the first 12 hours of the encounter. To perform this
analysis, we used encounters from the test data set. A
dual-model approach was used to emulate sepsis alerting at the
time of triage and then subsequently during the ED encounter.
Sepsis prediction time was defined as the earlier of either the
time-of-triage model or comprehensive model generating a
positive prediction of sepsis.
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Evaluation of M odel Performances Among Clinically
Undetected Sepsis Cases

To determine how thetime-of -triage and comprehensive models
may prevent missed sepsis, encounters with sepsis in the test
data set were stratified by model prediction of sepsis- versus
chart-based indicators of clinical sepsis suspicion. Predictive
performance of the model was evaluated among patients who
were septic and were or were not screened for sepsis at triage
and defined as having either of the following order in less than
30 minutes after time of triage: (1) nursing-driven sepsis
screening order set or (2) blood culture.

Results

Characteristics of the Study Patients

Thetotal data set after exclusions consisted of 1,059,386 unique
encounters from 487,296 patients. Sepsis occurred in 35,318
encounters (incidence 3.45%). Median timefrom arrival tofirst
WBC count collection was 44.9 (IQR 26.2-79.3), 42.8 (IQR
25.6-73.3), and 44.8 (IQR 26.2-79.0) minutes across nonsepsis,
sepsis, and all encounters, respectively. Demographic
characteristics of the patients are available in Table 1. Gender,
race, and temperature were missing in 5.6% (57,082/1,059,386),
13.2% (87,284/1,059,386), and 0.2% (2034/1,059,386) of
encounters, respectively. Respiratory rate, heart rate, oxygen
saturation, and blood pressure were missing in 0.1% of
encounters. Selected examples of triage notes of encounters
where patients were septic are included in Table S1 in
Multimedia Appendix 1.
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Table 1. Demographic and clinical characteristics of patients across encounters.
Total Hospital A Hospital B Hospital C Hospital D
Sepsis®, n (%) 1,059,386 (100) 386,961 (36.5) 158,757 (15) 284,794 (26.9) 228,874 (21.6)
Primary 35,318 (3.3) 9533 (2.5) 3978 (2.5) 12,775 (4.5) 9032 (3.9)
Secondary 31,542 (3) 9128 (2.4) 3541 (2.2) 12,688 (45)  6185(2.7)
Age (years), mean (SD)
18-24 80,384 (7.6) 35,421 (9.2) 11,466 (7.2)  23309(82) 10,188 (4.5)
25-44 344,034 (32.5)  147,085(38.0) 47,283(29.8) 91,106 (32.0) 58,560 (25.6)
45-64 327,584 (30.9)  123225(318) 53,226(335)  87,113(30.6) 64,020 (28.0)
65-74 141,943 (134) 44,840 (11.6) 19,709 (12.4) 41,425(145) 35969 (15.7)
275 165,441 (15.6) 36,390 (9.4)  27,073(17.1) 41,841(14.7) 60,137 (26.3)
Sex, n (%)
Female 579,798 (57.8) 208,230 (56.8) 90,599 (60.4) 160,710 (59.6) 120,259 (55.6)
Male 422506 (42.2) 158,321 (43.1) 59,447 (39.6) 108,611 (40.3) 96,127 (44.4)
Race, n (%)
Black 552,432 (50.6) 301,619 (75.6) 35366 (21.7) 150,454 (51.3) 64,993 (27.6)
White 380,084 (34.8)  53427(133) 92,713(56.8) 104,290 (35.6) 129,654 (56.6)
Other 39,586 (36.3) 5205 (1.3) 15,827 (9.7) 10,125 (3.5) 8429 (3.6)
Unreported 87,284 (8.2) 26,710 (6.9) 14,851 (9.4) 19,925 (7.0) 25,798 (11.3)
Vital signs
Temperature (°C), mean (SD) 36.8 (0.5) 36.8 (0.5) 36.8 (0.5) 36.7 (0.6) 36.8 (0.5)
Heart rate (beats per minute), mean (SD) 85.6 (18.8) 86.2 (18.1) 84.5(18.7) 85.9 (19.1) 84.8 (19.7)
Systolic BF® (mm Hg), mean (SD) 138.6 (26.7) 138.6 (26.9) 137.6 (24.4) 139.7(28.9)  137.9(24.9)
Diastolic BP (mm Hg), mean (SD) 80.0 (15.5) 80.8 (14.9) 80.2 (14.8) 80.5 (16.0) 77.8 (16.1)

SpO,° (%), median (IQR) 98.0 (97-100)

Respiratory rate (breaths per minute), mean (SD) 18.0 (6.3)

Time to first WBC count (minutes), median (IQR) 44.8(26.5-80.3)

98.0(97-100)  98.0(97-100)  98.0(97-100)  99.0 (97-100)

18.2 (6.4) 18.0 (5.9) 18.1(6.7) 17.8(5.9)
51.2(27.3-850) 40.9(20.8-62.8) 47.4(324-90.3) 34.6(23.1-73.0)

8Sepsis primary and secondary definitions based on the health system sepsis committee and Centers for Disease Control and Prevention hospital toolkit

for adult sepsis surveillance criteria, respectively.
bBP: blood pressure.

€Sp0,: oxygen saturation.

dWBC: white blood cell.

Time-of-Triage and Comprehensive M odel
Performances

Using the test data set, the time-of-triage model using
information available at initial triage for sepsis prediction
(primary criteria) demonstrated an area under the receiver
operating characteristic curve (AUC) and macro F;-score of
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0.94 and 0.61, respectively (Figure 1). Sensitivity, specificity,
and false positive rate were 0.87, 0.85, and 0.15, respectively.
Positive and negative predictive values were 0.18 and 0.99,
respectively. Sample model output is available in Figure 2,
depicted as heat maps applied to words and subwords of ED
nursing triage notes to indicate positive, neutral, or negative
contributions to sepsis prediction.
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Figure 1. Receiver operating characteristic curve of sepsis prediction at the time of initial emergency department triage using free-text triage nursing
notes and clinical data available at the time of triage. AUC: area under the receiver operating characteristic curve.
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Figure 2. Heat maps applied to words and subwords of a sample of emergency department nursing triage notes to indicate relative contributions to

sepsis prediction.
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[CLS] 50 ##yr old male pt came into unit with ¢ [ o generalized weakness , mala ##ise | d ##tys ##p ##nea , chill ##s and fever . pt has a | ##va ##d (

heart ##ware ) . map 60 . [SEP]

[CLS] pt brought in from nursing home with ¢ [ o h ##yp ##ote ##ns ##ion and am ##s x 3 hours [SEP]

[CLS] pt c [ o fever ##s , rig ##ors , and dia ##rr ##hea x 1 week . pt h ##x of mg and recent hospital ##ization for sep ##sis . pt end ##ors ##es fatigue and

abd pain . pt ta ##chy ##card ##ic and shaking in tri ##age . [SEP]

[CLS] patient brought in by ems . per san , inc ##free ##ase ##d fatigue and weakness since yesterday . decreased appetite . denies n / v . patient guarding

Incorporating data available after initial ED workup, the
comprehensive model predicted sepsis based on primary criteria
with an initial AUC, sensitivity, and specificity of 0.94, 0.72,
and 0.94 at 1 hour after ED arrival, respectively; increasing to
an AUC, sensitivity, and specificity of 0.96, 0.87, and 0.91 after
5 hours, respectively; and increasing to AUC, sensitivity, and
specificity of 0.97, 0.91, and 0.90 at 12 hours after arrival,
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abdomen . h ##x of frequent ut ##is . translator phone used . [SEP]

respectively (Figure 3). Sensitivity, specificity, and false positive
rateat 12 hourswere 0.92, 0.89, and 0.11, respectively. Positive
and negative predictive values at 12 hours were 0.25 and 0.99,
respectively. Similar sepsis prediction results were obtained
using the CDC hospital toolkit for adult sepsis surveillance
criteria (Table 2) and when stratifying by hospital (Table S2in
Multimedia Appendix 1).
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Figure 3. Sepsis predictive performance of the comprehensive model using atest data set, expressed as AUC, at each hour after emergency department

arrival. AUC: area under the receiver operating characteristic curve.
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Table 2. Machine learning prediction of sepsis using data available at the time of emergency department (ED) triage (“time-of-triage” model) and all

data available after ED workup (“comprehensive” model).

Time-of-triage model Comprehensive model
Primary sepsiscriteria
AUCR 0.94 0.97
Macro Fq 0.61 0.67
Sensitivity 0.87 0.91
Specificity 0.85 0.90
False positive rate 0.15 0.10
cbcP hospital toolkit for adult sepsis surveillance
AUC 0.92 0.96
Macro Fq 0.57 0.64
Sensitivity 0.86 0.91
Specificity 0.83 0.89
False positive rate 0.17 0.11

8AUC: area under the receiver operating characteristic curve.
bCDC: Centers for Disease Control and Prevention.

Modée Performances Among Clinically Undetected
Sepsis Cases

Sepsis screening initiated at triage was defined as having
chart-based indicators of sepsis screening ordered within 30
minutes of triage (see Methods section). Within the test data
set, there were 3821 encounters having sepsis. Among these,
1671 (43.7%) encounters had sepsis screening initiated at triage.
The time-of-triage model accurately predicted sepsis in 76%
(1635/2150) of sepsis cases where sepsis screening was not
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initiated at triage and 97.5% (1630/1671) of caseswhere sepsis
screening was initiated at triage.

Modéel Performances Among Critical Sepsis Cases

Among patients in the test data set who had sepsis and were
ultimately placed on vasopressors or were admitted to the ICU,
the time-of-triage model predicted sepsis in 97.9% (329/336)
and 91.6% (832/908) encounters, respectively. The
comprehensive model predicted sepsisin 100% (336/336) and
95.7% (869/908) encounters, respectively.
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Sepsis Prediction Prior to the First Intravenous
Antibiotic Order

We retrospectively evaluated the time of sepsis prediction in
relation to the first intravenous antibiotic order using a
dual-model  approach  (“time-of-triage” followed by
“comprehensive” models). Among septic cases, sepsis was
predicted in 36.1% (1375/3814), 49.9% (1902/3814), and 68.3%
(2604/3814) of encounters at 3 hours, 2 hours, and 1 hour,
respectively, prior to the first intravenous antibiotic order or
where antibiotics were not ordered within the first 12 hours.

Modéel Performance Using Only the First Encounter
per Patient

To ensure that model performance was not confounded by past
encounters, we performed a sensitivity analysis using only the
first encounter per patient in the test data set (n=88,309),
excluding subsequent encounters. The time-of-triage model
predicted sepsis with an AUC, sensitivity, specificity, and false
positive rate of 0.94, 0.85, 0.86, and 0.14, respectively. The
comprehensivemodel predicted sepsisat 12 hourswithan AUC,
senditivity, specificity, and false positive rate of 0.97, 0.92, 0.90,
and 0.10, respectively.

Analysis of Model Feature Importance

The importance of model features was analyzed by ranking the
XGBoost feature importance scores from highest to lowest
(Figure S1 in Multimedia Appendix 1). For both the
time-of-triage (Figure S2 in Multimedia Appendix 1) and
comprehensive (Figure S3 in Multimedia Appendix 1) models,
the top features included elements of vital signs (ie, heart rate,
temperature, blood pressure, and oxygen saturation) and triage
note vectors. For the comprehensive model, the most important
features additionally included laboratory metrics such asWBC
count, creatinine, and lactic acid.

Discussion

Principal Findings

In thisstudy, datafrom over 1 million patient encounters across
4 large metropolitan EDs were used to train an NLP-based ML
model to detect sepsis at the time of patient presentation to the
ED. We demonstrated that free-text nursing triage notes,
combined with clinical variables at the time of triage, could be
used to accurately predict the occurrence of sepsisat initial ED
nursing triage. Moreover, we demonstrated that sepsis could be
detected in 76% (1635/2150) of sepsis cases where sepsis
screening was not initiated at triage. Finally, the results suggest
that Al-based sepsis prediction in the ED may be able to
significantly improve the time to antibiotics, which may offer
opportunity for lifesaving intervention for patients. Notably, in
addition to triage note vectors, the variables with the highest
predictive importance were combinations of clinically relevant
vital signs (time-of-triage model) and laboratory values, such
asWBC count, creatinine, and lactic acid level (comprehensive
model). These model characteristics, as well as the ability to
map triage note word and subword relative contributions,
indicate that the models may offer meaningfully explainable
predictions to end users.
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To our knowledge, this study is the largest to date to use NLP
for sepsis prediction in the ED. We aso demonstrated
substantially improved accuracy compared to ML-based
techniques in prior studies. The ability to incorporate triage
notes into an ML model is advantageous for several reasons.
First, natural language allows for a broad range of history and
examination findings to be compressed into a short free-text
note rather than innumerable variablesin tabular form. Second,
it allows experienced nursesto communicate an overal clinician
impression that cannot aways be captured by strictly
guantitative inputs. In this study, free text from nursing triage
notes was used to train atransformer model and was combined
as input with other clinical data available at the time of initial
triage, with the aim of predicting sepsis. Our findings
demonstrate that NL P-based ML models can generate accurate
predictions of sepsis at the time of triage and throughout an ED
stay. Accordingly, theincorporation of free-text datainto models
that include data from clinical workups can produce a highly
accurate prediction of sepsis.

Importance of Accurate Sepsis Prediction Tools

Existing sepsis aerting systems experience a number of
performance difficulties. One of the most widely implemented
sepsis detection systems across health systems has been shown
to have limited performance dueto low sensitivity and precision
(33% and 2.4%, respectively). Low predictive performance
hindersthe clinical use of such systems, despite their aim being
to prompt the initiation of lifesaving care. Further impacting
their use are high rates of false positive alerts [12]. Increased
rates of false positive alertslead to lower trust among clinicians,
alert fatigue and dismissal, and lower adoption [25]. Recently,
the incorporation of natural language such as free-text notes
into model inputs has been shown to be promising for accurately
detecting sepsis as early as during the ED triage process [15].

Prior Studies

To our knowledge, this study is the largest to predict sepsis at
the time of ED triage evaluation using NLP-based ML. Ivanov
et al [15] reported high predictive performance for sepsisat ED
triage with asmaller sample sizein 2022. While both this study
and Ivanov et al [15] present high sensitivity and specificity
and remarkably increased performance compared to traditional
screening tools for sepsis, there are important differences
between the studies. Whereas Ivanov et a [15] included
pediatric encounters, they were excluded in this study, since
significantly ill patients of 18 years or younger of age are
typicaly transferred to pediatric hospitals for admission and
final diagnoses are unavailable. Accordingly, we excluded these
encounters to avoid underestimation of sepsis in the pediatric
population, which could have led to type | error with increased
reliance on patient age as a predictive feature. A transformer
model was also used for the NLP step, which can account for
context and surrounding words.

Finally, our approach provides a method to present clinicians
with understandable model decision explanations, including
heat mapsto indicate word importance and contribution to sepsis
prediction. We present some examples of these heat maps here.
It isimportant to note that the transformer architecture used in
this study assigns meaning using full sentence context, capturing
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combined subword and interword rel ationships, from negation
to more complex interactions. As such, these heat maps can be
instructive but offer a heavily simplified view of how the
algorithm uses triage notes. Additionally, the triage note
vectorization is only a part of our complete sepsis agorithm,
which a so considers additional clinical datathroughout the ED
encounter.

Limitations

There were several limitations in this study. First,
physician-reviewed sepsislabelswere only availablefor a subset
of the data and had to be projected onto unlabeled encounters
for training purposes using clinical signals. However, model
performance was similar when eval uated on the secondary sepsis
definition provided in the CDC hospital toolkit for adult sepsis
surveillance. Second, the quality of the nursing triage notesis
dependent on the clinical skill of the triage nurses, which could
vary between EDs. Third, since the COVID-19 pandemic
resulted in significant clinical and operational changes, it will
be important to include such encounters in future prospective
studies. Fourth, no pediatric patientswereincluded, which would
bias the model results toward an adult population. Fifth, in this

Brannet d

study, it was not possible to detect whether patients were
immunocompromised. Thisisan important subgroup of patients
to assessin future studies of M L-based sepsis prediction. Sixth,
it was not possible in this study to stratify by causal organism
of sepsis, which could affect performance characteristics.
Finally, as this study was an investigation of NLP using triage
notes, we excluded encounters having missing triage notes.

Conclusions

Using free-text and clinical data available at the time of initial
ED triage from over 1 million patient encounters and across 4
hospital-based EDs, we demonstrated that NLP-based ML
models are able to achieve high accuracy in predicting sepsis.
The implication of these results is that Al-based clinical tools
may substantially augment clinician abilities when clinical
workup data are sparse, such as at the time of initial ED triage.
Since sepsis mortality increases drastically with every passing
hour and early clinical intervention is imperative to provide
lifesaving treatment, Al-based tool s using natural language data,
such as free text available in nursing triage notes, may offer
critical information to initiate treatment and prevent morbidity
and mortality.

Conflictsof I nterest

FB, NWS, SOF, and JDS are vice president of data science, machine learning research scientist, director of nursing, and cofounder
and chief medical officer, respectively, at Vital Software, Inc, a company engaged in developing artificial intelligence clinical

decision support products for the emergency department.

Multimedia Appendix 1

Examples of triage notes, subanalyses, and model explainability.

[DOCX File, 1412 KB - ai_v3i1e49784 appl.docx ]

References

1.  Hospital toolkit for adult sepsis surveillance. Centers for Disease Control and Prevention, Division of Healthcare Quality
Promotion. 2018. URL: https://www.cdc.gov/sepsis/pdfs/Sepsis-Surveillance-Toolkit-Mar-2018 508.pdf [accessed
2023-04-01]

2. Heischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence
and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 2016;193(3):259-272
[FREE Full text] [doi: 10.1164/rccm.201504-07810C] [Medline: 26414292]

3. RheeC, DantesR, Epstein L, Murphy DJ, Seymour CW, lwashynaTJ, et a. Incidence and trends of sepsisin US hospitals
using clinical vsclaimsdata, 2009-2014. JAMA 2017;318(13):1241-1249 [FREE Full text] [doi: 10.1001/jama.2017.13836]
[Medline: 28903154]

4.  Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et a. Global, regional, and national sepsis
incidence and mortality, 1990-2017: analysis for the Globa Burden of Disease Study. Lancet 2020;395(10219):200-211
[FREE Full text] [doi: 10.1016/S0140-6736(19)32989-7] [Medline: 31954465]

5. KashiourisMG, Zemore Z, Kimball Z, Stefanou C, Fowler AA, Fisher B, et a. Supply chain delays in antimicrobial
administration after theinitial clinician order and mortality in patients with sepsis. Crit Care Med 2019;47(10):1388-1395.
[doi: 10.1097/CCM.0000000000003921] [Medline: 31343474]

6. Kumar A, RobertsD, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension beforeinitiation of effective
antimicrobial therapy isthe critical determinant of survival in human septic shock. Crit Care Med 2006;34(6):1589-1596.
[doi: 10.1097/01.CCM.0000217961.75225.E9] [Medline: 16625125]

7. Angus DC. Thelingering consequences of sepsis: a hidden public health disaster? JAMA 2010;304(16):1833-1834. [doi:
10.1001/jama.2010.1546] [Medline: 20978262]

8. LiangL, Moore B, Soni A. National inpatient hospital costs: the most expensive conditions by payer, 2017. Agency for
Healthcare Research and Quality. 2020. URL : https.//www.hcup-us.ahrg.gov/reports/statbriefs/
sb261-M ost-Expensive-Hospital-Conditions-2017.jsp [accessed 2023-02-05]

https://ai.jmir.org/2024/1/e49784 JMIR Al 2024 | vol. 3| e49784 | p.200

(page number not for citation purposes)


https://jmir.org/api/download?alt_name=ai_v3i1e49784_app1.docx&filename=bc85b13e55e023cffc7f38cb208844de.docx
https://jmir.org/api/download?alt_name=ai_v3i1e49784_app1.docx&filename=bc85b13e55e023cffc7f38cb208844de.docx
https://www.cdc.gov/sepsis/pdfs/Sepsis-Surveillance-Toolkit-Mar-2018_508.pdf
https://www.atsjournals.org/doi/10.1164/rccm.201504-0781OC
http://dx.doi.org/10.1164/rccm.201504-0781OC
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26414292&dopt=Abstract
https://europepmc.org/abstract/MED/28903154
http://dx.doi.org/10.1001/jama.2017.13836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28903154&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0140-6736(19)32989-7
http://dx.doi.org/10.1016/S0140-6736(19)32989-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31954465&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0000000000003921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31343474&dopt=Abstract
http://dx.doi.org/10.1097/01.CCM.0000217961.75225.E9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16625125&dopt=Abstract
http://dx.doi.org/10.1001/jama.2010.1546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20978262&dopt=Abstract
https://www.hcup-us.ahrq.gov/reports/statbriefs/sb261-Most-Expensive-Hospital-Conditions-2017.jsp
https://www.hcup-us.ahrq.gov/reports/statbriefs/sb261-Most-Expensive-Hospital-Conditions-2017.jsp
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Brannet d

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international
guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 2013;41(2):580-637 [FREE Full text]
[doi: 10.1097/CCM.0b013e31827e83af] [Medline: 23353941]

Jaimes F, Garcés J, Cuervo J, Ramirez F, Ramirez J, Vargas A, et a. The systemic inflammatory response syndrome (SIRS)
to identify infected patients in the emergency room. Intensive Care Med 2003;29(8):1368-1371. [doi:
10.1007/s00134-003-1874-0] [Medline: 12830377]

Perman SM, Mikkelsen ME, Goyal M, Ginde A, Bhardwaj A, Drumheller B, et a. The sensitivity of gSOFA calcul ated at
triage and during emergency department treatment to rapidly identify sepsis patients. Sci Rep 2020;10(1):20395 [FREE
Full text] [doi: 10.1038/s41598-020-77438-8] [Medline: 33230117]

Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-Cooley O, et al. External validation of awidely
implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern Med 2021;181(8):1065-1070 [FREE
Full text] [doi: 10.1001/jamainternmed.2021.2626] [Medline: 34152373]

Bennett T, Russell S, King J, Schilling L, Voong C, Rogers N, et a. Accuracy of the epic sepsis prediction model in a
regional health system. ArXiv. Preprint posted online on February 19, 2019 2019 [FREE Full text]

Shashikumar SP, Josef CS, Sharma A, Nemati S. DeepAl SE—an interpretable and recurrent neural survival model for
early prediction of sepsis. Artif Intell Med 2021;113:102036 [FREE Full text] [doi: 10.1016/j.artmed.2021.102036] [Medline:
33685592]

Ivanov O, Molander K, DunneR, Liu S, Masek K, LewisE, et al. Accurate detection of sepsisduring emergency department
triage using machine learning. ArXiv. Preprint posted online on April 15, 2022 2023 [FREE Full text]

Sterling NW, Brann F, Patzer RE, Di M, Koebbe M, Burke M, et al. Prediction of emergency department resource
requirements during triage: an application of current natural language processing techniques. JAm Coll Emerg Physicians
Open 2020;1(6):1676-1683 [FREE Full text] [doi: 10.1002/emp2.12253] [Medline: 33392576]

Sterling NW, Patzer RE, Di M, Schrager JD. Prediction of emergency department patient disposition based on natural
language processing of triage notes. Int JMed Inform 2019;129:184-188. [doi: 10.1016/j.ijmedinf.2019.06.008] [Medline:
31445253]

Zhang X, Kim J, Patzer RE, Pitts SR, Patzer A, Schrager JD. Prediction of emergency department hospital admission based
on natural language processing and neural networks. Methods Inf Med 2017;56(5):377-389. [doi: 10.3414/M E17-01-0024]
[Medline: 28816338]

Barrett ML, Owens PL, Roemer M. Changesin emergency department visitsin theinitial period of the COVID-19 pandemic
(april—-december 2020), 29 states. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Statistical Brief
#298. Rockville, MD: Agency for Healthcare Research and Quality (US); 2006.

Boserup B, McKenney M, Elkbuli A. The impact of the COVID-19 pandemic on emergency department visits and patient
safety in the United States. Am J Emerg Med 2020;38(9):1732-1736 [ FREE Full text] [doi: 10.1016/j.ajem.2020.06.007]
[Medline: 32738468]

DevlinJ, Chang M, LeeK, ToutanovaK. BERT: pre-training of deep bidirectional transformersfor language understanding.
2019 Presented at: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers); June 2-7, 2019; Minneapolis, MN, USA.
Sanh V, Debut L, Chaumond J, Wolf T. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.
ArXiv. Preprint posted online on October 2, 2019 2019 [FREE Full text]

Chen T, Guestrin C. XGBoost: ascalabletree boosting system. 2016 Presented at: KDD '16: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining; August 13-17, 2016; San Francisco, CA,
USA p. 785-794. [doi: 10.1145/2939672.2939785]

Sundarargjan M, Taly A, Yan Q. Axiomatic attribution for deep networks. 2017 Presented at: ICML'17: Proceedings of
the 34th International Conference on Machine Learning—Volume 70; August 6-11, 2017; Sydney, New South Wales,
Australiap. 3319-3328.

Henry KE, AdamsR, Parent C, Soleimani H, Sridharan A, Johnson L, et al. Factorsdriving provider adoption of the TREWS
machine |learning-based early warning system and its effects on sepsis treatment timing. Nat Med 2022;28(7):1447-1454.
[doi: 10.1038/s41591-022-01895-7] [Medline: 35864251]

Abbreviations

Al: artificial intelligence

AUC: area under the receiver operating characteristic curve
BERT: Bidirectional Encoder Representation From Transformers
CDC: Centersfor Disease Control and Prevention

ED: emergency department

I CU: intensive care unit

ML: machine learning

NL P: natural language processing

https://ai.jmir.org/2024/1/e49784 JMIR Al 2024 | vol. 3| e49784 | p.201

(page number not for citation purposes)


https://core.ac.uk/reader/191343889?utm_source=linkout
http://dx.doi.org/10.1097/CCM.0b013e31827e83af
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23353941&dopt=Abstract
http://dx.doi.org/10.1007/s00134-003-1874-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12830377&dopt=Abstract
https://doi.org/10.1038/s41598-020-77438-8
https://doi.org/10.1038/s41598-020-77438-8
http://dx.doi.org/10.1038/s41598-020-77438-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33230117&dopt=Abstract
https://europepmc.org/abstract/MED/34152373
https://europepmc.org/abstract/MED/34152373
http://dx.doi.org/10.1001/jamainternmed.2021.2626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34152373&dopt=Abstract
https://arxiv.org/abs/1902.07276
https://europepmc.org/abstract/MED/33685592
http://dx.doi.org/10.1016/j.artmed.2021.102036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33685592&dopt=Abstract
https://arxiv.org/abs/2204.07657
https://europepmc.org/abstract/MED/33392576
http://dx.doi.org/10.1002/emp2.12253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33392576&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2019.06.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31445253&dopt=Abstract
http://dx.doi.org/10.3414/ME17-01-0024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28816338&dopt=Abstract
https://europepmc.org/abstract/MED/32738468
http://dx.doi.org/10.1016/j.ajem.2020.06.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32738468&dopt=Abstract
https://arxiv.org/abs/1910.01108
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1038/s41591-022-01895-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35864251&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Brannet d

WBC: white blood cell
XGBoost: Extreme Gradient Boosting

Edited by K El Emam, B Malin; submitted 08.06.23; peer-reviewed by L Prunelli; comments to author 10.07.23; revised version
received 15.08.23; accepted 16.12.23; published 25.01.24.

Please cite as.

Brann F, Serling NW, Frisch SO, Schrager JD

Sepsis Prediction at Emergency Department Triage Using Natural Language Processing: Retrospective Cohort Sudy
JIMIR Al 2024;3:e49784

URL: https://ai.jmir.org/2024/1/e49784

doi:10.2196/49784

PMID: 38875594

©F€lix Brann, Nicholas William Sterling, Stephanie O Frisch, Justin D Schrager. Originaly published in JMIR Al
(https://ai.jmir.org), 25.01.2024. Thisis an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the origina work, first published in IMIR Al, is properly cited. The complete bibliographic information, a
link to the original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

https://ai.jmir.org/2024/1/e49784 JMIR Al 2024 | vol. 3| e49784 | p.202

(page number not for citation purposes)

RenderX


https://ai.jmir.org/2024/1/e49784
http://dx.doi.org/10.2196/49784
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38875594&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Karpathakis et al

Original Paper

Learning From International Comparators of National Medical
Imaging Initiatives for Al Development: Multiphase Qualitative
Study

K assandra Karpathakis', BA, BSc, MPH; Emma Pencheon?, BA, MBBS, M Sc; Dominic Cushnan®, MBA

!Decimal .health, Boston, MA, United States
2Foreign, Commonwealth and Development Office, UK Government, London, United Kingdom
3NHS England, London, United Kingdom

Corresponding Author:

Kassandra Karpathakis, BA, BSc, MPH
Decimal .health

50 Milk Street

Boston, MA, 02109

United States

Phone: 1 6086285988

Email: kass.karpathakis@gmail.com

Abstract

Background: The COVID-19 pandemic drove investment and research into medical imaging platformsto provide datato create
artificial intelligence (Al) agorithms for the management of patients with COVID-19. Building on the success of England’s
National COVID-19 Chest Imaging Database, the national digital policy body (NHSX) sought to create a generalized national
medical imaging platform for the devel opment, validation, and deployment of algorithms.

Objective:  This study aims to understand international use cases of medical imaging platforms for the development and
implementation of algorithms to inform the creation of England’s national imaging platform.

Methods: The National Health Service (NHS) Al Lab Policy and Strategy Team adopted amultiphased approach: (1) identification
and prioritization of national Al imaging platforms; (2) Political, Economic, Social, Technological, Legal, and Environmental
(PESTLE) factor analysis deep dive into national Al imaging platforms; (3) semistructured interviews with key stakeholders; (4)
workshop on emerging themes and insights with the internal NHSX team; and (5) formulation of policy recommendations.

Results: International use cases of national Al imaging platforms (n=7) were prioritized for PESTLE factor analysis. Stakeholders
(n=13) from the international use caseswere interviewed. Themes (n=8) from the semistructured interviews, including interview
guotes, were analyzed with workshop participants (n=5). The outputs of the deep dives, interviews, and workshop were synthesized
thematically into 8 categories with 17 subcategories. On the basis of the insights from the international use cases, policy
recommendations (n=12) were developed to support the NHS Al Lab in the design and development of the English national
medical imaging platform.

Conclusions: Thecreation of Al algorithms supporting technology and infrastructure such as platforms often occursinisolation
within countries, let alone between countries. This novel policy research project sought to bridge the gap by learning from the
challenges, successes, and experience of England’s international counterparts. Policy recommendations based on international
learnings focused on the demonstrable benefits of the platform to secure sustainable funding, validation of algorithms and
infrastructure to support in situ deployment, and creating wraparound tools for nontechnical participants such as clinicians to
engage with algorithm creation. As health care organizations increasingly adopt technological solutions, policy makers have a
responsibility to ensure that initiatives are informed by learnings from both national and international initiatives as well as
disseminating the outcomes of their work.

(IMIR Al 2024;3:651168) doi:10.2196/51168
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https://ai.jmir.org/2024/1/€51168 JMIR Al 2024 | vol. 3| 51168 | p.203
(page number not for citation purposes)


mailto:kass.karpathakis@gmail.com
http://dx.doi.org/10.2196/51168
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

Introduction

Background

Medical imaging has been identified by many governments as
an especialy promising application for artificial intelligence
(Al) in clinical practice with the potential to enhance disease
screening, improve care outcomes, and reduce costs [1-5].
Optimizing Al capabilitiesrequires aggregating and streamlining
access to medical imaging data for machine learning (ML)
model training and validation and contextualized mechanisms
for deployment in clinical workflows.

During England's National Health Service (NHS) response to
the COVID-19 pandemic, the digital health agency (NHSX)
created the Nationa COVID-19 Chest Imaging Database
(NCCID). The NCCID isa“ centralized UK database containing
chest X-rays (CXR), Computer Tomography (CT) and Magnetic
Resonance Images (MRI) from hospital patients’ with
COVID-19 [6,7]. It was established to develop, validate, and
deploy Al and ML models for supporting the management of
patients with severe COVID-19. The creation of the NCCID
highlighted the merits and challenges of a centralized approach
for collating national imaging data[7].

TheNCCID led to aproposal for ageneralized national imaging
platform for the development, validation, and deployment of
Al and ML models in medical imaging. This platform was
envisaged to have three technical functions:

1 A datapipelineto facilitate the collection of datanationally
2. A trusted research environment (TRE) to provide accessto
national datato build and validate new Al and ML products
3. A deployment platform to act asan “app store” for the most
up-to-date Al and ML models for users in heath care
facilities
To support the safe, ethical, and effective creation and
deployment of a national imaging platform, the NHS Al Lab
developed complementary policy and regulatory initiatives,
including across-regulatory serviceto guide devel opersthrough
the regulation of their Al products[8], understanding of public
attitudes toward sharing health data for Al development, and
an Algorithmic Impact Assessment tool to identify potential
societal impacts of Al products[9].

Beyond understanding the policy and infrastructural
requirements, it is important to assess the strengths and
weaknesses of such anational approach to produce Al and ML
modelsfor imaging that can be deployed in clinical workflows.
To make such an assessment, the NHS Al Lab anayzed
international effortsto build similar medical imaging platforms
in both private and public organizations, some of which were
associated with national effortsto diagnose and manage patients
with COVID-19. The NHS Al Lab used the outputs of the
research to understand the approaches taken and lessons|earned
and inform the design of England’s national imaging platform.

Objectives
We sought to identify and understand international use cases

of and proposals for medical imaging platforms to streamline
the innovation-to-deployment journey for health Al modelsin

https://ai.jmir.org/2024/1/€51168
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imaging. We aimed to understand how imaging for Al efforts
were structured, identify the constituent parts of the initiatives
(eg, technical aspects, users and marketplace, and
commercidization), and understand the implications of
government policy and regulation. We used this analysis of
international use cases to formulate policy recommendations
for England’s nascent national Al imaging platform.

Methods

Overview

Thisresearch was conducted by NHSX, theformer digital health
agency and technology policy arm of NHS England. NHSX
was merged into the NHS England transformation directorate
in 2022. The Strategy and Policy Team at the NHS Al Lab,
which was embedded inside NHSX, led and completed the
study. This project was conducted between September 2020
and March 2021.

Phase 1: Identification and Prioritization of National
Al Imaging Platforms

We conducted a preliminary scan to identify efforts to create
national Al imaging platformsin other countries that the NHS
Al Lab could analyze in depth.

Asthe United Kingdom was poised to lead the G7 in 2021, we
started with fellow G7 countries: Canada, France, Germany,
Italy, Japan, and the United States of America. We then scanned
non-G7 countries known within digital health policy circlesfor
their digital health approaches or that had previously responded
to an NHSX survey on the use of Al by Global Digital Health
Partnership (GDHP) member countries [10]: Australia, Brazil,
China, Estonia, Hong Kong, India, Republic of Korea, Rwanda,
Singapore, Sweden, Uganda, and Uruguay. Finally, we scanned
initiatives in multilateral collaborations (World Health
Organization, I nternational Telecommunication Union, and the
GDHP) and major private organizations (eg, GE Healthcare and
Google).

National Al imaging initiativeswereidentified by 2 researchers
(Abhishek Mishraand EP) through (1) atargeted Google search
for each country using [ country] and the keywords Al medical
imaging platform, medical imaging data, medical Al platform,
Al radiology, or COVID-19 medical image Al; (2) a targeted
Google search for multilateral collaborationsand major private
organizations using [ hame of organization] and the keywords
Al medical imaging platform, medical imaging data, medical
Al platform, Al radiology, or COVID-19 medical image Al; and
(3) ageneral search on Google, Google Scholar, Twitter, and
One HesalthTech using the keywords medical imaging Al
platform, medical imaging platform, national medical imaging
Al platform, or medical imaging Al marketplace. For each
search, the first 5 pages of the results were scanned owing to
time and resource limitations.

We scored each initiative in comparison with the United
Kingdom's context to prioritize some for the deeper dive in
phase 2. Each of the following criteria (n=4) was scored from
similar (score=3) to not similar (score=1); initiatives with the
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highest total score were deemed most similar to that of the
United Kingdom:

1. Similarity of the medical imaging platform to the United
Kingdom'’s proposed initiative: medical imaging data only
versus additional health data, TRE built on top of data to
allow for model development, data consolidated in a
centralized location or alternative approaches such as
federated learning, and parallel building of deployment
platform.

2. Size of market: using the country population as a proxy —
=50 million, 10 to 50 million, and 0 to 10 million.

3. Future trade importance to the United Kingdom: priority
markets identified by the NHS Director of Al based on
track record of digital health initiatives (note that, at the
time of the study, the United Kingdom wasthe Chair of the
G7, and there was strong political interest in the potential
for health Al to bolster the United Kingdom'’ strade agenda).

4. Regulatory and ecosystem similarity to that of the United
Kingdom based on the following: provincial versus national
digital health organization, single-payer versus multipayer
system, and regulatory approach to Al.

Phase2: Deep Divelnto National Al Imaging Platforms

For the prioritized initiatives, we conducted a deep dive using
the Political, Economic, Social, Technological, Legal, and
Environmental (PESTLE) factors framework. PESTLE is a
common tool used in policy analysisto gain an overview of an
industry [11].

Theamsof thedeep divewereto (1) identify reliable and robust
information to inform the understanding of theinternational use
case; (2) identify hypotheses, gaps, and insights on the Al
imaging initiatives for validation during stakeholder interviews,
and (3) inform the creation of a deductive framework for the
analysis of semistructured interviews. We aso identified
stakeholders leading Al initiatives to approach for the
semistructured interviews in phase 3.

Phase 3: Semistructured I nterviews

Semistructured interviews were conducted to understand each
prioritized initiative (eg, dataused and intended users); its social
and political context (eg, regulatory landscape, stakeholders,
and public trust), data handling (eg, data and privacy laws),
funding sources, and commercialization; and thelessonslearned
during its development. The discussion guide (Multimedia
Appendix 1) was tailored to each country’s unique imaging
platform, including the validation of any gaps or insights
identified in phase 2.

The interviews were conducted by one principal researcher
(KK) with one supporting researcher (EP). Informed consent
was obtained from interview participants, and they approved
the selected quotes for publication. The interviews lasted up to
1 hour and were audio recorded, and detailed notes were taken.
Transcription and tranglation services were provided by an
independent agency. Only one country (Singapore) required the
use of translation services to conduct the interview. All other
interviews were conducted in English. Both the detailed notes
and transcripts from the interviews were analyzed.
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The interviews were analyzed using a deductive framework
with codes identified from the desk research deep dives
(Multimedia Appendix 2). In total, 2 researchers (KK and EP)
analyzed each interview independently and compared their
coding. Intercoder reliability (ICR) was cal cul ated to assessthe
reliability of the coding protocol and thematic analysis. ICR
was caculated by comparing the level of agreement and
disagreement across the coding for 5 pages per transcript [12].

Phase 4: Workshop With NHS Al Lab National
Imaging Platform Team

A workshop was conducted with the NHS Al Lab national Al
imaging platform team members who were conducting the
discovery phase[13]. The workshop aimswereto (1) establish
top areas of interest from the perspective of the discovery team,
(2) explore why these areas are important to the team, and (3)
stimulate the discovery teams' interest in applying the lessons
learned from other countries.

The workshop was facilitated by one principal researcher (KK)
with one supporting researcher (EP). The workshop lasted 90
minutes, and audio recordings and detailed notes were taken.
Participants (n=5) used the web-based Padlet and Jamboard
(Google) post-it and “like” functionalities. If required, the
researchers noted the participants' points on their behalf. The
workshop audio was transcribed and analyzed.

An overview of the initiatives (n=6) from phase 2 and phase 3
was provided to the attendees using Jamboard. The countries
were treated as individual case studies rather than grouped
together because of the large degree of heterogeneity between
the countries.

A total of 8 themes from the deductive framework were used
to guide the workshop: purpose; users; organizational;
commercialization; data; incentives; building trust; and law,
policy, and regulation. Quotes from the semistructured
interviews with stakehol ders (phase 3) from each initiative were
mapped to the 8 themes for discussion at the workshop.

The nominal group technique was used to identify priority
guotes and insights[14]. Participants were asked to vote on the
guotes that resonated or were of interest to them using Padlet’s
“like” functionality. Each participant had 6 votes per initiative.
Voting indicated the discovery team’s priorities and fueled
discussions.

The outputs of the deep dives, interviews, and workshop were
synthesized thematically into 8 categorieswith 17 subcategories.
The analysis was inspired by a user-centered design insight
format [15], which states the context and background, explains
thelearning, explainstheroot cause (the why), and explainsthe
motivation behind why the learning has occurred and the
ramifications for the NHS Al Lab's proposed national medical
Al imaging initiative.

Phase 5: Formulating Recommendations

The researchers (KK and EP) jointly synthesized all the data
gathered from phase 3 to phase 4 to formul ate recommendations
fortheNHSAI Lab national Al imaging initiative. Thisinvolved
drawing out themes based on the original thematic framework,
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identifying learnings pertinent to the United Kingdom, and
framing the resulting insightsinto actionable recommendations.

Final recommendations were presented to the Head of Al
Imaging and Director of Al at theNHS Al Labfor consideration.
TheHead of Al Imaging and the national Al imaging discovery
team selected the recommendations that were relevant and
actionable for the discovery and future phases of the project.
The research team was not privy to this selection.

Ethical Consider ations

Internal and external stakeholders were consulted during this
policy research and development. Informed consent was
obtained from interview and workshop participants. Per NHSX's
standard practice, independent ethical review was not required
for thisresearch informing policy asit poses negligible risk.

Results

Phase 1. Identified National Al Medical Imaging
Platforms

Numerous initiatives (n=34) were identified from preliminary
scanning. Most initiatives were country based (21/34, 62%),
and the remainder were from major private organizations (10/34,
29%) or multinational organizations (3/34, 9%). Some of the
initiatives (7/34, 21%) were prioritized for a deep dive: (1)
Digital Health and Discovery Platform (DHDP; Canada), (2)
national medical image database (China), (3) Hospital Authority
Data Collaboration Laboratory (HADCL; Hong Kong), (4)
Research Center for Medical Big Data (Japan), (5) Al Medical
Imaging Platform (Singapore), (6) Analytic Imaging Diagnostics
Arena (AIDA; Sweden), and (7) Medical Imaging and Data
Resource Center (MIDRC; United States).

Phases 2 and 3: Overview of Prioritized National Al
Imaging Platforms

In the following sections, we provide a brief overview of each
initiative. Multimedia Appendix 3 [16-44] provides a detailed
overview of each country’s initiative complemented with
findings from the PESTLE analysis and semistructured
interviews.

Canada: DHDP

This pan-Canadian initiative was set up to create a nationwide
framework to digitally enable research that advances
next-generation precision medicine technologies with an
emphasison cancer and improving health outcomesfor patients.
The DHDP comprises >90 consortium partners spanning
academia and the private sector. The initiative focused on
numerous types of medical data rather than solely on medical
imaging [45] and undertook novel research in federated learning
technologies that reflected Canada’s stringent attitudes toward
data privacy and sharing.

China: National Medical | mage Database

In September 2020, plans were announced for the creation of a
standardized national medical image database. The Chinese
national medical image database was approved by the National
Health Commission [19] to enable hospitals to share patient
information and medical images and support the training and
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development of Al technology for health care. At the time of
the study, it was unclear what technology stack the Chinese
national imaging database would use and how the initiative
would overcome issues of data digitization, cybersecurity, and
commercialization.

Hong Kong: HADCL

The HADCL was established to support the formulation of
health care policies, facilitate biotechnological research, and
improve clinical and health care services. The HADCL isthe
flexible and interactive data-sharing channel of Hong Kong's
Hospital Authority, with a growing focus on the development
of Al and ML dgorithms. It is a full-service offering
encouraging researchers to partake in collaborative health data
projects in a controlled environment using the Hospital
Authority’s extensive, longitudinal data [46,47].

Japan: Research Center for Medical Big Data

Japan’s Research Center for Medical Big Dataisaplatform for
Al technology research and development, including a
cloud-based platform for hosting medical imaging big dataand
analyzing medical images. As of 2019, the platform contained
>10 million medical images, with participation from at |east 60
hospitals. In line with policy at the time of the study, the
platform’s primary user base was academia, and projects were
for research purposes only.

Singapore: Al-Enabled Medical Imaging Platform

In October 2020, the Integrated Health Information System
health |aboratory issued acall for collaboration between partners
to cocreate an “Al-enabled Medical Imaging Platform” aimed
at operationalizing and exploring Al models and applications
for medical imaging. The platform will be open and vendor
neutral, thereby enabling the deployment of Al models and
products from different sources to assist with clinicians work.

Sweden: AIDA

AIDA is a dedicated initiative for research and innovation in
Al and medical image analysisin Sweden. Theinitiative brings
together academia, health care, and industry to translate
innovation into Al-based decision support solutionsfor imaging
diagnostics. The previous mandated creation of national
registries containing >5 TB of heath data provided the
foundation for the AIDA initiative.

United States: MIDRC

The MIDRC is a multi-ingtitutional initiative established in
response to the COVID-19 pandemic. The aim was to foster
ML innovation through the sharing of imaging and associated
clinical dataregarding COVID-19 [48]. At thetime of the study,
agreements for sharing relevant medical imaging datawerein
the process of being signed with several sites, but no datawere
being hosted on the platform.

Phases 3 and 4: Derived Themesand I nsights

Stakeholders (n=16) representing 7 initiatives were approached
for interviews. Stakeholders (n=13) from 6 initiatives accepted
the interview invitations (13/16, 81% acceptance rate). The
stakehol ders from participating countries were 38% (5/13) from
Canada, 8% (1/13) from Hong Kong, 23% (3/13) from Japan,
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8% (1/13) from Singapore, 8% (1/13) from Sweden, and 15%
(2/13) from the United States. Stakeholders from China (3/16,
19%) did not respond to the request for an interview.

For theinterview coding, the ICR between the researchers (KK
and EP) was calculated to be 0.41, indicating moderate reliability
[12,49]. Theoutputs of the deep dives, interviews, and workshop
were synthesized thematically into categories (n=8) with
subcategories (n=17).

Multimedia Appendix 4 presents the categories, subcategories,
and corresponding thematic synthesis within each of the other
countries' initiative including key insights, quotes, and learnings.

Phase 5: Recommendations

Overview

We provided 12 recommendations for the NHS Al Lab’s
proposed national Al imaging platform. Each recommendation
is grounded in the themes and insights from phase 2 to phase 4
(see Multimedia Appendix 4). The corresponding themes for
each recommendation are also provided.

Narrative

Recommendation 1: The NHS Al Lab develop a
purposeful narrative of why and how a national
medical imaging initiative is necessary, outlining
what health needs it will meet and supporting this
with demonstration of its benefit and potential

Developing a strong value proposition should be married with
demonstrable benefit. The narrative should be cross-cutting,
speaking not only to purpose but also to trust and incentives,
with transparency regarding the drivers of theinitiative. Previous
work by theNHS Al Lab on behalf of the GDHP has also argued
that countries should take a“ needs based” approach to Al-driven
technology development to create both maximal benefit on
health outcomes and foster buy-in and support from stakehol ders
and the public [47,50].

A purposeful narrative for the NHS Al Lab’s national medical
imaging initiative will support interdisciplinary collaboration
and ensure long-term palitical, financial, and socia support for
the initiative based on a clear understanding of its importance
and utility to the health system. An important aspect of this
narrative is to reference the value of theinitiative asasocial or
public good that creates public value [51].

The corresponding themes for this recommendation are (A)
demonstrable benefit of the initiative, (B) health system needs
as the primary driver, (C) community and shared purpose, and
(O) transparency and communication. transparency and
communication.

Recommendation 2: The NHS Al Lab moves away
fromthe language of “ platform” to talking about the
national medical imaging initiativeasan “ initiative’
and community space for growing the United
Kingdom's understanding and ability to use Al in
medical imaging
The United Kingdom’s national medical imaging “initiative”
should be carefully framed, using language that reflects what
is offered and conveys mindset and purpose. The connotations
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of “national” in the initiative name given the involvement (or
lack thereof) of the Devolved Administrations (DAS) should be
considered. In addition, the NHS Al Lab should develop an
approach for involving the DAS.

The corresponding themes for this recommendation are (C)
community and shared purpose and (D) embracing and enabling
the central role of health care professionals.

Users and Service Offering

Recommendation 3: The NHS Al Lab develops
wraparound services to maximize engagement and
capitalize on the expertise of varied users; by
removing the need to technically upskill in Al
development while also providing opportunities for
usersto do so if they wish, the initiative can broaden
participation and avoid disincentivizing users with
different and valuable areas of specialty

The NHS Al Lab should invest in wraparound services,
specifically offering tools and professional technical skills that
are tailored to fill a gap that users, such as hedlth care
professional s, have when it comesto developing Al. It appears
frominternational comparators that the main draw and success
has not been the platform itself but the supportive services to
enable users to engage, collaborate, and develop Al-driven
technologies regardless of their technical expertise. Examples
include but are not limited to clinical fellowships on health data,
networking or pairing clinicians with data scientists, training
coursesonwhat is Al and how to develop models, and low-code
and no-code Al model development tools. The NHS Al Lab
should explore opportunitiesto build these wraparound services
from existing programs in the digital health ecosystem.

The corresponding themes for this recommendation are (D)
embracing and enabling the central role of health care
professionals, (E) recognizing that users are not discrete groups,
and (F) importance of wraparound services.

Recommendation 4: The NHS Al Lab continues to
embrace interdisciplinary work while designing,
developing, and implementing the national medical
imaging initiative; the inherent tensions and
per spectives between disciplines are needed to deliver
on health system needs

Interdisciplinary work is central to harnessing the breadth of
expertise required to build and sustain an initiative that truly
addresses health system needs. This meansembracing the central
role of health care professionals and ensuring the participation
of people who have asystem view of health and social care, as
well asthose with frontline experience who will be the ultimate
end users of any Al products developed on the platform.
Prioritizing user-centered design and health care professionals
experience meansthat technical expertise must take animportant
facilitative and instructive role to both guide and learn from
health care professionals about how to leverage Al-driven
technologies in the health system. By facilitating
interdisciplinary work, radiologists' expertise can be applied to
shore up the quality and appropriateness of the imaging data
used. We recommend that active steps be taken to foster
collaborative working relationships across disciplines drawing
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on lessons for interdisciplinary collaboration outlined by
Blandford et a [52] and on the examples of activities run in
Sweden and Japan.

The corresponding themes for this recommendation are (B)
health system needs as the primary driver for Al development,
(D) embracing and enabling the central role of health care
professionals, and (E) recognizing that users are not discrete
groups.

Sustainability and Future-Proofing

Recommendation 5: The NHS Al Lab consider the
financial sustainability of the national medical
imaging initiative from the outset and how this maps
to the proposed commercial model

All the international comparators who did not have a clear
commercial model raised concernsabout financial sustainability.
It is worth bearing in mind that demonstrable benefit does not
guarantee enduring government support with respect to funding.
We recommend that the NHS Al Lab national medical imaging
initiative considers how the work will be sustained beyond
current funding and ensures that optionsfor commercialization
are not excluded by virtue of how the initiative is designed (ie,
data-sharing arrangements that preclude commercialization).
For the NHS Al Lab'’s national medical imaging initiative to
have longevity, it is important to keep as many commercial
options on the table as possible, including generating revenue
from certain aspects of theinitiative and exploring public-private
partnerships. This could include providing data subsetsto fulfill
specific needs, such as validation, that can be commercialized
as adistinct offering.

The corresponding themes for this recommendation are (I)
ensurefinancia sustainahility, (J) differing or absent commercial
models, and (L) subsetting data offerings.

Recommendation 6: The NHS Al Lab continues to
explore different commercial models for the national
medical imaging initiative with a focus on how it
might commercialize aspects of the initiative rather
than taking an all-or-none approach

Commercialization is likely necessary to ensure the financial
sustainability of the initiative. Commercial models were an
afterthought for many international comparators, who conveyed
the sense that commercialization was viewed as being in
opposition to the public good. We recommend thinking about
commercial options early on, not only from a practical
perspective of building the initiative with thisin mind but also
to construct a narrative that can interweave commercialization
and private sector involvement with the public good. The NHS
Al Lab should continue working with internal teams (ie, the
NHSX Centrefor Improving Data Collaboration) to ensure that
the NHS gains fair value for the public from commercial
arrangements.

The corresponding themes for this recommendation are (I)
ensurefinancia sustainahility, (J) differing or absent commercial
models, and (N) afocus on public and socia good.
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Recommendation 7: The NHS Al Lab explore and
potentially adopt some of the future-proofing
mechanisms used by international comparators

Sweden and the United States exemplified waysto future-proof
data-sharing mechanisms, including specific clauses in
data-sharing agreements that granted them the power to revoke
data access or extend it to future offerings. This is important
for safeguarding against issues further down the road and
streamlining the process of setting up data-sharing agreements.
Sweden was cognizant that currently, anonymized data might
become rei dentifiable with advancesin dataanaysis and wanted
to mitigate thisrisk from the outset through the ability to revoke
access at any time. We also recommend that, if and where
possible, the initiative infrastructure is future-proofed and
reusable so that it will be fit for purpose in years to come and
offer benefits to other similar initiatives.

The corresponding themes for this recommendation are (M)
future-proofing mechanisms for data sharing and (N) a focus
on public and social good.

Recommendation 8: The NHS Al Lab balances the
need to deliver at pace with the up-front investment
of time and effort required to ensure that the resulting
initiative is sustainable and future-proofed

A variety of pressures to deliver at pace were identified by
international colleagues, which at times nudged countriestoward
“kicking the can down the road” when it came to thorny
challenges such as commercialization. Although acertain level
of paceis necessary to demonstrate benefit and garner support,
this should be tempered to ensure an up-front investment of
time and effort that delivers sustainable returns.

The corresponding themes for this recommendation are (A)
demonstrable benefit of the national medical imaging initiative
and (G) tempering the pace of devel opment.

Recommendation 9: The NHSAI Lab consider under

what conditions it would be acceptable and feasible

to move beyond human-in-the-loop approachesinthe

national medical imaging initiative's resultant

Al-driven technologies
All countries maintained the need for a human to be “in the
loop” to ensure the safety, accountability, and acceptability of
Al development and products. Human-in-the-loop refers to
model sthat require human interaction, whereby human oversight
can intervene and determine the outcome of a process or event.
However, there is an undertone that moving beyond
human-in-the-loop approaches is the future state of Al-driven
technology in health and care (in some conditions, not yet
defined). We recommend that the NHS Al Lab start considering
not only the safety and accountability of systems without
humans and when this would be deemed appropriate but also
the public perception of not having unique or individualized
care.

The corresponding themes for this recommendation are (K)
common and continuing data challenges, (O) transparency and
communication, and (P) keeping humans in the loop.
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Recommendation 10: The NHS Al Lab accounts for

the environmental impact of the national medical

imaging initiative and establishes how it aligns with

a sustainable health and social care system
No international comparators had considered the environmental
impact of their initiative or how they were positioned in relation
to delivering a sustainable health and care system. Thispresents
an opportunity for the United Kingdom to lead in this domain
considering the health system needs not only for now but also
for the future. We recommend that the NHS Al Lab develop an
understanding of how the national medical imaging initiative
could affect both positively and negatively an economically and
environmentally sustainable health system. Thisisan important
element of future-proofing the work and ensuring that it is fit
for purpose in the coming decades (note: the NHS Al Lab
strategy team has started considering how Al could contribute
to the NHS goal of reaching net zero by 2045 and to an
environmentally sustainable health and care system [53]).

The corresponding themes for this recommendation are (B)
health system needs as the primary driver and (N) a focus on
public and socia good.

Policy and Regulation

Recommendation 11: The NHS Al Lab leverage its
privileged position as the guiding health technology
organization within both the civil serviceand theNHS
to continue advocating and driving policy and
regulatory change; the United Kingdom's national
medical imaging initiative is a tangible use case for
uncovering theissues and providing exampl es of how
they could be solved

All countries recognized that their current policies and
regulations were not fit for the purpose of Al development and
implementation in clinical settings. There was a range of
mindsets regarding how to balance operating within constraints
and advocating to change them. The NHS Al Lab is uniquely
positioned within the government to drive the necessary changes
in the United Kingdom making use of existing collaborations
with regulatory bodies and DAs. We recommend that the
national medical imaging initiative, with clearly articulated and
demonstrable benefitsto the health system, be used as evidence
for this advocacy work.

The corresponding themes for this recommendation are (H)
building on existing infrastructure and resources and (Q)
advocating for policy, regulatory, and legal frameworks that
arefit for purpose.

Recommendation 12: The NHS Al Lab leverage the

work already undertaken in validation of Al models

as a unique selling point for the United Kingdom's

national medical imaging initiative
No international comparators had progressed to the deployment
and widespread adoption of Al-driven technologies devel oped
through their initiatives. One of the bottlenecksfor thisisaclear
validation process, an area in which the NHS Al Lab is well
placed to take the lead given the existing work that has been
donein this domain. We recommend that thisis capitalized on
as a unique selling point for the national medical imaging
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initiative to demonstrate an innovation funnel that runs smoothly
through to the deployment of assured technologies.

The corresponding themes for this recommendation are (H)
building on existing infrastructure and resources and (Q)
advocating for policy, regulatory, and legal frameworks that
arefit for purpose.

Discussion

Principal Findings

The NHS Al Lab sought to learn from countries developing
medical  imaging  platforms to  streamline  the
innovation-to-deployment journey for Al and ML algorithms
for medical imaging. The research team conducted secondary
and primary research with use cases from multiple countriesto
develop adeep understanding of the approachesfor structuring
amedical imaging platform program, how to set up supportive
policy and regulatory initiatives, and form relationships with
international stakeholders.

In addition to providing 12 recommendations for the NHS Al
Lab to implement, the research team identified five areas in
which the NHS Al Lab could offer a unique value proposition:

1. Galvanizing the aready operating proof of concept, the
NCCID program, to demonstrate benefit and secure stable
United Kingdom government funding and support.

2. Within the new medical imaging platform, build in the
ability to validate Al and ML algorithms as well as deploy
them in hedth care settings. Only a few international
initiatives built in the ability to validate algorithms and
create adeployment pipeline, whichis crucial for ensuring
the effectiveness of algorithms during implementation.

3. Create wraparound offerings tailored to researchers,
developers, and private companies operating in the United
Kingdom. This may include tools to facilitate the creation
of agorithms, training and workshops for upskilling,
computational power, legal and regulatory support, and
demand signaling for areas of clinical specialty in which
thereis high demand for Al and ML development.

4. Consider the environmental impact and sustainability of
the medical imaging platform and the resultant carbon
output from the outset.

5. Publicly demonstratethat the NHS Al Lab hasincorporated
collaborative international learnings and best practices.

Strengths

The primary strength of the project was the NHS Al Lab’s
openness to learning from other countries. Throughout our
engagement with selected countries (Canada, Hong Kong, Japan,
Singapore, Sweden, and the United States), we established that
no other initiative had conducted international landscaping to
inform strategy and implementation. Our work highlights the
benefit of not reinventing the wheel in health Al initiatives but
reaching out to build on the experience and expertise of others.

Second, the internal discovery team responsible for designing
and building the NHS Al Lab’s medical imaging platform was
engaged throughout the delivery of this project. Their
engagement culminated in the workshop to dlicit feedback and
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prioritize insights, followed by the selection of final
recommendations. Often, policy and strategy research is
conducted before or separately from the team creating and
building a product. Policy and strategy research conducted in
isolation may not provide practical and usable recommendations
that can be taken forward during product devel opment.

Limitations

Weidentified 3 key limitations of thisproject. First, no literature
review was conducted to inform the research. Owing to the
novelty of creating medical imaging platforms for Al
development, we instead decided to conduct a scan of potential
international efforts via targeted Google, Google Scholar, and
social media searches.

Second, the ICR reliability indicates some variation in coding
assignments between the 2 researchers (KK and EP). Coding
variability could be attributed to (1) the level of experience
analyzing qualitative research and (2) the depth of understanding
of the topics discussed by the interview participants. It is
important to note that the resultant ICR of 0.41 indicates
moderate reliability, which fallswithin tolerance as outlined by
Landis and Koch [49] and O’ Connor and Joffe [12].

Karpathakis et al

Third, the study did not delve into the role and importance of
postmarket monitoring or surveillance. In some interviews, it
appearsthat thistopic was not top of mind asthey wereworking
on initiatives that were in the beginning stages and algorithms
were not yet actively deployed into the market for clinical use.
However, since the completion of this project, the NHS Al Lab
has funded the United Kingdom Medicines and Healthcare
products Regulatory Agency to deliver several work packages,
including updating | egid ation to require more robust postmarket
surveillance for software as a medical device [54].

Conclusions

Policy makersand digital devel opersinternationally are chasing
the potential for Al and ML algorithmsto transform health care,
with medical imaging seen as low-hanging fruit for realizing
this ambition. Algorithms in health care are not confined to
national borders, so how this ambition is realized by each
country is particularly important. This paper outlines work
undertaken by the NHS Al Lab to ensure that the investment
in and creation of a generalized national medical imaging
platform for the innovation and deployment of Al and ML
algorithmsin England isinformed by international experience.

Acknowledgments

First, the authors would like to thank the stakeholders from each initiative for participating in this research. The authors learned
alot from each and every one of them and value their contributions. Second, the authors would like to thank the NHS Al Lab at
NHS England, formerly at NHSX, for supporting the publication of this policy research and embedding the recommendations
into the decision-making processfor England’s national imaging platform efforts. Finally, the authorswould like to acknowledge
Abhishek Mishra, who supported the earlier stages of the research while in a PhD intern placement at the NHS Al Lab and was
funded by a Wellcome Trust doctoral scholarship. All research was conducted by staff members employed by or deployed to
NHSX. No external funding was received to conduct the research. DC, Director of Al at the NHS Al Lab, NHS England, isthe
guarantor of the publication.

Authors Contributions

KK conceptualized and supervised all stages of this project, including securing project resources, data curation, and project
administration. DC wasthe main NHSX stakeholder and lead for the conceptuali zation and devel opment of the National COVID-19
Chest Imaging Database and national artificial intelligenceimaging platform. KK devel oped the research methodology with input
from Abhishek Mishra and conducted this research alongside Abhishek Mishra and EP. EP and KK developed the discussion
guide and deductive thematic analysis coding framework for the semistructured interviews. KK was the lead interviewer, and EP
was the second interviewer and notetaker. KK and EP devel oped the workshop materials. KK was the lead workshop facilitator
with support from EP. Transcription and translation services were provided by Prestige Network. KK and EP completed the
thematic analysis and data synthesis. KK wrote the first draft of the manuscript. All the authors contributed to the drafting and
editing of the manuscript and have approved the final version.

Conflictsof Interest

KK and EP were working at NHSX at the time of the study. DC was employed at NHSX at the time of the study and at NHS
England at the time of writing.

Multimedia Appendix 1
Template discussion guide.
[DOCX File,19KB - ai_v3i1e51168 appl.docx ]

Multimedia Appendix 2
Deductive thematic and coding framework.
[DOCX File, 34 KB - ai_v3i1e51168 app2.docx ]

https://ai.jmir.org/2024/1/€51168 JMIR Al 2024 | vol. 3| e51168 | p.210

(page number not for citation purposes)


https://jmir.org/api/download?alt_name=ai_v3i1e51168_app1.docx&filename=7bf8c4e166dc981403b3c175537ad06d.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app1.docx&filename=7bf8c4e166dc981403b3c175537ad06d.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app2.docx&filename=4c10563cff9757a8eee28d1dfe24f52a.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app2.docx&filename=4c10563cff9757a8eee28d1dfe24f52a.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Karpathakis et al

Multimedia Appendix 3
Description of international initiatives.
[DOCX File, 42 KB - ai_v3i1e51168 app3.docx ]

Multimedia Appendix 4
Thematic synthesis.
[DOCX File, 207 KB - ai_v3i1e51168 app4.docx ]

References

1.  AlCan 2020 CIFAR Pan-Canadian Al strategy impact report. Canadian Institute for Advanced Research. 2020. URL: https:/
[cifar.calwp-content/uploads/2020/11/A 1 Can-2020-CI FA R-Pan-Canadian-Al - Strategy-I mpact-Report. pdf [accessed
2020-09-10]

2. AudrdiaaAl action plan. Commonwealth of Australia. 2021 Jun. URL: https.//wp.oecd.ai/app/uploads/2021/12/
Australia Al_Action Plan 2021.pdf [accessed 2020-09-10]

3. Nationa strategy for artificial intelligence. National Ingtitution for Transforming India Aayog. 2018. URL: https://niti.
gov.in/sites/defaul t/files/2019-01/National Strategy-for-Al -Discussion-Paper.pdf [accessed 2020-09-10]

4. Datasaveslives: reshaping health and socia care with data. Department of Health and Social Care, Government of UK.
2022 Jun 15. URL : https.//www.gov.uk/government/publications/data-saves-lives-reshaping-heal th-and-social -care-with-datal
data-saves-lives-reshaping-health-and-social -care-with-data [ accessed 2020-09-10]

5. HHSAttificial Intelligence (Al) strategy. US Department of Health and Human Services. 2022 Jan 10. URL : https.//www.
hhs.gov/about/agencies/asal/ocio/ai/strategy/index.htm [accessed 2020-09-20]

6. Nationa COVID-19 Chest Image Database (NCCID). NHSX & GitHub. URL : https://nhsx.github.io/
covid-chest-imaging-database/ [accessed 2020-09-01]

7.  CushnanD, BerkaR, Bertolli O, Williams P, Schofield D, Joshi |, et a. Towards nationally curated data archivesfor clinical
radiology image analysis at scale: Learnings from national data collection in response to a pandemic. Digit Health
2021;7:20552076211048654 [ FREE Full text] [doi: 10.1177/20552076211048654] [Medline: 34868617]

8.  Themulti-agency advisory service (MAAS) - Al regulation - NHS transformation directorate. National Health Service,
UK. URL: https://transform.england.nhs.uk/ai-lab/ai-1ab-programmes/regul ating-the-ai -ecosystem/
the-multi-agency-advice-service-maas/#about [accessed 2020-10-01]

9.  GrovesL. Algorithmic impact assessment: a case study in healthcare. Ada Lovelace Institute. 2022 Feb 8. URL: https./
/www.adal ovel acel nstitute.org/report/al gorithmi c-impact-assessment-case-study-heal thcare/ [accessed 2022-04-30]

10. Joshi I, Morley J. Artificial Intelligence: how to get it right: putting policy into practice for safe data-driven innovation in
health and care. National Health Service X. 2019 Jan 01. URL : https:/transform.england.nhs.uk/ai-1ab/explore-all-resources/
understand-ai/artificial-intelligence-how-get-it-right/ [accessed 2023-11-30]

11. Aguilar FJ. Scanning the Business Environment. New York, NY: MacMillan Co; 1967.

12.  O'Connor C, Joffe H. Intercoder reliability in qualitative research: debates and practical guidelines. Int JQua Methods
2020 Jan 22;19:160940691989922 [ FREE Full text] [doi: 10.1177/1609406919899220]

13.  How the discovery phase works. Government Digital Service, UK. 2021 Jun. URL: https.//www.gov.uk/service-manual/
agile-delivery/how-the-discovery-phase-works [accessed 2020-11-30]

14.  Nomina Group Technique (NGT) - nominal brainstorming steps. American Society for Quality. 2020. URL: https.//asq.
org/quality-resources/nominal -group-technique [accessed 2020-10-30]

15.  Anderson N, McKhann E. How to write compelling user research insightsin 6 steps. Dscout. 2020. URL : https://dscout.
com/peopl e-nerds/writing-user-insights [accessed 2021-03-10]

16. IpS,LiuT, Hodgett S. Machinelearning and big datalaws and regulations. Global Legal Insights. 2021. URL: https.//www.
globallegalinsi ghts.com/practi ce-areas/ai -machine-learning-and-big-data-laws-and-regul ations/canada [ accessed 2020-10-01]

17. Innovation, science and economic development canada programs strategic innovation fund. Innovation, Science and
Economic Development Canada, Government of Canada. 2022 Dec. URL : https.//ised-isde.canada.ca/site/
strategic-innovation-fund/en [accessed 2020-09-03]

18. Webster G. Full trandation: China's 'new generation artificial intelligence development plan' (2017). New America. 2017
Aug 01. URL: https://www.newamerica.org/cybersecurity-initiative/digichina/blog/
full-trand ati on-chinas-new-generation-artificial -intelligence-devel opment-plan-2017/ [accessed 2020-09-30]

19. Feng C. Chinaenhances smart health care with first national medical image database. South China Morning Post. 2020.
URL: https://www.scmp.com/tech/policy/article/3102534/
china-enhances-smart-heal th-care-first-national -medical -image-database [accessed 2020-11-30]

20. Sindermann C, ShaP, Zhou M, Wernicke J, Schmitt HS, Li M, et al. Assessing the attitude towards artificia intelligence:
introduction of ashort measurein German, Chinese, and English language. Kiinstl Intell 2020 Sep 23;35(1):109-118 [FREE
Full text] [doi: 10.1007/s13218-020-00689-0]

https://ai.jmir.org/2024/1/€51168 JMIR Al 2024 | vol. 3| €51168 | p.211
(page number not for citation purposes)

RenderX


https://jmir.org/api/download?alt_name=ai_v3i1e51168_app3.docx&filename=3f1f540ce261789d9b135220c04bef88.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app3.docx&filename=3f1f540ce261789d9b135220c04bef88.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app4.docx&filename=566eeb89d1c5973c1ac14e6109b736f7.docx
https://jmir.org/api/download?alt_name=ai_v3i1e51168_app4.docx&filename=566eeb89d1c5973c1ac14e6109b736f7.docx
https://cifar.ca/wp-content/uploads/2020/11/AICan-2020-CIFAR-Pan-Canadian-AI-Strategy-Impact-Report.pdf
https://cifar.ca/wp-content/uploads/2020/11/AICan-2020-CIFAR-Pan-Canadian-AI-Strategy-Impact-Report.pdf
https://wp.oecd.ai/app/uploads/2021/12/Australia_AI_Action_Plan_2021.pdf
https://wp.oecd.ai/app/uploads/2021/12/Australia_AI_Action_Plan_2021.pdf
https://niti.gov.in/sites/default/files/2019-01/NationalStrategy-for-AI-Discussion-Paper.pdf
https://niti.gov.in/sites/default/files/2019-01/NationalStrategy-for-AI-Discussion-Paper.pdf
https://www.gov.uk/government/publications/data-saves-lives-reshaping-health-and-social-care-with-data/data-saves-lives-reshaping-health-and-social-care-with-data
https://www.gov.uk/government/publications/data-saves-lives-reshaping-health-and-social-care-with-data/data-saves-lives-reshaping-health-and-social-care-with-data
https://www.hhs.gov/about/agencies/asa/ocio/ai/strategy/index.htm
https://www.hhs.gov/about/agencies/asa/ocio/ai/strategy/index.htm
https://nhsx.github.io/covid-chest-imaging-database/
https://nhsx.github.io/covid-chest-imaging-database/
https://doi.org/10.1177/20552076211048654
http://dx.doi.org/10.1177/20552076211048654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34868617&dopt=Abstract
https://transform.england.nhs.uk/ai-lab/ai-lab-programmes/regulating-the-ai-ecosystem/the-multi-agency-advice-service-maas/#about
https://transform.england.nhs.uk/ai-lab/ai-lab-programmes/regulating-the-ai-ecosystem/the-multi-agency-advice-service-maas/#about
https://www.adalovelaceinstitute.org/report/algorithmic-impact-assessment-case-study-healthcare/
https://www.adalovelaceinstitute.org/report/algorithmic-impact-assessment-case-study-healthcare/
https://transform.england.nhs.uk/ai-lab/explore-all-resources/understand-ai/artificial-intelligence-how-get-it-right/
https://transform.england.nhs.uk/ai-lab/explore-all-resources/understand-ai/artificial-intelligence-how-get-it-right/
https://journals.sagepub.com/doi/10.1177/1609406919899220
http://dx.doi.org/10.1177/1609406919899220
https://www.gov.uk/service-manual/agile-delivery/how-the-discovery-phase-works
https://www.gov.uk/service-manual/agile-delivery/how-the-discovery-phase-works
https://asq.org/quality-resources/nominal-group-technique
https://asq.org/quality-resources/nominal-group-technique
https://dscout.com/people-nerds/writing-user-insights
https://dscout.com/people-nerds/writing-user-insights
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/canada
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/canada
https://ised-isde.canada.ca/site/strategic-innovation-fund/en
https://ised-isde.canada.ca/site/strategic-innovation-fund/en
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/full-translation-chinas-new-generation-artificial-intelligence-development-plan-2017/
https://www.scmp.com/tech/policy/article/3102534/china-enhances-smart-health-care-first-national-medical-image-database
https://www.scmp.com/tech/policy/article/3102534/china-enhances-smart-health-care-first-national-medical-image-database
https://doi.org/10.1007/s13218-020-00689-0
https://doi.org/10.1007/s13218-020-00689-0
http://dx.doi.org/10.1007/s13218-020-00689-0
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Karpathakis et al

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45,

Handley L. Chinese people are the most optimistic about the impact of Al on jobs. CNBC. 2018 Feb. URL: https://www.
cnbc.com/2018/02/07/chinese-peopl e-are-the-most-opti mi sti c-about-the-impact-of -ai -on-jobs.html [accessed 2020-10-02)
Meinhardt C. The hidden challenges of China's booming medical Al market. China Business Review. 2019 Jun. URL :
https.//www.chi nabusi nessreview.com/the-hi dden-chall enges-of -chinas-booming-medi cal -ai-market-2/ [ accessed 2022-12-02)
Meng Q, Mills A, Wang L, Han Q. What can we learn from China's health system reform? BMJ 2019 Jun 19;365:12349
[FREE Full text] [doi: 10.1136/bmj.12349] [Medline: 31217222]

Basu M. Exclusive: Hong Kong's vision for artificial intelligence. Govinsider. 2017 Oct. URL: https://govinsider.asial
intl-en/article/exclusive-hong-kongs-vision-for-artificial -intelligence [accessed 2020-09-15]

Al, machine learning and big data and regulations 2020 Hong Kong. Global Legal Insights. 2020. URL : https://www.
globallegalinsights.com/practice-areas/ai-machine-l earning-and-big-data-| aws-and-regul ations/hong-kong [accessed
2020-09-07]

Ng E. AXA boosts technology spending in Hong Kong as health revenues power growth. South China Morning Post. 2019
Nov. URL: https://www.scmp.com/business/compani es/article/3038159/

axa-boosts-spending-ai-data-anal yti cs-hong-kong-heal th-revenues [accessed 2023-11-01]

Moltu C, Stefansen J, Svisdahl M, Veseth M. [Withdrawn] Doing business in Hong Kong: Hong Kong trade and export
guide. Department for International Trade, Government of UK. 2015. URL : https://www.gov.uk/government/publications/
exporting-to-hong-kong/exporting-to-hong-kong [accessed 2020-09-01]

Mori P. Isdigital health finally taking off in Japan. Intralink. 2019 Apr. URL: https://www.intralinkgroup.com/en-GB/
News/Blog/April-2019/Is-digital -heal th-final ly-taking-off-in-Japan [accessed 2020-11-11]

Society 5.0. Cabinet Office, Government of Japan. 2020. URL : https://www8.cao.go.jp/cstp/english/society5_0/index.html
[accessed 2020-10-17]

Gagan O. Society 5.0: isinfrastructure key to Japan's success? Raconteur. 2020 Mar. URL : https://www.raconteur.net/
global -busi ness/soci ety-5-0-infrastructure/ [accessed 2020-09-03]

Japan: forecast of digital healthcare market size 2026 by segment. Statista. 2020. URL : https://www.stati sta.com/statistics/
1030901/japan-digital-health-market-size/ [accessed 2020-09-16]

Raviscioni M. The medtech opportunity for Japanese companies. McKinsey. 2017 Nov. URL: https://www.mckinsey.com/
industries/life-sciences/our-insights/the-medtech-opportunity-for-japanese-companies [accessed 2020-09-27]

National artificial intelligence strategy: advancing our smart nation journey. Smart Nation Digital Government Office,
Singapore. 2019. URL: https.//www.smartnation.gov.sg/files/publications/nati onal -ai-strategy.pdf [accessed 2020-09-07]
National approach to artificial intelligence. Government Offices of Sweden. 2018. URL : https.//wp.oecd.ai/app/upl oads/
2021/12/Sweden National_Approach_to_Avrtificial_Intelligence 2018.pdf [accessed 2020-09-10]

Vision for eHealth 2025. Ministry of Health and Social Affairs, and Swedish Association of Local Authoritiesand Regions.
URL: https://ehal sa2025.se/wp-content/uploads/2021/02/Strategy-2020-2022_eng.pdf [accessed 2020-09-08]

Data protected Sweden. Linklaters. 2022 Jun. URL : https.//www.linkl aters.com/en/insights/data-protected/
data-protected---sweden [accessed 2020-09-08]

Tang H. The European landscape - Sweden. Al-Med. 2020 Mar. URL : https://ai-med.io/features/
the-european-landscape-sweden/ [accessed 2020-09-11]

Bilboe C. Healthtech startupsin Sweden and the UK with the fastest growth. Sifted. 2020 Sep. URL : https.//sifted.eu/
articles/healthtech-growth-sweden-uk/ [accessed 2023-10-02]

Vestin E. Machine learning and big data laws and regulations. Global Legal Insights. 2020. URL: https://www.
globallegalinsights.com/practi ce-areas/ai-machine-learning-and-big-data-l aws-and-regul ati ons/sweden [ accessed 2020-09-10]
Lessons from application of Al to 6 year patient data from a Swedish primary care center. Strikersoft. 2020. URL : https./
[strikersoft.com/en/News/what-can-ai-do-for-primary-care-lecture-from-vitalis/ [accessed 2020-09-09]

Artificial intelligence for the American people. Trump White House Archive. 2020. URL: https://trumpwhitehouse.
archives.gov/ai/ [accessed 2020-11-30]

Reardon S. Rise of robot radiologists. Scientific American. 2020 Feb. URL: https://wwwv.scientificamerican.com/article/
rise-of-robot-radiol ogists/ [accessed 2020-09-11]

Caldwell A. The University of Chicago is awarded a major federal contract to host anew COVID-19 medical imaging
resource center. UChicago Medicine. 2020 Aug. URL : https.//www.uchicagomedicine.org/forefront/
coronavirus-disease-covid-19/

the-university-of-chicago-is-awarded-a-maj or-federal -contract-to-host-a-new-covid- 19-medical -imaging-resource-center
[accessed 2020-09-06]

The North Americaartificial intelligencein healthcare. GlobeNewswire. 2020 Sep. URL : https.//www.globenewswire.com/
news-rel ease/2020/10/01/2101805/0/en/

TheNathAmaicaatifida-indligaeinhedthcare degossmakedsprgedadioreschfromUS 1-716-42:millionin-201940-US 32-009-614illiarHoy-2027.
html [accessed 2020-09-30]

The Digital Health and Discovery Platform (DHDP). Digital Health and Discovery Platform. 2021. URL : https:.//www.
dhdp.cal [accessed 2020-09-08]

https://ai.jmir.org/2024/1/€51168 JMIR Al 2024 | vol. 3| €51168 | p.212

RenderX

(page number not for citation purposes)


https://www.cnbc.com/2018/02/07/chinese-people-are-the-most-optimistic-about-the-impact-of-ai-on-jobs.html
https://www.cnbc.com/2018/02/07/chinese-people-are-the-most-optimistic-about-the-impact-of-ai-on-jobs.html
https://www.chinabusinessreview.com/the-hidden-challenges-of-chinas-booming-medical-ai-market-2/
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=31217222
http://dx.doi.org/10.1136/bmj.l2349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31217222&dopt=Abstract
https://govinsider.asia/intl-en/article/exclusive-hong-kongs-vision-for-artificial-intelligence
https://govinsider.asia/intl-en/article/exclusive-hong-kongs-vision-for-artificial-intelligence
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/hong-kong
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/hong-kong
https://www.scmp.com/business/companies/article/3038159/axa-boosts-spending-ai-data-analytics-hong-kong-health-revenues
https://www.scmp.com/business/companies/article/3038159/axa-boosts-spending-ai-data-analytics-hong-kong-health-revenues
https://www.gov.uk/government/publications/exporting-to-hong-kong/exporting-to-hong-kong
https://www.gov.uk/government/publications/exporting-to-hong-kong/exporting-to-hong-kong
https://www.intralinkgroup.com/en-GB/News/Blog/April-2019/Is-digital-health-finally-taking-off-in-Japan
https://www.intralinkgroup.com/en-GB/News/Blog/April-2019/Is-digital-health-finally-taking-off-in-Japan
https://www8.cao.go.jp/cstp/english/society5_0/index.html
https://www.raconteur.net/global-business/society-5-0-infrastructure/
https://www.raconteur.net/global-business/society-5-0-infrastructure/
https://www.statista.com/statistics/1030901/japan-digital-health-market-size/
https://www.statista.com/statistics/1030901/japan-digital-health-market-size/
https://www.mckinsey.com/industries/life-sciences/our-insights/the-medtech-opportunity-for-japanese-companies
https://www.mckinsey.com/industries/life-sciences/our-insights/the-medtech-opportunity-for-japanese-companies
https://www.smartnation.gov.sg/files/publications/national-ai-strategy.pdf
https://wp.oecd.ai/app/uploads/2021/12/Sweden_National_Approach_to_Artificial_Intelligence_2018.pdf
https://wp.oecd.ai/app/uploads/2021/12/Sweden_National_Approach_to_Artificial_Intelligence_2018.pdf
https://ehalsa2025.se/wp-content/uploads/2021/02/Strategy-2020-2022_eng.pdf
https://www.linklaters.com/en/insights/data-protected/data-protected---sweden
https://www.linklaters.com/en/insights/data-protected/data-protected---sweden
https://ai-med.io/features/the-european-landscape-sweden/
https://ai-med.io/features/the-european-landscape-sweden/
https://sifted.eu/articles/healthtech-growth-sweden-uk/
https://sifted.eu/articles/healthtech-growth-sweden-uk/
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/sweden
https://www.globallegalinsights.com/practice-areas/ai-machine-learning-and-big-data-laws-and-regulations/sweden
https://strikersoft.com/en/News/what-can-ai-do-for-primary-care-lecture-from-vitalis/
https://strikersoft.com/en/News/what-can-ai-do-for-primary-care-lecture-from-vitalis/
https://trumpwhitehouse.archives.gov/ai/
https://trumpwhitehouse.archives.gov/ai/
https://www.scientificamerican.com/article/rise-of-robot-radiologists/
https://www.scientificamerican.com/article/rise-of-robot-radiologists/
https://www.uchicagomedicine.org/forefront/coronavirus-disease-covid-19/the-university-of-chicago-is-awarded-a-major-federal-contract-to-host-a-new-covid-19-medical-imaging-resource-center
https://www.uchicagomedicine.org/forefront/coronavirus-disease-covid-19/the-university-of-chicago-is-awarded-a-major-federal-contract-to-host-a-new-covid-19-medical-imaging-resource-center
https://www.uchicagomedicine.org/forefront/coronavirus-disease-covid-19/the-university-of-chicago-is-awarded-a-major-federal-contract-to-host-a-new-covid-19-medical-imaging-resource-center
https://www.globenewswire.com/news-release/2020/10/01/2101805/0/en/The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.html
https://www.globenewswire.com/news-release/2020/10/01/2101805/0/en/The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.html
https://www.globenewswire.com/news-release/2020/10/01/2101805/0/en/The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.html
https://www.globenewswire.com/news-release/2020/10/01/2101805/0/en/The-North-America-artificial-intelligence-in-healthcare-diagnosis-market-is-projected-to-reach-from-US-1-716-42-million-in-2019-to-US-32-009-61-million-by-2027.html
https://www.dhdp.ca/
https://www.dhdp.ca/
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Karpathakis et al

46.

47.

48.

49,

50.

51.

52.

53.

Hospital authority data sharing portal. Hospital Authority & Data Collaboration Lab. 2020. URL: https://www3.ha.org.hk/
data/ DCL /Index/ [accessed 2020-09-08]

Karpathakis K, Murphy L, Mishra A, Joshi I. Al for healthcare: creating an international approach together. Global Digital
Health Partnership. 2020. URL : https://gdhp.health/work-streams/policy-environments/#whitepapers [accessed 2020-09-11]
Home page. The Medical Imaging Data Resource Center (MIDRC). 2020. URL : https://www.midrc.org/ [accessed
2023-10-02]

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977 Mar;33(1):159-174.
[Medline: 843571]

Morley J, Murphy L, MishraA, Joshi |, KarpathakisK. Governing dataand artificial intelligencefor health care: developing
an international understanding. IMIR Form Res 2022 Jan 31;6(1):€31623 [ FREE Full text] [doi: 10.2196/31623] [Medline:
35099403]

Wilson J, Herron D, Nachev P, McNally N, Williams B, Rees G. The value of data: applying a public value model to the
English national health service. JMed Internet Res 2020 Mar 27;22(3):€15816 [FREE Full text] [doi: 10.2196/15816]
[Medline: 32217501]

Blandford A, Gibbs J, Newhouse N, Perski O, Singh A, Murray E. Seven lessonsfor interdisciplinary research on interactive
digital healthinterventions. Digit Health 2018 Feb;4:2055207618770325 [FREE Full text] [doi: 10.1177/2055207618770325]
[Medline: 29942629]

Bloomfield PS, Clutton-Brock P, Pencheon E, Magnusson J, Karpathakis K. Artificial intelligencein the NHS: climate and
emissions[],00 0. J Clim Chang Health 2021 Oct;4:100056. [doi: 10.1016/j.joclim.2021.100056]

Software and Al asamedical device change programme - roadmap. Medicines & Healthcare products Regulatory Agency.
2023 Jun 14. URL : https://www.gov.uk/government/publications/sof tware-and-ai -as-a-medi cal -devi ce-change-programme/
software-and-ai-as-a-medi cal-devi ce-change-programme-roadmap [accessed 2020-09-12]

Abbreviations

Al: artificial intelligence

AIDA: Analytic Imaging Diagnostics Arena

DA: Devolved Administration

DHDP: Digital Health and Discovery Platform

GDHP: Global Digital Health Partnership

HADCL: Hospital Authority Data Collaboration Laboratory
I CR: intercoder reliability

MIDRC: Medical Imaging and Data Resource Center

ML: machine learning

NCCID: National COVID-19 Chest Imaging Database
NHS: National Health Service

PESTLE: Poalitical, Economic, Social, Technological, Legal, and Environmental
TRE: trusted research environment

Edited by Y Huo; submitted 23.07.23; peer-reviewed by M Halling-Brown, Z Li; commentsto author 15.08.23; revised version received
01.09.23; accepted 03.11.23; published 04.01.24.

Please cite as:

Karpathakis K, Pencheon E, Cushnan D

Learning From International Comparators of National Medical Imaging Initiativesfor Al Devel opment: Multiphase Qualitative Study
JMIR Al 2024;3:€51168

URL: https://ai.jmir.org/2024/1/€51168

doi:10.2196/51168

PMID:

©K assandra K arpathakis, Emma Pencheon, Dominic Cushnan. Originally published in IMIR Al (https://ai.jmir.org), 04.01.2024.
This is an open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in IMIR Al, is properly cited. The complete bibliographic information, alink to the
original publication on https://www.ai.jmir.org/, as well as this copyright and license information must be included.

https://ai.jmir.org/2024/1/€51168 JMIR Al 2024 | vol. 3| 51168 | p.213

RenderX

(page number not for citation purposes)


https://www3.ha.org.hk/data/DCL/Index/
https://www3.ha.org.hk/data/DCL/Index/
https://gdhp.health/work-streams/policy-environments/#whitepapers
https://www.midrc.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=843571&dopt=Abstract
https://formative.jmir.org/2022/1/e31623/
http://dx.doi.org/10.2196/31623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35099403&dopt=Abstract
https://www.jmir.org/2020/3/e15816/
http://dx.doi.org/10.2196/15816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32217501&dopt=Abstract
https://journals.sagepub.com/doi/abs/10.1177/2055207618770325?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/2055207618770325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29942629&dopt=Abstract
http://dx.doi.org/10.1016/j.joclim.2021.100056
https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/software-and-ai-as-a-medical-device-change-programme-roadmap
https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/software-and-ai-as-a-medical-device-change-programme-roadmap
https://ai.jmir.org/2024/1/e51168
http://dx.doi.org/10.2196/51168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Mullick et al

Original Paper

Framework for Ranking Machine Learning Predictions of Limited,
Multimodal, and Longitudinal Behavioral Passive Sensing Data:
Combining User-Agnostic and Personalized Modeling

Tahsin Mullick', MEng; Sam Shaaban?, MBA; Ana Radovic®, MD, MSc; Afsaneh Doryab', PhD

1Department of Systems and Information Engineering, University of Virginia, Charlottesville, VA, United States
2NuRelm, Pittsburgh, PA, United States
3Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States

Corresponding Author:

Tahsin Mullick, MEng

Department of Systems and Information Engineering
University of Virginia

Olsson Hall, 151 Engineer's Way

Charlottesville, VA, 22903

United States

Phone: 1 4349245393

Email: tum7g@virginia.edu

Abstract

Background: Passive mobile sensing provides opportunities for measuring and monitoring health statusin the wild and outside
of clinics. However, longitudinal, multimodal mobile sensor data can be small, noisy, and incomplete. This makes processing,
modeling, and prediction of these data challenging. The small size of the data set restricts it from being modeled using complex
deep learning networks. The current state of the art (SOTA) tackles small sensor data setsfollowing asingular modeling paradigm
based on traditional machine learning (ML) algorithms. These opt for either a user-agnostic modeling approach, making the
model susceptible to a larger degree of noise, or a personalized approach, where training on individual data alludes to a more
limited data set, giving rise to overfitting, therefore, ultimately, having to seek a trade-off by choosing 1 of the 2 modeling
approaches to reach predictions.

Objective: The objective of this study was to filter, rank, and output the best predictions for small, multimodal, longitudinal
sensor datausing aframework that is designed to tackle data setsthat are limited in size (particularly targeting health studies that
use passive multimodal sensors) and that combines both user agnostic and personalized approaches, along with a combination
of ranking strategies to filter predictions.

Methods: In this paper, we introduced a novel ranking framework for longitudinal multimodal sensors (FLMS) to address
challenges encountered in health studies involving passive multimodal sensors. Using the FLMS, we (1) built a tensor-based
aggregation and ranking strategy for final interpretation, (2) processed various combinations of sensor fusions, and (3) balanced
user-agnostic and personalized modeling approaches with appropriate cross-validation strategies. The performance of the FLMS
was validated with the help of areal data set of adolescents diagnosed with major depressive disorder for the prediction of change
in depression in the adolescent participants.

Results: Predictions output by the proposed FLMS achieved a 7% increase in accuracy and a 13% increase in recall for the real
data set. Experiments with existing SOTA ML algorithms showed an 11% increase in accuracy for the depression data set and
how overfitting and sparsity were handled.

Conclusions: The FLMS aimsto fill the gap that currently exists when modeling passive sensor data with a small number of
data points. It achieves this through leveraging both user-agnostic and personalized modeling techniques in tandem with an
effective ranking strategy to filter predictions.

(IMIR Al 2024;3:e47805) doi:10.2196/47805
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Introduction

Background

Mobile and wearable sensing has garnered increasing interest
inareas of physical health [1,2], mental health [3-5], and activity
recognition [6,7]. Multimodal passive sensing accommodates
data collection without disrupting the human routine, allowing
it to be an important tool to understand human behavior.
However, passive sensing, unlike other forms of data, encounters
common fundamental challenges in mobile health studies
pertaining to physical and mental health. These challenges
include small data sets, noisy or sparse data, and sensor selection
criteria. Next, we explain these challenges and discuss how our
framework can help in aleviating them.

One of the primary challengesin passive sensing studiesissmall
data sets. These arise due to limitations in the sample size of
participants, the study duration, and ground truth restrictions.
In this study, we explored this challenge from the viewpoint of
studies conducted on passive sensing. Studiesrelated to physical
health (eg, [1,2]) have investigated dietary behavior with the
help of passive sensing. Participant sample sizesin Rabbi et a
[1,2] were 17 and 16, respectively, which isalimited participant
count. This type of data limitation is even more prominent in
mental health research that relies on passive sensing. Studies
on depression [3] and schizophrenia [4], for example, had
participant sample sizes of 28 and 5, respectively. The limited
data sets in passive sensing research are also a factor of the
study duration. To understand this, we can observe the duration
of study. For example, the study duration in Rabbi et a [1,2]
was 21 and 98 days, respectively, while the study by Canzian
and Musolesi [3] lasted for 70 days and that by Difrancesco et
a [4] was limited to only 5 days. The limitation in data led
researchers away from using complex deep learning (DL)
models, as demonstrated in previous studies [1-4]. This is
because DL models have more hyperparameters and succumb
to overfitting due to memorization of the data the models are
trained on [8]. In this study, we took inspiration from the
existing work and sel ected specific traditional machine learning
(ML) agorithms that are less susceptible to overfitting in
small-data scenarios. However, unlike previous studies
[1-4,9-17], we aso ensured that our predictions were ranked
based on 2 different modeling paradigms that further helped
circumvent overfitting and also assisted in noise removal, as
explained later.

The second challenge commonly faced when tackling passive
sensor dataisthat of sparsity or noise. Thischallenge arisesdue
to signal inconsistencies and noise in sensor data collection
because of software issues, data sync, or hardware problems.
Discussions of sparsity and the negative effect it has on
modeling have been previously documented [7,18-20]. These
studies have presented an overview of the passive sensing
landscape and highlighted the role signal inconsistencies can
play in predictive modeling of passively sensed data. The fact

https:/ai jmir.org/2024/1/e47805

that data are noisy, especialy in the case of wearable sensors,
was mentioned by Pl6tz [18]. Cornet and Holden [19] reported
that a lack of sensor precision leads to sparsity, and Xu et a
[20] documented the level of noise in data that prevents
user-agnostic models from generalizing well. Our proposed
framework attempts to reduce the effect of noise by forming a
balance between predictions from user-agnostic modeling
paradigms and personalized modeling paradigms. In addition,
choosing specific ML algorithms, such as Extreme Gradient
Boosting (XGBoost), Adaptive Boosting (AdaBoost), elastic-net,
and extra-tree, and ranking predictions from them help lessen
the impact of sparsity [21-24].

Sensor selection is the third type of challenge that has not
received significant attention in passive or mobile sensing
literature. Studies have tested various feature combinations
mainly in the light of performing feature selection or feature
reduction [25]. Joshi and Boyd [26] and Altenbach et al [27],
for example, used heuristic-based convex optimization to select
sensors from an array of sensors. However, both these studies
were purely from the perspective of sensor placement. They did
not investigate which combination of sensors provided the best
outcomefor prediction-based modeling and were morein favor
of wireless sensor network establishment. Mobile or wearable
devices are laced with multiple sensors, and building and
knowing which sensors create optimum models are vital
particularly to mental and physical health—related studies.
Through our framework, we present away to test combinations
of sensor dataand derive and rank predictionsfrom among those
combinations, alowing investigators to understand which
combinations of sensor datayield the best predictions for their
passive sensing experimental setup.

All the aforementioned challenges are common to passive
sensing data sets. However, they exhibit significant presence
in mental and physical health—related studies[3,4]. Xu et a [20]
talked of the general sequence of stepsresearcherstaketo build
models and the struggles of working with passively sensed data.
A strong framework to yield the best predictions can prove to
be beneficial to the community at large and bring about greater
insight from studies conducted with small data sets.

In this paper, we present our ML modeling and ranking
framework to address these challenges. The framework is
designed to induceimproved predictionsfor multimodal sensing.
It balances both user-agnostic and personalized modeling of
small data sets encountered often in mental and physical
health—based studies. Our framework makes the following
contributions; (1) prediction filtering and ranking through
tensor-based aggregation of small, multimodal sensing data
sets, (2) sensor combination selection to derive the best
predictions, and (3) a reduction in overfitting predictions due
to limited data and noise through ensembling of user-agnostic
and personalized modeling strategies.

Importantly, it should be noted that by the size of the data set,
we refer to the final data sets where raw sensor readings are
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aggregated into intervals to align with the sampling frequency
of ground truth data. In this work, we defined small data sets
as those comprising fewer than 1000 data points for training
ML models. Sparse or noisy data sets were those that either
consisted of many zero entries or data sets for which highly
varying sensor values were observed among different
participants in the study.

We evaluated the framework through its performance in the
context of predicting changesin depression severity in agroup
of adolescent patients. The results showed the framework’s
ability to use multiple modeling approachesfor providing robust
predictionsin critical cases, such as mental health.

Passive sensing datafor human behavior modeling are different
from other dataformats, such asimages, audio, or normal tabular
data. Researchers in the field of passive sensing agree that
passive sensing data have some common properties, such as
they are time series data, multimodal, longitudinal, nonlinear,
and noisy, as previously discussed [20]. Xu et a [20] aso
emphasized the researcher’s need for tools that can help ease
the time lost in traversing the common pitfalls of passively
sensed data. Our work endeavors to resolve such pitfalls for
cases where passive sensing data are limited. Next, we discuss
the related work highlighting the state of the art (SOTA) in
passively sensed small, multimodal data sets.

Related Work

Despite the growing body of work using multimodal passive
sensing in physical and mental health applications[28-32], there
exists scope for improvement in small-data scenarios.

In this section, we underline what exists in the current SOTA
and why we need a ranking-based framework to address
scenarios with small data sets. Keeping in line with our
contribution, it will prove beneficial to present the current SOTA
through understanding:

https:/ai jmir.org/2024/1/e47805
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How traditional ML algorithms are applied in the context
of passive sensing

Why complex DL models do not work well in limited data
scenarios

How ensemble modeling has been adapted in passive
sensing studies

What therole of datafusion isin modeling passive sensing
data

Traditional Machine Learning Algorithms Applied in
Passive Sensing

Traditional ML a gorithms have been applied to passive sensing
in the space of human activity recognition (HAR) [9-11], generd
health [12-15], and mental health [3,16,17]. A deeper diveinto
the studies reveals some common takeaways that include the
following:

« All of them test multiple ML agorithms, followed by
selecting predictions based on the overall chosen validation
metric.

« They dl follow a singular modeling strategy, resorting to
either user-agnostic or personalized modeling.

+ Cross-vaidation (CV) iseither K-fold or leave-one-out CV.

This is a repetition of steps that authors in the field make
independently and is discussed extensively in the highlighted
literature presented in Table 1. Following a single modeling
strategy is restricting as choosing to follow a user-agnostic
approach exposes the model to a greater degree of noise dueto
the heterogeneity in sensor values among participants, while
solely following a personalized approach reduces data
availability further as the model learns from individuals data
rather than the general population data. Our endeavor through
thisranking framework isto combine both the approaches, while
using traditional ML algorithms.
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Table 1. Summary of SOTA? literature using traditional MLP for passive sensing, with specia focus on CVC, the overall modeling strategy, and ML

algorithms.
Study Application cv Modeling strategy ML algorithm
Kwapisz et al [9] HARY 10-fold User agnostic DT®, LRf, MLPY
Shukla et al [10] HAR 5-fold User agnostic KNN" svmi
Chen and Chen [11] HAR 10-fold User agnostic RE, SVM, KNN
Huang et a [12] Sleep 10-fold User agnostic SVM
Montanini et al [13] Sleep K-fold/leave 1 out User agnostic/personalized  KNN, DT, RF, SVM
Teng et al [14] Parkinson’s tremors 5-fold User agnostic XGBoost, DT, RF
Azam et a [15] Breath K-fold User agnostic SVM
Canzian and Musolesi [3] Depression Leave 1 out User agnostic SVM
Grunerbl et al [16] Bipolar disorder K-fold User agnostic/persondized  Ng! KNN, DT
Saeb et d [17] Depression/anxiety 10-fold User agnostic XGBoost, DT

8S0TA: state of the art.

BML: machine learning.

CV: cross-validation.

9HAR: human activity recognition.
®DT: decision tree.

fLR: linear regression’

IMLP: multilayer perceptron
PKNIN: K-nearest neighbor

ISVM: support vector machine.
IRF: random forest

KX GBoost: Extreme Gradient Boosti ng
INB: naive Bayes

Limitation of Deep Learning in Small-Data Scenarios

A common replacement for traditional ML algorithms is DL.
Here, we explain why DL models are not ideal solutionsfor the
problem addressed in this study. DL models have gained
immense popularity in the literature [33]. Their power liesin
modeling the nonlinearity and noisy nature of passively sensed
data. DL has a toolkit of strategies to handle small data that
includes data augmentation [1], transfer learning [19], and
ensembling [29]. However, the size of a small data set in DL
studies ranges from 1000 to 10,000 training points [18]. This
isunlike the ranking framework presented in this paper, which
has been designed for data setswith fewer than 1000 data points.
Therefore, despite their superiority in modeling larger passive
sensing data sets, the performance of DL models suffersin cases
where study data are limited and in the hundreds. The
complexity of DL models results in overfitting to small data
sets [14]. In this paper, we worked to solve the problem of
limiting data by providing researchers with a reproducible way
to run multiple models and select the best predictions from
among them. By using traditional ML in conjunction with
ranked predictionsfrom user-agnostic and personalized models,
the issue of overfitting due to model complexity is dealt with
in the proposed work.

https://ai.jmir.org/2024/1/e47805

Ensemble Learning to Build Robust Modelsfor Passive
Sensing Data

Among thedifferent ways of dealing with overfitting, ensemble
learning has been instrumental. Ensemble ML isawidely used
approach in passive sensing studies [14,17,34,35]. It mainly
exists in the form of boosting [6,14,17,34], bagging [14,16],
weighted ensembles [35], and max voting [36] ML algorithms.
Ensemble |earning presents better resultsin terms of evaluation
metrics. Ensemble learners are trained using a single modeling
strategy. Therefore, they are either personalized ensembles[35],
which allows learnersto derive interesting artifacts at personal
levels, or user-agnostic ensembles[14,17,34,36-38], which only
generate macrolevel information. Our contribution through the
ranking framework is to provide a balance of both macrolevel
patterns and user-specific patterns through aweighted ensemble
of both approaches. Ensembling in this manner will allow us
to reduce the noisethat is picked up dueto varying sensor values
among users and account for user-specific patterns through the
predictions on personalized data.

Role of Data Fusion in Passive Sensing Studies

The use of data fusion in passive sensing has seen a steady
growth due to the use of multimodal sensorsin passive sensing
studies. Earlier studies were often restricted to single sensors,
which were then manipulated to obtain a handful of features.
For example, Canzian and Musolesi [3] primarily used GPS
sensor data, while Kwapisz et a [9] only opted for an
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accelerometer to base their predictive modeling. The way data
fusion is approached has a common link among the surveyed
studies in the current literature. The studies have applied
feature-level fusion [10,39-43], where fusion takes place after
feature extraction from raw signals. A single feature set is
generated and then passed on to dimensionality reduction, such
as linear discriminant analysis (LDA) [10] or principal
component analysis (PCA) [40-42]. The focus in these papers
tends to be a reduction in dimension, without trying to study
the impact of multiple distinct feature combinations. In
comparison, our contribution of feature selection focuses on

Mullick et &

studying the relationship between each group of sensors by
creating multiple feature sets based on sensor availability. This
will allow us to select the best set of features to work with for
a specific type of study. An illustration of the difference in the
existing literature and our feature fusion approach is shown in
Figure 1[10,39-43].

Overall, our ranking framework is motivated to aid researchers
in situations in which data sets are small, sparse, or noisy and
multimodal by taking advantage of its multiple model generation
and the balanced outcome of the best predictions.

Figure 1. (A) Datafusion approach in the current literature and (B) proposed FLM S data fusion approach, where s1-s6 represent distinct sensors and
f1-f3 represent feature set combinations, which were then fused prior to ML modeling. FLMS: framework for longitudinal multimodal sensors; LDA:
linear discriminant analysis; ML: machine learning; PCA: principal component analysis.
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Methods The 9-item Patient Health Questionnaire (PHQ-9) [44] wasused

Ethical Consider ations

The data collection was approved by the Institutional Review
Board of the University of Pittsburgh Human Research
Protections Office (STUDY 18120176).

Data Description

The study used passive sensing data and is presented through
the lens of depression change prediction among adolescents.
The data set comprised 55 adolescents from 12 to 17 yearsold,
with an average age of 15.5 (SD 1.5) years. The AWARE app
was used to collect the participants' smartphone and Fitbit data.
The data completeness rate for AWARE and Fitbit was, on
average, 65.11% and 30.36%, respectively. The levels of
completeness echoed the difficulty in collecting passive sensing
data. Smartphone and Fitbit data were collected from each
participant over 24 weeks.

https://ai.jmir.org/2024/1/e47805

RenderX

to collect weekly self-reports of depression severity from the
participants. The questionnaire consists of a set of 9 questions,
which can be scored from 0 to 3, giving a score range of 0-27.
We used PHQ-9 scores as the ground truth to compare the
prediction accuracy of our models.

Relation of Sensor Data to Mental Health

Raw sensor data, including calls, location, conversation, screen
usage, Wi-Fi, steps, sleep, and heart rate, were processed, and
relevant features were extracted at daily intervals. We used
RAPIDS [45] to extract 72 features from the sensors. The
exigting literature [ 3,46-51] shows how location [3,46,49,50,52],
calls [48,53], screen usage [46,54,55], conversations [55-58],
Wi-Fi [48,59], steps [60], and heart rate [61] can be effective
in predicting mental health behavior. Studies|[3,46,49,50] have
used location sensors, such as the GPS, and shown a strong
relation to depressive symptom severity. Clinical measures,
such as the PHQ-9 [44], the PHQ-8 [62], the Hamilton Rating
Scale for Depression (HAM-D) [63], and the Hamilton Rating
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Scalefor Anxiety (HAM-A) [64], have been used astarget labels
for prediction using sensor-based features, establishing a proof
of association between sensor features and mental health
predictions. Studies [47,48,51,54,60] have used multimodal
sensors of smartphones that included the sensors we chose for
this study: calls, location, conversation, screen usage, Wi-Fi,
Fitbit steps, and Fitbit heart rate. In the Results section, we
further elaborate on the feature engineering from each of the
sensors. The validity of using the sensors to predict mental
health, in particular the choice of sensors, was motivated by the
aforementioned studies, which showed strong predictive
capability of sensorsin the area of mental health prediction.

Framework Design and Modeling

We proposed aframework for longitudinal multimodal sensors
(FLMS) as a ranking framework to rigorously handle
longitudinal, multimodal sensor data and incorporate different
analysis and modeling strategies suited for small and sparse
time series data sets to produce better results. The FLMS
incorporates 4 stages to improve, rank, and filter data set
predictions (see Figure 1):

«  Stage 1. multimodal sensor fusion to explore the data set
from multiple views and to identify the minimum number
of sensors necessary to yield a good prediction. It aso
addresses sparsity.

« Stage 2: ML modeling with combined user-agnostic and
personalized approach. This stage is designed to leverage

Mullick et &

user-agnostic and personalized predictions. The ML
algorithms used in this stage were chosen due to their
superior prediction capability in small-data scenarios and
their ability to tackle sparse data sets.

- Stage 3: tensor-based aggregation and ranking leverage
predictions from al fused combinations and modeling
strategies to cal culate more robust predictions.

- Stage4:fina prediction informed by the ensemble weighted
average of both user-agnostic and personalized predictions
to reduce the effect of overfitting in small data sets. This
stage uses weights calculated via hamming distances to
prevent any modeling approach from dominating the
predictions.

A high-level view in Figure 2 illustrates how the FLMS is
different from conventional ML approaches. Observing Figure
2A, we understand that the conventional modeling strategy uses
a single algorithm with either a user-agnostic CV, where all
usersareincluded in thetraining and test sets, or a personalized
CV sdtrategy, where a single user’s data are used to derive
predictions. However, Figure 2B displays how the FLMS uses
different combinations of sensors as input data, followed by
multiple algorithms and a combination of user-agnostic and
personalized modeling. The modeling stage is followed by a
ranking of predictionsand finally an ensemble of the predictions
to yield the final output.

A detailed explanation of the stages of the FLMS and their
utility is provided next.

Figure 2. (A) Conventional modeling approach and (B) proposed FLMS approach. FLMS: framework for longitudinal multimodal sensors.
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Stage 1: Multimodal Sensor Fusion

Stage 1 was designed for the early fusion of sensorsat afeature
level. Sensor fusions followed a combinatorial approach using

E, where Z is the total number of modalities available and x

https://ai.jmir.org/2024/1/e47805

is the number of sensors to fuse. Our case study had 6-sensor
modalitiesthat generated a set of 63 separate data sets cal culated

as(8],

Data set preprocessing steps involved normalization and log
transforms. Imputations to fill missing feature observations
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were aso conducted. The framework alowed for
implementation of the K-nearest neighbor (KNN) a gorithm for
imputation, which is also the first level of defense against
sparsity. The generated data setswerein 2D tabular dataformat.
The sensor data were aggregated according to the granularity
of the ground truth. Our case study collected PHQ-9 scores as
an accepted depression measure. The total score range of the 9
questions was 0-27. This was collected on a weekly basis, and
thus, our daily data were aggregated in weekly intervals.

Stage 2: ML Modeling With a Combined User-Agnostic
and Personalized Approach

Stage 2 focused on modeling and predictions based on the data
sets generated in stage 1. All stage 1 data sets were run through
the modeling suite, which encompasses a series of ML
algorithms and CV strategies to help build user-agnostic and
personalized models.

The ML suite includes case-specific linear and nonlinear
algorithms. For our case study on adolescent depression, we
followed aregression-based approach, and therefore, we sel ected
algorithms such as linear regression (LR), elastic-net, random
forest (RF), AdaBoost, extra-tree, gradient boosting, and
XGBoost. The agorithms were chosen based on (1) their
performance in the existing literature when working with small
dataand robustnessto sparsity, and (2) tree-based models, which
were specifically chosen to provide added tractability for
researchers to inspect which features mainly contributed to the
models’ predictive capability. The algorithmswere used in each
modeling strategy. The predictions of the ML algorithms for
each time unit were stored in arrays for each participant and

Mullick et &

later used to select the best model for each participant. The best
model selection strategy chose the model with the minimum
error (in the case of regression) or the maximum accuracy (in
the case of classification) among all algorithms. For example,
among | number of regression algorithms, the best model was

chosen asfollows:
@]
«y

,where alg refersto the algorithm with the lowest absolute sum
error and pred,(alg;) is the prediction made by an algorithm |
at unit time t. The array of prediction by the best model was
retained for each respective participant.

User-Agnostic Model Building

To leverage as much data as possible, we implemented the
leave-one-participant-out (LOPO) and leave-time-unit-X-out
(LTXO) strategies. Thisisillustrated in Figure 3A,B.

In LOPO, we held out al data from a single participant for
validation and trained the model on other participants. This
strategy reflected the cold start case where a new user started
using the health app.

The LTXO is based on the unit of time for ground truth data
(eg, aweek). For training, we held out a given time unit of all
participants and trained the model on the rest of the time units.
This strategy evaluated the impact of time-specific segments
of dataon prediction. Thetraining phase capturesthe similarity
and variation of data during different time units to build
user-agnostic models.

Figure 3. User-agnostic model building: (A) LOPO and (B) LTXO strategies. Algo: algorithm; LOPO: leave one participant out; LTXO: leave time

unit X out.
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Personalized Model Building

The personalized modeling strategy leverages each user's
historical and cross-time data samplesin a sliding window and
the leave-one-time-unit-out approach.
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For each participant, the accumul ated-time-unit (ATU) strategy
built a model from X; time units of data to predict X;,;. For
example, the model built from weeks 1 and 2 predicted
depression in week 3. In the next iteration, the sliding window
was increased by T time units (eg, 2 weeks) to repeat the
model-building process. This process continued until the
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maximum number of time units was reached. This method
examined the forecasting capability of the framework.

Theleave-one-time-unit-one-participant-out (LOTPO) strategy
trained the models on all time units of a participant acrosstime

Mullick et &

to predict thetarget |abel for the current time unit. For example,
for a participant with 10 weeks of data, we built a model from
datainweeks 1-5 and weeks 7-10 to predict depression in week
6. This method evaluated the feasibility of past and future data
for each participant to predict an outcome (Figure 4A,B).

Figure 4. Personalized model building: (A) LOTPO and (B) ATU strategies. Algo: algorithm; ATU: accumulated time unit; LOTPO: leave one time

unit of participant out.
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Stage 3: Tensor-Based Aggregation and Ranking

The output of stage 2 was a set of best prediction matrices for
sensor fusion combinations, where each slot in the matrix
represented prediction results for a participant in a particular
time unit. We represented these predictions in the form of
Z-dimensional tensors (Figure 5), where Z is the number of
modalities being used. For example, a study with 6 modalities
and 45 users over 24 weeks was represented in tensor form as
(6, 45, 24). The tensor representation helped represent the high
dimensionality of sensor combinations.

The predicted values for each slot across tensors were then
aggregated using an aggregation function (eg, mean). This
process took advantage of the stage 2 combinations to help
reduce the error in prediction. For example, we aggregated
predictions of 6 tensors (generated from 5-sensor fusion) into
1 tensor by calculating the mean of the predictions from the 6
combinations (see Figure 3). This was done for both
user-agnostic and personalized models. The aggregated mean
was calculated using the following equation:

@
2

where M, is the aggregated mean, k is the total number of
sensor combinations aggregated, i is the combination number,

j isthe corresponding time unit, and (] isthe prediction across
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each set of combinations. The datawere now in aformat where
each 2D tensor represented a particular sensor fusion prediction
set (Figure 6).

The predictions were next encoded into Os and 1s to counter
the large variance in the regression values from the origina
values. Thislogic can be set based on the type of ML problem
the framework is being used to address. For example, in our
case study, if the regressed change in depression score values
was 0 or negative value, we classified it as 0, and if it was
positive, we represented it as 1 (Figure 7).

The next step in this stage measured the hamming distance
between the 0-1-encoded tensor and the true labels tensor, as
shown in Figure 8. These hamming distances were then
aggregated (D) for the respective 2D tensor as follows:

@
©)

,where d(p;, &) is the hamming distance between unit time
predictions p; and the true value . Based on the measured
distance, we ranked and chose the best set of predictions. This
metric helped inform the choi ce of weightage to associate with
a particular modeling strategy. The hamming distance helped
further reduce errors after encoding and filtered down to the
best set of predictions from each strategy.
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Figure5. Anexample of tensor representation of 6-sensor fusion predictions.
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Figure 6. Instance of ATU where it shows how the mean aggregated prediction set is generated according to Equation (2). ATU: accumulated time

unit; avg: average.
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Figure7. The 0-1 encoding process resolves dealing with large variancesin regression values. ATU: accumulated time unit; LOPO: |eave one participant
out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out.
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Figure 8. Hamming distance calculations reduce error and also determine the weight each of the 4 modeling approaches will contribute to stage 4's
ensembled weighted average. ATU: accumulated time unit.
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,where P; isthe prediction tensor, wy isthe weight based on the
minimum hamming distance, and i and j are the number of users
and time units, respectively. The data were then encoded back
to Osand 1s. A completeversion of the FLMSwith all its stages
is presented in Figure 10 (see Multimedia Appendix 1 for a

|§ higher quality image).

Stage 4: Weighted Ensemble

The final stage formed the most robust set of predictionsviaan
ensemble weighted average approach, where weights were
calculated based on the minimum hamming distances derived
from each modeling strategy in stage 3 (Figure 9):

Figure 9. Ensemble average based on weights derived from the hamming distance to arrive at best-ranked predictions. ATU: accumulated time unit;
LOPO: leave one participant out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out.
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Figure 10. FLMS ranking overview. Algo: algorithm; ATU: accumulated time unit; avg: average; CV: cross-validation; FLMS: framework for
longitudinal multimodal sensors, LOPO: |eave one participant out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out; ML:

machine learning.
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Results

Stagewise Description of Framework Processing on an
Adolescent Data Set

To evaluate the performance of the proposed FLMS, we used
adepression data set of adolescents. This was asmall data set,
comprising noisy, multimodal sensor values from multiple
participants—a suitable case study for our purpose of evaluating
the performance of our proposed framework. Before presenting
the experimental results, we first provide an understanding of
how the adolescent data set was processed at each stage of the
FLMS.

The passively sensed depression data set waslongitudinal, with
avarying number of observations per participant. The goal was
to predict changes in the depression score. This was achieved
by passing the small set of observations through our ranking
framework, which processed, modeled, ranked, and output the
best set of overall predictions based on multiple modeling
approaches. A prediction of change in depression is difficult
and becomes even more challenging when the amount of data
provided to the ML algorithmsis limited.

Stage 1 Outcome

As part of stage 1, daily data were aggregated in weekly
intervals to align with weekly ground truth values. Based on
our extensive exploratory dataanalysis (EDA), we set thresholds
for sparsity and adopted KNN as the imputation strategy.

Our final data set consisted of 507 data pointswith 72 features,
with an average of 13 weekly data points per participant. A
series of data sets were then produced from an early fusion of
6-sensor features. Each data set retained 45 (81.8%) of the 55
participants. We had to drop 11 (20%) participants asthey were
missing more than 60% of their sensor data. The true depression
state of the participants was given by the PHQ-9 weekly survey.
The change in participant depression scores was calculated as
W,, — W,,,_1, where W, is the score for the m-th week; this

served as the ground truth for our analysis.
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Stage 2: ML Modeling Outcome

The ML algorithms in stage 2 regressed on the change in the
depression score, with positive changes exhibiting arise in the
depression score in that week, negative changes representing a
decrease, and 0 marking no change. The best predictive models
of depression for each participant were built and selected
following the stepsin stage 2.

Stage 3: Encoding and Prediction Filtering Outcome

This led to stage 3, where after the mean aggregation, we
encoded the regressed values as our goal wasto predict whether
the change in the depression score was positive, negative, or
constant, rather than determining the exact val ue of the change.
This step was followed by hamming distance calculations to
further rank and filter the best set of predictions.

Stage 4: Final Prediction Ensembling of Adolescent
Data

The predictions evaluated by the minimum hamming distances
entered stage 4, where we calculated the final ensemble
predictions. The predictions used weights determined by
hamming distance calculations, which enabled us to balance
between personalized and user-agnostic models. This step
completed the offline training and prediction of change in
depression in the adolescent data set.

Experiment Design and Results

In this section, we present the depression change prediction
results of the FLMS. The experiments were designed to test the
framework’s claims of reducing overfitting on asmall data set,
reducing the impact of noise or sparsity, and identifying the
best combination for sensor fusion.

We conducted 3 main experiments in support of our claims:

« Experiment 1 tested FLMS predictions against singular
modeling strategies used in SOTA. This experiment
evaluated our claim regarding the advantage of the overall
framework that took steps to reduce noise and identify the
best sensor combinations versus a singular modeling
strategy.
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« Experiment 2 was a SOTA comparison test conducted to
evaluate how our prediction-ranking framework performed
in comparison to existing ML and DL approaches used in
the current literature. This comparison also substantiated
the FLMS performance to overfitting versus the existing
strategies in the literature from prediction in small-data
scenarios.

- Experiment 3 was designed to compare the FLMS
performance with that of commonly used ML algorithms
that have been shown to perform well with sparse data. It
is important to note that there is an overlap of ML
algorithms used to tackle sparsity and those used in passive
sensing studiesfor mental health, particularly for small data
sets.

Evaluation Metrics

Thetask of the FLMSisto model, rank, and output the best set
of predictions from multiple modeling approaches. The output
of the FLMS are predictions encoded as Os or 1s (ie, binary
values). Therefore, our choice of evaluation metrics for the
framework predictions was the average accuracy, averagerecall,
and average F;-scores amongst Users.

Experiment Metadata

The metadata pertaining to each experiment is provided at the
end of the experiments. The information included as metadata
is based on the best practices used [65] to help with
reproducibility of results. They include (1) feature preprocessing
steps, (2) modeling CV strategy, (3) ML algorithms used, (4)
random state, and (5) evaluation metrics specific to the
experiments. They are presented in the form of tablesfollowing
the corresponding results for each experiment.

Data Set Used in the Experiments

To standardize our experiments, we maintained a consistent
data set, a combination of 6-sensor feature sets that included
cals, location, screen usage, conversation, Fitbit, and Wi-Fi.
After the stages of preprocessing, missing dataimputation using
the KNN strategy, and the removal of highly corelated features,
the final data set comprised 61 features and 507 data points
belonging to atotal of 45 (81.8%) participants.

Feature Engineering in Experiments

Since we maintained a consistent data set for al our
experiments, feature engineering for all the experiments was
achieved through data collected from 6 sensors. As discussed
earlier, the data were collected from participants smartphones
using the AWARE app [66] and then passed through the
RAPIDS application programming interface (API). Thefeatures
extracted using the API are discussed in detail next.

Call Sensor Features

The calls sensor features provide a context of how frequently
the user has been in contact with someone else. Studies have
reveal ed that higher degrees of depression arelinked to reduced
contact with social circles [48,53]. As part of call sensor
features, we extracted the total number of missed calls; the
counts of missed calls from distinct contacts, calls from the
most frequent contacts for atime segment, incoming calls, and
outgoing calls, the mean (SD), maximum, and minimum
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duration of both incoming and outgoing calls; and the entropy
duration of outgoing and incoming calls, which provided an
estimate of the Shannon entropy for the duration of al calls of
a particular call type (ie, incoming, outgoing, or missed). All
the extracted features were mean-aggregated over the period of
1 week to match the ground truth.

L ocation Sensor Features

L ocation sensor features provide acontextual ideaof the amount
of movement users of the sensors go through and show the
correlation to mental health [3,46,49,50]. Thelocation dataare
collected through the phones' GPS or the cellular towersaround
the phones. Location has been proven to be able to predict
depressive states [3]. The features extracted from the location
sensors included the location variance calculated through the
sum of variance in longitude and latitude coordinates, the log
of the location variance, the total distance covered, and the
circadian movement [17] calculated using the Lomb-Scargle
method that maps a person’s location patterns following the
24-hour circadian cycle. The speed was also captured as a
feature, and static label ed sampleswere clustered and K-means
clustering was used to locate significant places visited by the
participants. In addition, location entropy was also engineered
to provide the proportion of time spent at each significant
location visited during a day.

Screen Sensor Features

Screen sensor features are a strong indicator of how engaged
users are with their phones. To capture this information, we
extracted features that includes the minimum, maximum, sum,
and mean (SD) of unlock episodes, along with the number of
all unlock episodes and minutes until the first unlock episode.
These features have been used in prior studies that proved their
correlation to depressive symptom severity [46,54,55].

Conversation Sensor Features

Conversation is yet another interesting set of features that
provide information pertaining to social interactions and has
been used in a number of studies relating to mental health
[55-58]. The computed features included the minimum,
maximum, sum, and mean (SD) of the duration of all
conversations. We also recorded the minutes of voice, silence,
and noise. The energy associated with noise, which is the
L 2-norm and the sum of all energy values when noise or voice,
was inferred.

Fitbit

Fitbit offers 2 features, which we extracted based on their
application in previous studies relating to mental health
[54,60,61], and included the maximum resting heart rate
(average maximum heart rate over 1 week) and the maximum
number of steps (average step count over 1 week). These
features provided an idea of the physical movement and stress
experienced by participants.

Wi-Fi
Wi-Fi can be a good indicator of socia context. We extracted
the Wi-Fi count scansthat told us the number of scanned Wi-Fi

access points connected to by the phone during atime segment
and the number of unique connected devices during a time
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segment based on the hardware address. In addition, we
extracted the most scanned connected device. The use of
Wi-Fi-based features in mental health prediction have been
previously covered [48,59].

The data set used in our experiments had al the features
discussed, which were part of the 61 features. Feature
engineering helped provide a context to the data gathered from
all the smartphones and Fitbit sensors and form predictions for
ML models.

Results of Experiment 1

Experiment 1 showcased the overall performance of the FLMS
in comparison with traditional user-agnostic and personalized
models. The FLM S achieved amean accuracy of 0.66 (SD 0.53)
and a mean recall of 0.59 (SD 0.50), which are 7% and 13%
higher than the best baseline performance achieved by ATU
modeling. Among the singular modeling approaches, the ATU,
a personalized strategy, performed best overall, with a mean
accuracy of 0.59 (SD 0.50) and amean recall of 0.46 (SD 0.66).
The worst performances were shown by user-agnostic LOPO

Mullick et &

and LTXO approaches, both of which had a mean accuracy of
0.45 (SD 0.80) and 0.47 (SD 0.83), respectively. These results
are presented in Table 2 and show that singular modeling
approaches used in different studies [1-4,9-17] underperform
when modeling involves small, noisy, multimodal sensor data
in comparison to our FLMS. The FLM S uses abalance of these
strategies to improve predictions.

Experiment 1 was also designed to show how the FLMS
suggeststhe best feature combinations for the various modeling
strategies it uses through the utility of hamming distance from
stage 3. Thelowest hamming distancein stage 3 for the various
modeling approachesused is presented in Table 3. We observed
that the ATU approach led to the lowest hamming distance of
226, followed by LOTPO, with a minimum hamming distance
of 267. The highest hamming distances were those of LOPO at
350 and LTXO at 378. The lower the hamming distance, the
closer the predictions to ground truth. Based on this, we saw
that overall, 6-sensor fusion works best for this data set. The
metadata of experiment 1 are shown in Table 4.

Table 2. Experiment 1 performance of the FLMS?in comparison to singular modeling strategies.

Modeling strategy Type of modeling strategy

Test accuracy, mean (SD)

Test recall, mean (SD) Test F1-score, mean (SD)

FLMS User agnostic + personalized  0.66 (0.53)
ATUP Personalized 0.59 (0.60)
LOTPO® Personalized 0.53(0.65)
LopPo? User agnostic 0.45 (0.80)
LTXO® User agnostic 0.47 (0.83)

0.59 (0.50) 0.56 (0.55)
0.46 (0.66) 050 (0.57)
0.45 (0.70) 0.32(0.73)
0.43(0.72) 0.40 (0.87)
0.35 (0.81) 0.33(0.86)

3FLMS: framework for longitudinal multimodal sensors.
BATU: accumulated time unit.

YL OTPO: leave one time unit one participant out.
4LOPO: leave one participant out.

€LTXO: leave time unit X out.

Table 3. Experiment 1 minimum hamming distance for choosing the best sensor combination for the experiment.

Best sensor fusion

Modeling approach in the FLMS? Hamming distance

6-sensor fusion (calls + location + screen usage + conversation + Fitbit + Wi- - o0

Fi)

6-sensor fusion (calls + location + screen usage + conversation + Fitbit + Wi-

Fi)
1-sensor fusion (location)

2-sensor fusion (calls + location)

226
LOTPO® 267
LoPo® 350
LTXO® 3r8

3L M S: framework for longitudinal multimodal sensors.
BATU: accumulated time unit.

YL OTPO: leave one time unit one participant out.

4L OPO: leave one participant out.

€LTXO: leave time unit X out.
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Table 4. Experiment 1 metadata.
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Metadata Experiment 1

Feature preprocessing
Modeling cvP strategy

mLh algorithms used import XGBoost' as xgb

KNN&imputation, dropping highly co-related columns, sklearn StandardScaler

FLMSE, ATUY, LOTPOS, LTXO', LOPOY

sklearn.linear_model import LinearRegression
sklearn.ensemble import RandomForestRegressor
sklearn.linear_model import ElasticNet
sklearn.ensemble import GradientBoostingRegressor
sklearn.ensemble import ExtraTreesRegressor
sklearn.ensemble import AdaBoostRegressor

Random state 42

Evaluation metrics Accuracy, recal, Fq-score

3K NN: K-nearest neighbor.

bCv: cross-validation.

CFLMS: framework for longitudinal multimodal sensors.
9ATU: accumulated time unit.

€L OTPO: leave one time unit one participant out.
fLTXO: leave time unit X out.

9L OPO: leave one participant out.

PML: machine learning.

iX GBoost: Extreme Gradient Boosti ng.

Results of Experiment 2

In experiment 2, we compared FLMS ranking results with ML
algorithms that have been used in multiple studies on
sensor-based assessment of mental health, as listed in Table 1.
The ML algorithms XGBoost and KNN were chosen based on
the popularity of their usage in the community, while the DL
algorithm was chosen to be abasic multilayer perceptron (MLP)
network and along short-term memory (LSTM) network. These
were aso the best-performing algorithms compared to other
ML algorithms in the literature on our data set. We initialy
tried using K-fold validation for the SOTA algorithms, but due
to poor results, we switched to the leave-one-out strategy, which
performed relatively better. This experiment first compared the
overall performance of the FLMS with other SOTA agorithms
based on the average test accuracy, recall, and F-score. Second,
the experiment substantiated the claim that the FLM S is better
in tackling overfitting, as shown by the mean training accuracy
versus the mean test accuracy compared to the ML algorithms
in Figure 11. The models with only the single ML algorithm
performed no better than the majority baseline approach, with

https://ai.jmir.org/2024/1/e47805

XGBoost showing amean test accuracy 0.50 (SD 0.55) and the
KNN showing around the same mean accuracy of 0.52 (SD
0.54), as shown in Table 5. The MLP achieved higher accuracy
but alow test F;-score, indicating the model’s performance has
high false-positive and fal se-negative rates. The LSTM was no
different and showed a similar recall and F;-score outcomes.
The overfitting of the SOTA modelsisillustrated in Figure 11,
where we compared the FLM S and the rest of the algorithms
based on their respective performances using training and test
accuracies. Figure 11 shows that the FLMS had a relatively
consistent performance between atraining accuracy of 68% and
atest accuracy of 66%, while XGBoost, KNN, MLP, and LSTM
models had high training accuracies but low test accuracies.
The metadata of experiment 2 are shown in Table 6.

The experiments demonstrated support for the points highlighted
in the contribution of this paper—that our ranking framework
works well with small data sets in comparison to existing
approaches and can reduce overfitting by using a
balance-weighted ensembling of user-agnostic and personalized
models.
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Figure 11. Experiment 2 shows FLMS training and test accuracies in comparison to SOTA models. The FLMS is better at adapting to overfitting
compared to the other algorithms. FLMS: framework for longitudinal multimodal sensors; KNN: K-nearest neighbor; L STM: long short-term memory;
ML: machine learning; MLP: multilayer perceptron; SOTA: state of the art; XGBoost: Extreme Gradient Boosting.
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Table 5. Experiment 2 performance of the FLMS? compared to M LP and DL® algorithms used in the current literature on adolescent data.

Predictivelearning approach Modeling strategy Test accuracy, mean (SD)  Test recall, mean (SD) Test F4-score, mean (SD)
FLMS ATUY + LOTPO® + LOPO' 066 (0.53) 0.59 (0.50) 0.56 (0.55)
+LTX0Y
XGBoost" [14,17] Leave 1 out 0.50 (0.55) 0.33(0.52) 0.28 (0.57)
KNN' [10,11,13,16] Leave 1 out 0.52 (0.54) 0.40 (0.61) 0.30(0.73)
MLP [9] Leave 1 out 0.55 (0.70) 0.50 (0.71) 0.33(0.70)
LSTMK [67] Leave 1 out 0.41 (0.66) 0.25 (0.70) 0.35 (0.70)

8FLMS: framework for longitudinal multimodal sensors.
BML: machine learning.

°DL: deep learning.

9ATU: accumulated time unit.

€ OTPO: leave one time unit one participant out.
fLOPO: leave one participant out.

9LTXO: leave time unit X out.

PX GBoost: Extreme Gradient Boosti ng.

IKNN: K-nearest nei ghbor.

IMLP: multil ayer perceptron.

KLsTM™: long short-term memory.
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Table 6. Experiment 2 metadata.
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Metadata Experiment 2

Feature preprocessing

Modeling CVP strategy FLMS", leave 1 out

KNN2imputation, dropping highly co-related columns, sklearn StandardScaler

sklearn.neural_network import MLPClassifier

sklearn.neighbors import KNeighborsClassifier

mLY algorithms used import XGBoost® as xgh
keras.layersimport LsT™'
Random state 42

Evaluation metrics

Accuracy, recall, F1-Score

3 NN: K-nearest neighbor.

BCV: cross-validation.

CFLMS: framework for longitudinal multimodal sensors.
dML: machine learning.

€XGBoost: Extreme Gradient Boosting.

fLsT™: long short-term memory.

Results of Experiment 3

Sparsity isachallengein dealing with small data sets. Thelarge
number of Os or missing values can misdirect models and lead
to overfitting [68]. Therefore, it is important to handle the
problem of sparsity. Our experiment was designed specifically
for small data sets, where sparsity proves to be achallenge. To
tackle sparsity in small-data scenarios, the commonly used ML
agorithms are KNN, MLP, support vector machine (SVM),
decisiontree(DT), random forest (RF), XGBoogt, and AdaBoost
[21-24,69-71].

In our experiment, we showcased a comparison of the FLMS
with all the mentioned ML algorithms. We first calculated the
sparsity of the adolescent data set that comprised all 6-sensor
feature sets. Thereason for continuing to use the 6-sensor feature
sets as in the prior experiment was to test the algorithms with
adataset that had ahigher degree of sparsity compared to other
feature combinationswith lower number of sensors. The sparsity
for this data set was calculated as the ratio of Os to the total
number of elementsin the data set and is given as follows:

]

https://ai.jmir.org/2024/1/e47805

©)

The sparsity of the data set used for this experiment was 35%.
In a small data set, this is a significant amount of sparsity to
negatively impact ML agorithms.

We performed the modeling and evaluated the performance
based on F;-scores as in the case of the prediction of mental
health, the F;-score is a good reflection of how sparsity affects
the models’ judgment in detecting positive and false cases. The
models already shown in Table 4 remained, in addition to other
models that have been mentioned in the literature to perform
well on sparse data sets. Among the ML algorithms used in the
literature, the best performance was shown by the RF, with an
F,-score of 0.35, while the FLMS showed an F;-score 0.21
higher than that of the RF. Both ML P and AdaBoost performed
close to the RF, with an F;-score of 0.33. The algorithm that
performed the worst in handling sparsity was the SVM, with
an F,-score of only 0.15. This experiment highlights the fact
that due to the combination of modeling, the FLMS performs
better when dealing with highly sparse small data sets (Table
7). The metadata of experiment 3 are shown in Table 8.
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Table 7. Experiment 3 performance of the FLMS? compared to common M LP algorithms for tackling sparsity on the adolescent data set.

Predictive learning approach Modeling strategy Test F4-score, mean (SD)
FLMS ATUC + LOTPOY + LOPO® + LTXO' 0.56 (0.55)
XGBoost9 [14,17] Leave 1 out 0.28 (0.57)
KNNN[10,11,13,16] Leave 1 out 0.30(0.73)
MLP [9] Leave 1 out 0.33(0.70)
SVMI [12] Leave 1 out 0.15(0.62)
DTX[13] Leave 1 out 0.24(0.70)
RF [11,13] Leave 1 out 0.35 (0.65)
AdaBoost™ [14] Leave 1 out 0.33 (0.60)

3L MS: framework for longitudinal multimodal sensors.
BML: machine learning.

CATU: accumulated time unit.

dLOTPO: leave one time unit one participant out.
€L OPO: |eave one participant out.

fLTXO: leave time unit X out.

9X GBoost: Extreme Gradient Boosting.

PKNN: K-nearest neighbor.

IMLP; multilayer perceptron.

Isvm: support vector machine.

KDT: decision tree.

IRF: random forest.

MAdaBoost: Adaptive Boosting.

Table 8. Experiment 3 metadata.

Metadata Experiment 3

Feature preprocessing KNN2imputation, dropping highly corelated columns, sklearn StandardScaler
Modeling CV° strategy FLMSE, leave 1 out

mLY algorithms used import X GBoost® as xgh

from sklearn.svm import svMmf
sklearn.neura_network import MLPClassifier
sklearn.neighbors import KNeighborsClassifier
sklearn.tree import DecisionTreeClassifier
sklearn.ensemble import RandomForestClassifier
sklearn.ensemble import AdaBoostClassifier

Random state 42

Evaluation metrics F,-score

3 NN: K-nearest neighbor.

BCv: cross-validation.

CFLMS: framework for longitudinal multimodal sensors.
dML: machine learning.

©X GBoost: Extreme Gradient Boosting.

fsvm: support vector machine.
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Discussion

Principal Findings

Solving the problem of limited and sparse data sets is not a
singular modeling-based endeavor. It requires flexibility and a
combination of strategies to achieve predictions that can be
trusted. In this section, we discuss our ranking framework’s
overarching aims, performance, and limitations based on our
assessments.

In experiment 1, we tested the FLM Sin comparison to baseline
user-agnostic and personalized models. Our framework achieved
ahigher accuracy, recall, and F,-score for the predictions when
compared to singular modeling approaches, as seenin Table 2.
We also demonstrated how we arrived at the sensor combination
for the best set of predictions using hamming distancesin stage
3 of the FLMS, as reflected in Table 3. In experiment 2, we
compared the FLM Swith SOTA agorithmsused in theliterature
for predicting mental health states using sensors. The results
from this experiment showed the FLM S to perform better than
the existing agorithms in terms of accuracy, recall, and
F,-scores (Table 4). Experiment 2 also highlighted the FLMS's
ability to reduce overfitting in comparison to the SOTA
algorithms. The FLMS showed that the training accuracy and
test accuracy did not diverge by large margins, indicating it had
not been overfitting the models. Lastly, we compared the FLM S
ranking with that of existing ML algorithms that perform well
with sparse data in experiment 3. We saw that the data set we
used in our experiments exhibited 35% sparsity, which is a
significant amount in an already small dataset. The FLMS had
ahigher F,-score compared to the rest of the ML agorithms.

Comparison With Previous Research

The results of baseline modeling are consistent with previous
studies[10,29] that showed superior performance when models
were personalized. The increase in accuracy shows that our
framework was able to narrow down the best set of predictions
overall.

Hamming distance results showed that in LOPO and LTXO
approaches, single-sensor deployment and a dual-sensor
combination perform equally well as 6-sensor combinations
and achieve a minimum hamming distance. This brings forth
the advantage of our framework to prioritize sensor selection
for yielding best predictions overall and for only the necessary
number of feature sets.

Theresults of experiment 2 provide uswith further evidence of
theranking frameworks' efficacy in balancing reliance between
both user-agnostic and personalized approaches. Despite a
higher accuracy, the recall of the FLMS does not overfit like
that of other SOTA ML agorithms. The FLMS uses weights
to balance out such effects, thus reducing the impact of
overfitting in prediction performance. The test with popular
existing ML algorithms showed that, despite the success of the

https:/ai jmir.org/2024/1/e47805
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models in previous studies [9-11,13-17], they struggle when
the data set is small and noisy, as is the case of the depression
data set presented in thiswork. Thisperformanceresultissimilar
when welook at the capability of ML algorithmsthat are better
at handling sparsity. Wefound the FL M Sto perform better than
those algorithms.

Overall, seeking a single user-agnostic model that fitsall isan
elusive problem as most existing works suggest better
performance for specialized approaches. However, specialized
modeling does not perform well on heterogeneous data sets.
Therefore, neither user-agnostic nor personalized modeling
alone can be applicable to a specific problem area. Our
framework providesapractical way to balancethe 2 approaches,
particularly for dealing with limited data sets.

Limitations and Future Directions

We encountered a few limitations with this study that can be
addressed in future work. The FLM S was tested on the case of
depression in adolescents. As such, we have not been able to
establish alower bound on the data set size that our framework
is capable of handling.

Another area that we could not elaborate on is the computing
speed of such a framework that might be impacted if sensor
numbers rise to higher levels. Lastly, the framework was
equipped with lightweight and widely used ML algorithms.
Methods such as the generalized linear mixed model (GLMM)
for handling longitudinal data could not be tested.

Future work can address these limitations with exposure of the
framework to more multimodal, longitudinal data sets and
adapting and testing other ML algorithms. Interesting future
directions for the framework include its online adaptation and
asimilarity-based cold-start solution.

Conclusion

In this study, we presented a novel prediction-ranking
framework for modeling limited noisy or sparse, multimodal,
longitudinal passive sensor data. We tested our framework on
an adolescent depression data set consisting of 45 participants
over aperiod of 24 weeks. The results showed that despite the
complexity and limitations of the data set, our framework is
ableto provide better predictions compared to singular modeling
approaches. In experiment 1, our model achieved a 7% increase
in accuracy and a 13% increase in recall. In experiment 2 with
synthetic data, our model achieved a 5% increase in accuracy
and avoided overestimating the recall value through ensembling
predictions. The framework also showed its ability to explore
sensor combinations through feature fusion. Our tests with
existing popular SOTA agorithms showed that the models
struggle when data tend to be limited and noisy. We also tested
the FLM S with algorithms that perform well with sparsity and
found the FLM Sto exhibit abetter performance. In conclusion,
the FLMS can be an effective tool for passive sensing studies.
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Abstract

Background: Work characteristics, such as teleworking rate, have been studied in relation to stress. However, the use of
work-related datato improve a high-performance stress prediction model that suitsan individual’slifestyle has not been evaluated.

Objective: This study aims to develop a novel, high-performance algorithm to predict an employee’s stress among a group of
employees with similar working characteristics.

Methods: This prospective observational study evaluated participants’ responses to web-based questionnaires, including
attendance records and data collected using a wearable device. Data spanning 12 weeks (between January 17, 2022, and April
10, 2022) were collected from 194 Shionogi Group employees. Participants wore the Fitbit Charge 4 wearable device, which
collected dataon daily sleep, activity, and heart rate. Daily work shift dataincluded details of working hours. Weekly questionnaire
responses included the K6 questionnaire for depression/anxiety, a behavioral questionnaire, and the number of days lunch was
missed. The proposed prediction model used a neighborhood cluster (N=20) with working-style characteristics similar to those
of the prediction target person. Data from the previous week predicted stress levels the following week. Three models were
compared by selecting appropriate training data: (1) single model, (2) proposed method 1, and (3) proposed method 2. Shapley
Additive Explanations (SHAP) were cal culated for the top 10 extracted features from the Extreme Gradient Boosting (X GBoost)
model to evaluate the amount and contribution direction categorized by teleworking rates (mean): low: <0.2 (more than 4 days/'week
in office), middle: 0.2 to <0.6 (2 to 4 days/week in office), and high: =0.6 (less than 2 days/week in office).

Results: Data from 190 participants were used, with a teleworking rate ranging from 0% to 79%. The area under the curve
(AUC) of the proposed method 2 was 0.84 (true positive vsfalse positive: 0.77 vs 0.26). Among participants with low teleworking
rates, most features extracted were related to sleep, followed by activity and work. Among participants with high teleworking
rates, most features were related to activity, followed by sleep and work. SHAP analysis showed that for participants with high
teleworking rates, skipping lunch, working more/less than scheduled, higher fluctuations in heart rate, and lower mean sleep
duration contributed to stress. In participants with low teleworking rates, coming too early or late to work (before/after 9 AM),
ahigher/lower than mean heart rate, lower fluctuationsin heart rate, and burning more/fewer calories than normal contributed to
stress.

Conclusions: Forming a neighborhood cluster with similar working styles based on teleworking rates and using it as training
data improved the prediction performance. The validity of the neighborhood cluster approach is indicated by differencesin the
contributing features and their contribution directions among teleworking levels.

Trial Registration: UMIN UMINO00046394; https://www.umin.ac.jp/ctr/index.htm

(JMIR Al 2024;3:€55840) doi:10.2196/55840
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Introduction

Methods

Stress is an externa or internal stimulus that produces a
compensatory biological response that can trigger or aggravate
many diseases or pathological conditions [1]. Notably, the
stress-depression association requires recognizing the effects
of context and personal characteristics on the existence of
stressors and understanding the progressive and dynamic
relationship between stress and depression over time [2]. This
is important because depression remains a major social issue
[3] with a high relapse rate, prolonged duration of illness [4],
and high socioeconomic impact [5]. The duration of untreated
depression is associated with worse outcomes [6]. The annual
national cost of major depressive disorder among adults aged
=20 yearsin Japan in 2008 was approximately US $11 hillion,
including US $6.9 billion in workpl ace-associated expenses[5].

Detecting and targeting depression before a formal diagnosis
can serve as an early countermeasure to depression. Therefore,
detecting stressin advanceisvital because stressisafactor that
triggers depression and increases the risk of relapse [2].
Companies are placing an ever-increasing emphasis on their
employees’ mental health, including their experience of stress,
as an important topic to address. According to the Japanese
Ministry of Health, Labour and Welfare (2021), the proportion
of companies with workers taking temporary |leave or retiring
due to mental health conditions has increased from 9.2% in
2020 to 10.1% in 2021 [7]. Furthermore, about 40% of
companiesin Japan reported worsening employee mental health
due to the COVID-19 pandemic [8]. Therefore, in response to
this growing need, the proportion of companies conducting
stress checks on their employees has increased from 62.7% in
2020 t0 65.2% in 2021 in Japan [7].

One approach is to devel op stress prediction models using data
related to stress collected by wearable devices that measure
parameters such as heart rate variability [9], physical activity
[10], and sleep [11], aswell asthrough questionnaire responses
that provide insights into physical activity [12] (eg, outings),
absenteeism (failure to report for scheduled work), and the
number of times lunch is missed [13]. However, these data are
affected by working style such asteleworking habits (eg, remote
working).

To the best of our knowledge, there is no study taking
teleworking habitsinto account for stress prediction even though
therelationship between teleworking and stress has been studied.
Teleworking/telecommuting can have an impact on mental
health [14,15]. However, stress is dependent not only on the
environment but also on an individua’s attributes [16,17].
Moreover, stress parameters [9,18,19] can be influenced by
various other factors. Consequently, a few studies on stress
detection have used a personalized model-based approach
[20-22].

The objective of this study was to develop a novel,
high-performance stress prediction algorithm using working
data focusing on employees' teleworking habits.

https:/ai jmir.org/2024/1/e55840

Study Design

This prospective observational study (UMINO00046394)
evaluated participants’ responses to web-based questionnaires,
including attendance records and data collected via a wearable
device. The datawere used to devel op ahigh-performance stress
prediction algorithm based on working-style characteristics
similar to those of the prediction target person among the
participants. Data spanning 12 weeks were collected for each
employee from January 17, 2022, to April 10, 2022.

Ethical Considerations

Informed consent was obtained from employees using a
web-based consent form. This study was approved by the
Research and Ethics Committee of Shionogi & Co., Ltd
(EP21-13) and the MINS Ingtitutional Review Board (210238),
a specified nonprofit organization. The study was conducted in
compliance with the ethical guidelines for medical and health
research involving human participants and in accordance with
the ethical principles of the Declaration of Helsinki. To
deidentify the participants, age and sex datawere not collected.

Recruitment

This study enrolled 194 employees of the Shionogi Group
working in Osaka, Japan. Participants who rarely teleworked
included salesor research empl oyees, and those who frequently
teleworked included clerical employees. Notably, neither 100%
teleworking nor teleworking other than working from home
was permitted for Shionogi Group employees. Theteleworking
rate was cal culated as the number of days an employee worked
from home during the 12 weeks divided by the number of days
an employee worked during the 12 weeks.

The participants, who were from different departments, worked
during standard working hours (9 AM to 5 AM Monday to
Friday); however, given the anticipated flexible time system
for data collection, participants could decide their working hours
each day and enter work start and end timesinto the attendance
management system in advance. Night shift workers were not
included in this study, and while there was a certain degree of
flexibility inwork hours, daytime workers were encouraged not
to shift their work hours too far from the standard workday
except when necessary. There were no exclusion criteria other
than working time and region (daytime employee, working in
Osaka), thereby reducing enrollment bias.

Data Collection

Daily data collected from the Fithit Charge4 wearable device
worn for 12 weeks (Fitbit LLC) included sleep data recorded
daily (sleep duration, sleep efficiency, sleep initiation, and end
time), activity data recorded every 15 min (humber of steps
taken, distance moved, number of floors climbed or descended,
and calories burned), and heart rate per minute. Daily work shift
data collected included working hours, scheduled work start
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and end times, scheduled hours of work, work from home
(yes/no), and absence from work/leave taken (yes/no).

Weekly web-based questionnaire responses included the K6
guestionnaire [23,24], which measures 6 common symptoms
of depression and anxiety, each rated on a scale between 0 and
4 (O=never, 1=alittle, 2=sometimes, 3=most often, and 4=at all
times). The total score was the sum of the responses to each
guestion (ranging from 0 to 24), the behavioral questionnaire
(number of outings, such as commuting and socia outings),
and the number of days|unch was missed. We sel ected the | atter
2 parameters based on the premise that the number of outings
is an aternative index for exercise habits [12]. Outings could
also be used as an alternative index for UV exposure, which is
reported to be related to mental health [25,26], and skipping
lunch isreported to be related to stress[13].

Proposed Prediction Model

Step 1: Extract the Neighborhood Cluster

The participants were arranged in ascending order based on
their teleworking rate, with each participant serving as a
prediction target person. To homogenize the training data
background, a group of participants whose working style/work
characteristics were similar to those of the prediction target
person were extracted and label ed as the neighborhood cluster.

lwamoto et al

Thisneighborhood cluster included participants with the top 20
nearest teleworking rates (for the training data) from the
prediction target person. In some instances, when the size of
the neighborhood cluster was greater than 20 because of the
same ranking on the boundary, participants on the boundary
were randomly sampled to include only 20 participants.

Step 2: Create an Individual Model to Predict Stress

The selected neighborhood cluster was subsequently used to
train a prediction model for each prediction target person,
meaning that an “n” number of different prediction modelswas
created for the “n” number of targets to be included in this
analysis. Using the neighborhood cluster data extracted in Step
1, amodel was created that was individually optimized for the
prediction target person. Data from the previous week were
used to predict the stress level in the following week using this
individual model. Although data for 12 weeks were collected,
only the data for 11 weeks were used in the model because the
data before week 1 (-1 week) were not collected to use the
first-week datain the model (Figure 1).

The 12-week data were split into training and test data for the
3 models. The training data comprised all 12-week data of the
neighborhood cluster plus data from the first 7 weeks for the
prediction target person. Thetest datacomprised thelast 5 weeks
of datafrom the prediction target person (Figure 2).

Figure 1. Prediction model. Data collected within a term shown by a blue dashed-line box are input to the prediction model, and the stress state

(negative/positive) at the timepoint shown by ared star is predicted.
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Figure 2. Twelve-week data split for comparison of the three methods.
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| |
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. required 2 or more data points). The K6 questionnaire scores
AnalysisMethod representing the stress index [23] were converted into binary
Sample Size objective variables (negative=K6: 0-4 [class 1]; positive=K6:

Considering the feasibility of an exploratory evaluation, the
number of study participants was set to 150. However, the
proportion of people with mental illness at the Shionogi Group
was estimated to be between 7% and 10%, and the expected
participation of approximately 10 patients with mental illness
was based on thisvalue. In general, too few mental illness cases
lead to failure of analysis, whereas too many mental illness
cases (>10%) do not appropriately reflect the population. Asa
screening method, we collected a stress check questionnaire
when obtaining informed consent. However, as the number of
mental illness cases was within the expected range of 7% to
10%, a formal screening was not performed. A total of 2037
weeks of datawere evaluated. Datawere evaluated weekly, and
the mean (SD) was calculated from each participant’s weekly
data. The mean was omitted only when data were missing for
the entire 7 days of the week, and the SD was omitted only
when data were missing for =6 days of the week (unbiased SD

https:/ai jmir.org/2024/1/e55840

5-8[class 2], K6: 9-12 [class 3], and K6: =13 [class 4]).

Model Training Details

The analysiswas performed using Python (version 3.8.0; Python
Software Foundation) and PyCaret (version 2.3.10). The
Extreme Gradient Boosting (XGBoost) hyperparameters were
set as follows (common in al cases): max_depth=6,
learning_rate=0.3, and n_estimators=100. These hyperparameter
values are the default configuration of PyCaret, and a
hyperparameter search was not performed. The 3 models were
compared, which included threshold adaptation. The single
model used the first 7 weeks as training data and the latter 5
weeks as test datafor al participants. Proposed method 1 used
12-week data of the neighborhood cluster plusthefirst 7-week
data of the prediction target person astraining dataand the | atter
5-week data of the prediction target person as test data. Both
methods used afixed threshold of 0.5 (the default threshold of
XGBoost); an output of the stress prediction model above this
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threshold indicated high levels of stress. Proposed method 2
used 7-week data of the neighborhood cluster and the prediction
target person as training data, the latter 5-week data of the
prediction target person as test data, and the latter 5-week of
the neighborhood cluster for threshold adaptation. The
explanatory variables are the 50 features shown in Multimedia
Appendix 1, and the object variableisthe binarized stress score.

The threshold was adjusted such that the true positive (TP) rate
was >0.8 using the threshold adaptation data. A value of 0.8
was the practically required TP rate. Of note, there was no
guaranteethat the TP rate would be >0.8 in the test data because
the threshold was not adjusted for test data. The prediction
threshold was adjusted such that the TP rate increased to >0.8,
with the lowest false positive (FP) rate. Notably, determining
the TP rate is more important than determining the FP rate to
ensure early depression countermeasures. Thus, by setting the
value to 0.8, we could predict as many positives as possible.
The area under the receiver operating characteristic curve
(AUROC) was used to measure the performance of the models.

Data Exclusion

A total of 190 individual models were created, as 2 participants
discontinued the study, and data from 2 other participants were
missing in the latter 5 weeks and were not included in the test
data. However, the data of thelatter 2 participantswere available
for thefirst 7 weeks and were thusincluded in the training data
(Figure 2).

Procedure for Checking Feature Contribution

We selected figures to report the absolute amount of feature
contribution and feature contribution variability between
teleworking rates. Feature importance for the prediction was
evaluated for each individual model using XGBoost [27,28],
and thetop 10 featureswereidentified. High featureimportance
was defined as the factor (50 variables shown in Multimedia
Appendix 1) with a high contribution (influence) to the
prediction. Feature importance was defined as a score cal cul ated
based on the reduction in the objective function related to
heterogeneity (sum of squared residualsfor continuous variables
and the Gini index for categorical variables) achieved by

lwamoto et al

splitting the feature value when creating decision trees
(Multimedia Appendix 2) [28].

Thereafter, the individual model was divided into 3 levels
stratified by the teleworking rate, and the top 10 feature values
for each level were extracted. Finally, Shapley Additive
Explanations (SHAP) [29] were calculated for the top 10
extracted features to evaluate their impact and contribution
direction, stratified by 3 levels of teleworking rates, asfollows:
(2) low: <0.2 (mean of >4 days per week in office), (2) middle:
0.210 <0.6 (mean of 2-4 days per week in office), and (3) high:
>0.6 (mean of <2 days per week in office). The absolute value
of SHAP represents the contribution amount, whileits positive
or negative direction on the y-axis represents the contribution
direction.

The contribution direction and impact of features were based
on “covariance of features and SHAP’ divided by “SD of
features” Any positive deviation from O on the y-axis was
considered to positively impact stress, and any negative
deviation was considered to negatively impact stress.

Results

Overall Findings

Data from 190/194 (97.9%) participants were included to
develop high-performance stress prediction algorithms, 2
participants discontinued the study, and data from 2 other
participants were included only in the training set. The
teleworking rate of the employees ranged between 0% and 79%.
The prediction results of the individual models were integrated
for al participants using proposed methods 1 and 2 and
compared with the results of the single model. Although the
proposed methods improved the prediction performance, the
AUC was similar for proposed methods 1 and 2. The AUC was
the highest for proposed method 1, at 0.85 (TP vs FP: 0.59 vs
0.12), followed by proposed method 2, at 0.84 (TP vsFP: 0.77
vs 0.26) and the single model method, at 0.76 (TP vs FP: 0.42
vs 0.12) (Table 1). The confusion matrix for methods 1 and 2
ispresented in Figure 3.

Table 1. Comparison of prediction results of the single model method and proposed methods 1 and 2.

Performance metric Single model Proposed method 1 Proposed method 2
True positive rate 0.42 0.59 0.77
False positive rate 0.12 0.12 0.26
AUROC? 0.76 0.85 0.84

8AUROC: area under the receiver operating characteristic curve.
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Figure 3. Confusion matrix for methods 1 and 2. “N” represents the total number of target classes. FN: false negative; FP: false positive; TN: true

negative; TP: true positive.
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Feature Importance Analysis

The top 10 features with the highest mean feature importance
ranking for each of the 3 teleworking levels are presented in
Multimedia Appendix 2. These 10 features were divided into
3 categories: activity (red), work (green), and sleep (blue). They
were then tabulated by teleworking levels, with 43.2% (n=82)
at the low level, 36.3% (n=69) at the middle level, and 20.5%
(n=39) at the high level. Among the participants with a low
teleworking rate, most features were related to sleep, followed
by activity and work. Among the participants with high
teleworking rates, most features were related to activity,
followed by sleep and work.

Analysis of Feature Contribution Direction Based on
SHAP

The contribution direction of each individual model for the top
10 extracted features was examined at each level. Although
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many features were evaluated, only those with interesting
suggestions have been reported. Middle and low teleworking
rates and longer working hours contributed to higher stress
levels (Figure 4A). Irrespective of the teleworking rate, lower
activity contributed to higher stress levels (Figure 4B).

Participants with a high teleworking rate who skipped lunch
more often had higher stresslevelsthan those with low or middle
teleworking rates. Interestingly, skipping lunch did not
contribute to stress prediction in participants with middle and
low teleworking rates (Figure 5A). Working more or less than
scheduled hours (high variation in the working hour gap)
contributed to stress, especially for those with high teleworking
rates (Figure 5B). Low fluctuationsin heart rate (SD of the heart
rate) contributed to stress, particularly for those with middie or
low teleworking rates. However, high fluctuations in heart rate
were a noticeable contributor to stress in those with a high
teleworking rate (Figure 5C).

Figure4. Anaysisof the contribution direction of (A) working hoursand (B) activity categorized by teleworking/telecommuting rates based on Shapley

Additive Explanations (SHAP).
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Figure 5. Analysis of the contribution direction of (A) skipping lunch, (B) working hour gap (working more or less than scheduled hours), and (C)
heart rate categorized by teleworking/telecommuting rates based on Shapley Additive Explanations (SHAP).
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In participants with low teleworking rates, being late for work
or coming to work too early contributed to stress. Although the
variation was lower, a similar trend was observed for
participants with high and middle teleworking rates (Figure
6A). Having a heart rate higher or lower than the mean heart
rate contributed to stress in participants with low teleworking
rates. Although the variation was lower, a similar trend was
observed for participants with high and middle teleworking
rates (Figure 6B). Burning more or fewer cal oriesthan the mean

calorie burned contributed to stress in participants with middle
and low teleworking rates. Moreover, burning less than normal
calories was a noticeable contributor to stress in participants
with high teleworking rates (Figure 6C). In participants with a
low teleworking rate, alonger mean sleep duration contributed
to stress, whereasin those with ahigh teleworking rate, alower
mean sleep duration was a noticeable contributor to stress
(Figure 6D).

Figure 6. Analysis of the contribution direction of (A) mean work start time, (B) mean heart rate, (C) daily calories burned, and (D) sleep duration
categorized by teleworking/telecommuting rates based on Shapley Additive Explanations (SHAP).
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Principal Findings
Thisstudy evaluated anovel, high-performance stress prediction
algorithm that uses datafrom employeesto extract neighborhood
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of the target person. The prediction performance of both
proposed methods was markedly improved compared with that
of the single model (baseline). A good stress prediction
performance was achieved—the AUC was the highest for
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proposed method 1 (0.85), followed by proposed method 2
(0.84) and the single model method (0.76). The level of
predictive performance achieved by the proposed models
suggested the benefits of narrowing the training data (by using
neighborhood data) based on the teleworking rate.

In a stress detection study performed by Tazarv et al [30],
per-individual models were reported to outperform single
models, however, the approach required many data points
(approximately 300 times/month) from participants. Therefore,
by selecting a neighborhood cluster, the burden on participants
was reduced. This approach alleviated user burden by reducing
the number of label requeststo 7 data points for the prediction
target person. Because previous studies [20-22] did not narrow
the training data based on work style/characteristics, it is
possible to improve their prediction performance by
incorporating this approach.

Theresults showed that personal datafrom the prediction target
person are important (particularly in terms of measuring the
change from baseline) because proposed method 2 showed
prediction performance similar to that of proposed method 1.
There was almost no difference in the AUC between proposed
methods 1 and 2, suggesting that intraindividual fluctuation is
amajor stressor asthe participants' own data contributed greatly
to the performance prediction rather than the neighborhood
cluster data. Thus, persona data from the prediction target
person are important because a reduction in the neighborhood
cluster’'s training data to 5 weeks caused no noticeable
performance deterioration. Furthermore, the validity of using
individual models is supported by the fact that there are
differences in the feature contribution depending on the
teleworking level, and the direction of the contribution changes
within each level.

For participants with low teleworking rates, most features were
related to sleep, followed by activity and work. This indicates
that the contribution of activity may be lower when working
from the office (low tel eworking rates) than at other teleworking
levels because it is difficult to discriminate between regular
activity and activity due to commuting. For participants with
high teleworking rates, most features were related to activity,
followed by sleep and work. Thisimpliesthat in ateleworking
environment (such as at home), baseline activity levels are
consciously assumed to be low and easier to discern than sleep
and work.

The results of SHAP suggest that some features are consistent
with intuition and common sense, contributing to its validity.
Longer working hours among participants with middle and low
teleworking rates were a marker of high stress. Low activity,
irrespective of the number of days worked from the office per
week, was a marker of high stress. Additionally, some features
showed changesin the contribution direction within teleworking
levels, suggesting the validity of the proposed method for
modeling a small group of participants.

Several features characteristic of the high teleworking group,
which tended to have the sameworking style among individuals
but in a completely different working environment, were
identified. Skipping lunch whileworking from homewaslikely
to be amarker of stress. This could also be attributed to the fact

https:/ai jmir.org/2024/1/e55840
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that with a high degree of freedom, a person is more likely to
skip meals. In addition, biological information, such as skipping
meals’hunger, is not as easily discernible by employees as
activity, which is presumed to be low while teleworking.
Additionally, working more or less than the scheduled hours
contributed to stress, especialy among those with a high
teleworking rate. This observation suggested that arriving late
or leaving early for appointments may be detected as a sign of
stress, likely due to the high psychological hurdles for arriving
late or leaving early, especially among those working from the
office. We believe that psychological hurdles are fewer when
working from home, possibly due to the higher degree of
flexibility in using the provided working hours.

Additionally, lower fluctuations in heart rate were found to
contribute to stress, especially in participants with middle and
low teleworking rates. However, a higher fluctuation in heart
rate was a noticeable contributor to stress in those with a high
teleworking rate. Although it is known that the lower the
fluctuationsin heart rate, the greater the stress[9], contradictory
resultswere noted in the high teleworking group. The autonomic
nervous system, which consists of sympathetic and
parasympathetic nerves, regulates heart rate. During a fight or
flight response (work stress or activity in the contemporary
sense), sympathetic nervesincrease the heart rate. On the other
hand, during the rest and digest state (relaxing or inactivity),
the parasympathetic nerves dominate and decrease heart rate.
It is assumed that sympathetic activation is dominant while
working from the office and parasympathetic activation is
dominant while teleworking [ 18]. The low fluctuationsin heart
rate associated with high stress levels in the low and middle
teleworking groups could be attributed to sustained sympathetic
dominancewith lesstimeto relax whileworking from the office.
Similarly, high fluctuations in heart rate associated with high
stress levels in the high teleworking group could be attributed
to temporal activation of sympathetic nerves while performing
a difficult task, despite the parasympathetic predominance of
the baseline state. Additionally, a lower mean sleep duration
among participants with a high teleworking rate was a marker
of stressin thisstudy. Thisresult isimportant because we expect
that a person should get sufficient sleep when working from
home.

Similarly, several features characteristic of thelow teleworking
group were identified. Coming late or too early to work was
identified as a marker of stress among those with a low
teleworking rate. These observations suggested that coming too
early may correlate with long working hours and coming late
may correlate with decreased engagement. Moreover, having a
higher or lower than mean heart rate was found to be a marker
of stressinthosewith alow teleworking rate. This suggeststhat
interms of heart rate, an individual may respond differently to
stress while working from the office, according to the baseline
state of the autonomic nervous system with sympathetic or
parasympathetic dominance. Moreover, the variability in the
contribution of calories burned was high among those with
middle and low teleworking rates. Burning more or fewer
calories than normal among participants with middle and low
teleworking rates was amarker of stressand could be attributed
to the individual’s unique response.
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Limitations

The dataused in this study (ie, wearable device, questionnaire,
and attendance data) were affected by working style and various
other factors. If the target population were to change, theresults
may be different from those obtained in this study. Moreover,
age-related comorbidities and lifestyle changes were not
considered in the modeling, which can impact the outcome. In
this study, we created a neighborhood cluster based on the
teleworking rate. Therefore, it can only be applied to people
who are alowed to telework. The “neighborhood cluster” in
this study was assumed to be a “cluster with similar working
style” For practical purposes, it is conceivable that working
styles differ greatly, even if the teleworking rate is similar (eg,
when data are obtained from multiple companies). Moreover,
responsesto the questionnaires, including the K6 questionnaire,
were subjectivefor the participants and not necessarily accurate.
Furthermore, feature importance and SHAP only quantify the
degree to which the machine learning model uses the features
for prediction but do not consider whether the model makes
predictions with high accuracy. Thus, although the tendency to
judge that stressis high when the value of afeatureislargeis
correct, it cannot be confirmed that “ stress increases when the
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valueof afeatureislarge.” Finally, becauseteleworking outside
of working from home was not allowed in the Shionogi Group,
a certain degree of participant bias may exist because certain
job functions were not permitted to telework. Therefore, the
results of this study might not be reproducible when targeting
other forms of teleworking.

Conclusion

Prediction performance was improved by forming a cluster
(neighborhood cluster) with similar working styles based on
theteleworking rate and using it asthetraining data. The validity
of the neighborhood cluster approach isindicated by differences
in the contributing features and their contribution directions
among teleworking levels. Further studies are required to
evaluate and improve the proposed method using data obtained
from employees of different companies. This methodology can
improve existing stress detection methods by incorporating the
idea of this research and narrowing the training data (ie,
neighborhood cluster extraction based on the teleworking rate).
This study pavestheway for employersto consider and support
timely and appropriate interventions for people predicted to
experience high stress levels.
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Multimedia Appendix 1
Variables evaluated to deduce the feature importance.
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Multimedia Appendix 2

Top 10 features with the highest mean feature importance ranking categorized into threelevels of teleworking rates using Extreme
Gradient Boosting (XGBoost). Features related to activity are in red, features related to work are in green, and features related
to dleep arein blue.
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Abstract

Background: Clinical trias are vital for developing new therapies but can also delay drug development. Efficient trial data
management, optimized trial protocol, and accurate patient identification are critical for reducing trial timelines. Natural language
processing (NLP) has the potential to achieve these objectives.

Objective: This study aims to assess the feasibility of using data-driven approaches to optimize clinical trial protocol design
and identify eligible patients. Thisinvolves creating acomprehensive eligibility criteriaknowledge baseintegrated within electronic
health records using deep learning—based NLP techniques.

Methods: We obtained data of 3281 industry-sponsored phase 2 or 3 interventiona clinical trials recruiting patients with
non-small cell lung cancer, prostate cancer, breast cancer, multiple myeloma, ulcerative colitis, and Crohn disease from
Clinical Trials.gov, spanning the period between 2013 and 2020. A customized bidirectional long short-term memory— and
conditional random field-based NL P pipeline was used to extract all eligibility criteria attributes and convert hypernym concepts
into computable hyponyms along with their corresponding values. To illustrate the simulation of clinical trial design for optimization
purposes, we sel ected asubset of patientswith non—small cell lung cancer (n=2775), curated from the Mount Sinai Health System,
asapilot study.

Results:  We manually annotated the clinical trial eligibility corpus (485/3281, 14.78% trials) and constructed an eligibility
criteria—specific ontology. Our customized NLP pipeline, developed based on the eligibility criteria—specific ontology that we
created through manual annotation, achieved high precision (0.91, range 0.67-1.00) and recall (0.79, range 0.50-1) scores, aswell
as a high F;-score (0.83, range 0.67-1), enabling the efficient extraction of granular criteria entities and relevant attributes from
3281 clinical trials. A standardized €eligibility criteria knowledge base, compatible with el ectronic health records, was devel oped
by transforming hypernym concepts into machine-interpretable hyponyms along with their corresponding values. In addition, an
interface prototype demonstrated the practicality of leveraging real-world datafor optimizing clinical trial protocolsand identifying
eligible patients.

Conclusions;  Our customized NLP pipeline successfully generated a standardized eligibility criteria knowledge base by
transforming hypernym criteria into machine-readable hyponyms along with their corresponding values. A prototype interface
integrating real-world patient information allows us to assess the impact of each eligibility criterion on the number of patients
eligible for the trial. Leveraging NLP and real-world data in a data-driven approach holds promise for streamlining the overall
clinical trial process, optimizing processes, and improving efficiency in patient identification.
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Introduction

Background

Clinical trialsare crucia for devel oping new therapies, but they
require significant resources and can introduce delays in drug
development, leading to increased costs [1,2]. Complex and
restrictive eligibility criteriahinder patient enrollment, impacting
target goals, timelines, and ultimately patient well-being [3-5].
This issue is particularly notable in cancer trials with poor
recruitment and high failure rates [6-8] because >80% of the
trialsfail to meet their initial target accrualsand timelines[6,9].
In addition, overly restrictive eigibility criteria limit the
representation of the broader patient population, reducing
real-world applicability and treatment impact [10-13].
Nonetheless, the practice of trialsreusing complicated digibility
criteriawithout aclear rationale is acommon one [14], despite
the minimal impact on trial outcomes [15]. Liu et a [15]
demonstrated that broadening eligibility criteria using a
data-driven approach can benefit initially excluded patients. A
comprehensive and standardized eligibility criteria knowledge
base that is compatible with real-world data can address these
challenges. Such a knowledge base optimizes trial protocol
design, improves patient enrollment, enhances the reliability
and applicability of evidence synthesis, and fostersthe efficient
development of new therapies. Furthermore, it enables
opportunities such as generating synthetic control arms (SCAS)
for single-arm clinical trials using electronic health records
(EHRs) [16-18].

Theimportance of semantically representing eligibility criteria
interoperable with EHRs has been highlighted in multiple studies
[19-21]. Converting free-text eligibility criteriato computable
formats poses challenges, addressed by a range of natura
language processing (NL P) techniques and transformer models
[22-26]. AnNLPinterface, Criteria2Query, enables computable
queriesfor eligible cohort identification using EHRs [27]. This
tool supports clinical trial knowledge base development,
enhancing EHR interoperability and scalability for efficient
eigibility criteria knowledge engineering [28]. Manualy
annotated data sets such as “Chia, alarge annotated corpus of
clinical tria eligibility criteria” [29] and the “Leaf Clinica
Trials corpus, the largest and most comprehensive
human-annotated corpus of publicly available clinical trials
eligibility criteria’ [30] have significantly enhanced NL P model
training and the development of effective query structures.
Despite significant progress in bridging the gap between
eligibility criteria and EHRs, limitations persist in accurately
representing the granularities of eigibility criteriaand real-time
eligible patient number checks [20,31,32]. Using varying
hierarchical levels of medical concepts, whether as hypernyms
or hyponyms, presents one of the challenges when aligning
eligibility criteria with EHRs; for instance, numerous tria
eligibility criteriause hypernyms, which encompass a group of

https:/ai jmir.org/2024/1/650800

related medical concepts, such as cardiovascular disease.
Conversely, the patient problem list within the EHR specifies
particular medical conditions or diseases (hyponyms), such as
myocardial infarction. Establishing a standardized eligibility
criteriaknowledge base by transforming ambiguous hypernym
concepts into computable hyponyms can enhance optimizing
trial protocol design and identifying eligible patients through
seamless integration with EHR data.

Objectives

In this study, we aim to create a standardized eligibility criteria
knowledge base that seamlessly integrateswith EHRs. By using
deep learning—based NLP techniques, hypernym concepts in
eligibility criteria will be converted to their EHR-compatible
hyponyms along with their corresponding values. In addition,
the prototype user interface will be developed as a pilot study,
enabling the data-driven optimization of clinical trial protocols
and theidentification of eligible patientsthrough the integration
of the eligibility criteria knowledge base and EHRSs.

Methods

Data Set

We obtained the data from ClinicalTrials.gov, specificaly
industry-sponsored phase 2 or 3 interventional clinical trials
initiated between January 2013 and May 2020. A total of 3281
trials were identified: 817 (24.9%) for non—small cell lung
cancer (NSCLC), 649 (19.78%) for prostate cancer (PCa), 1057
(32.22%) for breast cancer (BCa), 447 (13.62%) for multiple
myeloma (MM), 160 (4.88%) for ulcerative calitis (UC), and
151 (4.6%) for Crohn disease (CD).

For the development of the prototype interface, we selected a
subgroup of patients (n=2775) diagnosed with NSCLC from a
previously curated cohort of patients with lung cancer. This
cohort was established using the datafrom Mount Sinai-Sema4
Health System data [33], and patient information was
deidentified for the purposes of this study.

Deep L earning—Based NL P Pipeline Development

Our NLP pipeline consists of 3 modules: ontology construction
and manua annotation, model training and pipeline evaluation,
and application.

Ontology Construction and Manual Annotation

To construct our ontology, we randomly selected 425 eligibility
criteriafrom diverse cancer trialsand manually analyzed entities
and relations. This manual analysis focused on identifying
entities and their relationships. Entities were subsequently
categorized into primary and modifier groups, with detailed
examples provided in Multimedia Appendices 1 and 2. The
primary groups included demographic, diagnosis, biomarker,
disease status, prior therapy, comorbidity, laboratory test, vital,
procedure, and other medication, while the modifier groups
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included value, condition, evidence, lines of therapy, negation,
exception, grade, dose, and temporal. Any entities that did not
fall into the primary groupswere classified as other observation.
Furthermore, we defined relations between the entities. The
commonly detected relationships between the primary and
modifier groupswere (1) has_value_limit between demographic
(age) or vital lorlaboratory test and value, (2) has temporal
limit between comorbidity or other medication or procedure
and temporal, (3) has negation between observation or
biomarker or prior therapy and negation, and (4) has_exception
between comorbiditiesor biomarker or diagnosisand exception.
Other relationshipsincluded has_doselimit, has_line of therapy
limit, has_grade limit, has_condition, and need_evidence. The
applicability of the ontology wastested on 60 UC and CD trials.
Next, we manually annotated 246 eligibility criteria from
NSCLC trials and performed model training using Clinical
Language Annotation, Modeling, and Processing, which is an
NLP toolkit [34].

Model Training and Pipeline Evaluation

A multilayer deep learning architecture was implemented for
NLP modeling. The first step involved transforming the text
into sequential vectorsof characterization during the embedding
process. These vectors were subsequently input into a
bidirectional long short-term memory network, which is an
artificial neural network designed for text classification. The
bidirectional long short-term memory network was used to
recoghize patterns in both forward and backward directions
[35]. Theidentified patterns were then passed to the next layer,
which used a conditional random field model to compute the
prediction probability [36]. The NLP model was trained using
annotated criteria, with 80% of the manually annotated gold
standard data allocated for training. Model performance was
evaluated on a separate validation set (20%) using precision,
recall, and F,-score values:

Precision=TP/ (TP + FP) (1)
Recall = TP/ (TP + FN) (2)

F,-score = 2 x (Precision x Recall) / (Precision +
Recal) (3)

https:/ai jmir.org/2024/1/650800
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In equations 1 and 2, TP stands for true positives, FP for false
positives, and FN for false negatives.

The manual annotation and training processes were iteratively
performed with additional manually annotated notes until the
model achieved a F;-score of >0.8 in the test set (Multimedia
Appendix 3). To tailor the pipeline for specific cancer types, a
preannotation method using the NSCLC pipeline was
implemented for PCa, BCa, and MM for common eligibility
criteriasuch aslaboratory test values and comorbidities. Specific
eligibility criteria such as biomarkers and treatments were
manually annotated for each cancer type: PCa with 124 trials,
BCawith 73 trials, and MM with 60 trials.

Application

Thefully trained named entity recognition and relation models
wereintegrated and applied to annotate the remaining eligibility
criteria for the 4 types of cancer studied (BCa, MM, NSCLC,

and PCa). The output data included sentences, tokens, parts of
speech, entities, negations, and relations.

Construction of Standardized Eligibility Criteria
Knowledge Base Table

The standardized knowledge base was constructed in an
EntityGroup-AttributeName-Value format, involving 2 key
steps: attribute normalization and transforming hypernyms to
hyponyms with corresponding values.

Attribute Normalization

To normalize attributes, we used a 3-step approach. First, we
assigned a Unified Medical Language System concept unique
identifier to map synonyms of an entity, such as estrogen
receptor-positive, ER-positive, and ER+ to the Unified Medical
Language System concept uniqueidentifier C0279754. Second,
we developed a set of rules (Table 1) to map abbreviations (eg,
CrCl to creatinine clearance) and different phrases with the
same meaning (eg, 21.5x ULN [where ULN stands for upper
limit of normal], greater than or equal to 1.5x ULN, and >1.5x
upper limit of normal) back to their original text. Finaly, 2
domain experts manually curated unnormalized entities.
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Table 1. Rulesfor attribute normalization.

Rule and attributes from eligibility criteria Normalized attributes

Rulesfor mapping synonyms

AST? SGOT?, aspartate aminotransferase, serum AST AST

ALTE, SGPTd, aanine aminotransferase, serum ALT ALT

Total bilirubin, serum bilirubin, total bilirubin level, bilirubin level Total bilirubin
Hgb®, hemoglobin Hgb

HbAle, hemoglobinA ¢ HbA 1

serum creatinine, creatinine, creatinine levels, creatinine level Serum creatinine

ANC?, absolute neutrophil count, absolute neutrophil counts, neutrophil count, neutrophil counts, ANC
absol ute neutrophil

WBCh, white blood cells, white blood cell, WBC count, white blood cell count, white blood count, WBC

leucocytes

platelets, platelet, platelet count, platelet counts Platelets
CrCl', creatine clearance CrCl
ALP, akaline phosphatase ALP
ULNk, upper limit of normal ULN
LLN', lower limit of normal LLN

Rulesrelated to unit and temporal modifier

less than or equal to, < <

greater than or equd to, = >

greater than, > >

less than, < <

within 4 weeks, within 28 days within 4 weeks
within 2 weeks, within 14 days within 2 weeks
within 3 weeks, within 21 days within 3 weeks
last 6 months, past 6 months, within 6 months, within six months within 6 months
last 3 months, past 3 months, within 3 months, within three months within 3 months
within 2 years, last 2 years, past 2 years within 2 years
within 3 years, last 3 years, past 3 years within 3 years
within 5 years, last 5 years, past 5 years within 5 years
10%L, 10%L, 10%/uL, 10¥/microliter, 1000/uL, 1000/microliter, K/microliter, 103/mm? 10%uL

Other miscellaneousrules

Case insensitive m

Remove spaces -

8AST: aspartate aminotransferase.

BSGOT: serum glutamic oxal oacetic transaminase.
CALT: alanine transaminase.

dSGPT: serum glutamic pyruvic transaminase.
€Hgb: hemoglobin.

beAlcz glycated hemoglobin.

9ANC: absolute neutrophil count.

MWBC: white blood cell.

iCrCl: creatinine clearance.
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IALP: akdine phosphatase.
KULN: upper limit of normal.
ILLN: lower limit of normal.
"Not applicable.

Transforming Hypernyms to Hyponyms Along With
Corresponding Values

To formalize hypernyms, identified in primary groups such as
laboratory test, comorbidity, biomarker, prior therapy, and
other medication, we used the following approaches: (1) for
adequate organ functionlaboratory test values, we determined
prevalent laboratory test values by analyzing the unique
laboratory test values for each test across the trials of the same
cancer type that defined the normal organ function; and (2) for
comorbidity, biomarker, prior therapy, and other medication
hypernyms, we collected all example hyponyms described across
thetrials of the same cancer type.

Creation of a PrototypeInterfacefor Enhancing Trial
Protocol Design Optimization

We developed a prototype interface using the R programming
language (R Foundation for Statistical Computing) and the Shiny

Leeetd

package to enhance trial protocol design optimization. The
interface all ows usersto simulate the number of eligible patients
based on specific criteria, including a combination of criteria
such as histology, stages, laboratory test values, performance
scores, prior line of therapy, and comorbidities. For this pilot
study, a subset of patients with NSCLC (n=2775) was selected
and deidentified. To ensure consistency and accuracy, we
standardized the sample entities found in both the eligibility
criteriaknowledge base and EHRs using concept codes such as
theInternational Classification of Diseases; Logical Observation
Identifiers, Names, and Codes (LOINC); and normalized
medical prescription codes. In addition, we converted the
patients' absolute laboratory test valuesto either the upper limit
of normal (ULN) or the lower limit of normal based on the
provided normal ranges for each specific test. Tables 2 and 3
and Textbox 1 present some examples of normalized concepts
and their codes.

Table 2. Examples of normalized codes for each concept and normal range of each laboratory test.

Laboratory test LOINC? code Normal range

ALTP (SGPTS; UIL) 1742-6 7-56

ASTY (SGOT®, U/L) 1920-8 10-40

Total bilirubin in serum (mg/dL) 1975-2 0.1-1.2

Direct (conjugated) bilirubinin serum (mg/dL) 1968-7 <0.3

Serum creatinine (mg/dL) 2160-0 0.6-1.2 (male), 0.5-1.1 (female)
crclf (mL/min) 2164-2 97-137 (male), 88-128 (female)
ANCY (cells/pL) 26499-4 >90 mL/min/1.73 m?

Platelets (cellS/uL) 777-3 150,000-450,000

Hemoglobin (g/dL) 718-7 12-18

3_OINC: Logical Observation Identifiers, Names, and Codes.
BALT: alanine transaminase.

CSGPT: serum glutamic pyruvic transaminase.

dAST: aspartate aminotransferase.

€SGOT: serum glutamic oxal oacetic transaminase.

ferel: creatinine clearance.

9ANC: absolute neutrophil count.

https://ai.jmir.org/2024/1/€50800

IMIR Al 2024 | vol. 3| 50800 | p.252
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al

Leeetd

Table 3. Examples of International Classification of Diseases, Tenth Revision (ICD-10), and International Classification of Diseases, Ninth Revision

(ICD-9), disease codes.

Disease ICD-10 codes ICD-9 codes
Congestive heart failure 150.2, 150.3, 150.4 428.[2-4][0-3]
Unstable angina 120.0 4111

Acute myocardia infarction 121 410.9[0-2]
Arrythmia 149 429.9
Torsade de pointes 145.81 426.82

Long QT syndrome 145.81 426.82
Atrial fibrillation and flutter 148 427.3[1-2)]
Symptomatic bradycardia R00.1 427.89
Uncontrolled hypertension 110 401.[09]
Heart aneurysm 125.3 414.1[09]
Coronary heart disease 125.1 414.01
Cardiomyopathy 142.9 425.[49]
Vasculitis, or angiitis 177.6 447.6
Pericardial effusion 131.3 4239
Peripheral vascular disease 173.9 4439

Textbox 1. Examples of normalized medical prescription (RXNORM) drug codes.

Drug and RXNORM code

«  Bortezomib: 356733

o  Carfilzomib: 1302966

. Ixazomib: 1723735

o  Lenalidomide: 342369

o Pomalidomide: 1369713

The interface uses a rule-based algorithm to match patients’
EHR data with the criteria. The comprehensive rules for
matching EHR data with criteria have been described in our
previous studies [37]; for instance, we defined the following
rules to map each laboratory test in EHRs to 1 corresponding
LOINC code:

1. Mapping thelaboratory test inthe LOINC dictionary to the
laboratory test in the EHR, based on the popularity rank
availablein the LOINC dictionary

2. Mapping the laboratory test for serum or plasma samples
in the LOINC dictionary to the laboratory test in the EHR
when the popularity rank is not available in the LOINC
dictionary

3. If one-to-one mapping is not feasibleusing rule 1 and rule
2, the test unit (eg, gram is preferred ovemolar) is
considered to facilitate the mapping

4. When one-to-one mapping is not attainable using rule 1,
rule 2, and rule 3, preference is given to the laboratory test
that lacks information about the method for mapping

We associated medication classes with their respective
medications; for instance, we extended the annotation
“post-menopausal not older than 60 years and taking LHRH

https:/ai jmir.org/2024/1/650800

[luteinizing hormone—releasing hormone] agonist” to include
“post-menopausal not older than 60 years and taking goserelin,
leuprolide, or other LHRH agonists.” To achieve this, we used
both our in-house knowledge bases and standard resources, such
as the Nationa Comprehensive Cancer Network’s Clinical
Practice Guidelines in Oncology.

Users can specify different criteria and combinations, such as
different laboratory test values with specific conditions such as
no brain metastasis to determine the number of qualified
patients. The algorithm matches each patient’s EHR data with
the selected criteria and calculates the number of matched
patients for each criterion. The performance of the interface
was evaluated by comparing it to the manual patient selection
process conducted by experienced clinical domain experts.

Ethical Consider ations

This study was confirmed and approved by the Program for the
Protection of Human Subjects at the Mount Sinai School of
Medicine (IRB-17-01245)
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Results

Development of Eligibility Criteria—Specific Ontology

Our analysis of cancer clinical trials revedled that hormone
therapy was the most frequently applied modality (1470/2970,
47.37%), primarily in BCaand PCatrials, followed by targeted
therapy (753/2970, 25.35%) and immunotherapy (691/2970,
23.26%). Chemotherapy alone was used in 3.8% (113/2970) of
the clinical trials. We developed an €eligibility criteria ontology
applicable to al cancer trials by manualy analyzing 425
eligibility criteria (Figure 1). Entities were categorized into 10
primary groups (inside the blue dotted box) and 9 modifier
groups based on semantic types and relations. Entities falling
outside the blue dotted box were classified as other observation.

Leeetd

The inclusion criteria mainly involved entities in the
demographic, diagnosis, laboratory test, and vital groups, while
the exclusion criteria commonly included entities in the
comorbidity, procedure, and other medication groups. Entities
in the biomarker, prior therapy, and disease status groups
appeared in both the inclusion and exclusion criteria
Rel ationships originated from the primary groups and terminated
inthe modifier groups, except for the has outcome relationship,
which started and ended in the primary group (Figure 1). To
assess the applicability of the cancer eligibility criteriaontology
in adifferent disease context, we conducted a manual analysis
of 60 trialsrelated to UC and CD. For reference, the computable
formats of the manually annotated 485 trials can be found in
Multimedia Appendices 4-8.

Figure 1. Clinical trial eligibility criteria ontology. Primary entities are grouped inside the blue dotted box. Modifier entities are placed outside the
blue dotted box. The relationship between the primary entities and modifier entities always starts at a primary entity and ends at amodifier entity. LOT:

line of therapy.

has_eligibliity_criteria

NL P Pipeline Quality Metrics

To evaluate the quality of our NLP pipeline, we computed
precision, recall, and F;-score measures. For the primary group

https://ai.jmir.org/2024/1/€50800
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entities, the average scoreswere 0.91 (precision), 0.79 (recall),
and 0.83 (F;-score). Table 4 presents the range of precision,

recall, and F;-score values of 17 primary group entities.
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Table 4. Performance scores of customized natural |anguage processing pipeline for each entity in the primary groups.

Primary group and attribute group::name Precision Recall F1-score
Demographic

Demographic::age 1.000 0.923 0.960

Demographic::gender 1.000 0.870 0.931
Diagnosis

Diagnosis::histology 1.000 1.000 1.000

Diagnosis::stage 0.667 1.000 0.800
Biomarker

Biomarker::biomarker 1.000 0.800 0.889
Disease status

Clinical status::disease status 0.737 0.684 0.709
Prior therapy

Prior therapy::chemotherapy 0.944 0.895 0.919

Prior therapy::targeted therapy 1.000 0.786 0.880

Prior therapy::immunotherapy 0.897 0.788 0.839

Prior therapy::radiotherapy 0.682 0.682 0.682

Prior therapy::adjuvant therapy 1.000 0.571 0.727

Prior therapy::neoadjuvant therapy 1.000 0.500 0.667
Comorbidity

Comorbidity::disease 0.842 0.762 0.800
Laboratory test

Laboratory test::test 0.871 0.818 0.844
Vital

Vital::vital 1.000 1.000 1.000
Procedure

Procedure::procedure 1.000 0.600 0.750
Other medication

Other medication::medication 0.800 0.727 0.762

Eligibility Criteria Attribute Extraction and
Classification

The integrated named entity recognition and relation model
extracted 9090 NSCLC, 7427 PCa, 10,217 BCa, 6803 MM,
1565 CD, and 1586 UC entities along with their attribute
relations. After normalization and manual curation processes,
thedligibility criteriaknowledge base for each diseasetype was
established in the EntityGroup-AttributeName-Value format
(Multimedia Appendices 9-14). The number of unique
EntityGroup-AttributeName-Value combinations varied across
disease types, with 494 from 817 NSCLC trials, 471 from 649
PCatrials, 525 from 1057 BCatrials, 389 from 447 MM tridls,
231 from 160 UC trials, and 230 from 151 CD trials. Notably,
UC and CD trids had a smaller number of unique
EntityGroup-AttributeName-Value combinations compared to
cancer trias, indicating the presence of more complicated
eligibility criteriain cancer trials.

https://ai.jmir.org/2024/1/€50800

Figure 2 and Table 5 show the distribution of
EntityGroup-AttributeName-Val ue combinationsin each primary
group from different diseases and provide examples. The
laboratory test, prior therapy, and comorbidity groups exhibited
a high number of EntityGroup-AttributeName-Value
combinations, followed by the biomarker and other medication
groups. Variations were observed between solid cancers and
hematologic  cancers, with  higher  numbers  of
EntityGroup-AttributeName-Val ue combinationsin solid cancer
types for prior therapy and biomarker, while laboratory test
and comorbidity were comparable. The diagnosis group
exhibited varying numbers of EntityGroup-AttributeName-Value
combinations across all 4 cancer types (BCa, MM, NSCLC,
and PCa). EntityGroup-AttributeName-Value in the biomarker,
diagnosis, and prior therapy groups were specified per
indication, while shared EntityGroup-AttributeName-Value
were found in other primary groups.
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Figure 2. Distribution of attributesin the 10 primary groups as well as the other observation group extracted from the eligibility criteria of 4 different
cancer typesand 2 different autoimmune diseases. BCa: breast cancer; CD: Crohn disease; MM: multiple myeloma; NSCLC: non—small cell lung cancer;
PCa: prostate cancer; UC: ulcerative colitis.
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Table 5. The number of attributes for 10 primary groups aong with examples.

Primary group Number of attributes Example attributes: group, name, value (with or without condition)
NscLc?  Bca®  pcd Mmd

Demographic 11 12 10 5 Demographic, age, 218y

Diagnosis 18 31 17 4 Stage, TNME system, T2b'

Biomarker 49 72 42 14 Biomarker, HER29 mutation, L 755P"

Disease status 11 11 13 9 Disease status, relapsed, yes

Prior therapy 114 108 93 50 LOT, prior LOT, 22

Comorbidity 105 96 97 108 Cardiovascular disease, arrhythmia, yes (<3 mo)

Laboratory test 103 103 110 119 Test, ASTI. <2.5x ULNK

Vital 18 22 21 18 Vital, ECOG', 22

Procedure 6 6 6 8 Procedure, organ transplantation, yes

Other medication 45 45 45 46 Other medication, use of anticoagulants, warfarin (<4 wk)

8NSCL C: non—small cell lung cancer.

PBCa: breast cancer.

®PCa: prostate cancer.

dMM: multi ple myeloma.
€TNM: tumor, nodes, metastasis.

T20: a moderately advanced tumor in terms of size and extent but not the most advanced stage; specific implications can vary based on the type of

cancer being described.

9HER2: human epidermal growth factor receptor 2.
PL755P: areference to a specific mutation in the HER2 gene, with “L” standing for leucine, “755” being the position of the amino acid in the protein,

and “P” standing for proline.
ILOT: line of therapy.

IasT: aspartate aminotransferase.
KULN: upper limit of normal.

'ECOG: Eastern Cooperative Oncology Group.
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Transformation of Umbrella TermsInto Computable Theconversion of hypernym conceptsinto computabl e attributes
Attributes With Representative Values along with their corresponding values was carried out. Table 6
provides some examples of converted attributes and their

corresponding valuesfor each hypernym. All lists can be found
in Multimedia Appendices 9-14.

Overview
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Table 6. Examples of hypernym concepts (entity and subgroup entity in eligibility criteria) used in eligibility criteria and converted hyponyms along
with their corresponding val ues.

Entity and subgroup entity in eligibility criteriaand converted attribute Corresponding values

Adequate organ function

Normal hepatic function

AST2 <2.5x ULNP
ALTC <2.5x ULN
Total bilirubin <1.5x ULN

Normal renal function
Creatinine <1.5x ULN

Normal hematologic function

ANCd >1500 cells/uL
Platelets >100,000 cells/uL
Hemoglobin =9 mg/dL

Comorbidities
Second malignancy
All cancers Yes, with exceptions

I nfectious disease

HIV Yes
HBV® Yes
Hev Yes
TBY Yes

Cardiovascular disease

CHF" Yes
VI Yes
Angina Yes
Arrhythmia Yes

Autoimmune disease

ud Yes
CcDX Yes
Systemic lupus erythematosus Yes
Rheumatoid arthritis Yes
Systemic sclerosis Yes
Graves disease Yes
Guillain-Barré syndrome Yes
Antiphospholipid syndrome Yes
Sjogren syndrome Yes
Biomarker

EGFR' mutation sensitiveto TKI™

Exon 19 deletion Yes
Exon 21 L858R Yes
Exon 21 L861Q Yes
https://ai jmir.org/2024/1/€50800 IMIR Al 2024 | vol. 3 | €50800 | p.258
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Entity and subgroup entity in eligibility criteria and converted attribute Corresponding values
Exon 18 G719C Yes
Exon 18 G719X Yes
Amplification Yes

EGFR mutation resistant to TK|

Exon 20 T790M Yes
Exon 20 C797S Yes
Exon 20 S768I Yes
Exon 20 insertion Yes

Mismatch repair deficient
MSH2, MSH6, MLH1, PMS2, or EXO1 gene mutation Yes
MLH1 hypermethylation Yes
Prior therapy (targeted)
First-generation EGFR inhibitor

Gefitinib Yes
Erlotinib Yes
Vandetanib Yes
Second-generation EGFR inhibitor
Afatinib Yes
Dacomitinib Yes
Poziotinib Yes
Tesevatinib Yes

Third-generation EGFR inhibitor

Osimertinib Yes
Lazertinib Yes
Rociletinib Yes
Tarloxotinib Yes

Proteasome inhibitor

Bortezomib based Yes
Carfilzomib based Yes
Ixazomib based Yes
Oprozomib based Yes

Prior therapy (hormone)

First-generation antiandrogen

Bicalutamide Yes
Nilutamide Yes
Flutamide Yes

Second-gener ation antiandrogen

Abiraterone Yes
Enzalutamide Yes
Darolutamide Yes
Apalutamide Yes

Androgen deprivation therapy

Leuprolide Yes
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Entity and subgroup entity in eligibility criteria and converted attribute Corresponding values
Goserelin Yes
Degarelix Yes
5-a reducing agent
Finasteride Yes
Dutasteride Yes
Megestrol acetate Yes
Other medication
Current use of antibiotics
Rifabutin Yes
Clarithromycin Yes
Azithromycin Yes
Imipenem Yes
Current use of antiarrhythmic agents
Propafenone Yes
Procainamide Yes

8AST: aspartate aminotransferase.
BULN: upper limit of normal.
CALT: aanine transaminase.
dANC: absolute neutrophil count.
®HBV: hepatitis B virus.

fHev: hepatitis C virus.

9TB: tuberculosis.

ACHF: congestive heart failure.
iMI: myocardial infarction.

luc: ulcerative colitis.

KcD: Crohn disease.

'EGFR: epidermal growth factor receptor.
M™TKI: tyrosine kinase inhibitor.

Adequate Organ Function

Adequate organ function criteria were defined using various
laboratory tests. Normal ranges and eligible values for alanine
transaminase (ALT)/aspartate aminotransferase (AST), total
bilirubin, serum creatinine, creatinine clearance, absolute
neutrophil count, platelets, and hemoglobin were determined.

https://ai.jmir.org/2024/1/€50800
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Representative val ues for adequate organ/hematol ogic function
included <2.5x ULN for ALT/AST, <1.5x ULN for total
bilirubin/serum creatinine, =1500 cells/uL for absolute
neutrophil count, =100,000 cells/uL for platelets, and =9 ng/dL
for hemoglobin. Figures 3A-3H display thelaboratory test value
rangeand trial countsfor each valuein BCaand NSCL C clinical
trials. The trends observed are similar in both cancer types.
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Figure 3. Clinical trial countswith each unique laboratory test value defining normal organ function. (A-B) Alanine transaminase (ALT) and aspartate
aminotransferase (AST): normal ranges from <1x upper limit of normal (ULN) to <3x ULN, with exceptions for liver diseases (eg, liver metastasis and
Gilbert syndrome [GS]) allowing values of up to <5x ULN. (C) Totd bilirubin: normal ranges from <1x ULN to <2.5x ULN, with exceptionsfor liver
diseases (eg, liver metastasis and GS) alowing values of up to <3x ULN. (D) Serum creatinine: normal ranges from <1x ULN to <2.5x ULN. (E)
Creatinine clearance: normal ranges from =30 to 260 mL/min. (F) Hemoglobin: normal rangesfrom=8.0t0>11.0 ng/dL. (G) Absolute neutrophil count
(ANC): normal ranges from =750 to 21500 cells/uL. (H) Platelets: normal ranges from =50,000 to =100,000 cells/uL. BCa: breast cancer; NSCLC:
non-small cell lung cancer. For a higher-resolution version of this figure, see Multimedia Appendix 15.
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A ambiguous and need domain knowledge to interpret them. We
Comorbidities analyzed the hypernyms and their corresponding hyponyms
The presence of comorbiditiesisacommon exclusion criterion  ysedin BCatria dligibility criteria. Figure 4 showsthe collected
in clinical trials; however, natural language descriptions of  hyponyms for each comorbidity class. The presence of second
comorbidities, such as*uncontrollable cardiovascular diseases”  primary malignancies was excluded in almost all trials.
“pulmonary diseases,” and “autoimmune diseases,” can be
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Figure4. The heat map graph illustratesthe number of clinical trialswith each example hyponym for the hypernym comorbidities. Of note, the exception
of atopy ismentioned as an autoimmune disease. The group does not include exceptions of other malignancies such asin situ cervical cancer, noninvasive
bladder cancer, curative basal or squamousin situ prostate cancer, in situ breast cancer, or resected skin cancer other than melanoma. CD: Crohn disease;
CHF: congestive heart failure; CNS: central nervous system; COPD: chronic obstructive pulmonary disease; DV T/PE: deep vein thrombosis/pulmonary
embolism; HBV: hepatitis B virus; HCV: hepatitis C virus; M|: myocardia infarction; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus;
T1D: type 1 diabetes, T2D: type 2 diabetes; TB: tuberculosis; UC: ulcerative colitis.
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Prior Therapy, Other Medication, and Biomarker

By combining all examples of each hypernym, we broke down
these hypernymsinto actual medication and mutation hyponyms,
for instance, we collected procainamide or propafenone for
current use of antiarrhythmic medication. Similarly, we
collected epidermal growth factor receptor (EGFR) exon 20
T790M, T797S, S768l, or insertion for EGFR mutationsresistant
to EGFR inhibitors.
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Development of a Prototype I nterface for the
Optimization of Protocol Design

Our study investigated the impact of various criteria on the
number of eligible patients. We devel oped a prototypeinterface
that uses real-world patient information. Using a subset of
deidentified cohorts of patients with NSCLC (n=2775), we
deployed an €ligibility criteria knowledge base that we had
constructed in the interface. Figure 5A displays the selected
criterialist, Figure 5B showsthe corresponding patient number,
and Figure 5C illustrates the distribution of patient numbersin
each group.
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Figure 5. Screenshots from a prototype interface. (A-B) The selected criteria list and the corresponding number of patients. (C) The distribution of
patient numbers in each group. (D) Displayed are eligible patient numbers after sequentially incorporating criteria such as non-squamous histology and
stage |11 and IV, with the further inclusion of aspartate aminotransferase (AST) and aanine transaminase (ALT) laboratory test values of either <2.5x
upper limit of normal (ULN) or <1.0x ULN. (E) The influence of Eastern Cooperative Oncology Group (ECOG) performance status as an additional
criterion. Displayed are eligible patient numbers after introducing ECOG scores of 0 to 2 or 0 to 1, with histology, stage, and ALT/AST laboratory test
values (<2.5x ULN) asfixed criteria. ANC: absolute neutrophil count; CrCl: creatinine clearance; EGFR: epidermal growth factor receptor; NSCLC:
non—small cell lung cancer; PD-1 ab: programmed cell death protein-1. For a higher-resolution version of this figure, see Multimedia Appendix 16.

A B

Sequentially incorporating criteria such as nonsquamous
histology and stages 11l and 1V criteria, we identified 2166
(78.05%) and 426 (15.35%) eligible patients, respectively, from
the total pool of 2775 patients with NSCLC. The inclusion of
AST and ALT <2.5x ULN criteriayielded 363 (13.08%) eligible
patientsfrom the pool of 2775 patients. Limiting AST and ALT
t0 <1.0x UL N resulted in adecreased number of eligible patients
(315/2775, 11.35%; Figure 5D). In addition, we explored the
influence of Eastern Cooperative Oncology Group (ECOG)
performance status as an additional criterion. With histology,
stage, and ALT/AST laboratory test values (<2.5x ULN) as
fixed criteria, by introducing ECOG scoresof 0to 2 or 0to 1,
we identified 194 (6.99%) and 151 (5.44%) eligible patients,
respectively, from the pool of 2775 patients (Figure 5E).

Patient-matching performance was evaluated using precision,
recall, and F;-score performance metrics across specific clinical
attributes. The average F;-score, computed across 10 attributes
from 8 domains (other primary malignancy, congestive heart
failure, sguamous NSCLC, organ/tissue transplantation,
platelets, programmed death-1 antibody therapy, programmed
cell death protein-1 or programmed cell death program-ligand
1 positive, stage groups, prior LOT [line of therapy], and
ECOG), was 0.94 (range 0.82-1.00 [37]).

Discussion

Principal Findings
The challenge of achieving a high successratein clinical trias
is an ongoing issue [38,39]. Our study demonstrates the
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feasibility of adata-driven approach to optimizetria protocols
and efficiently identify eligible patients by constructing a
comprehensive, EHR-interoperabledligibility criteriaknowledge
base and integrating EHR data. To accomplish this, we analyzed
3281 clinical trials using our customized deep learning NLP
model. We extracted al entities with their attributes and
converted the hypernym concepts used in eligibility criteriato
EHR-compatible hyponyms along with their corresponding
values. We also evaluated the feasibility of optimizing thetrial
protocol design on the interface we developed. This interface
offers an efficient and effective approach for assessing the
number of eligible patients across various combinations of
eligibility criteriasuch asdifferent laboratory test valuesaswell
as combinations that account for vital signs.

We developed an eligibility criteria—specific ontology by
manually scrutinizing 425 eligibility criteria to be used as a
reference for manual annotation during NLP model training.
Accurately identifying intricate semantic relationships among
entities within eligibility criteriais crucia for constructing an
appropriate ontology for precise information extraction,
including temporal, arithmetic values, Boolean values, and
negation modifiers [31]. Our customized NLP pipeline based
on the digibility criteria—specific ontology that we created
enabled us to efficiently extract all pertinent attributes across
different modalities and diseases, allowing for amore accurate
definition of thetrial population. To determine the applicability
of our ontology generated using cancer clinical trias to other
disease domains, we compared the concepts and relations in
clinical trials of inflammatory bowel diseases. We observed
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very sSmilar trends, suggesting that our eigibility
criteria—specific ontology can be extended to other types of
diseasetrials.

Moreover, the corpus of 485 manually annotated and
standardized trialsin acomputable format can beused in éligible
patient identification in EHRs.

Liu et al [28] conducted athorough analysis of 352,100 clinical
trials across various disease domains and constructed a
knowledge base of clinical trial eligibility criteria. Their
comprehensive knowledge base and user-friendly interface
showcased the potential of advanced NLP techniques in
enhancing eligibility criteria analysis and retrieval. Fang et al
[40] also adopted a data-driven approach to optimizing clinical
trial eigibility criteriain the context of Alzheimer disease and
pancreatic cancer domains. Building upon these efforts, our
study aimed to further narrow the gap between eligibility criteria
and EHRs in multicancer domains, specifically in representing
the granularities of eligibility criteria for identifying eligible
patients and optimizing protocol designs. Thiswas achieved by
transforming hypernyms in the criteria into EHR-compatible
hyponyms. We found that most of the primary groups include
umbrellaterms such as prior therapy (eg, proper prior therapy
for actionable mutations) and biomarker (eg, EGFR
inhibitor—resistant mutations). Our study also addressed the
challenge of standardizing ambiguous clinical concepts in
eigibility criteriafor EHR interoperability and patient matching.
To overcome this challenge, we converted hypernyms to the
Entity-Attribute-Value format using prevailing values across
different cancer types and modality therapies. We believe that
our EHR-interoperable standardized eligibility criteria
knowledge base and interface, integrating real-world EHR data,
have the potential to improve the automatic screening system.
This improvement has the potential to significantly reduce
manual extraction efforts. Moreover, specific, computable
criteria reduce ambiguity in patient identification and enable
the inclusion of a broader range of patients who may qualify
for the trial but could be excluded when using more genera
terms. This can increase patient trial enrollment, ultimately
improving the overall success rate of trials. Notably, patients
who were given the option to participate in a trial by their
physicians demonstrated a significantly higher participation
rate of 55% [41] compared to the current average of 5% to 8%
among patientswith cancer [42,43]. Theimplementation of our
hyper nym/hyponym semantic terminology model can likewise
improve the effectiveness of information retrieval from EHRs
and other clinical databasesin the context of real-world evidence
studies.

Certain criteria such as histology, stage, previous treatment, or
biomarker are difficult to modify, while others such as vital
signs or laboratory test values can be adjusted during the
protocol design [15]. Our study revealed the impact of
modifying laboratory test values while keeping other criteria
constant, resulting in fluctuations in the number of eligible
patients. Our findings, which demonstrate both the number of
trials for different laboratory test value ranges and eligible
patient numbers, offer insights for optimizing future protocol
design and refining patient selection criteria. Seeking future
collaboration with clinicians to conduct a direct comparison

https:/ai jmir.org/2024/1/650800

Leeetd

between the patient identification results by clinical domain
experts and those generated by our prototype holds promise for
a more comprehensive and informative evaluation of the
prototype’s performance and its potential to enhance patient
identification for clinical trials. Furthermore, a careful
examination of the casesidentified by the prototype can provide
an understanding of the nature of false positives and false
negatives. This will provide insights into how the prototype
may differ in its patient identification results compared to
manual extraction. Our eligibility criteria knowledge base can
also be leveraged for generating SCAs using EHRs. SCAs,
derived from real-world evidence, are regarded as substitutes
for experimental control armsin trials[16-18]. Theintegration
of SCAsinto single-armtrial dataor replacing traditional control
arms with SCAs can aleviate the burden of target accrua in
trials with low eligible patient numbers, such asrare disease or
oncology trials with specific biomarkers. The Food and Drug
Administration’s approval of the palbociclib inhibitor for male
patients with metastatic BCa based on real-world evidence
demonstratesthe potential and relevance of SCAsinimproving
trial design and outcomes [44].

Limitations

Our study has several limitationsto consider. First, we focused
on alimited scope, analyzing only 4 different cancer typesand
exploring extendibility in the context of inflammatory bowel
diseases. Future studies should encompass a wider range of
cancer types and disease domains for a more comprehensive
analysis. Second, while most attributes were well defined, some
umbrella terms lacked clear examples in other cancer types,
potentially affecting result accuracy. Further manual annotation
using knowledge bases could enhance the precision of the
attribute tables. Third, our data set may be biased because we
solely included industry-sponsored trials, potentially limiting
the generdizability of our findings. In addition, the NLPtraining
and test data setsin this study can display similarities owing to
the shared attributes among different cancer trials, which
heightens concerns regarding potential overfitting. Fourth, we
did not address entity logic, and establishing the logic between
entities would enhance cohort definition accuracy. Fifth and
last, our interfacefeasibility testing was limited to small cohorts
of patientswith NSCL C, and the generalizability of our findings
to other populations or disease conditions may vary.
Furthermore, we did not perform a quantitative evaluation of
the accuracy of matched patients although domain experts
checked whether the patient information matched the dligibility
criteria manually. While our model serves as a valuable
illustration of how NLP can contribute to the design of trials
across different diseases, we fully acknowledge the
indispensable role of clinicians and biomedical researchersin
ensuring the integrity of tria criteria. Clinical trialsvary intheir
objectives, encompassing assessments of treatment end points,
effectiveness, and other specific goals. The processisfar more
nuanced than merely adjusting laboratory test values because
such modifications can have a substantial impact on the pool
of eligible patients. Therefore, a comprehensive approach,
considering both the clinicad and biomedical aspects, is
imperative for robust trial design.
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Conclusions valuable insights into the influence of different criteria on the
number of eligible patients during the protocol design. The
findings highlight the potential of using adata-driven approach
that incorporates NLP and EHRs in clinical research.

Our study using an EHR-executable €ligibility criteria
knowledge base and real-world patient information provides
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Clinical trial counts with each unique laboratory test value defining normal organ function. (A-B) Alanine transaminase (ALT)
and aspartate aminotransferase (AST): normal ranges from <1x upper limit of normal (ULN) to <3x ULN, with exceptions for
liver diseases (eg, liver metastasis and Gilbert syndrome [GS]) alowing values of up to <5x ULN. (C) Total bilirubin: normal
ranges from <1x ULN to <2.5x ULN, with exceptions for liver diseases (eg, liver metastasis and GS) allowing values of up to
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Screenshots from a prototype interface. (A-B) The selected criteria list and the corresponding number of patients. (C) The
distribution of patient numbersin each group. (D) Displayed are eligible patient numbers after sequentially incorporating criteria
such as non-squamous histology and stage |11 and |V, with the further inclusion of aspartate aminotransferase (AST) and alanine
transaminase (ALT) laboratory test values of either <2.5x upper limit of norma (ULN) or <1.0x ULN. (E) The influence of
Eastern Cooperative Oncology Group (ECOG) performance status as an additional criterion. Displayed are eligible patient numbers
after introducing ECOG scores of 0 to 2 or 0 to 1, with histology, stage, and ALT/AST laboratory test values (<2.5x ULN) as
fixed criteria. ANC: absolute neutrophil count; CrCl: creatinine clearance; EGFR: epidermal growth factor receptor; NSCLC:
non-small cell lung cancer; PD-1 ab: programmed cell death protein-1.
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Abstract

Background: There are a wide range of potential adverse health effects, ranging from headaches to cardiovascular disease,
associated with long-term negative emotions and chronic stress. Because many indicators of stress areimperceptibleto observers,
the early detection of stress remains a pressing medical need, as it can enable early intervention. Physiological signals offer a
noninvasive method for monitoring affective states and are recorded by a growing number of commercially available wearables.
Objective: We aim to study the differences between personalized and generalized machine learning models for 3-class emotion
classification (neutral, stress, and amusement) using wearable biosignal data.

Methods: We developed a neural network for the 3-class emotion classification problem using data from the Wearable Stress
and Affect Detection (WESAD) data set, a multimodal data set with physiological signals from 15 participants. We compared
the results between a participant-exclusive generalized, a participant-inclusive generalized, and a personalized deep learning
model.

Results: For the 3-class classification problem, our personalized model achieved an average accuracy of 95.06% and an F;-score
of 91.71%; our participant-inclusive generalized model achieved an average accuracy of 66.95% and an F;-score of 42.50%; and
our participant-exclusive generalized model achieved an average accuracy of 67.65% and an F;-score of 43.05%.

Conclusions: Our results emphasize the need for increased research in personalized emotion recognition models given that they
outperform generalized modelsin certain contexts. We also demonstrate that personalized machine learning models for emotion
classification are viable and can achieve high performance.

(IMIR Al 2024;3:€52171) doi:10.2196/52171

KEYWORDS

affect detection; affective computing; deep learning; digital health; emaotion recognition; machine learning; mental health;
personalization; stress detection; wearable technology

affect can be difficult for humans to observe [5-7], automated
emotion recognition models can play animportant rolein health
care. Affective computing can also facilitate digital therapy and
advance the development of assistive technologies for autism
[8-13].

Physiological signals, including electrocardiography (ECG),

Introduction

Stress and negative affect can have long-term consequences for
physica and mental health, such as chronic illness, higher
mortality rates, and major depression [1-3]. Therefore, the early
detection and corresponding intervention of stressand negative

emotions greatly reduces the risk of detrimental health
conditions appearing later in life [4]. Since negative stress and

https://ai.jmir.org/2024/1/€52171

electrodermal activity (EDA), and photoplethysmography (PPG),
have been shown to be robust indicators of emotions [14-16].
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The noninvasive nature of physiological signal measurement
makes it a practical and convenient method for emotion
recognition. Wearable devices such as smartwatches have
become increasingly popular, and products such as Fitbit have
already integrated the sensing of heart rate, ECG, and EDA data
into their smartwatches. The accessibility of wearable devices
indicates that an emotion recognition model using biosignals
can have practical applications in health care.

The vast mgjority of research in recognizing emotions from
biosignals involves machine learning models that are
generalizable, which meansthat the modelsweretrained on one
group of subjects and tested on a separate group of subjects
[17-28]. Prior studies emphasize the need for personalized or
subject-dependent models[18,29,30], and some investigations,
albeit few, analyze personalized models [31,32]. Both
generalized and personalized models have potential benefits;
for example, generalized models can train on more data than
personalized models, and personalized models do not need to
address the problem of inter-subject data variance [33].
However, it is still unclear how personalized models compare
against generalized models in many contexts.

Li & Washington

We present 1 personalized and 2 generalized machine learning
approaches for the 3-class emotion classification problem
(neutral, stress, and amusement) on the Wearable Stress and
Affect Detection (WESAD) data set, a publicly available data
set that includes both stress and emotion data [18]. The two
generalized models are trained using participant-inclusive and
participant-exclusive procedures. We compare the performance
of these 3 models, finding that the personalized machinelearning
approach consistently outperformsthe generalized approach on
the WESAD data set.

Methods

Overview

To classify physiological data into the neutral, stress, and
amusement classes, we devel oped amachinelearning framework
and evaluated the framework using datafrom the WESAD data
set. Our machine learning framework consists of data
preprocessing, a convolutional encoder for feature extraction,
and a feedforward neural network for supervised prediction
(Figure 1). Using this model architecture, we compared
generalized and personalized approachesto the 3-class emotion
classification task (neutral, stress, and amusement).

Figure 1. Overview of our model architecture for the 3-class emotion classification task. FNN: feedforward neural network; SILU: sigmoid linear unit.
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Data Set

We selected WESAD, apublicly available data set that combines
both stress and emotion annotations. WESAD consists of
multimodal physiological data in the form of continuous
time-series data for 15 participants and corresponding
annotations of 4 affective states: neutral, stress, amusement,
and meditation. However, we only considered the neutral, stress,
and amusement classes since the objective of WESAD s to
provide data for the 3-class classification problem, and the
benchmark model in WESAD ignores the meditation state as
well. Our model incorporated data from 8 modalities recorded
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RenderX

in WESAD: ECG, EDA, electromyogram (EMG), respiration,
temperature, and acceleration (X, y, and z axes). In the data set,
measurements for each of the 8 modalities were sampled by a
RespiBAN sensor at 700 Hz to enforce uniformity, and data
were collected for approximately 36 minutes per participant.

Preprocessing and Partitioning

Each data modality was normalized with a mean of 0 and an
SD of 1. We used asliding window algorithm to partition each
modality into intervals consisting of 64 data points, with a50%
overlap between consecutive intervals. We ensured that all 64
data points within an interval shared a common annotation,
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which alowed us to assign a single affective state to each
interval. The process of normalization, followed by a sliding
window partition, isillustrated in Figure 1. Theseintervalswere
partitioned into training, validation, and testing sets.

For the personalized model, we partitioned the training,
validation, and testing sets as follows: each participant in the
data set had their own model that was trained, validated, and
tested independently of other participants. For each affective
state (neutral, stress, and amusement), we allocated the initial
70% of intervals with that affective state for training, the next

Li & Washington

15% for validation, and the final 15% for testing. This
guaranteed that the relative frequencies of each affective state
were consistent across al 3 sets. Simply using the first 70% of
al intervals for the training data would skew the distribution
of affective states, given the nature of the WESAD data set.
Furthermore, our partitioning of interval saccording to sequential
time order rather than random selection helped prevent
overfitting by guaranteeing that 2 adjacent intervalswith similar
features would be in the same set. The partitioning of training,
validation, and testing setsfor the personalized model is shown
in Figure 2.

Figure 2. A comparison of different generalized and personalized approaches to the 3-class emotion classification task. The participant-exclusive
generalized model mimics generalized approaches used in other papers. The participant-exclusive generalized model shown in the figure differs from

what we use in this paper.
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Standard generalized models partition the training, validation,
and testing sets by participant [18]. We denote these standard
models as participant-exclusive generalized models, as shown
in Figure 2. Through this partitioning method, it isimpossible
to compare the performances of generalized and personalized
models sincethey are solving two separatetasks. Therefore, we
present amodified participant-exclusive generalized model that
solves the same task as the personalized model. The testing set
for our participant-exclusive generalized model consisted of the
last 15% of intervals for each affective state for 1 participant.
Thetraining set consisted of the first 70% of intervals for each
affective state for all participants except the 1 participant in the
testing set, and the validation set consisted of the next 15% of
intervalsfor al participants except the 1 participant in thetesting
set. The training and testing sets for this approach contained
data from mutually exclusive sets of participants; thisis where
the name of the model, participant-exclusive, is derived from.
Since the testing sets for the participant-exclusive generalized
and personalized modelsare equivaent, it ispossibleto compare
generdlized  and personalized  approaches. This
participant-exclusive generalized model served as our first
generalized model baseline.

A second generalized model baseline was created, called the
participant-inclusive generalized model. Like the testing sets
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for the participant-exclusive generalized and personalized
models, the testing set for this model contained the last 15% of
intervals for each affective state for a single participant. The
training set consisted of the first 70% of intervals for each
affective state for al participants, and the validation set
consisted of the next 15%. The set of participantsinthetraining
and testing sets overlapped by 1 participant—the subject in the
testing set—which is why this model is caled the
participant-inclusive generalized model. This is illustrated in
Figure 2.

M odel Architecture

The model architecture consisted of an encoder network
followed by a feedforward head, which is shown in Figure 1.
A total of 8 channels, representing the 8 modalities we used
from WESAD, served asinput into an encoder network, which
was modeled after the encoder section of U-Net [34]. The
encoder network had 3 blocks, with each block consisting of
two 1D convolutional layers (kernel size of 3) followed by 1D
max pooling (kernel size of 2). The output of each convolution
operation was passed through a sigmoid linear unit (SILU)
activation function. Between each block, we doubled the number
of channels and added a dropout layer (15%) to reduce
overfitting. The output of the encoder was flattened and passed
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through 2 fully connected layerswith SiLU activation to produce
a 3-class probability distribution. Table 1 shows the
hyperparametersthat determinethe model structure. Thesewere

Table 1. Hyperparameters relating to model structure.

Li & Washington

consistent between the participant-exclusive generalized,
participant-inclusive generalized, and personalized models.

Hyperparameter Value
Encoder depth (number of blocks), n 3
Dropout rate, % 15
Number of fully connected layers, n 2
Convolutional kernel size, n 3
Max pooling kernel size, n 2
Activation function SLU

85jLU: sigmoid linear unit.

Model Training

We trained the 2 generalized baseline models and the
personalized model under the same hyperparameters to
guarantee a fair comparison. Both models were trained with
cross-entropy lossusing AdamW optimization. All modelswere
written using PyTorch [35]. Within 1000 epochs, models with
the lowest validation loss were saved for testing. A Nvidia
GeForce RTX 4090 GPU was used for training. A separate
personalized model wastrained for each of the 15 participants.
The participant-exclusive generalized model was trained 15
times, and the participant-inclusive generalized model was
trained once. For model comparison, all models were tested on
each of the 15 participants.

Ethical Consider ations

This study did not require institutional review board (IRB)
review because we exclusively used a commonly analyzed
publicly available data set. We did not work with any human
subjects.

Results

For the 3-class emotion classification task (neutral, stress, and
amusement), Tables 2 and 3illustrate the accuracy and F;-score

of the personalized and generalized model swhen tested on each
of the 15 participants. We include F,-score, a baanced
evaluation metric consisting of the harmonic mean of precision

https://ai.jmir.org/2024/1/€52171

and recdll, to accommodate for theimbalanced class distribution
in WESAD [18]. In order to guarantee a fair comparison
between the model s, they had the same random seeds for model
initialization, and their architecture and hyperparameters were
the same. The accuracy and F;-score for the personalized model
exceeded those of the participant-inclusive generalized model
for al participants except participant 1, and the personalized
model outperformed the partici pant-exclusive generalized model
in terms of accuracy and F;-score for all participants. The
personalized modelsfor participants 1 and 2 also indi cate subpar
performance compared to other participants, which we address
in the Discussion section.

Table 4 shows the average and SD of the accuracies and
F,-scores across all participants for the 3 models. We achieved
an average accuracy of 95.06%, 66.95%, and 67.65% for the
personalized,  participant-inclusive  generalized, and
participant-exclusive generalized models, respectively. We also
achieved an average F;-score of 91.72%, 42.50%, and 43.05%
for the personalized, participant-inclusive generalized, and
participant-exclusive generalized models, respectively.
Observing the error margins in Table 4, the differences in
accuracy and F4-score between the personalized model and both
generalized models are dtatistically significant. As shown in
Table 5, we evaluated the P values between each model type
for accuracy and F;-score through pairwise 2-tailed t tests to
determine statistical significance.
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Table 2. A comparison of model accuracy between the personalized and generalized models.

Li & Washington

Participant Model accuracy, %
Personalized model Participant-inclusive generalized model Participant-exclusive generalized model

1 68.36 82.69 53.94
2 82.32 67.12 81.91
3 99.99 82.81 82.81
4 99.90 82.86 82.31
5 98.02 82.94 74.67
6 99.57 54.57 54.03
7 100.00 82.05 83.23
8 100.00 53.72 53.70
9 100.00 51.86 51.83
10 93.69 82.05 79.85
11 100.00 60.86 62.11
12 98.34 53.53 53.60
13 99.81 53.26 65.35
14 100.00 53.47 53.54
15 85.83 60.43 81.91

Table 3. A comparison of F1-score between the personalized and generalized models.

Participant F1-score, %
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23.36
58.53
62.05
61.50
54.74
23.59
62.09
23.29
22.89
59.23
40.15
26.90
44.63
24.09
58.71

Table 4. Average accuracy and F1-score of models across all participants.

Model type Accuracy, mean (SD [%]) F1-score, mean (SD [%])
Personalized 95.06 (9.24) 91.72 (15.33)
Participant-inclusive generalized 66.95 (13.76) 42.50 (17.37)
Participant-exclusive generalized 67.65 (13.48) 43.05 (17.20)
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Table 5. P values of accuracy and F1-score comparisons between model types.

Model comparison

P value for accuracy P value for F1-score

Personalized versus participant-inclusive generalized
Personalized versus participant-exclusive generalized

Participant-inclusive generalized versus participant-exclusive generalized

P<.001 P<.001
P<.001 P<.001
.81 .88

Discussion

Principal Findings

We demonstrated that a personalized deep learning model
outperforms a generalized model in both the accuracy and
F,-score metrics for the 3-class emotion classification task. By
establishing two generalized model baselines through the
participant-inclusive and participant-exclusive models, we
created an alternative approach to the standard generalization
technique of separating the training and testing sets by
participant, and as a result, we were able to compare
personalized and generalized approaches. Our personalized
model achieved an accuracy of 95.06% and an F,-score of
91.72%, while our participant-inclusive generalized model
achieved an accuracy of 66.95% and an F;-score of 42.50% and
our participant-exclusive generalized model achieved an
accuracy of 67.65% and an F4-score of 43.05%.

Our work indicates that personalized models for emotion
recognition should be further explored in the realm of health
care. Machine learning methods for emotion classification are
clearly viable and can achieve high accuracy, as shown by our
personalized model. Furthermore, given that numerouswearable
technologies collect physiological signals, data acquisition is
both straightforward and noninvasive. Combined with the
popularity of consumer wearable technology, it is feasible to
scale emotion recognition systems. This can ultimately play a
major rolein the early detection of stressand negative emotions,
thus serving as a preventative measure for serious health
problems.

Comparison With Previous Work

Generalized Models

The vast majority of prior studies using WESAD developed
generalized approaches to the emotion classification task.
Schmidt et al [18], the pioneers of WESAD, created several
feature extraction models and achieved accuracies up to 80%
for the 3-class classification task. Huynh et al [22] developed
a deep neural network, trained on WESAD wrist signals, to
outperform past approaches by 8.22%. Albaladejo-Gonzélez et
al [36] achieved an F;-score of 88.89% using an unsupervised
local outlier factor model and 99.03% using a supervised
multilayer perceptron. Additionally, they analyzed the transfer
learning capabilities of different models between the WESAD
and SWELL-KW (SWELL knowledge work) [37] data sets.
Ghosh et al [38] achieved 94.8% accuracy using WESAD chest
data by encoding time-series data into Gramian Angular Field
images and employing deep learning techniques. Bajpai et a
[39] investigated the k-nearest neighbor algorithm to explore
the tradeoff between performance and the total number of
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nearest neighbors using WESAD. Through federated learning,
Almadhor et a [40] achieved 86.82% accuracy on data in
WESAD using a deep neura network. Behinagin et a [41]
developed a novel transformer approach and achieved
state-of-the-art performance using only one modality from
WESAD.

Personalized Models

Sah and Ghasemzadeh [30] developed a generalized approach
using a convolutional neural network using 1 modality from
WESAD. For the 3-class classification problem, they achieved
an average accuracy of 92.85%. They wused the
leave-one-subject-out (LOSO) anaysis to highlight the need
for personalization. Indikawati and Winiarti [31] directly
devel oped a personalized approach for the 4-class classification
problem in WESAD (neutral, stress, amusement, and
meditation). Using different feature extraction machinelearning
models, they achieved accuracies ranging from 88%-99% for
the 15 participants. Liu et a [32] developed afederated learning
approach using data from WESAD with the goal of preserving
user privacy. In doing so, they developed a personalized model
as a baseline, which achieved an average accuracy of 90.2%.
Nkurikiyeyezu et al [42] determined that personalized models
(95.2% accuracy) outperform generalized models (42.5%
accuracy) for the stress versus no-stress task. By running
additional experimentsto further understand how personalized
models compare to generalized models for the 3-class emotion
classification task and by developing participant-inclusive and
participant-exclusive versions of the generalized models, our
work concretely demonstrates how personalization outperforms
generalization and thus supports the conclusions of
Nkurikiyeyezu et a [42].

Limitations and Future Work

Asshownin Tables 2 and 3, the performance of our personalized
model deterioratesfor participants 1 and 2. To analyze the lack
of performance improvement of the personalized model for
these 2 participants, we visualized the means and SDs of the
different modalities for each emotion class. In Figures 3-5, we
illustrate notable deviations in modality means and SDs for
participants 1 and 2 compared to other participants. While the
analysisof these modalities reveal simportant information about
the nature of the WESAD data s&t, it still remains difficult to
pinpoint the exact data set featuresthat caused the performance
decline in the personalized model for these 2 participants. This
is another limitation: since we do not use a feature extraction
model, we cannot assign a feature importance (eg, Gini
importance) to individual features like Schmidt et a [18] do.
We adso analyzed the emotion class balances for each
participant, which are included in Table 6, to see if anomalies
existed in the class distributions for certain participants.
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However, based on the ranges of the class distributions, class  balance likely had minimal effect on the performance decline.

Figure 3. Deviations of mean and SD for participants 1 and 2 for neutral class modalities.
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Figure 4. Deviations of mean and SD for subjects 1 and 2 for stress class modalities. EMG: electromyogram.
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Figure5. Deviations of mean and SD for subjects 1 and 2 for amusement class modalities.
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Table 6. Ranges of emotion class distributions per participant.

Temperature SD of amusement class
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Emotion class Range, %
Neutral 51.8-54.0
Stress 29.0-31.8
Amusement 16.3-17.4

Our participant-inclusive and participant-exclusive generalized
models do not outperform previously published generalized
modelsonthe WESAD dataset (eg, Schmidt et al [18] achieved
up to 80% accuracy while we achieved 66.95% accuracy with
our participant-inclusive model). This discrepancy can be
attributed to adeliberate choice in our methodology: instead of
maximizing our generalized models performance with
hyperparameter tuning, we simply opted for a consistent set of
hyperparameters across the personalized and generalized models
because our primary objective was to evaluate their relative
performance. While hyperparameter tuning might yield higher
results in practice, differing hyperparameters between our
models would introduce additional variables that make it
difficult to determine the role that personalization and
generalization play in model performance.

Given the variations between participants, one approach to
improving generalized model performanceisadding embedding
representations for each participant or participant-specific
demographic data as additional features as a method of
distinguishing individual participants in generalized models.
However, to prevent overfitting to participant-specific features
like demographic data, data sets with significantly more
participants would need to be created, given the small sample
size of the WESAD data set.

One limitation that personalized models may encounter during
training isthe cold start problem, given that personalized models
receive less data than generalized models. Moreover, despite
the accuracy improvement in personalized models, developing
amodel for each participant may be costly and unscalable: data
must be labeled specifically per participant, and enough data
must be provided to the model to overcome the cold start
problem (notably, however, even though the cold start problem
should theoretically put our personalized model at a
disadvantage, the WESAD data set provided enough data for
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our personalized model to outperform our generalized model).
Both of these limitations can be addressed by a self-supervised
learning approach to emation recognition.

A self-supervised learning approach follows a framework used
by natural language processing model s such asthe Bidirectional
Encoder Representations from Transformers (BERT) model
[43]. A modd first pretrains on a large set of unlabeled data
across numerous participants. Then, the pretrained model is
fine-tuned to a small amount of labeled, participant-specific
data. The pretraining phase eliminates the burden of manual
labeling because all data are unlabeled, aswell asthe cold start
problem because large amounts of data can be provided. The
fine-tuning phase requires only asmall amount of user-specific
labeled data to perform accurately, and studies have already
begun exploring the tradeoffs between the number of labelsand
model accuracy in WESAD using self-supervised or
semisupervised approaches [44,45].

Finally, to expand beyond the WESAD data s¢t, it is valuable
to reproduce results on additional physiological signal data sets
for emotion analysis, such asthe Database for Emotion Analysis
using Physiological Signals (DEAP) [46] and Cognitive Load,
Affect, and Stress (CLAS) [47]. Data from WESAD were
collected under controlled laboratory environments, which may
not generalize to thereal world. Therefore, analyzing emotions
in a real-world context through data sets such as K-EmoCon
[48], which contain physiological data collected in naturalistic
conversations, may be useful. Emotionsin the K-EmoCon data
set were categorized into 18 different classes, so exploring this
data set could aso help us better assess the benefits of
personalization for a broader range of emotions. A major goal
of this approach is to provide support for personalized digital
interventionsfor neuropsychiatry, which could benefit avariety
of applications, such as video-based digital therapeutics for

JMIR Al 2024 | vol. 3| €52171 | p.277
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR Al Li & Washington

children with autism to predict the child’'s affective stateaspart  of the therapeutic process [49-52].
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