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Abstract

Background: Although machine learning is a promising tool for making prognoses, the performance of machine learning in
predicting outcomes after stroke remains to be examined.

Objective: This study aims to examine how much data-driven models with machine learning improve predictive performance
for poststroke outcomes compared with conventional stroke prognostic scores and to elucidate how explanatory variables in
machine learning–based models differ from the items of the stroke prognostic scores.

Methods: We used data from 10,513 patients who were registered in a multicenter prospective stroke registry in Japan between
2007 and 2017. The outcomes were poor functional outcome (modified Rankin Scale score >2) and death at 3 months after stroke.
Machine learning–based models were developed using all variables with regularization methods, random forests, or boosted trees.
We selected 3 stroke prognostic scores, namely, ASTRAL (Acute Stroke Registry and Analysis of Lausanne), PLAN (preadmission
comorbidities, level of consciousness, age, neurologic deficit), and iScore (Ischemic Stroke Predictive Risk Score) for comparison.
Item-based regression models were developed using the items of these 3 scores. The model performance was assessed in terms
of discrimination and calibration. To compare the predictive performance of the data-driven model with that of the item-based
model, we performed internal validation after random splits of identical populations into 80% of patients as a training set and
20% of patients as a test set; the models were developed in the training set and were validated in the test set. We evaluated the
contribution of each variable to the models and compared the predictors used in the machine learning–based models with the
items of the stroke prognostic scores.
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Results: The mean age of the study patients was 73.0 (SD 12.5) years, and 59.1% (6209/10,513) of them were men. The area
under the receiver operating characteristic curves and the area under the precision-recall curves for predicting poststroke outcomes
were higher for machine learning–based models than for item-based models in identical populations after random splits. Machine
learning–based models also performed better than item-based models in terms of the Brier score. Machine learning–based models
used different explanatory variables, such as laboratory data, from the items of the conventional stroke prognostic scores. Including
these data in the machine learning–based models as explanatory variables improved performance in predicting outcomes after
stroke, especially poststroke death.

Conclusions: Machine learning–based models performed better in predicting poststroke outcomes than regression models using
the items of conventional stroke prognostic scores, although they required additional variables, such as laboratory data, to attain
improved performance. Further studies are warranted to validate the usefulness of machine learning in clinical settings.

(JMIR AI 2024;3:e46840) doi: 10.2196/46840

KEYWORDS

brain infarction; outcome; prediction; machine learning; prognostic score

Introduction

Background
Despite receiving the best available treatment, patients who
have had a stroke may still experience disability or, in some
cases, even face the risk of death [1,2]. Stroke clinicians try to
predict patients’ outcomes as accurately as possible because
accurate prognoses are a prerequisite for therapeutic decisions.
Various stroke prognostic scores have been developed to support
clinicians in predicting poststroke outcomes [3-8]. Nevertheless,
prognostic scores have some disadvantages: generally, they
limit the number of variables for ease of use at the bedside, and
their validity needs to be reappraised over time, as the scoring
criteria may become outdated with rapid progress in stroke care
[9].

Meanwhile, recent advances in information technology have
enabled the collection of a large amount of health information
on individual patients [10,11]. Machine learning is considered
a promising tool for improving the prediction accuracy of
clinical outcomes for individual patients with stroke because
of the ability of machine learning to deal with large and complex
data [12-24].

However, several papers questioning the incremental value of
machine learning have recently been published [25-27]. One
study reported that machine learning algorithms did not perform
better than traditional regression models for making prognoses
in traumatic brain injury and recommended replicating studies
in fields other than traumatic brain injury to ensure the
generalizability of the findings [26]. Hitherto, few studies have
directly compared the performance of data-driven models
developed using machine learning methods and regression
models based on conventional stroke prognostic scores in the
field of outcome prediction after ischemic stroke [19,20,23]. In
addition, calibration has not been adequately addressed in
previous studies, and model performance has primarily been
evaluated based on its discriminative ability [18-20].

Objectives
In this study, we aimed to examine whether machine learning
can improve the predictive performance for poststroke outcomes
beyond preexisting stroke prognostic scores. We also sought to

elucidate the pattern of variables selected by machine learning
algorithms to predict poststroke clinical outcomes. To this end,
we analyzed the data of patients with acute ischemic stroke
enrolled in a multicenter, hospital-based, prospective registry
of stroke in Japan. We used 3 stroke prognostic scores, namely,
Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score [6], preadmission comorbidities, level of consciousness,
age, and neurologic deficit (PLAN) score [7], and Ischemic
Stroke Predictive Risk Score (iScore) [4,5], to create item-based
regression models. We then compared the predictive
performance of data-driven models developed using machine
learning algorithms with that of item-based models in identical
study populations. We also examined the explanatory variables
used in data-driven models and compared them with the items
of the conventional prognostic scores.

Methods

Ethical Considerations
The study protocol was approved by the institutional review
boards of all hospitals (Kyushu University Institutional Review
Board for Clinical Research: 22086-01; Kyushu Medical Center
Institutional Review Board: R06-03; Clinical Research Review
Board of Fukuokahigashi Medical Center: 29-C-38; Fukuoka
Red Cross Hospital Institutional Review Board: 629; St Mary’s
Hospital Research Ethics Review Committee: S13-0110; Steel
Memorial Yawata Hospital Ethics Committee: 06-04-13; and
Kyushu Rosai Hospital Institutional Review Board: 21-8).
Written informed consent was obtained from all patients or their
family members.

Data Source
We used data from the Fukuoka Stroke Registry (FSR), a
multicenter, hospital-based, prospective registry of patients with
acute stroke. FSR enrolled patients with stroke hospitalized in
7 participating hospitals in Fukuoka, Japan, within 7 days of
onset (University Hospital Medical Information Network
Clinical Trial Registry: UMIN000000800). Details of the
registry have been previously published [28,29]. In FSR, clinical
data during routine stroke care in the hospitals were recorded
along with baseline information on variables such as
demographics, prior history, comorbidity, and functional level
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before stroke onset. The definitions of these variables have been
previously described [28,29].

Stroke Prognostic Scores
The conventional stroke prognostic scores were used for
comparison against data-driven prediction models. In this study,
we selected prognostic scores based on the following criteria:
they are multiitem and point-based scores using demographic
and clinical information, they were developed to predict
short-term outcomes after ischemic stroke, and they were
externally validated. Consequently, 3 stroke prognostic scores,
the ASTRAL score [6], PLAN score [7], and iScore [4,5], were
used for comparative analysis. Items of these preexisting stroke
prognostic scores were used as explanatory variables in
item-based models (Multimedia Appendix 1).

Study Populations
FSR included 10,700 consecutive patients with acute ischemic
stroke who were registered between June 2007 and May 2017.

Ischemic stroke was diagnosed based on the sudden onset of a
nonconvulsive and focal neurological deficit confirmed by brain
imaging through computed tomography, magnetic resonance
imaging, or both conducted upon admission. Of the 10,700
patients, 187 (1.7%) were lost to follow-up, and the remaining
10,513 (98.3%) were analyzed for 3 months post stroke.

Study patients were selected according to the inclusion and
exclusion criteria of preexisting stroke prognostic scores to
make the study populations identical between the item-based
and machine learning–based models (Multimedia Appendix 2).
Furthermore, we limited the study to patients with complete
data, ensuring there were no missing variables across all data
points. This approach aimed to prevent further reduction in the
number of analyzed patients owing to list-wise deletion in
regression models. The frequency of missing data is shown in
Multimedia Appendix 3. Consequently, population 1, population
2, and population 3 were included in the analysis for comparison
with the ASTRAL score, PLAN score, and iScore, respectively.
Figure 1 illustrates the patient selection in each population.

Figure 1. Flowchart for the selection of study patients. Study patients were selected according to the inclusion and exclusion criteria used in the original
studies of 3 stroke prognostic scores: population 1 for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score, population 2 for the
preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and population 3 for the Ischemic Stroke Predictive Risk
Score (iScore). Patients with missing data on explanatory variables were excluded from the analyses of data-driven models to avoid the influence of
list-wise deletion.

Study Outcomes
The study outcomes were poor functional outcome and death
at 3 months after stroke. Poor functional outcome was defined
as a modified Rankin Scale score >2 at 3 months after stroke
onset [30]. Death was defined as death from any cause within

3 months after stroke [30]. Interviewers on clinical outcomes
were blinded to the patients’ backgrounds.

Development of Predictive Models
We performed logistic regression analysis to develop item-based
models using the predictors of the ASTRAL score, PLAN score,

JMIR AI 2024 | vol. 3 | e46840 | p. 3https://ai.jmir.org/2024/1/e46840
(page number not for citation purposes)

Irie et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and iScore as explanatory variables (Multimedia Appendix 1).
The predictors used in these models included age, time delay
from onset to admission, stroke scale score, decreased level of
consciousness, visual field defect, and abnormal glucose levels
for the ASTRAL score; age, atrial fibrillation, congestive heart
failure, cancer, preadmission dependence, decreased level of
consciousness, leg weakness, arm weakness, and aphasia or
neglect for the PLAN score; age, male sex, atrial fibrillation,
congestive heart failure, renal dialysis, cancer, preadmission
dependence, Canadian Neurological Scale score, stroke subtype,
and abnormal glucose levels for the iScore. The categorization
of predictors in the stroke prognostic scores was the same as
that used in the original study for each score.

We used regularization methods (ridge regression [RR] and
least absolute shrinkage and selection operator [LASSO]
regression models) and ensemble decision tree models (random
forest [RF] and Extreme Gradient Boosting [XGBoost]) for
data-driven models based on machine learning algorithms
[31-34]. All available variables were included in the
development of data-driven models (Multimedia Appendix 3).
The details of the model development are presented in
Multimedia Appendix 4.

Metrics of Model Performance
The discriminative ability of each model was evaluated using
the area under the receiver operating characteristic curve
(AUROC) and the area under the precision-recall curve
(AUPRC). AUPRC was calculated because it is a useful
performance metric for unbalanced data of infrequent outcome
events, such as death [35].

The calibration of each model was assessed using a calibration
plot. Calibration plots were obtained by plotting the predicted

and observed probabilities of the clinical outcomes in the 10
risk groups estimated using each predictive model. The Brier
score was also used to assess the overall performance. The Brier

score is defined as 1/N ∑N
i=1 (pi–ai)2, (0≤BS≤1), where pi is

the predicted probability of the occurrence of an event ranging
from 0 to 1, ai indicates the event with binary outcomes (1 for
observed or 0 for not observed), and N is the number of samples.

Validation and Comparison of Models
We performed internal validation of item-based and data-driven
models after 100 repeated random splits into 80% of the patients
as a training set and 20% of patients as a test set (Figure 2). The
parameters in the training set were optimally tuned via 10-fold
cross-validation in the data-driven models. After 100 random
splits, the predictive models were developed by logistic
regression using the items of the stroke prognostic scores
(item-based model) and by machine learning using all variables
(data-driven model) in the training set. The developed
item-based and data-driven models were validated in the test
set. The data sets for both training and testing were identical
for the item-based and data-driven models. The median and
95% CI of the performance metrics, that is, AUROC, AUPRC,
and Brier score, were calculated for each model using the results
of the 100 repeated random splits. To directly compare the
performance of the item-based and data-driven models (RR,
LASSO, RF, and XGBoost), we compared the AUROC,
AUPRC, and Brier score of the data-driven models with those
of the corresponding item-based model. We repeated the
comparison 100 times and calculated the times that the AUROC,
AUPRC, and Brier score of data-driven models were better than
those of the corresponding item-based model among the 100
repetitions.
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Figure 2. Schematic diagram of the development and validation of the predictive models. All patients were randomly split into 80% of the development
cohort as training data and 20% of the validation cohort as test data, which was repeated 100 times. Among the data-driven models, predictive models
were developed based on ridge regression (RR), least absolute shrinkage and selection operator regression (LASSO), random forest (RF), and Extreme
Gradient Boosting (XGBoost) using all available data after hyperparameter tuning in the development cohort. Logistic regression was used with predictors
of stroke prognostic scores in the item-based models. The predictive models were validated using the test data of the validation cohort. In each split,
the training and test data were identical between the data-driven and item-based models. ASTRAL: Acute Stroke Registry and Analysis of Lausanne;
PLAN: preadmission comorbidities, level of consciousness, age, and neurologic deficit.

Evaluation of the Contribution of Variables
We evaluated the importance of the variables used in the
item-based and data-driven models. To assess the contribution
of each predictor to the item-based regression model, we
calculated the rate of times when the association between each
variable and clinical outcomes was statistically significant
(P<.05) after 100 random splits. In the machine learning models,
the magnitude of variable importance was evaluated in identical
populations after 100 random splits (Multimedia Appendix 4).

We calculated the AUROC of the XGBoost model using various
types of variables to assess how the addition of explanatory
variables improves the predictive performance of the data-driven
model. First, we constructed a model with age, sex, National
Institutes of Health Stroke Scale (NIHSS) score, and
preadmission modified Rankin Scale score (model 1). Then, 5
models were developed by adding items relating to preadmission
status to model 1 (model 2), items relating to clinical data on
admission to model 2 (model 3), items relating to brain imaging
data to model 3 (model 4), and items relating to laboratory data
to model 4 (model 5).

Statistical Analysis
We used the chi-square test, 2-tailed Student t test, or
Mann-Whitney U test to compare the differences in baseline
characteristics and clinical data, as appropriate [36]. Two-sided
P values <.05 were considered statistically significant.

All statistical analyses were performed using the R statistical
package (R Development Core Team). This study was conducted
in accordance with the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) initiative [37].

Results

Baseline Variables and Clinical Outcomes
The mean age of the 10,513 patients was 73.0 (SD 12.5) years,
and 59.1% (6209/10,513) of the patients were men. At 3 months
after stroke, a poor functional outcome was found in 1204
(31.4%) of 3832 patients in population 1, 2209 (35.9%) of 6154
patients in population 2, and 2540 (37.1%) of 6855 patients in
population 3. Within 3 months after stroke onset, 3%
(113/3832), 3.6% (219/6154), and 3.7% (255/6855) of the
patients died in population 1, population 2, and population 3,
respectively.

First, we investigated the differences in the predictors of
preexisting point-based stroke prognostic scores among patients
according to poststroke clinical outcomes. Consequently, almost
all variables significantly (P<.05) differed depending on the
3-month functional outcome (Table 1) and 3-month survival
status (Multimedia Appendix 5) in addition to the predictors
used in preexisting prognostic scores.
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Table 1. Baseline data according to functional outcome at 3 months.

P valuemRS 3-6 (n=4108)mRSa 0-2 (n=6405)Overall (n=10,513)

Demographics

<.00179.4 (10.4)68.9 (12.0)73.0 (12.5)Age (y), mean (SD)

<.0011952 (47.5)4257 (66.5)6209 (59.1)Men, n (%)

Risk factors, n (%)

.113347 (81.5)5138 (80.2)8485 (80.7)Hypertension

.111371 (33.4)2236 (34.9)3607 (34.3)Diabetes mellitus

<.0011570 (38.3)1173 (18.3)2743 (26.1)Atrial fibrillation

<.001544 (14.2)1717 (28.9)2261 (23.1)Smoking

Comorbid conditions, n (%)

<.001496 (12.1)423 (6.6)919 (8.7)Congestive heart failure

<.001161 (3.9)171 (2.7)332 (3.2)Kidney disease on dialysis

<.001778 (18.9)774 (12.1)1552 (14.8)Cancer

Previous history, n (%)

<.001263 (6.9)242 (4.3)505 (5.3)Previous myocardial infarction

Preadmission functional status

<.0011 (0-3)0 (0-0)0 (0-1)Preadmission mRS, median (IQR)

<.0012002 (48.7)364 (5.7)2366 (22.5)Preadmission dependence (mRS score >1), n (%)

<.001Onset-to-admission time, n (%)

453 (11)490 (7.7)943 (9)≤1 h

698 (17)771 (12)1469 (14)≤3 h

497 (12.1)644 (10.1)1141 (10.9)≤6 h

1425 (34.7)2090 (32.6)3515 (33.4)≤24 h

1035 (25.2)2410 (37.6)3445 (32.8)>24 h

<.001Stroke subtype, n (%)

395 (9.6)1724 (26.9)2119 (20.2)Small vessel occlusion

817 (19.9)1006 (15.7)1823 (17.3)Large artery atherosclerosis

1442 (35.1)1054 (16.5)2496 (23.7)Cardioembolism

742 (18.1)1404 (21.9)2146 (20.4)Other determined etiology

712 (17.3)1217 (19)1929 (18.3)Undetermined

Neurological severity, median (IQR) or n (%)

<.0018 (4-16)2 (1-4)3 (2-8)NIHSSb score

<.0011647 (40.1)291 (4.5)1938 (18.4)Severe stroke (NIHSS score >10)

Neurological deficits, n (%)

<.0012359 (57.9)770 (12.1)3129 (30)Decreased level of consciousness

<.0013037 (75)2357 (37.2)5394 (51.9)Leg weakness

<.0013114 (76.8)2520 (39.7)5634 (54.2)Arm weakness

<.0011966 (48.3)946 (14.9)2912 (27.9)Aphasia or neglect

<.001552 (13.6)447 (7.0)999 (9.6)Visual field defect

Physiological data, mean (SD)

<.00184.6 (18.6)87.9 (17.8)86.6 (18.2)SBPc, mm Hg

.01158.8 (30.3)160.4 (28.6)159.8 (29.3)DBPd, mm Hg
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P valuemRS 3-6 (n=4108)mRSa 0-2 (n=6405)Overall (n=10,513)

<.00121.7 (3.9)23.5 (3.6)22.8 (3.8)BMI, kg/m2

Laboratory data, median (IQR)

Complete blood cell count

<.0017.0 (5.7-8.9)6.7 (5.5-8.2)6.8 (5.6-8.4)WBCe (103/μL)

<.001416 (372-458)449 (411-485)436 (394-476)RBCf (104/μL)

<.00138.2 (34.6-41.9)41.1 (37.9-44.0)40.1 (36.5-43.4)Hematocrit (%)

<.00112.8 (11.4-14.1)14.0 (12.7-15.1)13.5 (12.1-14.8)Hemoglobin (g/dL)

<.00119.5 (15.8-23.6)20.6 (17.0-24.7)20.2 (16.6-24.3)Platelet (104/μL)

Liver function

.00123 (19-30)23 (19-29)23 (19-29)ASTg (U/L)

<.00115 (11-22)18 (13-25)17 (12-24)ALTh (U/L)

<.001230 (195-285)211 (181-254)219 (186-266)LDHi (U/L)

<.001250 (203-312)231 (190-284)239 (195-295)ALPj (U/L)

Kidney function

<.00117.9 (13.8-23.8)15.3 (12.6-19.0)16.0 (13.0-20.9)BUNk (mg/dL)

<.0010.8 (0.6-1.1)0.8 (0.7-1.0)0.8 (0.6-1.0)Creatinine (mg/dL)

<.00160.8 (44.8-76.5)70.2 (55.9-83.8)66.5 (51.2-81.5)eGFRl (mL/min/1.73 m2)

Glycemic control

.001124 (105-158)119 (103-154)121 (103-156)Glucose (mg/100 mL)

<.0015.9 (5.5-6.5)5.9 (5.6-6.6)5.9 (5.6-6.6)Hemoglobin A1c (%)

Inflammation

<.0013.9 (1.0-16.3)1.0 (0.4-2.9)1.5 (0.5-6.1)hsCRPm, mg/dL

Coagulation

<.0011.1 (1.0-1.1)1.0 (1.0-1.1)1.0 (1.0-1.1)PT-INRn

<.00130.1 (27.3-33.3)29.5 (27.1-32.4)29.7 (27.2-32.7)APTTo (s)

<.001315 (267-375)297 (256-349)304 (260-359)Fibrinogen (mg/dL)

<.0011.7 (0.9-4.0)0.6 (0.2-1.2)0.9 (0.4-2.0)d-dimer (μg/mL)

amRS: modified Rankin Scale.
bNIHSS: National Institutes of Health Stroke Scale.
cSBP: systolic blood pressure.
dDBP: diastolic blood pressure.
eWBC: white blood cell count.
fRBC: red blood cell count.
gAST: aspartate aminotransferase.
hALT: alanine aminotransferase.
iLDH: lactate dehydrogenase.
jALP: alkaline phosphatase.
kBUN: blood urea nitrogen.
leGFR: estimated glomerular filtration rate.
mhsCRP: high-sensitivity C-reactive protein.
nPT-INR: international normalized ratio of prothrombin time.
oAPTT: activated partial thromboplastin time.
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Assessment of Model Performance
AUROCs varied depending on study populations, whereas
differences between the machine learning algorithms were
minimal in the same study population and for the same outcome.
The AUROCs of data-driven models based on machine learning
were generally higher than those of item-based models for

predicting both 3-month poor functional outcome and all-cause
death (Table 2). Similarly, AUPRCs were generally higher in
data-driven models than in item-based models for predicting
both poor functional outcome and all-cause death (Table 3).
Regarding the Brier score, the data-driven models performed
better than the item-based models (Table 4).

Table 2. Area under the receiver operating characteristic curve for predicting unfavorable clinical outcomes at 3 months using item-based and data-driven

modelsa.

Data-driven models, median (95% CI)Item-based model, median (95% CI)

XGBoosteRFdLASSOcRRb

Poor functional outcome

0.86 (0.83-0.89)0.86 (0.84-0.88)0.86 (0.84-0.89)0.86 (0.83-0.89)0.83 (0.80-0.85)Population 1 (n=3832)

0.91 (0.89-0.93)0.91 (0.89-0.92)0.91 (0.90-0.93)0.91 (0.90-0.93)0.88 (0.86-0.90)Population 2 (n=6154)

0.90 (0.89-0.92)0.90 (0.88-0.91)0.90 (0.89-0.92)0.90 (0.89-0.92)0.87 (0.85-0.89)Population 3 (n=6855)

Death

0.88 (0.82-0.93)0.89 (0.81-0.93)0.87 (0.78-0.92)0.87 (0.79-0.93)0.77 (0.69-0.87)Population 1 (n=3832)

0.90 (0.86-0.93)0.90 (0.86-0.93)0.88 (0.84-0.92)0.89 (0.85-0.92)0.84 (0.80-0.89)Population 2 (n=6154)

0.89 (0.85-0.91)0.89 (0.86-0.92)0.87 (0.83-0.90)0.88 (0.84-0.91)0.82 (0.77-0.87)Population 3 (n=6855)

aThe study populations were selected according to the inclusion and exclusion criteria for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score (population 1), the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score (population 2), and the Ischemic
Stroke Predictive Risk Score (iScore; population 3).
bRR: ridge regression.
cLASSO: least absolute shrinkage and selection operator regression.
dRF: random forest.
eXGBoost: Extreme Gradient Boosting.

Table 3. Area under the precision-recall curve for predicting unfavorable clinical outcomes at 3 months using item-based and data-driven modelsa.

Data-driven models, median (95% CI)Item-based model, median (95% CI)

XGBoosteRFdLASSOcRRb

Poor functional outcome

0.75 (0.71-0.79)0.74 (0.69-0.79)0.75 (0.71-0.80)0.75 (0.71-0.79)0.71 (0.66-0.75)Population 1 (n=3832)

0.87 (0.85-0.89)0.87 (0.84-0.89)0.87 (0.85-0.90)0.87 (0.85-0.89)0.83 (0.80-0.86)Population 2 (n=6154)

0.87 (0.85-0.89)0.86 (0.84-0.88)0.87 (0.85-0.89)0.87 (0.85-0.89)0.83 (0.80-0.85)Population 3 (n=6855)

Death

0.24 (0.12-0.39)0.26 (0.13-0.44)0.17 (0.07-0.31)0.17 (0.08-0.32)0.11 (0.06-0.24)Population 1 (n=3832)

0.27 (0.16-0.35)0.29 (0.18-0.42)0.27 (0.18-0.38)0.27 (0.18-0.37)0.17 (0.11-0.25)Population 2 (n=6154)

0.28 (0.19-0.39)0.29 (0.19-0.42)0.27 (0.17-0.38)0.27 (0.16-0.36)0.18 (0.11-0.25)Population 3 (n=6855)

aThe study populations were selected according to the inclusion and exclusion criteria for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score (population 1), the preadmission comorbidities, level of consciousness, age, and Neurologic deficit (PLAN) score (population 2), and the Ischemic
Stroke Predictive Risk Score (iScore; population 3).
bRR: ridge regression.
cLASSO: least absolute shrinkage and selection operator regression.
dRF: random forest.
eXGBoost: Extreme Gradient Boosting.
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Table 4. Brier score for predicting unfavorable clinical outcomes at 3 months using item-based and data-driven modelsa.

Data-driven models, median (95% CI)Item-based model, median (95% CI)

XGBoosteRFdLASSOcRRb

Poor functional outcome

0.14 (0.12-0.15)0.14 (0.13-0.15)0.14 (0.12-0.15)0.14 (0.12-0.15)0.15 (0.14-0.17)Population 1 (n=3832)

0.11 (0.10-0.12)0.12 (0.11-0.13)0.11 (0.10-0.12)0.11 (0.10-0.12)0.13 (0.12-0.14)Population 2 (n=6154)

0.12 (0.11-0.13)0.12 (0.12-0.13)0.12 (0.11-0.13)0.12 (0.11-0.13)0.13 (0.12-0.15)Population 3 (n=6855)

Death

0.03 (0.02-0.03)0.03 (0.02-0.03)0.03 (0.02-0.03)0.03 (0.02-0.03)0.03 (0.02-0.03)Population 1 (n=3832)

0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)Population 2 (n=6154)

0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)0.03 (0.02-0.04)Population 3 (n=6855)

aThe study populations were selected according to the inclusion and exclusion criteria for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL)
score (population 1), the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score (population 2), and the Ischemic
Stroke Predictive Risk Score (iScore; population 3).
bRR: ridge regression.
cLASSO: least absolute shrinkage and selection operator regression.
dRF: random forest.
eXGBoost: Extreme Gradient Boosting.

The predictive performance of data-driven models compared
with the corresponding item-based model was examined by the
frequency of the performance metrics (AUROC, AUPRC, and
Brier score) of data-driven models, which were better than those
of the corresponding item-based model in the identical training
and test data sets after 100 repeated random splits (Table 5).
Regarding poor functional outcome, the frequency exceeded
95% for all metrics in all the data-driven models (RR, LASSO,
RF, and XGBoost), indicating that the probability of the worse
performance of data-driven models compared with the
item-based model was <5%. Regarding death, the frequency

was >95% for AUROC in all the data-driven models but did
not always attain 95% for AUPRC or Brier score.

Calibration for predicting poor functional outcome was
compared between the item-based and data-driven models (RR,
LASSO, RF, and XGBoost) in population 1 for the ASTRAL
score, in population 2 for the PLAN score, and in population 3
for the iScore. The prediction of poor functional outcome
(Figure 3) and all-cause death (Figure 4) demonstrated
concordance between the predicted and observed probabilities
in the item-based models as well as in the data-driven models.
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Table 5. Predictive performance of data-driven models versus item-based modelsa.

DeathPoor functional outcome

XGBoostRFLASSORRXGBoosteRFdLASSOcRRb

AUROCf

96979597100100100100Population 1 (n=3832)

9998100100100100100100Population 2 (n=6154)

9910099100100100100100Population 3 (n=6855)

AUPRCg

939378819899100100Population 1 (n=3832)

100999999100100100100Population 2 (n=6154)

981009898100100100100Population 3 (n=6855)

Bier score

8996708310099100100Population 1 (n=3832)

93979298100100100100Population 2 (n=6154)

9610099100100100100100Population 3 (n=6855)

aData indicate the frequency that AUROC, AUPRC, and Brier score of data-driven models (RR, LASSO, RF, or XGBoost) exceeded those of item-based
models in identical training and test sets after 100 repeated random splits.
bRR: ridge regression.
cLASSO: least absolute shrinkage and selection operator regression.
dRF: random forest.
eXGBoost: Extreme Gradient Boosting.
fAUROC: area under the receiver operating characteristic curve.
gAUPRC: area under the precision-recall curve.
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Figure 3. Calibration of item-based and data-driven models for predicting poor functional outcome. Calibration for predicting poor functional outcome
was compared between the item-based regression model and data-driven models (ridge regression [RR], least absolute shrinkage and selection operator
regression [LASSO], random forest [RF], and Extreme Gradient Boosting [XGBoost]) in population 1 for the Acute Stroke Registry and Analysis of
Lausanne (ASTRAL) score, population 2 for the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and
population 3 for the Ischemic Stroke Predictive Risk Score (iScore). The patients were categorized into 10 groups stratified by the predicted probability
of poor functional outcome in the test data. Observed probabilities (x-axis) were plotted against predicted probabilities (y-axis) in the 10 groups based
on risk stratification. The results for the first 100 random splits are presented.
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Figure 4. Calibration of item-based and data-driven models for predicting death. Calibration for predicting death was compared between the item-based
regression model and data-driven models (ridge regression [RR], least absolute shrinkage and selection operator regression [LASSO], random forest
[RF], and Extreme Gradient Boosting [XGBoost]) in population 1 for the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score, population
2 for the preadmission comorbidities, level of consciousness, age, and neurologic deficit (PLAN) score, and population 3 for the Ischemic Stroke
Predictive Risk Score (iScore). The patients were categorized into 10 groups stratified by the predicted probability of death in the test data. Observed
probabilities (x-axis) were plotted against predicted probabilities (y-axis) in the 10 groups based on risk stratification. The results for the first 100 random
splits are presented.

Evaluation of Variables
Next, we evaluated how each variable contributed to the
predictive performance of the item-based and data-driven models
(RF and XGBoost) in population 1 (Figure 5), population 2
(Figure 6), and population 3 (Figure 7). The selected variables
differed substantially between the study populations in the
item-based models. Age, preadmission dependence, and
neurological severity of stroke were important variables in
predicting both poor functional outcome and death (Figures
5-7; left panels). Age and neurological deficit signs (arm or leg
weakness and loss of consciousness) were the most frequently
used variables for predicting poor functional outcome (Figures
5A, 6A, and 7A; middle and right panels) in RF and XGBoost.

In contrast, variables not used in the item-based models, such
as d-dimer, high-sensitivity C-reactive protein, fibrinogen, and
BMI, were the most frequently used variables by RF and
XGBoost (Figures 5B, 6B, and 7B; middle and right panels) in
predicting death.

We also investigated how the addition of variables increased
the predictive performance of XGBoost. As a result, the AUROC
for poor functional outcome did not substantially increase even
when explanatory variables other than key predictors were added
to model 1 (Figure 8; open circles). Conversely, the AUROC
for all-cause death linearly increased with the addition of other
variables to the models, particularly items from laboratory data
(Figure 8; closed circles).
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Figure 5. Comparison of variable importance between items of the Acute Stroke Registry and Analysis of Lausanne (ASTRAL) score and explanatory
variables in machine learning model in population 1. The contribution of each variable to the models in predicting poor functional outcome (A) and
death (B) is shown. The patients were selected based on the ASTRAL criteria (population 1). In item-based regression models, the percentage indicates
the rate of times when its association with clinical outcomes was statistically significant (P<.05). In machine learning models, the top 10 variables are
shown according to the magnitude of variable importance. Boxes, vertical lines in the boxes, and horizontal bars indicate IQR, median, and minimal or
maximal range, respectively. NIHSS: National Institutes of Health Stroke Scale, hsCRP: high-sensitivity C-reactive protein, LOC: loss of consciousness,
mRS: modified Rankin Scale, BMI: body mass index, WBC: white blood cell count, LDH: lactate dehydrogenase, HbA1c: hemoglobin A1c, Fib:
fibrinogen, Plt: platelet count, RBC: red blood cell count, ALP: alkaline phosphatase, Ht: hematocrit, Hb: hemoglobin, BUN: blood urea nitrogen, LDH:
lactate dehydrogenase, PT-INR: international normalized ratio of prothrombin time.
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Figure 6. Comparison of variable importance between items of the preadmission comorbidities, level of consciousness, age, and neurologic deficit
(PLAN) score and explanatory variables in machine learning model in population 2. The contribution of each variable to the models in predicting poor
functional outcome (A) and death (B) is shown. The patients were selected based on the PLAN score criteria (population 2). In item-based regression
models, the percentage indicates the rate of times when its association with clinical outcomes was statistically significant (P<.05). In machine learning
models, the top 10 variables are shown according to the magnitude of variable importance. Boxes, vertical lines in the boxes, and horizontal bars indicate
IQR, median, and minimal or maximal range, respectively. mRS: modified Rankin Scale, LOC: loss of consciousness, hsCRP: high-sensitivity C-reactive
protein, BMI: body mass index, Hb: hemoglobin, WBC: white blood cell count, Plt: platelet count, Fib: fibrinogen, RBC: red blood cell count, LDH:
lactate dehydrogenase, Ht: hematocrit, ALP: alkaline phosphatase, PT-INR: international normalized ratio of prothrombin time.
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Figure 7. Comparison of variable importance between items of Ischemic Stroke Predictive Risk Score (iScore) and explanatory variables in machine
learning model in population 3. The contribution of each variable to the models in predicting poor functional outcome (A) and death (B) is shown. The
patients were selected according to the iScore criteria (population 3). In item-based regression models, the percentage indicates the rate of times when
its association with clinical outcomes was statistically significant (P<.05). In machine learning models, the top 10 variables are shown according to the
magnitude of variable importance. Boxes, vertical lines in the boxes, and horizontal bars indicate IQR, median, and minimal or maximal range,
respectively. NIHSS: National Institutes of Health Stroke Scale, CNS: Canadian Neurological Scale, mRS: modified Rankin Scale, LOC: loss of
consciousness, hsCRP: high-sensitivity C-reactive protein, BMI: body mass index, Hb: hemoglobin, WBC: white blood cell count, Fib: fibrinogen,
RBC: red blood cell count, Plt: platelet count, Ht: hematocrit, LDH: lactate dehydrogenase, ALP: alkaline phosphatase, PT-INR: international normalized
ratio of prothrombin time.

Figure 8. Improvement of discrimination in a data-driven model by adding different types of data. The area under the receiver operating characteristic
curves (AUROCs) for predicting poor functional outcome (open circles) and death (closed circles) were compared among the 5 models, which used
different types of variables. A data-driven model was developed for each population using Extreme Gradient Boosting. Vertical bars indicate the 95th
percentile after 100 random splits. The variables used for the models were as follows: model 1: age, sex, National Institutes of Health Stroke Scale
score, and preadmission modified Rankin Scale score; model 2: model 1 plus clinical data before admission (eg, risk factors, comorbid conditions,
previous history, family history, and prestroke medication); model 3: model 2 plus clinical data on admission (eg, onset-to-admission time, ambulance
use, BMI, and physiological data); model 4: model 3 plus brain imaging data (eg, site of lesion, side of lesion, and stroke subtype); and model 5: model
4 plus laboratory data.
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Discussion

Principal Findings
This study, which analyzed comprehensive clinical data from
a multicenter, hospital-based stroke registry, yielded the
following major findings. The performance of item-based
regression models using the predictors of 3 conventional stroke
prognostic scores was fair in predicting clinical outcomes at 3
months after ischemic stroke in our cohort, despite differences
in clinical and social backgrounds from the original cohorts of
scores. Data-driven models based on machine learning
algorithms exhibited better performance when compared with
item-based models in identical study populations. The
importance of variables in RF and XGBoost appeared to differ
from that in item-based models when predicting death within
3 months. The addition of nonconventional factors, such as
laboratory data, to the XGBoost model improved its predictive
ability for 3-month mortality.

Predictive Performance of Models
Thus far, only a limited number of studies have evaluated the
predictive performance of machine learning–based models
compared with those of stroke prognostic scores [19,20,23]. All
these studies were performed in single-center registries or under
specific conditions, such as large vessel occlusion in ischemic
stroke. Furthermore, previous studies mainly focused on
AUROC for assessing predictive performance, although other
metrics, such as measures of calibration, are necessary to fully
evaluate the performance of models [38]. This study was
conducted using a multicenter registry database and several
performance metrics. Our study demonstrated that data-driven
models developed using machine learning algorithms can
perform reasonably well in predicting the 3-month clinical
outcomes of patients with acute ischemic stroke. Generally,
data-driven models performed better than conventional
prognostic scores when both were compared in identical study
populations.

This study also demonstrates that the model performance largely
depends on the study populations. The study populations varied
in terms of both size and patient characteristics, such as
prestroke dependency, time from onset to admission, and use
of thrombolytic therapy. The variability in AUROC, AUPRC,
and Brier scores between the study populations was as large as
that between the models. Moreover, the model performance
varied depending on the outcomes to be predicted: AUPRCs
were substantially decreased for the prediction of death, which
is a less frequent event than the poor functional outcome. These
findings underscore the reiterated importance of sample size,
the number of outcome events, and data quality of the study
cohorts where models are to be developed and validated
[25,39,40].

Variables in Models
In this study, age, preadmission dependence, and variables
related to neurological deficits were identified as important
predictors for the prediction of poor functional outcome in both
item-based regression models and data-driven models using RF
and XGBoost. These are well-known risk factors for poor

functional outcome and are also used for predicting death in
stroke prognostic scores [4,5,7]. However, BMI and items
related to laboratory data, such as D-dimer, high-sensitivity
C-reactive protein, and fibrinogen, were found to be the most
important variables for predicting death in RF and XGBoost.
Indeed, the association between poststroke clinical outcomes
and markers of inflammation and hypercoagulation has become
a recent research topic [41,42]. Machine learning algorithms
can be a promising tool to identify novel factors to be considered
in making prognoses for stroke because they can maximize the
use of data without arbitrary assumptions and procedures.

Clinical Implications
The ability of machine learning to derive a model that best fits
the data on a given cohort is appealing for making prognoses.
Prognostic scores with prespecified items may not fit all cohorts
because heterogeneity must exist between study cohorts in race
or ethnic groups, general health conditions, socioeconomic
status, and health care systems. In addition, stroke prognostic
scores are at risk of getting outdated over time, as advances in
stroke care continuously improve clinical outcomes in patients
with stroke [43,44]. However, our analysis suggests that the 3
conventional prognostic scores can perform sufficiently well
in our cohort, despite the fact that the original studies that
developed the scores had patients with different medical
backgrounds and during different study periods. This finding
demonstrates the robustness of outcome prediction using
regression models in terms of generalizability. Furthermore,
considering nonlinear and interaction effects might not be crucial
for outcome prediction after ischemic stroke, as the simple
regression models worked well in our study.

Point-based stroke prognostic scores are convenient and helpful
for making prompt decisions at the bedside. Generally,
prognostic scores comprise only a handful of variables on which
information can be obtained easily. This advantage in the
practicability of the prognostic scores is important in acute
stroke care settings. Machine learning algorithms require more
data than conventional prognostic scores to reach acceptable
performance levels [39], and the data required by machine
learning algorithms to realize better performance, such as
laboratory data, may not always be available, although they can
improve the predictive performance of models. Therefore,
further studies are needed to fully assess the incremental value
of machine learning–based models in daily clinical practice.

Strengths and Limitations
This study has several strengths. We assessed and compared
the predictive accuracy of prognostic scores against data-driven
models, using information from a multicenter, prospective
registry of individuals diagnosed with acute stroke. We were
able to use several variables, including laboratory data–related
items, owing to the detailed clinical data available in the registry.
Moreover, comparisons of models were made using various
performance metrics. However, this study has also several
limitations. First, the selection of patients may have led to bias,
although the inclusion and exclusion criteria were identical to
those reported in the original studies of the prognostic scores.
Second, there were missing data for the baseline variables and
clinical outcomes, which may have also led to selection bias.
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Third, the possibility of overfitting cannot be completely ruled
out, despite the predictive models constituted by the training
set being fitted to the test set. Finally, this study included only
patients with acute ischemic stroke who were hospitalized in
tertiary care centers in a restricted region of Japan.
Generalizability should be assessed in other settings and for
other diseases.

Conclusions
This study suggests that data-driven models based on machine
learning algorithms can improve predictive performance by
using diverse types of variables, such as laboratory data–related
items. The clinical outcomes of individual patients can be
automatically estimated using machine learning algorithms if

a large amount of data can be directly drawn from electronic
health records. This possibility of making automated and
personalized prognoses is an appealing property of data-driven
prediction. However, the arrangement of an appropriate
electronic infrastructure is indispensable for enabling data
collection, and the development of such infrastructure requires
time and cost. It is worth noting that conventional prognostic
scores can achieve sufficient performance in making stroke
prognoses with only a limited number of variables. In the near
future, it seems feasible to explore the improvement of
preexisting prognostic scores by incorporating novel predictors
identified by machine learning algorithms, given the significant
investment necessary to fully use machine learning.
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