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Abstract

Background: Digital diabetes prevention programs (dDPPs) are effective “digital prescriptions” but have high attrition rates
and program noncompletion. To address this, we developed a personalized automatic messaging system (PAMS) that leverages
SMS text messaging and data integration into clinical workflows to increase dDPP engagement via enhanced patient-provider
communication. Preliminary data showed positive results. However, further investigation is needed to determine how to optimize
the tailoring of support technology such as PAMS based on a user’s preferences to boost their dDPP engagement.

Objective: This study evaluates leveraging machine learning (ML) to develop digital engagement phenotypes of dDPP users
and assess ML’s accuracy in predicting engagement with dDPP activities. This research will be used in a PAMS optimization
process to improve PAMS personalization by incorporating engagement prediction and digital phenotyping. This study aims (1)
to prove the feasibility of using dDPP user-collected data to build an ML model that predicts engagement and contributes to
identifying digital engagement phenotypes, (2) to describe methods for developing ML models with dDPP data sets and present
preliminary results, and (3) to present preliminary data on user profiling based on ML model outputs.

Methods: Using the gradient-boosted forest model, we predicted engagement in 4 dDPP individual activities (physical activity,
lessons, social activity, and weigh-ins) and general activity (engagement in any activity) based on previous short- and long-term
activity in the app. The area under the receiver operating characteristic curve, the area under the precision-recall curve, and the
Brier score metrics determined the performance of the model. Shapley values reflected the feature importance of the models and
determined what variables informed user profiling through latent profile analysis.

Results: We developed 2 models using weekly and daily DPP data sets (328,821 and 704,242 records, respectively), which
yielded predictive accuracies above 90%. Although both models were highly accurate, the daily model better fitted our research
plan because it predicted daily changes in individual activities, which was crucial for creating the “digital phenotypes.” To better
understand the variables contributing to the model predictor, we calculated the Shapley values for both models to identify the
features with the highest contribution to model fit; engagement with any activity in the dDPP in the last 7 days had the most
predictive power. We profiled users with latent profile analysis after 2 weeks of engagement (Bayesian information
criterion=−3222.46) with the dDPP and identified 6 profiles of users, including those with high engagement, minimal engagement,
and attrition.

Conclusions: Preliminary results demonstrate that applying ML methods with predicting power is an acceptable mechanism to
tailor and optimize messaging interventions to support patient engagement and adherence to digital prescriptions. The results
enable future optimization of our existing messaging platform and expansion of this methodology to other clinical domains.

Trial Registration: ClinicalTrials.gov NCT04773834; https://www.clinicaltrials.gov/ct2/show/NCT04773834

International Registered Report Identifier (IRRID): RR2-10.2196/26750
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Introduction

Over 80 million US adults have prediabetes, a metabolic
condition that places individuals at risk for progression to type
2 diabetes and its related complications [1]. Evidence-based
strategies for diabetes prevention have primarily focused on
nonpharmacologic interventions such as diabetes prevention
programs (DPPs), which are comprehensive behavior change
curricula concentrating on physical activity and dietary
modification. Such programs can be as effective as medication
in preventing the progression of diabetes in at-risk populations
[2]. Increasingly, DPP behavioral curricula have been adapted
to digital platforms (digital DPPs [dDPPs]), which have
demonstrated comparable effectiveness in achieving weight
loss, hemoglobin A1c reduction, and other critical
diabetes-related health outcomes while offering improvements
in accessibility, convenience, and personalization [3]. Yet,
limited patient engagement with digital interventions presents
a significant barrier to translating evidence-based digital
behavioral interventions such as the dDPP into pragmatic,
scalable solutions [4-8].

To address this critical patient engagement issue, various
technologies and interventions have been developed to provide
targeted support to patients using digital health apps to improve
engagement and sustained use [9]. Potential solutions include
mobile-based feedback and reminder tools, app-based coaching,
social networking, and gamification. More recent strategies
have also leveraged machine learning (ML) and big data
analytics to deploy more advanced tools, such as engagement
algorithms and artificial intelligence (AI)–driven chatbots. ML
solutions can provide (1) more nuanced patient segmentation
or phenotyping; (2) more precise, tailored interventions, with
enhanced ability to respond dynamically to changes in individual
trends; and (3) improved resource alignment by intervention
implementers, as automated processes (eg, chatbots) can free
up human capital for more appropriate tasks [10]. Moreover,
AI-driven chatbots (AI chatbots), conversational agents that
mimic human interaction through written, oral, and visual
communication channels with a user [1,2], have demonstrated
efficacy in health-behavior change interventions among a large
and diverse population [3-6,11-13].

Prior work from this team involved developing a personalized
automatic messaging system (PAMS) that leveraged an
evidence-based engagement algorithm to deliver tailored
behavior change theory–supported SMS text messaging to
support users engaging with a commercial app-based dDPP.

The study returned promising results compared with average
users, demonstrating engagement in various dDPP features (eg,
weight tracking and physical activity logins) [12]. To expand
on the previous investigation, improved features of the next
generation of PAMS include an ML-based patient engagement
prediction algorithm to identify dDPP digital engagement
phenotypes and to guide and further personalize the messaging
intervention. This paper describes the ML model designed to
predict characteristics and behavioral patterns of dDPP user
types (eg, those highly engaged with exercise but not uploading
the meals or those messaging their coach but not participating
in weigh-ins) based on their activity patterns within a dDPP
app, with a particular focus on motivating users at risk for low
engagement and nonengagement with the dDPP (ie, patient
digital engagement phenotypes).

Methods

Overview
The logic diagram in Figure 1 illustrates, from left to right, the
overall framework for optimizing patient engagement with a
dDPP [14]. In this study, we completed 2 activities (developing,
validating, and testing ML models and studying model outputs
with latent profile analysis [LPA]) and identified future activities
toward optimization. The drivers behind this optimization
initiative stem from low levels of patient engagement with
dDPPs and other wellness-based mobile apps. We used the daily
and weekly data sets provided by the dDPP vendor (inputs) to
develop, validate, and test an ML model for each data set (first
activity). On the basis of the performance metrics from the daily
and weekly models, we identified the highest contributing
feature for each model using Shapley values (first outputs).
These features were fed into the LPA (second activity) to
determine the number of participant usage profiles (second
outputs). The goodness of fit derived from the LPA validated
the phenotypes formed from the LPA (direct outcome). This
integration of ML and statistical learning processes would
inform how we identify digital engagement phenotypes for the
dDPP study set (in the dashed red box) and, therefore, design
content for a more personalized messaging platform (second
direct outcome). Ultimately, the desired long-term outcomes of
the profiling process are increased patient engagement with the
dDPP and a reduction in clinical outcomes related to hemoglobin
A1C and weight (indirect outcomes). The process rests on the
assumptions that the dDPP data accurately reflect digital
behavioral patterns and that people from the vendor-provided
data are representative of people in the study data set.
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Figure 1. Logic diagram of the research methodology to integrate machine learning (ML) into participant profiling, including the input data sets; the
methods applied to the data sets; and the intermediary, direct, and indirect outputs. dDPP: digital diabetes prevention program.

Participants
Study participants were users with prediabetes who enrolled in
a commercial dDPP app (our dDPP research vendor), including
nonpatient (“vendor”) users and institution-based patients
(“study” participants of this dDPP intervention) [11]. Eligible
participants are at least 18 years old, have a BMI of at least 25

kg/m2 (22 kg/m2 if self-identified as Asian), have a diagnosis
of prediabetes (either by International Classification of
Diseases, Tenth Revision code, problem list, or a hemoglobin
A1c level of 5.7%-6.4% in the last 12 months), and are deemed
safe to engage in light physical exercise and weight loss by their
primary care physician. For institutional study participants
enrolled in the current clinical trial of this dDPP intervention,
patients are excluded if they have a prior diagnosis of diabetes,
have any end-stage illness with a prognosis within 6 months,
are non-English speakers (as the dDPP program is currently
only available in English), or are unable to send or receive SMS
text messages [4]. Recruited patients were identified via
electronic health record review and contacted through
multichannel methods (eg, patient portal, email, in-clinic
recruitment, and clinician referral).

The Data

Data Sourcing
Data for the evaluation were sourced from a commercial dDPP
vendor and a patient cohort of an academic health center. We
used 2 deidentified data sets (weekly and daily data) of eligible
retail users for the initial training, validation, and testing of the
ML models. These data sets aggregate and present user
information on a weekly or daily basis and capture all features
recorded by the dDPP app, including per user or patient: meals
logged, steps logged, exercises logged, messages shared with
the dDPP coach and other dDPP patients using the app, app
log-ins, and the number of dDPP articles read. These activities
were the same as those used for generating the adherence
algorithm in our previous research. In addition to the

vendor-provided data sets, for a later testing phase, we use an
existing data set of data collected from dDPP patients who are
part of this dDPP study and exposed to the PAMS intervention.

Weekly dDPP Vendor Data Set
Data include detailed information about all the features collected
for our dDPP app partners, such as meals logged, steps logged,
exercises logged, messages shared with the dDPP coach and
other dDPP patients using the app, app log-ins, and the number
of dDPP articles read during each week. All users have more
than 5 weeks of engagement records, and we used only 1 year’s
worth of dDPP engagement data per user.

Weekly dDPP Institutional Study Data Set
The 2 data sets (weekly dDPP vendor data set and weekly dDPP
study data set) have the same data structure. The same data
fields are collected for commercial users and the dDPP patients,
but the only difference is on the behavioral level because the
patients’ data are potentially affected by the message
intervention (PAMS). All data were used for the validation of
the weekly ML model.

Daily dDPP Vendor Data Set
In addition to the activity records in the weekly data, we had
access within the daily data set to calorie consumption data,
meal logs, and color codes assigned to each food item as
reported by the users. Users with less than 7 days of engagement
records were excluded from the cohort, and we used only 1
year’s worth of dDPP engagement data per user.

Outcomes
First, we built binary classification ML models to predict
whether a participant will engage in the next week or the next
day with the dDPP based on their previous short- and long-term
activity in the app. For the weekly model, we used the vendor
data set to train and validate retrospectively to predict general
activity (engagement in any activity). We prospectively
validated the weekly model using the institutional study data
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set. For the daily models, we predicted 5 outcomes: general
activity, physical activities (steps and exercises recorded on the
app), in-app lessons (article reading), social activities (group
posts and coach messages in the app), and weigh-ins in the app.
Second, we identified the variables from the daily overall
activity model of the vendor’s participants that provide the most
predictive power for engagement. Third, we evaluated whether
these predictive variables could generate profiles of a
participant’s behavior that can be targeted with motivational
messaging.

Predictors
We built model predictors from users’ demographic data and
collected in-app activities. These activities include steps taken,
exercises, meal logs, weigh-in records, in-app messaging and
group activities, and in-app article reading. For the weekly data
set, short-term activity profiles were built from the week before
the evaluation week and up to 4 weeks before the evaluation
week. Long-term activity profiles were summarized and
constructed from the first week of program enrollment up to
the evaluation week. Short-term activity profiles were built from
the day before and within 7 days before the evaluation day for
the daily data set. Similarly, long-term activity profiles were
summarized and constructed from the first day of program
enrollment up to the evaluation day. The day of the week and
national holidays were also captured as predictors. In total, 43
predictors were used to build weekly models, and 49 predictors
were used to build daily models.

Sample Size
The sample sizes for user weekly and daily data sets directly
from the dDPP vendor were determined by the convenience of
the dDPP vendor and assumed to be representative of the
academic health center’s study sample. The study sample size
was determined by the number of participants already recruited
and actively involved in the original dDPP study as of December
2021 [4].

Missing Data
Because this paper aims to predict participant engagement with
the dDPP, missing data among in-app activities were treated as
a participant not engaging in either overall activity (ie, no
observations for a particular day or a week for any activity) or
specific within-dDPP activities (eg, a participant not recording
meals or reading any articles). Missing participant weight was
logged as a participant not weighing themselves for the dDPP,
and we ignored the magnitude of weight due to individual
non-dDPP factors contributing to weight outcomes. No
participant had a missing age due to age being a requirement
for enrollment into the dDPP. Participants who did not record
their ideal body weight at the beginning of dDPP engagement
had this observation recorded as a 0, as the lack of goal
recording for weight could have clinical implications (eg, weight
is not the primary utilization goal for the participant, or the
participant is not comfortable with setting a weight goal). No
participant had a missing initial BMI recorded. One participant
was missing gender identification, so their observations were
removed from the data set.

Statistical Analysis Methods

Data Split
All data sets were split into a 70% training set, a 15% validation
set, and a 15% test set based on users. Observations of any user
only existed in 1 set to prevent potential data leak and
unintended bias.

Gradient-Boosted Forest Algorithm
We use the gradient-boosted forest algorithm, a robust regression
tree approach that includes multiple simple decision trees to
iteratively refine the performance of the model by minimizing
the difference between the expected and expert-labeled outcomes
[15,16]. Forest-based algorithms provide 2 fundamental benefits.
First, they allow for nonlinear interactions between covariates
to impact the prediction of the dependent variable, as opposed
to using a Least Absolute Shrinkage and Selection Operator
(LASSO) or a ridge regression model. Second, forest-based
algorithms do not require a priori function structure to define
the relationship between the covariates and the outcome. For
example, we do not need to theoretically assume whether a
particular engagement type (eg, steps) interacts with another
type (eg, exercise logging). We used gradient boosting to allow
for prediction despite the sparsity of the data, as users may
engage with one activity but not others on a given day or have
no activity (ie, all observations as 0). The values defining
engagement included binary predictors, large integers (eg,
calories and steps), and values between 0 and 1 (eg, the portion
of engagement throughout enrollment). These models aimed to
identify that the sub-behaviors that create the most predictive
power for engagement with the dDPP were trained with η=0.1
for 1000 rounds with early stopping.

Metrics
The area under the receiver operating characteristic curve
(AUROC), the area under the precision-recall curve (AUPRC),
and the Brier score statistics measured the performance of the
model. To estimate the CIs of the evaluation metrics for the ML
models, we performed bootstrapping with 200 iterations on the
test set. In each iteration, a random sample of the test set, with
replacement, was drawn with the same size as the original test
set. The ML model was then evaluated on this bootstrapped
sample, and the performance metrics mentioned above were
recorded. The process was repeated for 200 iterations, resulting
in a distribution of performance metrics from which the 95%
CIs were calculated, providing a robust estimate of the
performance and variability of the model. In addition, Shapley
values were calculated to reflect the feature importance of each
model.

Engagement Profiling
A person-centered approach to messaging can help motivate
individuals to complete goal-oriented behaviors like engagement
with a lifestyle management app [17]. This approach involves
(1) tailoring delivery based on the person’s behavior profile
within the app and (2) focusing messaging on targetable
behaviors to motivate users to complete small, manageable
actions toward their goal (ie, the goal gradient hypothesis in
decision-making) [18]. We performed an LPA on the
participants in the daily data set to determine the subgroups of
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participants’ behaviors. LPA identifies latent clusters of
individuals based on continuous variables [19]. The
contributions of multiple variables (ie, the facets that explain
the unobserved profile of a user) contribute to the outcome
experienced by a user. We used the covariates with the highest
global mean Shapley values from the gradient-boosted forest
model for the LPA for 2 reasons. First, these variables offer the
most explanatory power behind the probability of engagement
with the dDPP, allowing us not to assume a priori the behaviors
that contribute to the usage of the dDPP. Second, profiling users
of a digital app such as this dDPP can be more complicated than
traditional approaches to consumer profiling, given the
interaction between a user’s health and app engagement. To
determine the minimum usage data after enrollment into a dDPP
to start profiling participants, we conducted LPAs after 2 weeks
and iteratively added days until 3 weeks of engagement. We
used the profiles from the timestamp with the lowest Bayesian
information criterion (BIC), the established goodness-of-fit
metric for LPA. We used the mclust package in RStudio (version
2022.12.0+353; Posit Software, PBC) to run the LPAs [20].

Development Versus Validation
We validated the weekly model prospectively using the weekly
dDPP study data set. Detailed information about this data set
is under the subsection “Participants” [15,16].

Ethical Considerations
In this DPP research, ethical standards and the protection of
human participants are emphasized. The study is committed to
adhering to regulations outlined in 45 CFR Part 46, ensuring
the rights and welfare of participants. The NYU Langone Health
institutional review board (IRB) played a crucial role in
reviewing and approving the research, informed consent forms,
and recruitment materials before participant enrollment
(i20-01548). The informed consent process is described as an
ongoing dialogue, emphasizing clear communication,

comprehension, and the right to withdraw without adverse
consequences. The consent forms, including verbal consent and
a key information sheet, were submitted to the IRB for approval.
Confidentiality measures are robust, complying with the Health
Insurance Portability and Accountability Act (HIPAA), and a
Certificate of Confidentiality from the National Institutes of
Health was obtained. Data security is maintained through
password protection, and research data are stored securely. The
research emphasizes that stored data will only be used for this
study, with no plans for future use in subsequent research.
Overall, the research underscores the importance of ethical
conduct, participant consent, and stringent confidentiality
measures in the research process.

Moreover, the research underscores the importance of ethical
conduct, rigorous IRB oversight, and robust confidentiality
measures to safeguard the rights and well-being of study
participants. Additionally, it highlights the meticulous
documentation of the informed consent process and the secure
handling of research data, ensuring compliance with regulations
and promoting participant trust and privacy.

Results

Participants
Table 1 details the descriptive statistics for the 3 preprocessed
data sets, including weekly and daily data for the dDPP user
(dDPP vendor data sets) and the weekly data for the dDPP
patients (dDPP study data). For the vendor-provided data sets,
users engage with the app 54.2% (208,142/384,025) of the times
in the weekly data compared with 38.9% (274,200/704,242) of
the times in the daily data. The average engagement within
individual activities is similar. “Steps taken” had the highest
percentage of all activities in both data sets. For study data, the
engagement percentage was higher (92.1%, 1253/1361), which
could be attributed to the effects of PAMS messages.
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Table 1. Descriptive statistics of users (N=12,262).

Daily dDPP vendor data (dDPP
vendor users, n=2159)

Weekly dDPP study data (dDPP
study patients, n=50)

Weekly dDPPa vendor data (dDPP
vendor users, n=10,053)Characteristic

326.2 days27.22 weeks38.2 weeksProgram length

N/AN/Ab47.6 (11.4)Age (years), mean (SD)

Sex, n (%)

N/AN/A1267 (12.6)Male

N/AN/A8786 (87.4)Female

274,200/704,242 (38.9)1253/1361 (92.1)208,142/384,025 (54.2)Engagement of any activity, n/N
(%)

244,823/704,242 (34.8)1086/1361 (79.8)208,142/384,025 (54.2)Engagement of steps taken, n/N (%)

49,683/704,242 (7.1)349/1361 (25.6)77,957/384,025 (20.3)Engagement of exercises, n/N (%)

100,449/704,242 (14.3)924/1361 (67.9)137,865/384,025 (35.9)Engagement of meals logged, n/N
(%)

71,596/704,242 (10.2)523/1361 (38.4)137,481/384,025 (35.8)Engagement of weigh-ins, n/N (%)

79,272/704,242 (11.2)573/1361 (42.1)118,280/384,025 (30.8)Engagement of article reading, n/N
(%)

45,113/704,242 (6.4)100/1361 (7.3)24,578/384,025 (6.4)Engagement of group posts, n/N (%)

adDPP: digital diabetes prevention program.
bN/A: not applicable.

Weekly Model (for Any Activity) Development and
Performance
We trained and tested the model to predict “any activity” (ie,
the probability of the subsequent interaction with the dDPP
based on whether the user interacted with any of the features
of the dDPP app, such as exercise, meal, and weigh-ins) on the
weekly dDPP vendor data set. The weekly model reported an
AUROC of 0.97 (95% CI 0.97-0.97), an AUPRC of 0.98 (95%
CI 0.98-0.98), and a Brier score of 0.061 (95% CI 0.060-0.063)

in the test set (Figure 2). Because we also aimed to identify how
individual variables contribute to predictions by the model, we
calculated the Shapley value, which is the average marginal
contribution of a variable to a model across the different
combinations of including the variable in the model (eg,
nonlinear contributions and splitting a forest into different
branches with the variable). The Shapley value method has
become the preferred technique for feature attribution in ML
models, thanks to its robust and reliable performance [21].

Figure 2. AUROC (left) and AUPRC (right) performance metrics of the “any activity” weekly model in the test set of the weekly vendor data set
(58,210 engagement records). The calibration plot shows that the model is well calibrated. AUPRC: area under the precision-recall curve; AUROC:
area under the receiver operating characteristic curve.
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Figure 3 displays the distribution of the 10 covariates with the
highest calculated global mean Shapley value (ie, which
variables have the strongest predictive power, regardless of
negative or positive impact, on the user’s engagement with the
dDPP). A higher magnitude of the Shapley value (ie, further
from 0) indicates the strength of the variable in the model to
predict a user’s engagement with the dDPP. A positive Shapley
value indicates that the user is more likely to engage with the
dDPP because of the variable (ie, a positive predictor). A

negative Shapley value suggests that the patient is less likely
to engage with the dDPP due to the variable (ie, a negative
predictor). More purple values indicate a higher mean for the
covariate of the individual (eg, a more purple “exercise
frequency” dot indicates that the user logged for nonstep
physical activity more than other users did). The covariates with
the most contribution to model prediction were those of
short-term behaviors.

Figure 3. Shapley values of top 10 features in the “any activity weekly model.” Each dot on the plot represents an engagement record and is colored
according to the value of the corresponding feature from high (purple) to low (yellow). Features are ranked in descending order from top to bottom on
the y-axis (ie, variables with the highest contribution to the model are on the top), with global mean Shapley values of each feature annotated next to
them.

We tested our model using the weekly dDPP institutional study
data set (prospective clinical data). The model achieved an
AUROC of 0.92 (95% CI 0.89-0.94), an AUPRC of 0.99 (95%
CI 0.99-0.99; Figure 4), and a Brier score of 0.072 (95% CI
0.063-0.081), suggesting high predictive power and operational
potential for refining PAMS using this method. After analyzing
the weekly dDPP study data set, we detected that this data set

would be imbalanced because the prediction of the subsequent
week’s activity would be based on whether a user engaged with
any app activity, rather than a particular activity, within the
dDPP, seen by the 92.1% engagement ratio, and the sample size
was too low to yield unbiased testing results. Regardless of the
limitation of the research data set, this analysis was proper in
confirming the effectiveness of the weekly model.
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Figure 4. AUROC (left) and AUPRC (right) performance metrics of any activity weekly model in the weekly study data set (1361 engagement records).
AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve.

Daily Model (for Any Activity) Development and
Performance
We expanded a proportion of the weekly data set into a daily
(more detailed) format and trained 5 new models. Figure 5
illustrates the ML model fit in the test set of the daily data set.
Figure 6 displays the distribution of the covariates with the

strongest predictive power (ie, the highest global mean Shapley
value). Like the weekly model, engagement with any activity
in the dDPP in the last 7 days had the most predictive power (a
global mean Shapley value of 2.638). However, in contrast to
the weekly model, features associated with long-term activity
also had strong predictive power in the model.

Figure 5. AUROC (left) and AUPRC (right) performance metrics of the “any activity” daily model in the test set of the daily vendor data set (106,950
engagement records). AUPRC: area under the precision-recall curve; AUROC: area under the receiver operating characteristic curve.
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Figure 6. Shapley values of top 10 features in the “any activity” daily model. Each dot on the plot represents an engagement record and is colored
according to the value of the corresponding feature from high (purple) to low (yellow). Features are ranked in descending order from top to bottom on
the y-axis. Average Shapley values of each feature are annotated next to them on the y-axis.

Although the daily model for “any activity” returned a high
AUROC and AUPRC, we aimed to generate predictions on
each specific activity to inform our user profiling (digital
engagement phenotypes) and consequently elevate the message
personalization. Therefore, we developed 4 ML models,
focusing on daily engagement with each key type of activity
for a dDPP (physical activity, lessons, social activity, and
weigh-ins). Table 2 displays the model fits for each of these

“submodels.” For each activity, the model indicates highly
predictive behavioral patterns among users. The “physical
activity” and “social activity” daily models had higher AUROC
performance with slightly lower AUPRC than the other daily
models. All daily models show higher levels of calibration (a
highest Brier score of 0.051) than the weekly model (a Brier
score of 0.061).

Table 2. Performance metrics of each daily activity model in the test set.

Weigh-insSocial activity (group posts
and coach messages)

Lessons (article reading)Physical activity (exercis-
es and steps)

Any app activityModel fit met-
rics

0.94 (0.94-0.94)0.98 (0.98-0.98)0.99 (0.99-0.99)0.98 (0.98-0.98)0.99 (0.99-0.99)AUROCa (95%
CI)

0.65 (0.63-0.66)0.74 (0.73-0.75)0.91 (0.91-0.92)0.74 (0.72-0.75)0.98 (0.98-0.98)AUPRCb (95%
CI)

0.051 (0.050-0.052)0.02 (0.023-0.024)0.027 (0.026-0.028)0.025 (0.025-0.026)0.037 (0.036-0.038)Brier score
(95% CI)

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.

Engagement Profiling Development and Performance
We profiled participants with their daily engagement data using
LPA after 2 weeks of dDPP enrollment. To determine the
optimal time to start profiling participants, we iteratively added

1 day of engagement and created profiles until 3 weeks after
their enrollment in the dDPP. After 2 weeks of daily engagement
data, profiling participants had the strongest LPA model fit
(BIC=−3222.46), followed by the model fit from profiling with
3 weeks of data (BIC=−2903.19). The LPA model fits for 15
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to 20 days of engagement were significantly worse (ie, higher
BIC values) and, therefore, are not reported. The
best-performing LPA model was ellipsoidal (there is some
correlation between variables), had equal volume (the variances

are equal across identified profiles), had variable distributions
between profiles (ie, the number of people per profile vary),
and consisted of 6 profiles. Table 3 reports the mean engagement
for each variable within and across the profiles of participants.

Table 3. Mean engagement by profile and across profiles for key engagement variables.

Mean engage-
ment across
profiles (SD)

Subbehavior variable mean (SE)Key engagement
variables

Profile 6 (n=8)Profile 5 (n=82)Profile 4 (n=20)Profile 3 (n=107)Profile 2 (n=91)Profile 1 (n=16)

0.752 (0.401)0.814 (0.222)0.115 (0.236)0.747 (0.243)1.000 (0)0.992 (0.0450.969 (0.085)Any activity rate
(last 7 days)

0.797 (0.318)0.698 (0.244)0.365 (0.292)0.605 (0.262)0.979 (0.049)0.998 (0.013)0.942 (0.105)Long-term activity
rate

2555 (3495)1622 (2447)0 (0)1378 (1293)3646 (3461)3909 (3968)2572 (4661)Steps taken rate
(last 7 days)

0.172 (0.208)0.241 (0.175)0.0471 (0.131)0.0362 (0.043)0.265 (0.208)0.139 (0.139)0.507 (0.310)Long-term weigh-
in rate

0.392 (0.444)0.00305 (0.297)0.00305 (0.028)0.0252 (0.112)0.690 (0.399)0.397 (0.416)0.906 (0.256)Recent meal rate

0.740 (0.359)0.609 (0.303)0.285 (0.295)0.566 (0.292)0.956 (0.068)0.998 (0.013)0.438 (0.345)Long-term step
rate

0.425 (0.386)0.116 (0.076)0.0951 (0.145)0.0543 (0.127)0.669 (0.349)0.463 (0.339)0.856 (0.249)Long-term meal
log rate

1.160 (1.689)0.372 (1.061)0 (0)3.021 (0.923)2.85 (1.644)0.278 (0.704)2.01 (1.549)Article reading rate
(last 7 days)

The LPA identified attrition (users in profile 5 who showed
consistently low engagement across variables) and behaviors
that show points of continued engagement for users. Users in
profile 6, for example, had a close-to-average engagement with
the dDPP from weigh-ins with the app and logging steps, which
are behaviors that require one-time interactions with the dDPP,
given Bluetooth connections between smart devices and the
dDPP. In contrast, users in profile 3 were highly engaged, as
they consistently engaged more than the average user.
Messaging to users in profile 3 should, therefore, differ from
messaging to users in profile 5, given the differences in their
efforts toward the dDPP. Users in profile 4 had a
lower-than-average engagement with the dDPP but showed the
highest engagement with the learning materials across all users.
Clusters 1 and 2 showed similarly high short- and long-term
engagements but differed in engagement with the dDPP. Users
in profile 1 read more educational materials provided in the
dDPP, whereas users in profile 2 were more consistent in taking
steps.

Discussion

Summary
The literature suggests the app of different ML algorithms to
predict digital and traditional medication adherence and diverse
intervention outcomes. Positive results of these studies support
and validate the feasibility of applying ML methods to predict
user engagement in digital health apps such as a dDPP to
improve patient adherence to digital therapeutics and,
consequently, health outcomes. In concordance with the
literature, we applied the most suitable algorithm for our data

set (gradient-boosted forest), yielded highly accurate results for
predicting digital adherence, and identified variables with the
strongest contribution to our outcome to understand digital
behaviors [22-26]. This paper described 2 ML models developed
using weekly and daily dDPP engagement data. First, using the
weekly dDPP vendor data set, we developed a weekly ML
model, which was validated using the collected data from this
dDPP study. On the basis of past activity patterns, the model
yielded high precision and recall and accurately predicted patient
engagement for the next week. However, a model trained with
weekly patient data can only predict weekly engagement,
limiting our ability to gain detailed insight into a patient’s
behavior. Because an ideal model should be robust to different
dynamics in patients’ engagement data, we then developed a
daily ML model using the daily dDPP vendor data set, which
incorporates additional attributes, including the type of meals
logged per day and calories. The daily model also yielded high
precision and recall values. This finding supports using such
models to anticipate behavior, focusing on identifying low
engagement to intervene before attrition.

In addition to calculating precision and recall for our models,
we calculated the Shapley values for both types of models
(weekly and daily) to further analyze and identify which
variables contribute the most to overall prediction. Results from
the Shapley values revealed that short-term frequency of activity
engagement was the most informative feature in the daily and
weekly data analyses, meaning that users were more likely to
form and stick to short-term behavioral patterns than long-term
patterns in the dDPP. This finding is consistent with a previous
study on predicting exercise and steps [27]. Because of user
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propensity to engage in short-term behaviors, we considered
the daily model for individual activities best suited to develop
engagement profiles. Using variables with high Shapley values
from the daily model, we successfully created distinct digital
engagement phenotypes of dDPP users. This allows for further
research into developing infrastructure for tailored messaging
to increase and maintain engagement with active users and
intervene against attrition for inactive users. Specifically,
identifying high engagement, minimal engagement, and attrition
with early dDPP use lends itself to determining individuals
facing barriers to dDPP engagement and improving dDPP
implementation. Identifying strengths and weaknesses within
behavior phenotypes through our profiling methods can also
inform what specific behaviors (ie, low-engagement behaviors)
need to be targeted in messaging for a user’s success in using
the dDPP.

Contributions and Implications
By leveraging digital behavioral usage data, we showed that
we can successfully create digital engagement phenotypes,
allowing for the future tailoring of digital health interventions
based on patient needs. The methods used can extend beyond
the prevention of metabolic disease, as an ML model
incorporating behavioral usage variables can characterize
prevention, maintenance, and wellness in other domains such
as mental health, treatment adherence, and addiction prevention.

Limitations
The weekly data sets posed limitations to maximizing patient
engagement through integrating ML into PAMS. A model
trained using weekly data is limited to predict weekly dDPP
engagement (limited scope of dDPP engagement). The weekly
ML model did not provide enough granularity to be robust to
different dynamics of app engagement (eg, a sudden drop in
engagement in 1 week due to vacation or a suddenly busy day

where the user does not log information). The high sensitivity
in a weekly engagement model to unexpected changes in usage
could, therefore, negatively impact the type of messaging and
timely motivation delivered to the patient. Consequently, we
shifted the prediction cycle for engagement by moving from a
model based on weekly behavior to one based on daily behavior.

Data showed that the short-term frequency of various activities
was the most informative feature, but the results could mean
that our model is vulnerable to short-term disruption of user
behavioral patterns. Consequently, although the weekly
data-based and daily data-based models were sufficient to prove
the feasibility of using ML approaches for predicting patient
engagement, further development is needed to refine these
models and include extra patient information. Improvements
include (1) understanding potential errors in the model and data
sets (eg, data set size; using vendor data sets is an imperfect
representation of other dDPP interventions) and (2) reviewing
initial hypotheses about the data set and the choice of algorithms.
To build the refined model, we would benefit from more detailed
data. In this case, we would need to replan attributes and test
other ML algorithms to perform further model improvements.

Future Directions
With feasibility established, the next steps include creating user
engagement phenotypes linked to personalized messaging
interventions using behavior-based approaches to best motivate
users to engage with the dDPP. We will also need to engineer
the forest model and profile analysis to evolve as users change
their engagement throughout participating in the dDPP so that
messaging remains personalized to meet the users’ needs.
Ultimately, this study demonstrated the potential value of ML
and digital phenotyping to enhance the ability of digital behavior
change interventions to predict engagement and personalize the
interventions to maximize clinical impact.
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