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Abstract

Background: Amidst the COVID-19 pandemic, misinformation on social media has posed significant threats to public health.
Detecting and predicting the spread of misinformation are crucial for mitigating its adverse effects. However, prevailing frameworks
for these tasks have predominantly focused on post-level signals of misinformation, neglecting features of the broader information
environment where misinformation originates and proliferates.

Objective: This study aims to create a novel framework that integrates the uncertainty of the information environment into
misinformation features, with the goal of enhancing the model’s accuracy in tasks such as misinformation detection and predicting
the scale of dissemination. The objective is to provide better support for online governance efforts during health crises.

Methods: In this study, we embraced uncertainty features within the information environment and introduced a novel
Environmental Uncertainty Perception (EUP) framework for the detection of misinformation and the prediction of its spread on
social media. The framework encompasses uncertainty at 4 scales of the information environment: physical environment,
macro-media environment, micro-communicative environment, and message framing. We assessed the effectiveness of the EUP
using real-world COVID-19 misinformation data sets.

Results: The experimental results demonstrated that the EUP alone achieved notably good performance, with detection accuracy
at 0.753 and prediction accuracy at 0.71. These results were comparable to state-of-the-art baseline models such as bidirectional
long short-term memory (BiLSTM; detection accuracy 0.733 and prediction accuracy 0.707) and bidirectional encoder
representations from transformers (BERT; detection accuracy 0.755 and prediction accuracy 0.728). Additionally, when the
baseline models collaborated with the EUP, they exhibited improved accuracy by an average of 1.98% for the misinformation
detection and 2.4% for spread-prediction tasks. On unbalanced data sets, the EUP yielded relative improvements of 21.5% and
5.7% in macro-F1-score and area under the curve, respectively.

Conclusions: This study makes a significant contribution to the literature by recognizing uncertainty features within information
environments as a crucial factor for improving misinformation detection and spread-prediction algorithms during the pandemic.
The research elaborates on the complexities of uncertain information environments for misinformation across 4 distinct scales,
including the physical environment, macro-media environment, micro-communicative environment, and message framing. The
findings underscore the effectiveness of incorporating uncertainty into misinformation detection and spread prediction, providing
an interdisciplinary and easily implementable framework for the field.

(JMIR AI 2024;3:e47240) doi: 10.2196/47240
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Introduction

Background
The World Health Organization and the United Nations have
issued warnings about an “infodemic,” highlighting the spread
of misinformation alongside the COVID-19 pandemic on social
media [1]. Misinformation is characterized as “factually
incorrect information not backed up by evidence” [2]. This
misleading information frequently encompasses harmful health
advice, misinterpretations of government control measures and
emerging sciences, and conspiracy theories [3]. This
phenomenon has inflicted detrimental impacts on public health,
carrying “severe consequences with regard to people’s quality
of life and even their risk of mortality” [4].

Automatic algorithms are increasingly recognized as valuable
tools in mitigating the harm caused by misinformation. These
techniques can rapidly identify misinformation, predict its
spread, and have demonstrated commendable performance. The
state-of-the-art detection techniques exhibit accuracy ranging
from 65% to 90% [5,6], while spread-prediction techniques
achieve performance levels between 62.5% and 77.21% [7,8].
The high accuracy of these techniques can be largely attributed
to the incorporation of handcrafted or deep-learned linguistic
and social features associated with misinformation [9-11].
Scholars have consistently invested efforts in integrating
theoretically relevant features into algorithmic frameworks to
enhance accuracy further.

Scholars have introduced diverse frameworks for misinformation
detection and spread-prediction algorithms. Nevertheless,
existing frameworks have predominantly concentrated on the
intricate post-level signals of misinformation, emphasizing
linguistic and social features (such as user relationships, replies,
and knowledge sources) associated with misinformation.
Notably, these frameworks have often overlooked the
characteristics of the information environment in which
misinformation originates and proliferates [12]. This neglect
could potentially result in diminished performance for
misinformation detectors when applied in various real-world
misinformation contexts. This is due to the fact that different
misinformation contexts possess unique characteristics within
their information environment, influencing the types of
misinformation that can emerge and thrive [13]. An
indispensable characteristic of the information environment
concerning misinformation is uncertainty. Uncertainty arises
when the details of situations are ambiguous, complex,
unpredictable, or probabilistic, and when information is either
unavailable or inconsistent [14]. In uncertain situations,
individuals tend to generate and disseminate misinformation as
a means of resisting uncertainty and seeking understanding amid
chaotic circumstances [15,16]. The COVID-19 pandemic serves
as a notable example, marked by a lack of understanding of
emerging science [17], uncertainties surrounding official
guidelines and news reports [18], and unknown impacts on
individuals and society [19]. Hence, in this study, we recognize
uncertainty as the pivotal feature in the information environment
of misinformation. Our objective is to formulate a novel
framework for perceiving environmental uncertainty,

specifically tailored for the detection and spread prediction of
misinformation during the COVID-19 pandemic.

Our contributions can be outlined as follows. Theoretically, we
provide a comprehensive exploration of uncertainty across 4
distinct scales of the information environment, namely, the
physical environment, macro-media environment,
micro-communicative environment, and message framing. These
scales collectively contribute to the emergence and
dissemination of misinformation. Furthermore, we hold the
distinction of being the pioneers in integrating Environmental
Uncertainty Perception (EUP) into the realms of misinformation
detection and spread prediction. In terms of methodology, we
introduce the EUP framework, designed to capture uncertainty
signals from the information environment of a given post for
both misinformation detection and spread prediction. Our
experiments conducted on real-life data underscore the
effectiveness of the EUP framework.

This paper unfolds as follows: In the “Related Work” section,
we provide a concise review of the related work. The “Proposed
Theoretical Framework” section elucidates uncertainty features
within the information environment, which are pertinent to
misinformation detection and spread prediction. Moving on to
the “Research Objectives” section, we outline our study
objectives. The “Methods” section details our methodology for
testing the proposed framework. In the “Data Set and
Experiment” section, we present our data set, experiments, and
comprehensive analyses. The “Discussion” section delves into
discussions on our findings, unraveling the theoretical and
practical implications of our work. Finally, the “Conclusions”
section concludes with a summary and outlines directions for
future research.

Related Work
Detecting misinformation on social media represents a
burgeoning research field that has garnered considerable
academic attention. Multiple frameworks have been put forth
for this task, primarily falling into 2 approaches: the post-only
approach and the “zoom-in” approach [12]. In the former,
frameworks focus on studying post features to differentiate
misinformation from general information. Linguistic features,
including novelty, complexity, emotions, and content topics,
are frequently explored [6,11]. Additionally, researchers have
delved into multimodal features, particularly those based on
visuals [20,21]. Deep learning models in natural language
processing have also proven beneficial for the misinformation
detection task [5,22].

The “zoom-in” approach places emphasis on socio-contextual
signals, centering on users’ networking aspects (eg, user
relationships, number of replies, number of created threads;
[23,24]) and network characteristics (eg, degree centrality [25]).
Another line of research underscores the significance of relevant
knowledge sources, including fact-checking websites [26] and
knowledge graphs [27], which can be used to validate specific
claims of interest.

Recently, Sheng et al [12] introduced a “zoom-out” approach,
concentrating on the information environments of
misinformation that can offer signals for detection. In their
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approach, they incorporated the news environment into fake
news detection. Their hypothesis posited that fake news should
not only be relevant but also novel and distinct from recent
popular news, enabling them to capture audience attention and
achieve widespread dissemination. Their findings revealed that
signals of popularity and novelty can enhance the performance
of state-of-the-art misinformation detectors.

In the realm of misinformation detection, misinformation spread
prediction represents another challenging task, albeit one that
has received limited attention. This task involves predicting
whether a piece of misinformation is likely to be disseminated
to a broader audience through actions such as likes, comments,
and shares. Within this context, our specific focus is on
predicting whether misinformation is likely to be retweeted.
This can be viewed as a binary classification task, akin to
misinformation detection. Frameworks for this task typically
incorporate linguistic and social features, which may overlap
with or differ from those used in misinformation detection.
Linguistic features such as persuasive styles, emotional
expressions, and message coherence prove valuable in predicting
the spread of misinformation [28,29]. Additionally, social
features, including user metadata (eg, number of friends,
verification) and tweet metadata (eg, presence of images and
URLs), are identified as relevant factors for predicting
misinformation spread [25].

Proposed Theoretical Framework

Uncertainty as a Central Aspect in Misinformation
Our study builds upon Sheng et al’s [12] “zoom-out” approach,
adopting an interdisciplinary perspective that centers on the
uncertainty within the information environment of
misinformation. The realms of communication and psychology
literature have conceptualized uncertainty as a fundamental
aspect of misinformation. Uncertainty is said to prevail “when
details of situations are ambiguous, complex, unpredictable, or
probabilistic; uncertainty is also present when information is
unavailable or inconsistent, and when individuals feel insecure
about their own state of knowledge or the general state of
knowledge” [14]. Confronted with uncertainty, individuals are
driven to alleviate it by constructing their understanding of the
situation [16]. This constructive process is known as
sensemaking, which encompasses how individuals impart
meaning to their surroundings and use it as a foundation for
subsequent interpretation and action [30]. Sensemaking entails
the utilization of information by individuals to fill gaps in their
understanding [31]. Yet, the utilization of information in this
manner does not always guarantee truth. In situations where
information is slow to emerge, individuals are driven to
comprehend uncertain situations by relying on their existing
knowledge and heuristics for judgment. Unfortunately, this
process often leads to the formation of false beliefs and
misinformation [32]. Additionally, individuals may “turn to
unofficial sources to satisfy their information needs,” potentially
exposing themselves to inaccurate information [33]. As
suggested by Kim et al [34], exposure to misinformation has
the potential to diminish feelings of uncertainty. Moreover, as
individuals integrate more information into their comprehension
of a situation, there is a tendency to seek plausibility, which

may lead to the generation and acceptance of misinformation
[16,35].

The aforementioned tendencies are notably prominent in the
context of the COVID-19 pandemic, as the pandemic represents
a time of heightened uncertainty. The emergence of the
pandemic was marked by a mysterious disease with previously
unseen symptoms. Fundamental questions regarding the origins
of the disease, measures for self-protection, and strategies for
containing the outbreak were not immediately evident. As the
pandemic progressed, uncertainty persisted regarding how and
when the outbreak would be fully contained, as well as the
long-term impact it would have on individuals and society. The
uncertainty stemming from the pandemic, coupled with the
surge of social media as a primary source of information, has
facilitated the spread of misinformation [16].

Although many studies have identified “uncertainty” as a central
aspect of misinformation, they have not thoroughly elucidated
how uncertainty, as a crucial feature of the information
environment, can aid in the detection of misinformation and the
prediction of its spread. The literature frequently treats
uncertainty as a static and holistic feature of a situation.
However, the level of uncertainty within a situation can be
dynamic, evolving as the situation progresses. For instance,
uncertainties about the virus and the initial life changes induced
by the COVID-19 pandemic would have been considerably
higher at its onset than they are at present [36]. Moreover,
uncertainty can manifest differently across various scales of the
information environment. The information environment has
become increasingly intricate with the proliferation of the
internet and communication technologies. Individuals may be
exposed to a substantial volume of information about trending
topics through mainstream mass media (eg, newspapers, TV,
social media trends) within a short time frame, constituting a
macro-media environment. Simultaneously, they may selectively
engage in detailed communications on a specific issue provided
by self-media (eg, subscription accounts, self-broadcasting),
shaping a micro-communicative environment. Uncertainty
manifested in these 2 environments may independently or
interactively influence people’s sensemaking processes and,
consequently, their outputs (eg, misinformation). Additionally,
uncertainty can be inherent in the misinformation itself,
providing cues for its detection and spread prediction. We will
elaborate on the features of uncertainty in the information
environment in the following section.

Uncertainty in the Information Environment

Uncertainty in the Physical Environment

Uncertainty prevails in the physical environment when unknown
risks pose potential threats to our societal systems [15,16].
Scholars refer to such threats as “crises,” which can encompass
natural disasters, large-scale accidents, social security incidents,
and public health emergencies such as the pandemic [37]. Crises
are marked by the existence of uncertainty and the imperative
for timely decision-making [38]. Therefore, a crucial process
during crises is sensemaking. However, the efforts needed for
sensemaking will vary as a crisis progresses through stages.
The Crisis and Emergency Risk Communication Model
delineates 5 common stages in the crisis life cycle, spanning
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“from risk, to eruption, to clean-up and recovery, and on into
evaluation [38].” The eruption of the crisis, also known as the
breakout stage, occurs when a key event triggers the crisis [39].
This is the period when the public becomes initially aware of
the crisis, characterized by mysteries and heightened motivation
to make sense of it. Evidence indicates that the breakout stage
of a crisis harbors the highest level of uncertainty and demands
extensive sensemaking efforts (eg, government updates [40];
social media communication [41]), consequently leading to a
higher incidence of misinformation [42]. This evidence implies
that misinformation is more likely to surface and proliferate in
tandem with uncertainty in the information environment during
the breakout stage compared with other stages throughout a
crisis. These insights offer valuable cues for the detection and
prediction of misinformation during the COVID-19 pandemic.

Uncertainty in the Macro-Media Environment

The macro-media environment encompasses recent media
opinions and public attention to trending topics [12].
Governments and mainstream media play a pivotal role in setting
the agenda for public attention. During crises such as the
COVID-19 pandemic, governments frequently make swift and
crucial decisions to safeguard the public. However, these
decisions are often made without sufficient transparency, leading
to potential uncertainties surrounding their rationale [43]. Such
decisions inevitably draw media and public attention, quickly
becoming trending topics in mainstream media outlets [44,45].
Regrettably, these rapid decisions often leave audiences with a
high level of uncertainty about the reasons behind and the
processes involved in making these decisions, potentially paving
the way for misinformation. Supporting this notion, Lu [3]
identified a correlation between the swift decision to quarantine
Wuhan city and the emergence of misinformation regarding
government control measures during the early stages of the
COVID-19 pandemic in China. The evidence presented indicates
that when public attention is directed toward a trending topic
that carries uncertainty, misinformation is likely to emerge and
spread. In simpler terms, it can be anticipated that when a piece
of information is associated with a trending topic characterized
by high uncertainty (as opposed to low uncertainty), there is a
higher probability that the information could be misinformation
and disseminated.

Uncertainty in the Micro-Communicative Environment

Differing from the macro-media environment, which offers a
macro perspective on what mass audiences have recently read
and focused on, the micro-communicative environment provides
a micro view of the communication surrounding a specific issue.
Both media and individuals tend to communicate using frames
or terms imbued with uncertainty when discussing matters that
lack evidence or consensus, such as those stemming from
emerging science during the COVID-19 pandemic [32,46]. As
an illustration, in the initial phase of the pandemic, when Hong
Kong officials reported the first instance of a dog testing
“weakly positive” for COVID-19 infection, subsequent media
reports highlighted that “Hong Kong scientists aren’t sure
[emphasis added] if the dog is actually infected or if it picked
up the virus from a contaminated surface [47].” Experimental
evidence has shown that such uncertainty frames about scientific
matters can diminish people’s trust in science [48]. Empirical

evidence from real-life social media data further indicates that
a communication style marked by ambiguity can potentially
lead audiences to generate and disseminate misinformation [32].
This body of findings implies that if information is embedded
in uncertain (as opposed to consensus) communication, it is
more likely to be misinformation and disseminated.

Uncertainty in Message Framing

Uncertainty can also manifest within the message through its
framing or word choice. Uncertainty frames are prevalent in
misinformation [15,49]. Oh et al [15] illustrated that source
ambiguity and content ambiguity are 2 significant features of
misinformation. When individuals create a piece of
misinformation that lacks evidence and credibility, they often
use uncertain words to describe the unreliable source (eg,
someone) or the potential rationale (eg, possible, likely) behind
the statement. The incorporation of uncertain words can indeed
facilitate the spread of misinformation [29,50]. The inclusion
of uncertainty expressions in messages leads individuals to
perceive the information as more relevant and suitable for
themselves [51]. Consequently, if misinformation exhibits a
higher level of uncertainty, it is more likely to be accepted and
disseminated by the public.

Research Objectives
Our research objective is to explore whether uncertainty features
within the information environment can enhance the
effectiveness of misinformation detection and spread prediction.
To achieve this, we introduce a novel EUP framework
specifically designed for both tasks. We seek to assess the
standalone effectiveness of the EUP and anticipate that it can
augment the capabilities of existing state-of-the-art
misinformation detectors and predictors. Therefore, we
conducted experiments to answer the following research
questions:

• Research question 1: Can EUP be effective in
misinformation detection and spread prediction?

• Research question 2: Can EUP improve the performances
of the state-of-the-art algorithms for misinformation
detection and spread prediction?

Methods

Overview
Figure 1 offers an overview of the EUP pipeline. The model
consists of 4 uncertainty extraction components. Upon receiving
a post (denoted as p), the initial step involves constructing its
macro-media environment and micro-communicative
environment. This is accomplished by extracting recent news
and social media data, respectively. Subsequently, we use a
probabilistic model and a similarity calculation method to derive
the uncertainty information for the 2 environments mentioned
above, denoted as IM and IC. Likewise, we utilized the
probabilistic model to capture the uncertainty of the post p itself,
resulting in the representation of message framing denoted as
IF. Simultaneously, the operationalization of uncertainty in the
physical environment entails using the number of COVID-19
cases and the volume of news as key indicators, denoted as IP.
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Lastly, the 4 vectors are integrated using a gate guided by the
extracted post feature o (which may not necessarily equal p)
from the misinformation detector, such as bidirectional encoder
representations from transformers (BERT) [52]. The fused

vectors I and o are then input into the final classifier, typically
a multilayer perceptron (MLP), to predict whether p is fake or
real in task 1 and low or high in task 2.

Figure 1. An environmental uncertainty perception (EUP) framework for misinformation detection and spread prediction in the COVID-19 pandemic.

Uncertainty Detection Model
For detecting uncertainty in natural language [53], we used a
probabilistic model that considers the local n-gram features of
sentences. Each n-gram is assigned a weight that reflects its
tendency to convey uncertainty. The definition of each feature
involves a quadruplet (type, size, context, and aggregation).
“Type” signifies the type of n-gram considered, such as lemma
or morphosyntactic pattern. “Size” indicates the size of the
n-gram. “Context” serves as an indicator, specifying whether
the weight is based on the occurrence frequency of the n-gram
in an uncertain sentence or on the occurrence frequency of the
n-gram as an uncertainty marker. “Aggregation” refers to the
method used to consolidate different scores of the n-grams
within a sentence. Multimedia Appendix 1 [49,54-57] furnishes
a summary of the diverse features, denoted as Fi, that are
scrutinized in the uncertainty detection model.

Next, we exemplify the calculation of uncertainty using 1 of
these features, F1, as an illustration. F1 is defined by the
quadruplet (Lemma, 1, uncertainty marker, and sum). For each
lemma w, we can compute the number of occurrences in the
corpus, the number of occurrences in uncertain sentences, and
the number of occurrences as an uncertainty marker, denoted
as Fs, Fu, and Fm, respectively. The conditional probability of
a lemma w becoming an uncertainty marker is calculated using
the following equation:

p(c|w)=Fm/Fs (1)

where c represents the class of context uncertainty under
analysis, specifically whether it pertains to being an uncertainty
marker. Additionally, we introduce a confidence score linked
to the probability of mitigating the impact of instances where
certain lemmas occur infrequently in the corpus yet yield a high
probability:

conf(w)=1–(1–Fs) (2)

F1 takes into account both the conditional probability of each
lemma w and the corresponding confidence score in the sentence
s, and the formula is calculated as follows:

Similarly, other features Fi can be derived using the above
method. We generated the uncertainty of the whole sentence
by mean pooling to represent the average uncertainty signals
of Fi:

FA,Mean (s)=Mean(Norm({Fi(s)}|F|
i=1)) (4)

where Norm(·) denotes the normalization.

Representation of the Macro-Media Environment
We collect news reports from mainstream media outlets released
within T days before the post p is published to construct a
macro-media environment according to the following definition:

M = {e: e ∈ E, 0 ≤ tp – te ≤ T} (5)

where E denotes the set of all collected news items, M denotes
the set of news items in the macro-media environment of the
post p, and tp and te represent the release time of post p and
news e, respectively. For post p or each news item e, the initial
representations are the output of a pretrained language model
(eg, BERT [52]), denoted as p and e, respectively.

The macro-media environment is expected to reflect the impact
of a trending topic with high uncertainty on the veracity of a
post. That is, if a post is related to a trending topic with (vs
without) high uncertainty, it is then expected to be more likely
misinformation and disseminated. To this end, the representation
of the macro-media environment should consider both the
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correlation between the post and the environment and the
uncertainty of the environment. We first calculate cosine
similarity between p and each news item e in E:

S(p,e) = (p·e)/(|p|·|e|) (6)

We combine the similarity and environment representations to
represent the similarity representation of a post p to the
environment:

where eM
i represents each news item in M and is the

Hadamard product operator.

We then measure the uncertainty of the macro-media
environment using the model described in the “Uncertainty
Detection Model” section. The uncertainty representation of
the macro-media environment, denoted as UM, can be expressed
by the following equation:

Finally, the macro-media environment of a post p is represented
as an aggregation of the similarity representation of p to the
environment (SM) and the uncertainty representation of the
environment (UM) using an MLP, denoted as IM:

IM = MLP(SM UM) (9)

where is the concatenation operator. The integration of an
MLP is instrumental in the dual objective of retaining crucial
information while concurrently achieving data dimensionality
reduction. All MLPs are individually parameterized. We omit
their index numbers in the above equations for brevity.

Representation of the Micro-Communicative
Environment
We collected tweets from Twitter (X; X Corp.) published within
T days before the post p was published to construct the
micro-communicative environment. We calculated the similarity
of all tweets to the post p and selected the top k of them, using
them as a micro-communicative environment (C), which is
defined as follows:

C′ = {v:v ∈ V, 0 ≤ tp – tv ≤ T} (10)

where V denotes the set of all collected tweet items and tv
represents the release time of the tweet v.

C = {v: v ∈ Topk(p,C′)} (11)

where Topk(·) represents the operation of selecting the k tweets
that have the highest similarity to p, k = r·|C′|, and r ∈ (0,1)
represents the percentage of extraction.

Using the same approach as in the previous 2 sections, we derive
the similarity representation of the post p to the
micro-communicative environment and the uncertainty
representation of the environment:

Finally, the micro-communicative environment of a post p is
represented as an aggregation of the similarity representation
of a post p to the environment (SC) and the uncertainty
representation of the environment (UC) using an MLP, denoted
as IC:

IC = MLP(SCUC) (14)

Message Framing
To perceive the uncertainty in the message framing of post p,
we used the same approach as described in the “Uncertainty
Detection Model” section to construct the uncertainty
representation of the post p:

IF=MLP[F(p) p] (15)

Physical Environment
To measure uncertainty in the physical environment, we
collected the daily number of new cases from the start of the
COVID-19 outbreak and counted the number of daily news

items related to the outbreak, denoted as NCases and NNews,
respectively. Intuitively, the higher the number of new cases
and news items for a day, the more sensitive the public is to the
social environment and the more uncertain the environment is
on that day. Thus, the uncertainty factor in the physical
environment is defined as follows:

fph
i=Norm(log(1+abs(Ni

Cases – Ni–1
Cases)) ×

log(1+abs(Ni
News – Ni–1

News))) (16)

where fph
i denotes the uncertainty factor at day i and abs is the

absolute value operation. For each post, we can obtain the

uncertainty factor for its corresponding date fph(p).

We added the uncertainty factor of the physical environment to
the representations of macro-media environment (IM),
micro-communicative environment (IC), and post message
framing (IF) to get the representation of the physical
environment, denoted as IP:

IP=(fph × IM) (fph × IC) (fph × IF) (17)

Prediction

Prediction With EUP Alone Without Baseline Models
We concatenate the above 4 environment uncertainty features
and feed the result into an MLP layer and a softmax layer for
the final prediction:

IEUP=IM IC IF IP (18)
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Prediction With Baseline Models
We expect that our EUP is compatible with and can empower
various misinformation detection and prediction algorithms.
Therefore, we used an adaptive feature selection approach based
on a gate mechanism to accommodate different misinformation
detectors:

I = g M I M +  g C I C +  g F I F +

gP IP (20)

where o denotes the last-layer feature from the misinformation
baseline algorithm. The gating vector gM=sigmoid(Linear(

o IM)) and gC, gF, and gP are obtained in the same way. Then,
we concatenated o and I,and fed the result into an MLP layer
and a softmax layer for the final prediction:

During training, we minimize the cross-entropy loss.

Ethical Considerations
The study is exempt from ethical review for human subject
research for the following reasons. First, the study uses data

from 2 publicly available Twitter data sets collected through
the official application programming interface (API) of the
Twitter platform for gathering tweets. The news data set was
obtained from the official websites of news media. Second, the
data used in this study are anonymized and do not contain any
personally identifiable information. It is also impossible to
reidentify individuals from the data set. The data set is stored
on a dedicated secure data server, and the analysis is conducted
on the platform’s designated site. This process is undertaken
for research purposes and adheres to Chinese data privacy laws
and regulations. Third, this study does not involve any
experimental manipulation of human individuals or other ethical
concerns. For instance, it does not include data on children
under 18 years of age, which require legally mandated parental
or guardian supervision. It also does not encompass sensitive
aspects of participants’ behavior or pose any physical,
psychological, or economic harm or risk to the research
participants.

Data Set and Experiment

Data Set
The statistics and description of our experimental data set are
shown in Tables 1 and 2, respectively.

Table 1. Statistics of the data set.a,b

Total, nSpread prediction, nMisinformation detection, nData set

HighLowFakeReal

2225117110541324901Train

742382360430312Value

742384358432310Test

aNews items in M=58,095. The corresponding mean and range are 988 and 10-2511, respectively.
bTweet items in C=321,656. The corresponding mean and range are 793, 138-1214, respectively.

Table 2. Descriptions of the data set.

Size, nFeaturesData

3709Content, created time, retweet count, veracity label, retweeted labelPost

58,095Content, created timeNews

321,656Content, created timeTweets

Post
We processed and integrated 2 existing COVID-19 data sets,
FibVID [58] and CMU_MisCov19 [59], for our experiments.
Both data sets have been labeled for veracity by experts,
providing ground-truth labels for our experimental evaluations.
For FibVID, we extracted data related to COVID-19, assigning
veracity tags as 0 (COVID true) or 1 (COVID fake). We
relabeled CMU_MisCov19, classifying calling out or correction,
true public health response, and true prevention as real tags,
and conspiracy, fake cure, sarcasm or satire, false fact or
prevention, fake treatment, and false public health response as
fake tags. Furthermore, we used the Twitter API to retrieve the
number of retweets for all tweets in both data sets. Subsequently,
we categorized the retweet labels as low (when the retweet count

is 0) and high (when the retweet count is >0) following an
analysis of the distribution of retweet numbers. The data
revealed that misinformation was predominantly observed from
January to July 2020, coinciding with the period of heightened
uncertainty during the pandemic outbreak. Consequently, our
focus was directed solely to this specific period, resulting in the
extraction of 3709 posts from January to July of 2020.

Macro-Media Environment
We gathered all the news headlines and brief descriptions from
the Huffington Post, NPR, and Daily Mail from January to July
2020, as per the methodology outlined previously [12]. Notably,
these 3 outlets represent the left-, center-, and right-wing
perspectives, contributing to the diversity of news items for our
analysis. We then used the keywords “covid,” “coronavirus,”
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“pneumonia,” “pandemic,” “epidemic,” “infection,”
“prevalence,” and “symptom” to filter these data to ensure that
the collected data were relevant to COVID-19. We ended up
with 58,095 news items from January to July 2020.

Micro-Communicative Environment
We obtained the tweet IDs associated with COVID-19 from an
ongoing project [60]. Given the substantial volume, we
randomly sampled 1% of these IDs (amounting to approximately
205,581,778 records). Subsequently, using the Twitter API, we
retrieved the content associated with these IDs, resulting in a
data set comprising 321,656 tweets spanning from January to
July 2020.

Physical Environment
We compiled the daily count of new worldwide COVID-19
cases starting from January 2020, utilizing the Our World in
Data database. Additionally, the daily volume of news data
corresponds to the information we gathered during the same
period.

Experimental Setup

Tasks
We used the proposed model for 2 tasks:

Task 1. Misinformation Detection
The objective was to analyze the text content of a tweet and
ascertain whether it contained misinformation.

Task 2: Spread Prediction
The objective was to evaluate the text content of a tweet to
determine whether it is likely to be retweeted.

Uncertainty Features
Following Jean et al [53], we used WikiWeasel [61], a
comprehensive corpus consisting of paragraphs extracted from
Wikipedia, to compute the frequency of each lemma. The
uncertainty score for each sentence is determined using mean

pooling FA,Mean. We leverage [62] to acquire sentence
representations, relying on pretrained BERT models [52] and
subsequent posttraining on news items. In the macro-media
environment and the micro-communicative environment, we
set T=3, r=0.1, |C|min=10.

Baseline Models
The baseline models considered are listed in Textbox 1.

Textbox 1. Baseline models.

1. Bidirectional long short-term memory

Bidirectional long short-term memory (BiLSTM) [63] is a type of recurrent neural network architecture designed for sequence modeling tasks,
particularly in natural language processing. It processes input sequences in both forward and backward directions simultaneously, allowing the
model to capture information from both past and future contexts.

2. Event adversarial neural networks

Event adversarial neural networks (EANNT) [64] is a model using adversarial training to eliminate event-specific features derived from a
convolutional neural network for text (ie, TextCNN).

3. BERT

Bidirectional encoder representations from transformers (BERT) [52] is a pretrained language model based on deep bidirectional transformers.

4. BERT-Emo

BERT-Emo [65] is a fake news detection model that integrates multiple sentiment features into BERT.

Evaluation Metrics
For both tasks, we used accuracy and macro-F1-score as
evaluation metrics. Additionally, in task 1, we used F1-scores
for fake (F1fake) and real (F1real), while in task 2, we considered
F1-scores for low (F1low) and high (F1high). Further
implementation details can be found in Multimedia Appendix
1.

Results

Overview
Tables 3 and 4 showcase the performances of the EUP without
baseline models and those of various baseline models, with and
without EUP, for the misinformation detection and spread
prediction tasks, respectively. The results indicate that the
performances of EUP are comparable to those of state-of-the-art
baseline models in both tasks. Moreover, it is noteworthy that
all baseline models exhibit performance improvements when
incorporating EUP for both tasks. These observations suggest
the effectiveness of our proposed EUP.

JMIR AI 2024 | vol. 3 | e47240 | p. 8https://ai.jmir.org/2024/1/e47240
(page number not for citation purposes)

Lu et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Model performance comparison on the misinformation detection task without the baseline algorithm or without the EUPa module.b

F 1 realF 1 fakeMacro-F1-scoreAccuracyModel

0.6770.8000.7390.753EUP

0.6830.7830.7290.733BiLSTMc

0.6880.7980.7430.755BiLSTM + EUP

0.6640.7950.7300.745EANNT
d

0.7080.8060.7650.767EANNT + EUP

0.6890.7970.7430.755BERTe

0.7380.7960.7670.771BERT + EUP

0.6910.7890.7400.749BERT-Emo

0.7260.7990.7630.768BERT-Emo + EUP

aEUP: Environmental Uncertainty Perception.
bThe best result in each group is in italics.
cBiLSTM: bidirectional long short-term memory.
dEANNT: event adversarial neural networks.
eBERT: bidirectional encoder representations from transformers.

Table 4. Model performance comparison on the spread prediction task without the baseline algorithm or without the EUPa module.b

F 1 highF 1 lowMacro-F1-scoreAccuracyModel

0.7010.7190.7100.710EUP

0.7260.6840.7050.707BiLSTMc

0.7290.7380.7330.734BiLSTM + EUP

0.6980.7340.7160.717EANNT
d

0.7160.7360.7260.726EANNT + EUP

0.7280.7280.7280.728BERTe

0.7340.7520.7430.743BERT + EUP

0.7370.7300.7330.733BERT-Emo

0.7490.7330.7410.741BERT-Emo + EUP

aEUP: Environmental Uncertainty Perception.
bThe best result in each group is in italics.
cBiLSTM: bidirectional long short-term memory.
dEANNT: event adversarial neural networks.
eBERT: bidirectional encoder representations from transformers.

Ablation Study
We systematically eliminated individual components, namely,
macro-media environment, micro-communicative environment,
message framing, and physical environment, and assessed the
modeling performances on the data set. Tables 5 and 6 illustrate

that, under all experimental conditions, performance degrades
when any of these components are removed. These results
underscore the effectiveness of all 4 uncertainty features of the
information environment for both misinformation detection and
spread prediction.
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Table 5. Ablation study on the misinformation detection task.a

F 1 realF 1 fakeMacro-F1-scoreAccuracyModel

0.6770.8000.7390.753EUPb

0.6870.7900.7380.748Without IM

0.6370.8030.7200.745Without IC

0.6730.7780.7340.739Without IF

0.6630.7970.7300.747Without IP

0.6880.7980.7430.755BiLSTMc + EUP

0.6690.7930.7410.745Without IM

0.6680.7880.7280.741Without IC

0.6780.7910.7350.747Without IF

0.6650.7960.7420.746Without IP

0.7380.7960.7670.771BERTd + EUP

0.7070.8010.7540.762Without IM

0.6960.8070.7610.764Without IC

0.7050.8000.7520.761Without IF

0.7070.7950.7510.758Without IP

aThe best result in each group is in italics.
bEUP: Environmental Uncertainty Perception.
cBiLSTM: bidirectional long short-term memory.
dBERT: bidirectional encoder representations from transformers.
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Table 6. Ablation study on the spread prediction task.a

F 1 highF 1 lowMacro-F1-scoreAccuracyModel

0.7010.7190.7100.710EUPb

0.6760.7150.6960.697Without IM

0.6770.7120.6940.695Without IC

0.6890.7140.7020.702Without IF

0.6920.7210.7070.708Without IP

0.7290.7380.7330.734BiLSTMc + EUP

0.7110.7350.7230.724Without IM

0.7260.7160.7210.721Without IC

0.7020.7310.7160.717Without IF

0.6930.7530.7230.726Without IP

0.7340.7520.7430.743BERTd + EUP

0.7130.7640.7390.741Without IM

0.7110.7660.7380.741Without IC

0.7160.7530.7350.736Without IF

0.7170.7590.7380.740Without IP

aThe best result in each group is in italics.
bEUP: Environmental Uncertainty Perception.
cBiLSTM: bidirectional long short-term memory.
dBERT: bidirectional encoder representations from transformers.

The Effect of the Day Parameter T
To explore the impact of the day parameter (T) on the results
during the construction of the macro-media environment and
the micro-communicative environment, we experimented with
different values of T. Specifically, we sequentially set T=1, 3,

5, 7, and 9 for the BERT + EUP model, and the experimental
results are depicted in Figure 2. Despite the fact that increasing
T results in larger macro-media and micro-communicative
environments, the optimal performance was achieved when
T=1.

Figure 2. The effect of the day parameter T. Lines show the accuracies of both tasks and bars show the average number of news and tweet items in the
environments.
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The Effect of the Rate Parameter r
We maintained the setting T=3 and systematically varied r,
using values of 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 on the BERT

+ EUP model to examine the impact of r on the experimental
results, as illustrated in Figure 3. The accuracy performance
exhibited fluctuations with varying values of r. Notably, the
highest accuracy for both tasks was observed when r=0.1.

Figure 3. The effect of the rate parameter r. Lines show the accuracies of both tasks and bars show the average number of tweet items in the environment.

Evaluation on Imbalanced Data
In real-world scenarios, the distribution of real and fake
information often exhibits significant imbalance. To evaluate
the efficacy of our proposed EUP framework on unbalanced
data sets, we conducted tests on data sets with varying ratios of
real to fake data, ranging from 10:1 to 100:1. We measured and

reported macro-F1-scores and standardized partial area under
the curve (AUC) with a false-positive rate of at most 0.1 (ie,
spAUCFPR≤0.1 [66]) to assess the effectiveness of our EUP
framework in handling nonbalanced data sets. As depicted in
Figure 4, EUP yields relative improvements of 21.5% and 5.7%
in macro-F1-score and spAUCFPR≤0.1, demonstrating its
effectiveness on unbalanced data sets.

Figure 4. Performance of macroF1 and spAUC values across datasets with varying ratios.

Discussion

Principal Findings
First, this study enhances scholars’ comprehension of the
misinformation detection and spread prediction problem by
highlighting the significance of uncertainty in information
environments. Notably, this research contributes to the literature
by recognizing uncertainty features in the information
environments of misinformation as a pivotal factor for

improving detection and prediction algorithms during a
pandemic. Our findings underscore that the EUP alone is
sufficient for both tasks and has the potential to enhance the
capabilities of state-of-the-art algorithms. In contrast to prior
misinformation research that primarily concentrates on post
content (such as post theme, sentiments, and linguistic
characteristics, as seen in [6,11,29]) and network connections
(eg, number of followers [25]) on social media, this study
advances scholars’understanding of the misinformation problem
by emphasizing the importance of uncertainty in information
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environments. Recognizing and incorporating uncertainty as a
fundamental concept in misinformation detection and spread
prediction during crises hold theoretical significance. This is
particularly relevant as a crisis is characterized by its
unpredictable, unexpected, and nonroutine nature, inherently
giving rise to uncertainty [38,67]. This uncertainty has been
theorized to compel individuals to seek information as a coping
mechanism for dealing with the anxiety and pressure generated
by uncertainty. This process allows people to diminish
uncertainty, restore a sense of normalcy, and alleviate anxiety
[14,68]. Regrettably, this coping mechanism can inadvertently
fuel the proliferation and dissemination of misinformation,
particularly when there is a lack of timely and accurate
information, contributing to the concurrent occurrence of an
infodemic [6,11,50]. The current research seeks to advance the
literature by establishing the legitimacy of uncertainty in the
information environments of misinformation as a central
indicator for the detection and prediction of misinformation
during public health crises.

Second, this study delves into the intricacies of uncertain
information environments for misinformation across 4 distinct
scales, namely, the physical environment, macro-media
environment, micro-communicative environment, and message
framing. Our findings demonstrate the effectiveness of all 4
uncertainty features in misinformation detection and spread
prediction. In contrast to prior misinformation literature during
the COVID-19 pandemic, which often overlooked the role of
the information environment in increasing the likelihood of
misinformation dissemination, our research emphasizes the
importance of considering uncertainty beyond the content of
misinformation itself, such as ambiguous wording [29,50]. Our
study broadens the concept of linguistic uncertainty in
misinformation message framing to encompass a more
comprehensive uncertainty across various information
environments. We define uncertainty in information
environments using a multiscale approach that highlights the
significance of the interaction between the physical environment
and macro-/micro-media environments. This approach diverges
from focusing on a single dimension, such as ambiguities about
official guidelines and news reports [18], or the misinformation
framing strategy on social media [29].

Third, our findings indicate that uncertainties in information
environments play a crucial role as motivators for the emergence
and spread of misinformation. While previous studies have
provided preliminary evidence suggesting that uncertainty
stemming from government policies and news media could
coincide with the occurrence of related misinformation during
the COVID-19 pandemic, often relying on descriptive big data
analyses [3,32], our study contributes stronger empirical
evidence. We leverage machine learning techniques to
demonstrate that uncertainty arising from the crisis and crisis
communication through media can indeed incentivize
individuals to generate and disseminate misinformation.
Significantly, our findings revealed that the algorithm achieved
its best performance for both detection and spread prediction
tasks when incorporating items from the information
environments published 1 day before the post (T=1). This
discovery emphasizes the acute impact of uncertainty in the

information environment on the emergence and spread of
misinformation, underscoring the importance of timely
uncertainty reduction in crisis communication. Furthermore,
the algorithm attained the highest accuracies when it included
items highly relevant to the post but with an appropriate size
(r=0.1). This rationale is reasonable, as a too-small r may fail
to encompass enough misinformation-related items, while a
larger r might include a significant amount of irrelevant
information. The evidence theoretically establishes a connection
between crisis communication research and misinformation
research, reinforcing the notion that crisis communication and
misinformation containment are 2 intertwined aspects of crisis
management [3].

This study offers significant practical implications for
misinformation detection and spread prediction. First, unlike
previous studies that separately investigated computational
frameworks for these tasks [24,29], this study introduces a
unified uncertainty–based framework capable of addressing
both tasks simultaneously. Second, our framework operates
instantaneously, as it only requires easily accessible data such
as posts, mainstream news, and relevant social media discussions
published a few days prior. Moreover, the uncertainty detection
algorithm has been trained using external data, rendering our
algorithm easy to implement and capable of providing timely
detection and prediction for streaming textual data. Third, this
study affirms the effectiveness of uncertainty in various
information environments for detecting and predicting
misinformation on social media. Hence, the 4 proposed
uncertainty components in information environments could be
leveraged by social media platforms to improve the accuracy
of misinformation detection and spread prediction, thereby
safeguarding individuals from harm caused by infodemic. The
benefits offered by our algorithm may serve as an impetus for
integrating uncertainty components into practical systems.

Limitations and Future Work
This study is the first to incorporate the uncertainty present in
the information environment of a post for both misinformation
detection and spread prediction. However, it has some
limitations. First, our framework concentrated solely on
text-only detection and prediction. Future work should extend
the framework to incorporate multimodal and social graph–based
detection. Second, we used an uncertainty detection algorithm
developed from a generic corpus sourced from Wikipedia.
Nevertheless, past research has indicated that expressions of
uncertainty may vary slightly across domains [53]. In other
words, uncertainty expressions in the context of the COVID-19
pandemic may differ from those in general situations. Therefore,
future work should aim to enhance our uncertainty measure by
utilizing a corpus specifically designed for uncertainty detection
in the discourse related to COVID-19.

Conclusions
We introduced an EUP framework for both misinformation
detection and spread prediction. Our framework delves into
uncertainty within information environments across 4 scales:
the physical environment, macro-media environment,
micro-communicative environment, and message framing. The
experiments demonstrated the effectiveness of our proposed
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uncertainty components in enhancing the performance of
existing models. There are several directions for further
investigation and extension of this work. First, we can explore
the impact of different news and social media environments
(eg, biased vs neutral; left wing vs right wing) on the emergence
and spread of misinformation. Second, extending our algorithms
to include multimodal misinformation detection could be

beneficial, as misinformation increasingly incorporates images
and videos. Third, investigating the interaction between
misinformation detection and spread prediction using a
multitask, transfer-learning model is a promising avenue, given
the shared uncertainty framework identified in this study for
both tasks.
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