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Abstract

Background: Central collection of distributed medical patient data is problematic due to strict privacy regulations. Especially
in clinical environments, such as clinical time-to-event studies, large sample sizes are critical but usually not available at a single
institution. It has been shown recently that federated learning, combined with privacy-enhancing technologies, is an excellent
and privacy-preserving alternative to data sharing.

Objective: This study aims to develop and validate a privacy-preserving, federated survival support vector machine (SVM) and
make it accessible for researchers to perform cross-institutional time-to-event analyses.

Methods: We extended the survival SVM algorithm to be applicable in federated environments. We further implemented it as
a FeatureCloud app, enabling it to run in the federated infrastructure provided by the FeatureCloud platform. Finally, we evaluated
our algorithm on 3 benchmark data sets, a large sample size synthetic data set, and a real-world microbiome data set and compared
the results to the corresponding central method.

Results: Our federated survival SVM produces highly similar results to the centralized model on all data sets. The maximal
difference between the model weights of the central model and the federated model was only 0.001, and the mean difference over
all data sets was 0.0002. We further show that by including more data in the analysis through federated learning, predictions are
more accurate even in the presence of site-dependent batch effects.

Conclusions: The federated survival SVM extends the palette of federated time-to-event analysis methods by a robust machine
learning approach. To our knowledge, the implemented FeatureCloud app is the first publicly available implementation of a
federated survival SVM, is freely accessible for all kinds of researchers, and can be directly used within the FeatureCloud platform.
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Introduction

Accessing data to apply machine learning (ML) in biomedical
settings is still challenging [1]. Large amounts of data exist in
clinical settings but are scattered across numerous institutions.
Due to strict privacy regulations, such as the General Data
Protection Regulation (GDPR), this data cannot be easily shared
or collected at a central institution [2]. This causes hurdles for
cross-institutional biomedical analyses that depend on highly
sensitive patient data. One example is time-to-event analysis,
aiming to find parameters that prolong or shorten the time until
a particular event, such as death, occurs [3]. In these studies,
the event of interest does not necessarily occur for all samples,
increasing the need for large sample sizes [4]. Until today, the
need for large sample sizes and heterogeneous data for
time-to-event studies is still mainly solved through traditional
data sharing, leading to the central collection of various
deidentified and anonymized data sets from different centers.
Since using anonymized data in the training of ML models tends
to weaken model performance [5], this comes with a tradeoff
of data privacy and data quality, accelerating the need for
alternative methods that keep data private and ensure the quality
of the data [6].

In recent years, federated learning (FL) has become a feasible
alternative to central data collection by enabling the training of
models on distributed data sets. Instead of sharing sensitive data
with a central institution, in FL, only insensitive model
parameters are shared with a central aggregation server [7,8].
Therefore, each participating party calculates its own model
with local model parameters on their local data. These local
model parameters are then shared with the aggregator and
aggregated into a global model. Afterward, the global model is
shared again with each participant and can be updated in another
iteration. The first and probably most widely used aggregation
approach is the federated average [9], calculating the weighted
mean of the exchanged model parameters. Besides using
different aggregation approaches, FL can also be distinguished
between horizontal and vertical learning, as well as cross-device
and cross-silo learning. Horizontal learning describes FL on
data with the same features but different samples, while vertical
learning performs on the same samples but with different
features between the participating parties. Cross-device FL
trains models across millions of participants (such as mobile
phones), cross-silo FL, on the other hand, focuses on a few
clients only, such as hospitals or research institutes [10].

Especially in combination with privacy-enhancing techniques
(PETs), model parameters can be exchanged securely, such that
a global aggregator or potential attacker cannot even see the
local parameters of each participant [11]. This secure exchange
of model parameters is necessary to comply with the GDPR, as
even local models can be considered personal data [12].
Therefore, FL enables the training on a significantly larger data
set compared with single-institution scenarios. While federated
algorithms still often struggle with communication efficiency,

the significantly increased amount of data can offset this
performance issue, making FL a serious competitor to classical
ML. Additionally, since FL models are trained on a larger
variety of data, they typically generalize better than traditional
ML models and even generalize faster in some cases [13,14].
Many FL approaches are already published for biomedical
applications, such as medical imaging analysis, genome-wide
association studies, or gene expression analysis [15-17].

In addition to federated ML approaches, several federated
time-to-event analysis algorithms have been introduced recently
and confirmed their high potential for privacy-preserving
analyses [18-21]. However, existing approaches solely cover
traditional statistical methods such as the estimation of survival
functions and the Cox proportional hazards model. Modern ML
algorithms for survival analysis, such as survival Support Vector
Machines (SVMs), are not yet available in a federated fashion,
even though SVMs belong to one of the most popular ML
methods. If algorithms are not available in federated scenarios,
this might be a reason why researchers chose not to perform
FL, if their favorite algorithms are not available. Many
well-performing centralized algorithms are challenging to
translate to a federated scenario while keeping sensitive data
private. Another limitation of FL is communication efficiency.
FL algorithms need to exchange the intermediate statistics with
a central aggregator, which is especially inefficient for
algorithms with many iterations. This inefficiency even increases
when adding secure aggregation schemes, such as additive secret
sharing. This PET ensures that only masked and encrypted
model parameters are shared with the aggregating party, securing
the local models from data leakage [18].

To address the lack of availability of federated time-to-event
methods, we propose a privacy-preserving, horizontally
federated, cross-silo survival SVM based on the survival analysis
package scikit-survival [22]. Compared with other existing
time-to-event methods, such as the Cox proportional hazard
model, the survival SVM allows an actual prediction of the time
until an event happens. It can be used to predict the risk of
individual samples, which is not possible in univariate
time-to-event algorithms and is not the aim of the Cox
proportional hazards model. Therefore, to the best of our
knowledge, it is the first freely available federated survival
prediction method. We implemented the algorithm as an app in
the FeatureCloud platform to make it publicly accessible and
to minimize the hurdles of FL infrastructure [23]. Based on a
combination of FL and additive secret sharing, we show on 3
benchmark data sets, that our approach achieves highly similar
results compared with central data analysis. Additionally, we
apply it to a set of real-world microbiome data sets to
demonstrate its applicability to original clinical data.
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Methods

Here, we propose the adapted algorithm for the federated
survival SVM, describe its implementation as a FeatureCloud
app, and explain how we evaluated its performance.

Federated Survival SVM
We extended the regression objective of scikit-survival’s
FastSurvivalSVM without ranking to be applicable in federated
environments [24]. As shown in Figure 1, instead of calculating
the sum of the squared ζ-function centrally, it is calculated at
each site, with the feature vector xi, the survival time yi>0, and
the binary event indicator δi. Each site’s local sum of squared
ζ-function is then sent to a global aggregator and summed up
to the global sum of squared ζ-function. The below equations
show the central objective function and our corresponding
federated objective function, with C being the set of all
participating clients.

Mathematically, our federated formula leads to the same solution
as the centralized calculation of the objective function. Similar
to the centralized analysis, a truncated Newton method (such
as Newton-CG) can be used to optimize the objective function.
For this, in each iteration, the gradient and Hessian matrix of
each client are also sent to the global aggregator to sum them
up to the global gradient and Hessian matrix. To reduce potential
privacy leakage from the exchanged data, the implementation
of the federated algorithm should support a secure aggregation
scheme that hides the locally exchanged data from attackers or
the global aggregation server.

Figure 1. Federated calculation of a survival support vector machine (SVM). Each site calculates the sum of squares locally and sends it to the global
aggregation server. The aggregation server aggregates the local sum of squares by summing them up to the global sum of squares. The objective function
is minimized in a federated fashion by a truncated Newton approach. After convergence, the global model is distributed to all participating clients.

FeatureCloud
We developed an FL app on the FeatureCloud platform to make
our approach publicly available. To develop this app, we used
the app template and application programming interface
provided by FeatureCloud [25]. Using the scikit-survival
package and Python, we implemented our algorithm, put it into
the FeatureCloud app template, and published it in the
FeatureCloud artificial intelligence store. It can be used with
other apps in a workflow or standalone using the platform. Our
code is entirely open source.

In FeatureCloud, 1 participating client also takes the aggregating
role and is called the coordinator. The app is implemented as a
state machine, meaning that the app switches between states to
perform different tasks. All states and their transitions are shown
in Multimedia Appendix 1. After reading the local data and
config files, minimizing the objective function using a federated
Newton conjugate gradient is performed iteratively. Therefore,
the local gradient and Hessian matrices are calculated and sent
to the coordinator. The coordinator aggregates these data to
obtain the global matrices, updates the weight vector ω, and
broadcasts it to all clients. This is repeated until convergence.
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A considerable advantage of the FeatureCloud platform is its
native support of 2 very popular PETs, such as secure multiparty
computation (SMPC). For applying SMPC, FeatureCloud
supports a secure aggregation scheme for hiding locally
exchanged parameters using additive secret sharing [26].
Through this, the exchanged local models are protected, and
only the global aggregations are visible to attackers, clients,
and the global aggregator. This is achieved by splitting the value
that needs to be exchanged with the global aggregator into n
shards, where n is the number of participating clients, and the
sum of these n shards would result in the actual value [23]. Each
shard is encrypted using a public key of each participant. These
encrypted shards are shared with the global aggregator, sending
them to the corresponding client holding the private key. The
clients decrypt the received shards, sum them up, and send them
back to the global aggregator, which sums up all received sums.
This final sum results in the actual, nonhidden, global aggregate.

Ethical Considerations
According to German regulations, for our retrospective study
performed on publicly available data or data with explicit
consent, approval from an ethical committee was not required.

Evaluation
We evaluated our approach using the developed FeatureCloud
app on 3 benchmark data sets, all available via the scikit-survival
package. The breast cancer data set (BRCA) [27] contains the
gene expression profiling of microarray experiments from 198
primary breast tumors, originally used to validate a 76-gene
prognostic signature able to predict distant metastases in lymph
node–negative patients with breast cancer. The German Breast
Cancer Study Group 2 data set (GBSG2) [28] contains data
from a multicenter randomized clinical trial to compare the
effectiveness of 3 versus 6 cycles of cyclophosphamide,
methotrexate, and fluorouracil on recurrence-free and overall

survival of 686 women. The observed parameters were hormonal
therapy (yes or no), age of the patients, menopausal status (pre
vs post), tumor size (in mm), tumor grade, number of positive
tumor nodes, progesterone receptor (in fmol), and estrogen, as
well as the censoring indicator and recurrence-free survival time
(in days). The Worcester Heart Attack Study data set
(WHAS500) [29] contains data from 500 patients with acute
myocardial infarction, collected during thirteen 1-year periods.
Parameters were age, gender, initial heart rate, initial systolic
and diastolic blood pressure, body mass index, history of
cardiovascular disease, atrial fibrillation, cardiogenic shock,
congestive heart complications, complete heart block,
myocardial infarction order and type, vital status, and total
length of follow-up.

Additionally, we evaluated our algorithm on a recent,
high-dimensional gut microbiome data set from the Hospital
Clinic of Barcelona, containing data from 150 patients with
liver cirrhosis [30]. The data set was aimed at assessing the
predicting role of the gut microbiome for the survival of the
patients in the context of liver cirrhosis, using shotgun
metagenomic sequencing performed on fecal DNA isolated
from stool samples. A former version of the data has been
previously analyzed with a different methodology [30]. For this
study, the Metagenomic Species Pangenome (MSP) was used
to identify and quantify microbial species associated with the
IGC2 reference catalog [31]. MSPs are clusters of coabundant
genes (minimum size >100 genes) used as a proxy for microbial
species, reconstructed from 1601 metagenomes to 1990 MSP
species [32]. MSP abundances were estimated as the mean
abundance of their 100 marker genes, as far as at least 20% of
these genes are detected. The MSP abundance table was then
normalized in each sample by dividing its abundance by the
sum of MSP abundances detected in the sample. Further details
regarding the data sets are shown in Table 1.

Table 1. Overview of all data sets. Our 4 evaluation data sets differ greatly in the number of samples, features, events, and censored individuals. Features
indicate the number of clinical variables or microbial species abundance in the data set; median follow-up indicates the median follow-up time of the
patients in days; events indicate the number of patients for whom the event of interest was observed during observation time; and censored indicates
the number of patients for whom the event of interest was not observed during observation time.

End pointCensored, nEvents, nMedian follow-up
(days)

Features, nSamples, nData set

Presence of metas-
tases

147514384.084198BRCA

Recurrence-free
survival

3872991084.011686GBSG2

Death285215631.516500WHAS500

Death9951416.01995150Microbiome

aBRCA: breast cancer data set.
bGBSG2: German Breast Cancer Study Group 2 data set.
cWHAS500: Worcester Heart Attack Study data set.

We one-hot encoded nonbinary categorical features. For each
data set, we created either 1 client (100%) as the centralized
scenario, 3 clients (20%, 50%, and 30%) as the multicentric
imbalanced scenario, and 5 clients (20% each) as the
multicentric balanced scenario, and we split the data
accordingly.

To evaluate the accuracy of our model, we used the Harrell
concordance index, which was developed as a generalization
of the area under the receiver operating characteristic curve for
time-to-event models [33]. It corresponds to the probability of
concordance between observed and predicted survival based on
each pair of individuals. A c-index of 0.5 means that the model
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performs as well as a random guess, and a c-index of 1.0 means
that the model predicts perfectly well.

After preprocessing, we performed a 3 × 3-fold cross-validation
(CV) for a FeatureCloud workflow consisting of a federated
normalization, the federated survival SVM, and a federated
survival evaluation (c-index). We then compared our results
with the centralized analysis of every client and the merged data
set (simulating a central data collection). Centralized analysis
was performed using scikit-survival’s FastSurvivalSVM with
a rank ratio of 0, α of 0.0001, true fit intercept, and a maximum
of 50 iterations. The same hyperparameters were used for the
federated analysis, respectively.

Privacy
FeatureCloud supports several properties to increase the privacy
and security of the computations. One important step is that FL
projects can be only executed with invited participants. For this,
a unique and secret code is needed to join the project. Every
participant can see the workflow and each individually executed
FeatureCloud app that will run in the workflow. As
FeatureCloud apps are open source, even the executed code of
the apps can be examined.

The execution of apps and workflows in FeatureCloud is
containerized and strictly monitored. Due to the containerization,
individual apps are not allowed to establish a connection to the
internet, which prevents the extraction of data from malicious
code. Even though the communication between clients does not
contain sensitive patient information, it is RSA
(Rivest–Shamir–Adleman) encrypted through the standard
HTTPS protocol. This prevents unauthorized third parties from
gaining insights into parameters exchanged during training.

Exchanged parameters from each individual site are masked
through the secure aggregation scheme, hiding the intermediate
statistics from other participating clients and the global
aggregator. This efficiently addresses the problem of local
models considered as personal data in GDPR [18].

Our federated survival SVM app currently uses a hybrid
approach of SMPC and FL. This hybrid approach increases the
privacy of the exchanged local parameters from both participants
and potential attackers, as explained in the methods section.

Differential privacy (DP) [34] is not yet supported by
FeatureCloud but is currently in development and could be
added to the algorithm as an additional layer to improve privacy.
However, as the app trains a linear model, it is less prone to
overfit, reducing the surface for potential membership and
attribute inference attacks [35]. In DP, noise is added to the
model parameters during the training process to guarantee a
mathematically quantifiable amount of privacy for each sample.
While this comes with large advantages regarding privacy, the
application of DP has also various weaknesses. The addition of
noise lowers the performance of the model significantly,

especially when applying the amount of noise necessary for a
meaningful level of privacy [36]. Further, this guarantee only
is applicable for a limited number of interactions with the
resulting model. As the final model is distributed to all
participants, they can interact with the model arbitrarily, making
the privacy guarantee void, thus not warranting an inclusion in
this analysis.

A PET not supported by FeatureCloud currently is homomorphic
encryption (HE), which allows the computation of the model
on encrypted values, making sharing of data even more secure.
While this is great in theory, it actually gains very little benefit
in this analysis scenario. The data we share is already
nonsensitive and through the use of SMPC, we can hide not
only the data but the data’s origin. This is why FeatureCloud
currently supports SMPC instead of HE.

Our implementation of the federated survival SVM app uses
all the functionalities offered by FeatureCloud and does not
deviate from these best practices.

Results

Performance
Our workflow delivered a highly similar model performance
and model parameters for all federated analyses compared with
the ones performed on the corresponding centralized data sets.
The resulting c-indices to estimate the performance of our
time-to-event models are depicted in Figure 2 [33]. For each
data set (subplot), we show a boxplot consisting of the evaluated
c-index for each CV split of our federated workflow with secure
aggregation (green), federated workflow without secure
aggregation (orange), and centralized calculation for each
individual client (blue). The CV results show that our federated
as well as the federated and secure aggregation approach
perform highly similar to the centralized estimates. The
calculation of the federated c-index in FeatureCloud causes
small deviances in the c-index between centralized and
federated. This is because FeatureCloud calculates a local
c-index and aggregates to the mean c-indices of all sites.
Therefore, it does not lead to the same c-index as a central
computation would. The mean c-indices for the 4 data sets are
in the range between 0.658 (GSBG2) and 0.76 (WHAS500). In
contrast to the accuracy, achieving very high c-indices is rather
difficult and depends very much on the problem. In a
bioinformatics context, the lowest c-index of 0.658 (GBSG2)
can be considered as moderate. The model achieves
discrimination between individuals with different survival
outcomes. However, it might not be of clinical utility and needs
further refinement. The c-index of 0.76 (WHAS500) on the
other hand, can be considered as good and has predictive value.
Improving the predictive value of the models and increasing
c-index was out of the scope of this work. A complete table of
the results is available in Multimedia Appendix 2.
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Figure 2. Comparison of federated and centralized analysis. The boxplots show the evaluated c-indices (3 × 3-fold cross validation) of the central, 3
participants, and 5 participants analysis (rows). For each scenario, we compared the federated and secure aggregation approach (green), the federated-only
approach (orange), and the performance of every single site (blue). BRCA: breast cancer data set; GBSG2: German Breast Cancer Study Group 2 data
set; WHAS500: Worcester Heart Attack Study data set.

The model weights are nearly identical, with a maximum
difference of only 0.001 and a mean difference of 0.0002
(Multimedia Appendices 1 and 3). These tiny differences
between the weights of the central model and our model are
negligible, as they do not change the overall prediction results
and still lead to equal c-indices. The resulting model is therefore
almost identical to the one that was trained on central data. A
useful property of the linear survival SVM is, that the model
weights can be used as a feature importance measure, which is
also supported in our approach.

Besides calculating the feature importance from model weights
directly, our federated survival SVM app uses Shapley additive
explanations (SHAP), an explainable artificial intelligence
framework for the interpretation of ML models [37]. Using
SHAP, we compared the final models of the central, federated
without secure aggregation, and federated with secure
aggregation runs. For each data set, the SHAP shows highly
similar model interpretations with a mean Pearson correlation
of 0.991 between the central and the federated model without
secure aggregation, and a mean Pearson correlation of 0.985
between the central model and the federated model with secure
aggregation. A slightly worse correlation in the secure
aggregation model is expected, as the masking of local
parameters leads to floating-point issues. The worst correlation

is shown in the microbiome data set (0.964), which can be
explained by the high correlation between features in this data
set. The results of the SHAP correlation analysis are listed in
Multimedia Appendix 4 and the corresponding SHAP beeswarm
plots are available in Multimedia Appendix 5.

Our results further demonstrate the importance of large data
sets, as the performance of the locally trained models on single
clients (smaller sample size) shows a much higher variance than
our federated models. If 5 institutes combine their small data
sets, they can perform a much more reliable time-to-event
analysis compared with isolated institutions. This further
supports the high practical value of FL in real-world clinical
time-to-event analysis, especially for institutions with small
sample sizes, homogenous cohorts, or only a few patients with
rare diseases.

Runtime
As shown in Figure 3, the runtime largely depends on the data
set. In the case of FL, the number of iterations and, therefore,
the number of data exchanges are the bottleneck. While the
federated-only approach has linear runtime, the runtime of
federated and secure aggregation is much worse and increases
with an increasing number of clients. As described in the
FeatureCloud publication, providing better privacy by hiding
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the exchanged parameters from the global aggregator, the simple
additive secret sharing grows quadratic with the number of
participants. Especially when many iterations and data

exchanges are needed, this has a bad influence on the runtime
of the FL implementation.

Figure 3. Runtime analysis. The lines represent the runtime for each data set and the number of participating clients. The federated-only approach is
depicted on the left, and the federated and secure aggregation approach is depicted on the right.

All results of the runtime analysis are shown in Multimedia
Appendix 6. Additionally, we performed the runtime analysis
on a data set with a large sample size. As real-world
time-to-event data sets are difficult to find, we used a
synthetically generated, published data set from an example
colon data set with 15,564 samples [38]. Our results show that
our method scales well for large sample sizes, as the number of
iterations is the bottleneck in FL (Multimedia Appendix 7).

FeatureCloud App
The app we developed can easily be used within the
FeatureCloud platform. For this, a project coordinator creates
a project, selects the app, and invites collaborators. Each
participant installs FeatureCloud and joins the project. The app
expects 2 CSV files as input, one for the training data and
another for the test data. A config file can be used to define
hyperparameters and other descriptors, such as the time and
event label columns. After the federated computation has
finished, each client receives the globally trained model as a
pickle file, as well as a prediction file containing all predictions
on the local test data set. The app can also be used in a
FeatureCloud workflow, supporting various preprocessing
methods, such as CV, normalization, feature selection, one-hot
encoding, and subsequent evaluation of survival models using
the c-index.

The requirements for running the survival SVM app are the
same as for executing the FeatureCloud platform. It requires a
stable internet connection to exchange the incentive model
parameters with the central aggregator and to run the app on
the website. Docker needs to be installed on a Mac, Linux, or
Windows computer with the corresponding requirements for
running Docker [39]. Moreover, enough memory should be
available to process the data set. This depends mainly on the
data set size, and not on the algorithm itself.

Discussion

Principal Findings
Our federated survival SVM has been demonstrated to offer a
highly viable alternative to centralized data collection in a
time-to-event analysis. It achieves comparable levels of accuracy
without compromising the privacy of highly sensitive patient
data. This makes it a compelling solution for organizations
seeking to safeguard sensitive data while still gaining the
benefits of advanced analysis and the application of ML.
Through its availability as a FeatureCloud app, the platform
takes care of deployment and federated infrastructures, making
it directly usable with little programming knowledge. The results
of the real-world microbiome data set are promising and show
that FL might be an accelerator in microbiome research and the
analysis of time-to-event microbiome data sets. Using FL
combined with additive secret sharing, our approach can be
currently considered GDPR compliant and, therefore, practically
usable in real clinical time-to-event studies [12].

Comparison to Existing Work
Only a few federated survival analysis approaches were
developed in recent years, such as the distributed Cox
proportional hazards model WebDISCO or an approach for
federated survival curves using multiparty HE [18,20]. In a
recent study about privacy-aware multi-institutional
time-to-event analysis, it was criticized that the existing work
was mainly focusing on theoretical solutions, rather than
practical [21]. Therefore, lack of usability was a huge issue that
was addressed by the authors, who developed the platform
“Partea” [21]. The platform supports the Kaplan-Meier estimator
for survival curve estimation [40], Nelson-Aalen estimator for
cumulative hazard ratios [41], and Cox proportional hazards
model for survival regression [42]. Compared with “Partea,”
FeatureCloud does not only address the execution of FL
algorithms, but also development. The FeatureCloud developer
application programming interface for implementing FL
algorithms that can be executed through FeatureCloud and
published in the App Store is a huge advantage in terms of
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development speed and also accessibility for the potential user
group.

To our knowledge, the survival SVM FeatureCloud app is one
of the first time-to-event analysis ML models implemented as
a FL algorithm. This makes the accuracy (or c-index in our case)
between the algorithms not directly comparable. However,
similar to the existing solutions [20,21], our approach achieves
almost identical results compared with the central algorithms.

Regarding runtime, univariate methods without iterations, such
as Kaplan-Meier estimator, Nelson-Aalen estimator, or log-rank
test are much more efficient in FL settings. However, these
approaches cannot be used to analyze high dimensional data
and multivariate settings. The efficiency of our approach is
comparable to the iteratively trained Cox proportional hazard
model, which is trained iteratively and requires communication
and aggregation for every parameter update step.

Limitations
Our current approach does not support the more efficient ranking
objective, as federated ranking is not trivial to implement.
Instead, it is based on scikit-survival’s regression objective.
Moreover, it solely supports the linear SVM and does not
support the kernel SVM yet. Calculating a kernel matrix in a
federated setting is not trivial, as it represents pairwise
similarities (or distances) between the training data points. For
supporting more complex, nonlinear relationships, this should
be further investigated in the future. We still decided to
implement and use a survival SVM in this work, as SVMs are
very popular in health care and the only available time-to-event
analysis ML model in scikit-survival that is not based on an
ensemble approach. Ensemble models, such as random survival
forests [43] or survival gradient boost, are both based on a set
of survival trees. While ensemble models are also popular in
time-to-event analysis, the federated aggregation of the local
forests produces slightly worse results than centrally trained
models in imbalanced scenarios [44]. A federated aggregation
of each local tree, on the other hand, is computationally costly.
The SVM in our implementation produces highly accurate
results compared with central learning for model weights,
c-index, and feature importance and can therefore lower the

burden of applying FL in health care (eg, microbiome analysis),
as the participants can be sure that the results are equal to the
ones they would obtain in a central setting.

FeatureCloud currently only supports a simple additive
secret-sharing scheme, increasing runtime for calculations with
many clients and iterations. This could be solved in the future
by using a more efficient secret-sharing scheme, such as Shamir
secret sharing, that is currently not supported by FeatureCloud
[45]. By using FeatureCloud as the execution platform, our
approach does not solve the still existing open problems of FL,
such as fairness, debugging, and communication efficiency
(especially when using secret sharing) [46]. Furthermore, there
are attacks on FL architectures that cannot be prevented through
the existing methods, such as privacy inference from the global
model, and model or data poisoning [47]. It is therefore
recommended to use the algorithms and FeatureCloud platform
only with trusted parties.

Another limitation that comes from the FeatureCloud platform
is data standardization. Data formatting and standards need to
be discussed and determined in advance by the participants of
the federated analysis. However, FeatureCloud provides the
possibility to include federated data preprocessing applications
in the workflow. While this does not remove the need for
external communication of data standards, such as included
features and naming conventions, it makes it straightforward
to guarantee the same format and preprocessing for the used
data before the actual model training process. Possible
applications include imputation, normalization, train or test
splitting, and CV [48,49].

Conclusions
In conclusion, we developed an open-source federated survival
SVM that performs time-to-event analysis on geographically
distributed data sets without sharing sensitive raw data. It is
freely available in the FeatureCloud App Store. The trained
models are almost identical compared with centrally trained
survival SVMs. This extends the palette of existing federated
time-to-event analysis approaches by another algorithm that
can be applied to various problems.
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