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Abstract

Background: Passive mobile sensing provides opportunities for measuring and monitoring health status in the wild and outside
of clinics. However, longitudinal, multimodal mobile sensor data can be small, noisy, and incomplete. This makes processing,
modeling, and prediction of these data challenging. The small size of the data set restricts it from being modeled using complex
deep learning networks. The current state of the art (SOTA) tackles small sensor data sets following a singular modeling paradigm
based on traditional machine learning (ML) algorithms. These opt for either a user-agnostic modeling approach, making the
model susceptible to a larger degree of noise, or a personalized approach, where training on individual data alludes to a more
limited data set, giving rise to overfitting, therefore, ultimately, having to seek a trade-off by choosing 1 of the 2 modeling
approaches to reach predictions.

Objective: The objective of this study was to filter, rank, and output the best predictions for small, multimodal, longitudinal
sensor data using a framework that is designed to tackle data sets that are limited in size (particularly targeting health studies that
use passive multimodal sensors) and that combines both user agnostic and personalized approaches, along with a combination
of ranking strategies to filter predictions.

Methods: In this paper, we introduced a novel ranking framework for longitudinal multimodal sensors (FLMS) to address
challenges encountered in health studies involving passive multimodal sensors. Using the FLMS, we (1) built a tensor-based
aggregation and ranking strategy for final interpretation, (2) processed various combinations of sensor fusions, and (3) balanced
user-agnostic and personalized modeling approaches with appropriate cross-validation strategies. The performance of the FLMS
was validated with the help of a real data set of adolescents diagnosed with major depressive disorder for the prediction of change
in depression in the adolescent participants.

Results: Predictions output by the proposed FLMS achieved a 7% increase in accuracy and a 13% increase in recall for the real
data set. Experiments with existing SOTA ML algorithms showed an 11% increase in accuracy for the depression data set and
how overfitting and sparsity were handled.

Conclusions: The FLMS aims to fill the gap that currently exists when modeling passive sensor data with a small number of
data points. It achieves this through leveraging both user-agnostic and personalized modeling techniques in tandem with an
effective ranking strategy to filter predictions.
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Introduction

Background
Mobile and wearable sensing has garnered increasing interest
in areas of physical health [1,2], mental health [3-5], and activity
recognition [6,7]. Multimodal passive sensing accommodates
data collection without disrupting the human routine, allowing
it to be an important tool to understand human behavior.
However, passive sensing, unlike other forms of data, encounters
common fundamental challenges in mobile health studies
pertaining to physical and mental health. These challenges
include small data sets, noisy or sparse data, and sensor selection
criteria. Next, we explain these challenges and discuss how our
framework can help in alleviating them.

One of the primary challenges in passive sensing studies is small
data sets. These arise due to limitations in the sample size of
participants, the study duration, and ground truth restrictions.
In this study, we explored this challenge from the viewpoint of
studies conducted on passive sensing. Studies related to physical
health (eg, [1,2]) have investigated dietary behavior with the
help of passive sensing. Participant sample sizes in Rabbi et al
[1,2] were 17 and 16, respectively, which is a limited participant
count. This type of data limitation is even more prominent in
mental health research that relies on passive sensing. Studies
on depression [3] and schizophrenia [4], for example, had
participant sample sizes of 28 and 5, respectively. The limited
data sets in passive sensing research are also a factor of the
study duration. To understand this, we can observe the duration
of study. For example, the study duration in Rabbi et al [1,2]
was 21 and 98 days, respectively, while the study by Canzian
and Musolesi [3] lasted for 70 days and that by Difrancesco et
al [4] was limited to only 5 days. The limitation in data led
researchers away from using complex deep learning (DL)
models, as demonstrated in previous studies [1-4]. This is
because DL models have more hyperparameters and succumb
to overfitting due to memorization of the data the models are
trained on [8]. In this study, we took inspiration from the
existing work and selected specific traditional machine learning
(ML) algorithms that are less susceptible to overfitting in
small-data scenarios. However, unlike previous studies
[1-4,9-17], we also ensured that our predictions were ranked
based on 2 different modeling paradigms that further helped
circumvent overfitting and also assisted in noise removal, as
explained later.

The second challenge commonly faced when tackling passive
sensor data is that of sparsity or noise. This challenge arises due
to signal inconsistencies and noise in sensor data collection
because of software issues, data sync, or hardware problems.
Discussions of sparsity and the negative effect it has on
modeling have been previously documented [7,18-20]. These
studies have presented an overview of the passive sensing
landscape and highlighted the role signal inconsistencies can
play in predictive modeling of passively sensed data. The fact

that data are noisy, especially in the case of wearable sensors,
was mentioned by Plötz [18]. Cornet and Holden [19] reported
that a lack of sensor precision leads to sparsity, and Xu et al
[20] documented the level of noise in data that prevents
user-agnostic models from generalizing well. Our proposed
framework attempts to reduce the effect of noise by forming a
balance between predictions from user-agnostic modeling
paradigms and personalized modeling paradigms. In addition,
choosing specific ML algorithms, such as Extreme Gradient
Boosting (XGBoost), Adaptive Boosting (AdaBoost), elastic-net,
and extra-tree, and ranking predictions from them help lessen
the impact of sparsity [21-24].

Sensor selection is the third type of challenge that has not
received significant attention in passive or mobile sensing
literature. Studies have tested various feature combinations
mainly in the light of performing feature selection or feature
reduction [25]. Joshi and Boyd [26] and Altenbach et al [27],
for example, used heuristic-based convex optimization to select
sensors from an array of sensors. However, both these studies
were purely from the perspective of sensor placement. They did
not investigate which combination of sensors provided the best
outcome for prediction-based modeling and were more in favor
of wireless sensor network establishment. Mobile or wearable
devices are laced with multiple sensors, and building and
knowing which sensors create optimum models are vital
particularly to mental and physical health–related studies.
Through our framework, we present a way to test combinations
of sensor data and derive and rank predictions from among those
combinations, allowing investigators to understand which
combinations of sensor data yield the best predictions for their
passive sensing experimental setup.

All the aforementioned challenges are common to passive
sensing data sets. However, they exhibit significant presence
in mental and physical health–related studies [3,4]. Xu et al [20]
talked of the general sequence of steps researchers take to build
models and the struggles of working with passively sensed data.
A strong framework to yield the best predictions can prove to
be beneficial to the community at large and bring about greater
insight from studies conducted with small data sets.

In this paper, we present our ML modeling and ranking
framework to address these challenges. The framework is
designed to induce improved predictions for multimodal sensing.
It balances both user-agnostic and personalized modeling of
small data sets encountered often in mental and physical
health–based studies. Our framework makes the following
contributions: (1) prediction filtering and ranking through
tensor-based aggregation of small, multimodal sensing data
sets, (2) sensor combination selection to derive the best
predictions, and (3) a reduction in overfitting predictions due
to limited data and noise through ensembling of user-agnostic
and personalized modeling strategies.

Importantly, it should be noted that by the size of the data set,
we refer to the final data sets where raw sensor readings are
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aggregated into intervals to align with the sampling frequency
of ground truth data. In this work, we defined small data sets
as those comprising fewer than 1000 data points for training
ML models. Sparse or noisy data sets were those that either
consisted of many zero entries or data sets for which highly
varying sensor values were observed among different
participants in the study.

We evaluated the framework through its performance in the
context of predicting changes in depression severity in a group
of adolescent patients. The results showed the framework’s
ability to use multiple modeling approaches for providing robust
predictions in critical cases, such as mental health.

Passive sensing data for human behavior modeling are different
from other data formats, such as images, audio, or normal tabular
data. Researchers in the field of passive sensing agree that
passive sensing data have some common properties, such as
they are time series data, multimodal, longitudinal, nonlinear,
and noisy, as previously discussed [20]. Xu et al [20] also
emphasized the researcher’s need for tools that can help ease
the time lost in traversing the common pitfalls of passively
sensed data. Our work endeavors to resolve such pitfalls for
cases where passive sensing data are limited. Next, we discuss
the related work highlighting the state of the art (SOTA) in
passively sensed small, multimodal data sets.

Related Work
Despite the growing body of work using multimodal passive
sensing in physical and mental health applications [28-32], there
exists scope for improvement in small-data scenarios.

In this section, we underline what exists in the current SOTA
and why we need a ranking-based framework to address
scenarios with small data sets. Keeping in line with our
contribution, it will prove beneficial to present the current SOTA
through understanding:

• How traditional ML algorithms are applied in the context
of passive sensing

• Why complex DL models do not work well in limited data
scenarios

• How ensemble modeling has been adapted in passive
sensing studies

• What the role of data fusion is in modeling passive sensing
data

Traditional Machine Learning Algorithms Applied in
Passive Sensing
Traditional ML algorithms have been applied to passive sensing
in the space of human activity recognition (HAR) [9-11], general
health [12-15], and mental health [3,16,17]. A deeper dive into
the studies reveals some common takeaways that include the
following:

• All of them test multiple ML algorithms, followed by
selecting predictions based on the overall chosen validation
metric.

• They all follow a singular modeling strategy, resorting to
either user-agnostic or personalized modeling.

• Cross-validation (CV) is either K-fold or leave-one-out CV.

This is a repetition of steps that authors in the field make
independently and is discussed extensively in the highlighted
literature presented in Table 1. Following a single modeling
strategy is restricting as choosing to follow a user-agnostic
approach exposes the model to a greater degree of noise due to
the heterogeneity in sensor values among participants, while
solely following a personalized approach reduces data
availability further as the model learns from individuals’ data
rather than the general population data. Our endeavor through
this ranking framework is to combine both the approaches, while
using traditional ML algorithms.
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Table 1. Summary of SOTAa literature using traditional MLb for passive sensing, with special focus on CVc, the overall modeling strategy, and ML
algorithms.

ML algorithmModeling strategyCVApplicationStudy

DTe, LRf, MLPgUser agnostic10-foldHARdKwapisz et al [9]

KNNh, SVMiUser agnostic5-foldHARShukla et al [10]

RFj, SVM, KNNUser agnostic10-foldHARChen and Chen [11]

SVMUser agnostic10-foldSleepHuang et al [12]

KNN, DT, RF, SVMUser agnostic/personalizedK-fold/leave 1 outSleepMontanini et al [13]

XGBoostk, DT, RFUser agnostic5-foldParkinson’s tremorsTeng et al [14]

SVMUser agnosticK-foldBreathAzam et al [15]

SVMUser agnosticLeave 1 outDepressionCanzian and Musolesi [3]

NBl, KNN, DTUser agnostic/personalizedK-foldBipolar disorderGrunerbl et al [16]

XGBoost, DTUser agnostic10-foldDepression/anxietySaeb et al [17]

aSOTA: state of the art.
bML: machine learning.
cCV: cross-validation.
dHAR: human activity recognition.
eDT: decision tree.
fLR: linear regression.

gMLP: multilayer perceptron.

hKNN: K-nearest neighbor.

iSVM: support vector machine.
jRF: random forest.

kXGBoost: Extreme Gradient Boosting.

lNB: naive Bayes.

Limitation of Deep Learning in Small-Data Scenarios
A common replacement for traditional ML algorithms is DL.
Here, we explain why DL models are not ideal solutions for the
problem addressed in this study. DL models have gained
immense popularity in the literature [33]. Their power lies in
modeling the nonlinearity and noisy nature of passively sensed
data. DL has a toolkit of strategies to handle small data that
includes data augmentation [1], transfer learning [19], and
ensembling [29]. However, the size of a small data set in DL
studies ranges from 1000 to 10,000 training points [18]. This
is unlike the ranking framework presented in this paper, which
has been designed for data sets with fewer than 1000 data points.
Therefore, despite their superiority in modeling larger passive
sensing data sets, the performance of DL models suffers in cases
where study data are limited and in the hundreds. The
complexity of DL models results in overfitting to small data
sets [14]. In this paper, we worked to solve the problem of
limiting data by providing researchers with a reproducible way
to run multiple models and select the best predictions from
among them. By using traditional ML in conjunction with
ranked predictions from user-agnostic and personalized models,
the issue of overfitting due to model complexity is dealt with
in the proposed work.

Ensemble Learning to Build Robust Models for Passive
Sensing Data
Among the different ways of dealing with overfitting, ensemble
learning has been instrumental. Ensemble ML is a widely used
approach in passive sensing studies [14,17,34,35]. It mainly
exists in the form of boosting [6,14,17,34], bagging [14,16],
weighted ensembles [35], and max voting [36] ML algorithms.
Ensemble learning presents better results in terms of evaluation
metrics. Ensemble learners are trained using a single modeling
strategy. Therefore, they are either personalized ensembles [35],
which allows learners to derive interesting artifacts at personal
levels, or user-agnostic ensembles [14,17,34,36-38], which only
generate macrolevel information. Our contribution through the
ranking framework is to provide a balance of both macrolevel
patterns and user-specific patterns through a weighted ensemble
of both approaches. Ensembling in this manner will allow us
to reduce the noise that is picked up due to varying sensor values
among users and account for user-specific patterns through the
predictions on personalized data.

Role of Data Fusion in Passive Sensing Studies
The use of data fusion in passive sensing has seen a steady
growth due to the use of multimodal sensors in passive sensing
studies. Earlier studies were often restricted to single sensors,
which were then manipulated to obtain a handful of features.
For example, Canzian and Musolesi [3] primarily used GPS
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sensor data, while Kwapisz et al [9] only opted for an
accelerometer to base their predictive modeling. The way data
fusion is approached has a common link among the surveyed
studies in the current literature. The studies have applied
feature-level fusion [10,39-43], where fusion takes place after
feature extraction from raw signals. A single feature set is
generated and then passed on to dimensionality reduction, such
as linear discriminant analysis (LDA) [10] or principal
component analysis (PCA) [40-42]. The focus in these papers
tends to be a reduction in dimension, without trying to study
the impact of multiple distinct feature combinations. In

comparison, our contribution of feature selection focuses on
studying the relationship between each group of sensors by
creating multiple feature sets based on sensor availability. This
will allow us to select the best set of features to work with for
a specific type of study. An illustration of the difference in the
existing literature and our feature fusion approach is shown in
Figure 1 [10,39-43].

Overall, our ranking framework is motivated to aid researchers
in situations in which data sets are small, sparse, or noisy and
multimodal by taking advantage of its multiple model generation
and the balanced outcome of the best predictions.

Figure 1. (A) Data fusion approach in the current literature and (B) proposed FLMS data fusion approach, where s1-s6 represent distinct sensors and
f1-f3 represent feature set combinations, which were then fused prior to ML modeling. FLMS: framework for longitudinal multimodal sensors; LDA:
linear discriminant analysis; ML: machine learning; PCA: principal component analysis.

Methods

Ethical Considerations
The data collection was approved by the Institutional Review
Board of the University of Pittsburgh Human Research
Protections Office (STUDY18120176).

Data Description
The study used passive sensing data and is presented through
the lens of depression change prediction among adolescents.
The data set comprised 55 adolescents from 12 to 17 years old,
with an average age of 15.5 (SD 1.5) years. The AWARE app
was used to collect the participants’ smartphone and Fitbit data.
The data completeness rate for AWARE and Fitbit was, on
average, 65.11% and 30.36%, respectively. The levels of
completeness echoed the difficulty in collecting passive sensing
data. Smartphone and Fitbit data were collected from each
participant over 24 weeks.

The 9-item Patient Health Questionnaire (PHQ-9) [44] was used
to collect weekly self-reports of depression severity from the
participants. The questionnaire consists of a set of 9 questions,
which can be scored from 0 to 3, giving a score range of 0-27.
We used PHQ-9 scores as the ground truth to compare the
prediction accuracy of our models.

Relation of Sensor Data to Mental Health
Raw sensor data, including calls, location, conversation, screen
usage, Wi-Fi, steps, sleep, and heart rate, were processed, and
relevant features were extracted at daily intervals. We used
RAPIDS [45] to extract 72 features from the sensors. The
existing literature [3,46-51] shows how location [3,46,49,50,52],
calls [48,53], screen usage [46,54,55], conversations [55-58],
Wi-Fi [48,59], steps [60], and heart rate [61] can be effective
in predicting mental health behavior. Studies [3,46,49,50] have
used location sensors, such as the GPS, and shown a strong
relation to depressive symptom severity. Clinical measures,
such as the PHQ-9 [44], the PHQ-8 [62], the Hamilton Rating
Scale for Depression (HAM-D) [63], and the Hamilton Rating
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Scale for Anxiety (HAM-A) [64], have been used as target labels
for prediction using sensor-based features, establishing a proof
of association between sensor features and mental health
predictions. Studies [47,48,51,54,60] have used multimodal
sensors of smartphones that included the sensors we chose for
this study: calls, location, conversation, screen usage, Wi-Fi,
Fitbit steps, and Fitbit heart rate. In the Results section, we
further elaborate on the feature engineering from each of the
sensors. The validity of using the sensors to predict mental
health, in particular the choice of sensors, was motivated by the
aforementioned studies, which showed strong predictive
capability of sensors in the area of mental health prediction.

Framework Design and Modeling
We proposed a framework for longitudinal multimodal sensors
(FLMS) as a ranking framework to rigorously handle
longitudinal, multimodal sensor data and incorporate different
analysis and modeling strategies suited for small and sparse
time series data sets to produce better results. The FLMS
incorporates 4 stages to improve, rank, and filter data set
predictions (see Figure 1):

• Stage 1: multimodal sensor fusion to explore the data set
from multiple views and to identify the minimum number
of sensors necessary to yield a good prediction. It also
addresses sparsity.

• Stage 2: ML modeling with combined user-agnostic and
personalized approach. This stage is designed to leverage

user-agnostic and personalized predictions. The ML
algorithms used in this stage were chosen due to their
superior prediction capability in small-data scenarios and
their ability to tackle sparse data sets.

• Stage 3: tensor-based aggregation and ranking leverage
predictions from all fused combinations and modeling
strategies to calculate more robust predictions.

• Stage 4: final prediction informed by the ensemble weighted
average of both user-agnostic and personalized predictions
to reduce the effect of overfitting in small data sets. This
stage uses weights calculated via hamming distances to
prevent any modeling approach from dominating the
predictions.

A high-level view in Figure 2 illustrates how the FLMS is
different from conventional ML approaches. Observing Figure
2A, we understand that the conventional modeling strategy uses
a single algorithm with either a user-agnostic CV, where all
users are included in the training and test sets, or a personalized
CV strategy, where a single user’s data are used to derive
predictions. However, Figure 2B displays how the FLMS uses
different combinations of sensors as input data, followed by
multiple algorithms and a combination of user-agnostic and
personalized modeling. The modeling stage is followed by a
ranking of predictions and finally an ensemble of the predictions
to yield the final output.

A detailed explanation of the stages of the FLMS and their
utility is provided next.

Figure 2. (A) Conventional modeling approach and (B) proposed FLMS approach. FLMS: framework for longitudinal multimodal sensors.

Stage 1: Multimodal Sensor Fusion
Stage 1 was designed for the early fusion of sensors at a feature
level. Sensor fusions followed a combinatorial approach using

, where Z is the total number of modalities available and x

is the number of sensors to fuse. Our case study had 6-sensor
modalities that generated a set of 63 separate data sets calculated

as .

Data set preprocessing steps involved normalization and log
transforms. Imputations to fill missing feature observations
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were also conducted. The framework allowed for
implementation of the K-nearest neighbor (KNN) algorithm for
imputation, which is also the first level of defense against
sparsity. The generated data sets were in 2D tabular data format.
The sensor data were aggregated according to the granularity
of the ground truth. Our case study collected PHQ-9 scores as
an accepted depression measure. The total score range of the 9
questions was 0-27. This was collected on a weekly basis, and
thus, our daily data were aggregated in weekly intervals.

Stage 2: ML Modeling With a Combined User-Agnostic
and Personalized Approach
Stage 2 focused on modeling and predictions based on the data
sets generated in stage 1. All stage 1 data sets were run through
the modeling suite, which encompasses a series of ML
algorithms and CV strategies to help build user-agnostic and
personalized models.

The ML suite includes case-specific linear and nonlinear
algorithms. For our case study on adolescent depression, we
followed a regression-based approach, and therefore, we selected
algorithms such as linear regression (LR), elastic-net, random
forest (RF), AdaBoost, extra-tree, gradient boosting, and
XGBoost. The algorithms were chosen based on (1) their
performance in the existing literature when working with small
data and robustness to sparsity, and (2) tree-based models, which
were specifically chosen to provide added tractability for
researchers to inspect which features mainly contributed to the
models’predictive capability. The algorithms were used in each
modeling strategy. The predictions of the ML algorithms for
each time unit were stored in arrays for each participant and
later used to select the best model for each participant. The best

model selection strategy chose the model with the minimum
error (in the case of regression) or the maximum accuracy (in
the case of classification) among all algorithms. For example,
among l number of regression algorithms, the best model was
chosen as follows:

(1)

,where alg refers to the algorithm with the lowest absolute sum
error and predm(algt) is the prediction made by an algorithm l
at unit time t. The array of prediction by the best model was
retained for each respective participant.

User-Agnostic Model Building
To leverage as much data as possible, we implemented the
leave-one-participant-out (LOPO) and leave-time-unit-X-out
(LTXO) strategies. This is illustrated in Figure 3A,B.

In LOPO, we held out all data from a single participant for
validation and trained the model on other participants. This
strategy reflected the cold start case where a new user started
using the health app.

The LTXO is based on the unit of time for ground truth data
(eg, a week). For training, we held out a given time unit of all
participants and trained the model on the rest of the time units.
This strategy evaluated the impact of time-specific segments
of data on prediction. The training phase captures the similarity
and variation of data during different time units to build
user-agnostic models.

Figure 3. User-agnostic model building: (A) LOPO and (B) LTXO strategies. Algo: algorithm; LOPO: leave one participant out; LTXO: leave time
unit X out.

Personalized Model Building
The personalized modeling strategy leverages each user’s
historical and cross-time data samples in a sliding window and
the leave-one-time-unit-out approach.

For each participant, the accumulated-time-unit (ATU) strategy
built a model from Xt time units of data to predict Xt+1. For
example, the model built from weeks 1 and 2 predicted
depression in week 3. In the next iteration, the sliding window
was increased by T time units (eg, 2 weeks) to repeat the
model-building process. This process continued until the
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maximum number of time units was reached. This method
examined the forecasting capability of the framework.

The leave-one-time-unit-one-participant-out (LOTPO) strategy
trained the models on all time units of a participant across time

to predict the target label for the current time unit. For example,
for a participant with 10 weeks of data, we built a model from
data in weeks 1-5 and weeks 7-10 to predict depression in week
6. This method evaluated the feasibility of past and future data
for each participant to predict an outcome (Figure 4A,B).

Figure 4. Personalized model building: (A) LOTPO and (B) ATU strategies. Algo: algorithm; ATU: accumulated time unit; LOTPO: leave one time
unit of participant out.

Stage 3: Tensor-Based Aggregation and Ranking
The output of stage 2 was a set of best prediction matrices for
sensor fusion combinations, where each slot in the matrix
represented prediction results for a participant in a particular
time unit. We represented these predictions in the form of
Z-dimensional tensors (Figure 5), where Z is the number of
modalities being used. For example, a study with 6 modalities
and 45 users over 24 weeks was represented in tensor form as
(6, 45, 24). The tensor representation helped represent the high
dimensionality of sensor combinations.

The predicted values for each slot across tensors were then
aggregated using an aggregation function (eg, mean). This
process took advantage of the stage 2 combinations to help
reduce the error in prediction. For example, we aggregated
predictions of 6 tensors (generated from 5-sensor fusion) into
1 tensor by calculating the mean of the predictions from the 6
combinations (see Figure 3). This was done for both
user-agnostic and personalized models. The aggregated mean
was calculated using the following equation:

(2)

,where Magg is the aggregated mean, k is the total number of
sensor combinations aggregated, i is the combination number,

j is the corresponding time unit, and is the prediction across
each set of combinations. The data were now in a format where
each 2D tensor represented a particular sensor fusion prediction
set (Figure 6).

The predictions were next encoded into 0s and 1s to counter
the large variance in the regression values from the original
values. This logic can be set based on the type of ML problem
the framework is being used to address. For example, in our
case study, if the regressed change in depression score values
was 0 or negative value, we classified it as 0, and if it was
positive, we represented it as 1 (Figure 7).

The next step in this stage measured the hamming distance
between the 0-1-encoded tensor and the true labels tensor, as
shown in Figure 8. These hamming distances were then
aggregated (Du) for the respective 2D tensor as follows:

(3)

,where d(pi, ai) is the hamming distance between unit time
predictions pi and the true value ai. Based on the measured
distance, we ranked and chose the best set of predictions. This
metric helped inform the choice of weightage to associate with
a particular modeling strategy. The hamming distance helped
further reduce errors after encoding and filtered down to the
best set of predictions from each strategy.
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Figure 5. An example of tensor representation of 6-sensor fusion predictions.

Figure 6. Instance of ATU where it shows how the mean aggregated prediction set is generated according to Equation (2). ATU: accumulated time
unit; avg: average.

Figure 7. The 0-1 encoding process resolves dealing with large variances in regression values. ATU: accumulated time unit; LOPO: leave one participant
out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out.
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Figure 8. Hamming distance calculations reduce error and also determine the weight each of the 4 modeling approaches will contribute to stage 4’s
ensembled weighted average. ATU: accumulated time unit.

Stage 4: Weighted Ensemble
The final stage formed the most robust set of predictions via an
ensemble weighted average approach, where weights were
calculated based on the minimum hamming distances derived
from each modeling strategy in stage 3 (Figure 9):

(4)

,where Pij is the prediction tensor, wk is the weight based on the
minimum hamming distance, and i and j are the number of users
and time units, respectively. The data were then encoded back
to 0s and 1s. A complete version of the FLMS with all its stages
is presented in Figure 10 (see Multimedia Appendix 1 for a
higher quality image).

Figure 9. Ensemble average based on weights derived from the hamming distance to arrive at best-ranked predictions. ATU: accumulated time unit;
LOPO: leave one participant out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out.
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Figure 10. FLMS ranking overview. Algo: algorithm; ATU: accumulated time unit; avg: average; CV: cross-validation; FLMS: framework for
longitudinal multimodal sensors; LOPO: leave one participant out; LOTPO: leave one time unit of participant out; LTXO: leave time unit X out; ML:
machine learning.

Results

Stagewise Description of Framework Processing on an
Adolescent Data Set
To evaluate the performance of the proposed FLMS, we used
a depression data set of adolescents. This was a small data set,
comprising noisy, multimodal sensor values from multiple
participants—a suitable case study for our purpose of evaluating
the performance of our proposed framework. Before presenting
the experimental results, we first provide an understanding of
how the adolescent data set was processed at each stage of the
FLMS.

The passively sensed depression data set was longitudinal, with
a varying number of observations per participant. The goal was
to predict changes in the depression score. This was achieved
by passing the small set of observations through our ranking
framework, which processed, modeled, ranked, and output the
best set of overall predictions based on multiple modeling
approaches. A prediction of change in depression is difficult
and becomes even more challenging when the amount of data
provided to the ML algorithms is limited.

Stage 1 Outcome
As part of stage 1, daily data were aggregated in weekly
intervals to align with weekly ground truth values. Based on
our extensive exploratory data analysis (EDA), we set thresholds
for sparsity and adopted KNN as the imputation strategy.

Our final data set consisted of 507 data points with 72 features,
with an average of 13 weekly data points per participant. A
series of data sets were then produced from an early fusion of
6-sensor features. Each data set retained 45 (81.8%) of the 55
participants. We had to drop 11 (20%) participants as they were
missing more than 60% of their sensor data. The true depression
state of the participants was given by the PHQ-9 weekly survey.
The change in participant depression scores was calculated as
Wm – Wm–1, where Wm is the score for the m-th week; this
served as the ground truth for our analysis.

Stage 2: ML Modeling Outcome
The ML algorithms in stage 2 regressed on the change in the
depression score, with positive changes exhibiting a rise in the
depression score in that week, negative changes representing a
decrease, and 0 marking no change. The best predictive models
of depression for each participant were built and selected
following the steps in stage 2.

Stage 3: Encoding and Prediction Filtering Outcome
This led to stage 3, where after the mean aggregation, we
encoded the regressed values as our goal was to predict whether
the change in the depression score was positive, negative, or
constant, rather than determining the exact value of the change.
This step was followed by hamming distance calculations to
further rank and filter the best set of predictions.

Stage 4: Final Prediction Ensembling of Adolescent
Data
The predictions evaluated by the minimum hamming distances
entered stage 4, where we calculated the final ensemble
predictions. The predictions used weights determined by
hamming distance calculations, which enabled us to balance
between personalized and user-agnostic models. This step
completed the offline training and prediction of change in
depression in the adolescent data set.

Experiment Design and Results
In this section, we present the depression change prediction
results of the FLMS. The experiments were designed to test the
framework’s claims of reducing overfitting on a small data set,
reducing the impact of noise or sparsity, and identifying the
best combination for sensor fusion.

We conducted 3 main experiments in support of our claims:

• Experiment 1 tested FLMS predictions against singular
modeling strategies used in SOTA. This experiment
evaluated our claim regarding the advantage of the overall
framework that took steps to reduce noise and identify the
best sensor combinations versus a singular modeling
strategy.
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• Experiment 2 was a SOTA comparison test conducted to
evaluate how our prediction-ranking framework performed
in comparison to existing ML and DL approaches used in
the current literature. This comparison also substantiated
the FLMS performance to overfitting versus the existing
strategies in the literature from prediction in small-data
scenarios.

• Experiment 3 was designed to compare the FLMS
performance with that of commonly used ML algorithms
that have been shown to perform well with sparse data. It
is important to note that there is an overlap of ML
algorithms used to tackle sparsity and those used in passive
sensing studies for mental health, particularly for small data
sets.

Evaluation Metrics
The task of the FLMS is to model, rank, and output the best set
of predictions from multiple modeling approaches. The output
of the FLMS are predictions encoded as 0s or 1s (ie, binary
values). Therefore, our choice of evaluation metrics for the
framework predictions was the average accuracy, average recall,
and average F1-scores amongst users.

Experiment Metadata
The metadata pertaining to each experiment is provided at the
end of the experiments. The information included as metadata
is based on the best practices used [65] to help with
reproducibility of results. They include (1) feature preprocessing
steps, (2) modeling CV strategy, (3) ML algorithms used, (4)
random state, and (5) evaluation metrics specific to the
experiments. They are presented in the form of tables following
the corresponding results for each experiment.

Data Set Used in the Experiments
To standardize our experiments, we maintained a consistent
data set, a combination of 6-sensor feature sets that included
calls, location, screen usage, conversation, Fitbit, and Wi-Fi.
After the stages of preprocessing, missing data imputation using
the KNN strategy, and the removal of highly corelated features,
the final data set comprised 61 features and 507 data points
belonging to a total of 45 (81.8%) participants.

Feature Engineering in Experiments
Since we maintained a consistent data set for all our
experiments, feature engineering for all the experiments was
achieved through data collected from 6 sensors. As discussed
earlier, the data were collected from participants’ smartphones
using the AWARE app [66] and then passed through the
RAPIDS application programming interface (API). The features
extracted using the API are discussed in detail next.

Call Sensor Features

The calls sensor features provide a context of how frequently
the user has been in contact with someone else. Studies have
revealed that higher degrees of depression are linked to reduced
contact with social circles [48,53]. As part of call sensor
features, we extracted the total number of missed calls; the
counts of missed calls from distinct contacts, calls from the
most frequent contacts for a time segment, incoming calls, and
outgoing calls; the mean (SD), maximum, and minimum

duration of both incoming and outgoing calls; and the entropy
duration of outgoing and incoming calls, which provided an
estimate of the Shannon entropy for the duration of all calls of
a particular call type (ie, incoming, outgoing, or missed). All
the extracted features were mean-aggregated over the period of
1 week to match the ground truth.

Location Sensor Features

Location sensor features provide a contextual idea of the amount
of movement users of the sensors go through and show the
correlation to mental health [3,46,49,50]. The location data are
collected through the phones’GPS or the cellular towers around
the phones. Location has been proven to be able to predict
depressive states [3]. The features extracted from the location
sensors included the location variance calculated through the
sum of variance in longitude and latitude coordinates, the log
of the location variance, the total distance covered, and the
circadian movement [17] calculated using the Lomb-Scargle
method that maps a person’s location patterns following the
24-hour circadian cycle. The speed was also captured as a
feature, and static labeled samples were clustered and K-means
clustering was used to locate significant places visited by the
participants. In addition, location entropy was also engineered
to provide the proportion of time spent at each significant
location visited during a day.

Screen Sensor Features

Screen sensor features are a strong indicator of how engaged
users are with their phones. To capture this information, we
extracted features that includes the minimum, maximum, sum,
and mean (SD) of unlock episodes, along with the number of
all unlock episodes and minutes until the first unlock episode.
These features have been used in prior studies that proved their
correlation to depressive symptom severity [46,54,55].

Conversation Sensor Features

Conversation is yet another interesting set of features that
provide information pertaining to social interactions and has
been used in a number of studies relating to mental health
[55-58]. The computed features included the minimum,
maximum, sum, and mean (SD) of the duration of all
conversations. We also recorded the minutes of voice, silence,
and noise. The energy associated with noise, which is the
L2-norm and the sum of all energy values when noise or voice,
was inferred.

Fitbit

Fitbit offers 2 features, which we extracted based on their
application in previous studies relating to mental health
[54,60,61], and included the maximum resting heart rate
(average maximum heart rate over 1 week) and the maximum
number of steps (average step count over 1 week). These
features provided an idea of the physical movement and stress
experienced by participants.

Wi-Fi

Wi-Fi can be a good indicator of social context. We extracted
the Wi-Fi count scans that told us the number of scanned Wi-Fi
access points connected to by the phone during a time segment
and the number of unique connected devices during a time
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segment based on the hardware address. In addition, we
extracted the most scanned connected device. The use of
Wi-Fi-based features in mental health prediction have been
previously covered [48,59].

The data set used in our experiments had all the features
discussed, which were part of the 61 features. Feature
engineering helped provide a context to the data gathered from
all the smartphones and Fitbit sensors and form predictions for
ML models.

Results of Experiment 1
Experiment 1 showcased the overall performance of the FLMS
in comparison with traditional user-agnostic and personalized
models. The FLMS achieved a mean accuracy of 0.66 (SD 0.53)
and a mean recall of 0.59 (SD 0.50), which are 7% and 13%
higher than the best baseline performance achieved by ATU
modeling. Among the singular modeling approaches, the ATU,
a personalized strategy, performed best overall, with a mean
accuracy of 0.59 (SD 0.50) and a mean recall of 0.46 (SD 0.66).
The worst performances were shown by user-agnostic LOPO

and LTXO approaches, both of which had a mean accuracy of
0.45 (SD 0.80) and 0.47 (SD 0.83), respectively. These results
are presented in Table 2 and show that singular modeling
approaches used in different studies [1-4,9-17] underperform
when modeling involves small, noisy, multimodal sensor data
in comparison to our FLMS. The FLMS uses a balance of these
strategies to improve predictions.

Experiment 1 was also designed to show how the FLMS
suggests the best feature combinations for the various modeling
strategies it uses through the utility of hamming distance from
stage 3. The lowest hamming distance in stage 3 for the various
modeling approaches used is presented in Table 3. We observed
that the ATU approach led to the lowest hamming distance of
226, followed by LOTPO, with a minimum hamming distance
of 267. The highest hamming distances were those of LOPO at
350 and LTXO at 378. The lower the hamming distance, the
closer the predictions to ground truth. Based on this, we saw
that overall, 6-sensor fusion works best for this data set. The
metadata of experiment 1 are shown in Table 4.

Table 2. Experiment 1 performance of the FLMSa in comparison to singular modeling strategies.

Test F1-score, mean (SD)Test recall, mean (SD)Test accuracy, mean (SD)Type of modeling strategyModeling strategy

0.56 (0.55)0.59 (0.50)0.66 (0.53)User agnostic + personalizedFLMS

0.50 (0.57)0.46 (0.66)0.59 (0.60)PersonalizedATUb

0.32 (0.73)0.45 (0.70)0.53 (0.65)PersonalizedLOTPOc

0.40 (0.87)0.43 (0.72)0.45 (0.80)User agnosticLOPOd

0.33 (0.86)0.35 (0.81)0.47 (0.83)User agnosticLTXOe

aFLMS: framework for longitudinal multimodal sensors.
bATU: accumulated time unit.
cLOTPO: leave one time unit one participant out.
dLOPO: leave one participant out.
eLTXO: leave time unit X out.

Table 3. Experiment 1 minimum hamming distance for choosing the best sensor combination for the experiment.

Hamming distanceModeling approach in the FLMSaBest sensor fusion

226ATUb6-sensor fusion (calls + location + screen usage + conversation + Fitbit + Wi-
Fi)

267LOTPOc6-sensor fusion (calls + location + screen usage + conversation + Fitbit + Wi-
Fi)

350LOPOd1-sensor fusion (location)

378LTXOe2-sensor fusion (calls + location)

aFLMS: framework for longitudinal multimodal sensors.
bATU: accumulated time unit.
cLOTPO: leave one time unit one participant out.
dLOPO: leave one participant out.
eLTXO: leave time unit X out.
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Table 4. Experiment 1 metadata.

Experiment 1Metadata

KNNa imputation, dropping highly co-related columns, sklearn StandardScalerFeature preprocessing

FLMSc, ATUd, LOTPOe, LTXOf, LOPOgModeling CVb strategy

import XGBoosti as xgb

sklearn.linear_model import LinearRegression

sklearn.ensemble import RandomForestRegressor

sklearn.linear_model import ElasticNet

sklearn.ensemble import GradientBoostingRegressor

sklearn.ensemble import ExtraTreesRegressor

sklearn.ensemble import AdaBoostRegressor

MLh algorithms used

42Random state

Accuracy, recall, F1-scoreEvaluation metrics

aKNN: K-nearest neighbor.
bCV: cross-validation.
cFLMS: framework for longitudinal multimodal sensors.
dATU: accumulated time unit.
eLOTPO: leave one time unit one participant out.
fLTXO: leave time unit X out.
gLOPO: leave one participant out.
hML: machine learning.
iXGBoost: Extreme Gradient Boosting.

Results of Experiment 2
In experiment 2, we compared FLMS ranking results with ML
algorithms that have been used in multiple studies on
sensor-based assessment of mental health, as listed in Table 1.
The ML algorithms XGBoost and KNN were chosen based on
the popularity of their usage in the community, while the DL
algorithm was chosen to be a basic multilayer perceptron (MLP)
network and a long short-term memory (LSTM) network. These
were also the best-performing algorithms compared to other
ML algorithms in the literature on our data set. We initially
tried using K-fold validation for the SOTA algorithms, but due
to poor results, we switched to the leave-one-out strategy, which
performed relatively better. This experiment first compared the
overall performance of the FLMS with other SOTA algorithms
based on the average test accuracy, recall, and F1-score. Second,
the experiment substantiated the claim that the FLMS is better
in tackling overfitting, as shown by the mean training accuracy
versus the mean test accuracy compared to the ML algorithms
in Figure 11. The models with only the single ML algorithm
performed no better than the majority baseline approach, with

XGBoost showing a mean test accuracy 0.50 (SD 0.55) and the
KNN showing around the same mean accuracy of 0.52 (SD
0.54), as shown in Table 5. The MLP achieved higher accuracy
but a low test F1-score, indicating the model’s performance has
high false-positive and false-negative rates. The LSTM was no
different and showed a similar recall and F1-score outcomes.
The overfitting of the SOTA models is illustrated in Figure 11,
where we compared the FLMS and the rest of the algorithms
based on their respective performances using training and test
accuracies. Figure 11 shows that the FLMS had a relatively
consistent performance between a training accuracy of 68% and
a test accuracy of 66%, while XGBoost, KNN, MLP, and LSTM
models had high training accuracies but low test accuracies.
The metadata of experiment 2 are shown in Table 6.

The experiments demonstrated support for the points highlighted
in the contribution of this paper—that our ranking framework
works well with small data sets in comparison to existing
approaches and can reduce overfitting by using a
balance-weighted ensembling of user-agnostic and personalized
models.

JMIR AI 2024 | vol. 3 | e47805 | p. 14https://ai.jmir.org/2024/1/e47805
(page number not for citation purposes)

Mullick et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 11. Experiment 2 shows FLMS training and test accuracies in comparison to SOTA models. The FLMS is better at adapting to overfitting
compared to the other algorithms. FLMS: framework for longitudinal multimodal sensors; KNN: K-nearest neighbor; LSTM: long short-term memory;
ML: machine learning; MLP: multilayer perceptron; SOTA: state of the art; XGBoost: Extreme Gradient Boosting.

Table 5. Experiment 2 performance of the FLMSa compared to MLb and DLc algorithms used in the current literature on adolescent data.

Test F1-score, mean (SD)Test recall, mean (SD)Test accuracy, mean (SD)Modeling strategyPredictive learning approach

0.56 (0.55)0.59 (0.50)0.66 (0.53)ATUd + LOTPOe + LOPOf

+ LTXOg

FLMS

0.28 (0.57)0.33 (0.52)0.50 (0.55)Leave 1 outXGBoosth [14,17]

0.30 (0.73)0.40 (0.61)0.52 (0.54)Leave 1 outKNNi [10,11,13,16]

0.33 (0.70)0.50 (0.71)0.55 (0.70)Leave 1 outMLPj [9]

0.35 (0.70)0.25 (0.70)0.41 (0.66)Leave 1 outLSTMk [67]

aFLMS: framework for longitudinal multimodal sensors.
bML: machine learning.
cDL: deep learning.
dATU: accumulated time unit.
eLOTPO: leave one time unit one participant out.
fLOPO: leave one participant out.
gLTXO: leave time unit X out.
hXGBoost: Extreme Gradient Boosting.
iKNN: K-nearest neighbor.
jMLP: multilayer perceptron.
kLSTM: long short-term memory.
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Table 6. Experiment 2 metadata.

Experiment 2Metadata

KNNa imputation, dropping highly co-related columns, sklearn StandardScalerFeature preprocessing

FLMSc, leave 1 outModeling CVb strategy

import XGBooste as xgb

sklearn.neural_network import MLPClassifier

sklearn.neighbors import KNeighborsClassifier

keras.layers import LSTMf

MLd algorithms used

42Random state

Accuracy, recall, F1-ScoreEvaluation metrics

aKNN: K-nearest neighbor.
bCV: cross-validation.
cFLMS: framework for longitudinal multimodal sensors.
dML: machine learning.
eXGBoost: Extreme Gradient Boosting.
fLSTM: long short-term memory.

Results of Experiment 3
Sparsity is a challenge in dealing with small data sets. The large
number of 0s or missing values can misdirect models and lead
to overfitting [68]. Therefore, it is important to handle the
problem of sparsity. Our experiment was designed specifically
for small data sets, where sparsity proves to be a challenge. To
tackle sparsity in small-data scenarios, the commonly used ML
algorithms are KNN, MLP, support vector machine (SVM),
decision tree (DT), random forest (RF), XGBoost, and AdaBoost
[21-24,69-71].

In our experiment, we showcased a comparison of the FLMS
with all the mentioned ML algorithms. We first calculated the
sparsity of the adolescent data set that comprised all 6-sensor
feature sets. The reason for continuing to use the 6-sensor feature
sets as in the prior experiment was to test the algorithms with
a data set that had a higher degree of sparsity compared to other
feature combinations with lower number of sensors. The sparsity
for this data set was calculated as the ratio of 0s to the total
number of elements in the data set and is given as follows:

(5)

The sparsity of the data set used for this experiment was 35%.
In a small data set, this is a significant amount of sparsity to
negatively impact ML algorithms.

We performed the modeling and evaluated the performance
based on F1-scores as in the case of the prediction of mental
health, the F1-score is a good reflection of how sparsity affects
the models’ judgment in detecting positive and false cases. The
models already shown in Table 4 remained, in addition to other
models that have been mentioned in the literature to perform
well on sparse data sets. Among the ML algorithms used in the
literature, the best performance was shown by the RF, with an
F1-score of 0.35, while the FLMS showed an F1-score 0.21
higher than that of the RF. Both MLP and AdaBoost performed
close to the RF, with an F1-score of 0.33. The algorithm that
performed the worst in handling sparsity was the SVM, with
an F1-score of only 0.15. This experiment highlights the fact
that due to the combination of modeling, the FLMS performs
better when dealing with highly sparse small data sets (Table
7). The metadata of experiment 3 are shown in Table 8.
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Table 7. Experiment 3 performance of the FLMSa compared to common MLb algorithms for tackling sparsity on the adolescent data set.

Test F1-score, mean (SD)Modeling strategyPredictive learning approach

0.56 (0.55)ATUc + LOTPOd + LOPOe + LTXOfFLMS

0.28 (0.57)Leave 1 outXGBoostg [14,17]

0.30 (0.73)Leave 1 outKNNh [10,11,13,16]

0.33 (0.70)Leave 1 outMLPi [9]

0.15 (0.62)Leave 1 outSVMj [12]

0.24 (0.70)Leave 1 outDTk [13]

0.35 (0.65)Leave 1 outRFl [11,13]

0.33 (0.60)Leave 1 outAdaBoostm [14]

aFLMS: framework for longitudinal multimodal sensors.
bML: machine learning.
cATU: accumulated time unit.
dLOTPO: leave one time unit one participant out.
eLOPO: leave one participant out.
fLTXO: leave time unit X out.
gXGBoost: Extreme Gradient Boosting.
hKNN: K-nearest neighbor.
iMLP: multilayer perceptron.
jSVM: support vector machine.
kDT: decision tree.
lRF: random forest.
mAdaBoost: Adaptive Boosting.

Table 8. Experiment 3 metadata.

Experiment 3Metadata

KNNa imputation, dropping highly corelated columns, sklearn StandardScalerFeature preprocessing

FLMSc, leave 1 outModeling CVb strategy

import XGBooste as xgb

from sklearn.svm import SVMf

sklearn.neural_network import MLPClassifier

sklearn.neighbors import KNeighborsClassifier

sklearn.tree import DecisionTreeClassifier

sklearn.ensemble import RandomForestClassifier

sklearn.ensemble import AdaBoostClassifier

MLd algorithms used

42Random state

F1-scoreEvaluation metrics

aKNN: K-nearest neighbor.
bCV: cross-validation.
cFLMS: framework for longitudinal multimodal sensors.
dML: machine learning.
eXGBoost: Extreme Gradient Boosting.
fSVM: support vector machine.
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Discussion

Principal Findings
Solving the problem of limited and sparse data sets is not a
singular modeling-based endeavor. It requires flexibility and a
combination of strategies to achieve predictions that can be
trusted. In this section, we discuss our ranking framework’s
overarching aims, performance, and limitations based on our
assessments.

In experiment 1, we tested the FLMS in comparison to baseline
user-agnostic and personalized models. Our framework achieved
a higher accuracy, recall, and F1-score for the predictions when
compared to singular modeling approaches, as seen in Table 2.
We also demonstrated how we arrived at the sensor combination
for the best set of predictions using hamming distances in stage
3 of the FLMS, as reflected in Table 3. In experiment 2, we
compared the FLMS with SOTA algorithms used in the literature
for predicting mental health states using sensors. The results
from this experiment showed the FLMS to perform better than
the existing algorithms in terms of accuracy, recall, and
F1-scores (Table 4). Experiment 2 also highlighted the FLMS’s
ability to reduce overfitting in comparison to the SOTA
algorithms. The FLMS showed that the training accuracy and
test accuracy did not diverge by large margins, indicating it had
not been overfitting the models. Lastly, we compared the FLMS
ranking with that of existing ML algorithms that perform well
with sparse data in experiment 3. We saw that the data set we
used in our experiments exhibited 35% sparsity, which is a
significant amount in an already small data set. The FLMS had
a higher F1-score compared to the rest of the ML algorithms.

Comparison With Previous Research
The results of baseline modeling are consistent with previous
studies [10,29] that showed superior performance when models
were personalized. The increase in accuracy shows that our
framework was able to narrow down the best set of predictions
overall.

Hamming distance results showed that in LOPO and LTXO
approaches, single-sensor deployment and a dual-sensor
combination perform equally well as 6-sensor combinations
and achieve a minimum hamming distance. This brings forth
the advantage of our framework to prioritize sensor selection
for yielding best predictions overall and for only the necessary
number of feature sets.

The results of experiment 2 provide us with further evidence of
the ranking frameworks’efficacy in balancing reliance between
both user-agnostic and personalized approaches. Despite a
higher accuracy, the recall of the FLMS does not overfit like
that of other SOTA ML algorithms. The FLMS uses weights
to balance out such effects, thus reducing the impact of
overfitting in prediction performance. The test with popular
existing ML algorithms showed that, despite the success of the

models in previous studies [9-11,13-17], they struggle when
the data set is small and noisy, as is the case of the depression
data set presented in this work. This performance result is similar
when we look at the capability of ML algorithms that are better
at handling sparsity. We found the FLMS to perform better than
those algorithms.

Overall, seeking a single user-agnostic model that fits all is an
elusive problem as most existing works suggest better
performance for specialized approaches. However, specialized
modeling does not perform well on heterogeneous data sets.
Therefore, neither user-agnostic nor personalized modeling
alone can be applicable to a specific problem area. Our
framework provides a practical way to balance the 2 approaches,
particularly for dealing with limited data sets.

Limitations and Future Directions
We encountered a few limitations with this study that can be
addressed in future work. The FLMS was tested on the case of
depression in adolescents. As such, we have not been able to
establish a lower bound on the data set size that our framework
is capable of handling.

Another area that we could not elaborate on is the computing
speed of such a framework that might be impacted if sensor
numbers rise to higher levels. Lastly, the framework was
equipped with lightweight and widely used ML algorithms.
Methods such as the generalized linear mixed model (GLMM)
for handling longitudinal data could not be tested.

Future work can address these limitations with exposure of the
framework to more multimodal, longitudinal data sets and
adapting and testing other ML algorithms. Interesting future
directions for the framework include its online adaptation and
a similarity-based cold-start solution.

Conclusion
In this study, we presented a novel prediction-ranking
framework for modeling limited noisy or sparse, multimodal,
longitudinal passive sensor data. We tested our framework on
an adolescent depression data set consisting of 45 participants
over a period of 24 weeks. The results showed that despite the
complexity and limitations of the data set, our framework is
able to provide better predictions compared to singular modeling
approaches. In experiment 1, our model achieved a 7% increase
in accuracy and a 13% increase in recall. In experiment 2 with
synthetic data, our model achieved a 5% increase in accuracy
and avoided overestimating the recall value through ensembling
predictions. The framework also showed its ability to explore
sensor combinations through feature fusion. Our tests with
existing popular SOTA algorithms showed that the models
struggle when data tend to be limited and noisy. We also tested
the FLMS with algorithms that perform well with sparsity and
found the FLMS to exhibit a better performance. In conclusion,
the FLMS can be an effective tool for passive sensing studies.
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