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Abstract

Background: Health care–associated infections due to multidrug-resistant organisms (MDROs), such as methicillin-resistant
Staphylococcus aureus (MRSA) and Clostridioides difficile (CDI), place a significant burden on our health care infrastructure.

Objective: Screening for MDROs is an important mechanism for preventing spread but is resource intensive. The objective of
this study was to develop automated tools that can predict colonization or infection risk using electronic health record (EHR)
data, provide useful information to aid infection control, and guide empiric antibiotic coverage.

Methods: We retrospectively developed a machine learning model to detect MRSA colonization and infection in undifferentiated
patients at the time of sample collection from hospitalized patients at the University of Virginia Hospital. We used clinical and
nonclinical features derived from on-admission and throughout-stay information from the patient’s EHR data to build the model.
In addition, we used a class of features derived from contact networks in EHR data; these network features can capture patients’
contacts with providers and other patients, improving model interpretability and accuracy for predicting the outcome of surveillance
tests for MRSA. Finally, we explored heterogeneous models for different patient subpopulations, for example, those admitted to
an intensive care unit or emergency department or those with specific testing histories, which perform better.

Results: We found that the penalized logistic regression performs better than other methods, and this model’s performance
measured in terms of its receiver operating characteristics-area under the curve score improves by nearly 11% when we use
polynomial (second-degree) transformation of the features. Some significant features in predicting MDRO risk include antibiotic
use, surgery, use of devices, dialysis, patient’s comorbidity conditions, and network features. Among these, network features add
the most value and improve the model’s performance by at least 15%. The penalized logistic regression model with the same
transformation of features also performs better than other models for specific patient subpopulations.

Conclusions: Our study shows that MRSA risk prediction can be conducted quite effectively by machine learning methods
using clinical and nonclinical features derived from EHR data. Network features are the most predictive and provide significant
improvement over prior methods. Furthermore, heterogeneous prediction models for different patient subpopulations enhance
the model’s performance.
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Introduction

Multidrug-resistant organisms (MDROs), such as Clostridioides
difficile (CDI), multidrug-resistant gram-negative bacteria
(carbapenem-resistant Acinetobacter baumannii and
carbapenem-resistant Enterobacterales), methicillin-resistant
Staphylococcus aureus (MRSA), and vancomycin-resistant
enterococci, are among the top 10 threats to global health [1].
Health care–associated infections (HAIs) due to MDROs are
associated with increased complications, longer hospital stays,
and increased mortality. For example, Weiner-Lastinger et al
[2] report that HAIs have resulted in billions of dollars in
increased healthcare costs [3]. MRSA is one of the most
common causes of HAIs and a serious antimicrobial resistance
threat, responsible for >10,000 deaths a year in the United States
alone [4]. Similar to many other MDROs, MRSA can be easily
spread in a hospital from hospitalized patients via contact with
the health care environment (ie, shared patient rooms) and health
care workers.

Antimicrobial stewardship, which seeks to optimize antibiotic
treatment regimens, and infection prevention and control, which
involves monitoring, investigating, and managing factors related
to MDRO transmission, are the main tools for mitigating the
risks of acquisition and severe outcomes of MDROs [5].
Surveillance testing is a critical component of both antimicrobial
stewardship and infection prevention control. However, testing
is expensive and slow; current laboratory procedures typically
require at least 72 hours to report MRSA found in a patient’s
culture [6]. The delay in testing results in three problems in the
hospital: (1) colonized patients remain undetected, leading to
potential spread; (2) clinicians treat infections empirically; and
(3) increased resource use for contact precautions, leading to
both over- and undertreatment.

While several different studies have examined MRSA risk
prediction (eg, [6-13]), none to date have progressed to clinical
practice due to limitations in generalizability, sample size, and
imbalanced data (these are discussed further in the Discussion
section). In this study, we demonstrate how improving the
hospital context, particularly how patients are connected, can
improve the performance of machine learning methods for
predicting the outcomes of MRSA surveillance tests, using a
rich set of clinical and nonclinical features derived from
on-admission and throughout-stay information from a large
electronic health record (EHR) data set for patients admitted to
the University of Virginia (UVA) Hospital.

Methods

Data Set
We used patient data from the UVA Hospital during 2010-2022.
Overall, 27,612 patients in the dataset were tested for MRSA,

and 4171 (15.11%) of them were positive; these patients had
37,237 hospital encounters. The data of each patient’s visit can
be separated into two parts: (1) on-admission data and (2)
clinical event or throughout-stay data, which we have described
here:

On-admission data consist of patient demographics and visit
information. Patient demographics include information about
age, gender, race, ethnicity, country, and state. Visit information
includes admission and discharge dates, admission source,
admission type, and discharge destination.

Clinical event data represent information collected during the
visit. We considered the following event data:

• Procedure: it includes the following kinds of events during
this visit or at any time 90 days before this visit: (1)
surgeries, (2) device implant or replacement, and (3)
dialysis. For a visit, no data after the test collection are used.

• Medication: as MRSA is resistant to specific antibiotics,
we also examined prior antibiotic use. We computed the
Days on Therapy, which indicates whether a patient takes
any antibiotic on any specific day. This feature also
calculates whether a patient took any antibiotic in the last
90 days of this hospital visit.

• Comorbidity: the International Classification of Diseases,
Tenth Revision, code of a patient, which is collected from
that patient’s medical history, is used to pull comorbidity
information using the comorbidity package in R
programming language (R Foundation for Statistical
Computing). Both Charlson and Elixhauser scores are
pulled. It involves other physical conditions such as
diabetes, a history of stroke, and a history of dementia.

• MRSA laboratory test: we included both (1) clinical cultures
and blood, respiratory, and urine samples collected as part
of routine care, which typically requires 48 to 72 hours to
return results, and (2) polymerase chain reaction (PCR)
surveillance tests, which are administered to
MRSA-negative patients admitted to an intensive care unit
(ICU; per current hospital policy) or per physician request
and typically return results in <72 hours. While surveillance
tests provide positive and negative results, clinical cultures
may be sent from specimens that are not expected to yield
MRSA, even in the presence of an active MRSA infection;
therefore, a negative clinical culture result is not considered
a definite indicator of noninfection. The nares MRSA PCR
likely has equal or higher sensitivity than the nares culture
for MRSA [14]. We noted that, in general, testing is not
completely unbiased (a patient with an MRSA-positive
result admitted to an ICU would not technically need to be
screened if they are already on precautions), which might
impact the quality of the data set and the results, as we
discuss later in the Discussion section.
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We applied state-of-the-art machine learning methods to predict
the risk of MRSA infection at a given time for a patient, modeled
by the outcome of a surveillance test. The data set is split into
training (80%) and testing (20%) portions. The model is
estimated using the training data, and the hyperparameters are
chosen by cross-validation. There are many metrics to evaluate
model performance. We used receiver operating
characteristics-area under the curve (ROC-AUC) as the overall
performance metric of the model (the model evaluation metrics
are described in Multimedia Appendix 1), and a higher value
is better. For clinicians, an important objective is to reduce the
number of false-negative cases. Therefore, we also used the

false negative rate to evaluate the model
performance, with a lower value indicating a lower
false-negative prediction. The overall model performance is
proportional to the ROC-AUC score and inversely proportional
to the FNR score.

Problem Statement
The d-days ahead model’s MRSA test prediction problem: using
features defined from the patient EHR data till some time (t’ =
t – d) predict the outcome of an MRSA surveillance test
performed at time t. Formally, let x(t’) denote a feature vector
for a patient defined till time t and let y(t) denote the result of
an MRSA surveillance test performed at time t. The objective
is to predict if y(t) = 1 using x(t’).

The specific questions we study are as follows:

1. How well can MRSA surveillance test results be predicted?
What machine learning methods perform well, and what
features are the most predictive?

2. Are better predictions possible for specific, meaningful
subpopulations?

3. How does the performance vary with d?
4. Does training with a biased data set (as performed in

previous work) impact the true performance?

Interesting Features
Several risk factors for MRSA have been identified in previous
studies [15,16]: (1) hospitalization within the past 6 to 12
months, (2) residing in a chronic care facility, (3) being a health
care worker, (5) being an intravenous drug user, (5) frequent
antibiotic use, (6) antimicrobial therapy within 1 year, (7) history
of endotracheal intubation, (8) underlying chronic disorder, (9)
presence of an indwelling venous or urinary catheter, (10)
history of any surgical procedure, (11) household contact with
an identified risk factor, and (12) hypoalbuminemia. We
extracted all the aforementioned features from the UVA data
set. We created patient-patient and patient-provider interaction
networks and extracted the following features from those
networks. In addition, we derived many features based on the
existing features described in the subsequent section. The total
number of features is 108, and the MRSA test outcome is the
target feature.

1. Network features: we constructed a contact network G = (V,
E) (as shown in Figure 1), in which we have patient nodes up

∈ V for each patient p and a provider node uh ∈ V for each
provider h. An edge or contact (up1, up2) ∈ E between 2 patient

nodes up1 and up2 indicates that both patients p1 and p2,
respectively, were colocated (share a common space, a hospital
unit in our case) for at least a certain period, in this case at least
900 seconds. Similarly, we defined patient-provider contacts.
For instance, in Figure 1, patient P1 and provider H1 are
colocated at time t1, which is represented as edge (up1, uh1). The
#provider incidents on patient P1 in the time interval [t1, t2] is
2, whereas in the time interval [t1, t3], it is 3. We did not use the
number of patients and providers that a patient comes into direct
contact with as a feature. Instead, we defined slightly different
features based on contacts during a time interval, which we
found to be more predictive. We take time to be in days. On the
basis of the number of contacts for a patient p or a provider h
over a period, we constructed the following features:

• MRSA α: for a patient p, Sp,t(α) = {p’: (up, up’) ∈ E, p’ is
labeled positive at time t’ ∈ {t – a, t]}, denotes the set of
patients who came in contact with p and tested positive in
the last α days. We refer to |Sp,t(α)| as MRSA α.

• Provider β: for a patient p, §p,t (β) = {h: (up, uh) ∈ E, h
visited p at time t’ ∈ (t – β, t]}. We refer to |§p,t (β)| as
Provider β.

• MRSA positive patients collocated with the patient l: at the
UVA Hospital, patients with an MRSA-positive result might
be “cohorted,” that is, they might share a room because
they have similar precautions to improve occupancy. For
a patient p, let ƒp,t(u, γ) = {p’:(up, up’) ∈ E, p’ is labeled
positive at t’ ∈ (t’ – γ,t] and is in the hospital unit u with
p}. We referred to |ƒp,t(u,γ)| as the number of patients with
colocated MRSA.

• Bed reuse Π: let Πp,t(x) = {p’: (up, up’) ∉ E, p’ is labeled
positive at time t’<t and stayed in the same bed x}. We refer
to | Πp,t(x)| as the number of times Bed x reuse.

Note that all of the aforementioned features are defined for a
particular time, t. Therefore, MRSA α and other features should
be indexed by the patient and time. To avoid notational clutter,
we omit them here when they are clear from the context. For
example, suppose t1=1, t2=2, t3=3, t4=4, and t5=5, as shown in
Figure 1. Suppose patient P2 is tested positive at time 4. Then,
for patient P1, we would have “MRSA 2” at time t=5 equal to
1, but “MRSA 2” at time t=3 equals 0. For patient P2, Provider
2 at time t=2 is 0, but Provider 2 at time t=3 is 1.

2. Length of stay: for patients p in a hospital encounter, let t1
denote the admission time and t denote the MRSA test time.
The corresponding length of hospital stay (before the MRSA
test) was computed as t–t1. For the d-days (d ≥ 0) ahead model,
we computed the corresponding length of stay (before the
MRSA test) as max{t-d-t1, 0}. Note that t-d-t1 could be negative
if the patient has not been in the hospital long enough—in this
case, we took the length of stay to be 0.

3. From the health care facility is a Boolean feature that indicates
whether the patient is admitted to the hospital from either
“skilled nursing, intermediate care, or assisted living facility”
or “long term acute care hospital.” For the d-days ahead model,
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the feature is defined to be 0 if t1-d<0, where t1 is the admission
date, and 1, otherwise.

4. δ days observation: we construct several Boolean features
based on events in the last δ days before an MRSA test time.
For a patient p in a hospital encounter, let T(e) denote the set
of times for a specific event e. We defined Boolean variable
eδ(t)={∃t1, t1∈T(e), t1<t, 0≤(t-t1)≤δ}. We considered δ=90 and
e∈{Surgery, Device implant, Antibiotic, Kidney dialysis}. For
the d-days ahead model, the feature is defined by considering
δ+d as the parameter in the aforementioned definition, instead
of δ.

5. Department-based features: we constructed the following
features associated with room stays:

• ICU: this is a Boolean value that indicates whether a patient
is admitted to an ICU.

• Emergency department (ED): this is a Boolean value that
indicates whether a patient is admitted to the ED.

As in the aforementioned features, for the d-days ahead model,
the feature is defined as 1 if the admission to ICU or ED
happened before t-d, where t is the MRSA test time.

6. PHARMCLASS_k: there are 10 PHARMCLASS (penicillins,
miscellaneous anti-infectives, cephalosporins, etc) in the data
set. Each PHARMCLASS contains a list of antibiotics. For a
patient, PHARMCLASS_k contains the number of antibiotic
days from the MRSA testing date in the last 90 days. For the
d-days ahead model, the feature is the number of antibiotic days
in the 90 days before t-d.

7. Test duration days: for a patient p with an MRSA testing date
t, we defined this feature as t-d-t’, if there exists a time t’, t(t’<t)
at which an MRSA test was performed for p; otherwise, we
defined this feature as 0.

Figure 1. Patient-patient and patient-provider interactions are shown on the timeline, where each box represents a room in the hospital, patients are
indicated by circles (marked with P) and health care providers are indicated by triangles (marked with H). Multiple patients could share a room, and a
provider might visit multiple patients over time. A network is constructed from these interaction events over time. If 2 patients share a room for a certain
period (at least for 15 min), we construct an edge between the corresponding patient nodes; similarly, if a provider visits a patient for a certain period
(at least for 15 min), we construct an edge between the corresponding patient and provider nodes.

Machine Learning Classifiers

Overview
We explored the following machine learning methods: (1)
logistic regression (LR; penalized) [17], (2) support vector
machine [18], (3) random forest [19], (4) gradient-boosted
classifiers, and (5) XGBoost. These methods have been used
extensively on EHR data, and our goal was to understand which
ones do well for the MRSA risk-prediction problems we
considered in this study. We have described these methods in
Multimedia Appendix 2 [17-19]. We also considered these
methods with products of features, that is, of the form xi(t)•xj(t)
where xi(t) and xj(t) are different components of the feature

vector x(t). We also discuss the Shapley Additive Explanations
(SHAP) technique for understanding feature importance in each
model.

Model Explainability Using SHAP
SHAP [20] is a visual feature-attribution process that has many
applications in explainable artificial intelligence. It uses a
game-theoretic methodology to measure the influence of each
feature on the target variable of a machine learning model.
Visual representations such as the one in Figure 2, referred to
as a summary plot, are used to show the importance of features.
The interpretations of this plot are as follows:
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• The y-axis specifies the important features arranged from
top to bottom regarding their importance (in descending
order) to the response variable (the MRSA test result).

• The x-axis indicates the SHAP value of the corresponding
feature. The SHAP value of a feature indicates the change
in log odds that can be used to extract the probability of

success. The color bar on the right-hand side indicates the
gradient of log odds from low to high, with the color
spectrum from blue to red.

• Each point in the SHAP plot for a feature represents an
observation of the original data set.

Figure 2. (A) Performance of models on the test data set: performance of different machine learning models on the entire University of Virginia data
set. The penalized logistic regression (LR) model with degree-2 features performs best (the receiver operating characteristics-area under the curve
[ROC-AUC] for the LR model without feature transformation to degree-2 is 0.734). (B) The most significant features in this model were identified
using Shapley Additive Explanations (SHAP). GBC: gradient boosted classifier; RF: random forest; SVC: support vector classifier.

Heterogeneous Risk-Prediction Models for Selected
Subpopulations
To improve performance, we developed heterogeneous
subpopulation-specific models as described in the subsequent
sections.

Based on Testing History

Let Kp,t∈{+1,-1} denote an MRSA test result for a patient p at
time t in a hospital encounter. The testing history Hp,t is defined

as Hj
p,t={Kp,ti:1≤i≤j, tj<tj-1<...<t1<t}. No testing history exists

for a newly admitted patient, expressed as Hp,t=ø. The testing
history, considering only the last test result, is expressed as

H1
p,t={Kp,t1}. Similarly, the testing history, considering the last

2 test results, is expressed as H2
p,t={Kp,t2}. The number of

patients with longer histories drops significantly; therefore, we
limited our experiments to the last 2 test results. Table 1 presents
the distribution of data points for the different subpopulations.

Table 1. Total number of observations and percentages of positive observations for the subpopulations based on different testing histories.

Positive observationsCurrent test result (+1)Current test result (−1)Total observationsPrevious test history

11.74324124,37127,612None

10.22115910,17911,338–1

74.6825468633409+1

9.1543543204755(–1, –1)

68.82437198635(–1, +1)

31.67152328480(+1, –1)

80.0011902961486(+1, +1)

Based on the Admission Source

Recall the Boolean feature named “From health care facility”,
which is 1 if the admission source of a patient is a health care

facility. We constructed 2 subpopulations based on whether this
feature is 0 or 1; the distributions of these subpopulations and
the percentage of positive observations in each are presented in
Table 2.
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Table 2. Total number of observations and percentages of positive observations for the subpopulations based on different categories.

Positive observations (%)Test result (+1)Test result (−1)Total observationsSubpopulations

Admission source

27.7662216192241Health care facility

15.50664236,19842,840Other

Department

11.52318024,43627,616ICUa

34.6788016582538EDb

21.60328311,91815,201Other

Hospital stays (days)

20.53668032,54139,221≤15

16.2823014131643>15

Antibiotic use (days)

18.56571125,06530,776≤90

21.92364912,99716,646>90

10.27729636870970

Age group (years)

15.25217612,09314,2690-50

16.75463023,00827,638≥50

aICU: intensive care unit.
bED: emergency department.

Based on Department

Recall that both ICU and ED are 2 department-based features,
which indicate whether the patient is in the ICU and ED,
respectively. The distributions of the subpopulations and the
percentage of positive observations are presented in Table 2.

Based on Hospital Stay

The feature “Length of stay” captures the number of days a
patient has been in the hospital till time t-d, where t is the MRSA
test date and d ≥ 0 is the parameter for the d-days ahead model.
On the basis of this feature, we constructed 2 subpopulations.
The first is the group of patients who have stayed in the hospital
for at most 15 days, and the second is the group of patients who
have stayed there for >15 days. The distribution of these
subpopulations and the percentage of positive observations are
presented in Table 2.

Based on Antibiotic Use

Three subpopulations were created based on the number of days
for which a patient takes an antibiotic: (1) patients who never
took any antibiotics, (2) patients who took antibiotics within
the last 90 days from the MRSA testing date, and (3) patients
who took antibiotics for more than 90 days from the MRSA
testing date. The distribution of these subpopulations and the
percentage of positive observations are presented in Table 2.

Based on Age Group

A total of 2 age group–specific patient subgroups, namely 0 to
50 and ≥50 years, are considered for the analysis. The

distribution of these subpopulations and the percentage of
positive observations are presented in Table 2.

Hierarchical Subpopulation-Based Models

Figure 3 shows the schematic architecture of the hierarchical
model. The construction steps of the hierarchical model are as
follows:

• S1: we defined a set of feature-based rules R at each level
to create mutually exclusive subpopulations:
• At level 1, the rules on the feature named ‘Age-group’

are (1) R(α)=patient subgroup of 0 to 50 years old and
(2) R(α’)=patient subgroup of more than 50 years old.
Each rule creates a patient subpopulation. The patients
in these two subpopulations are mutually exclusive,
which can be expressed as: P(α)∩P(α’)=∅

• At level 2, each age-group-specific subpopulation is
subdivided based on another feature named
“Department”. The rules on the ‘Department’ feature
are (1) R(β)=patient subgroup of ICU and (2)
R(γ)=patient subgroup of ED. Patients admitted to other
departments are not considered in this model.

• The two-level hierarchical structure creates a set of
composite rules (combining rules of each level) at the
leaf level that we call two-level rules. The rules are as
follows: (a) R(α∩β), (b) R(α∩γ), (c) R(α’∩β), and (d)
R(α’∩γ).

• S2: the training population is split based on the 2-level rules.
Each training subpopulation is trained on several machine
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learning models, and the best-performing model is used for
prediction.

• S3: each test observation is passed to the corresponding
model using the 2-level rule. The observation with

prediction is stored in a buffer. After completing all the
testing observations, the buffer is treated as the model’s
output.

Figure 3. A schematic view of the hierarchical model architecture. In the figure, Xi represents the i-th observation, y is the model prediction, α is the
patient subpopulation who are 0 to 50 years old, α' is the patient subpopulation who are more than 50 years old, β is the patient subpopulation who
admitted to intensive care unit (ICU) department, γ is the subpopulation who admitted to the emergency department (ED), and R is a feature-based rule
to aggregate data. For instance, R(α∩β) is a 0 to 50 age group patient subpopulation admitted to ICU. At level 1, the overall population is subdivided
into two subpopulations based on the feature named “Age-group.” The patient subpopulation of age group (0 to 50 years) is mutually exclusive to the
patient subpopulation of age group (>50 years). Each age group–specific subpopulation is further subdivided into the next level (level 2) based on
another feature named “Department.” The patient subpopulation of the ICU department is mutually exclusive to the ED subpopulation. The training
data are split based on the 2-level rules, and each patient subpopulation is trained using the best-fitted model. During the testing phase, each data point
passes to the appropriate model using the same 2-level rules, and the best-fitted model predicts the outcome. The outcomes of all the models are merged
back into the resultant prediction of this hierarchical model.

Data Set for d-Days Ahead Prediction
We prepared a data set to observe the change of prediction
performance to the change of d, which is discussed in the
Methods section. For each d∈{1,2,…,7}, we created a data set,
where the feature vector for a patient is generated based on the
history of that patient till date t-d, where t is the MRSA testing
date for that patient.

Ethical Considerations
The data used in the paper was obtained through institutional
review board approval and is fully anonymized. Therefore, there
are no ethical considerations.

Results

Prediction Model for the Entire Population
We applied multiple machine learning models, including
penalized LR, gradient-boosted classifier, Random Forest,
support vector classifier, and XGBoost classifier (Multimedia
Appendix 2), to the UVA Hospital MRSA patient data sets. We
used an 80% to 20% split to construct the train and test data
sets. Figure 2A shows the performance of the models. A model’s
best set of hyperparameters was computed from the training
data set using grid search and 10-fold cross-validation. Penalized
LR was the best-performing model with the corresponding
performance metrics: (1) the FNR score is 0.074, and (2) the

ROC-AUC score is 0.826. Table 3 presents other performance
metrics for this data set.

Given the same hyperparameter settings for the penalized LR
model, the model performance (ROC-AUC) dropped to 0.734
when we did not consider the product features; therefore, this
feature transformation provides a significant benefit. Using the
SHAP technique discussed in the Methods section, we extracted
the following key features from Figure 2B:

1. “AdmissionType_Urgent,” “ICU admitted,” “Provider 7,”
and “Provider 14” are the top 4 features. Recall that
“AdmissionType_Urgent” is a Boolean variable where the
value 1 indicates the patient admitted as “Urgent.” Patients
admitted as urgent have a higher likelihood of MRSA
infection prediction. Similarly, “ICU admitted” is a Boolean
feature where the value 1 indicates that the corresponding
patient is admitted to the ICU department and is more likely
to predict MRSA infection. On the other hand, “Provider
7” and “Provider 14” indicate the total number of providers
a patient contacted in the last 7 and 14 days from the testing
date. The higher value of these features is associated with
high and negative values for the target feature (MRSA test).
A high value comes from the rightmost color bar, and a
negative value comes from the x-axis.

2. A high value of “MRSA 7” (which indicates the total
number of patients with an MRSA-positive result a patient
contacted in the last 7 days from the testing date) is
associated with a high and positive value of the target
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feature (the MRSA test); this holds similarly for the “MRSA
14” feature.

3. In addition to single features, composite features also
correlate more with MRSA infection prediction. For
instance, “AdmissionType Emergency” and “MRSA 7”
together (similar to “AdmissionType Emergency” and
“MRSA 14”) are associated with high and positive values
of the target feature (the MRSA test).

4. “PHARMCLASS_4” appears to be an important feature
compared to the other PHARMCLASS features. In most
cases, this variable is associated with high and positive
values for the target feature.

The computational complexity of SHAP increases with the size
of the test data set. The best-fitted model is passed to the SHAP
explainer method, and it took 5 hours to generate the summary
plot (Figure 2B) when the test data set contains 8174
observations and 4656 features. For the same best-fitted model,
the SHAP explainer required 1 hour to generate the summary
plot when the test data set contained the same number of
observations, but the number of features was reduced to 97.
Finally, the time was the same when the number of observations
in the test data set was reduced to 817, and the number of
features was 4656.

Table 3. Performance metrics of the best-performing model for each patient subpopulation based on room allocation, admission source, hospital stay,
and antibiotic medication period.

MCCf

score

F1-scoreFNReFPRd or
fallout

PrecisionSpecificitySensitivityAUPRCcROC-AUCbModelaSubpopulation

0.4000.5100.0740.2030.4060.7970.6840.5040.826LRgOverall

0.4550.5110.0360.1740.3810.8260.7750.4280.876LRICUh

0.7490.8370.0670.1140.8000.8860.8780.8820.936 jLREDi

0.3200.4630.1100.2070.3890.7930.5740.4510.752LROther rooms

0.4050.5530.1570.1390.5710.8610.5360.5850.804LRFrom HCFk

0.4140.5190.0700.1990.4130.8010.6990.4920.831LRNot from HCF

0.4210.5270.0680.2110.4150.7890.7220.5180.837LRHospital stay
≤15 days

0.3310.4490.0860.1970.3600.8030.5960.4940.729LRHospital stay
>15 days

0.4160.5300.0790.1930.4340.8070.6810.5250.826LRAntibiotic ≤90
days

0.4530.5800.0920.1910.4960.8090.6970.5660.841LRAntibiotic >90
days

0.2750.3150.0340.2790.2010.7210.7340.3280.834LRNo antibiotic
use

0.3250.4570.0940.2230.3640.7770.6130.4820.782LRAge group (0-
50 years)

0.4080.5200.0790.1830.4280.8170.6600.5140.833LRAge group (≥50
years)

0.5070.5690.0370.1680.4400.8320.8070.4900.883HMHierarchical

modell

aThis column specifies the best-performing model.
bROC-AUC: receiver operating characteristics-area under the curve.
cAUPRC: area under the precision-recall curve.
dFPR: false positive rate.
eFNR: false negative rate.
fMCC: Matthews correlation coefficient.
gLR: penalized logistic regression.
hICU: intensive care unit.
iED: emergency department.
jThe best value for each performance metric is italicized.
kHCF: health care facility.
lFor “Hierarchical model” (last row), the highlighted metric (in italics) indicates comparatively better performance than most of the other subpopulations.
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Effect of the Imbalanced Data Set
We evaluated the performance achieved using the different
sampling techniques discussed earlier. First, as in the study by
Hartvigsen et al [8], we used a random selection-based
down-sampling technique to select majority-class observations
and balance the number of observations between the majority
and minority classes. The balanced data are split into train and
test data. The ROC-AUC score of the best-performing model
on the test data is 0.731. We used the synthetic minority
oversampling technique (SMOTE) [21] on our data set to
balance both majority and minority classes. The ROC-AUC
score of the best-performing model on the test data is 0.896.
Similar to the study by Hirano et al [9], we used SMOTE to
balance the majority and minority classes in the imbalanced
train and test data. The ROC-AUC score of the best-performing
model on the test data is 0.903. However, when we evaluated
the performance of the abovementioned models on a random
test data set, the ROC-AUC score was significantly lower at
0.701. Thus, for our problem, the biased sampling techniques
did not improve performance.

Subpopulation-Specific Results
Our models and feature engineering cannot improve the
ROC-AUC of 0.826. We now discuss the results of
subpopulation-specific models.

Testing History–Based Analysis
The best-fitted model on testing history–based subpopulations
(Table 4) showed the best performance on three subpopulations:
(1) patients with a (−1) testing history: the best-fitted model
had an ROC-AUC of 0.802; (2) patients with a (−1, −1) testing
history: the best-fitted model had ROC-AUC of 0.848 and FNR
of 0.035; (3) patients with a (+1, +1) testing history: the best
model, in terms of the area under the precision-recall curve
(AUPRC; Qi et al [22] suggested this metric for imbalanced
data) performance metric, had an AUPRC of 0.910 (Figure 4B).
The results for the other testing history–based data sets are
shown in Multimedia Appendix 3.

Figure 4C shows the significant features (using the SHAP
technique) for the (−1, −1) testing history–based subpopulations.
The topmost feature (“MRSA 14”) is a network-based feature.
Moreover, the network-based features are among the top 10
features. Among these features, “MRSA 7” and “MRSA 14”
are positively associated with MRSA infection. In addition to
the network features, the interval between the 2 MRSA tests is
also important. In addition, patient comorbidity conditions have
a significant correlation with MRSA infection.

Table 4. Performance metrics for the best-performing model for each patient subpopulation based on testing history.

MCCf

score

F1-scoreFNReFPRd or
fall out

PrecisionSpecificitySensitivityAUPRCcROC-

AUCb
ModelaTesting history

0.3110.3940.0540.2510.2760.7490.6890.4060.814LRgNone

0.2740.3300.0780.0470.4000.953 i0.2810.3310.802GBh(−1)

0.2640.7350.6150.3490.8470.6510.6490.8840.718LR(+1)

0.4040.4490.0350.1450.3320.8550.6970.4020.848LR(−1,−1)

0.2090.4410.6390.1030.8670.8970.2950.7810.613SVj(−1, +1)

0.1830.4590.6670.9690.3110.0310.8750.6140.558SV(+1, −1)

0.3080.7210.6670.2130.9160.7870.5950.9100.761LR(+1, +1)

aThe “Model” column specifies the best-performing model (LR=penalized logistic regression classifier, GB=gradient boosting, and SV=support vector).
bROC-AUC: receiver operating characteristics-area under the curve.
cAUPRC: area under the precision-recall curve.
dFPR: false positive rate.
eFNR: false negative rate.
fMCC: Matthews correlation coefficient.
gLR: logistic regression.
hGB: gradient boosting.
iThe best value for each performance metric is italicized.
jSV: support vector.
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Figure 4. Results for best-performing subpopulations based on testing history: (A) Performance (receiver operating characteristics-area under the curve
[ROC-AUC]) of different machine learning models for testing history (−1, −1), that is, the last 2 testing results are negative—penalized logistic regression
(LR) has the best performance. (B) Performance (area under the precision-recall curve [AUPRC]) of different machine learning models for testing
history (+1, +1), that is, the last 2 testing results are positive—penalized LR has the best performance. (C) Top features for (−1, −1) testing history–based
subpopulation using the LR model. GBC: gradient boosted classifier; RF: random forest; SVC: support vector classifier.

Analysis for ICU and ED Subpopulations
We developed models for other subpopulations, and the
performance of the best-fitted models for these subpopulations
is reported in Table 3. We found that the best performance is
for the ED subpopulation in terms of both ROC-AUC and
AUPRC. The ROC-AUC value for the best-fitted model is 0.936
(Figure 5A), and the AUPRC value for the best-fitted model is
0.882 (Figure 5B). Regarding the FNR, the model best performs
for the subpopulation without antibiotics. The FNR score
obtained using the best-performing model for this data set is
0.034. The subpopulation with the second-best performance is
the ICU subpopulation (Figure 6), and the corresponding FNR
score is 0.036. The results for the other subpopulations are
presented in Multimedia Appendix 4.

Figure 6B shows the significant features (using the SHAP
technique) of the best model for the ICU subpopulation. The

top 5 network-based features and the frequency of network
features in the top 20 again demonstrate the significance of the
network structure. Some of the nonnetwork features that appear
to be important are the patient’s age, use of antibiotics in the
last 90 days, use of a device in the last 90 days, test duration
days, PHARMCLASS 4, and emergency and urgent-type patient
admission.

Figure 5C shows the significant features (using the SHAP
technique) for the best-performing model for the ED
subpopulation. The top 7 features have network features. The
top influential feature for the ICU subpopulation is “MRSA
14,” whereas the top significant feature for the ED subpopulation
is “MRSA 7.” Unlike in the ICU, the patient’s gender, length
of stay, and comorbidity conditions are also crucial in addition
to network features.
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Figure 5. Results for the emergency department (ED) subpopulation that shows the best performance: (A) performance (receiver operating
characteristics-area under the curve [ROC-AUC]) of different machine learning models—penalized logistic regression (LR) has the best performance.
(B) Performance (area under the precision-recall curve [AUPRC]) of different machine learning models—penalized LR has the best performance. (C)
Top features of the LR model. GBC: gradient boosted classifier; RF: random forest; SHAP: Shapley Additive Explanations; SVC: support vector
classifier.

Figure 6. (A) Performance of different machine learning models for the intensive care unit subpopulation; the penalized logistic regression (LR) model
performs best. (B) Top features of the LR model. GBC: gradient boosted classifier; RF: random forest; SHAP: Shapley Additive Explanations; SVC:
support vector classifier.
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Hierarchical Models
The performance of this model is presented in Table 3. This
model’s ROC-AUC and FNR scores are 0.883 and 0.037,
respectively. This model performs better than most
subpopulation-based models except for the ED
subpopulation-based models.

Importance of Network Features
The best-fitted model performance on the entire data set shows
the best performance (Table 3) regarding ROC-AUC and FNR
when we use network features. The corresponding ROC-AUC
score is 0.826, and the FNR score is 0.074. Without the network
features, the ROC-AUC score for the best-fitted model is 0.714,
and the FNR score is 0.107 (Table 5).

The ROC-AUC score improved by approximately 16%, and
the FNR score improved by approximately 31% because of the
network features. The influence of network features is also

significant in the models for the ICU and ED patient
subpopulations. The performance metric ROC-AUC improved
by approximately 27% for the ICU department patient
subpopulation, and the FNR score improved by approximately
58%. For ED patient subpopulations, the performance metric
ROC-AUC improved by approximately 30%, the FNR score
improved by approximately 69%, and the AUPRC score
improved by approximately 50%.

Network features also improve the performance of the best-fitted
model for testing history–based subpopulations (Tables 3 and
6).

The ROC-AUC performance metrics for the best-fitted model
(−1) testing the history-based subpopulation improved by
approximately 11%. For (−1, −1) testing the history-based
subpopulation, the best-fitted model performance improved by
approximately 25% on the ROC-AUC score and approximately
35% on the FNR score.

Table 5. Performance metrics of the best-performing model for each patient subpopulation based on room allocation, admission source, hospital stay,
and antibiotic medication period after excluding the network features.

MCCe

score

F1-scoreFNRdFall outPrecisionSpecificitySensitivityAUPRCcAUCbModelaSubpopulation

0.2570.4150.1070.2910.3140.7090.6100.3830.714LRfOverall

0.2330.3540.0850.2400.2620.7600.5470.3110.690LRICUg

0.2870.5410.2200.2950.4960.7050.5930.5890.722LREDh

0.2430.4140.1130.3280.3080.6720.6310.3460.692LROther rooms

0.1510.3610.2200.2010.3750.7990.3480.3400.594LRFrom HCFi

0.2610.4050.0950.2960.2980.7040.6310.3670.721LRNot from HCF

0.2610.4130.1030.2880.3110.7120.6150.3810.718LRHospital stay ≤15
days

0.1330.3120.1120.4340.2090.5660.6150.2620.595LRHospital stay >15
days

0.2880.4390.1010.2790.3360.7210.6340.4020.732LRAntibiotic ≤90
days

0.2610.4570.1380.3170.3610.6830.6210.4340.707LRAntibiotic >90
days

0.1450.2650.080 j0.3040.1780.6960.5200.2360.661LRNo antibiotic use

0.2510.4020.1000.2970.2980.7030.6170.4040.715LRAge group (0-50
years)

0.2650.4010.0900.2860.2950.7140.6280.3570.721LRAge group (≥50
years)

aThe “Model” column specifies the best-performing model (LR=penalized logistic regression classifier).
bAUC: area under the curve.
cAUPRC: area under the precision-recall curve.
dFNR: false negative rate.
eMCC: Matthews correlation coefficient.
fLR: logistic regression.
gICU: intensive care unit.
hED: emergency department.
iHCF: health care facility.
jitalics.
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Table 6. Performance metrics for the best-performing model for each patient subpopulation based on testing history after excluding the network features.

MCCe

score

F1-scoreFNRdFall outPrecisionSpecificitySensitivityAUPRCcAUCbModelaTesting history

0.1530.2810.0840.3400.1870.6600.5650.2210.660LRfNone

0.0990.0580.0980.0040.4670.9960.0310.2330.723GBg(−1)

0.2240.7080.6200.3720.8210.6280.6230.8510.685LR(+1)

0.1640.2460.0540.3850.1510.6150.6630.1960.677LR(−1, −1)

0.2230.6960.5790.3850.7860.6150.6250.7970.637SVh(−1, +1)

0.0310.3640.3230.3440.3530.6560.3750.3560.507SV(+1, −1)

0.2670.7190.6670.2810.8870.7190.6050.8810.691LR(+1, +1)

aThe “Model” column specifies the best-performing model (LR=penalized logistic regression, GB=gradient boosting, and SV=support vector).
bAUC: area under the curve.
cAUPRC: area under the precision-recall curve.
dFNR: false negative rate.
eMCC: Matthews correlation coefficient.
fLR: logistic regression.
gGB: gradient boosting.
hSV: support vector.

d-Days Ahead Model Prediction
We now examine how well the test results can be predicted per
the d-days ahead model. We expected the performance to drop
as d increases, as shown in Figure 7, which shows the

ROC-AUC score of the best-fitted model (for the data set
corresponding to d-days before the test, as described in the
Methods section) versus d. Note that the performance decays
significantly with d.

Figure 7. d-days ahead prediction: performance (receiver operating characteristics-area under the curve [ROC-AUC]) of best model versus d. The
performance drops gradually with d.

Discussion

Principal Findings
Our results demonstrate that clinically relevant models can be
developed for predicting MRSA test results with high accuracy
using a combination of clinical and nonclinical features from
EHR data. In particular, features of contact networks (eg,
“MRSA 7,” “MRSA 14,” “Provider 7,” and “Provider 14”)
constructed from EHR data are quite significant in our models.

Tables 5 and 6 show the performance of the models on the same
group of data sets without considering the network features.
The empirical results establish that the network features have
a significant impact (model performance ROC-AUC improves
by > 15%) on MRSA infection prediction.

We took the simplest approach to network construction, which
views edges as unweighted, and did not consider heterogeneity
in contacts, for example, based on types of providers. It is
interesting that even the simplest approach improves
performance. While more characteristics of networks and edge
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weights could be considered and these might improve the
performance, the value of our simple approach is that it is easier
to construct and is likely more generalizable and robust because
there might be uncertainties in some of these additional
characteristics.

In addition to network features, we observed that features
associated with antibiotic use (“Antibiotic days”, “Antibiotic
days in last 90 days”, “Antibiotic days in last 90+ days”,
“PHARMCLASS_1” to “PHARMCLASS_10”, etc.), different
kinds of events in the past 90 days (eg, kidney dialysis, device
use, and any surgery), and comorbidity conditions such as
diabetes without complications (diab or diabunc),
hypothyroidism (hypothy), uncomplicated hypertension
(hypunc), the Charlson score, the Elixhauser score, the weighted
version of the Elixhauser score using the van Walraven
algorithm (wscore vw), the weighted version of the Elixhauser
score using the Agency for Healthcare Research and Quality
(AHRQ) algorithm (wscore ahrq), and the weighted version of
the Charlson score (wscore) are also predictive; many of these
have been identified as important in prior work.

The penalized LR model with degree-2 polynomial features
performs best in almost all settings, using a new class of
network-based features derived from EHR data. Our results also
showed the utility of heterogeneous models for different
subpopulations instead of just one model for the entire
population. In particular, we obtained good performance for
subpopulations in an ICU or ED and those with certain test
histories. We also observed that the performance degrades
gradually for a d-days ahead prediction.

The testing policy is fairly systematic for patients in the ICU.
Therefore, we expect the model for ICU subpopulations to be
quite robust and generalizable to data sets from other locations.
On the other hand, it is important to note that testing in the entire
patient population is generally not completely systematic and
might have biases because it is administered per physician
request. It is unclear what the impact of these biases would be
on the model’s generalizability. A mitigating factor is that the
model for the entire population is quite close to that for the ICU,
and many of the significant factors are the same. This suggests
that the model for the entire population might also be quite
robust. Future studies on other data sets are required to
determine the generalizability of these models.

Our prediction model for a patient on day t only used features
that were available for that patient before day t. This included
the network features. Therefore, if a patient was in the hospital
for <7 days, the “MRSA 7” and “Provider 7” feature values will
be 0, and if a patient was in the hospital for <14 days, the
“MRSA 14” and “Provider 14” feature values will be 0. It is
possible that the predictive model would be more informative
for patients who have a longer history in the hospital, but even
this is an important patient population from a clinical
perspective.

Finally, we noted that the simple penalized LR model seems to
work quite well when given more complex features, such as
second-degree features. It is not completely clear why this works
much better than the other methods, namely support vector
machine, random forest, gradient-boosted classifiers, and

XGBoost. One possible explanation can be because of the model
parsimony of the penalized LR. Further research on model
validation can be useful. One advantage of our analysis is that
the penalized LR method is easy to interpret.

Our models are the most useful for clinical decisions about
empiric antibiotic use. For instance, if the test prediction is
negative, a clinician could be more comfortable starting an
antibiotic treatment. If the test prediction is positive in the
context of a newly identified infection, a clinician might
consider the benefits of starting an anti-MRSA antibiotic.
Isolation precautions are known to have many adverse effects
(eg, fewer clinician visits to the room, patient depression, and
noninfectious adverse events such as blood clots), although they
help in reducing transmission. If the d-days ahead result is
negative in a current patient with a positive MRSA result, an
epidemiologist may adjust for an earlier test for clearance of
isolation precautions.

Comparison With Prior Work
Machine learning using EHR data for clinical informatics is a
very active area of research [23,24]. Diverse kinds of statistical
and machine learning methods, including deep-learning
algorithms, have been used to predict important clinical events
(eg, hypertension, diabetes, chronic obstructive pulmonary
disease, arrhythmia, asthma, gastritis, dementia, delirium,
Clostridium difficile infection, and HAIs) using EHR data
[8,9,12,13,25-29]. In the context of HAIs, risk-prediction models
have been developed for several MDROs. We have briefly
discussed examples of such studies to illustrate the types of
questions and methods that have been considered, with a focus
on MRSA.

Hartvigsen et al [8] and Hirano et al [9] studied a similar
problem, namely, predicting MRSA test outcomes, using the
Medical Information Mart for Intensive Care III and IV data
sets, respectively. These data sets are critical care data sets
comprising 12 years (2001 to 2012 and 2008 to 2019,
respectively) of patient records from the Beth Israel Deaconess
Medical Center Intensive Care Unit in Boston, Massachusetts
[11]. Hartvigsen et al [8] show high performance for the
prediction of MRSA test outcomes 1 day ahead using
subsampled data. Hirano et al [9] achieve high performance (an
ROC-AUC value of 0.89) for a slightly different patient
subpopulation using the SMOTE [21] technique for handling
data imbalance. Rhodes et al [12] consider a slightly different
question regarding MRSA infection 72 hours after admission.
They show that the Classification Tree Analysis has good
performance for the population of patients from the
Northwestern Memorial Hospital and Lake Forest Hospital. A
review by Tang et al [13] notes that penalized LR, decision tree,
and random forest are the preferred methods for antimicrobial
resistance prediction.

A significant challenge hern all MRSA risk-prediction problems
(including our study) is that the data are quite imbalanced
because the fraction of positive observations is quite small.
Consequently, the performance of most machine learning
methods can be affected. A common strategy to address this
issue has been to construct data sets using different kinds of
sampling techniques, including biased sampling [8,10] and

JMIR AI 2024 | vol. 3 | e48067 | p. 14https://ai.jmir.org/2024/1/e48067
(page number not for citation purposes)

Kamruzzaman et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


SMOTE [30]. While this kind of approach can appear to have
very good performance on a similarly constructed test data set,
the true performance on an unbiased data set might be reduced
(as discussed in the study by Pencina et al [31] and in our
Results section), which impacts its performance when used in
practice. According to the study by Soltanzadeh and
Hashemzadeh [30], resolving the class distribution problem
using synthetic or biased data constructed in this manner causes
many issues such as (1) generalization problems because of
noisy samples; (2) uninformative samples; and (3) newly created
points being close to the minority class points, which often
create points around the decision boundary. Azizi et al [32] and
Kokosi and Harron [33] note that (1) the use of synthetic data
in the decision-making process and (2) the problem of attribute
disclosure are other limitations of using synthetic data.

Our study differs from prior work in 3 ways. First, we used
network features in addition to other EHR-based features in our
risk-prediction models. It has been shown that network
properties are predictive of infection risk, for example, Klein
et al [34] showed that patient degree is associated with
vancomycin-resistant enterococci risk. Similarly, Riaz et al [35]
show that local colonization pressure, which is based on the
network structure, is associated with C. difficile infection (CDI)
risk. Similarly, Miller et al [36] show that household exposure
(which can also be viewed as a network effect) increases CDI
risk. However, our work is the first to explicitly consider
EHR-based features for MRSA test prediction as a machine
learning task that can be used in a clinical setting. Second, we
identified heterogeneous models for specific patient subgroups
and showed that these have significantly better performance.
Finally, we developed our prediction models without any biased
sampling techniques.

Limitations
We have not been able to improve the ROC-AUC performance
of our models above 0.90. Data imbalance and patient diversity
could be significant reasons for this performance. As noted

earlier, MRSA infections are fairly rare, and for the problem of
MRSA test results, only about 15% of the results are positive.
We also note that there are many other notions of MRSA risk,
such as the risk of severe outcomes and MRSA acquisition,
which we study here. These notions are harder to formalize and
learn because the data sets would become even more biased
than what we consider here, and new methods are needed for
them.

While our results show that network features are the most
predictive, there might be uncertainties in inferring them from
the EHR data. We note that these (eg, the #providers within a
time interval) are not directly available in the patient’s EHR
data; we are inferring them through colocation information. It
is possible that many interactions are not recorded accurately
or the times might not be accurate. More work is needed to fully
understand the impact of these uncertainties.

Another issue is the testing bias. As discussed earlier, the entire
patient population data set has biases because testing is not very
systematic in general. This might have an impact on the model’s
performance when applied to data sets from other hospitals, and
the model would have to be retrained. However, the model
structure and specific features might still be relevant, especially
because they hold for the ICU patient subpopulation, for which
testing is more systematic.

Conclusions
Preprocessing by clustering has been useful in many
applications. One challenge in using this approach is that a
distance metric needs to be defined, which is difficult due to
the diversity of features. For instance, some features are datetime
related, some are Boolean and categorical, while others are real
valued. A possible extension is to transform the features into a
latent space, where distances can be computed. Additional
feature engineering and more advanced machine learning
methods might be useful for further improving performance. In
particular, text analysis might be helpful in further improving
the performance.
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