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Abstract

Background: Identification and referral of at-risk patients from primary care practitioners (PCPs) to eye care professionals
remain a challenge. Approximately 1.9 million Americans suffer from vision loss as a result of undiagnosed or untreated ophthalmic
conditions. In ophthalmology, artificial intelligence (AI) is used to predict glaucoma progression, recognize diabetic retinopathy
(DR), and classify ocular tumors; however, AI has not yet been used to triage primary care patients for ophthalmology referral.

Objective: This study aimed to build and compare machine learning (ML) methods, applicable to electronic health records
(EHRs) of PCPs, capable of triaging patients for referral to eye care specialists.

Methods: Accessing the Optum deidentified EHR data set, 743,039 patients with 5 leading vision conditions (age-related
macular degeneration [AMD], visually significant cataract, DR, glaucoma, or ocular surface disease [OSD]) were exact-matched
on age and gender to 743,039 controls without eye conditions. Between 142 and 182 non-ophthalmic parameters per patient were
input into 5 ML methods: generalized linear model, L1-regularized logistic regression, random forest, Extreme Gradient Boosting
(XGBoost), and J48 decision tree. Model performance was compared for each pathology to select the most predictive algorithm.
The area under the curve (AUC) was assessed for all algorithms for each outcome.

Results: XGBoost demonstrated the best performance, showing, respectively, a prediction accuracy and an AUC of 78.6%
(95% CI 78.3%-78.9%) and 0.878 for visually significant cataract, 77.4% (95% CI 76.7%-78.1%) and 0.858 for exudative AMD,
79.2% (95% CI 78.8%-79.6%) and 0.879 for nonexudative AMD, 72.2% (95% CI 69.9%-74.5%) and 0.803 for OSD requiring
medication, 70.8% (95% CI 70.5%-71.1%) and 0.785 for glaucoma, 85.0% (95% CI 84.2%-85.8%) and 0.924 for type 1
nonproliferative diabetic retinopathy (NPDR), 82.2% (95% CI 80.4%-84.0%) and 0.911 for type 1 proliferative diabetic retinopathy
(PDR), 81.3% (95% CI 81.0%-81.6%) and 0.891 for type 2 NPDR, and 82.1% (95% CI 81.3%-82.9%) and 0.900 for type 2
PDR.

Conclusions: The 5 ML methods deployed were able to successfully identify patients with elevated odds ratios (ORs), thus
capable of patient triage, for ocular pathology ranging from 2.4 (95% CI 2.4-2.5) for glaucoma to 5.7 (95% CI 5.0-6.4) for type
1 NPDR, with an average OR of 3.9. The application of these models could enable PCPs to better identify and triage patients at
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risk for treatable ophthalmic pathology. Early identification of patients with unrecognized sight-threatening conditions may lead
to earlier treatment and a reduced economic burden. More importantly, such triage may improve patients’ lives.

(JMIR AI 2024;3:e48295) doi: 10.2196/48295
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Introduction

In the United States alone, more than 93 million adults were at
high risk for vision loss in 2017; however, only 56.9% visited
an eye care professional annually, and only 59.8% received a
dilated eye examination [1]. More than 4 million Americans
suffer from uncorrectable vision impairment, and more than 1
million are blind; this number is predicted to more than double
by 2050 to 9 million due to the increasing epidemics of diabetes
and other chronic diseases and our rapidly aging US population
[2]. The impact of poor eyesight is manifest in its potentiation
of comorbidities, particularly in increasing the risk of disability
in patients with cognitive impairment [3]. Early identification
of patients with unrecognized sight-threatening conditions may
lead to earlier treatment and a reduced economic burden. More
importantly, such triage may improve patients’ lives.

The identification and referral of patients at risk of vision loss
from primary care practitioners (PCPs) to eye care professionals
remains a challenge [4]. A 2010 study identified a number of
barriers, including a lack of access to ophthalmic screening
within the setting of the PCP’s office [4]. Some regional efforts
have been made to improve the efficiency of triage of patients
at risk for glaucoma [5] and diabetic retinopathy (DR) [6];
however, existing initiatives triage patients on only a few
demographic and comorbidity parameters, whereas many
systemic associations have been identified for age-related
macular degeneration (AMD), cataract, DR, glaucoma, and
ocular surface disease (OSD) [7-16].

Artificial intelligence (AI) modeling techniques are becoming
increasingly important in ophthalmology in particular and
medicine in general [17-20]. In ophthalmology, AI is used to
calculate intraocular lens (IOL) powers [21-23], predict
glaucoma progression [24,25], recognize DR [26], and classify
ocular tumors [27]. To the best of our knowledge, AI has not
yet been used to triage primary care patients for ophthalmology
referral. In this study, the development, validation, and testing
of multiple predictive machine learning (ML) methods for 5
leading sight-threatening and treatable ocular pathologies (ie,
AMD, visually significant cataract, DR, glaucoma, and OSD)
that have the potential to be used by PCPs to triage patients,
based on existing data in their electronic health records (EHRs),
for referral to eye care specialists were reported.

Methods

AI Modeling
All AI techniques have in common the process of “training,”
the adjustment of importance (ie, weights) of attributes or
intermediate values, based on a set of data referred to as a

training set. The model performance is then assessed against
another set of data called the test set. Similar model performance
on training and test sets demonstrates model generalizability.
The advent of large clinical databases has made possible the
construction and training of both ML and neural network AI
models. To this end, a large commercial EHR database that
includes demographic, diagnostic, and therapeutic data to create
and curate an ophthalmologically focused data set from which
predictive models of multiple eye diseases can be built was
used. We chose to compare several different ML methods to
create models that might be used by PCPs to triage patients for
referral to an eye care specialist. The models thus created used
non-ophthalmic clinical and demographic data to assess relative
risk scores for AMD, cataract, DR, glaucoma, and OSD.

Data Source
This retrospective, case-controlled study used data from the
Optum deidentified EHR data set. EHRs provide efficient access
to detailed patient-level longitudinal data that represent integral
components of clinical care that may not necessarily be available
through other retrospective database sources, such as
administrative claims databases or patient registries [28,29].
The Optum EHR data set consists of data primarily from the
United States and represents the clinical information of more
than 80 million patients, including at least 7 million patients in
each US census region from May 2000 to December 2019. Data
from multiple EHR platforms, including Cerner, Epic, GE, and
McKesson, are analyzed by Optum by means of natural language
processing (NLP) to extract information about patient
demographics, enrollment, diagnoses, biometrics, laboratory
results, procedures, and medications [30]. The data set draws
upon a network of more than 140,000 providers at more than
700 hospitals and 7000 clinics.

Ethical Considerations
The use of the Optum EHR data set was reviewed by the New
England Institutional Review Board (IRB) and was determined
to be exempt from broad IRB approval as this research project
did not involve human subject research.

Outcome Measures
This study sought to predict the diagnosis of 5 major eye
pathologies: AMD, cataract, DR, glaucoma, and OSD. The
classification of AMD was based on the International
Classification of Diseases, 10th Revision (ICD-10) codes and
subdivided into nonexudative (H35.31%) and exudative
(H35.32%) groups, in which “%” represents a wildcard. The
classification of cataract required a more restrictive definition
than simply H25%. Since no ICD-10 code distinguishes visually
significant cataracts from those of lesser impact, we chose to
use cataract surgery as a surrogate for visually significant
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cataract. For this study, cataract was defined by the cataract
surgery Current Procedural Terminology (CPT) codes of 66982
and 66984 rather than by ICD-10. The classification of DR was
based on the data set ICD-10 codes and subdivided into type 1
nonproliferative diabetic retinopathy (NPDR;
H10.31%-H10.34%), type 1 proliferative diabetic retinopathy
(PDR; H10.35%), type 2 NPDR (H11.31%-H11.34%), and type
2 PDR (H11.35%). Glaucoma was defined by the presence of
1 or more of 3 criteria: an ICD-10 code of H40.1% (open-angle
glaucoma), the prescription of glaucoma medication, or the
presence of a CPT code indicating glaucoma surgery. This

definition was developed to capture not only patients with a
recorded diagnosis of glaucoma but also those patients being
treated for glaucoma or high-risk ocular hypertension for whom
the diagnosis of glaucoma was not recorded in the data set.
Similar to cataract, OSD required narrower criteria than simply
H04.1% and H02.88% since these codes do not distinguish OSD
requiring treatment from more mild presentations. For this study,
OSD was defined rather restrictively as patients receiving
cyclosporine ophthalmic emulsion 0.05%, cyclosporine
ophthalmic solution 0.09%, or lifitegrast ophthalmic solution
5% (see Tables 1 and 2).

Table 1. Listed medications for glaucoma.

ExamplesType of medication

Levobunolol (Betagan, Akbeta), timolol (Timoptic, Betimal, Istalol), carteolol (Ocupress), metipranolol
(Optipranolol), timolol gel (Timoptic Xe), betaxolol (Betoptic, Betoptic S)

Beta blockers

Apraclonidine (Iopidine), brimonidine (Alphagan, Alphagan P), dipivefrin (Propine)Alpha agonists

Dorzolamide (Trusopt), brinzolamide (Azopt)Carbonic anhydrase inhibitors

Latanoprost (Xalatan), bimatoprost 0.01% (Lumigan), travoprost (Travatan Z), tafluprost (Zioptan), la-
tanoprostene bunod (Vyzulta)

Prostaglandin analogs

Dorzolamide/timolol (Cosopt and Cospot Pf), brimonidine/timolol (Combigan), brinzolamide/brimonidine
(Simbrinza), netarsudil/latanoprost (Rocklatan)

Prostaglandin analogs (combined medi-
cations)

Netarsudil (Rhopressa)Rho kinase inhibitors

Table 2. Listed procedures for glaucoma.

DescriptionICD-10a code

Insertion of anterior segment aqueous drainage device, without extraocular reservoir, internal approach, into the trabecular
meshwork; initial insertion

0191T

Insertion of anterior segment aqueous drainage device, without extraocular reservoir, internal approach, into the suprachoroidal
space

0253T

Insertion of anterior segment aqueous drainage device, without extraocular reservoir, internal approach, into the trabecular
meshwork; each additional device insertion (list separately in addition to code for primary procedure)

0376T

Insertion of aqueous drainage device, without extraocular reservoir, internal approach, into the subconjunctival space; initial
device

0449T

Insertion of aqueous drainage device, without extraocular reservoir, internal approach, into the subconjunctival space; each ad-
ditional device (list separately in addition to code for primary procedure)

0450T

Insertion of anterior segment aqueous drainage device, with creation of intraocular reservoir, internal approach, into the supra-
ciliary space

0474T

Goniotomy65820

Trabeculoplasty laser65855

Transluminal dilation of aqueous outflow canal; without retention of device or stent66174

Transluminal dilation of aqueous outflow canal; with retention of device or stent66175

Aqueous shunt to extraocular equatorial plate reservoir, external approach; without graft66179

Aqueous shunt to extraocular equatorial plate reservoir, external approach; with graft66180

Insertion of anterior segment aqueous drainage device, without extraocular reservoir, external approach66183

Revision of aqueous shunt to extraocular equatorial plate reservoir; without graft66184

Revision of aqueous shunt to extraocular equatorial plate reservoir; with graft66185

ciliary body destruction by cyclophotocoagulation, trans-scleral approach66710

ciliary body destruction by cyclophotocoagulation, endoscopic approach (endoscopic cyclophotocoagulation)66711

aICD-10: International Classification of Diseases, 10th Revision.
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Creation of Patient Cohorts
Five distinct cohorts (ocular cohorts) of patients (AMD
n=294,739, cataract n=1,191,492, DR n=348,056, glaucoma
n=843,560, and OSD n=660,218) were selected from the Optum
EHR data set based on the aforementioned code definitions
from October 2015 onward (to limit the analysis to the start of
the ICD-10 coding system in the United States). The inclusion
criteria were as follows: patients with diagnosis codes such as
H 3 5 3 0 % / H 3 5 3 1 % / H 3 5 3 2 % ,  H 2 5 % ,
E083%/E093%/E103%/E113%/E133%, H40%, or
H041%/H0288% and EHRs with an ICD-10 diagnosis code
type. Patients were excluded if they had an unknown birth year,
were younger than 15 years, had less than 60 days of continuous
enrollment in the database prior to their diagnosis, had a gender
labeled as unknown, or had undergone a cataract-related
procedure or diagnosis at baseline or not undergone a
cataract-related procedure and diagnosis in the follow-up.
Patients with multiple conditions (eg, glaucoma and OSD) were
identified in both the glaucoma and OSD cohorts. For each
patient, demographic information, complete clinical and drug
use information, and comorbidities were identified. Multimedia
Appendix 1 presents the patient inclusion and exclusion criteria
and attrition data. All patients with the diagnoses present in the
database during the specified inclusion period were considered
for inclusion. Finally, the patients were segregated into subsets
based on the AMD subtype or the DR subtype. In addition, only
those patients who had open-angle glaucoma, had consumed a
glaucoma-related medication, had undergone a glaucoma-related
procedure in the follow-up, or had consumed dry eye and
meibomian gland dysfunction (DEMGD)–related medications
in the follow-up were retained. The final cohorts were as
follows: exudative AMD n=32,072 (10.9%), nonexudative AMD
n=114,839 (39%), cataract n=197,570 (16.6%), type I NPDR
n=20,654 (5.9%), type I PDR n=4465 (1.3%), type II NPDR
n=155,927 (44.8%), type II PDR n=21,032 (6%), glaucoma
n=192,727 (22.8%), and OSD n=3720 (0.6%).

For each of the 5 cohorts, a control population was created from
the pool of patients without ocular conditions. The control
populations were matched 1:1 to each ocular cohort using exact
matching on age and gender. A total of 743,039 patients with
AMD, visually significant cataract, DR, glaucoma, or OSD
were available in the Optum deidentified EHR data set, so these
were exact-matched on age and gender to 743,039 controls
without eye conditions.

Machine Learning
Several distinct ML approaches were followed to model the
outcomes described earlier. These included the generalized
linear model (GLM) [31], L1-regularized logistic regression
(L1-LR) [32], random forest (RF) [33], Extreme Gradient
Boosting (XGBoost) [34], and J48 decision tree (DT) [35].

Data Preprocessing
The data set consisted of 380 attributes, including demographic
information, diagnoses, biometrics, laboratory results,
procedures, and medications. Since some of these attributes,
particularly some of the laboratory tests, were only sparsely
represented, the data were pruned to remove attributes (ie,

“features” in ML) with more than 20% missing values. Missing
values were imputed with medians for continuous variables (eg,
BMI), with a “Missing” group for categorical variables (eg,
smoke or alcohol usage), and with the most frequent value for
binary variables (eg, levels of lab test results). Winsorization
of the data was performed to remove outliers and replace these
with 0.1 and 99.9 percentile values. Further feature engineering
was performed to remove or combine highly correlated features,
such as “rheumatoid arthritis/collagen vascular disease” and its
highly correlated cognate “connective tissue disease.” These
feature engineering steps were performed individually for each
case-controlled data set of each subpathology. The resultant
data sets exhibited between 142 and 182 features after the
above-described culling. The feature exclusion data sets for
each of the 9 subpathologies were modeled using each of 5
distinct modeling strategies to produce a total of 45 individual
ML models. These 45 models were produced and compared in
a competitive fashion to identify the single-best model for each
pathology.

Model Strategies
Logistic regression without regularization (LR), L1-LR, RF,
and XGBoost models were performed in Python (3.8.5) using
the Scikit-learn (0.23.2) and XGBoost (1.2.0) libraries. Next,
80% of the data were used for training, and 20% of the data
were used for testing with 5-fold cross-validation. A grid search
was used to optimize hyperparameters. For L1-LR, the
regularization strength C was tuned. In the RF algorithm, the
space of the number of trees and the maximum depth of each
tree combination were searched. The hyperparameter tuning for
XGBoost included the learning rate and the maximum depth of
each tree. The ML modeling pipeline was established, and
information of missing values fit and learned from the training
data was applied to the test data set to avoid information leakage.
J48 DT modeling, a Java-based implementation of the C4 tree,
was performed in the WEKA ML workbench (University of
Waikato). Finally, 10-fold cross-validation was used with an
initial leaf size of 2% of the data set. The area under the curve
(AUC) was assessed for all algorithms for each outcome to
measure the overall performance of the binary classification
models.

Results

Cohort Details
The demographic information of each cohort is shown in Table
3. Briefly, the total populations for modeling, for each cohort,
varied in size from 7440 to 395,140. Populations were mostly
female for AMD, cataract, glaucoma, and OSD requiring
medications, and the average age ranged from 51 to 80 years.

The performance of different ML strategies varied as well
(Figures 1 and 2 and Table 4), but in all cases, XGBoost
demonstrated the best performance, showing, respectively, a
prediction accuracy and an AUC of 78.6% (95% CI
78.3%-78.9%) and 0.878 for visually significant cataract, 77.4%
(95% CI 76.7%-78.1%) and 0.858 for exudative AMD, 79.2%
(95% CI 78.8%-79.6%) and 0.879 for nonexudative AMD,
72.2% (95% CI 69.9%-74.5%) and 0.803 for OSD requiring
medication, 70.8% (95% CI 70.5%-71.1%) and 0.785 for
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glaucoma, 85.0% (95% CI 84.2%-85.8%) and 0.924 for type 1
NPDR, 82.2% (95% CI 80.4%-84.0%) and 0.911 for type 1
PDR, 81.3% (95% CI 81.0%-81.6%) and 0.891 for type 2
NPDR, and 82.1% (95% CI 81.3%-82.9%) and 0.900 for type
2 PDR (Table 4). XGBoost identified several clinical attributes
that were important for diagnosis prediction (Figure 3).

The top-performing models identified the following clinical
and demographic features that were primarily contributing to
the predictions for each pathology (Figure 3; continuous
measures showed positive associations):

• Exudative AMD diagnosis prediction was associated, in
order of importance, with average household income,
percentage college education, geographical division (Middle
Atlantic, East North Central, East South Central, New
England, South Atlantic/West South Central, Mountain,
West North Central, Pacific, other/unknown), the BMI, and
the Elixhauser score (comorbidity index).

• Nonexudative AMD demonstrated similar associations. In
order of importance, these were average household income,
percentage college education, region (Northeast, Midwest,
South, West, other/unknown), smoking, and the Elixhauser
score.

• Glaucoma clinical associations, in order of importance,
included average household income, percentage college
education, adrenal or androgen use, the BMI, and race.

• Cataract clinical associations, in order of importance,
included average household income, percentage college
education, region, the BMI, and smoking.

• OSD associations, in order of importance, included average
household income, percentage college education,
geographical division, rheumatoid arthritis and connective
tissue disease, and region.

• DR associations varied over different subpathologies but
generally included the Elixhauser score, high serum glucose,
the BMI, hypertension, chronic pulmonary disease,
depression, cardiac arrhythmia, and obesity.

Performance in predicting the presence of pathology ranged
from 71% in the case of glaucoma to 87% in the case of type 1
PDR, with an average performance of 80% across all groups.
Since the intent was to identify at-risk patients, these
performance values were used to determine disease odds ratios
(ORs) according to the method described by Hogue et al [36].

Applying this to each of the models provided a clinically useful
measure. The models identified patients with elevated ORs of
the prevalence of pathology from 2.4 in the case of glaucoma
to 5.7 in the case of type I NPDR, with an average OR of 3.9
(Table 5).
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Table 3. Demographic information of each cohort with ocular disease. For each cohort, a control (age- and gender-matched) population of similar size
was generated, without the condition of interest.

Type II PDR
(n=21,032)

Type II
NPDR
(n=155,927)

Type I PDRd

(n=4465)

Type I

NPDRc

(n=20,654)

Glaucoma
(n=192,727)

OSDb requir-
ing medica-
tion
(n=3720)

Cataract
(n=197,570)

Nonexuda-
tive AMD
(n=114,839)

Exudative

AMDa

(n=32,072)

Characteristic

61.6 (12.7)64.4 (12.9)52.1 (14.6)51.5 (16.0)72.4 (13.3)68.3 (14.0)69.7 (9.9)77.1 (10.7)79.8 (10.4)Age (years),
mean (SD)

10,032
(47.7)

77,028
(49.4)

2170 (48.6)10,203
(49.4)

108,698
(56.4)

3050 (82.0)115,183
(58.3)

70,971
(61.8)

19,885
(62.0)

Gender (fe-
male), n (%)

Race, n (%)

484 (2.3)4054 (2.6)31 (0.7)186 (0.9)3662 (1.9)52 (1.4)3951 (2.0)1608 (1.4)353 (1.1)Asian

3912 (18.6)24,948
(16.0)

545 (12.2)2231 (10.8)30,065
(15.6)

272 (7.3)13,632 (6.9)2756 (2.4)374 (2.1)Black

13,166
(62.6)

106,342
(68.2)

3393 (76.0)16,337
(79.1)

139,342
(72.3)

3281 (88.2)160,229
(81.1)

97,843
(85.2)

27,903
(87.0)

White

3449 (16.4)20,582
(13.2)

500 (11.2)1900 (9.2)19,658
(10.2)

112 (3.0)23,511
(11.9)

12,632
(11.0)

3143 (9.8)Unknown

Ethnicity, n (%)

2608 (12.4)13,722 (8.8)223 (5.0)888 (4.3)7516 (3.9)86 (2.3)5927 (3.0)2067 (1.8)513 (1.6)Hispanic

15,900
(75.6)

124,118
(79.6)

3764 (84.3)17,804
(86.2)

164,589
(85.4)

3553 (95.5)168,132
(85.1)

96,465
(84.0)

27,774
(86.6)

Non-His-
panic

2524 (12.0)18,088
(11.6)

478 (10.7)1962 (9.5)20,622
(10.7)

82 (2.2)23,511
(11.9)

16,307
(14.2)

3784 (11.8)Unknown

4943 (23.5)37,111
(23.8)

1058 (23.7)4936 (23.9)47,411
(24.6)

868 (23.2)47,614
(24.1)

27,906
(24.3)

7761 (24.2)Education (col-
lege educated),
n (%)

21,032155,927446520,654192,7273720197,570114,83932,072Size of control
population, n

42,064311,854893041,308385,4547440395,140229,67864,144Total popula-
tion for model-
ing (cohort+con-
trol), n

aAMD: age-related macular degeneration.
bOSD: ocular surface disease.
cNPDR: nonproliferative diabetic retinopathy.
dPDR: proliferative diabetic retinopathy.
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Figure 1. Model accuracy by pathology degeneration; AUC = area under the curve; CI = confidence interval; J48 = Decision tree; LR = Logistic
Regression without regularization; LR-L1 = L1-regularized logistic regression; NPDR = non-proliferative diabetic retinopathy; OSD = ocular surface
disease; PDR = proliferative diabetic retinopathy; XGB = XGBoost.

Figure 2. Receiver operating characteristic (ROC) curves illustrating the diagnostic ability of the models for the 9 pathologies. amd: age-related macular
degeneration; auc: area under the curve; demgd: dry eye and meibomian gland dysfunction; j48: decision tree; l1: L1-regularized logistic regression;
lr: logistic regression without regularization; npdr: nonproliferative diabetic retinopathy; pdr: proliferative diabetic retinopathy; rf: random forest; xgb:
Extreme Gradient Boosting.
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Table 4. Model accuracy, AUCa, sensitivity, and specificity.

SpecificitySensitivityAUC (95% CI)Accuracy (95% CI)Outcome and algo-
rithms

Cataract

0.7760.7960.878 (0.875-0.880)78.6% (78.3%-78.9%)XGBoostb

0.6930.7490.811 (0.808-0.814)72.1% (71.8%-72.4%)RFc

0.6950.6830.767 (0.764-0.771)68.9% (68.6%-69.2%)LR-L1d

0.6950.6830.767 (0.764-0.771)68.9% (68.6%-69.2%)LRe

0.6280.7020.710 (N/A)66.5% (N/Ag)J48 DTf

Exudative AMDh

0.7780.7690.858 (0.851-0.863)77.4% (76.7%-78.1%)XGBoost

0.7150.7450.817 (0.810-0.825)73.0% (72.2%-73.8%)RF

0.7200.7160.794 (0.786-0.802)71.8% (71.0%-72.6%)LR-L1

0.7200.7170.794 (0.786-0.801)71.8% (71.0%-72.6%)LR

0.6600.7070.721 (N/A)68.1% (N/A)J48 DT

Nonexudative AMD

0.7830.8010.879 (0.876-0.882)79.2% (78.8%-79.6%)XGBoost

0.6980.7680.823 (0.820-0.827)73.3% (72.9%-73.7%)RF

0.6970.7290.794 (0.790-0.798)71.3% (70.9%-71.7%)LR-L1

0.7000.7270.794 (0.790-0.798)71.3% (70.9%-71.7%)LR

0.6220.7410.725 (N/A)68.1% (N/A)J48 DT

OSDi

0.7350.7080.803 (0.780-0.824)72.2% (69.9%-74.5%)XGBoost

0.6690.7490.771 (0.747-0.795)70.9% (68.6%-73.2%)RF

0.6880.6910.757 (0.732-0.782)69.0% (66.7%-71.3%)LR-L1

0.7020.6880.757 (0.733-0.782)69.5% (67.2%-71.8%)LR

0.6280.6750.702 (N/A)65.1% (N/A)J48 DT

Glaucoma

0.7280.6890.785 (0.782-0.788)70.8% (70.5%-71.1%)XGBoost

0.7020.6560.741 (0.738-0.745)67.9% (67.6%-68.2%)RF

0.6140.6220.669 (0.665-0.673)61.8% (61.5%-62.1%)LR-L1

0.6170.6190.669 (0.665-0.673)61.8% (61.5%-62.1%)LR

0.5930.6470.647 (N/A)62.0% (N/A)J48 DT

Type I NPDRj

0.8500.8500.924 (0.919-0.930)85.0% (84.2%-85.8%)XGBoost

0.7900.7990.872 (0.864-0.879)79.5% (78.6%-80.4%)RF

0.8240.8470.908 (0.902-0.915)83.5% (82.7%-84.3%)LR-L1

0.8240.8470.908 (0.902-0.915)83.5% (82.7%-84.3%)LR

0.7210.7560.796 (N/A)73.8% (N/A)J48 DT

Type I PDRk

0.8280.8160.911 (0.897-0.924)82.2% (80.4%-84.0%)XGBoost

0.7440.8020.861 (0.846-0.878)77.3% (75.4%-79.2%)RF
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SpecificitySensitivityAUC (95% CI)Accuracy (95% CI)Outcome and algo-
rithms

0.7770.8470.895 (0.881-0.910)81.2% (79.4%-83.0%)LR-L1

0.7870.8290.894 (0.880-0.910)80.8% (79.0%-82.6%)LR

0.6860.7610.804 (N/A)72.4% (N/A)J48 DT

Type II NPDR

0.7820.8450.891 (0.888-0.893)81.3% (81.0%-81.6%)XGBoost

0.7520.7510.833 (0.830-0.836)75.1% (74.8%-75.4%)RF

0.7390.8430.866 (0.863-0.869)79.1% (78.8%-79.4%)LR-L1

0.7390.8440.866 (0.863-0.869)79.1% (78.8%-79.4%)LR

0.7570.6350.742 (N/A)69.6% (N/A)J48 DT

Type II PDR

0.8010.8410.900 (0.893-0.907)82.1% (81.3%-82.9%)XGBoost

0.7900.7630.858 (0.850-0.865)77.7% (76.8%-78.6%)RF

0.7630.8340.880 (0.873-0.887)79.9% (79.0%-80.8%)LR-L1

0.7530.8470.880 (0.873-0.887)80.0% (79.1%-80.9%)LR

0.7480.6740.774 (N/A)71.1% (N/A)J48 DT

aAUC: area under the curve.
bXGBoost: Extreme Gradient Boosting.
cRF: random forest.
dL1-LR: L1-regularized logistic regression.
eLR: logistic regression without regularization.
fDT: decision tree.
gN/A: not applicable.
hAMD: age-related macular degeneration.
iOSD: ocular surface disease.
jNPDR: nonproliferative diabetic retinopathy.
kPDR: proliferative diabetic retinopathy.

Figure 3. Clinical features primarily contributing to the predictions for each pathology. amd: age-related macular degeneration; demgd: dry eye and
meibomian gland dysfunction; hh: household; npdr: nonproliferative diabetic retinopathy; pct: percentage; pdr: proliferative diabetic retinopathy; xgb:
Extreme Gradient Boosting.
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Table 5. Model accuracy and ORsa by pathology.

OR (95% CI)Model accuracy, %Pathology

3.4 (3.2-3.7)77Exudative AMDb

3.8 (3.6-4.0)79Nonexudative AMD

3.7 (3.6-3.8)79Cataract

2.6 (2.1-3.3)72OSDc

2.4 (2.4-2.5)71Glaucoma

4.6 (3.6-5.9)82Type I PDRd

5.7 (5.0-6.4)85Type I NPDRe

4.6 (4.1-5.1)82Type II PDR

4.3 (4.2-4.5)81Type II NPDR

aOR: odds ratio.
bAMD: age-related macular degeneration.
cOSD: ocular surface disease.
dPDR: proliferative diabetic retinopathy.
eNPDR: nonproliferative diabetic retinopathy.

Discussion

Principal Findings
A major challenge of current deep learning (DL) models is that
their training requires a large amount of data because insufficient
data may decrease the performance of DL models [37]. The
original EHR data pool for this study comprised more than 80
million patients, one of the largest AI projects of its kind in
ophthalmology. The final study populations totaled 1,486,078
patients, 50% of whom were controls. In addition to the
substantial patient population, this study examined 9
subpathologies using 5 different analytical modeling approaches
to identify the most predictive model for each pathology.

The goal of this effort was to create a digital health tool to
identify patients at higher risk for the presence of ophthalmic
pathology and to do this based solely on the sort of
non-ophthalmic data to which a PCP would have access. The
authors do not propose to either make definitive ophthalmic
diagnoses or predict the development of future pathology.
Rather, this work seeks to identify patients whose clinical and
demographic context is associated with the presence of AMD,
cataract, clinically significant DR, glaucoma, or OSD of a
magnitude requiring pharmacological therapy. The creation,
demonstration, and real-world validation (within a clinical
setting) of a deployable digital tool will be the next step of this
project.

The application of such a model in the clinical setting would
allow a PCP to identify patients nearly 4 times more likely to
have ophthalmic pathology. Such a tool would bring a
substantial benefit in the triage and referral of at-risk patients
to eye care professionals.

Data and Outcome Engineering
These data consist of diagnostic and procedure codes; biometric
data, such as the BMI and vital signs; demographic information,

including socioeconomic and geographical information;
laboratory results; and medications prescribed. This information
does not include the physician notes that might provide a
rationale for the diagnoses recorded. Indeed, since only a limited
number of diagnoses may be listed on a claim, it is possible that
some extant diagnoses may have gone unrecorded. However,
diagnoses like cataract and OSD may be overrepresented since
the ICD-10 taxonomy does not distinguish between clinically
significant cataract and OSD from cases in which these
pathologies are subclinical. Indeed, it would be of little clinical
utility to build an AI model that detects subclinical cataracts.

Ours is not the first study to be faced with the challenge of
identifying clinically relevant diagnoses from large data sets.
A 2018 study [38] investigated the precision of ICD-10 codes
for patients with uveitis and found that 13 of 27 uveitides were
imprecisely defined and that multiple codes were used to
describe the same pathology. A 2020 study of ocular pathology
in patients with stroke [39] noted fewer patients with glaucoma
than anticipated and attributed this to the lack of ophthalmology
clinic data. The authors noted that patients may be on glaucoma
medications without a concurrent ICD-10 code recorded for
glaucoma, suggesting that a diagnosis of glaucoma may have
been recorded in the patients’ medical records before
incorporation into the data set. The authors sought, therefore,
to define the glaucoma cohort as those patients who met 1 or
more of 3 criteria: an ICD-10 code of H40.1% (open-angle
glaucoma), the prescription of glaucoma medication, or the
presence of a CPT code indicating glaucoma surgery (see Tables
1 and 2). This definition was developed to both detect glaucoma
patients without glaucoma ICD-10 codes and to exclude patients
inappropriately labeled as glaucoma by ICD-10. This definition
resulted in a substantial winnowing of the glaucoma cohort from
1,368,700, 50% of whom were controls, to 385,514 patients.

The authors took a similar approach to the cataract and OSD
study populations. Cataract and OSD are among the most
frequently recorded diagnoses on claims [40]. Cataract, in
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particular, is nearly ubiquitous in elderly patients and was the
most common ophthalmic ICD-10 diagnosis of those examined
here. Since only a subset of these patients require cataract
surgery, the detection of cataract alone is not clinically useful.
ICD-10 coding does not distinguish between cataracts requiring
surgery and those that do not. However, CPT coding, in a sense
does make this distinction. Therefore, CPT codes of 66984
(cataract extraction with intraocular lens) and 66982 (complex
cataract extraction) were chosen as the criteria for clinically
significant cataracts. This narrowing of the inclusion criteria
reduced our cataract study population from 2,087,836, 50% of
whom were controls, to 395,140 patients. OSD coding is even
more problematic. A large number of ICD-10 codes are
available, and clinical significance is difficult to establish. Our
initial cohort of OSD patients and controls totaled 1,182,912
patients. To model the clinical context associated with OSD, a
restrictive criterion was chosen: the prescription of topical
cyclosporine or lifitegrast. This greatly reduced the OSD
population to 7440 patients, but this ensured the final population
represented patients with clinically meaningful disease. No
outcome engineering measures were applied to the AMD groups
or to the DR groups, each of which was defined by its
corresponding ICD-10 code.

In addition, PDR and NPDR could have been combined into 1
group since the referring physician probably would not care
about what sort of DR the patient has. However, the NPDR
group is so much larger than the PDR group that the authors do
not expect that the segmentation is detrimental.

Clinical and Demographic Attributes and Feature
Engineering
The initial data set included a large number of attributes or
“features” (in the language of ML), totaling 380 individual
parameters. To produce models that would not be burdensome
for the clinician to use, the authors sought to reduce the number
of attributes required by each model. This reduction and
modification of model parameters is referred to as “feature
engineering.” For a feature to be included in the final model,
several criteria needed to be met. The feature must play a
significant role in the model’s outcome. It is self-evident that
features that do not contribute substantially to a model may be
discarded with little impact on model performance. In the case
of the XGBoost models, parameter optimization was performed
by the grid search algorithm [41]. The second feature inclusion
criterion was noncorrelation with other features. In some cases,
such as between weight and the BMI, the correlation is evident.
However, the correlation between other clinical features only
becomes clear on analysis. The issue of feature correlation
highlights a difference between AI and traditional risk analysis
studies. When studied individually, certain attributes, such as
obesity and socioeconomic status, may be identified as disease
risk factors. However, when viewed collectively, the importance
of 1 of these may be reduced if the 2 attributes are highly
correlated. The third criterion for feature inclusion was high
frequency in the data set. Some of the laboratory values,
particularly serum fibrinogen, were so sparse in the data set that
exclusion of the feature was preferable to the alternatives of
sample reduction or interpolation. Two thresholds for feature
sparsity were established in this project. Models were built upon

data sets that excluded features with more than 20% missing
values. Feature engineering substantially benefits from guidance
by clinical domain experts [42], and our feature and outcome
engineering was clinically informed, particularly in the realm
of the diagnostic criteria described earlier. The features included
in the final XGBoost model, the top-performing strategy, are
available as supplementary materials to this manuscript.
XGBoost is a DT-based ensemble modeling method. It can
effectively capture the nonlinear relationship between predictors
and the outcome by combining many weaker models to create
a strong model. “Weak” and “strong” here refer to how
correlated the models are to the outcome. The algorithm added
models sequentially, and the next model corrected the error
from the previous model. Through this iterative process, the
data can be eventually accurately predicted by the model.

Usage Data and Generalizability
The application of usage data to this effort is both a weakness
and a strength of this project. These data do not contain the
richness of a complete medical record. It is therefore impossible
to establish the criteria under which the clinicians made the
diagnoses recorded—hence our outcome engineering maneuvers
to establish stricter criteria (eg, using CPT codes for cataract
surgery to identify patients with clinically significant cataract).
At the same time, models built upon these sorts of data are more
generalizable and available than models built upon more specific
and perhaps more idiosyncratic data sources. These are precisely
the sorts of data available to PCPs, making these models more
easily deployable than models built upon a specific medical
record system. Indeed, the availability of these data is illustrated
by our being able to investigate a base of more than 80 million
patients from disparate health care systems.

Definitions of the parameters used in these models is a topic
worth addressing. The parameters ingested by the models that
are used to make predictions include pathologies and
demographics that would ordinarily require a clear and
consistent definition. These parameters include macular
degeneration whose definition should be established a priori to
demographic terms, such as gender and sex, that not only require
definition but also incorporate the idea of nonbinary values.

It is the nature of large electronic medical record studies that
such definitions are impossible to impose externally and that
the interpretations of gender, hypertension, diabetes, and
glaucoma are likely to vary among the practitioners and patients
who themselves may be the source of the data of these values
in the data set. Our use of a database of 80 million patients
provides a large degree of protection from selection bias.
However, because these clinical definitions are intrinsic to the
data set itself, a great deal of caution must be exercised when
attempting to draw inferences about pathogenesis simply by
evaluating the most correlative features of the model. However,
the limitation of the model to revealing the disease process
makes the model no less valuable in its ability to predict which
patients are at the highest risk for unrecognized eye disease.

Hierarchical Relationships
It should be noted that the clinical features identified as relevant
by each of the pathology models should be viewed as correlative
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but not necessarily causative. It is better to think of the collection
of clinical values as a patient’s clinical milieu rather than as a
collection of individual risk factors. Although it is difficult to
imagine that college education is itself a risk factor for
pathology, its correlation and importance to a given model
should not be discounted, since it does contribute to the model’s
predictiveness of the presence of pathology. All of this is not
to say that causation may not exist in the relation between some
of these features and the pathologies modeled. Highly
multidimensional clinical AI studies like this one may identify
previously unrecognized factors that directly influence
pathogenesis. However, causative connection cannot be
established by this sort of study and would require a more
traditional experimental approach. Although the J48 DT models
did not perform as well as the GLM or XGBoost strategies, they
are informative in that they describe hierarchical relationships
among clinical features. As an example, the J48 model for
glaucoma identifies race, systemic steroids, and antidiabetic
medication use as important clinical features. However, the
model dictates the order in which these factors should be
considered, assessing race only after it is established whether
the patient takes antidiabetic medications and assessing systemic
steroid use only after these first 2 attributes have been
determined. Such a hierarchical relationship among clinical
features and demographic characteristics would be enormously
difficult to establish in traditional reduced-dimensional scientific
queries. This gestalt approach to multidimensional clinical
context is one of the strengths of AI.

Decision Support
Ophthalmology is well suited for AI, given the rich visual
information and data available; complex ophthalmological
systems are better understood and eye care enhanced through
sophisticated analysis and prediction. Integrating AI into clinical
practice may facilitate better patient outcomes, given the
complexity of disease diagnosis, treatment selection, and clinical
testing. Ophthalmological clinical decision support systems that
aid in diagnosis could improve the accuracy and efficiency of
decision-making processes in ophthalmology, ultimately leading
to improved patient access, outcomes, and potentially costs [43].

These models predict the presence of extant pathology. They
would be of value in the identification of populations in which
these pathologies are substantially more prevalent than in the
general population. The models should not be used to make a
diagnosis for an individual patient but rather to identify patients
at risk of having undetected AMD, cataract, DR, glaucoma, or
OSD. Further, these models are built upon clinical data in which
an ophthalmic pathology is or is not present. That is to say, the
models presented here are not constructed to predict the
development of future pathology. It may or may not be the case
that a particular clinical context, as defined by the
multidimensional features incorporated into the models, may
predict the development of future disease, but that is not
appropriate way to use the models presented. These models
predict the presence of ophthalmic pathology based upon
non-ophthalmic data and would be best used for triage and
referrals from non-ophthalmologists to eye care specialists. The
research is designed to raise awareness about the variables
associated with referral to heighten PCPs’ vigilance to the

clinical and demographic characteristics that may need further
reflection and attention.

Real-World Application Prospects of Ophthalmological
AI Models
Advances in computing power combined with disruptions in
health care resulting from unprecedented circumstances of the
COVID-19 pandemic have prompted the worldwide exploration
of AI-based systems in several medical subfields, including
ophthalmology [44]. Ophthalmology has been at the forefront
of AI research, in particular ML and DL approaches, because
of the ubiquitous availability of noninvasive, rapid, and
relatively inexpensive ophthalmic imaging [45]. Ophthalmic
AI systems are advantageous in that they decrease the amount
of time required to interpret image data, enable ophthalmologists
to gain a greater understanding of disease progression, and assist
with early-stage diagnosis, staging, and prognosis [46].

Numerous factors will determine the successful adoption of AI
technologies into clinical practice. AI innovations that help
clinicians manage the complexity (rather than add yet another
layer of complexity) associated with effective ophthalmological
care will likely be better received. In addition, the ability for
critical appraisals by optometrists and ophthalmologists will be
key to validating the theoretic models. AI models can be difficult
to interpret and explain, which can make it difficult for
stakeholders to understand how decisions are made [47]. It is
important that the AI models be transparent and explainable in
order to gain and maintain the trust of health care professionals,
patients, and other decision makers. Providers of AI technologies
and educators also need to ensure that training needs are
adequately assessed and value to patient outcomes demonstrated
if the promise of AI in ophthalmological care is to be realized.

AI has the potential to provide invaluable insights across
multiple domains of ophthalmology. By leveraging ML
algorithms, AI can process and analyze vast amounts of
information, including physiological data, EHRs, 3D images,
radiology images, histologic evaluation, genomic sequencing,
and administrative and billing data. One advantage that could
be realized by the algorithms discussed herein is that they use
commonly collected data contained within an EHR system to
identify eye disease risk. This means that the algorithms could
be deployed in the background of an EHR to enable inference
of an entire PCP’s or practice’s patient population. The results
of this inference could appear as a flag in a patient chart, alerting
the PCP for a given patient as to the need to refer to an eye care
professional for further evaluation. The approach of deploying
these algorithms within the EHR would also enable further
validation and assessment of algorithm generalizability prior
to clearing the algorithm for regular use by PCPs. Additional
validation steps such as this would help identify any local biases
for a given patient population and enable monitoring
performance for algorithmic drift.

Data infrastructure is an important influencer for the adoption
of AI innovations. AI requires a continuous supply of
high-quality data. Data quality issues may entail accuracy,
completeness, consistency, timeliness, integrity, relevance, data
collection, preprocessing, management, data governance, and
data labeling [47]. Storage challenges, processing challenges,

JMIR AI 2024 | vol. 3 | e48295 | p. 12https://ai.jmir.org/2024/1/e48295
(page number not for citation purposes)

Young et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


data management challenges, data heterogeneity, data privacy
and security, bias and representativeness, and data access are
also data quality considerations [47]. An appropriate data
infrastructure, including its maintenance and evolution over
time, is a prerequisite for successful AI applications.

Management of eye health necessitates a multidisciplinary team
with a dynamic flow of information between treating doctors
[48]. Holley and Lee’s [4] qualitative research found that PCPs
had poor communication with eye care providers and the PCPs
desire changes in the current referral-to-eye-care system. Better
communication between PCPs and eye care professionals,
further implementation of EHRs, and increasing eye screening
in primary care clinics were common themes. Moudgil et al
[48] found that 80% of the physicians communicated with
ophthalmologists sometimes, whereas only 10% ensured
communication at all times. The information sought by the
treating physicians from the ophthalmologists regarding their
referral for ocular findings included severity, the grading of
DR, other ocular changes, need for intervention, and the
frequency of screening and follow-up based on changes
observed.

Finally, ethical considerations call for AI systems to adhere to
the principles of fairness and nondiscrimination [49,50].
Advances in modern medicine are sometimes stymied by the
inability to translate evidence-based care to all patients [51].
Transparency of AI models is essential to be able to evaluate
and ensure their relevance for diverse populations and the ability
to translate the innovations to all settings of care.

Limitations
Several limitations are inherent in the use of aggregated clinical
data. Longitudinal data on patients are limited, and this, by
extension, limits projects such as ours in their ability to predict
the development of future pathology. Although the data set does
derive information from EHRs, including Epic, Cerner, GE,
and McKesson, the actual physicians’ notes are not available
for analysis. Aggregated data also disproportionally represent

hospital encounters and underrepresent outpatient visits [52].
Attempts to mitigate some of these deficiencies in the feature
and outcome engineering methods are described before. A
certain degree of circumspection should be exercised when
applying this model more broadly to other databases that may
have used different NLP protocols.

A challenge with deploying these models in their current form
is that the richness of data (ie, number of parameters) to be input
into the models must be balanced against the labor the clinician
must expend entering them. The authors sought to reduce feature
input without substantially affecting model predictive
performance. The goal is to develop tools that will aid clinicians
and reduce the number of undiagnosed serious ophthalmic
conditions. Empirically based analyses such those presented
here are exploratory and intended to generate insights worthy
of subsequent investigation with different study designs and
methods that are better suited for causal inference.

It is important to note that data quality and representativeness
are a potential issue for ML model training from EHRs and
other clinical databases. EHR data can be incomplete,
inconsistent, or erroneous, given the nature of the data collection
and documentation. EHR data can also be biased toward
populations with better access to health care. Some of these
issues (eg, access) are inherent to our health care system in
general and are not specific to EHR data. Regardless of the
source of the issue, it is important to note that models trained
and tested on EHR data may not be generalizable to the larger
population.

Conclusion
In summary, this research demonstrates real patient triage
potential by deploying AI strategies directly to PCP EHRs. In
addition, based on the original data pool (more than 80 million
patients), the final study population size (1,486,078 patients,
50% of whom were controls) and the 9 subpathologies using 5
different analytical modeling approaches, the authors believe
this study to be one of the largest AI projects in ophthalmology.
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