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Abstract

Background: Hypertension is the most common reason for postpartum hospital readmission. Better prediction of postpartum
readmission will improve the health care of patients. These models will allow better use of resources and decrease health care
costs.

Objective: This study aimed to evaluate clinical predictors of postpartum readmission for hypertension using a novel machine
learning (ML) model that can effectively predict readmissions and balance treatment costs. We examined whether blood pressure
and other measures during labor, not just postpartum measures, would be important predictors of readmission.

Methods: We conducted a retrospective cohort study from the PeriData website data set from a single midwestern academic
center of all women who delivered from 2009 to 2018. This study consists of 2 data sets; 1 spanning the years 2009-2015 and
the other spanning the years 2016-2018. A total of 47 clinical and demographic variables were collected including blood pressure
measurements during labor and post partum, laboratory values, and medication administration. Hospital readmissions were verified
by patient chart review. In total, 32,645 were considered in the study. For our analysis, we trained several cost-sensitive ML
models to predict the primary outcome of hypertension-related postpartum readmission within 42 days post partum. Models were
evaluated using cross-validation and on independent data sets (models trained on data from 2009 to 2015 were validated on the
data from 2016 to 2018). To assess clinical viability, a cost analysis of the models was performed to see how their recommendations
could affect treatment costs.

Results: Of the 32,645 patients included in the study, 170 were readmitted due to a hypertension-related diagnosis. A cost-sensitive
random forest method was found to be the most effective with a balanced accuracy of 76.61% for predicting readmission. Using
a feature importance and area under the curve analysis, the most important variables for predicting readmission were blood
pressures in labor and 24-48 hours post partum increasing the area under the curve of the model from 0.69 (SD 0.06) to 0.81 (SD
0.06), (P=.05). Cost analysis showed that the resulting model could have reduced associated readmission costs by US $6000
against comparable models with similar F1-score and balanced accuracy. The most effective model was then implemented as a
risk calculator that is publicly available. The code for this calculator and the model is also publicly available at a GitHub repository.

Conclusions: Blood pressure measurements during labor through 48 hours post partum can be combined with other variables
to predict women at risk for postpartum readmission. Using ML techniques in conjunction with these data have the potential to
improve health outcomes and reduce associated costs. The use of the calculator can greatly assist clinicians in providing care to
patients and improve medical decision-making.
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JMIR AI 2024 | vol. 3 | e48588 | p. 1https://ai.jmir.org/2024/1/e48588
(page number not for citation purposes)

Tao et alJMIR AI

XSL•FO
RenderX

mailto:ymintz@wisc.edu
http://dx.doi.org/10.2196/48588
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

pregnancy; postpartum; hypertension; preeclampsia; blood pressure; hospital readmission, clinical calculator; healthcare cost;
cost; cohort analysis; utilization; resources; labor; women; risk; readmission; cohort; hospital; statistical model; retrospective
cohort study; predict; risk

Introduction

Hypertensive disorders of pregnancy (HDP) are common and
estimated to occur in 10% of pregnancies in the United States.
In addition to complicating the management of pre- and
postdelivery periods, hypertension is the leading cause of
postpartum readmission, accounting for 9.3%-27% of
postpartum readmissions [1-3]. Postpartum readmission is
costly, both in health care dollars and in quality-of-life measures
for mothers and new families. In addition, HDP increases
maternal morbidity and mortality and is associated with an
increased risk of cardiovascular disease later in life [4-8].

A study published in the Journal of Hypertension in 2018
estimated that preventable postpartum readmission in women
with hypertension resulted in 20,240 excess inpatient hospital
days and US $36 million excess medical costs [9]. Rates and
reasons for readmission have been under recent scrutiny and
offer an area to improve health care delivery and preventative
care. All-cause hospital readmission rates are on the rise with
risk factors for all-cause postpartum readmission including
public insurance, race, presence of comorbid conditions
including hypertension and diabetes, and cesarean section [3].

Approximately 30% of women who experience
hypertension-related postpartum readmissions do not have
antecedent diagnoses of hypertension, thus making it imperative
to include normotensive patients without an HDP before
postpartum discharge in evaluating for postpartum readmission
[10]. As such, our objective was to identify key clinical
variables, in addition to demographic characteristics, implicated
in postpartum readmission of all birthing persons using a
machine learning (ML) model. This prediction task is
challenging because while costs related to readmission are high,
readmission rates are low resulting in highly imbalanced data
sets that are challenging to use in training ML models. For
instance, while existing models have strong overall accuracy
performance (out of sample, an area under the curve of 0.81)
[11], they do so by trading off high specificity for low sensitivity
which could result in many readmission cases going undetected
and not properly treated. We hypothesized that blood pressure
metrics during labor, not just post partum, would impact
readmission rates. Similarly, we hypothesized that
antihypertensive medication administration and high
preeclampsia laboratory values during initial readmission would
increase the readmission rate.

Methods

Ethical Considerations
We obtained institutional review board approval (#2016-006).
Individual patient consent was not required due to the
retrospective study design. The data set was deidentified before
study analysis. No compensation was provided to human

participants as this was a retrospective study that involved
development of a retrospective data set using electronic medical
records (EMRs).

Chart Review and Inclusion
We initially performed a retrospective chart review of all
patients who delivered at a single, midwestern academic center
hospital between 2009 and 2015. Inclusion criteria for this study
included all women who delivered a baby in this time frame.
We wanted to ensure that we captured all hypertension-related
readmissions within 42 days post partum regardless of a
diagnosis of hypertension before hospital discharge from the
delivery of their infant. The primary outcome was
hypertension-related readmission; therefore, all readmissions
included in this data set were specific to hypertension only. To
confirm our previous results and create a larger sample size, we
extended the study population to include births from 2016 to
2018 and used a similar process to manage the data of all
patients who delivered at the same birthing hospital. We used
the hospital’s PeriData website [12] data set, which is used to
contribute birth-related outcomes to the state-wide database for
clinical perinatal information and additional hospital-run reports
to obtain additional data available from the EMR. We collected
demographic as well as clinical data, including blood pressure
measurements during labor and post partum, laboratory data,
and medication administration at the patient level to be our
predictor variables. Hospital readmissions and our prediction
response variable were verified by patient chart review. Given
that the data came from multiple sources and had missing
observations, the raw data set could not be used directly for
analysis.

Analytics Plan

Data Processing and Feature Engineering
We processed the raw data set and then merged the processed
data including patient demographics, blood pressure
measurements, medication administration, and laboratory
information from different sources into 1 pandas data frame
[13]. Race and ethnicity were entered in the medical chart based
on the patient’s self-identity at the time of admission to the
health care system. Laboratory results were included in this
analysis because they are involved in the classification and
severity of HDP. Laboratory results included liver function
tests, hemoglobin and platelet counts, creatinine, and urine
protein. We analyzed blood pressure records with timestamps
and identified the highest systolic blood pressure and associated
diastolic blood pressure during 3 time periods, that are, labor,
0-24 hours post partum, and 24-48 hours post partum, because
we expected blood pressure during labor and post partum to be
important features for predicting hypertensive readmissions.
Using the medication administration data from the EMR, we
constructed the following binary (yes or no) attributes for the
following medication name and route administered: (1) oral
labetalol, (2) intravenous labetalol, (3) oral nifedipine-immediate
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release, (4) oral nifedipine-extended release, (5) intravenous
hydralazine, and (6) oral ibuprofen. To obtain these features,
we started with a full medication data set for each patient’s
medical registration number that included the medication name,
time administered, dosage, and route of administration. This
meant that there were multiple entries per medical registration
number if a particular patient was given that medication more
than once. The key challenge of using the medication data was
that there were significant missing data; moreover, not all
patients received all medications, and the individual medication
schedules could be infrequent. For this reason, we considered
only the binary attributes instead of the full medication schedule
to ensure that the data points were dense enough for the analysis.

Predictive Model Training and Validation
We used a cost-sensitive random forest method to predict which
patient would experience a hypertension-related postpartum
readmission [14]. Since the data set was imbalanced (only 170
readmissions out of 32,645 participants), the use of class weights
that penalize false negatives significantly higher than false
positives was necessary to avoid ML models that predict every
sample as the negative class. We considered other candidate
classifiers namely logistic regression with L1 or L2
regularization, support vector machines (SVM) with polynomial,
radial basis function or sigmoid kernel, and a standard decision
tree approach for the prediction task. To measure the predictive
performance of each model, we considered a combination of
different metrics. In the case of imbalanced data, reporting high
accuracy may be inappropriate since a highly accurate model
could simply ignore the rare class and still achieve high
accuracy. Therefore, we considered 2 complementary scores
for assessing our model namely balanced accuracy and the
F1-score [15]. The balanced accuracy can be thought of as
balancing the frequency of true positives and true negatives.
When calculating accuracy, it can be calculated by averaging
the true negative rate (specificity) and the true positive rate
(sensitivity) of the model. In addition to prediction accuracy,
since our setting has a low frequency of positive cases, we
needed to ensure our selected model had high precision
(alternatively low false alarm rate). For that reason, we also
considered the F1-score, which measures the balance between
the precision and the true positive rate. We tuned the
hyperparameters of each model using cross-validation. For the
outer loop, we iterated every hyperparameter combination. Then
we performed stratified 5-fold cross-validation in the inner loop
and optimized the hyperparameters by evaluating the average
balanced accuracy. Each model was trained using its respective
classifier implementation from scikit-learn [16].

We trained models on the 2009-2015 data and 2016-2018 data
individually and validated them using the 5-fold cross-validation

pipeline. The purpose of this was to see if different factors
impacted readmission rates and decisions between the 2 time
periods. For added validation, we computed the performance
of models trained on the 2009-2015 data set using the 2016-2018
data to evaluate our pipeline. The final model deployed in
practice was tuned using the combined data set and 5-fold
cross-validation. We performed a feature importance analysis
on the best models chosen by cross-validation for each data set.

Cost Analysis and Estimating Clinical Impact
To estimate the clinical impact of predictions, we completed 2
different forms of cost analysis. For each candidate model
considered, we used the above cross-validation procedure to
compute their estimated implementation costs.

We estimated the value of a false negative (an unplanned or
unpredicted readmission) to be US $20,439 and the value of a
false positive (the price of labetalol for 6 weeks for a patient
who ultimately did not need it) to be US $36. These costs were
based on estimates derived from our previous research [17]. In
addition, for the cost-sensitive random forest model (which we
ultimately determined was the most effective model), we
performed an additional analysis. For this analysis, we took the
model’s score for how likely a patient was to be classified as
needing readmission and compared it with a predictive threshold.
If the model score was larger than the threshold, the model
would predict that the patient would be readmitted. When the
threshold is <0.5, more patients are predicted to be readmitted
and if the threshold is >0.5, more patients are predicted to not
be readmitted. We used leave-one-out cross-validation to
compute the overall medical costs and balanced accuracy for
different thresholds between 0 and 1. The goal of this analysis
was to see how model scores should be interpreted in practice
by decision makers so that overall medical costs are minimized.

Results

Data Overview
From January 2009 to December 2018, a total of 39,133 women
delivered at our hospital; however, only 32,645 had complete
medical records available for analysis. Of these, 170 women
were readmitted for a hypertension-related diagnosis. There
was a statistically significant difference between the readmitted
group and the not readmitted group in terms of maternal age,
gestational age at delivery, race, BMI, mode of delivery, and
hypertension diagnosis. The readmitted group was more likely
to be older, having earlier gestational age at delivery, Black
race, higher BMI, cesarean delivery, and having a diagnosis of
chronic or pregnancy-induced hypertension (Table 1). The rate
of hypertension diagnosis in our sample was 9%. The rate of
readmission was 0.5%.
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Table 1. Patient demographics and comparisons between the readmitted group and the not readmitted group.

P valueNot readmitted (n=32,475)Readmitted (n=170)All patients (N=32,645)Characteristics

<.00130.5 (5.3)32.9 (5.7)30.5 (5.3)Maternal age, mean (SD)

.29Parity, n (%)

10,725 (33)61 (35.9)10,786 (33)Nulliparous

17,851 (55)95 (55.9)17,946 (55)Multiparous

3899 (12)14 (8.2)3913 (12)Unknown

<.00138.9 (2.4)37.7 (2.5)38.9 (2.4)Gestational age at delivery in weeks, mean
(SD)

<.001Race, n (%)

26,058 (80.2)130 (76.5)26,188 (80.2)White

1203 (3.7)18 (10.6)1221 (3.7)Black

2520 (7.8)12 (7.1)2532 (7.8)Asian Indian

852 (2.6)3 (1.8)855 (2.6)Asian, other

456 (1.4)1 (0.6)457 (1.4)American Indian or Native

67 (0.2)0 (0)67 (0.2)Native Hawaiian

1319 (4.1)6 (3.5)1325 (4.1)Unknown or other

.05Hispanic, n (%)

2929 (9)8 (4.7)2937 (9)Yes

29,546 (91)162 (95.3)29,708 (91)No

.00126.5 (8.9)28.7 (8.6)26.5 (8.6)BMIa, mean (SD)

<.001Mode of delivery, n (%)

20,141 (62)76 (44.7)20,217 (61.9)Vaginal

1687 (5.2)8 (4.7)1695 (5.2)Vaginal vacuum

579 (1.8)3 (1.8)582 (1.8)Vaginal forceps

10,068 (31)83 (48.8)10,151 (31.1)Cesarean section

<.0012856 (8.8)96 (56.5)2952 (9)Hypertension diagnosis, n (%)

Chronic hypertension

283 (0.9)16 (9.4)299 (1)Without preeclampsia

269 (0.8)15 (8.8)284 (0.9)With preeclampsia

780 (2.4)13 (7.6)793 (2.4)Gestational hypertension

Preeclampsia

556 (1.7)26 (15.3)582 (1.8)Mild

810 (2.5)18 (10.6)828 (2.5)Severe

158 (0.5)8 (4.7)166 (0.5)Unspecified

aBMI: weight in kilograms divided by the square of height in meters.

Predictive Model Results
During our initial analysis of the data from 2009 to 2015, we
evaluated 47 clinical and demographic variables to assess their
importance in predicting postpartum readmission (Figure 1).
The variables most important for predicting readmission
included blood pressure parameters during labor and through
the postpartum period as well as factors such as prepregnancy
BMI, maternal age, and gestational age at delivery. Variables
that had less predictive value included an HDP, administration

of antihypertensive medication, and mode of delivery. To
increase the predictive accuracy of the model, many of these
variables were excluded from the next analysis. Even with fewer
variables, again the diagnosis of HDP and mode of delivery
were of least importance and blood pressure data during labor
and post partum were most important. Additional details on the
model feature importance and feature correlations can be found
in the Multimedia Appendix 1 [18]. Through cross-validation
analysis, we found that the best model in terms of balanced
accuracy and F1-score was the random forest model. We
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performed an additional validation by using the best-tuned
models from the 2009 to 2015 data set on the 2016 to 2018 data
sets; the results are shown in Table 2. Each model was trained
only on the 2009-2015 data and was used to predict readmission
for patients in the 2016-2018 data. As shown in Table 2, the

random forest model achieves the best-balanced accuracy and
F1-scores among all candidate models. Please refer to the
Multimedia Appendix 1 [18] for the full set of cross-validation
parameters for each model.

Figure 1. Feature importance plot for hypertension-related postpartum readmission, 2009-2015. APGAR: appearance, pulse, grimace response, activity,
respiration; DBP: diastolic blood pressure; NICU: neonatal intensive care unit; SBP: systolic blood pressure.
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Table 2. Predictive performance of models trained using the 2009-2015 data set on the 2016 to 2018 data sets.

Cost (US $)Balanced accuracy, %F1-scoreNPVb, %Precision or PPVa, %Sensitivity, %Specificity, %Model type

426,24073.330.02799.821.3875.8170.86Random forest

450,82870.370.02399.81.1575.8164.94Decision tree

316,51271.770.02099.91.0390.3253.21SVMc

360,86472.990.02399.861.1783.8762.12Logistic regression L1

356,83273.480.02499.861.2183.8763.09Logistic regression L2

aPPV: positive predictive value.
bNPV: negative predictive value.
cSVM: support vector machines.

Feature Importance Analysis
The additional 11,608 participants from deliveries between 2016
and 2018 were then added to the data set, and medication
administration data and laboratory data were included in the
next analysis. The final data set included 32,645 patients. Out
of 33,482 total patients, 837 were excluded from the analysis
because of incomplete information regarding key features. We
ranked the features by their predictive importance and selected
the final set of features to be (1) BMI; (2) gestational age at
delivery; (3) maternal age; (4) highest systolic blood pressure
during 3 time periods, that were labor, 0-24 hours post partum,
and 24-48 hours post partum; and (5) binary medication features.
The laboratory features were discarded because of their low
predictive feature importance. The most important clinical
variable in predicting readmission was systolic blood pressure

between 24 and 48 hours post partum, and the second most
important was systolic blood pressure during labor (Figure 2).
Other factors that continued to be of importance in predicting
readmission included gestational age at delivery, maternal age,
and prepregnancy BMI. We computed the correlation between
our proposed features (Figure 3). The receiver operating
characteristic (ROC) curves demonstrate that our model is able
to distinguish between a true positive (meaning predicting a
readmission) and a false positive (meaning incorrectly predicting
a readmission). To show the significance of blood pressure
features in readmission prediction, we did a ROC curve
comparison using a 10-fold cross-validation with and without
blood pressure features and calculated the mean ROC and
associated SD, respectively. We can see a significant decline
in the classification performance without blood pressure features
(Figure 4).

Figure 2. Validated feature importance plot for hypertension-related postpartum readmission, 2009-2018 (blood pressure values were the highest
recorded values during the specified time frames).
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Figure 3. Correlation matrix between features on the combined data from 2009 to 2018. IV: intravenous; PO: orally.

Figure 4. Receiver operating curve comparisons with and without blood pressure features including highest systolic blood pressure and associated
diastolic blood pressure during 3 time periods—labor, between 0-24 hours postpartum, and between 24-48 hours postpartum. AUC: area under the
curve.

Cost Analysis and Final Model Tuning
To tune and validate the final model deployed in a calculator,
we also evaluated the model by measuring the estimated health
care costs associated with the predictions. As previously
mentioned, the value of a false negative was estimated to be
US $20,439, and the value of a false positive to be US $36. The
cost ratio was then created by dividing those 2 numbers and
came out at 565 [17]. Lowering or raising this cost ratio places
more weight on different factors; for example, the side effects
associated with taking labetalol versus the time away from
family or a job during a readmission. With this information, the
estimated total cost for each model can be calculated by using
the numbers of false negatives and false positives in the
validation sets to give a sense for the medical impact of model
implementation. However, there are a lot more factors that need

to be considered if we want the metric to be as generalizable as
the balanced accuracy and the F1-score. For this reason, we did
not consider estimated cost as the primary metric for model
selection. In Table 3, we can see that of the models considered,
the random forest model with class weight 1:200 had the highest
balanced accuracy. Compared with the best logistic regression
models and SVM, random forest with class weight 1:200
performs slightly better in terms of both balanced accuracy and
F1-score. However, random forest model with class weight of
1:500 can provide better precision and F1-score. Combining the
2 metrics, we decided to implement the random forest model
with class weight 1:500. Note that for all models the F1-score
is relatively low, this is mainly due to the large imbalance in
the data set. Since readmissions are fairly rare, to ensure that
we avoid false negatives, we must reduce the precision of the
model leading to the reduced score.
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Table 3. Prediction model performance on joint data with cross-validation. For completeness, all models are included.

Cost (US $)
Balanced accuracy,
%F1-scoreNPVb, %

Precision or

PPVa, %Sensitivity, %Specificity, %
Candidate machine
learning model

Random forest model weights

659,01652.35—99.5—c4.71001

203,659.277.75d0.034699.851.7778.277.2200

220,28476.50.033299.831.775.977.1300

227,836.876.610.0355d99.831.8274.179.1500

243,777.675.510.034599.811.7771.779.21000

Decision tree model weights

623,973.654.66—99.53—1099.31

227,908.874.87d0.0296d99.821.5175.973.9200

249,69673.660.029499.811.572.475300

208,08071.620.021599.851.0983.559.7500

252,446.471.350.024099.81.2274.168.61000

Logistic regression (L2) model weights

691,56050—99.48—01001

233,596.876.530.0366d99.821.8872.980.1200

180,151.277.6d0.029699.881.5183.571.6300

162,964.874.360.022199.911.1290.658.1500

191,757.665.330.015299.910.7793.537.11000

Logistic regression (L1) model weights

691,56050—99.48—01001

233,625.676.520.036699.821.8872.980.1200

180,151.277.59d0.029699.881.5183.571.6300

162,964.874.360.022199.911.1290.658.1500

208,180.866.990.016699.870.8488.245.71000

SVMe

643,384.853.39—99.51—799.71

236,800.875.840.0343d99.821.7672.978.7200

177,393.677.61d0.029499.881.584.171.1300

174,45674.210.022599.891.1488.260.2500

177,429.668.960.017299.920.8792.9501000

aPPV: positive predictive value.
bNPV: negative predictive value.
cNot available.
dBest model with respect to the specific metric.
eSVM: support vector machines.

Compared with the best logistic regression and SVM models,
the random forest model with class weight 1:200 performs
slightly better in terms of both balanced accuracy and F1-score.
However, the random forest model with class weight 1:500 has
a better precision and F1-score. Combining the 2 metrics, we
decided to pick the random forest model with class weight 1:500

for final deployment. The overall hyperparameters picked for
this model were a maximum tree depth of 6 and 100 total
estimators.

With this model in mind, we performed a more in-depth cost
analysis by varying the prediction threshold for the random
forest model and examining how these impact the expected
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medical costs and balanced accuracy. In Figures 5 and 6, we
show the results of the analysis for expected costs and balanced
accuracy, respectively. All values for this analysis were
computed using leave-one-out cross-validation. As expected,

because the model was primarily chosen based on balanced
accuracy, this measure is maximized at a threshold of 0.5. On
the other hand, overall costs associated with model predictions
are maximized at a threshold of 0.3.

Figure 5. Plot showing a relationship between predictive threshold for the model and expected medical costs associated with treatment based on model
prediction. The y-axis is in thousands of US $ and the x-axis represents the threshold of prediction. All values were computed using leave-one-out
cross-validation and estimated costs from Niu et al [24].

Figure 6. Plot showing a relationship between predictive threshold for the model and balanced accuracy associated with treatment based on model
prediction. The y-axis is balanced accuracy and the x-axis represents the threshold of prediction. All values were computed using leave-one-out
cross-validation and estimated costs from the other cost analysis.

Risk Calculator
We operationalized our model by incorporating it into a risk
calculator that allows clinicians to compute how likely patients
are to be readmitted for hypertension-related factors. Figure 7
shows a screenshot of our calculator; clinicians are able to enter
9 numerical features in text fields and click 6 binary features
using a check box. The model for the calculator is deployed

using Python and Scikit-Learn [16] and is hosted on a public
website. The full code of the calculator model is publicly
available at the GitHub repository [19]. Based on the results
from our previous analysis, in practice clinicians using this tool
may want to consider any likelihood above 30% as important
to consider when making treatment decisions to minimize
readmission risk and related medical costs.
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Figure 7. Screenshot of calculator website.

Discussion

Principal Results
Our research indicates the importance of intrapartum and
postpartum blood pressure measurements in predicting
readmission. This is clinically important, as it suggests blood
pressure metrics before birth may be more important in guiding
postpartum hypertension treatment than previously
acknowledged. Current management of hypertension in
pregnancy is based on expert opinion and has recommended
initiation of antihypertensive medication for postpartum systolic
blood pressure greater than 150 mm Hg or diastolic blood
pressure greater than 100 mm Hg [4]. A recent study published
in AJOG MFM (American Journal of Obstetrics & Gynecology
Maternal-Fetal Medicine) suggests that lowering this threshold
to 140 mm Hg systolic or 90 mm Hg diastolic can increase
sensitivity in predicting postpartum readmission [10].
Regardless, given that systemic vascular resistance remains at
the pregnancy-associated lower value for about 2 days and then
subsequently increases to normal prepregnancy values by
postpartum day 3 to day 4, many women may be discharged
before the postpartum equilibration of blood pressure on
postpartum day 3 to day 4 and thus may be undertreated [20-23].
Using peak blood pressure values obtained during labor to aid
in decision-making may improve triaging and treatment of
hypertension after delivery, thus decreasing the risk of
postpartum readmission. Our research additionally indicates
that blood pressure metrics themselves are more important in
predicting readmission than more typically used patient
demographics such as gestational age at delivery, maternal age,
BMI, laboratory data, or the administration of oral or intravenous
antihypertensive medication before discharge [11]. Perhaps the
awareness of more severe diseases allows for more aggressive
treatment, management, and follow-up after the initial hospital
stay, thus decreasing readmission rates in this higher-risk group.

Comparison With Previous Work
Research evaluating postpartum readmission has used
descriptive statistics to describe demographic variables

implicated in readmission. A nested case-control study published
in the Journal of Perinatology in 2016 demonstrated no
increased risk of readmission by mode of delivery, severity of
preeclampsia, fluid balance, use of magnesium sulfate, or lab
abnormalities but did find a decreased risk of readmission for
women discharged home on antihypertensive medication when
controlled for age, race, and presence of chronic hypertension
[24]. However, this study only included women with
hypertension during their initial labor and delivery admission.
Given that 30% of women who experience hypertension-related
postpartum readmission do not have antecedent diagnoses of
hypertension, we furthered the previously published work by
Hirshberg et al [24] and included women without known
prepregnancy or pregnancy-induced hypertension in evaluating
for postpartum readmission in this study. Recently, an ML model
was published that evaluated factors predictive of
hypertension-related postpartum readmission [11]. Hoffman et
al [11] evaluated 31 features in their model, similarly finding
that systolic blood pressure (specifically the moving average,
or trend of the systolic blood pressure) was the most important
predictor of readmission. Our model identified biometric,
demographic, and obstetric variables easily identified in any
patient’s medical record. In addition, we investigated the use
of specific antihypertensive medication, rather than using a drug
score that does not indicate which specific agents were used.
We used a cost-sensitive random forest method, allowing us to
weigh the importance of particular observations and thus
penalize false negatives significantly higher than false positives.

Using our data and findings from this analysis, we created a
clinical risk calculator [25]

that predicts the likelihood of readmission based upon the key
clinical variables found to be most predictive of
hypertension-related postpartum readmission. Similar risk-based
calculators have previously been created and validated, including
the vaginal birth after cesarean calculator, commonly used
during the antepartum period to guide counseling and
management of women with a previous cesarean section, and
more recently a calculator to estimate the risk of cesarean section
after an induction of labor with an unfavorable cervix [26,27].
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Our calculator applies our predictive model to any given patient
to predict the likelihood of readmission. While we do not define
when a patient should or should not be treated based on the
likelihood of readmission, we hope that better quantifying the
likelihood of readmission will allow for an improved discussion
between health care providers and their patients. However, based
on our cost analysis, it seems that if the calculator reports a
likelihood of 30% or higher, clinicians may want to seriously
consider treatment options to reduce costs related to readmission.
Management options for women at higher risk of readmission
include earlier initiation of antihypertensive medication or closer
outpatient blood pressure surveillance with daily remote patient
monitoring or self-monitoring. These interventions would
hopefully lead to decreased health care costs by transitioning
to outpatient rather than inpatient care models. We recognize
that a balanced accuracy of 76.61% allows for error in our
model, thus health care providers must include this in their
counseling to optimize shared decision-making. Also, the 1.82%
precision that allows a number of false alarms should be noted.
However, since the cost of misidentifying a readmission is quite
high, the rate of false alarms might be necessary to provide
adequate care in the absence of other treatment options such as
home monitoring.

Strengths and Limitations
Strengths of our research include the development of a predictive
model, different from the previously used descriptive models.
In addition, we had a large data set comprised from several
sources allowing for better validation and model development.
One limitation of our research is that the proposed predictive
model is a random forest method, which is difficult to interpret.
Unlike logistic regression or a single decision tree, it is difficult
to extract exact thresholds for particular clinical measurements
to determine how they will impact the output of the random
forest. The importance plot of the random forest can be used to
find which features are most important for the model to make
a prediction, but it cannot be used to determine particular

prediction thresholds. This is of particular importance as these
thresholds will be key in establishing new treatment protocols.
In order to retrieve such thresholds, additional research needs
to be done in extracting an explainer model from our random
forest. Additional limitations include the use of ICD-9-CM
(International Classification of Diseases, Ninth Revision,
Clinical Modification) and ICD-10 (International Statistical
Classification of Diseases, Tenth Revision) codes for diagnosis
of preexisting hypertension and HDP, which may have led to
errors in coding and underreporting. Our rate of hypertension
was 9%, which aligns with national data, but is lower than that
previously reported in Wisconsin (estimated at 22%). Finally,
our readmission rate was low at <1%. Given the large catchment
area of the institution used in our research, it is possible that
women who delivered at our hospital presented to their local
emergency department or provider with postpartum hypertension
and were thus not included in our data as a readmit. This study
is additionally limited by generalizability. Our patients came
from a single, relatively homogenous, midwestern academic
institution. In order to apply these findings more broadly, our
predictive model should be applied to a more diverse population.

Conclusions
Our research shows that blood pressure metrics during labor
and post partum, in addition to obstetric and demographic
variables, are critical in creating a predictive model for
postpartum readmission. Predictive models like ours can
improve postpartum management, allowing practitioners to
characterize women as low-risk and high-risk for readmission
and better individualize treatment. If we can better predict
readmission, we can better prevent readmission. By creating a
clinical calculator to help guide postpartum hypertension
treatment, our goal is to decrease adverse maternal outcomes
and prevent costly postpartum readmission. Future research will
involve validating this model and finding specific threshold
values at which treatment is to be initiated.
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