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Abstract

Background: Women have been underrepresented in clinical trials for many years. Machine-learning models trained on clinical
trial abstracts may capture and amplify biases in the data. Specifically, word embeddings are models that enable representing
words as vectors and are the building block of most natural language processing systems. If word embeddings are trained on
clinical trial abstracts, predictive models that use the embeddings will exhibit gender performance gaps.

Objective: We aim to capture temporal trends in clinical trials through temporal distribution matching on contextual word
embeddings (specifically, BERT) and explore its effect on the bias manifested in downstream tasks.

Methods: We present TeDi-BERT, a method to harness the temporal trend of increasing women’s inclusion in clinical trials to
train contextual word embeddings. We implement temporal distribution matching through an adversarial classifier, trying to
distinguish old from new clinical trial abstracts based on their embeddings. The temporal distribution matching acts as a form of
domain adaptation from older to more recent clinical trials. We evaluate our model on 2 clinical tasks: prediction of unplanned
readmission to the intensive care unit and hospital length of stay prediction. We also conduct an algorithmic analysis of the
proposed method.

Results: In readmission prediction, TeDi-BERT achieved area under the receiver operating characteristic curve of 0.64 for
female patients versus the baseline of 0.62 (P<.001), and 0.66 for male patients versus the baseline of 0.64 (P<.001). In the length
of stay regression, TeDi-BERT achieved a mean absolute error of 4.56 (95% CI 4.44-4.68) for female patients versus 4.62 (95%
CI 4.50-4.74, P<.001) and 4.54 (95% CI 4.44-4.65) for male patients versus 4.6 (95% CI 4.50-4.71, P<.001).

Conclusions: In both clinical tasks, TeDi-BERT improved performance for female patients, as expected; but it also improved
performance for male patients. Our results show that accuracy for one gender does not need to be exchanged for bias reduction,
but rather that good science improves clinical results for all. Contextual word embedding models trained to capture temporal
trends can help mitigate the effects of bias that changes over time in the training data.

(JMIR AI 2024;3:e49546) doi: 10.2196/49546
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Introduction

Background
Word embeddings are machine-learning models that aim to
represent words as real numbered vectors. To train the

embeddings, a large text corpus is needed. Contextualized word
embeddings such as BERT [1], where the representation of a
word depends on its surrounding words, have an immense
impact on performance in various natural language processing
(NLP) tasks. In the clinical domain, embeddings pretrained on
clinical texts can be used to perform biomedical NLP tasks [2]
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or predict clinical outcomes for patients [3]. However, if the
training corpus contains biases, they may be perpetuated by the
embedding model, and affect the performance on downstream
tasks [4-6]. Zhang et al [3] show that word embeddings trained
on clinical texts cause performance gaps for different genders
and races on clinical tasks.

Clinical trials are the main method to evaluate the efficacy of
new treatments on patients, but they may contain biases [7].
For decades, clinical trials excluded women participants [8,9].
The reported reasons for this exclusion include uncertainty about
the effects of the menstrual cycle on trial results [10] and
tragedies that occurred during trials. For instance, after the
thalidomide clinical trial, women of childbearing age were
excluded from early-phase clinical trials [8].
Underrepresentation of women leads to a misunderstanding of
how women respond to various drugs, which ultimately leads
to more adverse drug reactions than in men [11-13]. To mitigate
such phenomena, in 1993 the US Food and Drug Administration
mandated the inclusion of women in trials [8]. Nevertheless,
unequal representation of women persists. Clinical results are
not well analyzed nor reported for the influence of gender [9,14].

However, women’s representation in clinical trials significantly
improves over time due to constant social and legislative efforts
[8]. In a comprehensive study of over 43,000 clinical trial papers
from PubMed [9], the representation of women in 11 disease
categories was analyzed. They found that the number of women
participants from before 1993 until 2018 grew in 6 categories
and was unchanged in 3 more. In the remaining 2 categories,
the female participant proportion was traditionally higher than
the female prevalence—the proportion of female patients out
of all patients with the disease. The decrease indicates that the
proportion grew closer to the actual female prevalence. They
find that in all the categories combined, women’s representation
became more accurate. As women’s representation improves,
discoveries can be less biased toward women, as reflected in
changes in relations between concept embeddings over time
(Multimedia Appendix 1).

Related Work
Existing methods to remove representational gender bias from
word embeddings aim to remove sensitive information, for
example, gender, from the embeddings using data augmentation
[15,16], in-training methods modifying the training objective
[17], or posttraining methods such as projections to subspaces
[4,18,19]. Recently, adversarial training [3,20,21] was also
applied to remove information about protected attributes, for
example, gender or race, from the representations. These
methods aim for a notion of fairness named demographic parity
[22]: an independence between a model’s prediction and the
protected attribute. Indeed, a decision model cannot use the
protected attribute if it is not recoverable from the embeddings.

However, in the clinical domain, demographic parity should
not be applied, since the sensitive attribute (eg, gender) is an
important feature in clinical prediction tasks. Therefore, unlike
previous works about adversarial debiasing, we do not remove
gender information from the embeddings. Instead, we harness
the temporal trend of women’s inclusion that exists in the corpus

of clinical trials to improve the information captured in the
embeddings regarding women.

Another relevant work [23] explored a method where abstracts
were weighted by the number of women who participated in
the trial to train gender-sensitive Word2vec [24] embeddings.
In this work, we aim to explore the benefits of the improvement
in female inclusion over time as an alternative method for
debiasing. We compare our work to the method in the study by
Agmon et al [23] in Multimedia Appendix 2.

The term “temporal distribution matching” was recently used
[25] in an entirely different context: time series forecasting,
where given a series of samples and their labels over time, a
function from samples to labels is learned. Temporal distribution
matching in the context of time series forecasting is a method
to handle temporal covariate shifts that harm the performance
of the learned prediction model. The method is composed of
two phases: (1) detecting the different time periods through
“temporal distribution characterization” and (2) performing
distribution matching on the hidden states of a recurrent neural
network model which is the prediction model. To perform the
distribution matching, a loss term is added to the model
optimization, based on a pairwise distance between the hidden
states of the recurrent neural network after consuming each time
period of the series. There are 2 main reasons why this method
is not applicable to our problem. First, the task is inherently
different: we are interested in learning a word representation
model, which is an unsupervised task, while the study by Du et
al [25] focuses on time series forecasting, which is a supervised
task that requires labels. Second, to calculate a loss term such
as was introduced in the study by Du et al [25] requires
comparing the state of an embedding model after reading all
texts from each time period; embedding models usually do not
support such a long context in a meaningful way. Instead, our
method uses an adversary component to perform the distribution
matching while only looking at 1 abstract at a time. Our method
can be viewed as an adjustment of temporal distribution
matching to the task of word representation learning.

Goal of This Study
One method to use the improvements in clinical trial practices
is to repeat past clinical trials using the new practices. However,
it is not a feasible option due to both ethical concerns and the
costs of clinical trials. From the machine learning point of view,
a naive solution would be to train the embedding model only
on the more recent papers; but such a model is trained on far
less data. This may yield to suboptimal performance on
downstream tasks. We aim to train word embeddings that (1)
make use of the entire data set of clinical trial abstracts, (2)
harness the positive temporal trends in clinical trials, and (3)
achieve high performance on the downstream tasks for the
underrepresented group.

Intuitively, we would like to match the distribution of earlier
clinical findings to that of more recent findings. We present
TeDi-BERT—a temporal distribution matching training method,
applied to BERT word embeddings. In this method, in parallel
with the original training process of the embeddings, an
adversarial temporal classifier tries to distinguish old from new
samples based on their embeddings, while the embedding model
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tries to decrease the adversary’s performance. Intuitively, if the
temporal classifier’s performance is low, then the embeddings
of older clinical trials are similar to those of more recent clinical
trials. The competition between the embedding model and the
temporal classifier acts as a temporal distribution matching
mechanism. We use the adversarial component because
adversarial models were successfully applied in domain
adaptation [26], which is similar to our setting: the different
time periods can be viewed as 2 domains.

While there are methods to tackle model biases directly, in this
work we explore the effects of temporal distribution matching
on bias. Additionally, the proposed method can capture a wide
range of trends, such as the emergence of new diseases and new
practices. However, in this work, we focus on evaluating its
effects on gender bias. Although the method is generic, gender
bias is a real practical problem, where temporal trends have
been present for years [9]. Evaluating other aspects of temporal
distribution matching is left for future work.

We evaluated the model on several tasks, including clinical
tasks, based on the MIMIC-III data set [27], and compared the
performance on female and male patients.

We contributed our code and data sets [28] to the community
to be leveraged for additional tasks where subpopulations are
underrepresented.

Methods

Overview
A word embedding is a mapping from words to real numbered
vectors, such that the vector captures the meaning of the word.
Word embeddings are usually trained on a large corpus of text,
using a semantic task. For example, in BERT [1] embeddings,
some words in the sentence are masked, and the word vectors
of the remaining words are used to predict the masked words.
The loss from this prediction task is then used to tune the word
vectors: the word representations are modified to better perform
the task.

In this work, we describe TeDi-BERT, a temporal distribution
matching training method, applied to BERT. We trained the
word embeddings on PubMed abstracts of clinical trials between
2010 and 2018. We focused on this time range because there
were much fewer clinical trials in ClinicalTrials.gov before
2010, and we used ClinicalTrials.gov to filter the clinical trial
abstracts.

One could argue that a better data set to use for training is EHR
data, such as the medical notes from MIMIC-III. Numerous
factors contributed to our decision not to pursue that course of
action. The first is a technical reason: the timestamps available
in MIMIC-III were randomly shifted to preserve patient privacy,
so visits from different patients are not guaranteed to be in the
correct order. Second, the practices and methods in these
medical notes represent the conventions used in a single place
of medical care, unlike clinical trials which are more diverse,
and cover practices and methods from different geographic
places. Finally, to validate our choice of training data set, we
conducted a qualitative analysis of the trends that exist in clinical
trial abstracts and found several examples of real-world trends
that were quickly reflected in clinical trial abstract data
(Multimedia Appendix 3).

To harness the temporal trends in these clinical trials, we require
that the distribution of embeddings of the older abstracts be
similar to that of newer abstracts. In addition to training the
embedding model on the original semantic task, we
simultaneously train it on a temporal classification task.

The abstracts were divided into old, 2010-2013, and new,
2016-2018 (see below for details on the choice of time ranges),
and assigned a temporal label. A temporal discriminator, namely,
a classifier, aims to distinguish old from new abstracts based
on their embeddings. The embedding model, however, aims to
reduce the classifier’s performance by tuning the embeddings.
To translate this idea into an architecture (Figure 1), we
leveraged the well-received framework of generative adversarial
networks (GANs) [29], where 2 components (a generator and
a discriminator) compete on a task with opposite goals.

Figure 1. Schematic drawing of the TeDi-BERT model for health care embeddings. Clinical trial abstracts are embedded using a BERT model, and a
discriminator aims to distinguish between old and new abstracts. The embedder simultaneously trains on the original embedding task of masked language
modeling and regulates the embeddings to resemble an anchor model. TeDi-BERT: temporal distribution matching applied on BERT.
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For example, an abstract from 2010 is transformed into a vector
representation using the BERT embedder. The embedding vector
is fed to the temporal discriminator. Assume that the
discriminator correctly predicted that this sample is “old” with
probability p. The discriminator’s weights are then updated so
that p is closer to 1, while the embedder’s weights are updated
so that p is closer to 0.

The embedding model (Me) is given an abstract, performs the
semantic prediction task on the abstract text, and computes the
semantic loss (LMLM). Additionally, the same embedding model
acts as the generator in the GAN and emits an embedding for
the full abstract.

The abstract embedding is fed to the temporal discriminator
(Md), which is a classifier trying to distinguish whether the
embedding belongs to a new or old abstract. A binary cross
entropy loss (Ladv) for this task is computed using the
discriminator output and the temporal label. The discriminator
aims to minimize this loss. However, the generator aims to both
maximize the loss and simultaneously minimize LMLM.

Consider a trivial generator that outputs the same embeddings
regardless of the input text. In this case, the discriminator cannot
distinguish old from new texts, and Ladv would be minimized.
To prevent such cases, we wish the model to preserve the
original semantics of the texts. We therefore added another term
to the loss function, which was meant to anchor the embedding
model, so that it did not drift too far from the original
embedding. We embed each sample using a frozen anchor model
and compute the loss term (LA) as the L2 Frobenius norm
distance between the frozen embedding and the generator’s
embedding. The final objective function is given by:

Where θM denotes the parameters of a model M, and λadv and
λA are hyperparameters used to balance the different
components.

Implementation Details
The corpus of clinical trial abstracts from 2010 to 2018 was
divided into old (2010-2013) and new (2016-2018) clinical
trials. The guiding principle in choosing these time ranges is to
create a gap between the 2 time periods, while maintaining a
large enough and balanced number of abstracts in each set. The
first time range is 1 year longer since there are less abstracts
per year in 2010-2013 (~5000 on average) versus 2016-2018
(~9000 on average). The gap is needed for the discriminator
task: it is harder to distinguish between abstracts from
consecutive years since the temporal trends are slow. When
comparing the 2 time ranges, we observed a statistically
significant increase over time in the percentage of women
participants in clinical trials (Multimedia Appendix 1). This is
consistent with previous findings [9] over slightly different time
ranges: the total enrollment bias for women was improved from
before 1993 (–0.11) to 2014-2018 (–0.05).

As the embedding model, we chose BERT [1], a
transformer-based model for contextualized word embeddings.

We used a small version of BERT, named BERT-tiny [30], with
2 transformer layers and a hidden representation size of 128,
pretrained on BookCorpus [31] and the English Wikipedia.
Smaller models require less computation resources and are
therefore more affordable and accessible. Rosin et al [32] have
shown that BERT-tiny–based models were comparable to
BERT-base in their ability to learn temporal trends. We
witnessed a similar phenomenon on the clinical task of length
of stay (LOS) prediction (Multimedia Appendix 4).

We initialized the model from a version of BERT which was
not trained on any scientific or medical data, so that we could
attribute the medical knowledge accumulated in the model only
to the clinical trial abstracts in the corpus used in the train set.

As each abstract is long, and BERT has a maximal input length
of 512-word pieces, we split it into sentences using the Natural
Language Toolkit tokenizer [33]. The generator embeds each
sentence. The first m sentence embeddings are concatenated
and fed to the discriminator, which is a linear classifier. Hence
the classifier size is d ⋅ m+1. As 96.97% (21123/21784) of
abstracts had up to 20 sentences, we set m = 20 and padded
shorter abstract embeddings with zeros before feeding them to
the discriminator. As a frozen anchor model, we used a BERT
model of the same architecture as the generator, initialized
similarly but trained only with masked language modeling
(MLM) on all of the abstracts.

The embedder and discriminator components of TeDi-BERT
were trained simultaneously, 1 batch at a time for 20 epochs.
Each component was optimized using the Adam optimizer with
a learning rate of 2e–5. Additional technical details are given
in Multimedia Appendix 5.

The TeDi-BERT model used in our experiments was trained
with λadv=0.3, λA=0.3, hence the weight of the LMLM term was
0.4. We experimented with λadv,λA∈{0,0.1,…,0.6} and chose
the best combination according to the model’s ability to predict
the future semantic relatedness of medical concepts (Section
S3 in Multimedia Appendix 6).

Experimental Evaluation Setup
The corpus used to train the embedding models is composed of
PubMed [34] abstracts describing clinical trials on humans. To
select only those abstracts out of the 90,000 available in PubMed
version of 2020, we match each abstract with an entry from
ClinicalTrials.gov [35] according to the NCT identifier inside
the abstract text, leaving 21,784 abstracts, 12,452 of them from
2010-2013 and 2016-2018. We randomly split the data into
70.51% (8780 abstracts) train and 29.49% (3672 abstracts) test,
and kept this partition fixed throughout our experiments.

For our downstream tasks, we used 2 different clinical prediction
tasks, created based on the MIMIC-III data set [27], an
anonymized and publicly available data set that contains
information about patients at a massive tertiary care hospital.
The data set contained 58,976 hospital admissions with 61,532
intensive care unit (ICU) stays over 46,520 distinct patients.
After removing patients aged younger than 18 years (as
performed in the study by Lin et al [36]), 38,552 patients
remained. We randomly divided the patients into train and test

JMIR AI 2024 | vol. 3 | e49546 | p. 4https://ai.jmir.org/2024/1/e49546
(page number not for citation purposes)

Agmon et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


sets, so that data from a single patient could not appear in both
the train and the test. The train set contained 30,817 patients,
out of which 43.97% (n=13,553) were female, and the test set
contained 7735 patients, out of which 43.33% (n=3352) were
female.

Downstream Tasks
LOS prediction—a regression task predicting a patient’s LOS
in the hospital in days. Predicting LOS is a common clinical
task, which is important in hospital resource allocation planning.
The predictions can also be taken as indications of the severity
and need for different levels of care and recovery.

To predict the LOS we used the patient’s diagnoses from their
previous admissions, and the primary diagnosis from the current
admission, along with demographic features and summary
features (number of previous admissions, procedures and
diagnoses, and time since the last admission).

Readmission prediction—a classification task predicting
unplanned ICU readmission of a patient, at the time of their
discharge. Such readmissions indicate an unexpected
deterioration in the patient’s state. Detecting such cases in
advance can improve the quality of care for the patients by
allocating special programs and resources that address reasons
for readmission. We followed Lin et al [36] for the definition
of unplanned readmission: patients that were transferred from
the ICU to low-level wards or discharged, but returned to the
ICU or died within 30 days. The features used in this prediction
task are the patient’s diagnoses from previous admissions, and
diagnoses and medications from the current admission (which
are known at the time of discharge), along with demographic
features.

Compared Models
We compared the following models in our experiments:

Nonmedical BERT—a pretrained BERT on English Wikipedia
and BookCorpus, not trained on any clinical data [30].

Medical BERT 2010-2018—this baseline represents the natural
way to train BERT for clinical uses: training BERT with the
MLM task over the clinical texts. The model was initialized
with nonmedical BERT and trained for 40 epochs on clinical
trial abstracts between 2010 and 2018.

Null it out [18]—As an example of a debiasing method aiming
to remove gender information from the embeddings, we applied
the method presented in the study by Ravfogel et al [18] on
medical BERT 2010-2018. This method was found to be best
at debiasing BERT embeddings to remove gender stereotypes
[37]. The method is based on iterative null space projection of
the embeddings so that the sensitive information (gender) cannot
be recovered from them by a linear model. Using the vocabulary
of all diseases and drugs used in the clinical tasks data sets, we
sampled the 2500 most feminine and 2500 most masculine
words, based on their relation to the he-she vector, to build a
training and test set for the iterative method. We applied the
projection process for 35 iterations. Before the process, a linear
classifier could determine the gender of the words in the test
set with an accuracy of 0.93. The accuracy dropped to 0.37 after
the process.

TeDi-BERT—the TeDi-BERT model, trained as described in
the Implementation Details section.

Ethical Considerations
All data sets used in this study are previously existing data sets,
which are either anonymous or deidentified. The data sets
containing clinical trial information (PubMed and
ClinicalTrials.gov) are anonymous: they do not contain any
single patient data, only aggregated data from all trial
participants. The publicly available MIMIC-III data set that we
use is deidentified and was approved as part of the original
MIMIC-III project [27] by the institutional review boards of
Beth Israel Deaconess Medical Center and the Massachusetts
Institute of Technology. Therefore, this research did not require
additional approval from an ethics committee.

Another ethical consideration is the use of abstracts in the later
time range as reference in the optimization function, although
they may still contain biases. This may lead to the model having
lower performance on diseases where women are still
understudied. However, the results described in the next section
show improved performance of our method for women, leading
us to believe that while this solution is not flawless, it is a step
in the right direction toward addressing the effects of bias in
clinical word embeddings. More on this in the Limitations
section.

Results

Hospital LOS Regression
The patient’s diagnoses are given as ICD-9 (International
Classification of Diseases, Ninth Revision) codes and mapped
into textual descriptions. The sequence of previous diagnoses
is embedded using the evaluated embedding model and
aggregated using a long short-term memory network (LSTM)
layer. The current diagnosis embedding is concatenated to the
LSTM output, and demographic features are added. The
combined feature vector is fed into a regression model—a
2-layer neural network. The embedding model is frozen, and
only the regression model is allowed to train. As the loss
function, we use mean square error in the training process and
train each model using the Adam optimizer with a learning rate
of 1e–3 for 10 epochs (after that, the loss increases).

We report the mean absolute error (MAE) for the compared
models, calculated over the entire test set, and aggregated by
patient gender (Figure 2 [18]). As expected, the nonmedical
BERT does not perform well, as it is not tuned on clinical data.
Medical BERT trained in the 2010-2018 range reached better
results but applying iterative nullspace projection over medical
BERT had lower performance than nonmedical BERT. This
can be because the projection alters the embedding space, in
the effort to remove gender information; these changes may
have harmed the semantic information captured in the
embeddings. TeDi-BERT performed best, with a significant
improvement in MAE for women and for men (Diebold and
Mariano [38] test with mean absolute deviation criterion had P
value of <.001 for both populations). Further analysis by patient
ethnicity (Multimedia Appendix 7) shows that TeDi-BERT
performed better than medical BERT over all ethnicity groups
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but had a specifically large improvement over female patients
in minority groups. This suggests that the trends of including
underrepresented populations in clinical trials led to the
accumulation of a wider knowledge base on these groups. Our
model can harness this trend to reach better prediction accuracy

on female patients without harming the accuracy on male
patients, and even more so in cases of complex bias types, such
as gender and race combined. We hypothesize that the
performance improvement for men stems from better conduction
of clinical trials with relevance to LOS prediction.

Figure 2. Mean absolute error for LOS regression task using different embeddings. Lower numbers indicate better results. “Null it out” is the work of
Ravfogel et al [18]. LOS: length of stay; MAE: mean absolute error.

ICU Readmission Prediction
Each element in each of the medications, diagnoses, and
previous diagnoses sequences is embedded using the evaluated
embedding model. We aggregate the embeddings using an
LSTM (with shared weights over the 3 feature sequences). The
concatenation of the aggregated embeddings is fed into a
classification model (a 2-layer neural network). The models
were trained for 4 epochs using the Adam optimizer with a
learning rate of 1e–5. The results are measured in area under
the receiver operating characteristic curve.

In Lin et al [36], the best model achieved an area under the
receiver operating characteristic curve of 0.79, with additional
features from the patient medical record events. However, we
purposely limited the classifier’s input features to the
aforementioned textual fields, since we aim to evaluate the
embeddings, and not fully solve the prediction task.

We analyzed the performance of each model per patient gender
(Figure 3 [18]). Further, 95% CIs were calculated using
bootstrapping with 2000 resamples over the test set. We further
validated the significance of the differences using the DeLong
test [39]. All differences for all patient groups were significant
with P<.001.

As in the previous task, nonmedical BERT results were lower
than medical BERT and TeDi-BERT. In this task, applying the
debiasing method from Ravfogel et al [18] over medical BERT
harmed the performance, but it remained better than nonmedical
BERT. TeDi-BERT statistically significantly outperformed all
models over female and male patients.

Following the results in the 2 clinical tasks, we conclude that
debiasing embeddings through the removal of gender
information did not improve the performance on downstream
tasks. However, we consistently observe that temporal
distribution matching improves performance for female patients.
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Figure 3. AUC for readmission within 30 days prediction. “Null it out” is the work of Ravfogel et al [18]. AUC: area under the receiver operating
characteristic curve.

Algorithm Analysis
To verify that temporal distribution matching does not harm
the semantics learned by the embedding model, we evaluated
its quality as a language model. We measured the MLM loss
on the validation set of the PubMed corpus (Section S1 in
Multimedia Appendix 6). TeDi-BERT’s loss (2.650) was close
to that of medical BERT (3.292), indicating that our algorithm
maintains the semantic performance of BERT, despite the
additional objective of temporal distribution matching.
Additionally, we tested the models on named entity recognition
tasks (Section S2 in Multimedia Appendix 6) and found that
TeDi-BERT did not harm the performance in this task compared
to the medical BERT model.

Next, we compared the models on their ability to predict future
semantic relatedness of medical concepts, by ranking pairs of
medical concepts according to their embedding similarity in
each model and comparing the ranking correlation to that of a
medical BERT model trained on 2020 abstracts (Section S3 in
Multimedia Appendix 6). TeDi-BERT reached the
highest-ranking correlation, meaning that TeDi-BERT was able
to predict concept similarity from 2020 better than medical
BERT, without ever training on texts from 2020. This
strengthens our hypothesis that indeed TeDi-BERT can better
capture temporal trends in the embeddings, as measured by
word similarities, compared to other BERT models.

Additionally, we performed an ablation test, to evaluate the
impact of the anchor model in TeDi-BERT (Section S4 in
Multimedia Appendix 6). A TeDi-BERT model without an
anchor model performed similarly to TeDi-BERT on the MLM
task, but its performance on the semantic relatedness task was
the lowest of all compared baselines. This shows the necessity
of using an anchor model in the training process of distribution
matching.

Finally, we used another ablation test to assess the impact of
the weight given to old and new abstracts in the training process
(Section S5 in Multimedia Appendix 6). We found that a higher
weight given to old abstracts caused lower performance in both
clinical tasks and the semantic relatedness task. We concluded

that indeed matching the older abstracts to the new ones has a
positive impact on performance.

Comparison to Imbalanced Learning Methods
In the MIMIC-III downstream tasks, one could argue that the
unbalanced numbers of female (43.97%, 13,553/30,817) and
male patients cause a performance gap. We experimented with
3 methods of handling imbalanced data. In all methods, the
training set for both tasks was modified to contain 50% women,
without modifying the test set.

• Downsampling—downsampling the male patients randomly
so that female and male patient numbers are equal (13,553)
in the training set.

• Synthetic Minority Over-Sampling Technique (SMOTE)
[40]—a classic imbalanced learning method to generate
synthetic samples based on neighbors from the same group.
We applied SMOTE on the female patients in each
downstream task separately and generated 3711 additional
samples, so the train set contained 17,264 male patients and
17,264 female patients.

• MedGAN [41]—a widely used synthetic generation method
for patient data, that has recently shown promising results
in predictive diagnostic tasks. MedGAN combines an
autoencoder and a GAN to generate realistic synthetic
patient data. For each downstream task, we trained
MedGAN on the female patient admissions in the training
set and used it to generate additional synthetic admissions,
so the train set contained 17,264 male patients and 17,264
female patients.

We trained our prediction models with medical BERT
2010-2018 embeddings on the modified training sets, using the
same methods and parameters as in our main results, and
compared the results to TeDi-BERT.

In ICU readmission prediction (Figure 4), downsampling the
male patients harmed the performance for both male and female
patients and for both models. SMOTE and MedGAN upsampling
improved the performance for both populations and both models,
but TeDi-BERT still outperformed medical BERT 2010-2018
under MedGAN (P=.03 for female patients, P=.002 for male
patients) and SMOTE (P<.001).
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In LOS prediction (Figure 5), downsampling and SMOTE
upsampling harmed medical BERT’s and TeDi-BERT’s

performance, for both patient populations.

Figure 4. Readmission prediction—comparison of TeDi-BERT versus medical BERT under various methods of handling imbalanced data. The
performance is measured in area under the ROC curve, so higher numbers indicate better results. Further, 95% CIs were calculated using bootstrapping
with 2000 resamples over the test set. AUC: area under the receiver operating characteristic curve; ROC: receiver operating characteristic curve;
TeDi-BERT: temporal distribution matching applied on BERT.

Figure 5. Length of stay prediction—comparison of TeDi-BERT versus medical BERT under various methods of handling imbalanced data. The
performance is measured in mean absolute error, so lower numbers indicate better results. MAE: mean absolute error; TeDi-BERT: temporal distribution
matching applied on BERT.

MedGAN sampling did not harm the performance, but it did
not significantly improve it for either of the models. It is possible
that the generated female samples were too noisy to provide
added value. Additionally, these methods were designed for
much more extreme imbalances than in this setting. This is
consistent with several previous works: in multilingual
translation [42], upsampling low-resource languages did not
robustly improve the loss. In a classification of diseases from
textual descriptions of symptoms [43], upsampling rare diseases
led to unstable results and in some cases hurt performance.

Over both tested tasks, both populations, and all 3 imbalanced
learning methods, TeDi-BERT performed better than medical

BERT 2010-2018. We conclude that imbalanced learning
techniques may improve performance, but it is not robust to all
tasks and models. As with many other possible techniques to
improve performance (data cleaning, feature engineering, etc),
imbalanced learning techniques may be applied independently
from the choice of embedding model.

Discussion

Principal Results
In both clinical tasks, TeDi-BERT’s performance for female
patients was significantly improved compared to medical BERT
2010-2018, while improving performance on male patients as
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well. This is even though both models were trained on the same
data set of clinical trial abstracts. The advantages of the
TeDi-BERT method were especially large for population groups
subject to intersectional biases (Multimedia Appendix 7), which
suggests that other than gender inclusion, additional
improvement trends in clinical trials were captured by the
TeDi-BERT model. When analyzing the contribution of our
method for different feature types in the LOS task (Multimedia
Appendix 8), we found that for both models, the primary
diagnosis was more predictive of the LOS than the previous
diagnoses, but TeDi-BERT was able to use the information in
previous diagnoses to reduce the MAE more than medical BERT
2010-2018.

A baseline debiasing method based on the removal of gender
information from word embeddings [18] did not perform well
in the clinical prediction tasks, achieving worse results than
medical BERT 2010-2018. This validates our hypothesis that
the removal of information about a sensitive attribute from the
embeddings is not a suitable strategy for debiasing medical
embeddings since that sensitive attribute contains valuable
clinical information.

In the semantic task of MLM (Section S1 in Multimedia
Appendix 6), TeDi-BERT’s performance surpassed that of
medical BERT 2010-2018, despite the competing objective
functions of the generator and the discriminator. In another
semantic task based on temporal trends (Section S3 in
Multimedia Appendix 6), while both models were trained on
the same data set, TeDi-BERT’s output was more similar to
that of a model trained only on clinical trials from 2020. This
validates our hypothesis that TeDi-BERT is better at capturing
the temporal trends in the data than medical BERT 2010-2018.

When comparing TeDi-BERT to various imbalanced learning
methods, we found that temporal distribution matching had a
consistent contribution to performance, while imbalanced
learning methods harmed performance in some cases.

When comparing TeDi-BERT to gender-sensitive weighting of
the corpus (Multimedia Appendix 2), we found that
gender-sensitive weighting was not a good fit for debiasing
BERT embeddings for health care, despite its success for
Word2vec embeddings. We hypothesize that this is due to the
complexity of the BERT embedding model versus Word2vec
and that a finer method is required for debiasing BERT
embeddings.

The empirical results show the merit of debiasing embeddings
for improving the performance of clinical tasks. Despite the
remaining biases in the newer clinical trials, leveraging the
temporal trends of bias reduction was successful for the
reduction of biases in the embeddings.

Although many works show the trade-off between fairness and
accuracy [44-46], our results show that accuracy for one gender
does not need to be exchanged for bias reduction, but rather that
good science improves clinical results for all.

Limitations
Our work has several limitations. In our TeDi-BERT
implementation, we divided clinical trials into 2 time ranges
(old and new). This approach is inspired by related work in
adversarial domain adaptation [26], where there is a source and
target domain. For future work, we wish to expand the approach
to a continuous prediction. Additionally, the temporal
distribution matching might obfuscate temporal markers such
as new diseases or treatments; this can be mitigated by the
development of techniques to handle out-of-vocabulary words.
Finally, another limitation is the remaining biases in recent
clinical trials and the continued underrepresentation of women
in them. The use of a still-biased data distribution as the
optimization target may cause difficulties in the categorization
of diseases where women are still not studied enough, because
the knowledge captured in the word embeddings about these
conditions may still be partial. However, in many diseases (eg,
cardiovascular diseases, anemia, osteoporosis, and more) the
situation has greatly improved in recent years. As a result,
TeDi-BERT achieved higher performance and lower gender
performance gaps in the tested clinical tasks. While it is not a
perfect solution, the experimental results show that it is in the
correct direction toward fixing the problem. We believe that
temporal distribution matching is a good proxy for bias
mitigation, but more direct approaches should also be tested.

Conclusions
The use of clinical trials as a training corpus for embedding
models should be conducted with care while taking precautions
against the long-existing biases in clinical trials. We presented
TeDi-BERT, a method for training word embeddings while
harnessing a temporal trend in the corpus. The method includes
a novel use of the GAN framework to regularize for temporal
distribution matching on embedded samples. We implemented
our method on BERT, a contextual embedding model that
achieved state-of-the-art results in many NLP tasks, and trained
it on clinical trial abstracts, where biases, and especially
enrollment gender bias, are reduced over time for a significant
portion of researched concepts. In our experimental evaluation,
we demonstrated performance improvement over BERT in
clinical prediction tasks. We found that the performance
particularly improved for female patients for all tasks, and for
male patients either improved or did not harm performance.
This suggests that adjusting for bias in research can benefit
clinical results for all patients.
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