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Abstract

Background: Despite its high lethality, sepsis can be difficult to detect on initial presentation to the emergency department
(ED). Machine learning–based tools may provide avenues for earlier detection and lifesaving intervention.

Objective: The study aimed to predict sepsis at the time of ED triage using natural language processing of nursing triage notes
and available clinical data.

Methods: We constructed a retrospective cohort of all 1,234,434 consecutive ED encounters in 2015-2021 from 4 separate
clinically heterogeneous academically affiliated EDs. After exclusion criteria were applied, the final cohort included 1,059,386
adult ED encounters. The primary outcome criteria for sepsis were presumed severe infection and acute organ dysfunction. After
vectorization and dimensional reduction of triage notes and clinical data available at triage, a decision tree–based ensemble
(time-of-triage) model was trained to predict sepsis using the training subset (n=950,921). A separate (comprehensive) model
was trained using these data and laboratory data, as it became available at 1-hour intervals, after triage. Model performances were
evaluated using the test (n=108,465) subset.

Results: Sepsis occurred in 35,318 encounters (incidence 3.45%). For sepsis prediction at the time of patient triage, using the
primary definition, the area under the receiver operating characteristic curve (AUC) and macro F1-score for sepsis were 0.94 and
0.61, respectively. Sensitivity, specificity, and false positive rate were 0.87, 0.85, and 0.15, respectively. The time-of-triage model
accurately predicted sepsis in 76% (1635/2150) of sepsis cases where sepsis screening was not initiated at triage and 97.5%
(1630/1671) of cases where sepsis screening was initiated at triage. Positive and negative predictive values were 0.18 and 0.99,
respectively. For sepsis prediction using laboratory data available each hour after ED arrival, the AUC peaked to 0.97 at 12 hours.
Similar results were obtained when stratifying by hospital and when Centers for Disease Control and Prevention hospital toolkit
for adult sepsis surveillance criteria were used to define sepsis. Among septic cases, sepsis was predicted in 36.1% (1375/3814),
49.9% (1902/3814), and 68.3% (2604/3814) of encounters, respectively, at 3, 2, and 1 hours prior to the first intravenous antibiotic
order or where antibiotics where not ordered within the first 12 hours.

Conclusions: Sepsis can accurately be predicted at ED presentation using nursing triage notes and clinical information available
at the time of triage. This indicates that machine learning can facilitate timely and reliable alerting for intervention. Free-text data
can improve the performance of predictive modeling at the time of triage and throughout the ED course.
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Introduction

Background
Sepsis is a life-threatening condition caused by severe infection
and dysregulated host response leading to acute organ
dysfunction [1]. Affecting 32 million people and contributing
to over 5 million deaths per year globally [2], sepsis is a leading
cause of death in hospitalizations in the United States and
worldwide [3,4]. Early antibiotics have been shown to improve
survival [5], while each hour of delayed antibiotic administration
has been associated with progressively increased mortality (7.6%
increase per hour in septic shock) [6]. Patients who survive
sepsis often have long-lasting health and social sequelae [7],
and sepsis is ranked among the top 3 most costly conditions to
treat in the hospital setting [8]. Accordingly, substantial efforts
have been made to identify sepsis early in the hospital course
[9]. To date, however, widely used clinical decision support
tools that use rule-based methods for detecting sepsis have been
limited by low sensitivity and specificity [10,11]. Such tools
have been unable to earn clinician trust due to limited accuracy,
false positives, and delayed alerts [12]. False positive alerts
increase the cognitive load of providers and could expose
patients to unnecessary antimicrobials. Moreover, current widely
used electronic health record–based sepsis prediction tools have
limited performance and often require several hours to elapse
to achieve reasonable predictive use [12]. For example, a recent
inpatient and intensive care unit (ICU)–based investigation of
a commonly used sepsis alerting system showed that although
existing systems can generate reasonably accurate sepsis alerts,
the median time to notification was 7 hours and, even at that
point, accuracy was limited [13]. Taken together, existing
clinical decision support systems aimed at detecting sepsis do
not provide sufficient accuracy or timeliness of sepsis prediction,
resulting in lower adoption due to a lack of clinician trust.

Machine Learning in Sepsis Prediction
Artificial intelligence (AI)–based tools may hold promise to
increase the accuracy and timeliness of sepsis prediction, which
may allow for earlier delivery of critical interventions such as
lifesaving antibiotics. Many of the most promising sepsis
predictive algorithms have been limited to use in ICU settings
[14], where patients have rich laboratory and imaging data sets
and frequent physiologic monitoring. In contrast, accurate
prediction of sepsis at initial emergency department (ED)
presentation has remained elusive. Until recently, there was a
paucity of technology that could make use of the full set of
available data, particularly free-text triage notes, at the time of
initial ED presentation. A recent study showed that sepsis
prediction at the time of triage can be significantly improved
using natural language processing (NLP) of free-text data [15].

ED Triage Assessment
When a patient presents to the ED, an initial triage assessment
is usually performed by a triage nurse. The triage assessment
includes a brief interview of the patient or those accompanying
the patient to obtain a reason for presenting to the hospital ED.
The content of this interview typically includes a very brief
recounting of the patient’s past medical history, relevant
medications, family history, and social risk factors. The triage

nurse will typically also obtain vital signs (blood pressure, heart
rate, temperature, respiratory rate, and oxygen saturation) and
pain score. Finally, the triage nurse will assign a patient a triage
acuity score. This process usually takes less than 10 minutes.
The summation of this encounter is documented in real time,
directly after the triage assessment, into the electronic medical
record and includes a listing of the vital signs, triage acuity
score, and a free-text nursing triage note.

The triage note is recorded into the electronic medical record,
typically comprising 1-3 sentences regarding why the patient
has presented to the ED and the nurse’s summative impression
of this initial assessment. This note is used as a starting point
for downstream assessments by providers in the ED. The
information contained in the triage note is useful, as it often
contains rich data that are difficult to quantify in tabular form.
This information is widely used and valued by the clinical staff.
However, in its unstructured format, it is not typically used in
clinical decision support algorithms and is often unused for
several hours until the full provider assessment. We
hypothesized that nursing triage notes, combined with other
data available at initial ED presentation, could be used to
accurately predict sepsis at the time of triage.

Goals of This Investigation
It was previously demonstrated that NLP of nursing triage notes
at ED presentation could be used to predict hospital admission
and ED resource use [16-18]. In this study, we aimed to
demonstrate that an NLP-based model could be used to predict
sepsis in adult patients based on the (1) health system sepsis
committee and (2) Centers for Disease Control and Prevention
(CDC) hospital toolkit for adult sepsis surveillance criteria [1].

Methods

Ethical Considerations
The research study protocol and procedures were reviewed and
approved by the institutional review board (STUDY00000099).

Study Design and Setting
A retrospective cohort was constructed using electronic health
record data from all 1,234,434 consecutive ED encounters
(487,296 unique patients) in 2015-2020 from 4 separate
clinically heterogeneous academically affiliated EDs. Hospital
A is a community hospital in an urban setting having a patient
volume of approximately 65,000 ED visits per year. Hospital
B is a community hospital in a suburban setting having a volume
of approximately 26,000 visits per year. Hospital C is a
quaternary care academic medical setting in a major
metropolitan area having an ED patient volume of approximately
48,000 visits per year. Hospital D is a community hospital in a
suburban setting having a volume of approximately 36,000
visits per year.

Selection of Participants
Prior studies have suggested that overwhelming viral septicemia
during the COVID-19 pandemic led to markedly increased false
positive rates of sepsis screening tools [15]. These cases
accounted for a substantial portion of ED visits during the initial
months of 2020 [19] and led to a sharp decline in ED patient
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volume [20]. Accordingly, we excluded encounters (n=94,739)
from February 1, 2020, to August 1, 2020, and patients who
had a diagnostic code of COVID-19 or positive COVID-19
laboratory test. Patients of 18 years and younger of age were
excluded from the study (n=27,238), as defining sepsis in these
patients is controversial, and they are often lost to follow-up
after they are transferred for admission to pediatric hospitals.
Patients whose date of birth or age was not available were also
excluded (n=23,434) to ensure that the remaining cohort
comprised only adult patients. We subsequently excluded
encounters with missing triage notes (n=29,637). The final
cohort of interest included 1,059,386 unique clinical encounters.

Sepsis Definition
The primary outcome of sepsis was defined as presumed severe
infection and acute organ dysfunction, based on criteria
described by the health system sepsis committee. To evaluate
model performance against verified sepsis cases, the health
system sepsis committee provided physician-reviewed sepsis
labels for 7663 patients between June 1, 2019, and October 1,
2019. These cases were oversampled into the test data set. This
definition of sepsis was projected onto the remaining data using
clinical outcome variables. For sensitivity analyses of model
performance, a secondary definition of sepsis was used, based
on the US Centers for Medicare & Medicaid Services toolkit
criteria [1]. Encounters were counted as sepsis, if they met
criteria at any time during the ED course or hospital stay.

Natural Language Processing
NLP techniques have been developed to extract meaning from
unstructured free-text data. One such technique is document
vectorization. Documents can be transformed into numerical
vectors that represent the key information they contain, allowing
them to be used by numerical machine learning (ML)
techniques.

To generate document embeddings for the nursing triage notes,
a distilled BERT (Bidirectional Encoder Representation From
Transformers) model pretrained using an unsupervised masked
language modeling objective was used as a base. Unlike models
pretrained using a causal language modeling objective such as
Generative Pre-Trained Transformer, which only consider
preceding tokens, BERT considers tokens to the right and left
of the masked word [21].

The use of large models such as BERT is constrained by the
computational resources required for training and inference.
DistilBERT [22] is a lighter and faster language model that
offers fewer constraints on computational resources, having a
depth of only 6 layers, rather than 12, and with token-type
embeddings and pooler removed. DistilBERT is trained to
replicate the behavior of BERT using “teacher-student” learning,
where BERT is the “teacher” and DistilBERT is the “student.”
This allows for knowledge distillation in the pretraining phase
while retaining 97% of language understanding and being 60%
faster.

The base DistilBERT model was fine-tuned using the free
textual data from nursing triage notes with the objective of
predicting sepsis. We evaluated several pretrained document
vectorization models, selecting the optimal one by calculating

fine-tuning performance on the training set. Nursing triage notes
concatenated with Boolean clinical variables available at the
time of triage (ie, high or low vital signs) were then passed
through the fine-tuned DistilBERT model to produce document
vectors representing the key information they contain. For the
document vectors, we selected thresholds for the numeric values
based on clinical knowledge and appended text based on the
numeric values and those thresholds. Additionally, we developed
manual mappings for known clinical abbreviations and
converted them into the text. For example, “n/v/d” became
“nausea, vomiting, and diarrhea.” The document vectors were
then passed through a principal component analysis step to
dimensionally reduce them from a length of 768 to 20
components.

Model Training and Testing
For the time-of-triage model, the triage note vectors were
combined with other clinical data, such as age, sex, and
maximum and minimum vital signs. For the prediction of sepsis
after laboratory data availability, a separate comprehensive
model was constructed that included the aforementioned
variables and additional laboratory data.

While many sepsis indicators have clear unidirectional
associations with sepsis risk (ie, heart rate, hypotension, and
lactic acid), others can be bidirectional (ie, high or low
temperature or white blood cell [WBC] count). In addition,
triage note vectors may potentially have complex relationships
with sepsis. Accordingly, a decision tree–based technique was
chosen for model training over more traditional techniques,
such as logistic regression. The combined vectors from the
training data set were used to train a decision tree–based
ensemble learning model (XGBoost [Extreme Gradient
Boosting]) [23] to predict the likelihood of sepsis. The XGBoost
model was trained to predict sepsis using the training subset
(n=950,921). Model performance was evaluated using the test
(n=108,465) subset.

Optimal hyperparameters for the time-of-triage model were
determined via grid search. The time-of-triage model was trained
using a maximum tree depth of 6, minimum child weight of 15,
minimum split loss of 15, learning rate of 0.05, subsample ratio
of 0.6, L1 regularization of 0, and L2 regularization of 1. After
Bayesian hyperparameter optimization, the comprehensive
model was trained using a maximum tree depth of 6, minimum
child weight of 13, minimum split loss of 18, learning rate of
0.015, subsample ratio of 0.63, L1 regularization of 0.27, and
L2 regularization of 1.87. We accounted for class imbalance by
scaling the positive weight parameter to the inverse of the class
distribution. Epoch-level evaluation was used to measure model
performance during training and identify failing training runs.
Heat maps to indicate word and subword importance were
generated using the integrated gradients method on the
constructed model inputs [24]. Word importance here was
calculated on words and subwords returned by the tokenization
method.

For analysis of sensitivity, specificity, and false positive rate of
the time-of-triage model, a target threshold of model prediction
score was selected based on optimizing for a maximal false
positive rate of 0.15. For the comprehensive model, we derived
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a classification threshold empirically, based on probability
scores, and subsequently applied the threshold to target a
maximum false positive rate of 0.1 at 12 hours after ED arrival.
The thresholds were selected using model output scores from
the training set and were applied to the test data set to evaluate
clinical predictive performance metrics. The comprehensive
model included known laboratory indicators of sepsis and end
organ dysfunction, such as maximum and minimum WBC count,
maximum lactic acid, minimum platelets, and maximum
bilirubin and creatinine. Comprehensive model performance
was evaluated using the test data set at every hour after ED
arrival. Model performance was also evaluated at each hospital.

Sepsis Prediction Prior to the First Intravenous
Antibiotic Order
To estimate how an AI sepsis prediction tool might impact the
ordering of antibiotics, we computed the percentage of sepsis
encounters that triggered a positive prediction of sepsis prior
to antibiotics being ordered or not having antibiotics ordered
within the first 12 hours of the encounter. To perform this
analysis, we used encounters from the test data set. A
dual-model approach was used to emulate sepsis alerting at the
time of triage and then subsequently during the ED encounter.
Sepsis prediction time was defined as the earlier of either the
time-of-triage model or comprehensive model generating a
positive prediction of sepsis.

Evaluation of Model Performances Among Clinically
Undetected Sepsis Cases
To determine how the time-of-triage and comprehensive models
may prevent missed sepsis, encounters with sepsis in the test
data set were stratified by model prediction of sepsis- versus
chart-based indicators of clinical sepsis suspicion. Predictive
performance of the model was evaluated among patients who
were septic and were or were not screened for sepsis at triage
and defined as having either of the following order in less than
30 minutes after time of triage: (1) nursing-driven sepsis
screening order set or (2) blood culture.

Results

Characteristics of the Study Patients
The total data set after exclusions consisted of 1,059,386 unique
encounters from 487,296 patients. Sepsis occurred in 35,318
encounters (incidence 3.45%). Median time from arrival to first
WBC count collection was 44.9 (IQR 26.2-79.3), 42.8 (IQR
25.6-73.3), and 44.8 (IQR 26.2-79.0) minutes across nonsepsis,
sepsis, and all encounters, respectively. Demographic
characteristics of the patients are available in Table 1. Gender,
race, and temperature were missing in 5.6% (57,082/1,059,386),
13.2% (87,284/1,059,386), and 0.2% (2034/1,059,386) of
encounters, respectively. Respiratory rate, heart rate, oxygen
saturation, and blood pressure were missing in 0.1% of
encounters. Selected examples of triage notes of encounters
where patients were septic are included in Table S1 in
Multimedia Appendix 1.
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Table 1. Demographic and clinical characteristics of patients across encounters.

Hospital DHospital CHospital BHospital ATotal

228,874 (21.6)284,794 (26.9)158,757 (15)386,961 (36.5)1,059,386 (100)Sepsisa, n (%)

9032 (3.9)12,775 (4.5)3978 (2.5)9533 (2.5)35,318 (3.3)Primary

6185 (2.7)12,688 (4.5)3541 (2.2)9128 (2.4)31,542 (3)Secondary

Age (years), mean (SD)

10,188 (4.5)23,309 (8.2)11,466 (7.2)35,421 (9.2)80,384 (7.6)18-24

58,560 (25.6)91,106 (32.0)47,283 (29.8)147,085 (38.0)344,034 (32.5)25-44

64,020 (28.0)87,113 (30.6)53,226 (33.5)123,225 (31.8)327,584 (30.9)45-64

35,969 (15.7)41,425 (14.5)19,709 (12.4)44,840 (11.6)141,943 (13.4)65-74

60,137 (26.3)41,841 (14.7)27,073 (17.1)36,390 (9.4)165,441 (15.6)≥75

Sex, n (%)

120,259 (55.6)160,710 (59.6)90,599 (60.4)208,230 (56.8)579,798 (57.8)Female

96,127 (44.4)108,611 (40.3)59,447 (39.6)158,321 (43.1)422,506 (42.2)Male

Race, n (%)

64,993 (27.6)150,454 (51.3)35,366 (21.7)301,619 (75.6)552,432 (50.6)Black

129,654 (56.6)104,290 (35.6)92,713 (56.8)53,427 (13.3)380,084 (34.8)White

8429 (3.6)10,125 (3.5)15,827 (9.7)5205 (1.3)39,586 (36.3)Other

25,798 (11.3)19,925 (7.0)14,851 (9.4)26,710 (6.9)87,284 (8.2)Unreported

Vital signs

36.8 (0.5)36.7 (0.6)36.8 (0.5)36.8 (0.5)36.8 (0.5)Temperature (°C), mean (SD)

84.8 (19.7)85.9 (19.1)84.5 (18.7)86.2 (18.1)85.6 (18.8)Heart rate (beats per minute), mean (SD)

137.9 (24.9)139.7 (28.9)137.6 (24.4)138.6 (26.9)138.6 (26.7)Systolic BPb (mm Hg), mean (SD)

77.8 (16.1)80.5 (16.0)80.2 (14.8)80.8 (14.9)80.0 (15.5)Diastolic BP (mm Hg), mean (SD)

99.0 (97-100)98.0 (97-100)98.0 (97-100)98.0 (97-100)98.0 (97-100)SpO2
c (%), median (IQR)

17.8 (5.9)18.1 (6.7)18.0 (5.9)18.2 (6.4)18.0 (6.3)Respiratory rate (breaths per minute), mean (SD)

34.6 (23.1-73.0)47.4 (32.4-90.3)40.9 (20.8-62.8)51.2 (27.3-85.0)44.8 (26.5-80.3)Time to first WBCd count (minutes), median (IQR)

aSepsis primary and secondary definitions based on the health system sepsis committee and Centers for Disease Control and Prevention hospital toolkit
for adult sepsis surveillance criteria, respectively.
bBP: blood pressure.
cSpO2: oxygen saturation.
dWBC: white blood cell.

Time-of-Triage and Comprehensive Model
Performances
Using the test data set, the time-of-triage model using
information available at initial triage for sepsis prediction
(primary criteria) demonstrated an area under the receiver
operating characteristic curve (AUC) and macro F1-score of

0.94 and 0.61, respectively (Figure 1). Sensitivity, specificity,
and false positive rate were 0.87, 0.85, and 0.15, respectively.
Positive and negative predictive values were 0.18 and 0.99,
respectively. Sample model output is available in Figure 2,
depicted as heat maps applied to words and subwords of ED
nursing triage notes to indicate positive, neutral, or negative
contributions to sepsis prediction.
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Figure 1. Receiver operating characteristic curve of sepsis prediction at the time of initial emergency department triage using free-text triage nursing
notes and clinical data available at the time of triage. AUC: area under the receiver operating characteristic curve.

Figure 2. Heat maps applied to words and subwords of a sample of emergency department nursing triage notes to indicate relative contributions to
sepsis prediction.

Incorporating data available after initial ED workup, the
comprehensive model predicted sepsis based on primary criteria
with an initial AUC, sensitivity, and specificity of 0.94, 0.72,
and 0.94 at 1 hour after ED arrival, respectively; increasing to
an AUC, sensitivity, and specificity of 0.96, 0.87, and 0.91 after
5 hours, respectively; and increasing to AUC, sensitivity, and
specificity of 0.97, 0.91, and 0.90 at 12 hours after arrival,

respectively (Figure 3). Sensitivity, specificity, and false positive
rate at 12 hours were 0.92, 0.89, and 0.11, respectively. Positive
and negative predictive values at 12 hours were 0.25 and 0.99,
respectively. Similar sepsis prediction results were obtained
using the CDC hospital toolkit for adult sepsis surveillance
criteria (Table 2) and when stratifying by hospital (Table S2 in
Multimedia Appendix 1).
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Figure 3. Sepsis predictive performance of the comprehensive model using a test data set, expressed as AUC, at each hour after emergency department
arrival. AUC: area under the receiver operating characteristic curve.

Table 2. Machine learning prediction of sepsis using data available at the time of emergency department (ED) triage (“time-of-triage” model) and all
data available after ED workup (“comprehensive” model).

Comprehensive modelTime-of-triage model

Primary sepsis criteria

0.970.94AUCa

0.670.61Macro F1

0.910.87Sensitivity

0.900.85Specificity

0.100.15False positive rate

CDCb hospital toolkit for adult sepsis surveillance

0.960.92AUC

0.640.57Macro F1

0.910.86Sensitivity

0.890.83Specificity

0.110.17False positive rate

aAUC: area under the receiver operating characteristic curve.
bCDC: Centers for Disease Control and Prevention.

Model Performances Among Clinically Undetected
Sepsis Cases
Sepsis screening initiated at triage was defined as having
chart-based indicators of sepsis screening ordered within 30
minutes of triage (see Methods section). Within the test data
set, there were 3821 encounters having sepsis. Among these,
1671 (43.7%) encounters had sepsis screening initiated at triage.
The time-of-triage model accurately predicted sepsis in 76%
(1635/2150) of sepsis cases where sepsis screening was not

initiated at triage and 97.5% (1630/1671) of cases where sepsis
screening was initiated at triage.

Model Performances Among Critical Sepsis Cases
Among patients in the test data set who had sepsis and were
ultimately placed on vasopressors or were admitted to the ICU,
the time-of-triage model predicted sepsis in 97.9% (329/336)
and 91.6% (832/908) encounters, respectively. The
comprehensive model predicted sepsis in 100% (336/336) and
95.7% (869/908) encounters, respectively.

JMIR AI 2024 | vol. 3 | e49784 | p. 7https://ai.jmir.org/2024/1/e49784
(page number not for citation purposes)

Brann et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Sepsis Prediction Prior to the First Intravenous
Antibiotic Order
We retrospectively evaluated the time of sepsis prediction in
relation to the first intravenous antibiotic order using a
dual-model approach (“time-of-triage” followed by
“comprehensive” models). Among septic cases, sepsis was
predicted in 36.1% (1375/3814), 49.9% (1902/3814), and 68.3%
(2604/3814) of encounters at 3 hours, 2 hours, and 1 hour,
respectively, prior to the first intravenous antibiotic order or
where antibiotics were not ordered within the first 12 hours.

Model Performance Using Only the First Encounter
per Patient
To ensure that model performance was not confounded by past
encounters, we performed a sensitivity analysis using only the
first encounter per patient in the test data set (n=88,309),
excluding subsequent encounters. The time-of-triage model
predicted sepsis with an AUC, sensitivity, specificity, and false
positive rate of 0.94, 0.85, 0.86, and 0.14, respectively. The
comprehensive model predicted sepsis at 12 hours with an AUC,
sensitivity, specificity, and false positive rate of 0.97, 0.92, 0.90,
and 0.10, respectively.

Analysis of Model Feature Importance
The importance of model features was analyzed by ranking the
XGBoost feature importance scores from highest to lowest
(Figure S1 in Multimedia Appendix 1). For both the
time-of-triage (Figure S2 in Multimedia Appendix 1) and
comprehensive (Figure S3 in Multimedia Appendix 1) models,
the top features included elements of vital signs (ie, heart rate,
temperature, blood pressure, and oxygen saturation) and triage
note vectors. For the comprehensive model, the most important
features additionally included laboratory metrics such as WBC
count, creatinine, and lactic acid.

Discussion

Principal Findings
In this study, data from over 1 million patient encounters across
4 large metropolitan EDs were used to train an NLP-based ML
model to detect sepsis at the time of patient presentation to the
ED. We demonstrated that free-text nursing triage notes,
combined with clinical variables at the time of triage, could be
used to accurately predict the occurrence of sepsis at initial ED
nursing triage. Moreover, we demonstrated that sepsis could be
detected in 76% (1635/2150) of sepsis cases where sepsis
screening was not initiated at triage. Finally, the results suggest
that AI-based sepsis prediction in the ED may be able to
significantly improve the time to antibiotics, which may offer
opportunity for lifesaving intervention for patients. Notably, in
addition to triage note vectors, the variables with the highest
predictive importance were combinations of clinically relevant
vital signs (time-of-triage model) and laboratory values, such
as WBC count, creatinine, and lactic acid level (comprehensive
model). These model characteristics, as well as the ability to
map triage note word and subword relative contributions,
indicate that the models may offer meaningfully explainable
predictions to end users.

To our knowledge, this study is the largest to date to use NLP
for sepsis prediction in the ED. We also demonstrated
substantially improved accuracy compared to ML-based
techniques in prior studies. The ability to incorporate triage
notes into an ML model is advantageous for several reasons.
First, natural language allows for a broad range of history and
examination findings to be compressed into a short free-text
note rather than innumerable variables in tabular form. Second,
it allows experienced nurses to communicate an overall clinician
impression that cannot always be captured by strictly
quantitative inputs. In this study, free text from nursing triage
notes was used to train a transformer model and was combined
as input with other clinical data available at the time of initial
triage, with the aim of predicting sepsis. Our findings
demonstrate that NLP-based ML models can generate accurate
predictions of sepsis at the time of triage and throughout an ED
stay. Accordingly, the incorporation of free-text data into models
that include data from clinical workups can produce a highly
accurate prediction of sepsis.

Importance of Accurate Sepsis Prediction Tools
Existing sepsis alerting systems experience a number of
performance difficulties. One of the most widely implemented
sepsis detection systems across health systems has been shown
to have limited performance due to low sensitivity and precision
(33% and 2.4%, respectively). Low predictive performance
hinders the clinical use of such systems, despite their aim being
to prompt the initiation of lifesaving care. Further impacting
their use are high rates of false positive alerts [12]. Increased
rates of false positive alerts lead to lower trust among clinicians,
alert fatigue and dismissal, and lower adoption [25]. Recently,
the incorporation of natural language such as free-text notes
into model inputs has been shown to be promising for accurately
detecting sepsis as early as during the ED triage process [15].

Prior Studies
To our knowledge, this study is the largest to predict sepsis at
the time of ED triage evaluation using NLP-based ML. Ivanov
et al [15] reported high predictive performance for sepsis at ED
triage with a smaller sample size in 2022. While both this study
and Ivanov et al [15] present high sensitivity and specificity
and remarkably increased performance compared to traditional
screening tools for sepsis, there are important differences
between the studies. Whereas Ivanov et al [15] included
pediatric encounters, they were excluded in this study, since
significantly ill patients of 18 years or younger of age are
typically transferred to pediatric hospitals for admission and
final diagnoses are unavailable. Accordingly, we excluded these
encounters to avoid underestimation of sepsis in the pediatric
population, which could have led to type I error with increased
reliance on patient age as a predictive feature. A transformer
model was also used for the NLP step, which can account for
context and surrounding words.

Finally, our approach provides a method to present clinicians
with understandable model decision explanations, including
heat maps to indicate word importance and contribution to sepsis
prediction. We present some examples of these heat maps here.
It is important to note that the transformer architecture used in
this study assigns meaning using full sentence context, capturing
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combined subword and interword relationships, from negation
to more complex interactions. As such, these heat maps can be
instructive but offer a heavily simplified view of how the
algorithm uses triage notes. Additionally, the triage note
vectorization is only a part of our complete sepsis algorithm,
which also considers additional clinical data throughout the ED
encounter.

Limitations
There were several limitations in this study. First,
physician-reviewed sepsis labels were only available for a subset
of the data and had to be projected onto unlabeled encounters
for training purposes using clinical signals. However, model
performance was similar when evaluated on the secondary sepsis
definition provided in the CDC hospital toolkit for adult sepsis
surveillance. Second, the quality of the nursing triage notes is
dependent on the clinical skill of the triage nurses, which could
vary between EDs. Third, since the COVID-19 pandemic
resulted in significant clinical and operational changes, it will
be important to include such encounters in future prospective
studies. Fourth, no pediatric patients were included, which would
bias the model results toward an adult population. Fifth, in this

study, it was not possible to detect whether patients were
immunocompromised. This is an important subgroup of patients
to assess in future studies of ML-based sepsis prediction. Sixth,
it was not possible in this study to stratify by causal organism
of sepsis, which could affect performance characteristics.
Finally, as this study was an investigation of NLP using triage
notes, we excluded encounters having missing triage notes.

Conclusions
Using free-text and clinical data available at the time of initial
ED triage from over 1 million patient encounters and across 4
hospital-based EDs, we demonstrated that NLP-based ML
models are able to achieve high accuracy in predicting sepsis.
The implication of these results is that AI-based clinical tools
may substantially augment clinician abilities when clinical
workup data are sparse, such as at the time of initial ED triage.
Since sepsis mortality increases drastically with every passing
hour and early clinical intervention is imperative to provide
lifesaving treatment, AI-based tools using natural language data,
such as free text available in nursing triage notes, may offer
critical information to initiate treatment and prevent morbidity
and mortality.
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