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Abstract

Background: Clinical trials are vital for developing new therapies but can also delay drug development. Efficient trial data
management, optimized trial protocol, and accurate patient identification are critical for reducing trial timelines. Natural language
processing (NLP) has the potential to achieve these objectives.

Objective: This study aims to assess the feasibility of using data-driven approaches to optimize clinical trial protocol design
and identify eligible patients. This involves creating a comprehensive eligibility criteria knowledge base integrated within electronic
health records using deep learning–based NLP techniques.

Methods: We obtained data of 3281 industry-sponsored phase 2 or 3 interventional clinical trials recruiting patients with
non–small cell lung cancer, prostate cancer, breast cancer, multiple myeloma, ulcerative colitis, and Crohn disease from
ClinicalTrials.gov, spanning the period between 2013 and 2020. A customized bidirectional long short-term memory– and
conditional random field–based NLP pipeline was used to extract all eligibility criteria attributes and convert hypernym concepts
into computable hyponyms along with their corresponding values. To illustrate the simulation of clinical trial design for optimization
purposes, we selected a subset of patients with non–small cell lung cancer (n=2775), curated from the Mount Sinai Health System,
as a pilot study.

Results: We manually annotated the clinical trial eligibility corpus (485/3281, 14.78% trials) and constructed an eligibility
criteria–specific ontology. Our customized NLP pipeline, developed based on the eligibility criteria–specific ontology that we
created through manual annotation, achieved high precision (0.91, range 0.67-1.00) and recall (0.79, range 0.50-1) scores, as well
as a high F1-score (0.83, range 0.67-1), enabling the efficient extraction of granular criteria entities and relevant attributes from
3281 clinical trials. A standardized eligibility criteria knowledge base, compatible with electronic health records, was developed
by transforming hypernym concepts into machine-interpretable hyponyms along with their corresponding values. In addition, an
interface prototype demonstrated the practicality of leveraging real-world data for optimizing clinical trial protocols and identifying
eligible patients.

Conclusions: Our customized NLP pipeline successfully generated a standardized eligibility criteria knowledge base by
transforming hypernym criteria into machine-readable hyponyms along with their corresponding values. A prototype interface
integrating real-world patient information allows us to assess the impact of each eligibility criterion on the number of patients
eligible for the trial. Leveraging NLP and real-world data in a data-driven approach holds promise for streamlining the overall
clinical trial process, optimizing processes, and improving efficiency in patient identification.
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Introduction

Background
Clinical trials are crucial for developing new therapies, but they
require significant resources and can introduce delays in drug
development, leading to increased costs [1,2]. Complex and
restrictive eligibility criteria hinder patient enrollment, impacting
target goals, timelines, and ultimately patient well-being [3-5].
This issue is particularly notable in cancer trials with poor
recruitment and high failure rates [6-8] because >80% of the
trials fail to meet their initial target accruals and timelines [6,9].
In addition, overly restrictive eligibility criteria limit the
representation of the broader patient population, reducing
real-world applicability and treatment impact [10-13].
Nonetheless, the practice of trials reusing complicated eligibility
criteria without a clear rationale is a common one [14], despite
the minimal impact on trial outcomes [15]. Liu et al [15]
demonstrated that broadening eligibility criteria using a
data-driven approach can benefit initially excluded patients. A
comprehensive and standardized eligibility criteria knowledge
base that is compatible with real-world data can address these
challenges. Such a knowledge base optimizes trial protocol
design, improves patient enrollment, enhances the reliability
and applicability of evidence synthesis, and fosters the efficient
development of new therapies. Furthermore, it enables
opportunities such as generating synthetic control arms (SCAs)
for single-arm clinical trials using electronic health records
(EHRs) [16-18].

The importance of semantically representing eligibility criteria
interoperable with EHRs has been highlighted in multiple studies
[19-21]. Converting free-text eligibility criteria to computable
formats poses challenges, addressed by a range of natural
language processing (NLP) techniques and transformer models
[22-26]. An NLP interface, Criteria2Query, enables computable
queries for eligible cohort identification using EHRs [27]. This
tool supports clinical trial knowledge base development,
enhancing EHR interoperability and scalability for efficient
eligibility criteria knowledge engineering [28]. Manually
annotated data sets such as “Chia, a large annotated corpus of
clinical trial eligibility criteria” [29] and the “Leaf Clinical
Trials corpus, the largest and most comprehensive
human-annotated corpus of publicly available clinical trials
eligibility criteria” [30] have significantly enhanced NLP model
training and the development of effective query structures.
Despite significant progress in bridging the gap between
eligibility criteria and EHRs, limitations persist in accurately
representing the granularities of eligibility criteria and real-time
eligible patient number checks [20,31,32]. Using varying
hierarchical levels of medical concepts, whether as hypernyms
or hyponyms, presents one of the challenges when aligning
eligibility criteria with EHRs; for instance, numerous trial
eligibility criteria use hypernyms, which encompass a group of

related medical concepts, such as cardiovascular disease.
Conversely, the patient problem list within the EHR specifies
particular medical conditions or diseases (hyponyms), such as
myocardial infarction. Establishing a standardized eligibility
criteria knowledge base by transforming ambiguous hypernym
concepts into computable hyponyms can enhance optimizing
trial protocol design and identifying eligible patients through
seamless integration with EHR data.

Objectives
In this study, we aim to create a standardized eligibility criteria
knowledge base that seamlessly integrates with EHRs. By using
deep learning–based NLP techniques, hypernym concepts in
eligibility criteria will be converted to their EHR-compatible
hyponyms along with their corresponding values. In addition,
the prototype user interface will be developed as a pilot study,
enabling the data-driven optimization of clinical trial protocols
and the identification of eligible patients through the integration
of the eligibility criteria knowledge base and EHRs.

Methods

Data Set
We obtained the data from ClinicalTrials.gov, specifically
industry-sponsored phase 2 or 3 interventional clinical trials
initiated between January 2013 and May 2020. A total of 3281
trials were identified: 817 (24.9%) for non–small cell lung
cancer (NSCLC), 649 (19.78%) for prostate cancer (PCa), 1057
(32.22%) for breast cancer (BCa), 447 (13.62%) for multiple
myeloma (MM), 160 (4.88%) for ulcerative colitis (UC), and
151 (4.6%) for Crohn disease (CD).

For the development of the prototype interface, we selected a
subgroup of patients (n=2775) diagnosed with NSCLC from a
previously curated cohort of patients with lung cancer. This
cohort was established using the data from Mount Sinai-Sema4
Health System data [33], and patient information was
deidentified for the purposes of this study.

Deep Learning–Based NLP Pipeline Development
Our NLP pipeline consists of 3 modules: ontology construction
and manual annotation, model training and pipeline evaluation,
and application.

Ontology Construction and Manual Annotation
To construct our ontology, we randomly selected 425 eligibility
criteria from diverse cancer trials and manually analyzed entities
and relations. This manual analysis focused on identifying
entities and their relationships. Entities were subsequently
categorized into primary and modifier groups, with detailed
examples provided in Multimedia Appendices 1 and 2. The
primary groups included demographic, diagnosis, biomarker,
disease status, prior therapy, comorbidity, laboratory test, vital,
procedure, and other medication, while the modifier groups
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included value, condition, evidence, lines of therapy, negation,
exception, grade, dose, and temporal. Any entities that did not
fall into the primary groups were classified as other observation.
Furthermore, we defined relations between the entities. The
commonly detected relationships between the primary and
modifier groups were (1) has_value_limit between demographic
(age) or vital lorlaboratory test and value, (2) has temporal
limit between comorbidity or other medication or procedure
and temporal, (3) has_negation between observation or
biomarker or prior therapy and negation, and (4) has_exception
between comorbidities or biomarker or diagnosis and exception.
Other relationships included has_dose limit, has_line of therapy
limit, has_grade_limit, has_condition, and need_evidence. The
applicability of the ontology was tested on 60 UC and CD trials.
Next, we manually annotated 246 eligibility criteria from
NSCLC trials and performed model training using Clinical
Language Annotation, Modeling, and Processing, which is an
NLP toolkit [34].

Model Training and Pipeline Evaluation
A multilayer deep learning architecture was implemented for
NLP modeling. The first step involved transforming the text
into sequential vectors of characterization during the embedding
process. These vectors were subsequently input into a
bidirectional long short-term memory network, which is an
artificial neural network designed for text classification. The
bidirectional long short-term memory network was used to
recognize patterns in both forward and backward directions
[35]. The identified patterns were then passed to the next layer,
which used a conditional random field model to compute the
prediction probability [36]. The NLP model was trained using
annotated criteria, with 80% of the manually annotated gold
standard data allocated for training. Model performance was
evaluated on a separate validation set (20%) using precision,
recall, and F1-score values:

Precision = TP / (TP + FP) (1)

Recall = TP / (TP + FN) (2)

F1-score = 2 × (Precision × Recall) / (Precision +
Recall) (3)

In equations 1 and 2, TP stands for true positives, FP for false
positives, and FN for false negatives.

The manual annotation and training processes were iteratively
performed with additional manually annotated notes until the
model achieved a F1-score of >0.8 in the test set (Multimedia
Appendix 3). To tailor the pipeline for specific cancer types, a
preannotation method using the NSCLC pipeline was
implemented for PCa, BCa, and MM for common eligibility
criteria such as laboratory test values and comorbidities. Specific
eligibility criteria such as biomarkers and treatments were
manually annotated for each cancer type: PCa with 124 trials,
BCa with 73 trials, and MM with 60 trials.

Application
The fully trained named entity recognition and relation models
were integrated and applied to annotate the remaining eligibility
criteria for the 4 types of cancer studied (BCa, MM, NSCLC,
and PCa). The output data included sentences, tokens, parts of
speech, entities, negations, and relations.

Construction of Standardized Eligibility Criteria
Knowledge Base Table
The standardized knowledge base was constructed in an
EntityGroup-AttributeName-Value format, involving 2 key
steps: attribute normalization and transforming hypernyms to
hyponyms with corresponding values.

Attribute Normalization
To normalize attributes, we used a 3-step approach. First, we
assigned a Unified Medical Language System concept unique
identifier to map synonyms of an entity, such as estrogen
receptor-positive, ER-positive, and ER+ to the Unified Medical
Language System concept unique identifier C0279754. Second,
we developed a set of rules (Table 1) to map abbreviations (eg,
CrCl to creatinine clearance) and different phrases with the
same meaning (eg, ≥1.5x ULN [where ULN stands for upper
limit of normal], greater than or equal to 1.5x ULN, and ≥1.5x
upper limit of normal) back to their original text. Finally, 2
domain experts manually curated unnormalized entities.
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Table 1. Rules for attribute normalization.

Normalized attributesRule and attributes from eligibility criteria

Rules for mapping synonyms

ASTASTa, SGOTb, aspartate aminotransferase, serum AST

ALTALTc, SGPTd, alanine aminotransferase, serum ALT

Total bilirubinTotal bilirubin, serum bilirubin, total bilirubin level, bilirubin level

HgbHgbe, hemoglobin

HbA1cHbA1c
f, hemoglobinA1c

Serum creatinineserum creatinine, creatinine, creatinine levels, creatinine level

ANCANCg, absolute neutrophil count, absolute neutrophil counts, neutrophil count, neutrophil counts,
absolute neutrophil

WBCWBCh, white blood cells, white blood cell, WBC count, white blood cell count, white blood count,
leucocytes

Plateletsplatelets, platelet, platelet count, platelet counts

CrClCrCli, creatine clearance

ALPALPj, alkaline phosphatase

ULNULNk, upper limit of normal

LLNLLNl, lower limit of normal

Rules related to unit and temporal modifier

≤less than or equal to, ≤

≥greater than or equal to, ≥

>greater than, >

<less than, <

within 4 weekswithin 4 weeks, within 28 days

within 2 weekswithin 2 weeks, within 14 days

within 3 weekswithin 3 weeks, within 21 days

within 6 monthslast 6 months, past 6 months, within 6 months, within six months

within 3 monthslast 3 months, past 3 months, within 3 months, within three months

within 2 yearswithin 2 years, last 2 years, past 2 years

within 3 yearswithin 3 years, last 3 years, past 3 years

within 5 yearswithin 5 years, last 5 years, past 5 years

103/uL109/L, 109/L, 103/uL, 103/microliter, 1000/uL, 1000/microliter, K/microliter, 103/mm3

Other miscellaneous rules

—mCase insensitive

—Remove spaces

aAST: aspartate aminotransferase.
bSGOT: serum glutamic oxaloacetic transaminase.
cALT: alanine transaminase.
dSGPT: serum glutamic pyruvic transaminase.
eHgb: hemoglobin.
fHbA1c: glycated hemoglobin.
gANC: absolute neutrophil count.
hWBC: white blood cell.
iCrCl: creatinine clearance.
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jALP: alkaline phosphatase.
kULN: upper limit of normal.
lLLN: lower limit of normal.
mNot applicable.

Transforming Hypernyms to Hyponyms Along With
Corresponding Values
To formalize hypernyms, identified in primary groups such as
laboratory test, comorbidity, biomarker, prior therapy, and
other medication, we used the following approaches: (1) for
adequate organ functionlaboratory test values, we determined
prevalent laboratory test values by analyzing the unique
laboratory test values for each test across the trials of the same
cancer type that defined the normal organ function; and (2) for
comorbidity, biomarker, prior therapy, and other medication
hypernyms, we collected all example hyponyms described across
the trials of the same cancer type.

Creation of a Prototype Interface for Enhancing Trial
Protocol Design Optimization
We developed a prototype interface using the R programming
language (R Foundation for Statistical Computing) and the Shiny

package to enhance trial protocol design optimization. The
interface allows users to simulate the number of eligible patients
based on specific criteria, including a combination of criteria
such as histology, stages, laboratory test values, performance
scores, prior line of therapy, and comorbidities. For this pilot
study, a subset of patients with NSCLC (n=2775) was selected
and deidentified. To ensure consistency and accuracy, we
standardized the sample entities found in both the eligibility
criteria knowledge base and EHRs using concept codes such as
the International Classification of Diseases; Logical Observation
Identifiers, Names, and Codes (LOINC); and normalized
medical prescription codes. In addition, we converted the
patients’absolute laboratory test values to either the upper limit
of normal (ULN) or the lower limit of normal based on the
provided normal ranges for each specific test. Tables 2 and 3
and Textbox 1 present some examples of normalized concepts
and their codes.

Table 2. Examples of normalized codes for each concept and normal range of each laboratory test.

Normal rangeLOINCa codeLaboratory test

7-561742-6ALTb (SGPTc; U/L)

10-401920-8ASTd (SGOTe; U/L)

0.1-1.21975-2Total bilirubin in serum (mg/dL)

<0.31968-7Direct (conjugated) bilirubin in serum (mg/dL)

0.6-1.2 (male), 0.5-1.1 (female)2160-0Serum creatinine (mg/dL)

97-137 (male), 88-128 (female)2164-2CrClf (mL/min)

>90 mL/min/1.73 m226499-4ANCg (cells/µL)

150,000-450,000777-3Platelets (cells/µL)

12-18718-7Hemoglobin (g/dL)

aLOINC: Logical Observation Identifiers, Names, and Codes.
bALT: alanine transaminase.
cSGPT: serum glutamic pyruvic transaminase.
dAST: aspartate aminotransferase.
eSGOT: serum glutamic oxaloacetic transaminase.
fCrCl: creatinine clearance.
gANC: absolute neutrophil count.
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Table 3. Examples of International Classification of Diseases, Tenth Revision (ICD-10), and International Classification of Diseases, Ninth Revision
(ICD-9), disease codes.

ICD-9 codesICD-10 codesDisease

428.[2-4][0-3]I50.2, I50.3, I50.4Congestive heart failure

411.1I20.0Unstable angina

410.9[0-2]I21Acute myocardial infarction

429.9I49Arrythmia

426.82I45.81Torsade de pointes

426.82I45.81Long QT syndrome

427.3[1-2]I48Atrial fibrillation and flutter

427.89R00.1Symptomatic bradycardia

401.[09]I10Uncontrolled hypertension

414.1[09]I25.3Heart aneurysm

414.01I25.1Coronary heart disease

425.[49]I42.9Cardiomyopathy

447.6I77.6Vasculitis, or angiitis

423.9I31.3Pericardial effusion

443.9I73.9Peripheral vascular disease

Textbox 1. Examples of normalized medical prescription (RxNORM) drug codes.

Drug and RxNORM code

• Bortezomib: 356733

• Carfilzomib: 1302966

• Ixazomib: 1723735

• Lenalidomide: 342369

• Pomalidomide: 1369713

The interface uses a rule-based algorithm to match patients’
EHR data with the criteria. The comprehensive rules for
matching EHR data with criteria have been described in our
previous studies [37]; for instance, we defined the following
rules to map each laboratory test in EHRs to 1 corresponding
LOINC code:

1. Mapping the laboratory test in the LOINC dictionary to the
laboratory test in the EHR, based on the popularity rank
available in the LOINC dictionary

2. Mapping the laboratory test for serum or plasma samples
in the LOINC dictionary to the laboratory test in the EHR
when the popularity rank is not available in the LOINC
dictionary

3. If one-to-one mapping is not feasible using rule 1 and rule
2, the test unit (eg, gram is preferred ovemolar) is
considered to facilitate the mapping

4. When one-to-one mapping is not attainable using rule 1,
rule 2, and rule 3, preference is given to the laboratory test
that lacks information about the method for mapping

We associated medication classes with their respective
medications; for instance, we extended the annotation
“post-menopausal not older than 60 years and taking LHRH
[luteinizing hormone–releasing hormone] agonist” to include

“post-menopausal not older than 60 years and taking goserelin,
leuprolide, or other LHRH agonists.” To achieve this, we used
both our in-house knowledge bases and standard resources, such
as the National Comprehensive Cancer Network’s Clinical
Practice Guidelines in Oncology.

Users can specify different criteria and combinations, such as
different laboratory test values with specific conditions such as
no brain metastasis to determine the number of qualified
patients. The algorithm matches each patient’s EHR data with
the selected criteria and calculates the number of matched
patients for each criterion. The performance of the interface
was evaluated by comparing it to the manual patient selection
process conducted by experienced clinical domain experts.

Ethical Considerations
This study was confirmed and approved by the Program for the
Protection of Human Subjects at the Mount Sinai School of
Medicine (IRB-17-01245)
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Results

Development of Eligibility Criteria–Specific Ontology
Our analysis of cancer clinical trials revealed that hormone
therapy was the most frequently applied modality (1470/2970,
47.37%), primarily in BCa and PCa trials, followed by targeted
therapy (753/2970, 25.35%) and immunotherapy (691/2970,
23.26%). Chemotherapy alone was used in 3.8% (113/2970) of
the clinical trials. We developed an eligibility criteria ontology
applicable to all cancer trials by manually analyzing 425
eligibility criteria (Figure 1). Entities were categorized into 10
primary groups (inside the blue dotted box) and 9 modifier
groups based on semantic types and relations. Entities falling
outside the blue dotted box were classified as other observation.

The inclusion criteria mainly involved entities in the
demographic, diagnosis, laboratory test, and vital groups, while
the exclusion criteria commonly included entities in the
comorbidity, procedure, and other medication groups. Entities
in the biomarker, prior therapy, and disease status groups
appeared in both the inclusion and exclusion criteria.
Relationships originated from the primary groups and terminated
in the modifier groups, except for the has outcome relationship,
which started and ended in the primary group (Figure 1). To
assess the applicability of the cancer eligibility criteria ontology
in a different disease context, we conducted a manual analysis
of 60 trials related to UC and CD. For reference, the computable
formats of the manually annotated 485 trials can be found in
Multimedia Appendices 4-8.

Figure 1. Clinical trial eligibility criteria ontology. Primary entities are grouped inside the blue dotted box. Modifier entities are placed outside the
blue dotted box. The relationship between the primary entities and modifier entities always starts at a primary entity and ends at a modifier entity. LOT:
line of therapy.

NLP Pipeline Quality Metrics
To evaluate the quality of our NLP pipeline, we computed
precision, recall, and F1-score measures. For the primary group

entities, the average scores were 0.91 (precision), 0.79 (recall),
and 0.83 (F1-score). Table 4 presents the range of precision,
recall, and F1-score values of 17 primary group entities.
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Table 4. Performance scores of customized natural language processing pipeline for each entity in the primary groups.

F1-scoreRecallPrecisionPrimary group and attribute group::name

Demographic

0.9600.9231.000Demographic::age

0.9310.8701.000Demographic::gender

Diagnosis

1.0001.0001.000Diagnosis::histology

0.8001.0000.667Diagnosis::stage

Biomarker

0.8890.8001.000Biomarker::biomarker

Disease status

0.7090.6840.737Clinical status::disease status

Prior therapy

0.9190.8950.944Prior therapy::chemotherapy

0.8800.7861.000Prior therapy::targeted therapy

0.8390.7880.897Prior therapy::immunotherapy

0.6820.6820.682Prior therapy::radiotherapy

0.7270.5711.000Prior therapy::adjuvant therapy

0.6670.5001.000Prior therapy::neoadjuvant therapy

Comorbidity

0.8000.7620.842Comorbidity::disease

Laboratory test

0.8440.8180.871Laboratory test::test

Vital

1.0001.0001.000Vital::vital

Procedure

0.7500.6001.000Procedure::procedure

Other medication

0.7620.7270.800Other medication::medication

Eligibility Criteria Attribute Extraction and
Classification
The integrated named entity recognition and relation model
extracted 9090 NSCLC, 7427 PCa, 10,217 BCa, 6803 MM,
1565 CD, and 1586 UC entities along with their attribute
relations. After normalization and manual curation processes,
the eligibility criteria knowledge base for each disease type was
established in the EntityGroup-AttributeName-Value format
(Multimedia Appendices 9-14). The number of unique
EntityGroup-AttributeName-Value combinations varied across
disease types, with 494 from 817 NSCLC trials, 471 from 649
PCa trials, 525 from 1057 BCa trials, 389 from 447 MM trials,
231 from 160 UC trials, and 230 from 151 CD trials. Notably,
UC and CD trials had a smaller number of unique
EntityGroup-AttributeName-Value combinations compared to
cancer trials, indicating the presence of more complicated
eligibility criteria in cancer trials.

Figure 2 and Table 5 show the distribution of
EntityGroup-AttributeName-Value combinations in each primary
group from different diseases and provide examples. The
laboratory test, prior therapy, and comorbidity groups exhibited
a high number of EntityGroup-AttributeName-Value
combinations, followed by the biomarker and other medication
groups. Variations were observed between solid cancers and
hematologic cancers, with higher numbers of
EntityGroup-AttributeName-Value combinations in solid cancer
types for prior therapy and biomarker, while laboratory test
and comorbidity were comparable. The diagnosis group
exhibited varying numbers of EntityGroup-AttributeName-Value
combinations across all 4 cancer types (BCa, MM, NSCLC,
and PCa). EntityGroup-AttributeName-Value in the biomarker,
diagnosis, and prior therapy groups were specified per
indication, while shared EntityGroup-AttributeName-Value
were found in other primary groups.
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Figure 2. Distribution of attributes in the 10 primary groups as well as the other observation group extracted from the eligibility criteria of 4 different
cancer types and 2 different autoimmune diseases. BCa: breast cancer; CD: Crohn disease; MM: multiple myeloma; NSCLC: non–small cell lung cancer;
PCa: prostate cancer; UC: ulcerative colitis.

Table 5. The number of attributes for 10 primary groups along with examples.

Example attributes: group, name, value (with or without condition)Number of attributesPrimary group

MMdPCacBCabNSCLCa

Demographic, age, ≥18 y5101211Demographic

Stage, TNMe system, T2bf4173118Diagnosis

Biomarker, HER2g mutation, L755Ph14427249Biomarker

Disease status, relapsed, yes9131111Disease status

LOTi, prior LOT, ≥25093108114Prior therapy

Cardiovascular disease, arrhythmia, yes (≤3 mo)1089796105Comorbidity

Test, ASTj, ≤2.5x ULNk119110103103Laboratory test

Vital, ECOGl, ≥218212218Vital

Procedure, organ transplantation, yes8666Procedure

Other medication, use of anticoagulants, warfarin (<4 wk)46454545Other medication

aNSCLC: non–small cell lung cancer.
bBCa: breast cancer.
cPCa: prostate cancer.
dMM: multiple myeloma.
eTNM: tumor, nodes, metastasis.
fT2b: a moderately advanced tumor in terms of size and extent but not the most advanced stage; specific implications can vary based on the type of
cancer being described.
gHER2: human epidermal growth factor receptor 2.
hL755P: a reference to a specific mutation in the HER2 gene, with “L” standing for leucine, “755” being the position of the amino acid in the protein,
and “P” standing for proline.
iLOT: line of therapy.
jAST: aspartate aminotransferase.
kULN: upper limit of normal.
lECOG: Eastern Cooperative Oncology Group.
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Transformation of Umbrella Terms Into Computable
Attributes With Representative Values

Overview

The conversion of hypernym concepts into computable attributes
along with their corresponding values was carried out. Table 6
provides some examples of converted attributes and their
corresponding values for each hypernym. All lists can be found
in Multimedia Appendices 9-14.
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Table 6. Examples of hypernym concepts (entity and subgroup entity in eligibility criteria) used in eligibility criteria and converted hyponyms along
with their corresponding values.

Corresponding valuesEntity and subgroup entity in eligibility criteria and converted attribute

Adequate organ function

Normal hepatic function

≤2.5x ULNbASTa

≤2.5x ULNALTc

≤1.5x ULNTotal bilirubin

Normal renal function

≤1.5x ULNCreatinine

Normal hematologic function

≥1500 cells/uLANCd

≥100,000 cells/uLPlatelets

≥9 mg/dLHemoglobin 

Comorbidities

Second malignancy

Yes, with exceptionsAll cancers

Infectious disease

YesHIV

YesHBVe 

YesHCVf 

YesTBg 

Cardiovascular disease

YesCHFh

YesMIi 

YesAngina 

YesArrhythmia 

Autoimmune disease

YesUCj

YesCDk 

YesSystemic lupus erythematosus 

YesRheumatoid arthritis 

YesSystemic sclerosis 

YesGraves disease 

YesGuillain-Barré syndrome 

YesAntiphospholipid syndrome 

YesSjogren syndrome 

 Biomarker

EGFRl mutation sensitive to TKIm

YesExon 19 deletion

YesExon 21 L858R 

YesExon 21 L861Q 
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Corresponding valuesEntity and subgroup entity in eligibility criteria and converted attribute

YesExon 18 G719C 

YesExon 18 G719X 

YesAmplification 

EGFR mutation resistant to TKI

YesExon 20 T790M

YesExon 20 C797S 

YesExon 20 S768I 

YesExon 20 insertion 

Mismatch repair deficient

YesMSH2, MSH6, MLH1, PMS2, or EXO1 gene mutation

YesMLH1 hypermethylation

Prior therapy (targeted)

First-generation EGFR inhibitor

YesGefitinib

YesErlotinib 

YesVandetanib 

Second-generation EGFR inhibitor

YesAfatinib 

YesDacomitinib 

YesPoziotinib 

YesTesevatinib 

Third-generation EGFR inhibitor

YesOsimertinib 

YesLazertinib 

YesRociletinib 

YesTarloxotinib 

Proteasome inhibitor

YesBortezomib based 

YesCarfilzomib based 

YesIxazomib based 

YesOprozomib based 

Prior therapy (hormone)

First-generation antiandrogen

YesBicalutamide

YesNilutamide 

YesFlutamide 

Second-generation antiandrogen

YesAbiraterone 

YesEnzalutamide 

YesDarolutamide 

YesApalutamide 

Androgen deprivation therapy

YesLeuprolide 
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Corresponding valuesEntity and subgroup entity in eligibility criteria and converted attribute

YesGoserelin 

YesDegarelix 

5-α reducing agent

YesFinasteride 

YesDutasteride 

YesMegestrol acetate 

Other medication

Current use of antibiotics

YesRifabutin

YesClarithromycin 

YesAzithromycin 

YesImipenem 

Current use of antiarrhythmic agents

YesPropafenone 

Yes Procainamide 

aAST: aspartate aminotransferase.
bULN: upper limit of normal.
cALT: alanine transaminase.
dANC: absolute neutrophil count.
eHBV: hepatitis B virus.
fHCV: hepatitis C virus.
gTB: tuberculosis.
hCHF: congestive heart failure.
iMI: myocardial infarction.
jUC: ulcerative colitis.
kCD: Crohn disease.
lEGFR: epidermal growth factor receptor.
mTKI: tyrosine kinase inhibitor.

Adequate Organ Function
Adequate organ function criteria were defined using various
laboratory tests. Normal ranges and eligible values for alanine
transaminase (ALT)/aspartate aminotransferase (AST), total
bilirubin, serum creatinine, creatinine clearance, absolute
neutrophil count, platelets, and hemoglobin were determined.

Representative values for adequate organ/hematologic function
included ≤2.5x ULN for ALT/AST, ≤1.5x ULN for total
bilirubin/serum creatinine, ≥1500 cells/uL for absolute
neutrophil count, ≥100,000 cells/uL for platelets, and ≥9 ng/dL
for hemoglobin. Figures 3A-3H display the laboratory test value
range and trial counts for each value in BCa and NSCLC clinical
trials. The trends observed are similar in both cancer types.
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Figure 3. Clinical trial counts with each unique laboratory test value defining normal organ function. (A-B) Alanine transaminase (ALT) and aspartate
aminotransferase (AST): normal ranges from ≤1x upper limit of normal (ULN) to ≤3x ULN, with exceptions for liver diseases (eg, liver metastasis and
Gilbert syndrome [GS]) allowing values of up to ≤5x ULN. (C) Total bilirubin: normal ranges from ≤1x ULN to ≤2.5x ULN, with exceptions for liver
diseases (eg, liver metastasis and GS) allowing values of up to ≤3x ULN. (D) Serum creatinine: normal ranges from ≤1x ULN to ≤2.5x ULN. (E)
Creatinine clearance: normal ranges from ≥30 to ≥60 mL/min. (F) Hemoglobin: normal ranges from ≥8.0 to ≥11.0 ng/dL. (G) Absolute neutrophil count
(ANC): normal ranges from ≥750 to ≥1500 cells/uL. (H) Platelets: normal ranges from ≥50,000 to ≥100,000 cells/uL. BCa: breast cancer; NSCLC:
non–small cell lung cancer. For a higher-resolution version of this figure, see Multimedia Appendix 15.

Comorbidities
The presence of comorbidities is a common exclusion criterion
in clinical trials; however, natural language descriptions of
comorbidities, such as “uncontrollable cardiovascular diseases,”
“pulmonary diseases,” and “autoimmune diseases,” can be

ambiguous and need domain knowledge to interpret them. We
analyzed the hypernyms and their corresponding hyponyms
used in BCa trial eligibility criteria. Figure 4 shows the collected
hyponyms for each comorbidity class. The presence of second
primary malignancies was excluded in almost all trials.
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Figure 4. The heat map graph illustrates the number of clinical trials with each example hyponym for the hypernym comorbidities. Of note, the exception
of atopy is mentioned as an autoimmune disease. The group does not include exceptions of other malignancies such as in situ cervical cancer, noninvasive
bladder cancer, curative basal or squamous in situ prostate cancer, in situ breast cancer, or resected skin cancer other than melanoma. CD: Crohn disease;
CHF: congestive heart failure; CNS: central nervous system; COPD: chronic obstructive pulmonary disease; DVT/PE: deep vein thrombosis/pulmonary
embolism; HBV: hepatitis B virus; HCV: hepatitis C virus; MI: myocardial infarction; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus;
T1D: type 1 diabetes; T2D: type 2 diabetes; TB: tuberculosis; UC: ulcerative colitis.

Prior Therapy, Other Medication, and Biomarker
By combining all examples of each hypernym, we broke down
these hypernyms into actual medication and mutation hyponyms;
for instance, we collected procainamide or propafenone for
current use of antiarrhythmic medication. Similarly, we
collected epidermal growth factor receptor (EGFR) exon 20
T790M, T797S, S768I, or insertion for EGFR mutations resistant
to EGFR inhibitors.

Development of a Prototype Interface for the
Optimization of Protocol Design
Our study investigated the impact of various criteria on the
number of eligible patients. We developed a prototype interface
that uses real-world patient information. Using a subset of
deidentified cohorts of patients with NSCLC (n=2775), we
deployed an eligibility criteria knowledge base that we had
constructed in the interface. Figure 5A displays the selected
criteria list, Figure 5B shows the corresponding patient number,
and Figure 5C illustrates the distribution of patient numbers in
each group.
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Figure 5. Screenshots from a prototype interface. (A-B) The selected criteria list and the corresponding number of patients. (C) The distribution of
patient numbers in each group. (D) Displayed are eligible patient numbers after sequentially incorporating criteria such as non-squamous histology and
stage III and IV, with the further inclusion of aspartate aminotransferase (AST) and alanine transaminase (ALT) laboratory test values of either ≤2.5x
upper limit of normal (ULN) or ≤1.0x ULN. (E) The influence of Eastern Cooperative Oncology Group (ECOG) performance status as an additional
criterion. Displayed are eligible patient numbers after introducing ECOG scores of 0 to 2 or 0 to 1, with histology, stage, and ALT/AST laboratory test
values (<2.5x ULN) as fixed criteria. ANC: absolute neutrophil count; CrCl: creatinine clearance; EGFR: epidermal growth factor receptor; NSCLC:
non–small cell lung cancer; PD-1 ab: programmed cell death protein-1. For a higher-resolution version of this figure, see Multimedia Appendix 16.

Sequentially incorporating criteria such as nonsquamous
histology and stages III and IV criteria, we identified 2166
(78.05%) and 426 (15.35%) eligible patients, respectively, from
the total pool of 2775 patients with NSCLC. The inclusion of
AST and ALT ≤2.5x ULN criteria yielded 363 (13.08%) eligible
patients from the pool of 2775 patients. Limiting AST and ALT
to ≤1.0x ULN resulted in a decreased number of eligible patients
(315/2775, 11.35%; Figure 5D). In addition, we explored the
influence of Eastern Cooperative Oncology Group (ECOG)
performance status as an additional criterion. With histology,
stage, and ALT/AST laboratory test values (<2.5x ULN) as
fixed criteria, by introducing ECOG scores of 0 to 2 or 0 to 1,
we identified 194 (6.99%) and 151 (5.44%) eligible patients,
respectively, from the pool of 2775 patients (Figure 5E).

Patient-matching performance was evaluated using precision,
recall, and F1-score performance metrics across specific clinical
attributes. The average F1-score, computed across 10 attributes
from 8 domains (other primary malignancy, congestive heart
failure, squamous NSCLC, organ/tissue transplantation,
platelets, programmed death-1 antibody therapy, programmed
cell death protein-1 or programmed cell death program-ligand
1 positive, stage groups, prior LOT [line of therapy], and
ECOG), was 0.94 (range 0.82-1.00 [37]).

Discussion

Principal Findings
The challenge of achieving a high success rate in clinical trials
is an ongoing issue [38,39]. Our study demonstrates the

feasibility of a data-driven approach to optimize trial protocols
and efficiently identify eligible patients by constructing a
comprehensive, EHR-interoperable eligibility criteria knowledge
base and integrating EHR data. To accomplish this, we analyzed
3281 clinical trials using our customized deep learning NLP
model. We extracted all entities with their attributes and
converted the hypernym concepts used in eligibility criteria to
EHR-compatible hyponyms along with their corresponding
values. We also evaluated the feasibility of optimizing the trial
protocol design on the interface we developed. This interface
offers an efficient and effective approach for assessing the
number of eligible patients across various combinations of
eligibility criteria such as different laboratory test values as well
as combinations that account for vital signs.

We developed an eligibility criteria–specific ontology by
manually scrutinizing 425 eligibility criteria to be used as a
reference for manual annotation during NLP model training.
Accurately identifying intricate semantic relationships among
entities within eligibility criteria is crucial for constructing an
appropriate ontology for precise information extraction,
including temporal, arithmetic values, Boolean values, and
negation modifiers [31]. Our customized NLP pipeline based
on the eligibility criteria–specific ontology that we created
enabled us to efficiently extract all pertinent attributes across
different modalities and diseases, allowing for a more accurate
definition of the trial population. To determine the applicability
of our ontology generated using cancer clinical trials to other
disease domains, we compared the concepts and relations in
clinical trials of inflammatory bowel diseases. We observed
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very similar trends, suggesting that our eligibility
criteria–specific ontology can be extended to other types of
disease trials.

Moreover, the corpus of 485 manually annotated and
standardized trials in a computable format can be used in eligible
patient identification in EHRs.

Liu et al [28] conducted a thorough analysis of 352,100 clinical
trials across various disease domains and constructed a
knowledge base of clinical trial eligibility criteria. Their
comprehensive knowledge base and user-friendly interface
showcased the potential of advanced NLP techniques in
enhancing eligibility criteria analysis and retrieval. Fang et al
[40] also adopted a data-driven approach to optimizing clinical
trial eligibility criteria in the context of Alzheimer disease and
pancreatic cancer domains. Building upon these efforts, our
study aimed to further narrow the gap between eligibility criteria
and EHRs in multicancer domains, specifically in representing
the granularities of eligibility criteria for identifying eligible
patients and optimizing protocol designs. This was achieved by
transforming hypernyms in the criteria into EHR-compatible
hyponyms. We found that most of the primary groups include
umbrella terms such as prior therapy (eg, proper prior therapy
for actionable mutations) and biomarker (eg, EGFR
inhibitor–resistant mutations). Our study also addressed the
challenge of standardizing ambiguous clinical concepts in
eligibility criteria for EHR interoperability and patient matching.
To overcome this challenge, we converted hypernyms to the
Entity-Attribute-Value format using prevailing values across
different cancer types and modality therapies. We believe that
our EHR-interoperable standardized eligibility criteria
knowledge base and interface, integrating real-world EHR data,
have the potential to improve the automatic screening system.
This improvement has the potential to significantly reduce
manual extraction efforts. Moreover, specific, computable
criteria reduce ambiguity in patient identification and enable
the inclusion of a broader range of patients who may qualify
for the trial but could be excluded when using more general
terms. This can increase patient trial enrollment, ultimately
improving the overall success rate of trials. Notably, patients
who were given the option to participate in a trial by their
physicians demonstrated a significantly higher participation
rate of 55% [41] compared to the current average of 5% to 8%
among patients with cancer [42,43]. The implementation of our
hypernym/hyponym semantic terminology model can likewise
improve the effectiveness of information retrieval from EHRs
and other clinical databases in the context of real-world evidence
studies.

Certain criteria such as histology, stage, previous treatment, or
biomarker are difficult to modify, while others such as vital
signs or laboratory test values can be adjusted during the
protocol design [15]. Our study revealed the impact of
modifying laboratory test values while keeping other criteria
constant, resulting in fluctuations in the number of eligible
patients. Our findings, which demonstrate both the number of
trials for different laboratory test value ranges and eligible
patient numbers, offer insights for optimizing future protocol
design and refining patient selection criteria. Seeking future
collaboration with clinicians to conduct a direct comparison

between the patient identification results by clinical domain
experts and those generated by our prototype holds promise for
a more comprehensive and informative evaluation of the
prototype’s performance and its potential to enhance patient
identification for clinical trials. Furthermore, a careful
examination of the cases identified by the prototype can provide
an understanding of the nature of false positives and false
negatives. This will provide insights into how the prototype
may differ in its patient identification results compared to
manual extraction. Our eligibility criteria knowledge base can
also be leveraged for generating SCAs using EHRs. SCAs,
derived from real-world evidence, are regarded as substitutes
for experimental control arms in trials [16-18]. The integration
of SCAs into single-arm trial data or replacing traditional control
arms with SCAs can alleviate the burden of target accrual in
trials with low eligible patient numbers, such as rare disease or
oncology trials with specific biomarkers. The Food and Drug
Administration’s approval of the palbociclib inhibitor for male
patients with metastatic BCa based on real-world evidence
demonstrates the potential and relevance of SCAs in improving
trial design and outcomes [44].

Limitations
Our study has several limitations to consider. First, we focused
on a limited scope, analyzing only 4 different cancer types and
exploring extendibility in the context of inflammatory bowel
diseases. Future studies should encompass a wider range of
cancer types and disease domains for a more comprehensive
analysis. Second, while most attributes were well defined, some
umbrella terms lacked clear examples in other cancer types,
potentially affecting result accuracy. Further manual annotation
using knowledge bases could enhance the precision of the
attribute tables. Third, our data set may be biased because we
solely included industry-sponsored trials, potentially limiting
the generalizability of our findings. In addition, the NLP training
and test data sets in this study can display similarities owing to
the shared attributes among different cancer trials, which
heightens concerns regarding potential overfitting. Fourth, we
did not address entity logic, and establishing the logic between
entities would enhance cohort definition accuracy. Fifth and
last, our interface feasibility testing was limited to small cohorts
of patients with NSCLC, and the generalizability of our findings
to other populations or disease conditions may vary.
Furthermore, we did not perform a quantitative evaluation of
the accuracy of matched patients although domain experts
checked whether the patient information matched the eligibility
criteria manually. While our model serves as a valuable
illustration of how NLP can contribute to the design of trials
across different diseases, we fully acknowledge the
indispensable role of clinicians and biomedical researchers in
ensuring the integrity of trial criteria. Clinical trials vary in their
objectives, encompassing assessments of treatment end points,
effectiveness, and other specific goals. The process is far more
nuanced than merely adjusting laboratory test values because
such modifications can have a substantial impact on the pool
of eligible patients. Therefore, a comprehensive approach,
considering both the clinical and biomedical aspects, is
imperative for robust trial design.
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Conclusions
Our study using an EHR-executable eligibility criteria
knowledge base and real-world patient information provides

valuable insights into the influence of different criteria on the
number of eligible patients during the protocol design. The
findings highlight the potential of using a data-driven approach
that incorporates NLP and EHRs in clinical research.
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Abbreviations
ALT: alanine transaminase
AST: aspartate aminotransferase
BCa: breast cancer
CD: Crohn disease
ECOG: Eastern Cooperative Oncology Group
EGFR: epidermal growth factor receptor
EHR: electronic health record
LOINC: Logical Observation Identifiers, Names, and Codes
MM: multiple myeloma
NLP: natural language processing
NSCLC: non–small cell lung cancer
PCa: prostate cancer
SCA: synthetic control arm
UC: ulcerative colitis
ULN: upper limit of normal
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