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Abstract

Background: Abdominal auscultation (i.e., listening to bowel sounds (BSs)) can be used to analyze digestion. An automated
retrieval of BS would be beneficial to assess gastrointestinal disorders noninvasively.

Objective: This study aims to develop a multiscale spotting model to detect BSs in continuous audio data from a wearable
monitoring system.

Methods: We designed a spotting model based on the Efficient-U-Net (EffUNet) architecture to analyze 10-second audio
segments at a time and spot BSs with a temporal resolution of 25 ms. Evaluation data were collected across different digestive
phases from 18 healthy participants and 9 patients with inflammatory bowel disease (IBD). Audio data were recorded in a daytime
setting with a smart T-Shirt that embeds digital microphones. The data set was annotated by independent raters with substantial
agreement (Cohen κ between 0.70 and 0.75), resulting in 136 hours of labeled data. In total, 11,482 BSs were analyzed, with a
BS duration ranging between 18 ms and 6.3 seconds. The share of BSs in the data set (BS ratio) was 0.0089. We analyzed the
performance depending on noise level, BS duration, and BS event rate. We also report spotting timing errors.

Results: Leave-one-participant-out cross-validation of BS event spotting yielded a median F1-score of 0.73 for both healthy
volunteers and patients with IBD. EffUNet detected BSs under different noise conditions with 0.73 recall and 0.72 precision. In
particular, for a signal-to-noise ratio over 4 dB, more than 83% of BSs were recognized, with precision of 0.77 or more. EffUNet
recall dropped below 0.60 for BS duration of 1.5 seconds or less. At a BS ratio greater than 0.05, the precision of our model was
over 0.83. For both healthy participants and patients with IBD, insertion and deletion timing errors were the largest, with a total
of 15.54 minutes of insertion errors and 13.08 minutes of deletion errors over the total audio data set. On our data set, EffUNet
outperformed existing BS spotting models that provide similar temporal resolution.

Conclusions: The EffUNet spotter is robust against background noise and can retrieve BSs with varying duration. EffUNet
outperforms previous BS detection approaches in unmodified audio data, containing highly sparse BS events.

(JMIR AI 2024;3:e51118) doi: 10.2196/51118
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Introduction

There are various diagnostic tools to assess bowel motility,
including questionnaires, ultrasound, and endoscopic
examinations [1,2]. However, there is a lack of computational
tools to monitor digestion continuously across the
gastrointestinal tract. Abdominal examinations using a
stethoscope (ie, auscultation of the bowel) is a common clinical
practice to interpret bowel sounds (BSs) [3]. While BSs could
help examiners perform diagnoses [4,5], auscultation is mostly
done for a few minutes only [6]. However, BSs occur sparsely
over time, have varying patterns, and often exhibit low volume.
Previous investigations (eg, [7]) recommended recording BSs
with multiple sensors and over longer periods to maximize the
amount of BS observations. Craine et al [8] reported that
changes in BS occurrences across different digestive phases
were statistically different in patients with irritable bowel
syndrome and Crohn disease (CD). Later studies (eg, [9])
showed that digestion analysis based on BSs could support
bowel motility assessment as well as monitoring food intake.
For instance, an increased number of BS events could indicate
bowel hyperactivity, caused by, for example, gastroenteritis or
inflammatory bowel disease (IBD) [6]. Yao and Tai [10]
recorded BSs across patients with CD, patients with ulcerative
colitis (UC), and healthy controls. The authors reported that
patients with CD showed the highest BS peak frequency, while
patients with UC had the highest BS event count per unit time.
Consequently, spotting BS occurrences in continuous audio
could provide important information to assess digestion. To
date, however, the clinical assessment based on BS remains
qualitative and lacks quantification of BS characteristics [11].
For all of the aforementioned applications, short manual
auscultation is considered challenging, as it provides examiners
with insufficient information on dynamic bowel conditions.

Various wearable prototypes were proposed to record BSs in
healthy volunteers and patients with digestive disorders (eg,
[12,13]). Study protocols were primarily designed to observe
BSs under controlled laboratory settings, that is, while
participants laid down and rested, to minimize noise artifacts.
The large amount of audio data that could be recorded by
wearable systems renders a manual analysis infeasible.

Previous studies (eg, [14]) have attempted to reduce the amount
of audio data to be manually analyzed with segment-based
approaches that detected audio sections containing BS events.
Moreover, methods were proposed to improve BS event
detection and ease expert examination, by determining the onset
and offset of the BS patterns in audio data streams (eg, [9,15]).
Nevertheless, most algorithms were tested on balanced data sets
or selected subsets of the recordings only, from dozens of
minutes to a few hours. However, when collecting data with a
wearable device, the BS ratio of relevant events, for example,
BSs versus other surrounding sounds, largely influences retrieval
performance, which reflects a basic problem in pattern spotting
[16]. Specifically, in naturalistic, unmodified audio data, BS
events appear sparsely and their low amplitude compared with
other body sounds, for example, lung sounds, hampers BS
spotting. For example, Ficek et al [15] reported that temporal

sparsity of BSs could increase the false-positive rate. Previous
studies have shown that BSs can vary in duration, from dozens
of milliseconds to a few seconds [17,18]. Hence, the key
challenge is to spot BS events, embedded in a large amount of
irrelevant audio data, commonly referred to as the NULL class.
To spot very short BS events (ie, those <100 ms), detection
algorithms need to maximize temporal resolution, which is
usually done by minimizing the sliding window size used to
inspect the data stream. However, reducing the sliding window
size removes context from the audio data, and thus may not
improve recognition performance for BSs far shorter than 1
second.

In this paper, we present a BS spotting method based on a deep
neural network (DNN) model. Our DNN model spots BS events
by analyzing a continuous data stream recorded with a wearable
device at 10-second audio segments. Using a multiscale
approach, we can retrieve BS event onset and offset at a
temporal resolution, that is, the smallest prediction duration, of
25 ms. Our approach is inspired by the way humans perform
auscultation: particularly, for BS shorter than 1 second, experts
would listen to the audio data surrounding the BS event to obtain
an acoustic context. We evaluated our spotting approach on
continuous BS recordings collected across different digestive
phases, including sedentary activities and food intake. Unlike
previous studies, we tested our approach on audio data having
natural BS temporal distribution, that is, no resampling was
applied to our data set.

The paper provides the following contributions:

• We present a DNN-based method for BS spotting in
continuous data streams. Our model achieves a temporal
resolution of 25 ms through a multiscale approach.

• We evaluate our model on 136 hours of annotated audio
data recorded from 18 healthy participants and 9 patients
with an IBD, in total including more than 11,000 annotated
BS events. To spot BS events, we do not discern between
healthy controls and patients with IBD, but focus on
common BS acoustic properties across the different bowel
conditions.

• We analyze spotting errors over the unmodified audio data
streams. In addition, we analyze our model’s performance
under various signal-to-noise ratios (SNRs), for different
BS event durations, and by varying the temporal sparsity
of BS events (ie, BS ratio).

Methods

Overview
Here, we describe the DNN model proposed for BS detection.
Subsequently, we detail the spotting procedure, the BS
evaluation study, and our evaluation methods.

Efficient-U-Net Model
Figure 1 illustrates the Efficient-U-Net (EffUNet) DNN model
architecture. The proposed model was based on UNet [19] and
EfficientNet [20] models, hence the name EffUNet. In total,
EffUNet has approximately 18.1 million parameters.
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Figure 1. (A) Architecture of the proposed Efficient-U-Net (EffUNet) for bowel sound (BS) spotting. The model took an audio spectrogram as an input
and extracted relevant features with EfficientNet-B2 during the encoding (green boxes). Subsequently, features were decoded, that is, upsampled and
concatenated with higher-resolution features to locate them on the original spectrogram (orange boxes). Finally, the obtained 2D features were converted
to a BS detection mask by applying average pooling along the frequency dimension and a Softmax operation to the obtained 1D temporal maps.
Spectrogram frames with highest BS class probability were identified as containing BS. (B) Inside out of the smart T-shirt showing the embedded
electronics. Microphones and the wearable computer were protected and isolated by 3D printed covers. Microphones CH2, CH3, and CH7 (white circles)
were used during BS annotation. (C and D) Illustration and time-frequency representation of 2 expert-annotated BS events in the continuous data stream
collected from 1 study participant with very different BS event duration. batchnorm: batch normalization; Conv: convolution; dw: depthwise; pw:
pointwise; ReLU: rectified linear unit; transp: transposed; up-conv: transposed convolution.

UNet is a convolutional neural network (CNN) that was
originally proposed for biomedical image segmentation [19].
The model name is given by its U-shaped architecture, which
is composed of an encoder followed by a decoder network. The
encoder extracts relevant features from the DNN input, and the
decoder generates a segmentation mask by upsampling features
from the encoder’s last layer and concatenating them with
higher-resolution features extracted from the encoder’s earlier
layers. Each block of the decoder is therefore composed of a
2×2 transposed convolution (up-conv), followed by two 3×3
convolutions. Upsampling restores the original input resolution,
and the concatenation improves the localization of the extracted
features. A final convolutional layer classifies each input point,

for example, each time-frequency bin of audio spectrogram Fk,

with . We based our approach on the UNet architecture
because of its high classification resolution compared with the
input data size (ie, it could classify images by pixels). Other
common CNN architectures (eg, [21]) usually provide 1
prediction per input data, for example, predict object presence
in an image, thus omitting other relevant information, such as
the object location in the image. In audio processing,
architectures similar to UNet have been used mainly for
source-separation tasks [22].

In computer vision segmentation tasks, the model output is
usually a 2D map with the same dimensions as the input data.
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In our work, EffUNet takes an audio spectrogram as an input
and returns a binary detection mask in the time domain. To
obtain a 1D mask, we applied an average pooling along the
frequency dimension and a Softmax function to the model
output. EffUNet thus classified each spectrogram time bin Fk

as containing either BS or non-BSs (NBSs). Thus, the spotting
temporal resolution corresponds to the audio spectrogram frame
length.

As an encoder, several CNN architectures were used and tested
in computer vision to improve model performance (eg, residual
network [21]). In our work, we used EfficientNet [20] as an
encoding model. Similar architectures based on combined
EfficientNet and UNet were already proposed in computer vision
tasks with promising results (eg, [23]). EfficientNet architectures
were introduced to improve image classification performance
while reducing the amount of model parameters. The simpler
architecture compared with other common CNNs makes
EfficientNet suitable for mobile and edge computing
applications. In EfficientNet, convolution operations are
performed by a bottleneck block: (1) an inverted bottleneck
(1×1) convolution, (2) a depthwise (3×3) convolution to extract
features, and (3) a pointwise (1×1) convolution to linearly
combine the features. Similarly, to standard convolutional layers,
a batch normalization layer and a linear layer with rectified
linear unit activation are applied after each convolution. In
addition, residual connections are added between bottleneck
blocks. Different EfficientNet configurations are available with
compound scaling, that is, simultaneous increase of features
count, number of layers, and input data resolution. We selected
the EfficientNet-B2 configuration for our detection model. The
EfficientNet-B2 architecture was already used in audio tagging
tasks with promising performance [24].

EffUNet Spotting Procedure

Data Preprocessing and Training Pipeline
From audio data, log-Mel spectrograms were extracted to train
and evaluate EffUNet. Here, we detail the data preprocessing
and training pipeline, including transfer learning and data
augmentation. Subsequently, we describe the spotting
implementation.

Audio Preprocessing
Recordings were filtered with a high-pass biquadratic filter
(cutoff: 60 Hz) to remove signal offset. Subsequently, recordings
were split into nonoverlapping audio segments Si with duration
δ=10 seconds. Each audio channel was preprocessed for BS
spotting independently. We defined each audio segment Si as
a set of samples:

where is a time series sample.

Each audio segment was converted to a log-Mel spectrogram
using 128 frequency bins, a sliding 25-ms window, and a stride
length of 10 ms. As described in the “Efficient-U-Net Model”
section, the 25-ms window corresponds to the spotting temporal
resolution of EffUNet. Hanning windowing was applied to the

sliding windows. Each resulting spectrogram had 128 Mel bins
and 998 frames. According to EfficientNet-B2 pretraining [24],
we zero-padded the spectrogram along the time axis to obtain
1056 time bins. The obtained spectrograms were standardized.

For every Si, we defined the audio spectrogram time bins Fk as
follows:

where  is a time series sample. The sliding window
duration γ=25 ms·fS and the stride length σ=10 ms·fS in all time
series samples.

Every annotated BS event ej can be denoted as a set of time
series samples as follows:

where tj,s and tj,e are the onset and offset of BS event ej in time
series samples, respectively.

For model learning, BS manual annotations were converted to
audio spectrogram ground truth masks according to the approach
outlined by Ficek et al [15]: a spectrogram frame Fk was defined

as containing BSs (Fk,BS) if the time overlaps between the
spectrogram frame and a BS event ej was ≥50%. Thus, for set
Fk,BS:

where =0.5 is the temporal overlap and | · | is the set
cardinality. Otherwise, the spectrogram frame was denoted as
containing NBSs (Fk,NBS), that is, the NULL class. We define

supersets of all spectrogram frames as Fk,BS FBS and

Fk,NBS FNBS. Therefore, for each audio segment Si, we obtained
from EffUNet a binary mask Mi denoted as Fk. As with the
log-Mel spectrograms, we zero-padded the binary masks Mi

along the time axis to obtain 1×1056 time bin masks.

Transfer Learning
The EffUNet encoder, that is, EfficientNet-B2, was initialized
with pretraining weights from AudioSet [25]. AudioSet is to
date the largest audio data set, containing over 500 audio classes
with over 2 million 10-s audio clips (ie, >5000 hours of audio
data). AudioSet contains sound examples from daily living,
including, among others, speech, environmental sounds, and
BSs. We believe that pretraining on a large variety of sounds
could improve the spotting robustness against background noise
and other artifacts. As both AudioSet and the BS recordings of
our study were sampled at the same frequency (ie, 16 kHz), the
pretrained encoder feature extraction was compatible with our
BS data. Nevertheless, because no onset and offset of audio
events were originally provided in AudioSet, no pretraining
could be applied to our EffUNet decoder. Therefore, the decoder
weights were initialized with He initialization [26].
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Training and Data Augmentation
EffUNet training parameters were selected according to the
Pretraining, Sampling, Labeling, and Aggregation pipeline [24].
After model initialization, EffUNet was trained for 25 epochs
using an imbalanced batch size of 32 and an initial learning rate

of 1 × 10−4. The learning rate was subsequently reduced with
a decay of 0.85 for each epoch, starting from the sixth epoch.

Adam optimizer [27] was used with weight decay of 5 × 10−7,
β1=0.95, β2=0.999. We used the following loss function for
optimization:

where is the cross-entropy loss [28] calculated between

the prediction and the ground truth y, and is the
dice loss [29]. While the cross-entropy loss maximizes the model
performance to classify single spectrogram time bins, the dice
loss maximizes the similarity between the predicted binary mask
and the ground truth (ie, expert BS annotation).

During the training, the input audio spectrograms were randomly
transformed to improve the model generalization. On each batch,
time-frequency masking [30] was applied to up to 24 frequency
bins and up to 10% of the time bins. In addition, spectrograms
were randomly shifted along the time axis with a maximum
shift of +10 or –10 time bins. Random white noise with

magnitude in the range [0, 0.1) was also added to the input
spectrogram. For the evaluation, we selected the model weights
obtained at the end of the training.

Spotting Implementation
The binary masks Mi obtained from EffUNet were converted

to onset/offset predictions of BS events. Spotted BS events 
were described as follows:

where is a time series sample, and Di,BS is the set

of N consecutive overlapping audio spectrogram time bins 
that were detected as containing BSs.

Evaluation Study and Data Preprocessing

Study Protocol
The study involved 27 participants (13 females, aged 21-69

years; clothing sizes: S-XL; and BMI 17.2-32.2 kg/m2). Among
the 27 individuals, 9 were patients with IBD. Table 1 illustrates
the population characteristics of our data set. After signing
written consent, participants were invited to the laboratory in
the morning before breakfast.

Table 1. Characteristics of the population included in this study.

TotalHealthyIBD remissionIBD activityCDcUCbIBDaCohort

271836369Participants, n

Sex, n

141125213Male

13711156Female

28 (21-69)28 (21-56)47 (45-58)33 (23-69)39 (39-47)36 (23-69)39 (23-69)Age (years), median (range)

22.5 (17.2-
32.2)

22.3 (17.1-
32.2)

26.0 (18.4-26.1)24.4 (17.9-
25.3)

24.6 (24.2-
26.1)

22.8 (17.9-
26.0)

24.6 (17.9-
26.2)

BMI (kg/m2), median (range)

aIBD: inflammatory bowel disease.
bUC: ulcerative colitis.
cCD: Crohn disease.

A smart T-shirt (GastroDigitalShirt) [31] was used to record
BSs from 8 embedded digital miniature microphones
(SPH0645LM4H-B; Knowles) aligned on the abdomen.
Microphones were positioned according to the 9-quadrant
reference abdominal map and arranged to follow the digestive
process. For example, the first channel was placed on the
esophagus, the second channel on the stomach. A belt-worn
computer collected and saved all microphone channels at fs=16
kHz. A tight-fitting design and various sizes were used to ensure
comfort and optimal skin attachment. The fabric was based on
elastane, thus highly stretchable. The cloth cut was based on a
compression T-shirt to minimize noise artifacts as a result of
motion. Different cloth cuts for females and males were prepared

to fit all body shapes and provide optimal comfort. Figure 1
shows our wearable prototype and the embedded electronics.

Participants were asked to put on the smart T-shirt and audio
was continuously recorded from 1 hour before breakfast (fasting
phase) to 1 hour after breakfast (postprandial phase). To avoid
abnormal bowel motility stimulation, induced by, for example,
physical movements [32], participants laid down and quietly
relaxed when there was no meal intake or other activity. They
were recommended to read a book, watch or listen to multimedia
on a tablet, or sleep. Although participants were relaxing, they
could move on the lounge chair, if desired. Moreover,
participants were required to stand up and sit down as per the
study protocol, so motion artifacts could be included in the
recording. While eating breakfast, participants sat at a table and
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were allowed to talk to the study personnel or move freely
around the room. The audio was continuously recorded during
the whole session. Participants were allowed to drink water
throughout the recording and could pause it anytime for a break
(eg, to visit the toilet). Along with BSs, other sound events could
be captured (ie, NULL class data). For instance, conversations
between participants and study personnel and other
environmental sounds from the room surroundings, for example,
traffic as well as activities and voices outside the recording
room, could be recorded. In addition, voluntary body position
adjustments and eating or drinking could introduce noise
artifacts.

Upon completing the recording protocol, study participants
were asked to rate the T-shirt’s comfort and usability to confirm
that it could be worn for the recording duration. The assessment
was based on the wearable comfort assessment questionnaire
[33]. The study participants reported no discomfort caused by
the embedded electronics.

BS Annotation
Recordings were annotated by pairs of raters through audio and
visual inspection of the raw audio data using Audacity (The
Audacity Team). Annotations were sample specific, that is, no
quantization of the BS events’ onset/offset was performed. An
example of annotated BS events with different durations is
presented in Figure 1. For raters to identify BS events with
varying durations and amplitudes in the recordings, view time
resolution in Audacity had to be adjusted. On average, each
rater required 8-12 hours to label 1 hour of recording, depending
on event rate (ie, the number of BSs per unit time) and noise
level. As a result of the time-consuming annotation process,
only a subset of the recordings was annotated by more than 1
rater to evaluate interrater agreement (see below). The remaining
data were labeled by 1 of the raters and the annotations were
checked by the other rater. Among all participants, audio data
from the sensors positioned on the stomach (CH2) and the small
intestine above the navel (CH3) were annotated (see Figure 1

for a sensor map). As IBD usually affects the distal part of the
gastrointestinal tract, in the patient group and in some
individuals from the healthy group, an additional microphone
placed on the distal part of the large intestine (CH7) was
included in the annotation to evaluate our spotting approach
with additional BS patterns. Because of SNR limitations, the
channel located at the large intestine could not be annotated for
all participants. The annotation was performed on each recording
channel separately because BSs could be recorded at 1 or more
locations depending on the sound propagation across the
abdomen. The position of annotated audio channels on the
T-shirt is shown in Figure 1.

Based on BS features reported in the literature [17,18], as well
as preliminary auscultation sessions, and early annotation
reviews, labeling guidelines were selected and agreed upon
between raters: BS duration had to be 18 ms or more, and
consecutive BS events with sound-to-sound interval less than
100 ms were marked as a single event. Noisy or BSs not visible
in the audio signal were labeled as tentative.

Cohen κ interrater agreement was used to evaluate the
annotation quality. Two raters labeled the first 30 minutes of
recordings from 8 healthy participants and 9 patients. After the
agreement evaluation for each participant’s recording, a label
review session was conducted to discuss and revise any BSs
with disagreement. If an agreement of κ<0.6, indicating slight
to moderate disagreement, was observed for a participant data
set, then the agreement score was recalculated based on an
additional 10 minutes of the participant’s recording after the
review and revision. Overall, in the healthy group and the patient
group, agreement on nontentative BS annotations was
substantial, with Cohen κ of 0.70 and 0.75, respectively. As the
data imbalance between BSs and NBSs increases, the maximum
achievable agreement between raters decreases. Therefore,
agreements are deemed fair to good beyond chance for scores
between 0.40 and 0.75 [34]. Figure 2 illustrates the interrater
agreement per study group.

Figure 2. (A) Interrater agreement per study group. The evaluation was performed on a subset of the study participants. Overall, the agreement on the
nontentative bowel sound (BS) annotations was substantial. (B) Amount and duration distribution of BS annotated per participant. Most BSs are short
(median duration 223 ms).

Overall, 11,482 BSs plus 3801 tentative BSs were annotated
on approximately 136 hours of audio. The annotated BSs had
a total duration of 1.22 hours, with 52.39 minutes recorded from
the healthy group and 20.71 minutes recorded from the patient
group. Of the total nontentative annotated BSs, 3215 were
observed at the stomach, 5667 at the small intestine, and 2600
at the large intestine. Because of the noisy signal patterns that

could affect the spotting performance, tentative BSs were not
included in the analysis and, therefore, were considered NBSs
(ie, belonging to the NULL class). The quantity and duration
of annotated BSs across all participants are shown in Figure 2.
As reported by previous studies [17,18], BS event duration
ranges from 18 ms to a few seconds. However, most annotated
BSs have a very short duration (<500 ms).
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Evaluation Methods

Validation Method
Leave-one-participant-out (LOPO) cross-validation (CV) was
used to evaluate spotting performance: audio data from all but
1 participant were used to train the DNN, and its performance
was evaluated on the excluded participant’s data. Performance
statistics were obtained from the results of each validation set.

Evaluation Metrics
Precision and recall (PR) metrics and F1-score were used to
evaluate spotting performance across all testing data. Metrics
were calculated using a samplewise approach based on Mesaros
et al [35], that is, model predictions and BS annotations were
compared sample-by-sample: ti,S=1 (fS≈0.06 ms). Thus, our
evaluation approach was independent of the spotting algorithm
resolution. Furthermore, we compared directly with BS
annotations without considering their spotting frame–adjusted
versions.

We analyzed spotting detection errors with the 2-class segment
error metric [36]. False-positive FPi were marked as merge
errors if they connected 2 consecutive events ej, overfill errors
if FPi occurred at the beginning or end of an event ej, and
insertion errors otherwise. False-negative FNi were marked as
fragmentation errors if FNi occurred within 1 event ej, underfill
errors if they occurred at the beginning or end of an event ej,
and deletion errors otherwise. For each LOPO fold, we derived
the overall detection timing errors as time duration.

Model performance statistics were described using median and
IQR values. IQR was determined as the difference between
quartile Q1 (ie, the mid value between the median and the
minimum) and quartile Q3 (ie, the mid value between the
maximum and the median). We further evaluated spotting
performance by analyzing PR metrics over SNR as follows:

where θS is an SNR threshold applied to audio segments Si. For
each Si, SNR was computed in the log-decibel scale as the ratio

between the signal power of ej Si and the background noise
in Si.

Moreover, we analyzed PR metrics over BS duration. To
estimate TPi, FPi, and FNi depending on BS duration, we only

considered annotated events ej and detected event so that |ej|

≥ θD and , where θD was a BS duration threshold.

Retrieval generalization was additionally evaluated by analyzing
PR over event rate. Event rate was defined as BS events per
time unit according to Amft [16]. To compare our model
performance with related work, we converted event rate to BS

ratio (ie, the ratio between spectrogram time bins containing
BSs and total time bins) as follows:

For each validation fold, we swept the BS ratio from 0.00001
to 0.60 by randomly sampling K from Fk,BS and J from Fk,NBS

so that BS ratio=K/(K+J), thus corresponding to bootstrap
samples according to the count of validation folds. For each
selected BS ratio, we calculated the corresponding event rate
per hour of recording. Although models were not retrained on
the selected BS ratios, the analysis provides insights into the
performance at different class imbalance levels. We show that
spotting performance depends on the BS ratio and compared
our results with published works in the literature, which mostly
focused on artificially balanced data sets.

Comparison With Prior Work
We examined the performance of existing models for BS
detection on our data set. For comparison purposes, we focused
on spotting models with similar temporal resolution.
Segment-based spotting approaches, such as those described
by [37], were excluded from our comparison because of their
distinct design scope, which does not include providing BS
event onset/offset. Among recent works, the convolutional
recurrent neural network (CRNN) by Ficek et al [15], the CNN
by Wang et al [9], and the CNN by Kutsumi et al [38] offer the
highest temporal resolution. The CRNN training pipeline,
originally evaluated in a data set of 53 minutes, could not be
scaled to our substantially larger data set, as the CRNN
optimization did not converge on our highly imbalanced data
set. The CNN by Kutsumi et al [38] could not be reimplemented
as it lacked methodological information (see the “Discussion”
section). We, therefore, reimplemented and trained the CNN
by Wang et al [9] for 30 epochs using an initial learning rate of
0.001 and a balanced batch size of 128. Adadelta optimizer with

a weight decay of 10–7 and a decay rate of 0.95 was used to
optimize the cross-entropy loss function. Unlike our EffUNet
model, the CNN takes as input a log-Mel spectrogram extracted
from 60 ms nonoverlapping audio segments using a 50-ms
sliding window (preprocessed with Hanning windowing) and
a stride length (σ) of 5 ms. The CNN classified each spectrogram
as either containing BSs or not. We split our data accordingly
and assigned each 60-ms audio segment to either the BS or the
NBS class using Equation 4. We could not follow the labeling
approach proposed by Wang et al [9] because the authors
manually annotated each 60-ms audio segment individually
rather than the continuous data stream. The acquired audio data
were preprocessed by applying a high-pass filter with a cutoff
of 80 Hz. According to the authors, spectrograms were
standardized and no data augmentation was used during the
training. To directly compare the results with EffUNet, the CNN
was evaluated using LOPO CV.

Ethics Approval
The study was approved by the Ethics Commission of the
Friedrich-Alexander Universität Erlangen-Nürnberg (protocol
number 73_20 B).
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Results

BS Ratio and F1-Scores

Based on the annotated 11,482 BS events, we obtained a BS
ratio of approximately 0.0089 for the data set. Figure 3 shows

F1-scores across all participants and for each study group.
EffUNet achieved the largest F1-score in the healthy group. For
both groups, a median F1-score of 0.73 was obtained. Although
the patient group yields the lowest IQR, an outlier with an
F1-score of approximately 0.50 was identified.

Figure 3. (A) Box plots of F1-scores across all participants and study groups. For both groups, a median F1-score of 0.73 was obtained; however, the
patient group showed the lowest IQR. (B) Precision and recall (PR) over signal-to-noise ratio (SNR) analysis. The number of bowel sound (BS) events
considered for each threshold is also shown. When the SNR is >4 dB, more than 80% of BSs were detected by Efficient-U-Net, with a precision in the
range of 77%-86%. (C) PR over BS duration analysis. The number of BS events considered for each threshold is also shown. Even when including very
short BSs in the analysis, our model could detect events with nearly 75% PR. (D) PR over BS ratio. Dots and error bars show median and IQR,
respectively. In our data set, the BS ratio is only 0.0089. Nevertheless, 73% of BSs were recognized with 72% precision. Most studies in the literature
were performed on a balanced data set. If the BS ratio was >0.05, our model would detect BSs with precision >83%.

Table 2 shows the median PR of our spotting model for all study
groups. The BS spotting achieved identical median precision
scores for both the healthy and patient groups. However, BSs

recorded from patients proved more challenging to detect,
resulting in a lower median recall compared with the healthy
group.

Table 2. Spotting performance for all study groups. While Efficient-U-Net shows the same median precision for both study groups, the median recall
was higher for healthy individuals than for patients.

F1-score, median (IQR)Recall, median (IQR)Precision, median (IQR)Study group

0.73 (0.13)0.75 (0.19)0.80 (0.19)Healthy

0.73 (0.09)0.66 (0.14)0.80 (0.23)Patients

0.73 (0.11)0.73 (0.18)0.80 (0.19)All

PR metrics and F1-score per participant and BS ratio are shown
in Figure 4. Overall, BSs were sparser in the patient group than
in the healthy group, with a peak BS ratio of 0.015 versus 0.032.
Regardless of the BS temporal distribution, EffUNet achieved
an F1-score above 60%, except for an outlier in the patient
group. In participants, where F1-score dropped to approximately

60%, the performance decrease was mainly a result of a drop
in precision, while most BSs could be retrieved. Figure 4 also
shows PR metrics per sensor location. For all locations, EffUNet
yielded comparable median and IQR for precision. The median
recall was similar for all sensor locations, while recall IQR was
largest on the large intestine.
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Timing errors using the 2-class segment error analysis across
the study groups are shown in Table 3. For both healthy
participants and patients, insertion and deletion timing errors
were the largest, whereas fragmentation and merge errors were

the lowest. Besides per-participant timing error medians and
IQR, the timing error totals are shown. The total errors over the
136 hours of data were 15.54 minutes for insertions and 13.08
minutes for deletions.

Figure 4. (A) Precision and recall (PR) metrics and F1-score per study participant. Bowel sound (BS) ratios per participant recording are indicated.
Participants whose sensor on the large intestine was annotated are marked by an asterisk. Overall, BSs were sparser in the patient group than in the
healthy group, with a peak BS ratio of 0.015 versus 0.032. The F1-score was above 60%, except in individuals in whom performance decreased due to
a precision drop. (B) PR metrics comparison across the different sensor positions. For all locations, Efficient-U-Net yielded comparable median and
IQR for precision. The median recall was similar for all sensor locations, while the recall IQR was largest on the large intestine.

Table 3. Spotting timing errors per participant and totals using 2-class segment error analysis. Overall, insertion and deletion errors showed the largest
timing deviations for both healthy and patient groups, whereas fragmentation and merge errors showed the smallest deviations. On our data set of
approximately 84 hours for the healthy group and 52 hours for the patient group, 52.4 and 20.7 minutes were annotated as bowel sounds, respectively.

UnderfillOverfillMergeFragmentationDeletionInsertionStudy group

Per-participant summed spotting errors (seconds), median (IQR)

7.2 (14.8)4.2 (9.4)0.5 (1.4)1.1 (3.4)24.0 (35.2)15.2 (13.0)Healthy

7.4 (21.6)3.6 (7.4)0.7 (0.8)1.1 (3.3)20.8 (57.5)13.1 (14.1)Patients

7.4 (15.4)4.1 (7.0)0.5 (1.0)1.1 (3.4)21.9 (36.5)14.6 (13.0)All

Total per-participant summed spotting errors (minutes), median

3.73.10.40.87.913.3Healthy

1.80.90.10.35.22.3Patients

5.64.00.51.113.115.5All

Figure 3 shows PR metrics over SNR. Annotated BS events
considered within each SNR threshold θS bin are indicated. Our
model detected BSs under different noise conditions with 0.73
recall and 0.72 precision. When BSs are louder than background
noise, that is, SNR>4 dB, more than 83% of BSs were
recognized, with precision in the range between 77% and 86%.

PR metrics over BS duration are shown in Figure 3. Even when
including very short BSs in the analysis, our EffUNet model
could detect events with nearly 75% recall and precision.
EffUNet recall dropped below 60% for BS duration of 1.5
seconds or more, probably because of fragmented predictions
that were removed by the duration analysis procedure, that is,
BS event duration below θD (see the “Evaluation Metrics”
section for details).
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Figure 3 shows PR metrics over different BS ratios. At our data
set’s BS ratio of 0.0089, 73% of the BSs were recognized with
72% precision. Most studies in the literature were performed
on a balanced data set. If the BS ratio of our data set was over
0.05, our model would detect BSs with precision greater than
83%.

Comparison With Prior Work
Table 4 shows a comparison of the proposed model with other
methods from related work. Our approach was developed and
tested on a large data set of 136 hours of recordings. Unlike
other studies, the model was tested on the full, highly

imbalanced data set. Despite a window of 10 seconds being fed
to EffUNet during the detection, our multiscale approach can
detect BSs with a temporal resolution of 25 ms. The CNN
proposed by Wang et al [9] yielded a recall of 90% when tested
on a balanced data set of approximately 11 minutes in total. On
our substantially larger and highly imbalanced data set, however,
the CNN model of Wang et al [9] only yielded a median
precision of 5% (IQR 0.07) and a median recall of 74% (IQR
0.07). Optimization of the model proposed by Wang et al [9]
to deal with imbalanced data may be feasible, but is beyond the
scope of this work.

Table 4. Comparison of our model performance with other methods proposed in the literature. Stated performances were those provided by the
corresponding articles.

RecallPrecisionTemporal resolu-
tion

Recording conditionsBowel
sound ratio

Evaluation data set
size

Model

0.860.5810 msNocturnal recording, clinic0.0246N/AbCRNNa [15]

0.770.8310 msNocturnal recording, clinic0.15≈11 minutesCRNN [15]

0.90N/A60 msQuiet room0.50≈15 minutesCNNc [9]

0.750.71100 msN/AN/A2.4 hoursCNN [38]

≈0.99≈0.941 secondHouse rooms0.45≈5 hoursLSTMd [39]

0.500.925 secondsAnechoic chamber, synthetic
noise

0.50≈81 minutesAutoencoder [37]

0.980.976 secondsNeonatal intensive care unit0.5049 minutesEnsemble CNN [40]

0.700.8110 secondsLaboratory room0.1584 hoursCNN + Attention [14]

0.730.8025 msLaboratory/clinical room0.0089≈136 hoursEfficient-U-Net (this work)

aCRNN: convolutional recurrent neural network.
bN/A: not applicable.
cCNN: convolutional neural network.
dLSTM: long short-term memory neural network.

Discussion

Principal Findings
Acoustic abdominal monitoring requires physicians to analyze
BSs across different digestive phases to detect gastrointestinal
disorders. Our data set comprises approximately 2 hours of
continuous audio data for each of the 27 participants. We
recorded various phases of digestion, from the fasting stage to
the food ingestion and consequent postprandial phase. To
evaluate the potential of our model in a realistic scenario, the
BS natural temporal distribution was left unaltered, that is, no
class resampling was applied to the data set. In addition, various
activities that are typical of free living were recorded in the
study, for example, eating or transition movements (ie, getting
up/laying down). While participants laid in a relaxed position
for part of the recording session to minimize motion-induced
peristalsis stimulation [32], their actions were not constrained
(eg, they could grab a bottle and drink water if desired). In
particular, participants were allowed to freely move and talk
during breakfast. Moreover, as the recording room was not
acoustically isolated from the surroundings, various noise
sources could be captured in the recording besides the artifacts

introduced by the participant movements (see the “Study
Protocol” section). We believe that our recording setting and
data amount can be considered as a realistic representation of
common activities and sedentary lifestyles. While we suggested
a sedentary behavior for participants to obtain nonstimulated
BS distributions (as discussed earlier), future work could
evaluate BS spotting under different conditions, such as specific
physical activities, sports, and stress. If necessary, these
activities could be conveniently filtered out using basic detection
methods, such as those based on accelerometer data.

Spotting Temporal Resolution
BS spotting requires a temporal resolution in the millisecond
scale to detect very short events (<100 ms). Previous studies
have attempted to maximize the temporal resolution by
minimizing the sliding window applied to inspect the audio data
(eg, [9,41]). When recording BSs with wearable devices,
however, the temporal sparsity of BS events could increase as
a result of sensor displacements or noise artifacts. As the
acoustic context decreases with sliding window duration,
false-positive cases may increase, thus limiting spotting
performance. Our multiscale approach can analyze continuous
recordings with a temporal resolution of 25 ms while retaining
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10 seconds of acoustic context in the spotting by the audio
segment Si.

Comparison Between Healthy and Patients With IBD
Our DNN model EffUNet can detect BSs with a median
precision of 80% and a median recall of 73%. Although the
median F1-score for healthy participants and patients was the
same, BS spotting was more challenging in patients, as the
difference in the median recall of 66% versus 75% indicates
(Table 2). The patient group included individuals with different
IBDs and varying levels of inflammation activity, which may
explain the greater variability of acoustic patterns in BSs,
compared with the healthy group. Our results warrant further
data recordings from patients with IBD. A nested validation set
could be used to analyze model hyperparameters. In this work,
however, our focus was to maximize trainset size and minimize
model bias. Thus, we used LOPO CV without early stopping
criteria during training and other training parameters were
chosen according to the Pretraining, Sampling, Labeling, and
Aggregation pipeline [24]. The F1-score was above 60% for all
patients, except for 1 outlier (P22; see Figures 3 and 4), where
the performance of EffUNet dropped to approximately 50% as
a result of the reduced recall. As the F1-score of EffUNet
showed an IQR of 0.14 across all patients, we attribute the
performance drop for P22 to a reduced recording quality: Less
than 100 annotated BS events across all channels were
documented (BS ratio=0.0028). Analysis of the false-positive
rate showed that EffUNet spotted events that were marked by
the raters as tentative BSs because of their noisy patterns. If
tentative BSs had been included in the evaluation for P22, the
model’s precision would have increased from 52% to 83%.
However, tentative events were not considered in our analysis
because of their noisy acoustic patterns and were labeled as
NBSs. Thus, assigning tentative annotations to NBSs, that is,
the NULL class, may have increased overall insertion errors
and thus contributed to a conservative performance estimation.
Further investigations on data collection and preprocessing, for
example, adaptive noise filtering [12], could improve signal
quality and consequently spotting performance as well.

Spotting Performance Under Different Noise
Conditions
Compared with other studies, where BSs were recorded using
a skin-taped sensor [42], our work used garment-embedded
microphones. Continuous data collection with wearable devices
could further decrease the signal amplitude as a result of
accidental sensor displacement and motion artifacts.
Nevertheless, our approach can spot BSs with recall greater
than 73% regardless of the noise level (Figure 3). In addition,
our precision over SNR analysis demonstrated that our model
was robust against background noise, as more than 70% of
predictions corresponded to ground truth events even when
SNR=–20 dB. In particular, for low SNR conditions, empirical
threshold–based BS detection methods could fail, as reported,
for example, by Sato et al [41]. We attribute EffUNet’s reduced
number of false positives to the encoder’s pretraining on
AudioSet. EfficientNet-B2 was originally trained to detect sound
events in audio clips of duration δ=10 seconds [24]. In the
experiments on AudioSet, EfficientNet-B2 achieved an average

precision of ≈0.44 for classifying 527 sound classes. The
pretraining on a large variety of noise sources could have
improved the modeling of the NBS class, and thus, model
precision. However, AudioSet does not provide strong audio
labels (ie, event onset/offset), and therefore, no pretraining could
be applied to the EffUNet decoder.

Spotting Timing Errors
Previous studies on sound event detection (eg, [36]) highlighted
that common pattern recognition evaluation metrics are
insufficient to describe error types in continuous data. For
instance, a model could return a fragmented prediction of a
ground truth event or could recognize multiple events in 1
prediction. Previous work on BS spotting rarely analyzed
detection errors besides the false-positive rate. As missed BSs
will decrease the number of BS events per unit time, diagnostic
approaches based on BS event count thresholding (eg, [8]) may
fail to identify IBD. Furthermore, timing errors may affect the
diagnosis of gastrointestinal disorders. Fragmentation or merge
errors could alter natural BS acoustic characteristics (ie, spectral
and temporal features), which were explored in previous studies
to classify digestive dysfunctions (eg, IBD [43]) or to detect
digestive events (eg, migrating motor complex [44]). Our
analysis of detection errors (Table 3) showed that the
performance of the EffUNet model was mainly impacted by
insertions (ie, false positives) and deletions (ie, missed BSs).
In 136 hours of audio data, 19.56 minutes of background noise
were wrongly detected as BSs, because of either insertion or
overfill errors. Insertion errors were largest in the healthy group
(13.28 minutes out of 84 hours of audio data), probably because
of the larger group size compared with the patient group, and
consequently more variable background noise. Of the 1.22 hours
of audio annotated as BSs, 18.56 minutes were not recognized
because of deletion and underfill errors. Deletion errors were
largest in the patient group (5.15 minutes out of the annotated
20.71 minutes), as confirmed by the lower recall compared with
the healthy group (66% vs 75%). Nevertheless, our training loss
(Equation 5) could minimize fragmentation and merge errors
(ie, EffUNet returned prediction onset/offset according to our
annotation approach). Overall, overfill and underfill errors were
4.01 and 5.56 minutes, respectively, and peaked in the healthy
group. As BS annotations were converted to a binary mask to
train EffUNet (Equation 4), we hypothesize that further
improvements on the input data preprocessing (eg, spectrogram
sliding window size γ and stride length σ) could improve the
detection temporal resolution, thus minimizing overfill and
underfill errors.

Spotting Performance Over BS Event Duration
As described by previous studies [17,18], BSs present acoustic
patterns of variable duration. In our study, BS length varied
from 18 ms to 6.29 seconds, which created a challenging
spotting task. To detect very short events (ie, <100 ms), previous
work typically used a sliding window with a duration no more
than the BS length (eg, [15,41]). Because of the constrained
data included in the window, a spotter thus has limited
information available to spot BSs. As for human experts,
spotting performance could decrease when context information
from the surrounding audio scene diminishes. By contrast, a
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larger sliding window could decrease temporal resolution, and
thus yield coarse event onset/offset prediction (eg, [45]). In our
work, we propose a multiscale approach: The data stream is
first split into 10-second audio segments Si, and for each Si, a
binary mask Mi is generated. While analyzing Si with duration
  =10 seconds at a time, EffUNet can detect BSs with a temporal
resolution of 25 ms. Our approach could be potentially applied
to other spotting tasks where events have a varying duration
(eg, gesture recognition [46]). Our analysis on recall versus
event duration ej showed a decrease in recall for long BSs (>1
second; Figure 3). As, in our analysis, the duration threshold

θD was applied to events ej as well as predictions , we
hypothesize that predictions for longer events could have been
affected by underfill or fragmentation errors and, consequently,
filtered out during the analysis. Long BS events have been
previously described as a sequence of single and multiple bursts
interrupted by silence periods. In our BS annotation approach
(see the “BS Annotation” section), silence periods between
consecutive bursts of a maximum 100 ms were accepted.
Therefore, some parts of a long BS (>1 second) could have been
rejected by EffUNet as noise. Additional postprocessing on

spotting results (eg, merging nearby detected events ) or
alternative loss functions (eg, based on dice loss [29]) could
improve the retrieval of long BSs (>1 second). For instance,
scaling factors could be explored when combining the
cross-entropy loss with the dice loss during EffUNet training.
In this work, no weighting was applied when calculating the
loss during backpropagation (Equation 5).

Spotting Performance for Different Event Rates
Previous studies have already introduced shallower DNNs than
EffUNet to spot BSs in the data streams, demonstrating
promising results (eg, [9,15]). However, the previously reported
models were trained and tested on limited, partially selected
data subsets, often with a BS ratio of 0.50 (ie, class balance
between BSs and NBSs; Table 4). When spotting BS events in
continuous recordings that are collected in daily settings,
however, a substantial BS versus NULL class imbalance must
be expected (see Figures 2-4). Algorithm evaluations on a
balanced data set could therefore overestimate performance for
a BS ratio <<0.50. The difference can be seen between Wang
et al’s [9] original report and the analysis of their CNN on our
data set. However, Wang et al’s [9] CNN was designed for
balanced BS detection, which limits a direct comparison with
EffUNet in our study. In our data set, BSs were highly sparse,
with BS ratios less than 0.035 across all participants,
corresponding to event rates of approximately 100-300
events/hour. With event sparsity, the spotting challenge increases
[16], especially when training and evaluating the spotter on
different class imbalances. Despite the high class imbalance,
however, EffUNet could retrieve BSs with a recall of 73% and
a precision of 72%. By contrast, Ficek et al [15] reported a
precision of 83% at a BS ratio of 0.15, but yielded a precision
of 58% for a BS ratio of 0.0246. If our data set had a BS ratio
of 0.15 (approximately 1400 events/hour), the precision of our
DNN would reach an estimated 92% (Figure 3).

Spotting Performance Over Sensor Location
We compared PR metrics across different sensor locations
(Figure 4). EffUNet yielded comparable median recall across
all locations, although recall IQR was largest at the large
intestine. As performance median and IQR were comparable
for all sensors, we hypothesized that the higher recall IQR could
be due to abnormal BS patterns that are more likely to occur in
the large intestine. Although the sensor data from the large
intestine were annotated only for a subset of the study
participants, performance was not affected by the data imbalance
across channels.

Limitations
While our wearable prototype design allowed us to capture BSs
with multiple sensors, no sensor fusion was applied as in [12,37].
Previous experiments by Ranta et al [47] showed that the
abdomen can be acoustically modeled as an absorbent material,
and thus BS intensity depended on sensor distance. Our data
annotation confirmed that not all BS events were captured by
all channels. Given past analyses on abdominal sound
propagation, we decided to minimize the model complexity and
designed a single-channel spotting model. Further investigations
on abdominal sound propagation may improve BS source
localization and estimate the relationship between BSs and
bowel movements. For instance, the EffUNet architecture could
be extended to analyze multichannel recordings and locate BS
sources. Preliminary studies on BS source location [47],
however, suggested that further basic analyses on sound
propagation in the abdominal cavity are needed. BS source
localization would be beneficial for patients with IBD, for
example, to locate inflammation sites noninvasively based on
abnormal BS patterns and related digital biomarkers.

Although our analysis compared EffUNet spotting performance
across study populations with different gastrointestinal
conditions (healthy volunteers and patients with IBD), the
impact of false positives on BS-based clinical gastrointestinal
assessment was not evaluated. Future studies should investigate
methods for digestive disorder recognition. Based on the spotting
method proposed in this work, a fully automated and
noninvasive approach for digestive disorder analysis may be
feasible.

The usability and comfort of the wearable prototype were not
analyzed in depth in this work. A full user comfort study is
beyond the scope of this analysis. Nevertheless, we carefully
considered user comfort during the T-shirt implementation,
especially because our investigation involved patients and the
longest recordings analyzed thus far. While participants did not
express complaints about the wearing comfort, which confirms
the efficacy of our approach, further research could explore
design optimizations supported by a focused wearability
assessment.

Our study encompassed 2 hours of annotated audio from 2-3
channels for each of the 27 participants, resulting in 136 hours
of labeled data. To the best of our knowledge, our data set is
the largest annotated BS data set reported to date. Our results
justify further studies with even larger data sets. Although BSs
were recorded across different digestive phases, further
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investigations should include data collected from extended
monitoring periods, such as over multiple days, and in less
constrained settings, such as in a home setting. This approach
would better facilitate the correlation of physiological digestive
processes with BS acoustic properties and enable the
investigation of noise effects.

Comparison With Prior Work
The goal of our work was to design and evaluate an approach
to deal with imbalanced BS data gathered from body-worn
microphone sensors. Therefore, when comparing EffUNet with
previous studies, we focused our analysis on models with similar
scope (ie, BS spotting with maximized temporal spotting
resolution). As reported by Ficek et al [15], data scarcity and
missing annotations as a result of labor-intensive audio recording
inspection are well-known challenges in the field of BS analysis.
Open BS data sets are inexistent so far, which may be due to
privacy concerns associated with raw audio recordings.
Moreover, BSs are often collected in different recording settings,
using various wearable devices and following varying recording
protocols. Consequently, benchmarking our EffUNet directly
against past BS spotting models is challenging. We excluded
architectures that are similar to EffUNet but were not designed
for BS detection (eg, UNet [19]). According to Table 4, only 3
methods achieved spotting resolution below 100 ms. The CRNN
by Ficek et al [15] could not be scaled to our much larger data
set. Further, the CNN proposed by Kutsumi et al [38] could not
be included in our comparison, because it lacked methodology
details that are required to reimplement the model (eg, training
optimizer and dropout layer parameters). Nevertheless, we
reimplemented the CNN by Wang et al [9]. Compared with
EffUNet, the CNN is a shallower network, with approximately
62,000 parameters versus approximately 18.1 million EffUNet.

Our model outperformed the CNN by Wang et al [9] not only
in temporal spotting resolution (25 ms of EffUNet vs 60 ms of
the CNN), but also in spotting performance on highly
imbalanced data (80% median precision of EffUNet vs 5%
median precision of the CNN). Using EfficientNet for our model
encoder allowed us to leverage pretraining to increase model
robustness against noise, as shown in [14]. Further work may
investigate whether less complex models than EffUNet could
be optimized for natural, imbalanced data. Moreover, our
analysis of related work (Table 4) provides a comparison of
recent advances in BS spotting, showing how our work
outperforms previous studies in dealing with data imbalance
and temporal spotting resolution.

Conclusions
We presented a multiscale BS spotting model based on the
EffUNet architecture, to detect BSs in continuous audio data
streams. AudioSet pretraining was applied to the EffUNet
encoder to improve model robustness against noise. We
evaluated our model using 136 hours of audio data collected
from 18 healthy participants and 9 patients with IBD. Our
experiments demonstrated that EffUNet can detect BSs with a
median F1-score of 73% in recordings where BS events were
highly sparse (BS ratio of 0.0089). With EffUNet, BSs of
varying durations and under different noise conditions could
be identified with a precision of 72%. Our EffUNet analysis
surpassed previous approaches not only in terms of evaluation
data size and temporal sparsity of BS events but also achieved
one of the highest temporal resolutions. Using our approach,
future analyses of BSs obtained from wearable abdominal
monitoring systems could be automated without requiring
manual audio data annotation.
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SNR: signal-to-noise ratio
up-conv: transposed convolution
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