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Abstract

Background: Large language models (LLMs) have the potential to support promising new applications in health informatics.
However, practical data on sample size considerations for fine-tuning LLMs to perform specific tasks in biomedical and health
policy contexts are lacking.

Objective: This study aims to evaluate sample size and sample selection techniques for fine-tuning LLMs to support improved
named entity recognition (NER) for a custom data set of conflicts of interest disclosure statements.

Methods: A random sample of 200 disclosure statements was prepared for annotation. All “PERSON” and “ORG” entities
were identified by each of the 2 raters, and once appropriate agreement was established, the annotators independently annotated
an additional 290 disclosure statements. From the 490 annotated documents, 2500 stratified random samples in different size
ranges were drawn. The 2500 training set subsamples were used to fine-tune a selection of language models across 2 model
architectures (Bidirectional Encoder Representations from Transformers [BERT] and Generative Pre-trained Transformer [GPT])
for improved NER, and multiple regression was used to assess the relationship between sample size (sentences), entity density
(entities per sentence [EPS]), and trained model performance (F1-score). Additionally, single-predictor threshold regression
models were used to evaluate the possibility of diminishing marginal returns from increased sample size or entity density.

Results: Fine-tuned models ranged in topline NER performance from F1-score=0.79 to F1-score=0.96 across architectures.

Two-predictor multiple linear regression models were statistically significant with multiple R2 ranging from 0.6057 to 0.7896
(all P<.001). EPS and the number of sentences were significant predictors of F1-scores in all cases ( P<.001), except for the
GPT-2_large model, where EPS was not a significant predictor (P=.184). Model thresholds indicate points of diminishing marginal
return from increased training data set sample size measured by the number of sentences, with point estimates ranging from 439
sentences for RoBERTa_large to 527 sentences for GPT-2_large. Likewise, the threshold regression models indicate a diminishing
marginal return for EPS with point estimates between 1.36 and 1.38.

Conclusions: Relatively modest sample sizes can be used to fine-tune LLMs for NER tasks applied to biomedical text, and
training data entity density should representatively approximate entity density in production data. Training data quality and a
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model architecture’s intended use (text generation vs text processing or classification) may be as, or more, important as training
data volume and model parameter size.

(JMIR AI 2024;3:e52095) doi: 10.2196/52095
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Introduction

Background
Named entity recognition (NER) has many applications in
biomedical and clinical natural language processing (NLP). As
its core function, NER identifies and categorizes specific terms
or phrases representing people, places, organizations, and other
entities. It has been used to identify or extract named entities
in free-text clinical notes and reports in the secondary analysis
of electronic health records [1,2]. NER has also been used alone
or as part of an NLP pipeline to detect protected health
information in order to deidentify clinical text for secondary
analysis [3,4]. Additionally, NER has been used to identify and
classify medications [5,6], specific disease and clinical condition
entities [7], and laboratory tests [8] into existing taxonomies
for purposes of secondary research, cohort generation, or clinical
decision support [9-12]. While NER solutions have a long
history of applications in NLP and clinical NLP domains, their
effectiveness has recently been enhanced through the addition
of large language models (LLMs) in relevant data parsing
pipelines. LLMs have become an integral part of research
pipelines in fields as diverse as digital humanities [13],
computational social science [14], bioinformatics, applied ethics,
and finance.

LLMs, such as GPT-3, have demonstrated remarkable
performance across a variety of tasks. For instance, the
GPT-3.5–powered LLM application ChatGPT performed close
to or at the passing threshold of 60% accuracy on the United
States Medical Licensing Exam (USMLE) without the
specialized input of human trainers [15]. Widely available
models, such as Google’s Bidirectional Encoder Representations
from Transformers (BERT) or OpenAI’s Generative Pre-trained
Transformer (GPT) series, are trained, bidirectionally or
unidirectionally, on large volumes of generic textual data,
designed to represent a wide array of common language use
contexts and scenarios [16]. In specialized use contexts, these
generic models often fail to accurately classify information
because the language structures that require classification—their
words, syntax, semantic context, and other textual or lexical
signatures—are sparsely represented in the data that were used
to train the generic model [17,18]. Some language models, such
as ElutherAI’s GPT-J-6B, are trained on open-source language
modeling data sets curated from a mix of smaller open web
crawl data sets alongside more technical papers from
PubMedCentral and arXiv and can offer improved classification
accuracy for technical applications [19]. Nevertheless,
specialized tasks often require fine-tuning of general-purpose
LLMs. Fine-tuning provides a way of overcoming the limitations

of generic LLMs by augmenting their training data with data
selected to more accurately reflect the target domains toward
which a model is fine-tuned. The fine-tuning process updates
the model’s parameters—the weights that affect which
connections between the nodes and layers of a neural network
become activated—and so helps a model permanently learn.
Unlike practices, such as prompt engineering, that leave the
underlying language model untouched, fine-tuning changes the
model itself, yielding a new model optimized for the specific
use case.

However, fine-tuning LLMs to perform technical, specialized
tasks is expensive, because the target domain of a fine-tuned
model is usually complex and technical—otherwise, fine-tuning
would not be necessary—and it requires annotators with some
degree of domain-level expertise, which comes with potentially
significant financial and time costs. Indeed, one study of NER
annotation speed found it can take between 10 and 30 seconds
per sentence for experts to annotate named entities [8]. The
gold-standard annotated BioSemantics corpus is composed of
163,219 sentences, which implies an optimal annotation time
of over 11 weeks at 40 hours per week (453.39 h) [20]. This
estimate, of course, excludes the time required for annotator
training and interannotator reliability assessments, and because
fine-tuning adjusts many or all of the model’s parameters, it
consumes computational resources. Time and power
consumption for fine-tuning scales with training data size
[21,22] and with the size of the underlying model that is
computed. As of the date of writing, for example, it would be
unrealistic to fine-tune very large models such as GPT-4.

These limitations notwithstanding, it is increasingly recognized
that long-standing presumptions about sufficiently large training
data sets are likely substantially inflated [23]. We suspect this
comes from a research and development environment dominated
by a significant focus on promulgating new models that can
claim to be state-of-the-art (SOTA) based on some preidentified
benchmark. In a research environment dominated by so-called
“SOTA chasing,” ever larger data sets are often required to eke
out minor performance improvements over the previous
benchmarks. Notably, development teams from disciplines with
generally small research budgets have found that fine-tuning
can result in substantial performance improvements from
relatively small amounts of expert-annotated data [13,24] or
from a combination of prelearning and transfer learning followed
by a brief fine-tuning phase [25]. In one case, significant
improvements over the baseline were derived from training
samples as small as 50 lemmas [13]. Despite the growing
recognition that smaller gold-standard training sets can provide
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substantial performance improvements, there is little in the way
of actionable guidance for sample size and sample curation.

The primary goal of this study is to establish some initial
baselines for sample size considerations in terms of training set
size and relevant entity density for NER applications in
specialized technical domains. To that end, we have conducted
a fine-tuning experiment that compares the performance
improvements resulting from 2500 randomly selected training
data sets stratified by size. These training sets were used to
fine-tune 4 distinct language models to perform NER in a highly
specific language domain: the identification of 2 internal
components (conflict sources and conflict targets) in conflicts
of interest (COI) disclosures. The results presented below
indicate that only relatively small samples are required for
substantial improvement. They also demonstrate a rapidly
diminishing marginal return for larger sample sizes. In other
words, while larger and larger sample sizes may be useful for
“SOTA chasing,” their value for fine-tuning LLMs shrinks
beyond a certain threshold, which we estimate below. These
findings provide actionable guidance about how to select and
generate fine-tuning samples by attending to issues of relevant
token density. As such, they should have great value for NER
applications that rely on them.

Literature Review
During our initial review of the literature, we were unable to
locate any widely accepted, evidence-based guidance on
appropriate sample sizes for training data in NER fine-tuning
experiments. Therefore, to evaluate the state of the field, we
conducted a literature search focused on identifying existing
practices. We searched PubMed for prior relevant work to
determine current sample size conventions in NER fine-tuning.
We used a simple search strategy “(“named entity recognition”
OR “entity extraction”) AND (fine tuning OR transfer learning)
AND (annotat*),” which returned 138 relevant papers. We
reviewed each of these papers and extracted information related
to human-annotated NER training sets. Specifically, for each
paper, we assessed if a human-annotated training set was used,
and if so, we extracted data on sample units, sample size, and
any available sample size justification. In cases where authors
described the size of human-annotated training sets on multiple
levels (eg, number of documents, number of sentences, and
number of entities), we prioritized units that would most
effectively guide prospective sampling. This emphasis meant
that we prioritized sentences (as they are comparable across
document types and identifiable without annotation) over
documents (which vary widely in length) or entities (which
cannot be assessed until after annotation). In cases where
multiple human-annotated samples were used, we noted the
largest reported sample as indicative of the researchers’ sense
of the sample necessary to conduct the research in its entirety.

Additionally, for each paper that made use of a human-annotated
training set, we sought to identify any possible justifications
for the chosen sample size. We anticipated that common
justifications might include (1) collecting a sample sufficient
to achieve target performance, (2) collecting a sample consistent
with or larger than prior work, or (3) collecting a sample
appropriate given relevant power calculations.

Of the papers surveyed, the majority (93/138, 67.4%) reported
the use of human-annotated NER training data. The remaining
(45/138, 32.6%) papers used only computational approaches to
curate training data sets. Notably, many papers reported using
a mix of human-annotated and computationally-annotated
training sets or performing multiple experiments with different
training sets. As long as any given paper used at least 1
human-annotated training set, it was included in the tally.
Reported sample units varied quite widely across papers with
many reporting only the number of documents used. Document
types were similarly variable and specific to research contexts.
For example, several papers reported training sample sizes as
the number of clinical notes, number of published abstracts, or
number of scraped tweets. In contrast, some papers reported
sample size using non-context-specific measures such as
sentences, entities, or tokens. Given this variety, we classified
sample units as belonging to 1 of 6 common categories: clinical
notes or reports, sentences, abstracts or papers, entities, tokens,
or others. The most commonly used sample unit was clinical
notes or reports (34/93, 37%) followed by sentences and papers
or abstracts (21/93, 23%). Sample size ranges also varied widely
by unit type, as would be expected. The smallest clinical notes
or reports sample used a scant 17 documents [26], but this was
likely a larger sample than the smallest reported sentence sample
size of 100 [27]. Among the papers reporting nondocument type
specific sample units, human-annotated data sets ranged from
1840 tokens to 79,401 tokens (mean 42,121 tokens); from 100
entities to 39,876 entities (mean 15,957 entities); and from 100
sentences to 360,938 sentences (mean 26,678 sentences). Details
on the sample size range by sample type are available in Table
1. Complete details on each paper’s approach to sample size
are available in Multimedia Appendix 1.

Of the 93 papers that used human-annotated NER training data,
only 3 (3%) papers provided an explicit justification for the
chosen sample size. In each case, the justification for the sample
size was based on a reference to prior relevant work and
determined to be as large or larger than a sample used in the
previously published work [28-30]. Ultimately, the wide range
of sample reporting practices and the broad lack of attention to
sample size justification indicate a strong need for explicit
sample selection guidance for fine-tuning NER models. This
paper contributes to addressing this need.
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Table 1. Unit types, number of papers by type, and sample size means and ranges.

Sample size, rangeSample size, meanPapers (n=93), n (%)Unit type

17-509870934 (37)Clinical notes or reports

20-7000196621 (23)Abstracts or papers

100-360,93826,67821 (23)Sentences

47-25,67859799 (10)Other

100-39,87615,9575 (5)Entities

1840-79,40142,1213 (3)Tokens

Methods

Overview
The primary aim of this study was to evaluate sample size
considerations for fine-tuning LLMs for domain- and
context-specific NER tasks. Specifically, the goal was to
evaluate how changes in retraining data set sizes and token
density impact overall NER performance. To accomplish this
task, we used stratified random samples of training sets to create
2500 fine-tuned instances of RoBERTa_base, GatorTron_base,
RoBERTa_large, and GPT-2_large. In what follows, we describe
(1) the data and target NER task, (2) the gold-standard
annotation protocol, (3) the fine-tuning approach, and (4) our
sample feature analysis.

Data Description and Context
We selected COI disclosures in biomedical literature as a highly
domain-specific, technical language context suitable for the
goals of this paper. In recent years, significant research efforts
have been devoted to studying the effects of financial COI on
the biomedical research enterprise [31-33], finding that COI is
associated with favorable findings for sponsors [31], increased
rates of “spin” in published reports [34], increased likelihood
of trial discontinuation or nonpublication [35], editorial and
peer reviewer biases [36], and increased adverse events rates
for developed products [37]. Unfortunately, as compelling as
this body of evidence is, a recent methodological review of
research in this area indicates that most studies treat COI as a
binary variable (present or absent) rather than quantifying COI
rates or disaggregating COI types [32]. This limitation in the
available evidence is, no doubt, driven in part by the data
structures of COI reporting. When COI are reported, they are
generally reported in unstructured or semistructured text. COI
disclosure statements can also be quite long, as individual
authors frequently receive and report multiple lines of funding
from a wide variety of granting agencies and corporate sponsors.
Ultimately, the lack of tabular data structures for COI makes it
difficult to extract appropriate information [38] such as the
sources and recipients of funding, the precise links between
COI sources and recipients, or the quantity and degree of COI
in a given disclosure statement.

These limitations notwithstanding, there has been some recent
research leveraging informatics techniques, including NER, to
transform text disclosure statements into tabular data [18,37].
Recently developed systems leverage NER to identify authors
and sponsors as “PERSONs” and “ORGs,” respectively.
Secondary processing makes use of regular expressions to parse

the types of relationships reported between each NER-identified
PERSON and ORG. Since NER-tagging in this context is
focused on identifying canonical entity types, applying these
tools to COI disclosure statements may seem relatively
straightforward at the outset. However, variances in reporting
formats and the lack of specific training data on relevant entities
present a number of challenges. In the first case, author
identification is stymied by different journal guidelines for
rendering author names. For example, a disclosure statement
for Rudolf Virchow might be rendered as “Rudolf Virchow,”
“Virchow,” “Dr. Virchow,” or “RLCV.” Likewise, pretrained
NER models have not been found to offer high-quality,
out-of-the-box performance for pharmaceutical company names
[18]. Variations in incorporation type (Inc, LLC, GmbH, etc)
typically induce entity boundary issues, and multinational
companies often report national entity names (eg, Pfizer India),
leading standard NER models to assign inappropriate
geopolitical entity tags. Finally, effective NER on COI
disclosure statements is also challenged by the atypical
distribution of relevant tokens. It is not uncommon for a single
sentence in a disclosure to have a dozen author names or a dozen
company names, for example, when a disclosure statement lists
all authors who have the same COI (eg, “such-and-such authors
are employed at MSD”). These atypical sentence structures also
occur when a single author has many COIs to disclose, as in,
“RLCV receives consulting fees from MSD, Pfizer, GSK,
Novartis, and Sanofi.”

To more clearly demonstrate these limitations, we provide the
following authentic example from a COI disclosure statement
published in a 2018 issue of the World Journal of
Gastrointestinal Oncology [39]. The following shows the NER
tagging performance of RoBERTa_base without fine-tuning:

Sunakawa Y[ORG] has received honoraria from
Taiho Pharmaceutical[ORG], Chugai Pharma[ORG],
Yakult Honsha[ORG], Takeda[ORG], Merck
Serono[ORG], Bayer Yakuhin[ORG], Eli Lilly
Japan[ORG], and Sanofi[ORG]; Satake H[ORG]
has received honoraria from Bayer[ORG], Chugai
Pharma[ORG], Eli Lilly Japan[ORG], Merck
Serono[ORG], Takeda[ORG], Taiho
Pharmaceutical[ORG] and Yakult Honsha[ORG];
Ichikawa W[ORG] has received honoraria from
Chugai Pharma[ORG], Merck Serono[ORG], Takeda
Pharmaceutical[ORG], and Taiho
Pharmaceutical[ORG]; research funding from Chugai
Pharma[ORG], Takeda Pharmaceutical[ORG], and
Taiho Pharmaceutical[ORG].
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Furthermore, the following shows the NER tags provided by
the human annotation team:

Sunakawa Y[PERSON] has received honoraria from
Taiho Pharmaceutical[ORG], Chugai Pharma[ORG],
Yakult Honsha[ORG], Takeda[ORG], Merck
Serono[ORG], Bayer Yakuhin[ORG], Eli Lilly
Japan[ORG], and Sanofi[ORG]; Satake H[PERSON]
has received honoraria from Bayer[ORG], Chugai
Pharma[ORG], Eli Lilly Japan[ORG], Merck
Serono[ORG], Takeda[ORG], Taiho
Pharmaceutical[ORG] and Yakult Honsha[ORG];
Ichikawa W[PERSON] has received honoraria from
Chugai Pharma [ORG], Merck Serono[ORG], Takeda
Pharmaceutical[ORG], and Taiho
Pharmaceutical[ORG]; research funding from Chugai
Pharma[ORG], Takeda Pharmaceutical[ORG], and
Taiho Pharmaceutical[ORG].

It is evident that the base LLM classifier makes critical errors
that make mapping COI relationships between researchers,
funding streams, and funding sources impossible. In the above
example, a base-trained classifier mistakenly tags PERSONs
as ORGs; elsewhere, we have seen the opposite, where
non–fine-tuned classifiers mistakenly identify companies, such
as Novartis or Eli Lilly, as PERSONs. General purpose language
models (such as BERT and GPT-3) are not well-suited to the
NER task of classifying and linking named authors and disclosed
payors (pharmaceutical companies, nonprofit foundations,
federal funders, etc) because of challenges that arise from the
aforementioned lack of standardized disclosure conventions for
author names. Likewise, another challenge arises because these
models are not well-trained on biomedical companies, nonprofit
entities, and federal funders. In this study, as well as earlier
research, we found that pharmaceutical companies—frequently
named after founding families—are often tagged as PERSONs
rather than ORGs. Finally, the linguistic signature of COI
disclosure statements is distinctive: COI statements deploy
semicolons in nonstandard ways. For large research teams, a
single disclosure sentence can cover the length of a long
paragraph, and grammatical conventions that govern the
relationship between subjects, direct objects, and indirect objects
are often elided or circumvented in favor of brevity, which
makes linking authors to payors and payors to type of payment
challenging. At the same time, the linguistic conventions used
for disclosure statements vary between and even within journals,
rendering rule-based NER approaches unfeasible. As such, the
task of identifying and linking authors to payors and payment
types in COI statements is an ideal use case for fine-tuning
parameter-dense language models based on gold-standard human
annotated COI statements.

Data Sources and Preprocessing
The data used for fine-tuning COI-relevant NER tags in this
study come from COI disclosure statements drawn from 490
papers published in a diverse range of biomedical journals. The
selected disclosure statements were randomly sampled from a
preexisting data set of 15,374 statements with artificial
intelligence–identified COI [40]. The original data set was
created by extracting all PubMed-indexed COI statements in

2018. At the time of download, there were 274,246 papers with
a COI-statement field in the PubMed XML file. The substantial
majority of these are statements of no conflict disclosure, and
thus collected statements were analyzed using a custom machine
learning–enhanced NER system that can reliably identify
relationships between funding entities and named authors
[18,37]. The sample used in this study was drawn from the
population of COI statements with artificial
intelligence–confirmed conflict disclosures.

Two annotators independently tagged named entities in the
collected COI statements as either people (PERSON) or
organizations (ORG). The PERSON tag was applied to all
named authors, regardless of the format of the name. This
included initials with and without punctuation, for example,
“JAD” or “J.A.D” as well as full names “Jane A. Doe” or names
with titles “Dr. Doe.” ORG tags were applied to named
pharmaceutical companies, nonprofit organizations, and funding
agencies. To ensure that NER tagging was consistent, a random
sample of 200 COI statements was tagged by both annotators
and assessed for interannotator agreement using interclass
correlation coefficient for unit boundaries and Cohen κ for entity
type agreement. The raters had 98.3% agreement on unit
boundaries (interclass correlation coefficient=0.87, 95% CI
0.864-0.876). For named entities with identical unit boundaries,
the classification (PERSON or ORG) agreement was 99.6%
(κ=0.989). After this high degree of interrater reliability was
established, the annotators independently annotated the
remaining COI statements. Prior to training the language model,
a third rater reconciled the few annotation disagreements in the
initial interrater reliability sample.

Model Fine-Tuning and Analysis
A subset (147/490, 30%) of the annotated disclosure statements
was reserved to serve as an evaluation set. The remaining 343
statements were used to generate 2500 training sets for
subsequent experimentation. Each set was created by randomly
selecting an N size in 5 preidentified strata of 40 possible sample
sizes, at the statement level. The strata included size ranges of
1-40, 41-80, 81-120, 121-160, and 161-200. Once each N size
was selected, a random sample of COI statements at that N size
was derived. We created 500 random samples within each
stratum.

We fine-tuned 4 commonly used language models using the
open-source spaCy NLP library (version 3.2.1, running on
Python version 3.9.7). To ensure the repeatability of results and
to make the fine-tuning process as accessible as possible to
research teams, we used spaCy’s default configuration settings
for NER. The selected models included RoBERTa_base,
GatorTron_base, RoBERTa_large, and GPT-2_large; for the
latter 3, we used the spacy-transformers package to access these
models through Hugging Face’s transformers library. These
models were selected to provide a range of parameter sizes
(125M to 744M) and to allow for a comparison between
language models trained on general use, as well as on biomedical
texts specifically. Fine-tuning was performed on spaCy’s
pretrained transformer pipeline, with only the transformer and
NER pipeline components enabled in the configuration file. All
fine-tuning processes were run on a high-performance
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computing cluster at North Dakota State University’s Center
for Computationally Assisted Science and Technology, using
AMD EPYC central processing units and NVIDIA graphics
processing units. Preprocessing and tokenization were done
using spaCy’s built-in tokenizer; training runs were optimized
with the Adam algorithm, with decay rates of 0.9 (beta1) and
0.999 (beta2) and a learning rate of 0.01. For each training run,
spaCy was set to check NER classifications against the test set
after every 200 iterations within an epoch, to generate language
models at regular intervals during the training process, and to
stop whenever additional training steps failed to improve the
classification metrics. We then extracted the highest-scoring
language model from each set, for a total of 2500 fine-tuned
language models.

Each of the 2500 retraining sets was subsequently categorized
by sample size (measured in the number of sentences) and
relevant entity density (entities per sentence [EPS]). Sentence
boundaries were determined using the sentencizer in the R
tidytext (0.3.4) library [41]. Sentences were used to provide a
more regularized comparator as disclosure statements vary
widely in length. We also focus on sentences as opposed to
tokens since the number of sentences in a sample can be
identified prospectively (ie, prior to annotation). Multiple
regression was used to assess the linear relationship between
sample size (number of sentences), entity density (EPS), and
trained model F1-score. Additionally, we used single-predictor
threshold regression models for the number of sentences and
EPS to evaluate the possibility of diminishing marginal returns
from increased sample size or taken density [42]. Threshold
regression offers an effective way to model and evaluate
nonlinear relationships, and as the term suggests, to identify
any threshold effects. Multiple threshold models are available,
and our approach relies on a hinge model that can be expressed
as follows:

All statistical tests were performed in R (version 4.2.2; The R
Foundation) and the threshold modeling was performed using
the R chngpt package [43].

Ethical Considerations
This study does not include human subjects research (no human
subjects experimentation or intervention was conducted) and
so does not require institutional review board approval.

Results

The 2500 sets ranged from 1 to 200 disclosure statements with
an average of 100 (SD 57.42). The number of sentences in each
fine-tuning set ranged from 5 to 1031, with an average of 525.2
(SD 294.13). The tagged entity density ranged from 0.771 to
1.72 EPS, with an average of 1.34 (SD 0.14). Fine-tuned model
performance on NER tasks ranged from F1-score=0.3 to

F1-score=0.96. The top F1-score for each architecture was 0.72
for GPT-2_large, 0.92 for GatorTron_base, 0.94 for
RoBERTa_base, and 0.96 for RoBERTa_large. Data set and
model descriptive statistics are available in Table 2.

Multiple linear regressions were used to assess and compare
the relationship between the independent variables (number of
sentences and EPS) and the overall model performances
(measured by F1-score) for each architecture. EPS and number
of sentences predictors correlate weakly (Pearson r=0.28,
P<.001), and diagnostic tests for multicollinearity indicate that
the variables do not violate the Klein rule of thumb and have a
low variance inflation score (1.11) and high tolerance (0.9) [44].

All models were statistically significant with multiple R2 ranging
from 0.6057 to 0.7896 (all P<.001). EPS and the number of
sentences were significant predictors of F1-scores in all cases
(P<.001), except for the GPT-2_large model, where EPS was
not a significant predictor (P=.184). Standardized regression
coefficients and full model results are available in Table 3.

This study focuses primarily on total sentences as our measure
of data size. This is because the number of sentences can be
identified prospectively (prior to annotation) and is comparable
across data sets with different document lengths. However, it
should be noted that other measures of sample size are similarly
predictive of F1-scores. The total number of relevant entities
per training data set correlates very closely with the number of
sentences (Pearson r=0.998, P<.001). This high collinearity
makes it inadvisable to fit regression models with both
predictors. We did, however, fit a series of models with EPS
and a number of relevant entities as predictors. In all cases, the
results were quite similar to those reported in Table 3. Specific
values are available in Multimedia Appendix 2. It is notable

that, in all cases, the multiple R2 for models with EPS and the
number of relevant entities as predictors are lower than the
counterpart models with EPS and number of sentences.
Subsequent pairwise ANOVA, however, indicates that there
are no significant differences in model fit. ANOVA P values
were 0.85 for RoBERTa_base, 0.74 for GatorTron_base, 0.93
for RoBERTa_large, and 0.53 for GPT-2_large.

Threshold regression models were also used to assess the
possibility of diminishing marginal returns on training data sizes
and EPS for each model and model architecture. All threshold
models indicate that there was a diminishing marginal return
from increased training data set sample size measured by number
of sentences. Point estimates ranged from 439 for
RoBERTa_large to 527 for GPT-2_large. Likewise, the
threshold models indicate a diminishing marginal return for
EPS with point estimates between 1.36 and 1.38. Complete
threshold regression results are available in Table 4. Single
predictor plots are available in Figure 1, with technical threshold
model plots shown in Multimedia Appendix 2.
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Table 2. Descriptive statistics of training sets and model performance.

Value, mean (SD)Value, rangeDescriptive statistics

100.0 (57.42)1-200Number of disclosure statements

712.9 (405.94)4-1402Number of tokens

525.2 (294.13)5-1031Number of sentences

1.34 (0.14)0.771-1.72Entities per sentence

0.81(0.13)0.43-0.94RoBERTa_base F1-score

0.84 (0.13)0.37-0.92GatorTron_base F1-score

0.84 (0.14)0.44-0.96RoBERTa_large F1-score

0.58 (0.12)0.30-0.72GPT-2_large F1-score

Table 3. Standardized multiple linear regression results by architecture.

Multiple R2P valuebF test (df)βsentβEPS
aModel (parameters)

0.6197<.0012034 (22, 497)0.78c0.04cRoBERTa_base (125M)

0.6417<.0012236 (22, 497)0.79c0.05cGatorTron_base (345M)

0.6057<.0011918 (22, 497)0.76c0.05cRoBERTa_large (355M)

0.7896<.0014685 (22, 497)0.89c–0.01GPT-2_large (774M)

aEPS: entities per sentence.
bIndividual predictor P values for Beta_sent were <.001 for all models. P values for Beta_EPS were <.001 in all cases except for the GPT-2_large model
where EPS was not a significant predictor (P=.184)
cPredictor results are significant at the P<.01 level.

Table 4. Threshold regression point estimates and 95% confidence intervals for number of sentences and EPSa by architecture.

EPS threshold, estimate (95% CI)Number of sent threshold, estimate (95% CI)Model (parameters)

1.36 (1.35-1.37)448 (437-456)RoBERTa_base (125M)

1.36 (1.36-1.38)448 (409-456)GatorTron_base (345M)

1.36 (1.35-1.38)439 (409-451)RoBERTa_large (355M)

1.38 (1.36-1.38)527 (511-540)GPT-2_large (774M)

aEPS: entities per sentence.
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Figure 1. Single predictor plots for the number of sentence (left) and EPS (right). Fit with a generalized additive model. EPS: entities per sentence.

Discussion

Principal Findings
Our review of the available literature on human-annotated
training data for NER fine-tuning indicates that there is a strong
need for useful guidance on requisite sample sizes. Reported
sample units and sizes vary widely, providing little foundation
for prospective approaches to sample curation. Given the
significant time and costs associated with gold-standard
annotation, it is critical that researchers and practitioners can
effectively determine appropriate samples before fine-tuning
neural network language models. The results of the experiment
presented here provide initial actionable guidance for the
development of gold-standard annotated training sets for NER
fine-tuning in highly specific, specialized domains. Specifically,
they indicate that contrary to common assumptions,
transformer-based language models can be optimized for new
tasks using relatively small amounts of training data.
Furthermore, the results presented here indicate that NER
fine-tuning is subject to threshold effects whereby there are
diminishing marginal returns from increased sample sizes. Our
data revealed that a scant 439 sentences were sufficient to reach
that threshold with RoBERTa_large. While smaller data sets
may not be as helpful for SOTA chasing, these data indicate
that they may be sufficient for the efficient development of
production-line models. These findings are consistent with the
growing multidisciplinary body of literature demonstrating the
efficacy of smaller sample sizes for fine-tuning [13,23,24].
Additionally, we note that given prior estimates for NER
annotation rates, a sample of approximately 450 sentences would
take between 74 and 225 minutes to annotate [8].

Importantly, the data provided here also indicate that neither
model size nor content area–specific foundational training data
may be essential for maximizing performance, but that model
architecture is. RoBERTa_base, GatorTron_base, and

RoBERTa_large all achieved comparable performance levels
in terms of maximum F1-score with similarly low training
sample sizes. GPT-2_large, despite being the largest model
tested, showed the worst performance on our NER tasks. On
the one hand, neither finding is surprising. The foundational
paper by Devlin et al [16] on the BERT transformer architecture
suggests that BERT’s capacity for fine-tuning for NLP tasks,
such as classification, is better compared with GPT-based
models, and a recent Microsoft Research paper argues that
general-language models, such as GPT-4, can perform as well
or better on domain-specific language tasks—specifically as
they relate to medicine—than models trained on language
specific to that domain [45]. But where the latter study focused
on a very LLM built with reinforcement learning from human
feedback and designed to be responsive to prompting, we found
that for smaller—and therefore more tunable—models,
fine-tuning with domain-specific texts yields significant
performance improvements. For domain-specific NER tasks,
then, architecture differences may matter most: decoder-based
unidirectional architectures may be better suited for sentence
generation, while encoder- or decoder-based bidirectional
architectures better capture sentence-level contexts that are
essential to NER tasks.

The results presented here also indicate that there are similar
threshold effects for token density. That is, selecting or
synthetically creating specifically token-rich samples may not
improve model performance. Unlike the sample size data that
indicate a diminishing marginal return, the hinge model for
token density shows a substantial decrease in overall
performance after the EPS threshold is achieved. We note that
these threshold point estimates and narrow 95% CIs converge
on the average EPS (1.34) of the 2500 training sets, and this
suggests that the relevant entity density of training data needs
to approximate the relevant entity density of testing and
production-line data.
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This finding is especially relevant given the increasing interest
in artificial training data generated by LLMs. While the insights
presented here indicate that fine-tuning training data can be
much smaller than generally anticipated, high-quality small
training data sets still require adequate funding and time to pay,
train, and deploy human annotators. In response, some research
seeks to leverage LLMs as sources of training data for
subsequent fine-tuning of smaller neural network models [46].
This is an intriguing line of research worthy of further scrutiny.
However, it is notable that our findings about relevant token
density suggest that artificially generated data must mirror real
data in terms of token density. If the token density is too low
or too high, we can expect to see reduced model performance
when compared with naturally derived training data and
high-quality expert annotation.

While these findings provide an important initial foundation
for fine-tuning sample size considerations in NER applications,
the specifically identified thresholds may not apply to markedly
different NER use cases. This study focused on fine-tuning
PERSON and ORG tags, entity types that are well-represented
across the heterogeneous data sources that are used to train
LLMs. Bioinformatics use cases that focus on entity types that
are more unique to biomedical contexts (eg, symptoms,
chemicals, diseases, genes, and proteins) or that require
generating new entity categories may require larger training
samples to optimize LLM performance. Additionally, this study
focuses on semistructured natural language (disclosure
statements). While we would expect similar guidelines to apply
for NER in other semistructured biomedical contexts (eg,
research papers, clinical notes, abstracts, and figure or image
annotations), the threshold guidance here may not apply well
to less formalized linguistic contexts.

Conclusion
The emergence of LLMs offers significant potential for
improving NLP applications in biomedical informatics, with
research demonstrating the advantages of fine-tuned,
domain-specific language models for health care applications

[47] and environmental costs [22]. However, given the novelty
of these solutions, there is a general dearth of actionable
guidelines on how to efficiently fine-tune language models. In
the context of NER applications, this study demonstrates that
there is a general lack of consensus and actionable guidance on
sample size selection concerns for fine-tuning LLMs. Training
sets reporting units and sample size varied widely in the
published literature, with samples ranging from 100 sentences
to 35,938 sentences for training sets. Additionally,
human-annotated training set sample sizes are seldom justified
or explained. In the rare cases where sample size is discussed
explicitly, justifications focus narrowly on simple size
comparisons to previously published efforts in a similar domain.
In this context, biomedical informatics researchers could benefit
from actionable guidelines about sample size considerations for
fine-tuning LLMs.

The data presented here provide sample size guidance for
fine-tuning LLMs drawn from an experiment on 2500
gold-standard human annotated fine-tuning samples.
Specifically, the data demonstrate the importance of both sample
sizes as measured in the number of sentences and relevant token
density for training data curation. Furthermore, the findings
indicate that both sample size and token density can be subject
to threshold limitations where increased sample size or token
density do not confer additional performance benefits. In this
study, sample sizes of greater than 439-527 sentences failed to
produce meaningful accuracy improvements. This suggests that
researchers interested in levering LLMs for NER applications
can save considerable time, effort, and funding, which has been
historically devoted to producing gold-standard annotations.
The data presented here also indicate that the relevant token
density of training samples should reliably approximate the
relevant token density of real-world cases. This finding has
important ramifications for the production of synthetic data
which may or may not effectively approximate real-world cases.
The findings presented here can directly inform future research
in health policy informatics and may also be applicable to a
wider range of health and biomedical informatics tasks.
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