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Abstract

Background: There are a wide range of potential adverse health effects, ranging from headaches to cardiovascular disease,
associated with long-term negative emotions and chronic stress. Because many indicators of stress are imperceptible to observers,
the early detection of stress remains a pressing medical need, as it can enable early intervention. Physiological signals offer a
noninvasive method for monitoring affective states and are recorded by a growing number of commercially available wearables.

Objective: We aim to study the differences between personalized and generalized machine learning models for 3-class emotion
classification (neutral, stress, and amusement) using wearable biosignal data.

Methods: We developed a neural network for the 3-class emotion classification problem using data from the Wearable Stress
and Affect Detection (WESAD) data set, a multimodal data set with physiological signals from 15 participants. We compared
the results between a participant-exclusive generalized, a participant-inclusive generalized, and a personalized deep learning
model.

Results: For the 3-class classification problem, our personalized model achieved an average accuracy of 95.06% and an F1-score
of 91.71%; our participant-inclusive generalized model achieved an average accuracy of 66.95% and an F1-score of 42.50%; and
our participant-exclusive generalized model achieved an average accuracy of 67.65% and an F1-score of 43.05%.

Conclusions: Our results emphasize the need for increased research in personalized emotion recognition models given that they
outperform generalized models in certain contexts. We also demonstrate that personalized machine learning models for emotion
classification are viable and can achieve high performance.

(JMIR AI 2024;3:e52171) doi: 10.2196/52171

KEYWORDS

affect detection; affective computing; deep learning; digital health; emotion recognition; machine learning; mental health;
personalization; stress detection; wearable technology

Introduction

Stress and negative affect can have long-term consequences for
physical and mental health, such as chronic illness, higher
mortality rates, and major depression [1-3]. Therefore, the early
detection and corresponding intervention of stress and negative
emotions greatly reduces the risk of detrimental health
conditions appearing later in life [4]. Since negative stress and

affect can be difficult for humans to observe [5-7], automated
emotion recognition models can play an important role in health
care. Affective computing can also facilitate digital therapy and
advance the development of assistive technologies for autism
[8-13].

Physiological signals, including electrocardiography (ECG),
electrodermal activity (EDA), and photoplethysmography (PPG),
have been shown to be robust indicators of emotions [14-16].
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The noninvasive nature of physiological signal measurement
makes it a practical and convenient method for emotion
recognition. Wearable devices such as smartwatches have
become increasingly popular, and products such as Fitbit have
already integrated the sensing of heart rate, ECG, and EDA data
into their smartwatches. The accessibility of wearable devices
indicates that an emotion recognition model using biosignals
can have practical applications in health care.

The vast majority of research in recognizing emotions from
biosignals involves machine learning models that are
generalizable, which means that the models were trained on one
group of subjects and tested on a separate group of subjects
[17-28]. Prior studies emphasize the need for personalized or
subject-dependent models [18,29,30], and some investigations,
albeit few, analyze personalized models [31,32]. Both
generalized and personalized models have potential benefits;
for example, generalized models can train on more data than
personalized models, and personalized models do not need to
address the problem of inter-subject data variance [33].
However, it is still unclear how personalized models compare
against generalized models in many contexts.

We present 1 personalized and 2 generalized machine learning
approaches for the 3-class emotion classification problem
(neutral, stress, and amusement) on the Wearable Stress and
Affect Detection (WESAD) data set, a publicly available data
set that includes both stress and emotion data [18]. The two
generalized models are trained using participant-inclusive and
participant-exclusive procedures. We compare the performance
of these 3 models, finding that the personalized machine learning
approach consistently outperforms the generalized approach on
the WESAD data set.

Methods

Overview
To classify physiological data into the neutral, stress, and
amusement classes, we developed a machine learning framework
and evaluated the framework using data from the WESAD data
set. Our machine learning framework consists of data
preprocessing, a convolutional encoder for feature extraction,
and a feedforward neural network for supervised prediction
(Figure 1). Using this model architecture, we compared
generalized and personalized approaches to the 3-class emotion
classification task (neutral, stress, and amusement).

Figure 1. Overview of our model architecture for the 3-class emotion classification task. FNN: feedforward neural network; SiLU: sigmoid linear unit.

Data Set
We selected WESAD, a publicly available data set that combines
both stress and emotion annotations. WESAD consists of
multimodal physiological data in the form of continuous
time-series data for 15 participants and corresponding
annotations of 4 affective states: neutral, stress, amusement,
and meditation. However, we only considered the neutral, stress,
and amusement classes since the objective of WESAD is to
provide data for the 3-class classification problem, and the
benchmark model in WESAD ignores the meditation state as
well. Our model incorporated data from 8 modalities recorded

in WESAD: ECG, EDA, electromyogram (EMG), respiration,
temperature, and acceleration (x, y, and z axes). In the data set,
measurements for each of the 8 modalities were sampled by a
RespiBAN sensor at 700 Hz to enforce uniformity, and data
were collected for approximately 36 minutes per participant.

Preprocessing and Partitioning
Each data modality was normalized with a mean of 0 and an
SD of 1. We used a sliding window algorithm to partition each
modality into intervals consisting of 64 data points, with a 50%
overlap between consecutive intervals. We ensured that all 64
data points within an interval shared a common annotation,
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which allowed us to assign a single affective state to each
interval. The process of normalization, followed by a sliding
window partition, is illustrated in Figure 1. These intervals were
partitioned into training, validation, and testing sets.

For the personalized model, we partitioned the training,
validation, and testing sets as follows: each participant in the
data set had their own model that was trained, validated, and
tested independently of other participants. For each affective
state (neutral, stress, and amusement), we allocated the initial
70% of intervals with that affective state for training, the next

15% for validation, and the final 15% for testing. This
guaranteed that the relative frequencies of each affective state
were consistent across all 3 sets. Simply using the first 70% of
all intervals for the training data would skew the distribution
of affective states, given the nature of the WESAD data set.
Furthermore, our partitioning of intervals according to sequential
time order rather than random selection helped prevent
overfitting by guaranteeing that 2 adjacent intervals with similar
features would be in the same set. The partitioning of training,
validation, and testing sets for the personalized model is shown
in Figure 2.

Figure 2. A comparison of different generalized and personalized approaches to the 3-class emotion classification task. The participant-exclusive
generalized model mimics generalized approaches used in other papers. The participant-exclusive generalized model shown in the figure differs from
what we use in this paper.

Standard generalized models partition the training, validation,
and testing sets by participant [18]. We denote these standard
models as participant-exclusive generalized models, as shown
in Figure 2. Through this partitioning method, it is impossible
to compare the performances of generalized and personalized
models since they are solving two separate tasks. Therefore, we
present a modified participant-exclusive generalized model that
solves the same task as the personalized model. The testing set
for our participant-exclusive generalized model consisted of the
last 15% of intervals for each affective state for 1 participant.
The training set consisted of the first 70% of intervals for each
affective state for all participants except the 1 participant in the
testing set, and the validation set consisted of the next 15% of
intervals for all participants except the 1 participant in the testing
set. The training and testing sets for this approach contained
data from mutually exclusive sets of participants; this is where
the name of the model, participant-exclusive, is derived from.
Since the testing sets for the participant-exclusive generalized
and personalized models are equivalent, it is possible to compare
generalized and personalized approaches. This
participant-exclusive generalized model served as our first
generalized model baseline.

A second generalized model baseline was created, called the
participant-inclusive generalized model. Like the testing sets

for the participant-exclusive generalized and personalized
models, the testing set for this model contained the last 15% of
intervals for each affective state for a single participant. The
training set consisted of the first 70% of intervals for each
affective state for all participants, and the validation set
consisted of the next 15%. The set of participants in the training
and testing sets overlapped by 1 participant—the subject in the
testing set—which is why this model is called the
participant-inclusive generalized model. This is illustrated in
Figure 2.

Model Architecture
The model architecture consisted of an encoder network
followed by a feedforward head, which is shown in Figure 1.
A total of 8 channels, representing the 8 modalities we used
from WESAD, served as input into an encoder network, which
was modeled after the encoder section of U-Net [34]. The
encoder network had 3 blocks, with each block consisting of
two 1D convolutional layers (kernel size of 3) followed by 1D
max pooling (kernel size of 2). The output of each convolution
operation was passed through a sigmoid linear unit (SiLU)
activation function. Between each block, we doubled the number
of channels and added a dropout layer (15%) to reduce
overfitting. The output of the encoder was flattened and passed
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through 2 fully connected layers with SiLU activation to produce
a 3-class probability distribution. Table 1 shows the
hyperparameters that determine the model structure. These were

consistent between the participant-exclusive generalized,
participant-inclusive generalized, and personalized models.

Table 1. Hyperparameters relating to model structure.

ValueHyperparameter

3Encoder depth (number of blocks), n

15Dropout rate, %

2Number of fully connected layers, n

3Convolutional kernel size, n

2Max pooling kernel size, n

SiLUaActivation function

aSiLU: sigmoid linear unit.

Model Training
We trained the 2 generalized baseline models and the
personalized model under the same hyperparameters to
guarantee a fair comparison. Both models were trained with
cross-entropy loss using AdamW optimization. All models were
written using PyTorch [35]. Within 1000 epochs, models with
the lowest validation loss were saved for testing. A Nvidia
GeForce RTX 4090 GPU was used for training. A separate
personalized model was trained for each of the 15 participants.
The participant-exclusive generalized model was trained 15
times, and the participant-inclusive generalized model was
trained once. For model comparison, all models were tested on
each of the 15 participants.

Ethical Considerations
This study did not require institutional review board (IRB)
review because we exclusively used a commonly analyzed
publicly available data set. We did not work with any human
subjects.

Results

For the 3-class emotion classification task (neutral, stress, and
amusement), Tables 2 and 3 illustrate the accuracy and F1-score
of the personalized and generalized models when tested on each
of the 15 participants. We include F1-score, a balanced
evaluation metric consisting of the harmonic mean of precision

and recall, to accommodate for the imbalanced class distribution
in WESAD [18]. In order to guarantee a fair comparison
between the models, they had the same random seeds for model
initialization, and their architecture and hyperparameters were
the same. The accuracy and F1-score for the personalized model
exceeded those of the participant-inclusive generalized model
for all participants except participant 1, and the personalized
model outperformed the participant-exclusive generalized model
in terms of accuracy and F1-score for all participants. The
personalized models for participants 1 and 2 also indicate subpar
performance compared to other participants, which we address
in the Discussion section.

Table 4 shows the average and SD of the accuracies and
F1-scores across all participants for the 3 models. We achieved
an average accuracy of 95.06%, 66.95%, and 67.65% for the
personalized, participant-inclusive generalized, and
participant-exclusive generalized models, respectively. We also
achieved an average F1-score of 91.72%, 42.50%, and 43.05%
for the personalized, participant-inclusive generalized, and
participant-exclusive generalized models, respectively.
Observing the error margins in Table 4, the differences in
accuracy and F1-score between the personalized model and both
generalized models are statistically significant. As shown in
Table 5, we evaluated the P values between each model type
for accuracy and F1-score through pairwise 2-tailed t tests to
determine statistical significance.
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Table 2. A comparison of model accuracy between the personalized and generalized models.

Model accuracy, %Participant

Participant-exclusive generalized modelParticipant-inclusive generalized modelPersonalized model

53.9482.6968.361

81.9167.1282.322

82.8182.8199.993

82.3182.8699.904

74.6782.9498.025

54.0354.5799.576

83.2382.05100.007

53.7053.72100.008

51.8351.86100.009

79.8582.0593.6910

62.1160.86100.0011

53.6053.5398.3412

65.3553.2699.8113

53.5453.47100.0014

81.9160.4385.8315

Table 3. A comparison of F1-score between the personalized and generalized models.

F1-score, %Participant

Participant-exclusive generalized modelParticipant-inclusive generalized modelPersonalized model

23.3661.9158.141

58.5344.5558.882

62.0562.0599.983

61.5061.9599.874

54.7461.9996.875

23.5924.9499.356

62.0961.16100.007

23.2923.38100.008

22.8922.85100.009

59.2361.0494.2910

40.1538.27100.0011

26.9026.7997.4012

44.6324.4799.7513

24.0923.93100.0014

58.7138.2671.2815

Table 4. Average accuracy and F1-score of models across all participants.

F1-score, mean (SD [%])Accuracy, mean (SD [%])Model type

91.72 (15.33)95.06 (9.24)Personalized

42.50 (17.37)66.95 (13.76)Participant-inclusive generalized

43.05 (17.20)67.65 (13.48)Participant-exclusive generalized
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Table 5. P values of accuracy and F1-score comparisons between model types.

P value for F1-scoreP value for accuracyModel comparison

P<.001P<.001Personalized versus participant-inclusive generalized

P<.001P<.001Personalized versus participant-exclusive generalized

.88.81Participant-inclusive generalized versus participant-exclusive generalized

Discussion

Principal Findings
We demonstrated that a personalized deep learning model
outperforms a generalized model in both the accuracy and
F1-score metrics for the 3-class emotion classification task. By
establishing two generalized model baselines through the
participant-inclusive and participant-exclusive models, we
created an alternative approach to the standard generalization
technique of separating the training and testing sets by
participant, and as a result, we were able to compare
personalized and generalized approaches. Our personalized
model achieved an accuracy of 95.06% and an F1-score of
91.72%, while our participant-inclusive generalized model
achieved an accuracy of 66.95% and an F1-score of 42.50% and
our participant-exclusive generalized model achieved an
accuracy of 67.65% and an F1-score of 43.05%.

Our work indicates that personalized models for emotion
recognition should be further explored in the realm of health
care. Machine learning methods for emotion classification are
clearly viable and can achieve high accuracy, as shown by our
personalized model. Furthermore, given that numerous wearable
technologies collect physiological signals, data acquisition is
both straightforward and noninvasive. Combined with the
popularity of consumer wearable technology, it is feasible to
scale emotion recognition systems. This can ultimately play a
major role in the early detection of stress and negative emotions,
thus serving as a preventative measure for serious health
problems.

Comparison With Previous Work

Generalized Models
The vast majority of prior studies using WESAD developed
generalized approaches to the emotion classification task.
Schmidt et al [18], the pioneers of WESAD, created several
feature extraction models and achieved accuracies up to 80%
for the 3-class classification task. Huynh et al [22] developed
a deep neural network, trained on WESAD wrist signals, to
outperform past approaches by 8.22%. Albaladejo-González et
al [36] achieved an F1-score of 88.89% using an unsupervised
local outlier factor model and 99.03% using a supervised
multilayer perceptron. Additionally, they analyzed the transfer
learning capabilities of different models between the WESAD
and SWELL-KW (SWELL knowledge work) [37] data sets.
Ghosh et al [38] achieved 94.8% accuracy using WESAD chest
data by encoding time-series data into Gramian Angular Field
images and employing deep learning techniques. Bajpai et al
[39] investigated the k-nearest neighbor algorithm to explore
the tradeoff between performance and the total number of

nearest neighbors using WESAD. Through federated learning,
Almadhor et al [40] achieved 86.82% accuracy on data in
WESAD using a deep neural network. Behinaein et al [41]
developed a novel transformer approach and achieved
state-of-the-art performance using only one modality from
WESAD.

Personalized Models
Sah and Ghasemzadeh [30] developed a generalized approach
using a convolutional neural network using 1 modality from
WESAD. For the 3-class classification problem, they achieved
an average accuracy of 92.85%. They used the
leave-one-subject-out (LOSO) analysis to highlight the need
for personalization. Indikawati and Winiarti [31] directly
developed a personalized approach for the 4-class classification
problem in WESAD (neutral, stress, amusement, and
meditation). Using different feature extraction machine learning
models, they achieved accuracies ranging from 88%-99% for
the 15 participants. Liu et al [32] developed a federated learning
approach using data from WESAD with the goal of preserving
user privacy. In doing so, they developed a personalized model
as a baseline, which achieved an average accuracy of 90.2%.
Nkurikiyeyezu et al [42] determined that personalized models
(95.2% accuracy) outperform generalized models (42.5%
accuracy) for the stress versus no-stress task. By running
additional experiments to further understand how personalized
models compare to generalized models for the 3-class emotion
classification task and by developing participant-inclusive and
participant-exclusive versions of the generalized models, our
work concretely demonstrates how personalization outperforms
generalization and thus supports the conclusions of
Nkurikiyeyezu et al [42].

Limitations and Future Work
As shown in Tables 2 and 3, the performance of our personalized
model deteriorates for participants 1 and 2. To analyze the lack
of performance improvement of the personalized model for
these 2 participants, we visualized the means and SDs of the
different modalities for each emotion class. In Figures 3-5, we
illustrate notable deviations in modality means and SDs for
participants 1 and 2 compared to other participants. While the
analysis of these modalities reveals important information about
the nature of the WESAD data set, it still remains difficult to
pinpoint the exact data set features that caused the performance
decline in the personalized model for these 2 participants. This
is another limitation: since we do not use a feature extraction
model, we cannot assign a feature importance (eg, Gini
importance) to individual features like Schmidt et al [18] do.
We also analyzed the emotion class balances for each
participant, which are included in Table 6, to see if anomalies
existed in the class distributions for certain participants.
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However, based on the ranges of the class distributions, class balance likely had minimal effect on the performance decline.

Figure 3. Deviations of mean and SD for participants 1 and 2 for neutral class modalities.

Figure 4. Deviations of mean and SD for subjects 1 and 2 for stress class modalities. EMG: electromyogram.
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Figure 5. Deviations of mean and SD for subjects 1 and 2 for amusement class modalities.

Table 6. Ranges of emotion class distributions per participant.

Range, %Emotion class

51.8-54.0Neutral

29.0-31.8Stress

16.3-17.4Amusement

Our participant-inclusive and participant-exclusive generalized
models do not outperform previously published generalized
models on the WESAD data set (eg, Schmidt et al [18] achieved
up to 80% accuracy while we achieved 66.95% accuracy with
our participant-inclusive model). This discrepancy can be
attributed to a deliberate choice in our methodology: instead of
maximizing our generalized models’ performance with
hyperparameter tuning, we simply opted for a consistent set of
hyperparameters across the personalized and generalized models
because our primary objective was to evaluate their relative
performance. While hyperparameter tuning might yield higher
results in practice, differing hyperparameters between our
models would introduce additional variables that make it
difficult to determine the role that personalization and
generalization play in model performance.

Given the variations between participants, one approach to
improving generalized model performance is adding embedding
representations for each participant or participant-specific
demographic data as additional features as a method of
distinguishing individual participants in generalized models.
However, to prevent overfitting to participant-specific features
like demographic data, data sets with significantly more
participants would need to be created, given the small sample
size of the WESAD data set.

One limitation that personalized models may encounter during
training is the cold start problem, given that personalized models
receive less data than generalized models. Moreover, despite
the accuracy improvement in personalized models, developing
a model for each participant may be costly and unscalable: data
must be labeled specifically per participant, and enough data
must be provided to the model to overcome the cold start
problem (notably, however, even though the cold start problem
should theoretically put our personalized model at a
disadvantage, the WESAD data set provided enough data for

our personalized model to outperform our generalized model).
Both of these limitations can be addressed by a self-supervised
learning approach to emotion recognition.

A self-supervised learning approach follows a framework used
by natural language processing models such as the Bidirectional
Encoder Representations from Transformers (BERT) model
[43]. A model first pretrains on a large set of unlabeled data
across numerous participants. Then, the pretrained model is
fine-tuned to a small amount of labeled, participant-specific
data. The pretraining phase eliminates the burden of manual
labeling because all data are unlabeled, as well as the cold start
problem because large amounts of data can be provided. The
fine-tuning phase requires only a small amount of user-specific
labeled data to perform accurately, and studies have already
begun exploring the tradeoffs between the number of labels and
model accuracy in WESAD using self-supervised or
semisupervised approaches [44,45].

Finally, to expand beyond the WESAD data set, it is valuable
to reproduce results on additional physiological signal data sets
for emotion analysis, such as the Database for Emotion Analysis
using Physiological Signals (DEAP) [46] and Cognitive Load,
Affect, and Stress (CLAS) [47]. Data from WESAD were
collected under controlled laboratory environments, which may
not generalize to the real world. Therefore, analyzing emotions
in a real-world context through data sets such as K-EmoCon
[48], which contain physiological data collected in naturalistic
conversations, may be useful. Emotions in the K-EmoCon data
set were categorized into 18 different classes, so exploring this
data set could also help us better assess the benefits of
personalization for a broader range of emotions. A major goal
of this approach is to provide support for personalized digital
interventions for neuropsychiatry, which could benefit a variety
of applications, such as video-based digital therapeutics for
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children with autism to predict the child’s affective state as part of the therapeutic process [49-52].
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