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Abstract

Background: Predicting hospitalization from nurse triage notes has the potential to augment care. However, there needs to be
careful considerations for which models to choose for this goal. Specifically, health systems will have varying degrees of
computational infrastructure available and budget constraints.

Objective: To this end, we compared the performance of the deep learning, Bidirectional Encoder Representations from
Transformers (BERT)–based model, Bio-Clinical-BERT, with a bag-of-words (BOW) logistic regression (LR) model incorporating
term frequency–inverse document frequency (TF-IDF). These choices represent different levels of computational requirements.

Methods: A retrospective analysis was conducted using data from 1,391,988 patients who visited emergency departments in
the Mount Sinai Health System spanning from 2017 to 2022. The models were trained on 4 hospitals’data and externally validated
on a fifth hospital’s data.

Results: The Bio-Clinical-BERT model achieved higher areas under the receiver operating characteristic curve (0.82, 0.84, and
0.85) compared to the BOW-LR-TF-IDF model (0.81, 0.83, and 0.84) across training sets of 10,000; 100,000; and ~1,000,000
patients, respectively. Notably, both models proved effective at using triage notes for prediction, despite the modest performance
gap.

Conclusions: Our findings suggest that simpler machine learning models such as BOW-LR-TF-IDF could serve adequately in
resource-limited settings. Given the potential implications for patient care and hospital resource management, further exploration
of alternative models and techniques is warranted to enhance predictive performance in this critical domain.
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Introduction

Efficient and effective patient triage within the emergency
department (ED) plays a pivotal role in enhancing treatment
outcomes and optimizing care delivery [1-3]. This process
involves rapidly identifying patients who require immediate
hospitalization upon their arrival. One of the resources for
making these predictions are nurse triage notes, which provide
a wealth of in-depth information about the patient’s condition
at presentation [4,5].

In the field of health care, machine learning has opened up new
avenues for potential improvement in such complex
classification tasks, thereby augmenting clinical decision-making
processes [6,7]. The recent developments in deep learning and
natural language processing (NLP) techniques have further
broadened this potential, bringing a new realm of possibilities
for enhancing medical decision-making capabilities.

Among these advanced algorithms is the Bidirectional Encoder
Representations from Transformers (BERT) model [8]. BERT
has shown excellent performance in numerous NLP tasks [9]
and has inspired the development of more specialized versions
tailored to particular fields, such as the Bio-Clinical-BERT
model, which was designed to cater to the biomedical field [10].

The focus of this study is to delve into the potential of a
fine-tuned Bio-Clinical-BERT model and compare it against a
simpler, robust, and more traditional approach, mainly, the
bag-of-words (BOW) logistic regression (LR) model
complemented by the term frequency–inverse document
frequency (TF-IDF) method. We also evaluated other
approaches including the extreme gradient boosting (XGBoost)
classifier and Word-2-Vec (W2V) embedding with bidirectional
long short-term memory (Bi-LSTM) network. The primary
objective of our research is to gauge the efficacy of these 2
methods in predicting hospital admissions using nurse triage
notes.

While it is true that Bio-Clinical-BERT could potentially offer
improved accuracy in its predictions, it should be noted that it
also requires a substantial investment in terms of computational
resources. It necessitates the use of specialized hardware and
demands a certain level of software expertise to operate
effectively. On the other hand, the LR model paired with the
TF-IDF method is more resource efficient and enjoys wide
acceptance in the field of text classification due to its simplicity
and effectiveness.

We hypothesized that the Bio-Clinical-BERT model may surpass
the performance of the BOW-LR model combined with the
TF-IDF approach in the task of predicting triage outcomes.
However, we also speculated that the incremental gains in
performance might not necessarily justify the additional

demands imposed by the large deep learning model in terms of
computational resources and technical know-how. To test this
hypothesis, we have undertaken an extensive study using over
1 million nurse triage notes collected from a large health system.

The fundamental contribution of this paper is a comparison
between these techniques for predicting hospital admission,
which reflect different levels of computational requirements
and cost implications. Our comparison not only looks at the
accuracy of these models but also weighs the trade-offs between
predictive accuracy and computational efficiency, a
consideration that is often overlooked but is of prime importance
in real-world settings when implementing models. Specifically,
health systems may be able to use insights from this study to
make informed decisions on which methodology may be right
for their circumstances, with a clearer understanding of the
limitations of each. Our aim is to equip health care practitioners,
researchers, and decision makers with insights that could
potentially aid in enhancing hospital resource management and
improve the quality of patient care.

Methods

Data Sources and Study Design
For the construction and testing of our models, we used an
extensive dataset from the Mount Sinai Health System (MSHS).
This is a diverse health care provider based in New York City.
In this study, the dataset included ED records spanning a 5-year
period from 2017 to 2022. This dataset was gathered from 5
different MSHS hospitals, covering a broad range of population
groups and diverse urban health settings.

These 5 participating hospitals provided a rich source of data
for our study, representing different communities in New York
City. The hospitals include Mount Sinai Hospital, a health care
institution located in East Harlem, Manhattan; Mount Sinai
Morningside, situated in Morningside Heights, Manhattan;
Mount Sinai West, operating in Midtown West, Manhattan;
Mount Sinai Brooklyn, a community-focused health facility
located in Midwood, Brooklyn; and Mount Sinai Queens (MSQ),
based in Astoria, Queens. The dataset used for our study was
compiled using the Epic Electronic Health Records software,
a tool that aids in efficient data collection, management, and
analysis. The dataset was made available by the diligent work
of the Mount Sinai Hospital Clinical Data Science team.

Model Development and Evaluation
In the development and testing of our models, we leveraged
data from 4 hospitals for training, validation, and
hyperparameter tuning processes. We elected to use a distinct
dataset from MSQ for external testing to ensure our model’s
generalizability.
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The internal training and validation cohort underwent a
procedure involving 5-fold cross-validation. Each fold contained
10,000 records, which were used for hyperparameter tuning.
For the external dataset, we experimented with training sets of
varying sizes: 10,000; 100,000; and roughly 1,000,000 patients,
which represent the complete 4-hospital cohort. Subsequently,
testing was carried out on 20% of these cohorts’ sizes, taken
from the MSQ hospital cohort.

Our study involved several models: Bio-Clinical-BERT and
BOW-LR models using TF-IDF features. For further
subanalyses using different machine and deep learning models,
we also evaluated XGBoost with BOW and Bi-LSTM with a
W2V pretrained embedding layer derived from bioclinical data
(BioWordVec_PubMed_MIMICIII_d200).

As a final subanalysis experiment, for the BERT model, we
also experimented with up-sampling of the minority class to
ensure balanced data representation, enhancing the stability and
accuracy of our model predictions.

These models were used to predict hospitalization outcomes
from nurse triage notes. For Bio-Clinical-BERT, we adhered
to text preprocessing and tokenization guidelines as outlined
on the Hugging Face website [11].

For BOW-XGBoost, we evaluated 3 different numbers of
estimators. Other XGBoost hyperparameters were set to default
values, including a learning rate of 0.3, maximum depth of 6,
and minimum child weight of 1.

For W2V-Bi-LSTM, the network is comprised of a Bi-LSTM
layer (256 hidden units), preceded by a pretrained embedding
200-dimensions W2V layer, with a fully connected layer
followed by a sigmoid activation function.

Further details on hyperparameter selection are elucidated in
the Hyperparameter Tuning Results section. For
BOW-LR-TF-IDF, we followed a similar methodology outlined
in our previous publication [12], covering both text
preprocessing and hyperparameter selection processes.

BERT is a model designed for NLP tasks. It learns from the
context of both preceding and following words, making it
“bidirectional.” This model is pretrained on large corpora and
can be fine-tuned for specific tasks.

The BOW model is a simple technique in NLP. It represents
text data by counting the frequency of each word, disregarding
the order in which they appear. Each unique word forms a
feature, and the frequency of the word represents the value of
that feature. However, this method can overlook context and
semantics due to its simplicity.

TF-IDF is a numerical statistic that reflects how important a
word is to a document in a collection. It is a combination of 2
metrics: term frequency, which is the number of times a word
appears in a document, and inverse document frequency, which
diminishes the weight of common words and amplifies the
weight of rare words across the entire dataset. This helps in
reducing the impact of frequently used words and highlights
more meaningful terms.

XGBoost is an advanced gradient boosting framework known
for its efficiency and performance in structured data
classification and regression. It builds multiple decision trees
sequentially to correct previous errors, excelling in handling
diverse data types and preventing overfitting.

Bi-LSTM is an artificial neural network that processes data in
both directions to capture past and future context. This enhances
its sequence understanding, making it suitable for text
classification, sentiment analysis, and machine translation.

Study Population
The demographic for this study included adult patients aged 18
years and older. These were patients who made ED visits within
the specified 5-year period from 2017 to 2022 across the 5
participating MSHS hospitals.

Outcome Definition
The primary outcome for our study was to ascertain our models’
effectiveness in predicting hospitalization. This prediction was
based on 2 main types of data: tabular electronic health records
and nurse triage notes.

Model Evaluation and Comparison
To assess the performance of our models, we used various
metrics such as area under the receiver operating characteristic
curve (AUC), sensitivity, specificity, and precision. These
metrics allowed us to thoroughly evaluate the
Bio-Clinical-BERT [10] and BOW-LR models with TF-IDF
features, as well as compare their capabilities in predicting
hospitalization from nurse triage notes.

Ethical Considerations
This study, being retrospective in nature, was reviewed and
approved by an ethical institutional review board committee
from the MSHS (protocol: STUDY-18-00573). The institutional
review board committee deemed that due to the retrospective
nature of the study, the requirement for informed consent was
waived.

Statistical Analysis
Our statistical analyses were conducted using Python (version
3.9.12; Python Software Foundation). We presented continuous
variables as median (IQR) and categorical variables as
percentages for better interpretability. To identify words linked
to hospital admission within nurse triage notes, we calculated
the odds ratio (OR) and mutual information (MI) [12]. Statistical
tests such as the chi-square test and 2-tailed Student t test were
used for comparing categorical and continuous variables,
respectively. A P value <.05 was considered statistically
significant. For evaluating our models, receiver operating
characteristic (ROC) curves were plotted, and metrics including
AUC, sensitivity (recall), specificity, and positive predictive
value (precision) were derived.

Technical Architecture
The technical experiments involved in this study were conducted
within a controlled hospital infrastructure that used an
On-Premises Centos Linux environment in conjunction with
Azure Cloud infrastructure. For the BOW-TF-IDF experiments,
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we elected to use the Centos Linux OS. In contrast, the BERT
experiment was conducted using a Standard_NC6 GPU instance
on Azure Cloud. This instance came with one 16-GB GPU and
6 vCPUs and incurred a cost of approximately US $80 during

the training phase. Figure 1 offers a detailed depiction of the
fundamental technical architecture used for training the BERT
and LR-TF-IDF models, across multiple patient datasets.

Figure 1. Process flow of multiple patient datasets passing through 2 different models with GPU and non-GPU instances. BERT: Bidirectional Encoder
Representations from Transformers; LR: logistic regression; TF-IDF: term frequency–inverse document frequency.

Results

Patient Population and Data
Our study incorporated data from 1,745,199 patients drawn
from the MSHS. Upon the exclusion of patients aged <18 years,

we had 1,391,988 participants in the study. These patients visited
the ED between 2017 and 2022. Table 1 presents a summary
of the patient characteristics.

The median number of words per triage note was 19.0 (IQR
12.0-31.0). Top 10 words associated with the highest MI score
regarding hospital admission are outlined in Table 2.

Table 1. Demographic distribution in the study.

P valueMSQ (n=281,716)4 hospitals (MSH, MSM,
MSW, and MSB; n=1,110,272)

All patients (includes MSHa,

MSMb, MSWc, MSBd, and

MSQe; N=1,391,988)

Demographics

<.00145.0 (30.0-75.0)48.0 (32.0-75.0)47.0 (31.0-75)Age (years), median (IQR)

<.001Sex, n (%)

141,140 (50.1)586,224 (52.8)727,363 (52.3)Female

140,576 (49.9)524,048 (47.2)664,625 (47.7)Male

<.001Race, n (%)

45,696 (16.22)382,898 (34.5)428,594 (30.79)Black

77,622 (27.56)265,457 (23.92)343,079 (24,65)White

158,398 (56.22)461,917 (41.58)620,315 (44,56)Other

aMSH: Mount Sinai Hospital.
bMSM: Mount Sinai Morningside.
cMSW: Mount Sinai West.
dMSB: Mount Sinai Brooklyn.
eMSQ: Mount Sinai Queens.
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Table 2. Odds ratios (OR) and mutual information (MI) values for words linked to admission to hospital wards, sorted by highest MI values.

P valueMI for admissionOR for admissionWord

<.00116.43.6Sent

<.00115.81.6Pta

<.001152.3Per

<.00112.71.3Of

<.00111.52.2Home

<.00110.82.2EMSb

<.00110.83.6Weakness

<.0018.91.4Chest

<.0018.82.1SOBc

<.0017.92.1BIBAd

aPt: patient.
bEMS: emergency medical services.
cSOB: shortness of breath.
dBIBA: brought in by ambulance.

Hyperparameter Tuning Results
A hyperparameter tuning process was performed. The best
hyperparameters were identified for each model based on their
performance during the 5-fold cross-validation on the training
validation set. The results of the BERT hyperparameter tuning
process can be found in Table 3.

The results of the W2V-LSTM model hyperparameter tuning
are presented in Table 4.

The results of XGBoost hyperparameter tuning are presented
in Table 5.

Table 3. BERTa hyperparameter tuning in the internal training and validation cohorts using 5-fold experiments.

Value, mean (SD)EpochLearning rateMax lengthBatch size

0.78 (0.01)—2×10–5—b64

0.80 (0.01)—2×10–5—128

0.80 (0.01)32×10–5128128

0.79 (0.01)—2×10–564256

0.79 (0.01)—3×10–5—64

0.79 (0.01)—3×10–5—128

0.78 (0.01)33×10–5128128

0.78 (0.01)—3×10–564256

0.79 (0.01)—5×10–5—64

0.80 (0.01)—5×10–5—128

0.79 (0.01)35×10–5128128

0.79 (0.01)—5×10–564256

aBERT: Bidirectional Encoder Representations from Transformers.
bNot applicable.
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Table 4. W2Va-LSTMb hyperparameter tuning in the internal training and validation cohorts using 5-fold experiments.

AUCc, meanEpochsLearning rateBatch size

0.768510−316

0.7951010−316

0.7651510−316

0.750510−416

0.7811010−416

0.7981510−416

0.797510−332

0.7971010−332

0.7771510−332

0.756510−432

0.7281010−432

0.7481510−432

0.661510−364

0.8061010−364

0.7951510−364

0.693510−464

0.7671010−464

0.7751510−464

aW2V: Word-2-Vec.
bLSTM: long short-term memory.
cAUC: area under the receiver operating characteristic curve.

Table 5. XGBoosta hyperparameter tuning in the internal training and validation cohorts using 5-fold experiments.

ValueTrees

0.80 (0.01)100

0.81 (0.01)200

0.80 (0.01)1000

aXGBoost: extreme gradient boosting.

Model Performance
After training the Bio-Clinical-BERT and LR-TF-IDF models
on the 4 hospitals’ data, we evaluated their performance on the
held-out test data from MSQ. The AUC values were calculated
for each model. The Bio-Clinical-BERT model achieved AUCs
of 0.82, 0.84, 0.85, while the LR-TF-IDF model had AUCs of
0.81, 0.83, 0.84 for training on 10,000; 100,000; and ~1,000,000
patients, respectively.

Figure 2 shows the ROC and AUC comparisons between the 2
models. The Bio-Clinical-BERT model consistently
outperformed the LR-TF-IDF model in terms of AUC across
the different training set sizes (10,000; 100,000; and ~1,000,000
patients), albeit by a small margin.

In addition to the AUC comparisons, we also calculated other
performance metrics, such as sensitivity, specificity, and
precision, for both models (Table 6 and Table 7).
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Figure 2. Receiver operating characteristic curves (ROC) of the 2 models tested on increasing training sample sizes. AUC: area under the receiver
operating characteristic curve; BERT: Bidirectional Encoder Representations from Transformers; LR: logistic regression; MSQ: Mount Sinai Queens;
TF-IDF: term frequency–inverse document frequency.

Table 6. Metrics for the training and testing (external) cohorts for the Bio-Clinical-BERTa model.

F1-scorePrecisionSpecificitySensitivityAUCb scoreTraining data size

0.490.360.740.760.8210,000

0.510.390.770.740.84100,000

0.500.670.960.390.851,000,000

aBERT: Bidirectional Encoder Representations from Transformers.
bAUC: area under the receiver operating characteristic curve.
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Table 7. Metrics for the training and testing (external) cohorts for the LRa-TF-IDFb model.

F1-scorePrecisionSpecificitySensitivityAUCc scoreTraining Data Size

0.500.400.800.660.8110,000

0.500.370.740.750.83100,000

0.530.420.800.710.841,000,000

aLR: logistic regression.
bTF-IDF: term frequency–inverse document frequency.
cAUC: area under the receiver operating characteristic curve.

The metrics for the XGBoost and W2V-Bi-LSTM models are
presented in Tables 8 and 9. The probability cutoff values for
these metrics were calculated using the Youden index. These

results further demonstrated the superior performance of the
Bio-Clinical-BERT model compared to the LR-TF-IDF model.

Further subanalysis for the BERT cohort using up-sampling of
the minority class is presented in Table 10.

Table 8. Metrics for the training and testing (external) cohorts for the W2Va-Bi-LSTMb model.

F1-scorePrecisionSpecificitySensitivityAUCc scoreTraining data size

0.410.590.950.320.7810,000

0.460.520.920.420.81100,000

0.520.620.940.460.841,000,000

cW2V: Word-2-Vec.
cBi-LSTM: bidirectional long short-term memory.
cAUC: area under the receiver operating characteristic curve.

Table 9. Metrics for the training and testing (external) cohorts for the XGBoosta model.

F1-scorePrecisionSpecificitySensitivityAUCb scoreTraining data size

0.330.690.970.210.7610,000

0.390.730.980.270.81100,000

0.450.690.970.330.821,000,000

aXGBoost: extreme gradient boosting.
bAUC: area under the receiver operating characteristic curve.

Table 10. Metrics for the training and testing (external) cohorts for BERTa with up-sampling of the minority class.

F1-scorePrecisionSpecificitySensitivityAUCb scoreTraining data size

0.430.300.580.810.7910,000

0.480.340.680.810.84100,000

0.540.410.780.750.851,000,000

aBERT: Bidirectional Encoder Representations from Transformers.
bAUC: area under the receiver operating characteristic curve.

Discussion

In this study, we compared the performance of several predictive
models, including Bio-Clinical-BERT and LR-TF-IDF, in
predicting hospitalizations based on nurse triage notes. The
findings of our study suggest that while Bio-Clinical-BERT
does marginally outperform LR-TF-IDF in this predictive task,
the difference in their performance is relatively minor.

Such results echo the findings of previous studies in the field,
which have often found BERT-based models to have a slight
edge over more traditional methods such as LR-TF-IDF in
various NLP tasks [13,14]. However, the marginal difference
observed in our study suggests that, given certain limitations
such as constraints on hardware, software expertise, or budget,
hospitals might lean toward simpler methods. The rationale
behind such a choice would lie in the ease of implementing
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these simpler methods, as well as their relatively less demanding
computational requirements.

The comparison of different models in the biomedical domain
has been the focus of numerous previous studies. For instance,
Chen et al [15] conducted an assessment of transformer-based
ChatGPT models in tasks such as reasoning and classification.
Their study found that fine-tuning remained the most effective
approach for 2 central NLP tasks. However, it is interesting to
note that the basic BOW model managed to deliver comparable
results to the more complex language model prompting. It
should be noted that the creation of effective prompts required
a substantial resource investment.

In another study, Xavier and Chen [16] compared 3 different
model types for a multiclass text classification task, which
involved the assignment of protocols for abdominal imaging
computed tomography scans. These models spanned a range
from conventional machine learning and deep learning to
automated machine learning builder workflows. While the
automated machine learning builder boasted the best
performance with an F1-score of 0.85 on an unbalanced dataset,
the tree ensemble machine learning algorithm was superior on
a balanced dataset, delivering an F1-score of 0.80.

A further study delved into the evaluation of machine learning
multiclass classification algorithms’performance in classifying
proximal humeral fractures using radiology text data [17].
Several statistical machine learning algorithms were performed,
with a BERT model showcasing the best accuracy of 61%. In
another relevant study conducted by Ji et al [18], various models
pretrained with BERT were compared for medical code
assignment based on clinical notes. Interestingly, it was found
that simpler artificial neural networks could sometimes
outperform BERT in certain scenarios. This study, among others,
offers further support to our recommendation for hospitals with
limited resources to consider simpler, less resource-demanding
methods for achieving comparable predictive performance.

In the specific task of predicting hospitalization, both methods
in our study effectively leveraged the rich information found
within nurse triage notes. This finding aligns with those from
other studies [19-21]. For instance, a study by Zhang et al [19]
that evaluated LR and neural network modeling approaches in
predicting hospital admission or transfer after initial ED triage
presentation found that the patient’s free-text data regarding
referral improved overall predictive accuracy. Similarly, Raita
et al [20] used machine learning models to predict ED outcomes
and demonstrated superior performance in predicting
hospitalization.

The results of our study carry practical implications for health
care organizations. The ability to predict hospitalization from
nurse triage notes could lead to improvements in patient care
by facilitating efficient resource allocation, optimizing bed
management, and improving patient flow.

The choice between the use of Bio-Clinical-BERT and simpler
methods, such as LR-TF-IDF, should be influenced by the

specific context of the organization, including factors such as
available computational resources, software expertise, and
desired model performance.

Our study is not without limitations. For instance, the data used
for our study are specific to MSHS hospitals, which might not
be representative of other health care systems, potentially
limiting the generalizability of our findings. Despite using
multisite data, representing the diverse New York City
population, and an external validation site for our final analysis,
we acknowledge the need for further studies with more diverse
datasets, including those that are open source such as the
Medical Information Mart for Intensive Care (MIMIC) dataset.
We also recognize that we did not explore the potential of
combining both methods and other potential techniques that
could enhance these models’performance. The BOW technique
by nature does not consider context, which could have hindered
performance. There is the possibility that more advanced deep
learning models could have achieved a bigger difference in
AUC performance compared to the shallow model. Moreover,
the field of NLP is advancing fast, and some methodologies
were not explored. Also, our study focused on comparative
analysis using the Youden index, which may have caused several
metrics to be lower than previous publications, such as the
F1-score. Despite this, the models demonstrated high specificity,
suggesting potential for clinical use. Further exploration of
thresholding methods is necessary to enhance model
applicability and performance in real-world settings.

Future research could focus on the exploration of BERT models
that are pretrained and trained from scratch on a site’s entire
textual data. Although such an approach may demand significant
resources and be computationally intensive, it might yield better
performance by capturing the unique characteristics and
language patterns of a specific health care setting. The
exploration of other pretrained language models or more
advanced natural language processing techniques could also
pave the way for the development of more effective
hospitalization prediction methods based on nurse triage notes.

In conclusion, our study demonstrates that while the
Bio-Clinical-BERT model does marginally outperform the
LR-TF-IDF model in predicting hospitalization from nurse
triage notes, the difference is small enough to suggest that
simpler methods might be viable for hospitals with limited
resources. More research is needed to identify alternative
methods that can enhance these models’ performance in
predicting hospitalization, ultimately improving patient care
and hospital resource management.

Through an investigation of the Bio-Clinical-BERT and
LR-TF-IDF models’ performance, our study contributes to the
growing body of literature in the field of NLP and machine
learning in health care. It emphasizes the importance of
considering the trade-offs between model complexity and
performance when deploying predictive tools in clinical settings,
highlighting that sometimes, simpler methods can prove as
effective as more complex ones.
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Abbreviations
AUC: area under the receiver operating characteristic curve
BERT: Bidirectional Encoder Representations from Transformers
Bi-LSTM: bidirectional long short-term memory
BOW: bag-of-words
ED: emergency department
LR: logistic regression
MI: mutual information
MIMIC: Medical Information Mart for Intensive Care
MSHS: Mount Sinai Health System
MSQ: Mount Sinai Queens
NLP: natural language processing
OR: odds ratio
ROC: receiver operating characteristic
TF-IDF: term frequency–inverse document frequency
W2V: Word-2-Vec
XGBoost: extreme gradient boosting
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