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Abstract

Synthetic electronic health record (EHR) data generation has been increasingly recognized as an important solution to expand
the accessibility and maximize the value of private health data on a large scale. Recent advances in machine learning have
facilitated more accurate modeling for complex and high-dimensional data, thereby greatly enhancing the data quality of synthetic
EHR data. Among various approaches, generative adversarial networks (GANs) have become the main technical path in the
literature due to their ability to capture the statistical characteristics of real data. However, there is a scarcity of detailed guidance
within the domain regarding the development procedures of synthetic EHR data. The objective of this tutorial is to present a
transparent and reproducible process for generating structured synthetic EHR data using a publicly accessible EHR data set as
an example. We cover the topics of GAN architecture, EHR data types and representation, data preprocessing, GAN training,
synthetic data generation and postprocessing, and data quality evaluation. We conclude this tutorial by discussing multiple
important issues and future opportunities in this domain. The source code of the entire process has been made publicly available.
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Introduction

Generating synthetic versions of private human-generated data
sets has garnered increasing attention in both academia and
industry as a means to enable broad data access on a large scale
[1,2]. When appropriately generated, synthetic data can mirror
the statistical structures of the real data upon which they are
based while severing connections to real human individuals [3].
Synthetic data not only enable data sharing with minimal privacy
risks but also support data augmentation (ie, artificially increase
the amount of available data by generating new data) to boost
the performance of machine learning (ML) models. Such a
nature has significant implications for maximizing the value of
patient data to improve biomedicine and health care.

The widespread adoption of electronic health record (EHR)
systems has amassed vast patient data globally. Despite their
potential to enrich health knowledge and support care

optimization [4-7], data accessibility remains limited due to
privacy concerns [8,9], which impedes the advancement of
knowledge discovery and translational artificial intelligence
(AI) or ML research in health care. Synthetic data generation
emerges as a solution by producing EHRs that are of minimal
privacy risks while maintaining usability to facilitate endeavors
[10,11] ranging from health information system (or software)
testing and medical education to hypothesis generation and
medical AI development. Acknowledging their benefits, multiple
initiatives have relied upon synthetic data to expand the
accessibility of their data for public use, including the National
Institute of Health’s National COVID Cohort Collaborative
[12] and the Clinical Practice Research Datalink by the United
Kingdom’s National Institute for Health and Care Research
[13].

Due in part to the limited accessibility of real EHRs, the data
sets made available for biomedical research often exhibit small
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sizes, insufficient diversity, missing modalities, biased
subpopulation representativeness, imbalanced labels, and scarce
annotations [14]. As a result, ML models trained on these data
may demonstrate inferior performance, limited generalizability,
and unfair outcomes (ie, when there exist disparities in model
performance across patient subpopulations) [15]. Compared
with solely using existing data, integrating synthetic EHR data
with real data can potentially enhance model performance and
reduce biases [3,16,17]. This strategy effectively enlarges the
proportion of underrepresented classes or patient subpopulations
within the real data and, thus, prevents the model training
process from overly focusing on the dominant groups.
Importantly, synthetic EHR data can be produced quickly, of
arbitrary size, and at low cost, and they are able to introduce
higher diversity than traditional augmentation strategies (eg,
over- or undersampling), which reduces the likelihood of
overfitting. It is notable that creating synthetic EHR data, when
based on a private real data set and supplied to support ML
innovations by a third party, offers a unique opportunity to
realize the dual benefits of data sharing that maintains privacy
and data augmentation.

Among numerous synthetic data generation techniques,
generative adversarial networks (GANs) and their variants have
showcased their capability to accurately capture the statistical
properties of real EHR data while inducing low privacy risks
[18-20]. GAN-based methods avoid explicitly modeling clinical
knowledge and making assumptions about variables and their
correlations; instead, they directly learn the underlying
relationships from the multidimensional data and then generate
synthetic records based on the learned model [21].

Despite the rapid advancement and evolution of synthetic EHR
data generation technologies, the whole procedure for producing
synthetic EHR data has not been revealed in a detailed manner.
This tutorial paper aims to fill that gap by providing a sequence
of step-by-step instructions, supported by complementary demo
code, to assist those practitioners who are not specialized in this
area to effectively translate state-of-the-art research in synthetic
EHR data to practical applications. This tutorial is designed
with the expectation that readers have a basic understanding of
ML concepts and proficiency in Python programming. We cover
multiple topics, including GAN architecture, EHR data types
and matrix representation, data preprocessing, GAN training,
synthetic data generation, and evaluation. For demonstration
purposes, we use the state-of-the-art open-source model (ie,
EMR-WGAN [22]) and a publicly available EHR data set (ie,
the Medical Information Mart for Intensive Care, the Fourth
Version [MIMIC-IV] [23]) for structured EHR data generation.
We defer the comparisons of various GAN-based models to our

previous paper [21]. We also provide a detailed Jupyter
notebook [24] to ensure the replicability of the tutorial content.

Methods

Data Set
We use the MIMIC-IV [23] data set as an example to
demonstrate the generation and evaluation process of synthetic
structured EHR data. MIMIC-IV is the latest version of the
MIMIC EHR data, a publicly available database sourced from
real EHRs of the Beth Israel Deaconess Medical Center. Adult
patients admitted to the emergency department or an intensive
care unit between 2008 and 2019 were incorporated. MIMIC-IV
includes a wide array of information such as diagnoses,
procedures, treatments, measurements, orders, free-text clinical
notes, and mortality labels that indicate whether a patient died
within 1 year following their last hospital stay within the
timeframe. In this tutorial, we extracted patients from
MIMIC-IV who had at least 1 hospital admission and were
discharged alive following their last hospitalization. To build
a simple demonstration data set, we extracted patients’
demographic information (including age, sex, and race);
diagnoses; and 2 types of the latest measurements, that is, BMI
and blood pressure (systolic and diastolic pressures). We reduced
the dimensionality by converting the International Classification
of Disease, Ninth or Tenth Revision (ICD-9/10) diagnosis codes
to phenome-wide association study codes (ie, phecodes), which
aggregate billing codes into clinically meaningful phenotypes
[25].

GAN Architecture
GANs consist of 2 neural networks: a generator that is trained
to produce realistic synthetic data from random noise and a
discriminator that aims to distinguish between real and synthetic
data generated by the generator [26]. During the iterative
training process, the generator receives feedback through
backpropagation from the discriminator and then continues to
refine its capability until the discriminator cannot differentiate
between real and synthetic data. GAN variants retain this
common architecture while customizing how each component
is implemented to adapt to various data types and stabilize the
training procedure [27]. Specifically, EMR-WGAN [22] (Figure
1) applies Wasserstein divergence [28] to characterize the
distance between real and synthetic data and uses fully
connected layers, as well as normalization techniques, to
construct the generator and discriminator. This combination of
design has demonstrated its superiority in capturing the
statistical characteristics of real data over other models for EHR
data generation [21].
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Figure 1. An architectural overview of EMR-WGAN. EHR: electronic health record.

EHR Data Types and Matrix Representation
Structured EHR data for secondary analysis are usually stored
in a relational database (eg, Epic Clarity) or in multiple separated
files with a tabular format (eg, MIMIC-IV), where each row
represents a patient’s fact, such as demographic information,
or a medical event marked by a timestamp, such as disease
diagnoses, medication prescriptions, measurements, medical
procedures, and clinical outcomes related to an encounter. These
data are usually represented by continuous, categorical, or
discrete variables (Figure 2A). Continuous variables can assume
any value within a specific range, making them suitable for
representing medical measurement results, such as hemoglobin
A1c readings. Discrete variables are characterized by a countable
number of numerical values, such as the number of pregnancies.
However, the discrete variables with a broad range of values,
such as age, can be approximated as continuous variables. In
contrast, categorical variables are defined by a limited and
typically unchanging set of options, such as sex, race, and
diagnosis. Unlike discrete variables that naturally possess an
order, categorical variables typically do not have a hierarchical
order among their options, or they may display only a nominal
relationship with nonquantitative distinctions, such as
classifications of “low,” “medium,” or “high.” In the practice
of synthetic data generation, discrete variables with a limited

range of values are sometimes considered categorical for
simplicity.

Timestamps indicate medical events’ positions on the time
dimension. In the longitudinal synthetic EHR generation
scenario, the time interval between 2 consecutive medical events
is often used as a substitute for timestamps [29,30]. In this paper,
we focus on demonstrating the generation of snapshot (or static)
EHR data by removing or transforming the occurrence time of
medical events so that all information about 1 patient can be
represented by 1 single row of a table. While temporal
information on medical events adds significant value to EHR
data, snapshot EHR data still offers a wealth of information to
support care delivery, data analytics, research, policy making,
and education. Figure 2B shows a transformed snapshot EHR
data matrix (EHR matrix for short) derived from Figure 2A. In
this matrix, each row denotes a patient’s record, and each
column denotes a variable. It is notable that each categorical
variable with k (k>2) distinct options is represented by k new
variables (or columns) in a one-hot manner (eg, insurance and
number of pregnancies in the example), whereas the categorical
variables with only 2 options (eg, mortality in the example) are
represented by a single binary column.

Figure 3 illustrates the whole process of producing synthetic
EHR data by training generative models.
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Figure 2. An illustration of (A) data types in electronic health record data, and (B) transformed snapshot electronic health record matrix for synthetic
data generation. #P: number of pregnancies; BP-D: diastolic blood pressure; BP-S: systolic blood pressure; H-A1C: hemoglobin A1C; HT: hypertension;
Ins: insurance; T2D: type 2 diabetes.

Figure 3. An overview of synthetic electronic health record data generation process through training generative models.

Data Preprocessing

Overview
With the patient cohort of interest extracted and the
corresponding matrix representation of their EHR data (ie, EHR
matrix) obtained, a series of data preprocessing procedures need
to be performed in order to produce a GAN-ready training data
set. The procedures include (1) removing outliers, (2) handling
missing values, (3) normalizing continuous variables, and (4)
handling concepts with low prevalence.

Removing Outliers
We define outliers in structured EHR data as data points that
are significantly distant from the majority of values. These can
be data points that conflict with common sense or established
clinical knowledge. This phenomenon typically occurs when
incorrect values are entered or generated in EHRs and is
particularly prevalent among discrete and continuous variables.
Outliers can also represent occurrences that are theoretically
possible but exceedingly rare, which creators of synthetic data
may opt to exclude depending on the requirement of data
generation. In both cases, it is critical to inspect the distribution
of each noncategorical variable by creating histograms and
reviewing basic statistical measures, such as the mean, median,
minimum, and maximum values. As an example, we examined

the distribution of BMIs in the processed EHR matrix, which
led to findings that the minimum and maximum BMIs are 0 and
107,840.2. There are 366 patients with their latest BMIs greater
than 60, and there are 120 patients with their BMIs less than
10. Given that these BMIs are unreasonable for adult patients,
we removed the corresponding patients from the EHR matrix.
One alternative solution that preserves the amount of data
available for training generative models is to clip outlier values
based on a pre-established reasonable range for the relevant
variables.

Handling Missing Values
Multiple reasons can contribute to EHR data missingness,
including, but not limited to, fragmented EHRs, incomplete
documentation, data entry errors, and skipped clinical
measurements. These reasons have also been classified in the
literature as missing completely at random, missing at random,
or missing not at random [31]. Before proceeding with
imputation, it is generally recommended to eliminate variables
with a high missing rate (eg, more than 50%). Numerous missing
data imputation methods for EHR data have been developed
[32-35], such as random sampling, prediction-based methods,
and nearest neighbor–based methods. Yet, growing evidence
has suggested that different methods are suitable for different
missingness types, data sets, and use cases and that there is no
single method that is universally considered the best for all
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scenarios. In this tutorial, we applied a random sampling strategy
to impute missing values in BMI, which had a 38.6% missing
rate, and both diastolic and systolic blood pressure, each with
a 43.5% missing rate. Specifically, we randomly sampled and
then imputed values based on the marginal distribution of each
variable, though we acknowledge that this might not be the
optimal strategy for all use cases of this data set.

Normalizing Continuous Variables
Continuous variables each possess a specific range of values,
as illustrated by the difference between blood pressure and
height in feet in Figure 2B. Normalizing continuous variables
prevents the training of generative models from being dominated
by variables with large ranges. To keep the distribution of each
continuous variable, it is recommended to linearly compress
their values into the range of (0,1), with its maximum and
minimum values the same as binary variables. Given a
continuous variable v, as well as its maximum value vmax and
minimum value vmin, the normalized value v’k of vk can be
calculated as:

(1)

Handling Concepts With Low Prevalence
Concepts with low prevalence correspond to clinical variables
that represent rare facts or events within the patient cohort.
Examples include diseases, procedures, and medications that
are uncommonly diagnosed, executed, and prescribed,
respectively. ML-based generative models, including GANs,
cannot accurately capture the statistical properties of these
variables, as well as their correlations with other variables, due
to the limited observations in the real data set. Noise, however,
could be induced by keeping these variables in the EHR matrix
for GAN training. To address this issue, several strategies can
be used as follows: (1) removing these low-prevalence variables
from the EHR matrix and reintroducing them in the
postprocessing stage when needed, (2) rolling up variable
granularity to a higher level to raise prevalence (eg, converting
raw ICD-9/10 codes to their integer level or to phecodes), and
(3) combining both approaches. In this tutorial, we converted
ICD-9/10 diagnosis codes to phecodes and then removed the

phecodes with a prevalence of less than 5×10–5.

Model Training
Depending on model architectures, distance measures, and
training techniques used (such as batch sizes, and alternating
strategies for training the generator and discriminator),
GAN-based synthetic EHR data generation models show varied
capabilities in capturing the properties of real data. However,
they typically encounter 2 main types of uncertainties throughout
the training process. First, GAN training usually occurs within
a parameter space that is both complex and high-dimensional.
This inherent complexity and the adversarial dynamics of GANs
often lead to an unstable training process that converges to
suboptimal solutions. Such nature of GAN training can cause
multiple undesired phenomena, including mode collapse (the

generator maps different inputs to the same output) and mode
drop (the generator only captures part of the distribution in the
real data) [22]. Second, the model checkpoint that corresponds
to the highest quality of the synthetic data is not necessarily the
one with the lowest training loss. In addition, it has been realized
that overtraining GAN-based models might degrade the quality
of synthetic data. In other words, there is no monotonic
relationship between training loss and the quality of synthetic
data.

In order to attain the synthetic EHR data of the highest possible
data quality that a GAN-based model can achieve, we highly
recommend training the model multiple times (or multiple runs)
from scratch and testing data quality at multiple checkpoints
along the training trajectory of each run. This mechanism will
not only improve the quality of synthetic EHR data to better
support downstream uses but also contribute to more fair
comparison between different generative models. This is crucial
because researchers often need to select the best synthetic EHR
generation model tailored to the real data sets and designated
use cases [21].

Two different training paradigms can be considered for scenarios
involving patient labels, for example, health outcomes (eg,
mortality, readmission, and discharge), medical events of interest
(eg, the presence of phenotypes and interventions), and patients’
demographic information (eg, race, sex, and age groups). The
nonconditional training paradigm does not distinguish the label
variables in the EHR matrix from the remaining variables,
whereas the conditional training paradigm uses the label
variables to guide model training, as well as the generation of
the synthetic EHR data [22], which enables the control over the
categories of the generated data in terms of the label variables.
Conditional training is usually achieved by incorporating the
label variables as extra input of the neural networks of the
generator and discriminator. However, consensus has not been
established regarding which paradigm achieves a higher quality
of synthetic EHR data.

When categorical variables with k (k>2) unique options are
converted into k binary variables within the EHR matrix, it is
essential to maintain the one-hot constraint in the synthetic data.
This means that only 1 of the binary variables can take a value
of 1, while the remaining k–1 variables must be set to 0.
However, the GAN training mechanism may lead to a violation
of this constraint. To solve this issue, a SoftMax layer should
be attached to the output of the generator to preserve the one-hot
constraint.

Additionally, real data may contain critical record-level
constraints that represent established clinical knowledge, which
need to be preserved in the synthetic data. For instance, female
patients should not be assigned male-specific diseases, such as
prostate cancer. Such constraints can be effectively enforced
by adding corresponding penalty terms to the loss function of
GANs [36].

In this tutorial, for illustrative purposes, we use the
nonconditional paradigm, preserve the one-hot constraints, yet
refrain from imposing record-level constraints during model
training to showcase the phenomenon of clinical knowledge
violation in results.
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Synthetic Data Generation and Postprocessing
Random noises, typically drawn from the standard normal
distribution, need to be input into the trained generator to
produce synthetic EHR data. By repeating this process, the
generator is able to produce a specified quantity of synthetic
records. When the conditional training paradigm is adopted, the
prespecified label values should also be fed into the generator
as part of the input. The capability to generate synthetic data in
any desired quantity and to control the categories of the
generated records affords us the flexibility to determine the
composition of the resultant data set for downstream use. This
nature has significant implications for data augmentation as it
enables practitioners to augment their existing data sets with
synthetic records tailored to their specific needs.

By applying a sigmoid or SoftMax function as the output layer
of the generator, variables in the synthetic data assume values
ranging between 0 and 1. For noncontinuous variables, rounding
the values is necessary, whereas the values of continuous
variables require rescaling to their original range by applying
the inverse version of Equation 1. This process ensures that the
synthetic data preserves the value ranges found in the real data
set.

Data Quality Evaluation

Overview
The quality evaluation of synthetic EHR data primarily revolves
around 3 key aspects: data utility, privacy, and fairness. This
process requires a comparison between synthetic data and real
data using a set of metrics. In this tutorial, we select multiple
commonly used metrics that are complementary to each other
to demonstrate data evaluation. Below, we provide a brief
overview of these metrics. For more comprehensive details, we
point readers to several recent publications in the field
[18,19,21], which provide in-depth explanations of how these
metrics are designed.

Data utility measures the usefulness and applicability of a data
set for specific purposes. More concretely, it is evaluated by
determining how well the generated data captures the critical
characteristics present in the real EHR data. Unlike imaging
data whose quality can be visually evaluated by humans or
assessed using a single metric, the quality of synthetic EHR
data is less intuitive and can vary in a variety of aspects.
Typically, data utility is assessed by evaluating the extent to
which synthetic EHR data (1) resemble the statistical
characteristics of real data at both variable and record (or
patient) levels and (2) retain the capability of developing ML
models that perform comparably to those trained using real data.
In earlier research, the concept of resemblance was often
characterized as being distinct and independent from data utility.
Variable-level characteristics include but are not limited to,
variables’ marginal distributions, their correlations, and joint
distributions, whereas record-level characteristics cover multiple
crucial aspects, including the violation rate of clinical
knowledge, the distribution of medical concept quantity, etc.

Dimension-Wise Distribution
This metric evaluates the degree to which a synthetic data set
captures the marginal distributions of variables in the real data.
It calculates the average of the absolute prevalence differences
(APDs) for categorical variables and the average of the
Wasserstein distances for continuous variables between real
and synthetic data sets. When both types of variables are present,
we add these 2 values together and then normalize the sum to
derive the final score, which is referred to as dimension-wise
distance (DWD). A lower value of this metric indicates a higher
level of data utility.

Column-Wise Correlation
This metric measures how well a synthetic data set maintains
the correlations of variables present in the real data. It calculates
the Pearson correlation coefficient matrices (for all variable
pairs) in both the real and synthetic data sets and then computes
the average of the absolute differences between corresponding
cells in these 2 matrices. A lower value of this metric indicates
a higher level of data utility.

Latent Cluster Analysis
This metric evaluates the effectiveness of a synthetic data set
in preserving the underlying structures (or joint distribution) of
real data in the latent space. It involves combining the real and
synthetic EHR matrices and then applying principal component
analysis to project the combined data set into a latent space that
covers a specific threshold of variance in the system.
Subsequently, a clustering algorithm, such as k-means, is used
to derive the latent deviation, which is calculated as the
logarithmic average of the transformed ratio of real data points
present in each identified cluster. A lower value of this metric
suggests a closer resemblance of the synthetic data set’s latent
distribution to that of the real data.

Medical Concept Abundance
This metric quantifies the degree to which a synthetic data set
maintains the quantity of the record-level information in the
real data. The normalized Manhattan distance between the
histograms of the number of distinct record-level medical
concepts for real and synthetic data sets is calculated as the
medical concept abundance distance. A lower value of this
metric indicates a higher level of real-synthetic data similarity.

Clinical Knowledge Violation
This metric measures the degree to which a synthetic EHR data
set violates clinical knowledge, particularly in terms of
maintaining record-level consistency with established medical
common sense. To do so, we identified the most prevalent
diagnoses (3 in this tutorial) that are only associated with 1 sex
in the real data and subsequently computed the average ratio of
all diagnoses appearing in the opposite sex in the synthetic data
sets. A lower value of this metric indicates a higher level of
data utility.

Prediction Performance
This metric evaluates the capability of a synthetic EHR data set
to support ML model development. The real data set is split
into a training set and a testing set. The reference model is then
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trained using the real training set and evaluated on the real
testing set by calculating the area under the receiver operating
characteristic curve (AUROC). Subsequently, a new model is
trained using the synthetic data set and then evaluated on the
same real testing set. These 2 scenarios are referred to as training
on real testing on real (TRTR) and training on synthetic testing
on real (TSTR), respectively. The more closely the AUROC of
TSTR aligns with that of TRTR, the higher the utility of the
synthetic data set.

Feature Importance
This metric focuses on assessing how reliably a synthetic data
set reveals key features that are significant in the prediction
task. We first identified the top N (20 in this tutorial) important
features in the TRTR scenario by computing the Shapley
additive explanations values of all features and then computed
the overlap proportion of the top N features with those identified
in the TSTR scenario. The higher the proportion, the higher the
data utility. Note that “feature” used in the context of feature
importance is equivalent to variable.

Data privacy evaluation is crucial when considering the sharing
of synthetic EHR data. While synthetic EHR data are designed
to minimize privacy risks by severing the linkage to real patients,
it is still important to conduct thorough privacy evaluations to
ensure the preservation of individual privacy in multiple privacy
inference settings, where adversaries’knowledge and objectives
differ. Across different privacy inference settings, it is
commonly assumed that adversaries only have access to the
generated synthetic data, but not the synthetic data generation
model. Examples of widely used privacy metrics include
membership inference risk and attribute inference risk
[21,22,37], each with values ranging from 0 to 1. Membership
inference risk measures the ability of an adversary to infer
whether a specific real record is part of the data set to train the
synthetic data generation model. It is quantified using the
F1-score of the inference based on the distances between targeted
records and all synthetic records. By contrast, attribute inference
risk reflects an adversary’s capability to infer sensitive attributes
of partially observed real EHRs. Specifically, it is calculated
through the weighted sum of F1-scores of the inferences against
sensitive attributes.

Multiple additional metrics have been created to assess privacy
risks in various contexts, including meaningful identity
disclosure risk [38] and nearest neighbor adversarial accuracy
risk [39]. Meaningful identity disclosure risk extends the concept
of identity disclosure from the context of releasing real data to
the scenario of sharing synthetic data. It encompasses a
comprehensive privacy risk that involves two main aspects: (1)
inferring the identifiability of patients and (2) acquiring new
knowledge about targeted patients. In contrast, nearest neighbor
adversarial accuracy risk assesses the extent to which a synthetic
data set overfits the real training data set. Specifically, it
measures the difference between (1) the aggregated distance
between synthetic records and those in the real testing data set
and (2) the aggregated distance between synthetic records and
those in the real training data set.

Synthetic EHR data are also anticipated to fairly represent
patient subpopulations with respect to protected attributes, such
as age groups, sex, race, and ethnicity. Distributional differences
or distances between real and synthetic data with respect to the
protected attributes of interest are often used as metrics to
evaluate fair representation [40]. To ensure fair data quality,
synthetic data may need to show similar variations in preserving
data utility and protecting privacy for each patient
subpopulation, akin to their real data counterparts. This
consideration of fairness requires that utility and privacy
evaluations of synthetic data should be performed independently
within each subpopulation and then compared across them.
Another fairness consideration necessitates that synthetic data
sets provide equal support for downstream AI or ML tasks
across all subpopulations, regardless of the basis of the real
data. Due to the complexity surrounding fairness and the absence
of clear guidelines for evaluating it in synthetic EHR data, we
will skip this evaluation in our demonstration.

It is crucial to note that quality evaluation of synthetic EHR
data should be tailored to align with specific use cases because
different use cases prioritize the preservation of different data
aspects. For instance, when the synthetic EHR data are intended
to facilitate hypothesis generation to support medical research
in a controlled research environment, the evaluation would
emphasize metrics that measure disease prevalence and
correlations between features and outcomes, while privacy risks
may be of lesser concern. On the other hand, if the synthetic
EHR data are developed to support the development of clinical
decision support software by third-party developers, evaluating
privacy risks becomes more critical than determining whether
the synthetic data preserves the nuanced statistical properties
of the real data. Our previous research provides a use
case-oriented benchmarking framework to enable systematic
comparisons of synthetic data generation models [21]. The users
of this framework determine the prioritization of evaluation
metrics by providing a weight profile, which applies to the
evaluation results from individual metrics and represents the
relative importance or preference assigned to each metric. The
final score of a synthetic data set or a synthetic data generation
model is derived by aggregating the weighted results for all
considered metrics.

Using this benchmarking framework enables the selection of
the most suitable synthetic data set for a specific use case or the
comparison of various synthetic data generation models (not
necessarily limited to those that are GAN-based) based on the
scores assigned to produced synthetic data sets.

Results

Overview
In this section, we present the results of data quality evaluation
for synthetic EHR data sets in terms of data utility and privacy.
Furthermore, we demonstrate how to compare these synthetic
EHR data sets to identify the most suitable one for specific use
cases. To do so, 70% of records of the preprocessed MIMIC-IV
data set were used to train the EMR-WGAN model and the
remaining 30% of records were used for evaluation purposes.
Considering the inherent uncertainties associated with
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GAN-based model training as mentioned earlier, EMR-WGAN
was independently trained 5 times. While we recommend
examining multiple checkpoints during each model’s training
phase, for the purposes of this demonstration, we selected an
epoch with a relatively low training loss from each independent
training session to generate the corresponding synthetic data
set. All synthetic data sets produced by these models have the
same size as the real training data set. The complete process of
data quality evaluation can be found in the shared Jupyter
notebook [24].

Characteristics of the Real Data Set
Table 1 provides an overview of the basic characteristics of the
MIMIC-IV cohort selected for the creation and evaluation of

synthetic EHR data. We initially included a total of 181,294
patients who had at least 1 hospital admission and were
discharged alive for their last hospital stays. The average age
of this cohort is 56.2 (SD 20.4) years. This cohort comprises
96,617 (53.3%) female individuals and multiple racial groups,
with 7667 (4.2%) Asian; 23,999 (13.2%) Black; 10,058 (5.5%)
Hispanic; 121,954 (67.3%) White; 10,078 (5.6%) belonging to
other races; and 7538 (4.2%) of unknown race. A total of 20,493
(11.3%) of the cohort died within 1 year after their last hospital
stay. The data preprocessing procedure led to the removal of
548 patients and more reasonable distributions of BMI, diastolic,
and systolic blood pressures. The curated real EHR matrix
contains 1460 columns after we removed 140 extremely rare
diagnoses.

Table 1. Cohort characteristics before and after data preprocessing.

Distributions and valuesCharacteristics

After preprocessing (n=180,746)Before preprocessing
(n=181,294)

180,746 (100)181,294 (100)Cohort size, n (%)

56.2 (20.3)56.2 (20.4)Age (y), mean (SD)

Sex, n (%)

96,304 (53.3)96,617 (53.3)Female

84,442 (46.7)84,677 (46.7)Male

Race, n (%)

7654 (4.2)7667 (4.2)Asian

23,889 (13.2)23,999 (13.2)Black

10,035 (5.6)10,058 (5.5)Hispanic

121,603 (67.3)121,954 (67.3)White

10,049 (5.6)10,078 (5.6)Others

7516 (4.2)7538 (4.2)Unknown

20,414 (11.3)20,493 (11.3)Died within 1 year, n (%)

28.4 (6.8)21.1 (277.03)BMI, mean (SD)

73.6 (11.8)47.6 (36.4)Diastolic blood pressure, mean (SD)

126.6 (18.2)81.9 (62.3)Systolic blood pressure, mean (SD)

Top 10 prevalent diagnoses (in phecodes), n (%)

57,056 (31.6)57,238 (31.6)Hypertension (401)

39,103 (21.6)39,216 (21.6)Disorders of lipoid metabolism (272)

33,844 (18.7)33,979 (18.7)Other anemias (285)

31,541 (17.5)31,694 (17.5)Essential hypertension (401.1)

27,896 (15.4)28,011 (15.5)Hyperlipidemia (272.1)

25,800 (14.3)25,887 (14.3)Diseases of esophagus (530)

25,195 (13.9)25,284 (14)Cardiac dysrhythmias (427)

25,089 (13.9)25,201 (13.9)Mood disorders (296)

24,054 (13.3)24,152 (13.3)Tobacco use disorder (318)

23,807 (13.2)23,895 (13.2)Disorders of fluid, electrolyte, and acid-base balance (276)

23,695 (13.1)23,789 (13.1)Diabetes mellitus (250)

14601600Total number of columns in electronic health record matrix
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Data Utility
Figure 4 illustrates the dimension-wise distribution results and
the associated APD for categorical variables. Although all 5
runs effectively maintain the marginal distributions of these
variables, the second run exhibits the smallest APD. When
considering both the categorical and continuous variables (ie,
age, BMI, diastolic, and systolic blood pressures), the second
run still achieves the lowest DWD. By contrast, the third run is
associated with the highest DWD, indicating a relatively low
effectiveness in preserving dimension-wise distributions.

Figure 5 summarizes the evaluation results of the 5 synthetic
data sets for the remaining 6 data utility metrics, with the
indication of directional implications of the values under each

metric. Notably, the second run demonstrates the highest data
utility in column-wise correlation, latent cluster analysis,
prediction performance, and feature importance and secures the
second position in medical concept abundance. Yet, its score
in clinical knowledge violation is positioned fourth.
Additionally, it was observed that male-specific diagnoses are
more than 10 times as likely to be incorrectly assigned to female
records in the synthetic data sets compared with similar
violations for female-specific diagnoses. This suggests that the
correlations between sex and sex-specific diagnosis columns
were not equally preserved, possibly resulting from different
levels of complexity (or noise) in the data pertaining to different
sexes. While this phenomenon falls beyond the scope of this
tutorial, it merits further exploration.

Figure 4. Dimension-wise distribution for categorical variables. The dashed diagonal line indicates the perfect replication of variable prevalence. APD:
absolute prevalence difference; DWD: dimension-wise distance.

Figure 5. Data utility in (A) column-wise correlation, (B) latent cluster analysis, (C) medical concept abundance, (D) clinical knowledge violation, (E)
prediction performance, and (F) feature importance. For clinical knowledge violation, “hyperplasia of prostate," “cancer of prostate,” and “erectile
dysfunction” are examined as male-specific diagnoses (in phecodes); “other conditions or status of the mother complicating pregnancy, childbirth, or
the puerperium,” “known or suspected fetal abnormality affecting management of mother,” and “other complications of pregnancy necrotizing
enterocolitis” are examined as female-specific diagnoses (in phecodes). AUROC: area under the receiver operating characteristic curve.

Privacy
Table 2 presents the privacy risk associated with each synthetic
EHR data set in terms of membership inference attack and
attribute inference attack. It also includes a baseline comparison,
which corresponds to an extreme situation of releasing real data.

Compared with the real data set, every synthetic data set
achieves substantially reduced risks. While the variance in risk
levels among the 5 synthetic data sets is relatively small, the
second run exhibits the highest membership inference risk and
the second lowest risk in attribute inference.
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Table 2. Privacy risks of synthetic electronic health record data sets. For each risk category, the identical risk value is attributed to a loss of precision.

RealRun 5Run 4Run 3Run 2Run 1Risk type

0.910.300.290.290.310.29Membership inference

0.970.140.130.140.140.14Attribute inference

Identifying the Most Suitable Synthetic Data Set for a
Specific Use Case
We have obtained the evaluation results of all 5 synthetic data
sets for individual metrics, allowing for straightforward
derivation of their rankings in each metric as presented in Table
3. A smaller ranking position indicates better data quality. In
this tutorial, we consider two distinct use cases of synthetic
EHR data: (1) ML model development, which prioritizes the
performance of prediction tasks and model explainability, and

(2) education, which focuses more on the record-level
consistency with clinical knowledge, prevalence of diagnoses,
and privacy. We proposed example weight profiles for these 2
use cases and then calculated the overall rankings of the
synthetic data sets for each scenario. The analysis identifies the
second and third runs as the most suitable data sets for ML
development and education, respectively. This observation
further justifies that the quality evaluation of synthetic data
should be in the context of use cases.

Table 3. Data quality rankings of synthetic data sets. Weight profiles A and B correspond to the use cases for supporting machine learning model
development and education, respectively. Overall rankings of data sets are weighted summation of individual rankings in all metrics.

Run 5Run 4Run 3Run 2Run 1Weight profile BWeight profile AMetric

Utility

245130.10.1Dimension-wise distribution

453120.10.1Column-wise correlation

453120.00.1Latent cluster analysis

145230.00.0Medical concept abundance

531420.40.1Clinical knowledge violation

453120.00.2Prediction performance

444120.00.2Feature importance

Privacy

412530.20.1Membership inference

514230.20.1Attribute inference

4.03.73.21.8b2.3N/AN/AaOverall rankings for weight profile A

4.42.52.4b3.22.5N/AN/AOverall rankings for weight profile B

aN/A: not applicable.
bIndicates the most suitable data set for each use case.

Discussion

Principal Findings
GAN-based synthetic data generation has demonstrated
significant potential to enlarge the accessibility of health data
and enhance the effectiveness of ML in health care [41-43].
This tutorial demonstrates how to create and evaluate structured
synthetic EHR data by applying a GAN-based generative model
to a publicly available EHR data set. Beyond introducing
technical details, we aim to discuss several important issues
related to this topic.

GAN-based synthetic EHR data generation models exhibit
limited capability in accurately representing and then generating
the concepts with low prevalence. This is also a common
challenge for almost all ML methods. From our experience,
incorporating these concepts into the real data for GAN training,
compared with removing them, can result in adverse effects on

capturing the distributions of prevalent concepts. In settings
where accurate representation of concepts with low prevalence
is crucial (eg, synthetic data are developed to replicate studies
related to rare diseases), additional efforts should be dedicated
to ensuring their fidelity in the synthetic data. One solution is
to increase the representation of these concepts in the real data
through data collection or data oversampling. The second
solution is to independently model the cohort associated with
the targeted concept. Subsequently, the synthetic data for this
specific cohort can be generated and then merged with the main
synthetic data. Another approach, which is modeling-free, is to
perturb the real EHR data with the targeted concept based on
expert knowledge and then add the resultant data back into the
main synthetic data. It should be noted that the quality of
synthetic data after using these approaches should be
comprehensively evaluated.
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Selecting the most suitable synthetic EHR data set or synthetic
data generation model for a targeted use case is subject to 2
types of tradeoffs: extrinsic and intrinsic tradeoffs. Users of this
technology control the extrinsic tradeoff by prioritizing which
aspects of the data to preserve in data quality evaluation. This
can be accomplished by using an appropriate set of evaluation
metrics and assigning weights to each metric to achieve a
balanced evaluation outcome that aligns with the use case, as
mentioned earlier. Different prioritization strategies can yield
variations in evaluation results, thereby influencing the selection
of the optimal data set or model.

The intrinsic tradeoff arises from the inherent interrelation and
tension among data utility, privacy, and fairness. In general,
better data utility aligns with a more accurate representation of
the nuanced statistical characteristics present in the real data,
which can, in turn, improve the success rate of privacy inference
regarding sensitive information about patients. Similarly, aiming
for a higher level of privacy protection is often paired with a
reduction in data fidelity. Different synthetic EHR generation
models, and even different runs of the same model, can exhibit
varying utility-privacy tradeoffs. The choices of model
structures, parameter settings, data preprocessing, and learning
methods can all impact the resulting tradeoff. In addition, one
can integrate privacy protection strategies during model training,
such as differential privacy, to induce more privacy protection.
However, for the use cases that demand high fidelity of synthetic
EHR data, such as data analysis or augmenting medical AI
development, the integration of additional privacy safeguards
may potentially limit the value of synthetic data for the intended
scenarios.

Pursuing either a higher overall utility of synthetic EHR data
or stronger privacy may lead to poor fairness across patient
subpopulations. This is because different patient subpopulations
may not be equally affected and that the unique characteristics
of underrepresented groups are more likely to be neglected.
Similarly, focusing solely on fairness may result in a lower level
of overall data utility or privacy. As such, both extrinsic and
intrinsic tradeoffs among data utility, privacy, and fairness
impact the determination of the most suitable synthetic EHR
data or synthetic EHR data generation model for a specific use
case.

Multiple key questions regarding the best practice of synthetic
EHR data generation remain unanswered in the literature. First,
the determination of the appropriate size of real data needed to
train GANs and other generative models for a specific data
generation task, along with an effective estimation approach,
is uncertain and lacks comprehensive research. Second, the
scalability of GANs and other generative models with respect
to varying sizes of the variable space is still not well understood.
Third, the optimal matrix representations of various EHR data
types, in particular when mixed together, are relatively
unexplored in current research. All of these questions need to
be answered through systematic research.

The evolvement of synthetic EHR data generation technology
presents numerous opportunities for various applications and
advancements. We conclude this paper by highlighting several

future research directions that are worth exploring and
summarizing the limitations of this tutorial.

Most cutting-edge approaches for structured synthetic data
generation, including EHR data, rely on a matrix or tabular
representation of the real data, which involves merging all
information into a single table as part of data preprocessing.
When addressing the emerging need to generate a synthetic
version of a relational EHR database, where patients’ data are
distributed in multiple tables, such as the widely adopted OMOP
common data model, joining relevant tables together can lead
to an unmanageable data size with significant redundancy. There
is a strong need for a novel synthetic EHR data generation
paradigm that can directly learn from the original database,
including its structural relationships, to address the current
limitations in the field.

EHR data, in a broad sense, encompass multiple modalities,
including structured health information, textual notes, medical
imaging data, genetic information, and more. Current synthetic
EHR data generation algorithms are designed to handle a single
modality at a time, leading to a lack of consistency between
separately generated data when attempting to describe the same
patient. Methodology innovations are required to effectively
harmonize the available modalities in EHR data during model
training and then generate synthetic data that cover and represent
these modalities. The core objective of this task is to learn an
accurate latent representation of a patient across different
modalities.

Since 2023, large language models, such as OpenAI’s ChatGPT
and Google’s Med-PaLM 2, have gained substantial attention
due to their remarkable ability to generate high-quality free text
responses to users’questions and instructions. Such exceptional
ability stems from their extensive pretraining on vast amounts
of textual data, which contain a wide range of human knowledge
and common sense. In addition, the users of these models can
demand the desired format of their output such as CSV and
JSON. This entails a new opportunity for synthetic EHR data
generation. While private EHR data have not been used by these
models, an appropriate fine-tuning process using real EHR data
can quickly shape them into synthetic EHR data generators.
Compared with other generative methods, large language models
could potentially strengthen the generation of synthetic EHR
data in multiple critical aspects. First, large language models
have encoded complex knowledge and relationships between
medical concepts through extensive pretraining. When
fine-tuned on real EHR data sets, they can more easily capture
the nuances in intricate patient data and understand the
underlying data semantics, which would not be easily achieved
by other generative models. Second, large language models can
generate data with stronger contextual relevance and coherence.
In other words, they are more capable of producing data that
are not only syntactically and semantically correct but also
consistent with real-world scenarios and knowledge. Third, with
prompt-level customization, these models can be tailored to
generate specific types of EHR data in a more flexible and
efficient manner, significantly reducing the human effort
required in postprocessing compared with previous methods.
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This tutorial has several limitations. First, it focuses on
simulating static structured EHR data and neglects the
timestamping of medical events. However, it is important to
note that EHR data inherently consists of time series, where the
temporal information is critical for numerous applications, such
as modeling the progression of diseases. To address this,
multiple generative models have been developed to produce
temporal EHR data, a process that shares similar principles to
those demonstrated in this tutorial. Second, the real data set we
used for demonstration purposes does not fully capture the
complexity inherent in real snapshot EHR data. It is likely that
a transformed snapshot EHR matrix contains a subset of columns
governed by complex semantic constraints, which may not be
straightforward to implement during model training. For
example, a snapshot EHR matrix for a women’s health cohort
may include columns indicating the age and method (nature vs
cesarean) for each childbirth. This scenario compounds
constraints in several aspects, including patterns of missing data
(eg, the data set might not contain only a record of the second
delivery), the age at each delivery (eg, ages for subsequent

deliveries should be older than previous ones), and time intervals
between deliveries (eg, there should be a minimum gap of 10
months between each). Addressing this type of complex
constraint is still an open research question and needs more
investigation.

Conclusions
Creating synthetic EHR data has been increasingly pursued to
address the limited availability of real EHR data to facilitate
various endeavors in the health domain. This tutorial provides
a comprehensive guide to the entire process of generating
synthetic structured EHR data using GANs, ranging from data
representation, preprocessing, model training, and
postprocessing to data generation and evaluation. By following
this tutorial, as well as the open-sourced example based on the
MIMIC-IV data set, we anticipate that potential users of
synthetic data generation technology can understand and
implement all involved components, and then correctly evaluate
the produced data sets and interpret the evaluation results to
fulfill their data needs.
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