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Introduction

Accurate determination of gender from names is vital for
addressing gender-related disparities in medicine and promoting
inclusivity. Gender detection tools (GDTs) offer efficient
solutions, enabling large-scale demographic analysis [1-3] to
improve data quality and inform targeted interventions. Indeed,
they can process thousands of names simultaneously, saving
time and resources. However, most of them charge for more
than a certain number of requests per month. We recently
compared the performance of 4 GDTs and showed that Gender
API (Gender-API.com) and NamSor (NamSor Applied
Onomastics) were accurate (misclassifications=1.5% and 2.0%,
respectively; nonclassifications=0.3% and 0%, respectively)
[4].

ChatGPT is a language model developed by OpenAI that is
capable of generating human-like text and engaging in natural
language conversations [5]. In medicine, ChatGPT can be
employed for various purposes, such as answering patient
queries and providing information on medical topics, making
it a valuable resource for health care professionals and
researchers seeking quick access to medical information and
support in their work [6,7].

Given the increasing usefulness of GDTs in research,
particularly for evaluating gender disparities in medicine, we
assessed whether the performance of ChatGPT as a free GDT
(version GPT-3.5) could approach that of Gender API and
NamSor. We also compared ChatGPT-3.5 with the more
advanced GPT-4 version. We hypothesized that ChatGPT, a

versatile language model not specifically trained for gender
analysis, could achieve gender detection performance
comparable to specialized tools and that ChatGPT-4 would
perform no better than ChatGPT-3.5.

Methods

Database Selection and Data Collection
The methods used in this study are the same as those used in
our primary study, which compared the performance of 4 GDTs
[4]. We used a database of 6131 physicians practicing in
Switzerland, a multilingual and multicultural country with 36%
of physicians of foreign origin [4]. The sample consisted of
3085 women (50.3%) and 3046 men (49.7%), with gender
determined by self-identification. We used nationalize.io to
determine the origin of physicians’ names (Table 1). A total of
88% of names were from French-, English-, Spanish-, Italian-,
German-, or Portuguese-speaking countries or from another
European country.

We asked ChatGPT-3.5 to determine the gender of 500
physicians at a time, after copying and pasting these lists of first
and last names from the database. We ran the analysis twice
and also examined ChatGPT-4 to check the “stability” of the
responses [8]. The data were collected between September and
November 2023.

We constructed a confusion matrix (Table 2): ff and mm
correspond to correct classifications, mf and fm to
misclassifications, and fu and mu to nonclassifications (ie,
gender impossible to determine).
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As in other studies [4,9], we calculated 4 performance metrics,
namely “errorCoded” (the proportion of misclassifications and
nonclassifications), “errorCodedWithoutNA” (the proportion
of misclassifications), “naCoded” (the proportion of

nonclassifications), and “errorGenderBias” (the direction of
bias in gender determination). We used Cohen κ to assess
interrater agreement.

Table 1. Estimated origin of physicians’ names (N=6131 physicians).

Counta, n (%)Origin

1679 (32.2)French-speaking country

751 (14.4)English-speaking country

404 (7.7)Spanish-speaking country

344 (6.6)Asian countryb

324 (6.2)Eastern European country

288 (5.5)Italian-speaking country

272 (5.2)Western European countryb

259 (5.0)Arabic-speaking country

259 (5.0)German-speaking country

220 (4.2)Northern European countryb

217 (4.2)Southern European countryb

198 (3.8)Portuguese-speaking country

aThe total number of physicians does not add to 6131 because of missing values (no assignments for 916 physicians).
bIf not already classified in another group (eg, in the Arabic-speaking country group for some Asian countries).

Table 2. Confusion matrix showing the 6 possible classification outcomes.

Unknown (predicted)Male (predicted)Female (predicted)

fufmffFemale (actual)

mummmfMale (actual)

Ethical Considerations
Since this study did not involve the collection of personal
health–related data, it did not require ethical review per current
Swiss law.

Results

Performance metrics showed high accuracy for ChatGPT-3.5
and ChatGPT-4 in both the first and second rounds (Table 3).

The number of misclassifications was low (proportion≤1.5%)
and there were no “nonclassifications.” As shown in Table 3,
interrater agreement between the first and second rounds (for
ChatGPT-3.5 and ChatGPT-4) and between ChatGPT-3.5 and
ChatGPT-4 (for the first round) was “almost perfect” (κ>0.97,
all Ps<.001).
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Table 3. Confusion matrix and performance metrics for ChatGPT-3.5 and ChatGPT-4 (N=6131 physicians).

Interrater agreementaUnclassified, n (%)Classified as
men, n (%)

Classified as
women, n (%)

P valueCohen κ (95% CI)

<.0010.9817 (0.9770-0.9865)bChatGPT-3.5

First roundc

0 (0)57 (1.8)3028 (98.2)Female physicians (n=3085)

0 (0)3028 (99.4)18 (0.6)Male physicians (n=3046)

Second roundd

0 (0)55 (1.8)3030 (98.2)Female physicians (n=3085)

0 (0)3018 (99.1)28 (0.9)Male physicians (n=3046)

<.0010.9958 (0.9935-0.9981)bChatGPT-4

First rounde

0 (0)65 (2.1)3020 (97.9)Female physicians (n=3085)

0 (0)3019 (99.1)27 (0.9)Male physicians (n=3046)

Second roundf

0 (0)65 (2.1)3020 (97.9)Female physicians (n=3085)

0 (0)3020 (99.1)26 (0.9)Male physicians (n=3046)

aInterrater agreement between ChatGPT-3.5 and ChatGPT-4 (for the first round): Cohen κ=0.9768, 95% CI 0.9715-0.9822, P<.001.
bInterrater agreement between the first and second rounds for each version.
cPerformance metrics: errorCoded=0.01223, errorCodedWithoutNA=0.01223, naCoded=0, and errorGenderBias=–0.00636.
dPerformance metrics: errorCoded=0.01354, errorCodedWithoutNA=0.01354, naCoded=0, and errorGenderBias=–0.00440.
ePerformance metrics: errorCoded=0.01501, errorCodedWithoutNA=0.01501, naCoded=0, and errorGenderBias=–0.00620.
fPerformance metrics: errorCoded=0.01484, errorCodedWithoutNA=0.01484, naCoded=0, and errorGenderBias=–0.00636.

Discussion

We used ChatGPT to determine the gender of 6131 physicians
practicing in Switzerland and found that the proportion of
misclassifications was ≤1.5% for both versions. There were no
nonclassifications and gender bias was negligible. Interrater
agreement between ChatGPT-3.5 and ChatGPT-4 was “almost
perfect.”

These results are relatively similar to those found in our primary
study for Gender API and NamSor (errorCoded=0.0181 and
0.0202, errorCodedWithoutNA=0.0147 and 0.0202,
naCoded=0.0034 and 0, errorGenderBias=–0.0072 and 0.0026)
[4]. They are slightly better than those of another study
published in 2018, which compared 5 GDTs, including Gender
API and NamSor [9]. These results suggest that ChatGPT can

accurately determine the gender of individuals using their first
and last names. The disadvantage of ChatGPT compared to
Gender API and NamSor is that the database cannot be uploaded
directly into ChatGPT (eg, as an Excel or CSV file).

Both ChatGPT-3.5 and ChatGPT-4 exhibit high accuracy in
gender detection, with no significant superiority observed in
ChatGPT-4 over ChatGPT-3.5. This underscores the robustness
of ChatGPT in gender prediction across different versions. Our
short study has 2 main limitations. Given the estimated origin
of physicians’ names, the results of the study can probably be
generalized to most Western countries but not necessarily to
Asian or Middle Eastern countries. GDTs are often less accurate
with names from these countries [9,10]. In addition, GDTs
oversimplify the concept of gender by dichotomizing individuals
into male or female.

Data Availability
The data associated with this article are available in the Open Science Framework [11].
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