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Abstract

Background: Collecting information on adverse events following immunization from as many sources as possible is critical
for promptly identifying potential safety concerns and taking appropriate actions. Febrile convulsions are recognized as an
important potential reaction to vaccination in children aged <6 years.

Objective: The primary aim of this study was to evaluate the performance of natural language processing techniques and machine
learning (ML) models for the rapid detection of febrile convulsion presentations in emergency departments (EDs), especially
with respect to the minimum training data requirements to obtain optimum model performance. In addition, we examined the
deployment requirements for a ML model to perform real-time monitoring of ED triage notes.

Methods: We developed a pattern matching approach as a baseline and evaluated ML models for the classification of febrile
convulsions in ED triage notes to determine both their training requirements and their effectiveness in detecting febrile convulsions.
We measured their performance during training and then compared the deployed models’ result on new incoming ED data.

Results: Although the best standard neural networks had acceptable performance and were low-resource models, transformer-based
models outperformed them substantially, justifying their ongoing deployment.

Conclusions: Using natural language processing, particularly with the use of large language models, offers significant advantages
in syndromic surveillance. Large language models make highly effective classifiers, and their text generation capacity can be
used to enhance the quality and diversity of training data.

(JMIR AI 2024;3:e54449) doi: 10.2196/54449
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Introduction

Background
A febrile convulsion refers to a seizure triggered by a fever,
most commonly experienced by children aged between 6 months
and 5 years, in the absence of an underlying central nervous
system infection or metabolic disturbance [1]. Febrile
convulsions have various causes and risk factors, including viral
or bacterial infections, a family history of seizures, underlying
neurological conditions, environmental factors, and specific
vaccinations [2]. Age, fever, and a seizure are essential
components of the definition of childhood febrile convulsion
[3]. Febrile convulsions are most often caused by viral
respiratory tract infections but are also associated with viral
infections such as chicken pox, tonsillitis, and middle ear
infections. Febrile convulsions are also associated with the
administration of childhood vaccines [4]. Although febrile
convulsions caused by vaccines are rare and typically do not
cause permanent damage, parents’ experiences with their
children’s febrile convulsions can have a negative effect on
their perception of vaccine safety [5].

In 2010, in Australia, there was an increase of febrile
convulsions in young children after the release of the southern
hemisphere trivalent inactivated influenza vaccine, produced
by CSL Biotherapies [6,7]. Following national suspension of
seasonal influenza vaccinations for children aged <5 years,
reviews [8,9] revealed deficiencies in Australian adverse event
following immunization (AEFI) monitoring system, which had
resulted in delayed reporting and underreporting of febrile
convulsions [10,11]. The reviews highlighted the need for
monitoring additional data sources for early AEFI detection, a
subsequent focus of Surveillance of Adverse Events Following
Vaccination In the Community [12,13] and the Health
Informatics groups at the Murdoch Children’s Research Institute,
Victoria, Australia. A recent paper highlighted the need for
vaccine safety monitoring to include natural language processing
(NLP) of both internet-based data sources and electronic health
records [14].

In this study, we aimed to assess the effectiveness of NLP
techniques for rapid detection of febrile convulsion presentations
in emergency departments (EDs).

Syndromic surveillance relies on the categorization of
patient-presented symptoms and complaints into “syndromic
indicators,” often derived from patient-reported or observed
symptoms [15]. These indicators, recorded by health care
providers during the initial patient contact, along with
preliminary or working diagnoses, are crucial in the absence of
any confirmatory testing or diagnosis to facilitate prompt public
health decisions [16]. Examples include monitoring of telephone
health advice systems, of notes taken during attendance to
primary physicians, and of data entry performed during visits
to ED.

Syndromic surveillance has shown to have the ability to rapidly
evaluate the potential impact of a recently introduced vaccine
[17,18]. Monitoring telephone helpline data can also assist with
early detection of AEFI, and in the case of 2010 Australian

AEFI signal, retrospective analysis of these data showed that
such methods would have flagged a signal 2 weeks after
commencement of vaccination, which is 4 weeks earlier than
the alert was raised [19]. Surveillance of ED triage notes is
particularly effective for timely syndromic information capture,
as data are entered upon a patient’s arrival to ED, allowing for
the initiation of a notification from a surveillance system while
the patient is still in the ED [20], well before any diagnostic
coding takes place.

ED triage notes are gathered during the first moments of the
patient encounter and usually contain aspects of a patient’s
medical history, presenting symptoms, and the reasons for their
visit. This information is primarily used to direct initial clinical
management and can serve as a tool to help understand trends
of patient visits in near real time [21]. However, variation in
the language used in the documentation of this information
within and across hospitals significantly impedes the reuse of
these data [22]. Abbreviations abound and their meanings vary
according to context; for example, “cp” might be used as
abbreviation for any type of chest pain, which can include
pulmonary and trauma-related sources, in some contexts, it
might just mean cardiac pain, while in others, it may refer to
cerebral palsy. In some presentations, “NVD” means “nausea,
vomiting, and diarrhea,” but in relation to childbirth, “NVD”
means “normal vaginal delivery.” Misspellings, local variations
of abbreviations, and context-sensitive vocabulary all feature
in ED notes, and there are additional variations of the quality
and length of the texts [23].

Research examining triage notes can be broadly classified into
3 main categories: quality improvement of triage notes’
recording and category assignment, prediction, and case
identification. Studies focusing on the quality improvement of
triage notes’ recording and category assignment aim to enhance
the accuracy, reliability, efficiency, and completeness of the
information recorded during triage. Prediction studies aim to
predict the outcomes of emergency visits or the resources needed
by patients based on the information recorded in triage notes.
Case identification studies aim to either classify ED visits into
categories or syndromes or to collect data about specific
presentations (or syndromes) of interest [24].

Various methods have been used for identifying syndromes
from triage notes. These include keyword-based,
linguistic-based, statistical and machine learning (ML)
algorithms, or hybrids of these [25]. Some have used data from
1 hospital [26], while others have used data from >1 hospital
[27]. These systems vary in their goals, such as focusing on
classification of 1 syndrome [28] or developing a syndromic
surveillance system for >1 syndrome [29].

In recent years, the use of ML algorithms for surveillance of
ED triage notes has increased [24]. One of the main obstacles
in using supervised ML algorithms is the scarcity of annotated
data for training and benchmarking [30]. Many studies have
used medical coding against existing data as a proxy for the
labels [31-34]. However, the use of International Classification
of Diseases codes as a gold standard has known limitations as
they do not always align with the actual reason for the visit [35].
For instance, codes can be assigned to identify the underlying
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etiology of a presentation, for health conditions not directly
observed in the text of a presentation, or for other purposes such
as financial incentives [36,37]. The choice of codes can be
influenced by perceptions of the importance of a certain
condition [38], and in this study, a febrile convulsion might not
get coded if it is thought of as a secondary effect or not
significant enough to include on a discharge summary when
there are limitations to how many codes may be assigned.

When using supervised ML algorithms in the context of
syndromic surveillance of ED triage notes, researchers have
manually annotated from several thousand [29] to a few hundred
thousand records [39] to train the algorithms. It has been
observed that data annotation poses a significant obstacle in
training NLP models within the clinical domain, with manual
identification of labels affecting the representativeness of
samples. This challenge often restricts NLP solutions to obtain
data from only a few institutions, thereby impacting their
generalizability [40].

Objectives
In this study, the overarching aim was to identify emerging
trends that could signal potential issues with a vaccine. Our
primary objective was to construct a highly effective NLP model
for the early detection of febrile convulsions in ED notes,
applicable to the entirety of public hospital ED departments,
without requiring large volumes of annotated training data. We
achieved this goal by leveraging a limited set of manually
labeled records and using data augmentation techniques. Our
data set was sourced from 26 public hospitals across the
Australian State of Victoria. Furthermore, we aimed to outline
the essential requirements for the development and deployment
of such a system.

Methods

Data

Overview
SynSurv provided the primary data source for this study.
SynSurv is the syndromic surveillance project of the Department
of Health of the state government of Victoria, Australia. Its
objective is to detect events of public health significance early,
allowing clients responsible for public health action to respond
promptly and effectively. At the time of writing, SynSurv
receives a rapid stream of information about every ED
presentation, including the triage text, from a majority (n=34)
of the public hospitals with Emergency Departments in Victoria,
Australia. Most presentations arrive within 5 to 15 minutes of
the patient’s assessment.

Data comprise the text recorded at triage by ED nurses and are
characterized by a unique structure that primarily consist of
abbreviations and brief phrases. The text usually contains a
presenting complaint, selected past medical history, and the
nurse’s observations of the patient. Triage text does not contain
demographic or identifying information. The length of the text
varies; it may be a detailed narrative of the patient’s presentation
to the triage nurse or it could be a concise summary of a possible
diagnosis along with a few observations. The unlabeled data

set used in this study consisted of 76,274 ED triage text from
January 1 to July 14, 2022, of ED presentations of children aged
between 6 months and 6 years. The average length of text was
22 (SD 20.4) words. The longest record initially contained 319
words, but after data preparation, which involved removing
nontextual information, the length of the longest text was
reduced to 253 words. Additional data collected in 2022 were
used to create a hold-out test data set.

Febrile Convulsion Symptoms
During the initial, “tonic” seizure stage of a febrile convulsion,
the individual may let out a cry or moan before suddenly losing
consciousness and experiencing muscular rigidity. This stage
can last for up to 30 seconds and may be accompanied by the
cessation of respiratory movements. The “clonic” seizure stage
that follows involves repetitive movements of the limbs or face.
While rigors (uncontrolled shivering and shaking) may look
similar and often occur during any acute febrile illness, loss of
consciousness is not typically associated with them [41].
Seizures typically last <5 minutes, although they may be
prolonged. A “postictal state” follows, lasting between 5 and
30 minutes, during which the patient can experience drowsiness,
confusion, headaches, and nausea while gradually returning to
normal.

Data Annotation
Annotation of febrile convulsions needs to account for the
language used in their clinical descriptions, which includes
temperature-related terms and terms used to describe the clonic,
tonic, and postictal stages of a seizure.

The first step of annotation involved filtering the ED notes for
convulsion-related terms (eg, “seiz,” “convuls,” “fit,” “epilep,”
“ictal,” “tonic,” or “clonic”) and fever-related terms (eg, “febri,”
“fever,” “37.”, “38.”, “39.”, “40.”, “41.”, “42.”, or “43.”).
Applying the filter reduced the data set to around 29,000
candidates for labeling, and these were annotated with a goal
to identify around 1000 positive examples of febrile convulsion.
The ED nurse’s notes were thoroughly reviewed, and if there
was a likely indication of a febrile convulsion, whether explicitly
mentioned or not, a positive label was assigned by J Black
(described below), and a negative label was assigned to records
that did not meet the criteria. In an additional step, some records
that did not contain any of the filter settings were randomly
selected and labeled. Only a few of these were identified as
positive, mostly due to spelling variations in the filter strings
that caused the records not to be detected in the initial step.

An annotation guideline was developed by J Black, who is a
physician with ED experience, where a record was labeled as
positive if the following criteria were met:

• The patient presented with febrile convulsion symptoms at
the time of ED presentation, which requires mentions of
both seizure and fever.

• The mention of febrile convulsion is not just in the patient’s
medical history (eg, only “phx febrile convulsion”) or just
an expression of parental concern (eg, only “mother worried
as child previously had a seizure”).

• The convulsion is not related to other chronic conditions
that include seizures, as febrile illness can trigger a
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pre-existing disposition to seizures. A mention of medicine
usually taken when seizures happen is an indication of
existing underlying cause.

• A mention of fever-lowering medications, subjective
assessment of fever by parents or carers, or measurements
taken at home can indicate the presence of a fever, even if
the temperature recorded in the ED is normal.

• The notes do not indicate other types of seizure, including
absent or focal seizures.

Following this guideline, author J Black annotated the training
data to classify instances as either febrile convulsion or not.
This resulted in 1032 positive labels and 14,415 negative labels,
making a total of 15,447 annotations. The annotation of the
separate test data set resulted in 432 positive and 2768 negative
labels, a total of 3200 records. Table 1 provides examples of
triage notes along with their corresponding labels, and Table 2
enumerates the record and word counts of the data sets.

Table 1. Sample of triage notes (not the actual text but examples of typical structure).

Triage notesCategoryLabel

“Seizure, Unwell Since yesterday, Febrile, Vomit enroute, IUTD, Nil Rash, A-PATENT, Nil Sob,
T- 38.8, GCS-15, R- 22, Nil Pain, PWD, O/A alert.”

Fever and seizure present1

“BIBA: Unwell 1/12 (fev,diahhroea). 1× ep of eye rolling back? tonic clon. Self res 1/60. Good oral
intake. O/E: PWD, Good capp Asleep, easily rouse. Ket 0.4 Pmhx: UTDI”

“Tonic clonic” and fever but no men-
tion of convulsion or seizure

1

“FEVER. Decreased oral intake. Sz today. Runny nose. Clear chest. Nil vomiting. Miserable at
triage. Phx dad states rare gene mutation.”

Fever and spelling variation of
seizure-related term and fever

1

“BIBA post seizure tonight, eyes rolled and floppy unresponsive 5 min. Temps last 3/52. At triage
febrile.”

Seizure and spelling variation of
fever-related term

1

“At midnight Advil given. At 0100 10 sec of seizure like activity. 2nd seizure activity shortly after
lasting a few minutes with bilious vomit. O/A alert. RR 24 sats 99 no WOB HR 112.”

Seizure and fever medication is men-
tioned

1

“Prolonged sz at home lasting 13 mins. Congested left lung with resp symptoms. Runny nose and
cough this week. 4mg oral midaz. Resolved with av arrival. Postictal 40 mins. Phx sz focal or ton-
ic/clonic phx eplispey and dravat sx”

Underlying condition for seizure0

“BIBA seizure like activity tonight, intermittent 15 mins, post ictal .30/60. Hx febrile convulsions.
Afebrile oa”

Febrile convulsion in past medical
history only

0

“FEVER Since yesterday, Coughing, Nasal congestion, Parents concerned as previous febrile con-
vulsion”

Parental concerns0

“FEVER? Absent episode at day care following fever. Nil seizure activity, but more quiet. GCS 15.
pHx asthma”

Other types of seizures0

Table 2. Descriptive statistics of the data set.

Unique words, nAverage words, nTotal words, nTotal records, nData set

52,69821.691,654,04576,274Initial data

21,08625.80398,60815,447Training data

992532.07102,6253200Test data

Data Set Construction
The original data were very imbalanced, with 1032 positive
labels versus 14,415 negative labels. Our approach was to allow
for the influence of the negative examples as much as the
positive examples, as we wanted to ensure the models were not
overly prone to identify false positives. We decided to evaluate
as many negatively labeled records as possible by dividing the
negative data into smaller data sets that each roughly matched
the number of available positive records, while also matching
the positive records’ text lengths, and we paired each of these
with the positive records for a training data set. To accomplish
text length matching, we assigned a word-count group to each
record, and when sampling negative records, we ensured that
we took similar numbers from each word-count group to those
which existed in the positive records.

After setting aside a validation data set of 100 positive and 100
negative labels, 932 positive labels remained for training. When
sampling the negative labels to match the 932 positive labels
for a training data set, we oversampled by a factor of around
1.2, iteratively extracting negative examples until we ran out
of examples to complete a training data set. The result was 9
data sets each consisting of the same 932 positive labels and
1127 different negative labels, with a total of 2059 records in
each. These were used for initial training of 9 identical
transformer models, and by assessing their test scores, we could
determine that the best model also identified the best of the 9
training data sets, where the balance of negative examples
worked most advantageously with the positive examples. We
chose transformers for the training data evaluation because with
their capacity to take account of language structure, they were
more sensitive to textual information compared to the other
standard neural networks we were evaluating [42].
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Data Augmentation
When evaluating the transformer models, we found that there
was potential for improvement in their performance, as their
F1-score was around 0.79. Therefore, we decided to assess the
effect of training with additional examples. As we lacked new
positive examples, we decided to experiment with data
augmentation techniques. These included synthetic text
generation using GPT-2 models, domain-specific data
augmentation, and task-agnostic techniques. This is explained
in a prior publication [43] where the best result was achieved
by using synthetic text generation techniques. Using this
approach added 1582 positive labeled records to the training
data set. This meant we could safely add further negative
examples without the data set becoming imbalanced, resulting

in 5455 training records. We used this augmented data set and
the 200-record validation data set to train and validate all the
approaches, and we evaluated and compared them using the
3200-record holdout test set.

After conducting error analysis on the predictions of the
transformer model, we added another 112 seizure-related
negative labeled records to the data set. This gave the models
additional exposure to ED notes about other types of seizures
or tonic-clonic seizures without the fever components, which
would allow to the model to better learn not to create false
positive predictions on these marginally negative examples.
The final training data set consisted of 2514 positive and 3053
negative labels, a total of 5567 records. Table 3 shows the
construction of the data sets.

Table 3. Data sets’ construction.

Negative, n (%)Positive, n (%)Data set

1127 (54.7)932 (45.3)Initial training (×9; n=2059)

2941 (53.89)2514 (46.11)Augmented training (n=5455)

3053 (54.78)2514 (45.22)Final training (n=5567)

100 (50)100 (50)Validation (n=200)

2768 (86.5)432 (13.5)Test (n=3200)

Classification

Overview
As part of our goal of determining the most effective NLP
methods for identifying febrile convulsions in ED visits, we
needed to assess the trade-off in requirements and benefits of
increasingly sophisticated NLP models. While the Data section
described the data requirements that evolved as these models
were assessed, the Classification section describes the reasons
for evaluating the various models, their data preparation and
training requirements, and some relevant observations of their
training processes. Evaluation and results will be discussed fully
in the Results section.

Pattern Matching
We started with pattern matching as a manual approach that
could give us a baseline against which we could compare ML
approaches. This consisted of selecting text based on relevant
strings that would, when combined, indicate both fever and
convulsions. After importing the data into a Structured Query
Language (SQL) database, we used a SQL full-text search to
describe the patterns more comprehensively and to ensure that
both fever and convulsions were included together. The pattern
used was (‘ “fever*” OR “pyrexi*” OR “feb*” OR “37.6” OR
“37.7” OR “37.8” OR “37.9” OR “38.*” OR “39.*” OR “40.*”
OR “41.*” OR “42.*” OR “43.*” OR “T38*” OR “Temp38*”
OR “T39*” OR “Temp39*” OR “T40*” OR “Temp40*” OR
“T41*” OR “Temp41*” OR “T42*” OR “Temp42*” OR “T43*”
OR “Temp43*” OR “hot*” OR “warm*” ’) AND (‘ “convul*”
OR “*seiz*” OR “size*” OR “*sezi*” OR ictal OR tonic OR
clonic ’). We experimented with accounting for negations and
modifiers, such as mentions of medical history and temperature
measurement units, when they were close to terms related to

febrile convulsions. Although this improved the detection of
false positives, it detrimentally affected the detection of true
positives and ultimately resulted in a poorer performance of the
model. Therefore, to retain the simplest and most performant
pattern matching approach, we decided to avoid dealing with
negations and modifiers.

Standard Classifiers
We evaluated a variety of standard classifiers using both the
original text with trigrams and lemmatized forms of trigrams.
Given the highly specific nature of the texts, where abbreviations
and punctuations prevail, we did not eliminate stop words, and
we restricted our preprocessing to (1) expanding any
contractions that used apostrophes and (2) converting collections
of the plus sign (eg, “+++”) into the word “extreme,” as these
are used throughout to convey that meaning. We used a
customized tokenization method, based on spaCy, to ensure
that tokenization did not break apart symbols on embedded
periods and slashes and to fashion bigrams, trigrams, and
lemmatized words. This was because we needed to preserve the
forms of words, especially regarding temperatures and explicit
compound expressions, and to control how n-grams and
lemmatization were performed. We experimented with the
Scikit-Learn CountVectorizer and TfidfVectorizer, with and
without inverse document frequency (IDF) enabled; with the
result that for each of the 3 data sets, we had standard, trigram,
and lemmatized versions, each of which were assessed via a
CountVectorizer, TfidfVectorizer with IDF, and TfidfVectorizer
without IDF enabled; a total of 27 data sets for each of the
classifiers were assessed.

Standard Neural Networks
We preprocessed the data for experimentation with standard
neural networks by separating basic contractions (eg, isn’t to is
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n’t), but otherwise, the data were left intact, with no ED-specific
translations done per the Standard Classifiers section, such as
“+++” to “extreme.” The preprocessed text was tokenized using
the torchtext library, and models were constructed using the
Pytorch library. We experimented with a range of neural
network models—convolutional neural network (CNN), long
short-term memory (LSTM), bidirectional LSTM (BiLSTM),
CNN-LSTM, and CNN-BiLTSM hybrids. Then, we tested the
gated recurrent unit (GRU), bidirectional GRU (BiGRU), and
CNN-GRU and CNN-biGRU hybrids. We implemented the
best of these—the BiGRU and the CNN-BiGRU hybrid. The
latter consisted of a 3-layer CNN producing one-grams, bigrams,
and trigrams (via kernel sizes of 1, 2, and 3 with a kernel number
of 100), with its output concatenated with a BiGRU output. The
standard BiGRU model’s F1-score slightly exceeded that of the
CNN-BiGRU hybrid model, but the CNN-BiGRU was included
because it mostly had a better balance of precision and recall
and was a strong contender.

Transformers
We used the RoBERTa-large-PM-M3-Voc model, published
by Facebook [44] and described as being “pre-trained on
PubMed and PMC and MIMIC-III with a BPE Vocab learnt
from PubMed.” This model was selected due to its superior
performance in classifying biomedical and clinical texts
compared to other models with similar capabilities, including
Scientific Bidirectional Encoder Representations from
Transformers (SciBERT) by the Allen Institute for Artificial
Intelligence, Biomedical (BioBERT) by researchers at Korea
University and the National Institutes of Health, ClinicalBERT
by researchers at the University of Pennsylvania and the
University of Washington, and BioMed-RoBERTa by
researchers at the University of California, San Diego. We did
no text preprocessing, as we considered that the transformer’s
internal byte pair encoding approach and inherent language
understanding as sufficient to deal with the texts’ complexity.
The best transformer model was identified from the final form
of the training data.

Ethical Considerations
Ethics approval for this study was granted by the Department
of Health, Human Research Ethics Committee in Victoria,
Australia (project ID: HREC/83486/DOH-2022-298485). No
compensation was provided to any participants. Informed
consent was not sought for this study because the operational
work it supports aligns with legislation related to serious public

health threats. The data were anonymized by removing personal
details and using a 1-way hashing algorithm to ensure that
reidentification is not possible.

Results

Overview
The results are shown in Table 4 as precision, recall, and
F1-scores when evaluated against the test data set. We used
precision, recall, and F1-scores as evaluation metrics to assess
the performance of the models on the positive label using the
test data set. Precision measures the proportion of correctly
classified positive instances out of all instances predicted as
positive. Recall measures the proportion of correctly classified
positive instances out of all actual positive instances. F1-score
is the harmonic mean of precision and recall, providing a
balanced measure of performance. By using these evaluation
metrics, we were able to comprehensively evaluate the models’
performance on key measures of accuracy and completeness
with respect to both the positive and negative labels.

Scores are depicted for each model in order of the data sets used
to train a model. These were (1) the best of the initial training
data set of 2059 records, (2) the synthetic records–enhanced
data set of 5455 records, and (3) the data set also containing
112 additional examples of negative seizure examples, with a
total of 5567 records. These data sets are indicated with
superscripts of b, d, and e in Table 4.

The models’ difference scores are shown at the bottom of each
model group. These are calculated as the difference between
model test scores obtained when trained on the final (ie, third)
data set (superscript e) and the test scores obtained using the
pattern matching approach, which functions as a baseline. The
best individual value in each of the table columns are in italics,
but the F1-score is the most important value to measure overall
performance.

Figure 1 shows a graphical comparison of the F1-scores achieved
per model on the test data set, as the models were trained on
the 3 training data sets. Notably, the F1-score of the RoBERTa
transformer model was initially no better than pattern matching
when trained on the first data set. However, as more data were
added, the RoBERTa transformer model’s performance
improved significantly, surpassing the F1-scores of the other
models starting from the second data set onward.
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Table 4. Model performance metrics.

False negativeFalse positiveTrue positiveTrue negativeF1-scoreRecallPrecisionModel and data sets

321642925520.7970.993a0.665Pattern matching

322342925450.7920.9930.658RoBERTab,c

127342026950.9080.9720.852RoBERTad

126042027080.9210.9720.875RoBERTae

9–156–91560.124–0.0210.210RoBERTa—differencee

369239726750.8610.9170.812BiGRUb,f

346239927050.8930.9210.866BiGRUd

444238927250.9000.8980.903BiGRUe

41–174–401730.104–0.0950.237BiGRU—differencee

378639626810.8660.9150.822CNN-BiGRUb,g

494838427190.8880.8870.889CNN-BiGRUd

255937427420.8990.9370.864CNN-BiGRUe

22–157–551900.102–0.0560.199CNN-BiGRU—differencee

2623540625330.7570.9400.633XGBoostb,h

3115440126140.8130.9280.723XGBoostd

3613539626330.8220.9170.746XGBooste

33–81–33810.026–0.0760.081XGBoost—differencee

aItalicized values represent the best individual value in each of the columns.
bThe best of the initial training data set of 2059 records.
cRoBERTa: Robustly optimized Bidirectional Encoder Representations from Transformers approach.
dThe synthetic records–enhanced data set of 5455 records.
eThe data set also containing 112 additional examples of negative seizure examples.
fBiGRU: bidirectional gated recurrent unit.
gCNN-BiGRU: convolutional neural network-bidirectional gated recurrent unit.
hXGBoost: extreme gradient boosting.
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Figure 1. Comparison of the F1-scores of the models. BiGRU: bidirectional gated recurrent unit; CNN-BiGRU: convolutional neural network-bidirectional
gated recurrent unit; RoBERTa: Robustly optimized Bidirectional Encoder Representations from Transformers approach; XGBoost: extreme gradient
boosting.

Pattern Matching
The pattern matching method we assessed was a rules-based
approach looking at text patterns in a SQL full-text query. It
achieved a very high recall of 0.99—meaning it correctly
identified almost all the febrile convulsion records. However,
it also identified many incorrect records as febrile convulsions
with a resulting precision of 0.67, so its F1-score suffered,
although it remained acceptable at 0.80 (rounded). Analysis of
false positives showed that mentions of time of the day, duration
of seizure, and child weight were all open to misinterpretation
as indications of fever, as numbers ranging from “37.6” through
to “43.” were matched as indicators of temperature. By contrast,
references to temperature that had no accompanying qualifier
or decimal point were ignored. Terms such as “warm to touch”
were missed, where warm can refer to fever (but is also used in
observations about skin being pink, warm, and dry). Imprecise
descriptions of febrile convulsion, negations, and mentions of
previous history of fever, seizure, and febrile convulsions were
missed or misinterpreted. For instance, implied and specific
references to history such as “increased seizure,” “mother
concerned,” “Mum states older brother has had a febrile seizure
before,” “febrile convulsion previously,” “recent admission
with seizure + enterovirus,” and mentions of use of
seizure-related medications before the emergency visit. We
experimented with including pattern matching of previous
history in our query, which worked to a certain extent to remove
false positives but also removed true positives, with a resulting
worse performance. A fully implemented pattern matching
system requires extensive rules that adjust for many textual
nuances but which can never be complete and would be difficult
to maintain, which is why we focused our effort on ML
solutions.

Standard Classifiers
We assessed the Scikit-Learn Multinomial Naive Bayes, logistic
regression cross validation, linear support vector classification
(SVC), stochastic gradient descent (SGD), random forest, extra
trees classifiers, and the extreme gradient boosting (XGBoost)
classifier. Each was tested with the 3 data sets; with the standard
form of the text, with trigrams, and with lemmatized trigrams;
and vectorizing with the Scikit-Learn CountVectorizer,
TfidfVectorizer with IDF, and TfidfVectorizer without IDF
enabled. Grid searches were performed to further tune model
parameters for the best models from each round. We evaluated
the models with the test data set.

On the initial data set of 2059 records, the best model was the
XG Boost classifier, using lemmatized text and the
CountVectorizer, with an F1-score of 0.757. The second best
was the logistic regression cross validation model, using
standard text and the CountVectorizer, with an F1-score of
0.755. The XG Boost model continued to be the best model as
we assessed with the larger data sets. With the augmented,
second data set of 5455 records, which included synthetic
positive examples, the F1-score was 0.813, using standard text
and the TfidfVectorizer with no IDF. With the third data set of
5567 records, which included extra negative seizure examples,
the F1-score was 0.822, again using standard text and the
TfidfVectorizer but this time with IDF enabled.

The standard classifiers were worse than pattern matching on
the initial data set, but on the larger data sets, the best of the
models scored better than pattern matching. The XG Boost
model fared well for recall, with an average of 0.93 over the
data sets, which was marginally better than the standard neural
networks’ average of 0.91 but not as good as the transformer’s
average of 0.98. However, the superior precision of the standard
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neural networks resulted in their F1-scores being, on average,
0.09 higher than those of the XGBoost model, while the average
F1-score of the transformer model was 0.10 higher. With a
relatively good recall but overall poorer performance and a high
degree of effort required to prepare for and assess these models,
we would consider these only in a low-resource situation and
would consider pattern matching as a comparable option.

BiGRU and CNN-BiGRU
The BiGRU and CNN-BiGRU classifiers were Pytorch models
trained from scratch on the different data sets. Other models
that were evaluated did not come close to their performance;
these included a CNN model, LSTM models (in both standard
and bidirectional form), CNN-LSTM, CNN-BiLSTM, and a
BiGRU model with an additional attention layer. Word2Vec
embeddings from the training data sets were loaded into the
models.

Their performance based on F1-score was as much as 10% better
than that of pattern matching at 0.8, ranging from around 0.86
to around 0.9 as the data sets were developed. This was because
their precision was much better; they found fewer false positives,
although their recall was poorer compared to pattern matching
by as much as 10%.

Initially, they were better than the transformer approach as well;
their starting F1-score of around 0.86 exceeded the transformer’s
score of 0.79. However, as data were added, first through
additional synthetic positive records and then by adding negative
seizure examples, these models only improved over their initial
scores by around 4 percentage points (lower than the
improvement of transformer, discussed next).

Transformers
The transformer model architecture has been proven to be very
suitable for fine tuning to tackle language tasks, with previous
research [45] demonstrating that these models outperform other
neural networks and standard classifiers. The
RoBERTa-large-PM-M3-Voc model was chosen because of its
proven capacity to understand clinical texts. Our initial training
used 9 slightly imbalanced data sets, all with the same 932
positive labels but each with different 1127 negative labels,
which, at 2059 records, was scarcely enough to fine-tune a
transformer. However, we were able to establish which of the
data sets worked best with the model, and this data set then
became the foundation of data set development, which was
chiefly undertaken to improve the performance of the
transformers while providing a comparison to their performance
improvements against other models.

The initial transformer model did no better than the pattern
matching; its F1-score was 0.792, which was slightly less than
the 0.797 of the pattern matching and much less than the 0.866
of the CNN-BiGRU model. Encouragingly, it matched the
pattern matching model’s recall of 0.933, but it was let down
by a relatively poor precision of 0.658. We found that this was
mainly due to false positives; it was classifying many
seizure-related records as febrile convulsion when they had no
mention of fever. We added 112 more examples of negatively
labeled seizure records, which we had manually checked to

ensure fever was absent. The expectation was that the model
could learn that seizure alone was not predictive of a febrile
convulsion. However, this had only a slight effect; the F1-score
only increased by 0.6 percentage points to 0.797, now equaling
the pattern matching.

Therefore, we decided instead to add a lot more positive and
negative records, as the model was clearly struggling with a
lack of data to learn from. As we had no more positive records,
we used a GPT-2 language model to generate synthetic examples
of positive labels, as described previously [43]. Adding these
enabled us to also sample and add many more negative labels
to get a reasonably balanced data set of 5455 records, containing
2514 positive and 2941 negative labels—the slight imbalance
was to give the model more negative examples. Training the
transformer and other models just on the combined initial and
synthetic data allowed us to measure the effect of the synthetic
records clearly. Any extra negative records were randomly
selected and not taken from the manually crafted 112 seizure
negative records, which we had set aside at this point. This had
a very positive effect; the F1-score on a newly fine-tuned model
increased by 11.7 percentage points to 0.908, beating the 0.893
of the BiGRU, which was the best performing standard neural
network trained on this version of the training data set.

Finally, we readded the 112 negative seizure records and reran
our training for all models; the best transformer model now
achieved an F1-score of 0.921, a more significant 1.6 percentage
points improvement compared to the 0.6 increase obtained when
the negative seizure records alone had been added in our
previous experiment with them.

The best performing transformer model still maintained an
impressive recall of 0.972, compared to its initial 0.993, but its
precision had risen to 0.875 from 0.665. Its F1-score of 0.921
was 12.4 percentage points better than the pattern matching
baseline of 0.797 and 2 percentage points better than the best
standard neural network, which was the BiGRU with a score
of 0.900.

This result confirmed our previous experience that transformers
need more data to learn from compared to lighter-weight neural
networks, but in the right conditions will outperform those
simpler architectures. While the neural networks improved over
their initial scores by around 4 percentage points following
addition of synthetic data, the transformer improved from its
starting score by >3 times that amount, at around 13 percentage
points. The final transformer was superior to the final BiGRU
by 2 percentage points (0.92 vs 0.90).

Deployment
The best performing models from both standard neural networks
and transformers were deployed in a Databricks environment.
The transformer model was originally 1.4 GB in size and ran
in a timely manner best on a graphics processing unit (GPU);
inference was 5 times faster on a GPU versus a central
processing unit (CPU). For performing inference on a CPU, we
wanted to reduce both the memory required and the speed to
perform inference. Therefore, we converted the best transformer
checkpoint to an Open Neural Network Exchange (ONNX)
model and optimized and then quantized it. Although the
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optimized model was no smaller than the original transformer
model, it ran twice as fast as the transformer on a CPU. The
quantized model was considerably smaller at 500 MB, had no
loss of accuracy, and ran 40% faster again than the optimized
model on a CPU; hence, it was used. Inference times on CPU
for the quantized ONNX model were similar to the transformer
model on GPU. However, inference times on CPU using the
CNN-BiGRU, which was only 14 MB in size, were 10 to 12
times faster than the transformer on GPU and the quantized
ONNX models.

The minimum available Databricks configuration was a Standard
DS3 v2 CPU compute with 14 GB of memory and 4 cores and
a 13.1 ML runtime, which costed 0.75 Databricks units per hour.
All models were able to run on this. However, the much faster
inference and smaller memory requirement of the standard
neural network models meant that this configuration would be
able to support the parallel loading of many such models (for
the surveillance of numbers of syndromes), while based on the
use of 2 transformer-based ONNX models, we estimate that it
would support only up to 6 simultaneously loaded models before
requiring a parallel deployment of computing capacity or a more
powerful single capacity.

After 5 months of deployment, the model has predicted 749
febrile convulsion cases in the target group of children aged <6
years and 75,543 cases of no febrile convulsion in that group.
To evaluate its performance, we sampled 125 of its predictions
for each cohort. To ensure we had good candidates for potential
false negatives, when sampling for the 125 nonfebrile
convulsions, we filtered to records that had a mention of either
febrile, seizure, or convulsion. Labeling resulted in 122 febrile
convulsion and 128 nonfebrile convulsion records. The model
had predicted incorrectly for 9 (3.6%) of the 250 records,
resulting in a precision score of 0.952, a recall score of 0.975,
and an F1-score of 0.964.

Discussion

Overview
The key objective of this study was to contribute to improving
near real-time syndromic surveillance of febrile convulsions by
using NLP models. We compared NLP approaches with a
pattern matching baseline solution. We found that even with
minimal initial training data but careful attention to the training
examples and the addition of augmented data to improve the
data, a transformer-based model could achieve superior
performance, without needing any demanding text preprocessing
or feature construction. We concluded that while the process of
determining the best training data set was nontrivial, the result
justified the effort and acted as a guide to further development
for these models for classifying ED notes.

Principal Findings
The format, quality, and length of ED triage notes can differ
greatly, which presents a considerable challenge when it comes
to text processing. To overcome these dissimilarities, one
solution is to use lexicons to replace variations in spelling,
abbreviations, and medical terms with standardized synonyms,
and another solution is to use rules to recognize specific text

features. Nonetheless, both these methods demand ongoing
efforts to handle novel words or establish new rules, which can
make the system more intricate as additional rules often need
to be introduced to amend the impact of previously applied
rules. In addition, the use of these methods can negatively affect
the generalizability of solutions across hospitals, as terminology
and abbreviations can be specific to individual ED departments.

In our research, we have demonstrated that neural networks and
especially cutting-edge large language models can remove the
need for preprocessing of text and can use text as is to achieve
outstanding performance in syndromic surveillance of ED notes.
Large language models have been originally trained on
substantial volumes of text and have extensively learned
complex textual patterns and relationships within texts, and
when fine-tuned, they can quickly learn the specifics of
previously unseen texts such as triage notes. This learning is
enhanced if the model has been pretrained on similar texts, as
was the case with the RoBERTa-large-PM-M3-Voc model we
used, which had been trained on biomedical and clinical texts.

Development of supervised algorithms requires labeled data,
which is hard to acquire [40,46]. Various techniques have been
used by researchers to overcome this barrier. Researchers have
employed various techniques to overcome this barrier, ranging
from using proximal ICD codes [31], which suffers from a loss
of expert targets, to the labor-intensive process of manually
labeling many records [39]. Our strategy showed that use of
language models for generating synthetic text is a highly
effective and efficient way to augment data to improve the
performance of the classification task. However, our findings
suggested that although data augmentation can have a significant
impact on the performance of language model–based classifiers,
its impact on more conventional classifiers such as CNNs may
be more limited. Specifically, augmenting data can substantially
improve the accuracy and robustness of language model–based
classifiers by expanding the data set and introducing greater
variation in the data, particularly when there is information in
the texts that clarifies the features of classes. However, there
are lesser gains realized by standard neural networks and
traditional classifiers, which indicates the greater ability of
language models to benefit from textual clues.

Our findings also suggested that there is no single solution that
can be universally applied for syndromic surveillance of ED
triage notes, and simple pattern matching may provide
reasonable performance, particularly where a syndrome can be
clearly identified with the presence of specific keywords.

Clinical NLP research has been ongoing for several decades
and has contributed significantly to many areas of patient care.
However, despite these advances, there is still a lack of NLP
systems that have been deployed and integrated into operational
settings [47]. Our solution is currently deployed in a cloud-based
environment and is continuously sending a stream of flagged
presentations to an organization tracking adverse events
following immunization monitor for possible increases against
their background rate for detection of any vaccine safety signal
related to febrile convulsions.

JMIR AI 2024 | vol. 3 | e54449 | p. 10https://ai.jmir.org/2024/1/e54449
(page number not for citation purposes)

Khademi et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Limitations
Our approach is extendible to similar scenarios; however, the
model we created is specific to the task of detection of febrile
convulsions in ED notes. Although the process of careful
analysis, leading to an informed application of methods to
enhance training data, is repeatable for the detection of other
syndromes and potentially beyond (eg, vaccine adverse events
following immunization), the approach depended on personal
judgment and experience and was somewhat complex. More
methodical approaches to determining optimal training data are
described in the active learning literature [48], and our future

focus will be on implementing these approaches while
leveraging the insights gained from this study on using
augmentation to enhance training data.

Conclusions
Near real-time surveillance of febrile convulsion presentations
to EDs is feasible using NLP solutions. We established that a
large language model classifier can be trained in the context of
few training examples by adding synthetically generated data
and implemented into a real syndromic surveillance system,
enabling surveillance of febrile convulsion following
vaccination.
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BiGRU: bidirectional gated recurrent unit
CNN: convolutional neural network
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IDF: inverse document frequency
LSTM: long short-term memory
ML: machine learning
NLP: natural language processing
ONNX: Open Neural Network Exchange
SGD: stochastic gradient descent
SQL: structured query language

JMIR AI 2024 | vol. 3 | e54449 | p. 13https://ai.jmir.org/2024/1/e54449
(page number not for citation purposes)

Khademi et alJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.1177/1833358319857188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31272232&dopt=Abstract
http://dx.doi.org/10.1016/j.jemermed.2013.05.036
https://doi.org/10.1016/j.ijmedinf.2022.104963
http://dx.doi.org/10.1016/j.ijmedinf.2022.104963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36521420&dopt=Abstract
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-11-338
http://dx.doi.org/10.1186/1471-2458-11-338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21592398&dopt=Abstract
https://europepmc.org/abstract/MED/34897466
http://dx.doi.org/10.1093/jamia/ocab261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34897466&dopt=Abstract
https://medinform.jmir.org/2020/3/e17984/
http://dx.doi.org/10.2196/17984
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32229465&dopt=Abstract
https://europepmc.org/abstract/MED/8257494
http://dx.doi.org/10.1136/bmj.306.6894.1743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8257494&dopt=Abstract
https://arxiv.org/abs/2303.11504
http://dx.doi.org/10.1162/coli_a_00492
https://dl.acm.org/doi/abs/10.1145/3579375.3579401
https://dl.acm.org/doi/abs/10.1145/3579375.3579401
http://dx.doi.org/10.1145/3579375.3579401
https://aclanthology.org/2020.clinicalnlp-1.17.pdf
http://dx.doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://medinform.jmir.org/2022/6/e34305/
http://dx.doi.org/10.2196/34305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35708760&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(18)30201-6
http://dx.doi.org/10.1016/j.jbi.2018.10.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30368002&dopt=Abstract
https://europepmc.org/abstract/MED/35848784
http://dx.doi.org/10.1093/jamia/ocac121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35848784&dopt=Abstract
https://aclanthology.org/2022.emnlp-main.414.pdf
http://dx.doi.org/10.18653/v1/2022.emnlp-main.414
http://www.w3.org/Style/XSL
http://www.renderx.com/
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XG Boost: extreme gradient boosting
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