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Abstract

Background: Breastfeeding benefits both the mother and infant and is a topic of attention in public health. After childbirth,
untreated medical conditions or lack of support lead many mothers to discontinue breastfeeding. For instance, nipple damage and
mastitis affect 80% and 20% of US mothers, respectively. Lactation consultants (LCs) help mothers with breastfeeding, providing
in-person, remote, and hybrid lactation support. LCs guide, encourage, and find ways for mothers to have a better experience
breastfeeding. Current telehealth services help mothers seek LCs for breastfeeding support, where images help them identify and
address many issues. Due to the disproportional ratio of LCs and mothers in need, these professionals are often overloaded and
burned out.

Objective: This study aims to investigate the effectiveness of 5 distinct convolutional neural networks in detecting healthy
lactating breasts and 6 breastfeeding-related issues by only using red, green, and blue images. Our goal was to assess the applicability
of this algorithm as an auxiliary resource for LCs to identify painful breast conditions quickly, better manage their patients through
triage, respond promptly to patient needs, and enhance the overall experience and care for breastfeeding mothers.

Methods: We evaluated the potential for 5 classification models to detect breastfeeding-related conditions using 1078 breast
and nipple images gathered from web-based and physical educational resources. We used the convolutional neural networks
Resnet50, Visual Geometry Group model with 16 layers (VGG16), InceptionV3, EfficientNetV2, and DenseNet169 to classify
the images across 7 classes: healthy, abscess, mastitis, nipple blebs, dermatosis, engorgement, and nipple damage by improper
feeding or misuse of breast pumps. We also evaluated the models’ ability to distinguish between healthy and unhealthy images.
We present an analysis of the classification challenges, identifying image traits that may confound the detection model.

Results: The best model achieves an average area under the receiver operating characteristic curve of 0.93 for all conditions
after data augmentation for multiclass classification. For binary classification, we achieved, with the best model, an average area
under the curve of 0.96 for all conditions after data augmentation. Several factors contributed to the misclassification of images,
including similar visual features in the conditions that precede other conditions (such as the mastitis spectrum disorder), partially
covered breasts or nipples, and images depicting multiple conditions in the same breast.

Conclusions: This vision-based automated detection technique offers an opportunity to enhance postpartum care for mothers
and can potentially help alleviate the workload of LCs by expediting decision-making processes.
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Introduction

Background
The benefits of breastfeeding for both the mother and baby,
such as lower gastrointestinal infections in the child, more rapid
maternal weight normalization after birth, and prolonged
amenorrhea for the mother, are just a few examples of why
physicians recommend breastfeeding for at least 6 months [1-5].
Breastfeeding rates are on the rise in the United States, with
83.2% of newborn infants being breastfed in 2019, thanks to
increased education and promotion of its benefits [6]. Despite
the compelling evidence, many families struggle to continue
breastfeeding. Although 95% of mothers initiate breastfeeding,
the continuation rate drops to <41% and <19% for exclusive
breastfeeding at 3 and 6 months, respectively [7]. Parents who
breastfeed may face issues, such as low milk supply, fatigue,
medical problems, difficulties with feeding techniques or pain,
and lack of social support [8-10].

Lactation consultant (LC) professionals specialize in
breastfeeding, milk supply, breast and nipple issues, breast milk
management, and prenatal education. LCs ensure a mother’s
smooth and painless transition into breastfeeding and increase
the possibility of continued breastfeeding through 6 months or
longer [11,12]. The availability of international board-certified
LCs (IBCLCs) globally is limited. In 2021, there were 3.6
million births in the United States and only 18,500 LCs with
IBCLC certification, a rate of 194 babies per LC a year. In low-
and middle-income countries such as Brazil, for instance, there
were 2.6 million births in the same year but only 154 certified
LCs, resulting in a rate of 16,883 babies per LC per year. The
high demand for LCs, coupled with geographic and financial
barriers, underscores the need for better tools to improve access
to specialized lactation services, especially in less urbanized
areas where such resources are scarce, leading to decreased
breastfeeding support [13-20].

Another issue is professional availability itself, as LCs often
combine their practice with midwife nursing, splitting their time
between prenatal visits, attending births, lactation consultations,
and managing their patients, which can lead to professional
exhaustion, burnout, and emotional stress [21-23]. Moreover,
the predominantly independent practice of LCs outside the
United States, without the support of clinics with sophisticated
patient management and triage systems, further complicates
their time management and patient organization [22,24].

Supporting LCs Through Tele-Lactation Services
Tele-lactation services facilitate text, audio, and video
communication. This enables LCs to consult with patients from
any location, reduces travel time, helps balance their workload,
increases their availability to receive new patients, and provides
quicker responses to their patients [20]. Complementing
tele-lactation services, patient triaging using information systems
allow LCs to prioritize in-person visits for severe cases requiring

physical assessment, while less critical cases can be handled
remotely [25,26]. Prior research suggests that LCs would benefit
from time-saving tools for efficient patient information delivery
while focusing on mitigating prolonged interactions, helping
alleviate the burden on these professionals with a load of patients
[22,27]. As LCs often follow up with their patients up to weeks
after birth to ensure positive breastfeeding outcomes, an
easy-to-access system to monitor patient progress is essential
for effective patient triage, facilitating consultation scheduling,
holding remote consultations, or providing reassurance.
However, LCs’ current access to remote consultation systems
lacks patient triaging tools and is not time efficient, indicating
an area in need of development.

Our work proposes a novel method for the identification of
breastfeeding-related conditions using convolutional neural
networks (CNNs). We evaluated a self-curated data set
containing 7 different breastfeeding conditions on 5 distinct
CNN models. The assessment of breast conditions is vital as
pain and discomfort experienced during breastfeeding is a major
barrier faced by parents who want to continue breastfeeding
their child. About 80% of mothers are estimated to experience
nipple pain and fissures, while 20% are estimated to experience
mastitis [28,29]. Our pipeline incorporates automatic detection
of visually discernible painful breastfeeding-related conditions,
such as nipple cracks and fissures related to poor latching and
positioning; skin conditions, such as dermatitis, eczema, thrush,
or herpes; and risk of mastitis spectrum issues, such as
engorgement, abscess, and nipple blebs. The CNN model is
used for automatic detection of breast conditions, which can
benefit the triaging of remote lactation patients for faster and
more efficient patient response based on their conditions.

Our work evaluated 5 distinct CNN models’ ability to
differentiate between healthy and various unhealthy breast
conditions (including breast abscesses, dermatoses,
engorgement, mastitis, nipple blebs, and nipple damage) by
performing both multiclass and binary evaluations on 1078
breast images. We evaluated the model’s performance using
the data set with and without data augmentation techniques.
The data were divided into training, validation, and testing sets,
using k-fold cross-validation for robustness. Performance
evaluation on the best model includes an average area under
the curve (AUC) of 0.93 for all conditions after data
augmentation and precise detection of healthy breasts (precision
of 84.4%) and unhealthy breasts (average precision of 66%, SD
12.8%) for 6 conditions. For binary classification, we achieved,
with the best model, an average AUC of 0.96 for all conditions
after data augmentation and precise detection of healthy breasts
(precision of 93.8%) and unhealthy breasts (precision of 83.5%).
The breast images have been curated from perinatal education
resources such as images and video recordings under various
lighting, environments, and image-taking conditions, where we
examined potential issues around how the images are taken and
their impacts on performance. Finally, we provide insights into
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future designs of user interfaces and guidance needed for the
proper application of the system.

Related Work

Lactating Care Pipeline: In-Person, Remote, and Hybrid
Health care providers introduce breastfeeding options to
expectant mothers, including educational materials in print or
web-based, during prenatal care. The initiation of breastfeeding
after delivery is timed according to the type of birth. Many
hospitals worldwide follow the United Nations Children’s Fund
and World Health Organization baby-friendly initiative,
prioritizing maternal and infant health and supporting mothers
facing challenges [30,31]. After a child’s birth, families often
seek breastfeeding support from LCs, who typically offer
hands-on consultations from birth until support is no longer
required [18]. They conduct visual and physical evaluations of
both mother and baby, assessing the baby’s internal mouth
structure, breast and nipple anatomy, and milk supply and
ensuring proper attachment or repositioning of the baby to
prevent nipple fissures. LCs may also introduce laser therapy
as a treatment option for damaged nipples from breast pump
misuse or issues with baby attachment [8]. The immersive
approach of LCs is crucial for providing personalized and
effective lactation support to mothers and infants.

Remote Lactation Care
The widespread adoption of smartphone communication apps,
particularly WhatsApp (Meta Platforms, Inc), has transformed
public health facilities, including family clinics in
limited-income countries, offering various patient services such
as appointment scheduling, health guidance, and vaccine
campaign notifications [32-34]. WhatsApp has become a popular
communication tool between LCs and patients, facilitating
breastfeeding education and family support during the neonatal
period [35,36]. During the COVID-19 pandemic, LCs
transitioned to telehealth consultations using established
smartphone apps such as WhatsApp, Instagram (Meta Platforms,
Inc), and Facebook (Meta Platforms, Inc). LCs adapted their
approach to maintain quality care despite resource limitations
in remote consultations [37,38]. Similar to other practices
requiring physical evaluation, LCs reimagined their methods
when shifting from in-person to remote consultations, using
communication and social media apps to reach and educate
parents while having broader visibility in their community
[37,39].

Remote lactation care presents challenges, including limited
visibility during video calls, communication difficulties, and
technical issues [18,40,41]. Despite challenges, remote care
offers benefits, reducing the mother’s sense of isolation,
enabling faster feedback, and promoting effective
communication and patient engagement for improved
independent learning [17,18,22]. These benefits positively
impact mothers’ intentions in exclusive breastfeeding for up to
6 months and reduce the risk of breastfeeding cessation at 3
months by 25% [42].

Hybrid Lactation Care
Previous research showed that fully remote consultations work
well for cases where geographic distance, transportation issues,
or patient disease prevent in-person meetings between patients
and providers. LCs often conduct remote consultations from
their workplaces, including personal offices, clinics, or hospitals,
especially when they are also midwives with on-call
responsibilities [37]. They provide consultations for patients
before birth, after birth, and in emergency cases where the
mother is facing breastfeeding challenges [22]. Depending on
the nature of the consultation, in-person or remote visits are
chosen to meet the patient’s specific needs. In summary, remote
care complements in-person care, being a valuable resource for
mothers seeking guidance, reassurance, and confidence,
particularly in the absence of a supportive home environment
[38].

LCs, especially those who are also midwives, have limited time
availability due to demanding schedules and receiving numerous
remote messages from patients daily, some requiring higher
priority attention [22,43]. Manually sorting through patient
messages to determine priority can be time consuming and
inconvenient for mothers with urgent needs. Our work proposes
a computer vision–based system to triage breast conditions,
facilitating telehealth and assisting LCs in identifying patients
who require immediate responses in remote settings.

Issues Associated With Breastfeeding
Breastfeeding pain is one of the reasons associated with
breastfeeding cessation, which can be caused by issues such as
poor attachment of the baby onto the breast, physical conditions
of the mother or baby, misuse of breast pumps, oversupply of
breast milk, and even environmental conditions [44]. These
issues, if left untreated in the first few days after birth, can
persist for weeks and pose a threat to breastfeeding continuity
beyond 6 months. Some conditions can be fully mitigated when
the mother receives orientation and education on the topic. In
contrast, other conditions can be alleviated and managed for a
better experience for the mother in the case of physical
conditions, including nipple physiology, baby tongue-tie, jaw
clenching, and excessive milk supply [28,45].

This study concentrates on conditions leading to breastfeeding
pain and potential interruption. The first condition is the mastitis
spectrum disorder, where about 20% of mothers who breastfeed
may face it during their time breastfeeding. This disorder starts
with the overproduction of milk and breast engorgement, which
can cause milk passage obstruction in the form of galactoceles
and nipple blebs. When not properly treated, a case of milk bleb
or galactocele can evolve into phlegmon, bacterial, or
inflammatory mastitis, which may require patients to treat it
with medications and sometimes medical procedures to drain
the inflammation fluids from the breast in case it becomes an
abscess [46,47]. Conditions associated with mastitis are painful
and include symptoms such as redness in the breast,
influenza-like symptoms, hardened skin surface in the location
of the milk blockage, formation of blisters in the nipple, and
even blood in the milk [29,48].
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The second condition is nipple damage caused by improper
latching and positioning from the infant, excessive pressure
from breast pumping devices, infant tongue-tie or palate
abnormality, infant’s arrhythmic milk expression, and even
infant biting or jaw clenching [9,44]. Considering the cause of
nipple damage, 80% of mothers are expected to face some level
of nipple issues during breastfeeding, which, if not treated, may
cause an average of 35% of these mothers to cease breastfeeding
before 1 month [28,45]. Nipple damage is painful and may be
visible or invisible. When visible, it can present features at the
skin surface, such as fissures, cracks, pus, blood, scarring, or
crusting. Some skin dermatoses, such as thrush, herpes, eczema,
and psoriasis, are also responsible for discomfort and pain during
breastfeeding. These conditions can be caused by friction,
weather, and temperature changes and using medications or
ingredients that can make the skin prone to these disorders.
Dermatoses conditions present on both breast and nipple and
can have visible features such as scarring, crusting formations,
redness, and thickened skin regions [44]. Our research
incorporates breast and nipple images from the following
disorders: breast abscess, dermatoses, breast engorgement,
inflammatory and bacterial mastitis, nipple blebs, and nipple
damage.

Current Research Supporting Lactating Mothers
Extensive literature has highlighted the efficacy of deep learning
in assessing breast images, helping detect malignant and benign
breast tumors for both lactating and nonlactating women [49-54].
This has helped improve the precision of breast ultrasound and
mammogram examinations, involving the use of medical
imaging previously taken in medical facilities to enhance the
evaluation of breast-related illnesses and allow better accuracy
in diagnosis for medical personnel [53]. However, these studies
relied on images gathered from specialized equipment found
only in health care facilities. They did not extend their evaluation
to external body images, focusing primarily on aiding health
care practitioners in diagnosis. Our work diverges from previous
contributions by primarily focusing on using external breast
images gathered from personal devices, such as smartphones
or cameras from lactating patients, to identify
breastfeeding-related conditions in the early stages and evaluate
the necessity of further examination and medical intervention.

In the context of breastfeeding disorders, there is a lack of
research regarding using deep learning algorithms to evaluate
real breast images and identify abnormalities such as mastitis,
nipple fissures, dermatoses, and abscesses. To illustrate,
literature addressing the early prediction of mastitis mainly
originates from agricultural studies, in which the risk of mastitis
is constantly assessed to prevent a reduction in animal milk
production, which significantly impacts the dairy industry
[55,56]. This shows a need for research to adapt these
technologies for detecting and preventing breastfeeding
disorders in humans. Our study is crucial in settings where
access to medical professionals and LCs is limited, as it can
help prevent breastfeeding cessation, promote maternal-infant
bonding, and improve the overall health and well-being of
mothers and infants.

Methods

In this section, we detail the data set collection process,
including inclusion and exclusion criteria, data sources, and the
characteristics of the images. The section also discusses the
artificial intelligence (AI) algorithms used in the study, including
the models and their training and validation process, and
performance metrics used during evaluation.

Ethical Considerations
This study was approved by the University of California, San
Diego Institutional Review Board (801,904). We did not
incorporate any personally identifiable data from the participants
into this research.

Data Set Collection

Overview
This study used a breast image data set (refer to Textbox 1 and
Table 1), a compilation of physical and digital images
specifically curated to train and validate our deep learning
model’s ability to distinguish between healthy and unhealthy
lactating breasts. The data set includes images categorized
according to their respective conditions: healthy lactating breast;
nipple injuries due to various causes; nipple blebs due to plugged
ducts; breast or nipple with signs of dermatoses; and breasts
with engorgement, mastitis, or abscess.
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Textbox 1. Data set description.

Description

• Data set size

• 393.7 MB (each image: minimum 0.015, average 0.360, and maximum 3.575 MB)

• Dimensions (pixels)

• Width (minimum 68, average 606, and maximum 2448)

• Height (minimum 68, average 607, and maximum 2448)

• Number of images

• 1078

• Number of classes

• 7

• Number of unique subjects

• 586

• Number of images per class

• Abscess: 115

• Dermatoses: 123

• Engorgement: 63

• Mastitis: 180

• Nipple bleb: 82

• Nipple damage: 197

• Healthy: 318

• Visual features per class

• Abscess: swelling and redness, area with palpable fluid collection, and pus

• Dermatoses: rash, discoloration, flaky skin, uneven skin tone, crusting, and redness

• Engorgement: swelling, redness, skin stretched and shiny, and enlarged nipple

• Mastitis: red patches on breast or nipple, swelling, and pus or blood discharge

• Nipple bleb: small white or yellow bumps on nipple or areola, similar to a blister

• Nipple damage: nipple swelling, redness, peeling or flaking skin, bleeding, and shape differences

• Healthy: regular breast and nipple color, may have visible veins

• Number of images per source

• Physical: 178 (eg, books, magazines, and articles)

• Physician websites: 366

• YouTube: 65 (eg, educational channels on women’s health)

• Other: 469 (eg, received by lactation consultants; international board-certified lactation consultant’s Instagram, Google Images, and Flickr;
support groups mediated by lactation consultants on social media; and other educational websites)
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Table 1. Number of images per skin tone per class (FSTa [57]).

Not classifiedbFST VIFST VFST IVFST IIIFST IIFST IClass name

28148203528Abscess

23313483717Dermatoses

104301864Engorgement

04111516944Mastitis

2236818169Nipple bleb

4551115225940Nipple damage

5212821929061Healthy

774467106269312203Total per FST

aFST: Fitzpatrick skin type.
bNot classified due to the absence of breast tissue around the nipple in the image.

Data Inclusion and Exclusion Criteria
To be included in the data set, images must meet the following
criteria: (1) the image must be in red, green, and blue (RGB)
format, either as PNG or JPEG; (2) it must visually have at least
1 of the 7 conditions; (3) the breast or nipple should be visible;
(4) the image should be hosted in a trustworthy source (ie, from
medical professionals such as physicians, midwife nurses, and
IBCLCs), in which the image must have a word or description
identifying its condition among the 7 classes to be included as
its label; and (5) the visual condition present in the image and
the label provided describing the condition should match. Images
were excluded from the data set if (1) the breast or nipple were
from nonlactating female patients; (2) the condition described
on the label and the visual features of the image did not match;
(3) the breast or nipple was not visible in the image; and (4) the
image did not have any label describing it. A board-certified
nurse practitioner (ie, Certified Nurse Practitioner, Advanced
Registered Nurse Practitioner, or IBCLC) with >15 years of
experience performed a final review of the data set to ensure
that images and labels had no discrepancies.

Data Source
We collected images from diverse sources such as
breastfeeding-related books, articles, web-based blogs for
mothers and physicians, YouTube videos from educative
organizations, and social media platforms (eg, Instagram,

Facebook, and Twitter) of certified health care providers who
would have educative resources for mothers. To ensure diversity
in geographic and racial representation, we conducted image
searches using multiple languages (eg, English, Portuguese,
Spanish, French, and Chinese) and used search engines adjusted
for other countries.

The images were obtained from a diverse group of female
patients with several skin colors and breast and nipple sizes,
with unstandardized image sizes, orientations, backgrounds,
and light sources. In total, the data set consisted of 1078 images,
with 318 images of healthy breasts, 115 images of breast
abscesses, 123 images of dermatoses, 63 images of breast
engorgement, 180 images of mastitis, 82 images of nipple blebs,
and 197 images of nipple damage. As shown in Figure 1 and
Table 1, a healthy lactating breast presented a uniform color,
was free of redness, and had no signs of discharge. Nipples were
expected to exhibit a variety of shapes, including flat, protruded,
or inverted, and to vary in size. In engorgement, images showed
breast and nipple swelling, skin stretched and shiny, and some
light redness due to high milk production. For nipple blebs or
nipple damage, signs of laceration, blood, blisters, and redness
were expected. Mastitis showed swelling, redness, and discharge
of pus or blood in the nipple. Abscess shared similarities with
mastitis but involved worsened redness and pus in the infected
region and may display signs of rupture. Finally, dermatosis
images contained signs of skin rash, breast or nipple uneven
skin tone, and crusting.

Figure 1. Example images from the testing set that were correctly classified and show features of each breastfeeding-related condition: (A) abscess,
(B) dermatoses, (C) engorgement, (D) mastitis, (E) nipple bleb, (F) nipple damage, and (G) healthy.

AI Algorithms
We examined the performance of 5 CNNs commonly used in
computer vision problems: Visual Geometry Group model with
16 layers (VGG16) [58], Resnet50 [59], InceptionV3 [60],
EfficientNetV2 [61], and DenseNet169 [62]. All models were

built with the PyTorch library for image classification, in which
the models had all layers frozen except for the last layer, which
was replaced with a fully connected layer adapted to the number
of classes—2 for binary classification and 7 for the multiclass
task. All models were trained for 100 epochs using the AdamW
optimizer with a learning rate of 3e-4, weight decay of 0.1, and
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batch size of 20. We chose 100 epochs because it was a
converging point where the accuracy no longer increased or
decreased. For the loss functions, we applied Binary
Cross-Entropy with Logits Loss for binary classification tasks,
and for multiclass tasks, we used Cross-Entropy Loss, both
fine-tuned with class weights to strategically adjust for class
imbalances by proportionally penalizing misclassifications in
less represented classes. These models were evaluated using
stratified k-fold cross-validation with 10 folds. To ensure the
robustness of our cross-validation process, we reset any learned
parameters by initializing the models from scratch at the
beginning of each fold. Instead of using the entire image data
set to train the model, we did feature extraction to optimize the
training process (detailed in the Feature Extraction section). We
compared the performance of the 5 models across the same data
and keep the hyperparameters the same: learning rate, weight
decay, batch size, and number of epochs.

Data Set Preprocessing
Before using the images as inputs for the deep learning models,
the images were manually cropped to ensure they were
deidentified and had no irrelevant content, such as unrelated
body areas, clothes, jewelry, identifiable tattoos, or backgrounds,
enhancing the model’s accuracy and performance. The images
were cropped in a 1:1 ratio to prevent image flattening or
warping during resizing and loss of important features. Most
images have breast and nipple tissue concentrated in the center
of the image, thereby focusing the model’s evaluation on the
most relevant areas. Our image preprocessing guidelines
followed similar works in dermatology for AI disease detection
and telehealth applications [63-65], which aim to objectively
show the area of interest for optimized detection and reduce
risks of poorly triaged images.

After cropping the images in a 1:1 ratio and before entering the
deep learning pipeline, we applied some standard
transformations in the data, starting with image resizing. In this
paper, we trained, validated, and tested our data set using 5
different models. Notably, 4 of the chosen models (VGG16,
Resnet50, EfficientNetV2, and DenseNet169) specified the
input images to be resized to 224×224 pixels, and the
InceptionV3 model required input images to be resized to
299×299 pixels. Therefore, we proceeded with the image

resizing according to each model’s requirements. The last
transformation step incorporates normalization of the images,
a procedure where the pixel intensity values are standardized
across the data set. To help the models generalize better for our
data set, we calculated the mean and SD of all images in the
data set to use in the normalization process instead of using the
ImageNet data set pretrained parameters, inspired by the
previous work involving skin disease classification [66].

Data Set Augmentation
In the process of curating the data set, we recognized that the
number of images per class was constrained, given the
complexity of gathering images and variability in the clinical
features of each class. We implemented data augmentation
techniques to mitigate these limitations, reduce the risk of
overfitting, and enrich the data set. These techniques artificially
expanded the data set by generating realistic transformations of
the existing images. We implemented the following 6 data
augmentations that were previously used in data sets involving
skin lesions [63,67]: center zoom, random rotation, brightness,
shear, vertical flip, and horizontal flip. Samples of augmentation
are shown in Figure 2. Before data augmentation, our data set
consisted of 1078 images. After the augmentation, the data set
consisted of 6478 images. The detailed number of samples
before and after augmentation is shown in Table 2.

We evaluated our data set before and after data augmentation.
In the original data set, the 1000 images were allocated for
training and validation, split using stratified k-fold
cross-validation [68] with 10 folds. In this process, 90%
(900/1000) of the data are used for training and 10% (100/1000)
for validation within each fold, as described in Figure 3. The
stratified k-fold maintains the proportion of images in each class
in both train and validation splits, making sure each fold will
be representative of the overall data set. The remaining 78
images were completely excluded from these folds and reserved
exclusively for final testing to assess the model’s performance
on unseen data. After augmenting the original data set, we
expanded it to 6000 images for training and validation.
Similarly, we increased our test set to 468 images to maintain
consistency with the expanded training data, ensuring the
model’s evaluation on unseen examples remains robust.

Figure 2. Samples of augmented data: (A) original, (B) brightness, (C) center zoom, (D) horizontal flip, (E) rotation, (F) shear, and (G) vertical flip.
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Table 2. Detailed number of samples in the data set.

Test samples (aug-
mented), n

Train samples (aug-
mented), n

Test samples, nTrain samples, nData set and classes

7-class data set

426487108Abscess

486908115Dermatoses

48330855Engorgement

5410269171Mastitis

42450775Nipple bleb

5411289188Nipple damage

180172830288Healthy

Binary data set

240394240657Unhealthya

228205838343Healthya

aUnhealthy class combines the classes abscess, dermatoses, mastitis, nipple bleb, and nipple damage, while the healthy class combines healthy and
engorgement, all from the 7-class data set.

Figure 3. Graphical diagram of stratified k-fold cross-validation on a 7-class data set.

Feature Extraction
We performed feature extraction using 5 models pretrained on
the ImageNet data set. This process helped to reduce the number
of computational resources necessary for processing the data
set by transforming images into numerical features, without
losing relevant information. The models were set to evaluation
mode, in which the feature maps are extracted from the final
convolutional layers. These maps were then processed through
adaptive pooling and flattened into 1D arrays. The extracted
features were saved and used as input for the model classifiers.

Training and Evaluation
As previously mentioned in the AI Algorithms section, a total
of 5 CNNs were trained on the data set. We proposed 4 tasks
in this study, which evaluates the CNNs in the following data
sets: (1) multiclass not augmented, (2) multiclass augmented,
(3) binary not augmented, and (4) binary augmented. As
described in Table 2, we performed an additional 2 evaluations
considering a binary model to assess the models’ capacity to
differentiate between healthy and unhealthy images. The
unhealthy class consolidates 5 of the previous conditions:
abscess, dermatoses, mastitis, nipple bleb, and nipple damage.

The healthy class consolidates the original healthy and
engorgement conditions. For this binary evaluation, we included
engorgement images in the healthy condition because it is not
inherently indicative of disease and often resolves without
medical intervention. Furthermore, engorgement shares visual
characteristics with healthy breast conditions, which might not
be distinguishable at an early, nonproblematic stage. All models
underwent k-fold cross-validation, where we collected
performance metrics from each fold and computed their average.
We assessed the models’ performance for the multiclass and
binary data sets using the same metrics: accuracy, precision,
recall, F1-score, and the receiver operating characteristic AUC
(ROC-AUC).

Results

Overview
We collected 1078 unique breast images from the web and
physical resources, 1000 images as part of the training and
validation set, and 78 images as part of the testing set. The
augmented data set has 6000 images for training and validation
and 468 images for testing. In the Multiclass Image Detection
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Evaluation section, we show evaluation results from the
multiclass and binary data sets, which we evaluated before and
after data augmentation. There was no hyperparameter tuning
between each fold, and all models had the same optimizer,
learning rate, weight decay, and batch size.

Multiclass Image Detection Evaluation
We evaluated 5 CNNs on their ability to distinguish between
healthy and 6 breastfeeding-related issues. Table 3 presents the
aggregated evaluation metrics for each model sorted based on
the test accuracy. The precision, recall, F1-score, and overall
area under the ROC-AUC are reported as weighted averages to
account for the class imbalance within the data sets, ensuring
that each class contributes to the final metric in proportion to
its prevalence. For each fold in the cross-validation, a separate
test set was used to evaluate the model, and the metrics
presented are the mean of these evaluations. The best-performing
model was Resnet 50, as it managed to contain the best testing
accuracy, followed by VGG16 and EfficientNetV2 on a small
performance difference. With a similar weighted average setting,
in a one-versus-rest fashion, the models achieved an overall
ROC-AUC of 0.934 for VGG16, 0.929 for Resnet50, 0.912 for
InceptionV3, 0.908 for Densenet169, and 0.872 for
EfficientNetV2. The detailed ROC-AUC per class for each
model is shown in Figure 4.

When applying data augmentation to the multiclass model, we
provided a wider variety of images to help the model better
generalize from the training data while not altering the original
class distribution. In Figure 5 and Table 4, we show the results
across the CNNs after data augmentation, where most of the
models showed improved metrics, with Resnet50 being the
leading model. The models achieved a ROC-AUC of 0.934 for

Resnet50, 0.912 for VGG16, 0.909 for Densenet169, 0.898 for
InceptionV3, and 0.893 for EfficientNetV2.

Looking into the performance of the best model, the Resnet50
with the augmented data set, we can look closer at the metrics
per class of this CNN. Table 5 shows the results for 10-fold
cross-validation, in which the model had an overall consistent
performance across the iterations. Figure 6 presents the
aggregated confusion matrix for the Resnet50 model, in which
we consolidated the predictions across all 10 iterations applied
to the augmented data set. We achieved this aggregation by
taking the median predicted class for each instance over the
multiple folds, synthesizing a singular prediction representing
the consensus of the model’s behavior across the test set.

Out of the 468 images used in the testing set, the model could
correctly classify 341 images. The total images correctly
classified by category are as follows: abscess (24/42;
accuracy=57%), dermatoses (43/48; accuracy=90%),
engorgement (25/48; accuracy=52%), mastitis (26/54;
accuracy=48%), nipple bleb (30/42; accuracy=71%), nipple
damage (41/54; accuracy=76%), and healthy (152/180;
accuracy=84%). The remaining images that were incorrectly
classified happened throughout visually similar conditions and
the conditions that can precede each other. Table 6 summarizes
the selected model’s performance per class on the augmented
test set. The model had difficulty categorizing between
abscesses, which had false positives on dermatoses and mastitis
for 12% (5/42) and 19% (8/42) of the images, respectively.
Breast engorgement had false positives on mastitis and healthy
breasts for 15% (7/48) and 33% (16/48) of the images,
respectively. Mastitis had false positives in abscess (12/54,
22%), nipple damage (9/54, 17%), and healthy breasts (6/54,
11%). About 21% (9/42) of the nipple bleb images were
confused as nipple damage.

Table 3. Average evaluation metrics for the trained models on the not augmented data set (sorted based on performance).

Test set metricsValidation accuracyTraining accuracyData set and model

F1-scoreRecallPrecisionAccuracy

7-class data set

0.637 a0.623 a0.6750.608 a0.7370.907Resnet50

0.6000.5890.6740.6040.6780.818VGG16b

0.5930.5820.6580.6040.6260.779EfficientNetV2

0.6220.6070.680 a0.5740.7270.903InceptionV3

0.5720.5960.6590.5070.771 a0.932 aDenseNet169

aItalicized items represent the best metric.
bVGG16: Visual Geometry Group model with 16 layers.
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Figure 4. Performance of the 5 convolutional neural networks on the 7-class data set: (A) Resnet50, (B) Visual Geometry Group model with 16 layers
(VGG16), (C) EfficientNetV2, (D) InceptionV3, and (E) DenseNet169. AUC: area under the curve.

Figure 5. Performance of the 5 convolutional neural networks on the 7-class augmented data set: (A) Resnet50, (B) InceptionV3, (C) EfficientNetV2,
(D) Visual Geometry Group model with 16 layers, (E) DenseNet169. AUC: area under the curve.
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Table 4. Average evaluation metrics for the trained models on the augmented data set (sorted based on performance).

Test set metricsValidation accuracyTraining accuracyData set and model

F1-scoreRecallPrecisionAccuracy

7-class augmented data set

0.713 a0.715 a0.717 a0.672 a0.907 a0.953Resnet50

0.6490.6370.6920.6170.8440.920InceptionV3

0.59990.5860.6500.6020.8080.803EfficientNetV2

0.5630.5610.6440.5850.8010.755VGG16b

0.5530.6110.6390.5060.8890.954 aDenseNet169

aItalicized items represent the best metric.
bVGG16: Visual Geometry Group model with 16 layers.

Table 5. Results of 10-fold cross-validation for the augmented data set on Resnet50.

F1-scoreRecallPrecisionAccuracy10-fold iterations

0.6990.6990.7050.699Iteration 1

0.7120.7140.7150.714Iteration 2

0.7090.7090.7130.709Iteration 3

0.7270.7290.7300.729Iteration 4

0.7160.7180.7190.718Iteration 5

0.7300.7330.7340.733Iteration 6

0.7180.7200.7220.720Iteration 7

0.7060.7070.7110.707Iteration 8

0.7050.7070.7070.707Iteration 9

0.7130.7200.7150.720Iteration 10

Figure 6. Aggregated confusion matrix for the Resnet50 model for the augmented data set with example images from the augmented data set that were
correctly and incorrectly classified across all folders.
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Table 6. Summary of the detection results per class: accuracy, precision, recall, F1-score, and support (ie, number of samples per class) using the
Resnet50 architecture.

SupportF1-scoreRecallPrecisionAccuracyClass

420.5780.5710.5850.571Abscess

480.8040.8950.7290.895Dermatoses

480.5750.5200.6410.520Engorgement

540.4810.4810.4810.481Mastitis

540.7790.7140.8570.714Nipple bleb

540.7190.7590.6830.759Nipple damage

1800.8440.8440.8440.844Healthy

Binary Image Detection Evaluation
To improve the accuracy of our clinical predictions and reduce
the chances of incorrect results, we simplified our data set of 7
categories to just 2: healthy and unhealthy. The unhealthy
category now includes 5 conditions: abscess, dermatoses,
mastitis, nipple bleb, and nipple damage. The healthy category
now includes the original healthy conditions and engorgement.
Engorgement shares many visual similarities with healthy breast
conditions, which made it difficult for the multiclass models to
identify engorgement accurately. As presented previously, 33%
(16/48) of the images of engorgement were classified as healthy.
Table 7 presents the aggregated evaluation metrics for 5 models
sorted based on the test accuracy.

The accuracy is reported as a balanced score to address class
imbalance, ensuring that each class contributes equally to the
final metric. Precision, recall, and F1-score are reported for the
positive class, with the positive class label specified. For each
fold in the cross-validation, we used a separate test set to
evaluate the model, and the reported metrics are the average of
these evaluations. The best-performing model was the VGG16,
which contained the best testing accuracy, followed by Resnet50
and InceptionV3. The models achieved an overall ROC-AUC
of 0.977 for VGG16, 0.966 for Resnet50, 0.935 for InceptionV3,
0.921 for EfficientNetV2, and 0.910 for Densenet169. The
detailed ROC-AUC for the not augmented and augmented data
set is shown in Figures 7A and 7B, respectively.

When applying data augmentation to the binary model, we
provided a wider variety of images to help the model better
generalize from the training data while not altering the original
class distribution. In Table 8, we show the results across the
CNNs after data augmentation, where most of the models

showed improved metrics, with Resnet50 being the leading
model. The models achieved a ROC-AUC of 0.962 for
Resnet50, 0.956 for VGG16, 0.931 for EfficientNetV2, 0.929
for InceptionV3, and 0.915 for Densenet169.

Looking into the performance of the best model, the Resnet50
with the augmented data set, we can look closer at the metrics
per class of this CNN. Table 9 shows the results for 10-fold
cross-validation, in which the model had an overall consistent
performance across the iterations. Figure 8 presents the
aggregated confusion matrix for the Resnet50 model, in which
we consolidated the predictions across all 10 folds applied to
the augmented data set. This aggregation was achieved by taking
the median predicted class for each instance over the multiple
folds, synthesizing a singular prediction representing the
consensus of the model’s behavior across the test set.

Out of the 468 images used in the testing set, the model could
correctly classify 411 images. The total images correctly
classified by category are as follows: unhealthy (228/240;
accuracy=95%, precision=83.5%, recall=95% and
F1-score=89%) and healthy (183/228; accuracy=80.3%,
precision=94%, recall=80% and F1-score=86.5%). The
remaining images that were incorrectly classified presented
redness (ie, for engorgement cases misclassified as unhealthy;
26/228), and incomplete images (ie, too close or nipple and
breast not fully visible; 12/228). Discussion

The issues that caused model misclassification included (1)
wrong positioning of the breast in the image, (2) common visual
features in the images between the classes, (3) a lack of variety
of images belonging to specific cases in the data set due to
variety limitations, and (4) presence of an extraneous object in
the frame. Figure 1 presents the correct prediction from the 7
classes.
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Table 7. Average evaluation metrics for the trained models on the not augmented binary data set (sorted based on test accuracy).

Test set metricsValidation accuracyTraining accuracyData set and model

F1-scoreRecallPrecisionAccuracy

Binary data set

0.859 b0.760 b0.9900.877 b0.8770.901VGG16a

0.8170.7150.9540.8320.8720.923Resnet50

0.8120.7020.9630.8380.8450.906InceptionV3

0.7690.6290.991 b0.8110.8310.866EfficientNetV2

0.6880.5290.9900.7610.880 b0.935 bDenseNet169

aVGG16: Visual Geometry Group model with 16 layers.
bItalicized items represent the best metric.

Figure 7. Model performance on the binary data set: (A) without augmentation and (B) with augmentation. AUC: area under the curve; VGG16: Visual
Geometry Group model with 16 layers.

Table 8. Average evaluation metrics for the trained models on the augmented binary data set (sorted based on performance).

Test set metricsValidation accuracyTraining accuracyData set and model

F1-scoreRecallPrecisionAccuracy

Binary augmented data set

0.865 a0.801 a0.941 a0.877 a0.933 a0.952 aResnet50

0.8020.6880.9410.8320.8970.877VGG16b

0.8070.7150.9270.8310.8930.920InceptionV3

0.7910.6660.975 a0.8250.8910.885EfficientNetV2

0.7130.5700.9520.7710.9270.946DenseNet169

aItalicized items represent the best metric.
bVGG16: Visual Geometry Group model with 16 layers.
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Table 9. Results of 10-fold cross-validation for the augmented binary data set on Resnet50.

F1-scoreRecallPrecisionAccuracyIteration of 10-fold

0.7020.5570.9480.769Iteration 1

0.6840.5310.9600.761Iteration 2

0.7370.6010.9510.791Iteration 3

0.7180.5700.9700.782Iteration 4

0.7270.5960.9320.782Iteration 5

0.7170.5790.9430.778Iteration 6

0.7450.6230.9280.793Iteration 7

0.6950.5440.9610.767Iteration 8

0.7130.5660.9630.778Iteration 9

0.7000.5480.9690.771Iteration 10

Figure 8. Aggregated confusion matrix for the Resnet50 model for the augmented data set with example images from the augmented data set that were
correctly and incorrectly classified across all folders.

Image Quality
When examining misclassification results in our image data set
study, we found many image quality issues that likely
contributed to the model’s diminished performance. In the
example images from the testing set, Figures 9A-9C demonstrate
good image samples that allow a complete evaluation of the
breast’s condition and, therefore, can be used for the model’s
evaluation. These images fully or almost entirely show the
nipple at a distance that allows diagnosis and does not show
information about the person’s surroundings or extraneous
objects that the model might misinterpret. In Figures 9D and
9E, the main issue in both examples is the lack of nipple or
breast presence or only partial presence, making it difficult for
the model to assimilate them with breast figures; even if there
are signs of mastitis or engorgement in both images, the image
is incomplete. For Figures 9F and 9G, the presence of hands or
fingers, nail polish, and partially occluded areas with extraneous
objects also affects the model interpretation, especially because
we did not train the model with such extra components.

Other issues noted in the preprocessing phase were causing
issues in training and validation loss as well as false positive
and negative detections. For example, having the image of both
breasts instead of one affect prediction accuracy, especially in
cases where one breast has a different condition compared to
the other. The model did not have a large variety of images
showing both breasts. Therefore, we improved the training and
test results metrics once we separated the breasts into different
figures. In addition, we encountered classification problems
with extracted images that show some background components,
such as clothes surrounding the breast, breast pumps, or
segments of the baby’s face or hands. The issues were corrected
for these cases by cropping the image to the area of interest. If
an object was too similar, such as a hand or a baby, we manually
applied blurriness filters in the area and removed saturation so
that only the breast is recognizable. Images with low resolution
also affect the model’s performance, especially if they are
originally smaller than the size determined by the data
augmentation algorithm and were stretched later. Some images
that belonged to this case and were misclassified had their size
manually corrected afterward, and the model properly classified
them afterward.
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Figure 9. Example images from the testing set. (A), (B), and (C) High-quality images, with a full view of the breast and nipple. (D) Image in which
the full breast does not appear, making it hard to classify which condition it belongs to. (E) Although the condition is clear and the full breast is visible,
the nipple is pixelated in the photo, altering the original features that the model is not used to. (F) and (G) Partially occluded breasts, and the presence
of nail polish in the color of the wound also impacts the model’s performance in those cases. The examples of low-quality data provide details about
how to improve data acquisition for future development.

Visual Similarities Between Conditions
Conditions that present common features and can cause
confusion in the diagnosis are mastitis, engorgement, and
healthy. Mastitis shows redness throughout the entire breast,
showing little skin tone differences and making breasts appear
fuller. Some of these features are commonly found in breast
engorgement. However, there are fewer signs of intensified
redness, sometimes no redness at all, but there may be visible
veins and stretched nipples, making them visually similar to
healthy ones. Due to the limited availability of images of breast
engorgement for a separate class and the fact that engorgement
is not necessarily an issue but can become mastitis when not
alleviated, the model classified some engorged breasts as
mastitis. When we included engorgement in the healthy class
for the binary classification, we still got images misclassified
as unhealthy, showing how transition conditions should be
followed more closely.

This highlights the need for (1) increasing the engorgement data
set; (2) working closely with LCs to investigate the need to
categorize conditions that can be a problem but indicate false
positive cases of more serious issues; and (3) exploring the
possibility of using these conditions that have higher errors as
a base for following patient condition progression, where there
is a transition between conditions for improving or worsening
a patient’s situation.

Lack of Variety of Images Belonging to Specific Cases
in the Data Set
For the case of Figure 10A, the engorged breast occurs in an
inverted nipple, showing its center lighter and misclassifying

it as a nipple bleb. Another example of misclassification includes
conditions that occur together, which is the case in Figure 10B,
showcasing a breast abscess concentrated behind the nipple and
with signs of nipple damage. Such an example was one of the
very few occurrences of simultaneous conditions in the data set
and emphasized the reality that LCs have patients with similar
cases, bringing the need to think about systems that (1) recognize
multiple conditions or (2) decide between the most severe one
for patient priority. Figure 10C is a case of granulomatous
mastitis that was classified as nipple damage due to the presence
of nipple scarring, highlighting the fewer occurrences of such
a specific case in the data set.

In addition, Figures 10C and 10D show breasts in the conditions
of engorgement and nipple damage, respectively. For Figure
10D, due to the proximity and nature of the nipple damage with
a blood blister, the reflection on the dot suggests that it could
be a nipple bleb, also misclassifying the image. These
misclassified images with distinct features can also be complex
to classify for humans, mainly because some of these conditions
rarely occur. Given the nature of the images and the lack of
images publicly available with the variety of cases across
different skin tones, breasts, and nipple sizes, we believe that
working with more images involving rare disorders and
providing more data augmentation alternatives can improve the
model’s classification significantly. In addition, Figure 10D
highlights the issue with image angle and proximity. The picture
was taken too close to the breast, having a higher chance of
misclassification.

Figure 10. Images incorrectly classified due to data set variety limitations: (A) an engorged breast with an inverted nipple classified as nipple bleb,
(B) breast with an abscess but also has nipple damage, (C) breast with granulomatous mastitis classified as nipple damage, and (D) nipple damage
classified as nipple bleb.

Limitations
Our findings emphasize the need for improvement in several
areas. As demonstrated in our evaluation, naturalistic images
captured by users have several image quality issues that can
impede the classification system from proper functioning. Thus,

future systems must implement a user interface to properly
guide parents in taking pictures to input the AI triaging system.
This system should provide basic guidelines around how to
frame the breast such that no occlusion is present; not use the
finger to point out parts of interest; and ensure the camera
framing can see the entire breast so that the nipple, areola, and
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breast tissue are all visible. Previous works explore the
importance of implementing guidelines for image assessment
of external diseases, such as in dermatology disease assessments,
and its benefits for better professional evaluation and higher
accuracy in diagnosing conditions [64,65,69]. Guidelines may
be implemented as a set of easy instructions, and more advanced
systems could provide immediate image quality feedback.

Moreover, our system only uses RGB images to triage
breastfeeding-related conditions, not incorporating patient input
regarding pain onset, location, symptoms, and pain levels. These
are critical data for diagnosing with higher accuracy and
providing more effective feedback to patients experiencing
breastfeeding-related pain [70]. Furthermore, automating patient
responses [71-73] and using large language models [74] can
help categorize issues based on their problem description and
image inputs, streamlining the care process and ensuring prompt
patient attention.

Finally, the most significant limitation of this work is how this
evaluation was limited in having a properly balanced data set
to help achieve close-to-perfect performance scores from the
model. Despite these limitations, we addressed imbalance issues
and proved it possible to obtain satisfactory results in detecting
and differentiating the conditions we tested.

Applications and Future Work
This study showcases the potential for high-accuracy
breastfeeding-related condition detection to manage postpartum
challenges better. In addition, we demonstrate the feasibility of
implementing patient support and condition triaging for
smartphone-based apps by using deep learning RGB image
recognition. The model can be integrated into a telehealth
pipeline for postpartum lactation care, helping LCs classify and
organize patients based on the severity of their condition or the
level of certainty regarding their health concerns. In addition,
the system can help track patient disease progression and aid
newly qualified LCs by providing faster decision-making
support.

The evaluation will serve as a baseline for performing a
co-design study with mothers and LCs to evaluate the system
requirements regarding data gathering and privacy concerns
regarding sensitive data sharing. Understanding the benefits of
such a system and recognizing its challenges is essential for
building effective tools that will meet patients’ and health care
providers’ needs. Furthermore, a comprehensive approach is

needed to determine the threshold for flagging a patient as
unhealthy in the AI-mediated lactation care system, combining
quantitative measures (eg, image detection and pain assessment)
with clinical expertise. These improvements will allow this
work to compose applications for (1) patient self-assessment
tools for actionable feedback for breastfeeding pain, (2) reliably
identifying cases that require immediate attention and flagging
them for LCs, and (3) enabling timely interventions and
improved patient outcomes in lactation care. Future work could
envision a fully developed hybrid remote consultation system
where patients answer questions for the assessment stage, and
images are shared between the patient and provider to visualize
the severity of the issue before care is provided. Integrating
visual information and pain assessment in remote consultations
enhances the diagnostic process and enables LCs to deliver
tailored care promptly [75] and help overcome burnout from
these professionals.

Conclusions
This study demonstrates the feasibility of AI-mediated detection
of breast conditions for lactating women. We took the first step
in this domain by using RGB breast images to triage healthy
from unhealthy breasts in mastitis spectrum disease conditions
such as nipple blebs, engorgement, abscess, and mastitis; nipple
damage caused by poor breastfeeding techniques, breast pumps,
and other conditions; and dermatoses caused by a variety of
conditions. We implemented 5 distinct CNN models to classify
images from 2 different data sets, identifying 7 breast conditions
and distinguishing between healthy and unhealthy conditions.
The evaluation of the models based on our data set demonstrated
the feasibility of using CNNs to classify and intervene with
patients who seek remote guidance and management of their
symptoms. Although this model’s performance was good, it
can be improved by increasing the variety of images and
conditions in the data set and implementing the best practices
for image posing for proper image classification, leaving
significant room for improvement. The feasibility of this work
is the initial step toward building tele-lactation services with
better data for LCs. We hope our work will inspire future
exploration to apply technologies to help lactation support
research that can reach more people globally and investigate
ideas beyond laboratory settings. This will allow a more
comprehensive understanding of breast health for postpartum
mothers and empower them to take proactive steps in
maintaining their well-being.
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