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Abstract

Background: Global pandemics like COVID-19 put a high amount of strain on health care systems and health workers worldwide.
These crises generate a vast amount of news information published online across the globe. This extensive corpus of articles has
the potential to provide valuable insights into the nature of ongoing events and guide interventions and policies. However, the
sheer volume of information is beyond the capacity of human experts to process and analyze effectively.

Objective: The aim of this study was to explore how natural language processing (NLP) can be leveraged to build a system
that allows for quick analysis of a high volume of news articles. Along with this, the objective was to create a workflow comprising
human-computer symbiosis to derive valuable insights to support health workforce strategic policy dialogue, advocacy, and
decision-making.

Methods: We conducted a review of open-source news coverage from January 2020 to June 2022 on COVID-19 and its impacts
on the health workforce from the World Health Organization (WHO) Epidemic Intelligence from Open Sources (EIOS) by
synergizing NLP models, including classification and extractive summarization, and human-generated analyses. Our DeepCovid
system was trained on 2.8 million news articles in English from more than 3000 internet sources across hundreds of jurisdictions.

Results: Rules-based classification with hand-designed rules narrowed the data set to 8508 articles with high relevancy confirmed
in the human-led evaluation. DeepCovid’s automated information targeting component reached a very strong binary classification
performance of 98.98 for the area under the receiver operating characteristic curve (ROC-AUC) and 47.21 for the area under the
precision recall curve (PR-AUC). Its information extraction component attained good performance in automatic extractive
summarization with a mean Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score of 47.76. DeepCovid’s final
summaries were used by human experts to write reports on the COVID-19 pandemic.

Conclusions: It is feasible to synergize high-performing NLP models and human-generated analyses to benefit open-source
health workforce intelligence. The DeepCovid approach can contribute to an agile and timely global view, providing complementary
information to scientific literature.
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Introduction

The unprecedented outbreak and rapid spread of COVID-19
have led to detrimental impacts on almost the whole population
worldwide. Early detection of such an outbreak or its impact
on the population can help policymakers identify intervention
points and set priorities and policies [1,2]. This detection, also
called public health surveillance (PHS), is defined as “the
continuous, systematic collection, analysis, and interpretation
of health-related data needed for the planning, implementation,
and evaluation of public health practice” [3,4]. Traditional PHS,
which is mostly passively conducted, is often limited by data
quality and timeliness, restricting the accurate and quick or even
instantaneous identification of outbreaks and subsequent impacts
and adoption of an effective intervention [2,5]. PHS has evolved
over time as technological advances provide an opportunity for
more accurate and timely information collection and analysis
[6].

Data-driven artificial intelligence is one of the innovative
technologies that can address the limitation of traditional PHS
[7]. The open-source textual data from publicly available sources
that is of high frequency, high volume, and relatively low effort
to collect provide a great potential for the application of natural
language processing (NLP), a subset of artificial intelligence,
to process and analyze large amounts of natural language data
[8,9]. Moreover, deep learning NLP models can be further
fine-tuned on a large variety of tasks that could reach
performance on par or if not better than humans [10,11]. One
of the most popular data sources used for NLP is social media,
such as Twitter [12], Facebook [13], Sina Weibo, and Yahoo!,
and online forums like Reddit [14], to name a few.

There is a growing volume of literature adopting NLP techniques
to extract and analyze social media data for PHS including
monitoring public sentiments and health behaviors, predicting
a pandemic, and detecting misinformation [1,14-18]. However,
there could be potential bias from using social media data due
to selected data sets that could overlook underrepresented
population groups (generalizability) or contain misinformation
(validity) [19-21]. On the other hand, Open Source Intelligence,
which includes published and broadcasted news reports, may
play a central role in national security, including regarding
health emergencies, which often are highly covered. However,
such news sources have been less leveraged in the existing
models and literature [19,22]. Varol et al [22] published one of

the few pieces of literature analyzing news coverage of CNN
and the Guardian by using clinical and biomedical NLP models
from the Spark NLP for Healthcare library to understand adverse
reactions to drugs and vaccines that are used to combat the virus
[22].

Although most PHS studies applying NLP on open-source data
from publicly available sources focused on the population in
the community [1,6,23], less is understood about the frontline
health workers who are essential for the provision of health care
services yet most directly affected by the pandemic. Compared
with the general population, health workers were more
susceptible to infections due to frequent contact with infected
patients [24]. In addition to higher rates of infection and death,
health workers also faced challenges from discontinued
education or training, financial hardship, and impaired health
and wellness due to the pandemic, which could further
negatively affect the quality of services and patient outcomes
[25]. Hence, it is necessary to have a timely understanding of
the different impacts of COVID-19 on health workers in order
to construct a targeted intervention.

In this study, we leveraged millions of worldwide news articles
in English from publicly available sources collected by the
World Health Organization (WHO) Epidemic Intelligence from
Open Sources (EIOS) database. We developed an NLP
framework named DeepCovid that automatically finds then
summarizes relevant articles from EIOS. DeepCovid was
designed by a joint team of computer scientists, medical doctors,
and population health experts. Beyond the COVID-19 use case,
we present a framework that can be leveraged in other PHS
applications and support health policymakers with strategic
intelligence.

Methods

In this section, we describe each component of DeepCovid. The
overall system, which aims to classify, arrange, and reduce a
big volume of data comprising news articles, is pictured in
Figure 1. The first part of the system aims to find relevant
articles, and it trains and applies a deep learning classifier onto
the database (information targeting). The resulting news articles
move on to the next stage of information extraction, which aims
to summarize relevant articles. An extractive summarization
model summarizes each article into 3 sentences. Corresponding
summaries are then analyzed by human experts to produce
reports.
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Figure 1. DeepCovid model architecture overview (read from bottom to top), with colored blocks corresponding to machine learning models and gold
arrows indicating actions necessitated from human experts. BERT: Bidirectional Encoder Representations from Transformers; EIOS: Epidemic Intelligence
from Open Sources; RoBERTa: Robustly Optimized BERT Pretraining Approach.

Rules-Based Classification
After preliminary data cleaning, which included deduplication,
we built inclusion rules for each of the 6 predetermined topics
separately, validating choices through human assessment of
precision. The end goal was to narrow the database to a set of
relevant articles for each topic of interest: An article was kept
if and only if it passed all rules for this topic. Our rules were
independent from the lexical tagging already performed within
EIOS comprising health care professions and a COVID-19
category.

Rules were designed on both the article title and body. Rules
rely on sets of manually identified keywords listed by domain
experts and the logical operators OR and AND. Rules can be
inclusive, meaning the article is kept if some of the keywords
are present, or exclusive, discarding the article if it contains
some keywords. There could be multiple such operators nested
to form a single rule, such as one keyword among
keywords_list_1 in the body OR one keyword among
keywords_list_2 in the body AND two keywords among
keywords_list_3 in TITLE. When working on the article text
body, some rules scan for at least one sentence being positive,
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in which case the entire article is considered to have passed the
given rule. We list the set of rules for each topic in Multimedia
Appendix 1.

After filtering news articles through rules, we also mapped each
article to a unique country among its sets of countries tagged
by EIOS. On average, each article has 2.07 such initial country
tags from EIOS. Reducing to a single country tag reduces noise
and enables the creation of pools of relevant articles per country,
which allows further synthesis of key information. When country
names are present in the title or first article sentence, we mapped
the article to the most frequent such country. Otherwise, we
used a deep learning embedding approach. Specifically, we
collected all LOC (denoting location) and PERSON (denoting
a person’s name [eg, Barack Obama]) entities from the spacy
library [26] in the article body, concatenated them, and encoded
them with a Robustly Optimized Bidirectional Encoder
Representations from Transformers (BERT) Pretraining
Approach (RoBERTa) model [27]. RoBERTa CLS token
embeddings then yield a representation with the desired
behavior. We also encoded each country name with the same
RoBERTa model and returned the country whose representation
maximizes the cosine similarity with the article representation.

Deep Learning–Based Classification

Architecture
The aforementioned rules-based classification provides a hard
assignment for each article to a predetermined topic: Either the

article is marked as relevant for at least one topic, or it is not,
and it is discarded. There are major limitations to such an
algorithm: Articles found as positive may be irrelevant as the
presence of key terms does not entice a core focus of the topic
of interest (false positives), and many relevant articles might
have been missed (false negatives), for instance if no keyword
is found within the article. Designing a system that avoids false
positives was, however, out of the scope for this study. To tackle
false negatives and improve recall, we built a classifier based
on a deep learning model: Such models learn a dense vector
representation of a news article that can be used for further
classification of the article without being limited by the specific
choice of words in the text. The classifier assigns to each article
a soft probability that it is positive for each of the topics of
interest in a multilabel binary classification fashion.

Following the success of large pretraining language models for
natural language understanding [27-32], we selected
RoBERTa-base [27] as a backbone language model. As input
to RoBERTa, we concatenated the title and article body and
truncated the resulting string to the maximum input length of
512 tokens. We added 2 fully connected layers, one with a
hidden size of 768, followed by rectified linear unit (ReLU)
nonlinearity [33], and the last one with a hidden size of 6
(number of topics of interest), followed by Sigmoid as the final
output layer. An overview of the classifier architecture is shown
in Figure 2.

Figure 2. Deep learning classifier architecture. ReLU: rectified linear unit; RoBERTa: Robustly Optimized BERT Pretraining Approach.
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Deep Classification Labels Construction
We trained the deep classifier with the multilabel binary
cross-entropy loss using the rules-based classification hard
assignments as labels. Due to the very large volume of articles
and a low expected fraction of relevant articles, it is unrealistic
to collect human annotations for a training set for classification.
We made a 90%-10% random training-validation split over the
28-month period from January 2020 to April 2022. The
imbalanced nature of the classification problem was challenging:
There were a few thousand positives but a few million negatives.
Initial labels were provided by rules-based hard assignment. To
ensure clean positive labels, volunteer human experts scanned
all positive articles and discarded irrelevant ones. From the
resulting labeling, in the training set, we kept all positive
samples but randomly subsampled 100,000 negative articles.
No class rebalancing was performed on the validation set.

After training the first version of the model, we made an
inference on the entire 28-month data set and sorted down
articles by decreasing the predicted probability for each topic.
Human experts were asked to review articles initially flagged
as negative but among the top 500 highest predicted scores,
which significantly augmented the number of positive labels.
After this labeling enrichment, we ended with 6512 positive
articles in the training set, leaving 100,000 negative articles
(positive ratio: 6.11%). The final validation set consisted of
270,324 articles, including 723 positives and 269,601 negatives
(positive ratio: 0.27%). We fine-tuned the deep classifier again
with these augmented sets of labels.

In both fine-tuning rounds, we trained for 5 epochs, with a

learning rate of 1e–5 and the Adam optimizer [34]. We used a
batch size of 4 and evaluated the model every 5000 optimization
steps. We warmed up the learning rate linearly over the first
5% training steps, then linearly decreased it to 0 in the following
95% steps. We measured performance with the area under the
receiver operating characteristic (ROC) of the area under the
curve (AUC) metric and performed early stopping, saving a
new checkpoint whenever the validation AUC improved.

For inference and real-time use of the system, we kept all articles
with a predicted probability either high enough (>0.95) or within
3 times the number of articles flagged as positives by the
rules-based model for each topic.

Extractive Summarization
Once the number of relevant articles has been narrowed through
article-level classification, the goal of summarization is to give
the user a high-level, concise summary of the key information
present in the article. Despite recent progress in abstractive
summarization, such models are known to be prone to
hallucinations [35-37], a problem partly fueled by the fact that
commonly used fine-tuning data sets themselves contain
hallucinations [35,38]. Given the critical use case for
DeepCovid, we decided to use an extractive summarization
model [39,40]. In the following sections, we describe how we
built 2 sets of extractive summarization labels to fine-tune
DeepCovid.

Summarization Labels
Unlike the classification model, the summarization model
operates on a manageable volume of news articles. Therefore,
we decided to collect human annotations. We asked volunteer
graduate students, all fluent English speakers, to label articles
among the positives from the rules-based classification.
Annotators were asked to highlight between 1 and 3 sentences
forming a global extractive summary of the article. We obtained
annotations for 4062 unique articles, with at least 300
annotations per topic.

To ensure human agreement, we collected labels from 3 different
humans for each article for 1 of the topics. Human labels were
lists of selected sentences, and we used Fleiss kappa [41] and
Gwet AC1 [42] as metrics to measure agreement. The two are
complementary, as Gwet AC1 does not account for chance,
unlike Fleiss kappa. The Fleiss kappa was 34.23, and for this
metric, random agreement stands at 0. The Gwet AC1 was
83.80, with a random agreement of 19.16 in our setup. These
values were in line with reported results in extractive
summarization research [43], and we concluded that the labelers
agreed enough in this task for us to collect a single human
annotation per data point. The distribution of sentence positions
selected by the human annotators is shown in Multimedia
Appendix 2.

On top of these human global summarization labels, we also
made use of pseudolabels from the rules-based classification
model to obtain topic-focused summarization labels. Indeed,
all but Topic 4 rules make use of sentence-level inclusion rules
(eg, the article is kept if at least 1 sentence contains 1 of the
keywords). We treated such sentences as pseudolabels for
extractive summarization and built a set of 7491 pseudolabels.

Summarization Fine-Tuning
We used BERTExt, a state-of-the-art extractive summarization
model, as a sentence selection model [44]. Since our data had
uppercase and lowercase letters, we used bert-base-cased as the
backbone pre-trained BERT model in BERTExt, downloading
it from the HuggingFace transformers library [45]. To fine-tune
jointly for both sets of the aforementioned labels, we doubled
the prediction head. This means that the model assigned 2
probabilities to each sentence of the article: 1 to predict if the
sentence should be in the global summary and 1 to predict if
the sentence should be in the topic-focused pseudosummary.
Each prediction head gave us a ranking of sentences, sorted by
decreasing predicted probabilities. We also summed both
predicted probabilities and sorted sentences by decreasing sum.
We output the first 3 sentences of this final ranking as the final
predicted summaries. These summaries capture both a flavor
of the global sense of the article and a flavor of the topic-specific
information contained in the article.

Given the small volume of available labels from each label
source, we fine-tuned BERTEx on the CNN-DailyMail
(CNN/DM) data set first [46]. CNN/DM is arguably the most
widely used data set in both extractive and abstractive
summarization [46-48] and comprises more than 300,000 news
articles with corresponding human-written highlights (bullet
points) serving as abstractive summaries. Following prior work
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[49], we built extractive summary labels by greedily matching
each bullet point summary sentence to the source sentence
maximizing Recall-Oriented Understudy for Gisting Evaluation
(ROUGE)-1 with it.

We randomly sampled 1800 (300 for each topic) articles to form
a validation set, leaving the remaining 6708 articles marked
positive by rules-based classification as a training set. We only
included articles with human global summarization annotations
in the validation set. Since articles in the training set may have
lacked either the topic-specific or global summary, we only
computed training loss on the available labels, masking out
predictions in the case of missing labels. We trained the model
for 10 epochs and evaluated the model every epoch. We used

the mean of ROUGE-1, ROUGE-2, and ROUGE-L as metrics
[50] and performed early stopping. We trained with the Adam

optimizer with a learning rate of 1e–5 [34]. We warmed up the
learning rate linearly over the first 10% training steps, then
linearly decreased it to 0 in the following 90% steps. The same
optimization procedure was used when performing the initial
fine-tuning on the CNN/DM data set.

System Flow
In Figure 3, we show the interplay of each component of our
DeepCovid system, with the corresponding data subset size.
Our system automatically narrows down the raw data of 2.8
million articles to topic-focused short summaries of highly
relevant articles.

Figure 3. Flowchart for DeepCovid showing the step-by-step process transforming a raw data set of 2.8 million news articles (top left) to high-level
reports (bottom-right). Boxes with an orange top-right ring indicate the need for human annotation, while boxes with a blue ring correspond to training
a deep learning model. EIOS: Epidemic Intelligence from Open Sources; Val: validation; WHO: World Health Organization.

Results

Data Set
We used data from the EIOS database ranging from January 1,
2020, to June 30, 2022 (totaling 30 months). EIOS tracks news
articles on the web from more than 12,000 publicly available
news outlets in more than 200 countries and territories. Data
were filtered for the English language and with keywords
relevant to the health workforce (Multimedia Appendix 3). Each
article in the resulting data set was tagged by EIOS in-house
lexical classification patterns with at least 1 matching keyword
(there could be more). Verification using the langid package
confirmed that more than 99.8% of the articles were indeed in
English [51]. The initial data set contained 3,235,657 news
articles from 3472 different unique sources and tagged with 243
different locations. After removing duplicate articles based on
the title, our final working data set contained 2,758,825 unique
news articles. Further statistics on the working data set can be
found in Multimedia Appendix 4.

Information Targeting Through Article-Level
Classification
The information targeting component of DeepCovid serves the
purpose of reducing noise in the data set to narrow it down to
only the relevant articles for each of the 6 topics of interest from

WHO. Namely, these topics of interest are (1) policy regarding
management of and investments in the health workforce, (2)
education of health workers, (3) vaccination of health workers,
(4) strikes and industrial actions by health workers, (5) mental
health issues of health workers, and (6) health worker infections
and deaths.

We first created a rules-based classification, and the outputs
were used to train the deep learning–based classification
component of DeepCovid. Rules are lexical matches, with
inclusion and exclusion criteria, and are defined at both the title
level and article body level. The detailed list of rules for each
topic can be found in Multimedia Appendix 1. This rules-based
classification component was built to improve the precision of
EIOS-retrieved articles and reduce the volume of irrelevant
articles. We assessed the performance of the rules-based
classification using human evaluation. Among articles marked
as positive by the rules-based system, we subsampled 50 articles
randomly for each topic and asked a human domain expert to
label them as relevant with regards to the topic or not. Three
human experts volunteered, and each human rater was assigned
2 different topics.

Rules-based classification number of positives (N) per topic,
relevancy rate (precision), and overlap between topics are shown
in Table 1. Overall, the rules-based classification identified a
very small fraction of articles (8508 in total, 0.053% on average

JMIR AI 2024 | vol. 3 | e55059 | p. 6https://ai.jmir.org/2024/1/e55059
(page number not for citation purposes)

Ravaut et alJMIR AI

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


across the 6 topics) with a high fraction of them (258/300, 86%)
being marked relevant by humans, proving its high precision.
However, we highlight that this high precision is achieved after
2 rounds of article selection through lexical rules (the rules in
EIOS and the subsequent proposed rules by us), and it is
therefore not the “true” precision that would be achieved on a

large random sample of articles crawled from the web. We also
acknowledge the inherent subjectivity in human assessment of
relevancy, and judgments may vary from one human to another
[52,53]. Besides, as seen in the confusion matrix, the overlap
between topics is small: for instance, of 1125 articles identified
for Topic 1, 9 (0.8%) of them also belong to Topic 2.

Table 1. Rules-based classifier for the 28 million-article data set from January 2020 to April 2022.

Overlap between topicsc, nRelevant, n (%)bPositive rate, n (%)aTopic

Topic 6Topic 5Topic 4Topic 3Topic 2Topic 1

19509—d45 (90)1125 (0.041)Topic 1

52163—945 (90)1706 (0.062)Topic 2

812214—3044 (88)2077 (0.075)Topic 3

456—146544 (88)1102 (0.040)Topic 4

41—562221936 (72)1444 (0.052)Topic 5

—414815144 (88)1331 (0.048)Topic 6

aMarked relevant by the rules-based system; overall mean: 1464/28,000,000, 0.053%.
bThe articles tagged by rules (among a random sample of 50) that were confirmed as relevant to the topic by human experts; overall mean: 43/50, 86%.
cSubset of articles that also belong to the topic listed in the column.
dNot applicable.

By construction, the rules-based classification identified a high
precision subset of news articles (86% relevancy rate). However,
it has no mechanism to ensure high recall, which is one of the
motivations behind subsequently training the deep classifier.
After training the first version of the deep classifier (tagged as
the “initial model”), we made an inference on the entire data
set and asked human evaluators to examine the articles that did
not past the rules but among the top 500 highest predictions
(the “Relevant” column). This corresponds to articles initially
missed by the rules yet flagged as extremely relevant by the
deep learning model. Such a relabeling process enabled us to
enrich the rules-based labels with human annotations while
avoiding a human inspection of 2.8 million news articles. Human
annotation for this phase was done with the same volunteers as
in the previous phase. We then trained the deep classifier again
(tagged as the “final model”) with the cleaner labels and

evaluated it with the AUC. To understand what relative ranking
the deep classifier assigned to articles marked positive by rules,
we also report the Precision@k.N and Recall@k.N, where N is
the number of articles marked positive by the rules-based
process and k is an integer (eg, 1, 2, or 10). Table 2 reports the
relevance and performance of the results.

The deep learning classifier achieved a consistent and very high
AUC across topics (88.54 on average), attesting to both the
strength of the signal singled out by the rules and the capacity
of the deep classifier to accurately learn it. Indeed, if
human-curated lexical rules were poorly designed, a
high-capacity pretrained language model would struggle to
capture their topic and linguistic style such as words, word
patterns, and phrases. The high percentage of relevant negatives
among high prediction scores also shows promising capacity
in the model to ensure higher recall.
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Table 2. Deep learning classifier performance on the classification validation set.

Performance of the final modelRelevance of the initial modelTopic

Rec@ 10NRec@f 2NPrec@ 10NPrec@e 2NPR-AUCdROC-AUCcRelevant, n (%)bHigh-score negativesa, n

58.6740.005.8720.0022.7799.33255 (82.5)309Topic 1

57.8639.295.7919.6424.5594.87234 (78.3)299Topic 2

97.8573.129.7836.5642.7599.92270 (99.3)272Topic 3

100.0097.5010.0048.7584.6299.98150 (99.3)151Topic 4

80.6059.708.0629.8539.6599.86161 (73.2)220Topic 5

98.1584.269.8142.1368.7299.93227 (98.7)230Topic 6

82.1965.658.2232.8247.2198.98168.93 (88.5)216.17All topics,
mean

aArticles initially missed by the lexical rules (negatives) but were among the top 500 highest predicted score by the deep learning model.
bHigh-score negatives identified as relevant to the topic by human experts.
cROC-AUC: area under the receiver operating characteristic curve.
dPR-AUC: area under the precision recall curve.
ePrec@: precision scores at different thresholds.
fRec@: recall scores at different thresholds.

Information Extraction With Extractive
Summarization
The subsequent module of DeepCovid tackled information
extraction, which identified the key takeaways among articles
previously marked as relevant. We evaluated the summarization
performance with the standard ROUGE metric [50], averaging
its 3 commonly used versions ROUGE-1/2/L. We report the
mean ROUGE achieved by the extractive summarization
component of DeepCovid on each topic in Table 3, alongside
ablated versions with which the model had access to less training
supervision. We experimented with sentences selected by lexical
rules (“selected sentences”), sentences annotated by humans

(“human sentences”), and fine-tuning on the CNN/DM news
summarization data set.

CNN/DM means that the model was fine-tuned on the news
summarization benchmark CNN/DM first [46]. Selected refers
to the model being fine-tuned with sentences flagged by the
rules-based classification as labels (conveying a pseudosummary
focused to each topic), and human refers to fine-tuning with
human annotations that were designed to build a global
summary. In practice, we used the model fine-tuned with all 3
options (denoted as the final model), even though it reached
slightly less performance than CNN/DM + human, as we found
its predicted summaries were more focused toward the topics
of interest.

Table 3. Extractive summarization Recall-Oriented Understudy for Gisting Evaluation (ROUGE) results (mean of ROUGE-1, ROUGE-2, and
ROUGE-L).

MeanTopic 6Topic 5Topic 4Topic 3Topic 2Topic 1Model supervisiona

24.2325.3425.3525.3727.6519.7621.90None (random model weights)

44.7337.7947.2050.7749.9637.2745.41Selected sentences

45.1337.9648.7149.5848.6738.2247.61Human sentences

46.5842.0051.8547.7847.1938.4952.15Selected + human sentences

43.4335.8148.1948.5745.8636.8045.33CNN/DMb

39.7535.5544.8240.0844.6528.6944.71CNN/DM + selected sentences

49.2343.0855.6149.0849.7543.9153.97CNN/DM + human sentences

47.7642.9952.4547.5549.0840.7453.76CNN/DM + selected sentences + human
sentences (final model)

aSignal with which the extractive summarization model was trained.
bCNN-DM: CNN-DailyMail.
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Discussion

Main Findings
The challenge posed by the pandemic offered an opportunity
to improve PHS through the use of innovative NLP techniques
[7]. Our newly developed framework DeepCovid has
demonstrated how to semi-automatically extract precise, targeted
news information on health workers concerning the COVID-19
pandemic. Leveraging a global, million-article scale news article
database, this framework is able to provide global and
population-level information on how COVID-19 impacts health
workers that traditional methods (eg, survey, media monitoring)
may not be able to do in a short time. With a generic and
reusable method that can deal with a high volume of news
articles published worldwide, DeepCovid can be used for any
health care–related events such as a future similar pandemic
and potentially be extended for events beyond the scope of
health care, such as financial crises. The DeepCovid framework
can assist policymakers with providing fast responses to future
similar public health concerns.

Putting DeepCovid in place only requires 4 human actions (see
Figure 1): (1) design classification rules to narrow the data set
to relevant articles, (2) relabel (some of) the resulting positive
and negative articles, (3) label a small set of global extractive
summaries to seed the summarization model, and (4) finally,
aggregate extractive summaries into reports. All 4 steps require
a moderate volume of work from human workers, on the order
of a few hours to a few days from 2 humans, which is several
orders of magnitude lower than what would be required to
manually go through such a scale of data as that which we
applied the system, proving the efficiency of DeepCovid.
Furthermore, a simpler version of DeepCovid bypassing human
actions (2) and (3) leads to a system with reasonable
performance, as the key human interventions are the initial (1)
and final (4) ones.

Existing work using machine learning to address system-level
challenges arising from the COVID-19 pandemic does not cover
the multiple impacts of the pandemic on the worldwide health
workforce. We note one study that predicted the mental health
of Chinese medical workers with logistic regression analysis
[54]. In the realm of NLP applications, another study predicted
sentiment from tweets by Indian citizens using BERT to assess
public opinion during a lockdown [55]. Another paper leveraged
long short-term memory networks to predict the number of
deaths from WHO data in 3 countries [56]. The most relevant
system to ours is CO-Search [57], which is a multicomponent
deep learning pipeline enabling the user to find relevant
documents with regards to a query; answer questions; and
summarize them, leveraging scientific publications from the
CORD-19 challenge [58]. However, the CO-Search input data
are wildly different from the news data in our study.

With a data set the scale of EIOS, topic-specific precision and
recall evaluation remain an open research issue. We showed
that DeepCovid rules-based classification may reach high
precision through human evaluation, but this is at the cost of 2
rounds of lexical filtering (EIOS and DeepCovid), and human
precision evaluation itself is not perfect due to the subjectivity

among raters. DeepCovid proposes a mechanism to boost recall
of relevant articles through deep learning, yet “true” recall
remains impossible to measure as it would involve an extremely
costly human inspection of 2.8 million articles. Language
models like the ones used in DeepCovid are not equipped with
semantical understanding of what classification rules are
designed to capture and merely rely on statistical co-occurrence
patterns, which enables relevant articles to be expanded with
other articles containing similar topics albeit phrased with
different lexicality. Striving for perfect precision and recall may
need other, complementary tools to deep pretrained language
models, such as knowledge graphs.

With regards to optimization, DeepCovid's double objective
makes training in a single phase complicated. Document
classification and extractive summarization are different types
of tasks, and reducing them to a single model addressing both
might compromise performance, motivating our choice to keep
separate modules, each proven to be a leading approach, even
though this adds some complexity and requires 2 separate
training processes. Another limitation of our work lies in the
fact that human intervention remains compulsory at steps (1)
and (4).

Recent progress in large language models (LLMs), sometimes
referred to as foundation models, such as GPT-3 [59] or GPT-4
[60], opens a new perspective. Since these models can perform
many complicated tasks in few-shot in-context learning [61],
or even zero-shot, including summarization [62], we believe
that they hold great promise for automating the final step (4)
and could synthesize and combine insights from the set of
extractive summaries, even more so by decomposing report
writing into a template of specific instructions, which has been
shown to dramatically boost performance of these models [63].
Acting as agents, LLMs can work hand-in-hand with human
experts to create new annotations in cases where annotations
are scarce [64], which in turn can be successfully used to
fine-tune smaller language models. However, we highlight that
LLMs are not a silver bullet since they are hidden behind a
paywall and may hallucinate subtly, generating false content
that only seasoned domain experts would spot at first glance
[65]. We leave the evaluation of the performance of LLMs to
better streamline DeepCovid to future work. Emergent
capabilities of LLMs such as reasoning [63,66,67] may also be
explored for information targeting: from a classification
perspective in order to build classifiers (potentially bypassing
the construction of lexical rules) and for evaluation of
classification precision.

Limitations
The findings of this study should be interpreted in light of
several limitations. Although DeepCovid can be a useful tool
to extract information from open-source data and assist
policymakers during the process of policymaking, it should not
be the sole tool for decision-making. What is more important
and essential to fight future similar emerging diseases is
cross-jurisdictional and cross-functional coordination and
collaboration [21].

First, our study was restricted to English-only news articles.
This decision was based on the abundance of English sources
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compared with other languages. From the perspective of the
data source, a model that is trained on English-only news articles
is likely to miss information from non-English reported news,
resulting in biased samples and underestimating the pandemic
impact on underrepresented groups. Technically, a multilingual
version of DeepCovid is very feasible. It would involve
replacing each deep learning component with a multilingual
model version (eg, mBERT instead of BERT for the information
targeting encoder), which we leave to future work. With model
improvement that is compatible with more languages and
modalities, DeepCovid will better provide representative
information for the global population.

Another limitation lies in the need for expert annotations to
bootstrap fine-tuning for each component. This is
time-consuming but critical for the final system performance.
We envision that new capabilities of LLMs would in the future
enable us to replace human annotators with LLM-generated
annotations instead, particularly with powerful LLMs such as
GPT-4. However, although annotation time would be reduced,
using the GPT-4 application programming interface still bears
a significant cost. Besides, annotations generated by LLMs
would still need to be validated by human experts.

Although broad and valuable, the data set contains a relatively
narrow type of news coverage, hence additional insights could
be gained by expanding the data sources to social media
channels and broadening the format to multimedia content such
as videos. The data and findings are impacted by specific

strategies for open-source collection that can manifest with, for
example, underrepresentation of some countries. Additionally,
the current work has not included the identification and
exclusion of fake news or reporting biases. Further improvement
focusing on bias removal techniques will be needed in order to
remove bias from the training data inherited by DeepCovid.

Last, we highlight that DeepCovid synthesizes post hoc
information, as news articles usually cover recent (yet, past)
events. Findings from DeepCovid may be most useful if acted
on early and may be of little use to predict future events.

Conclusion
In this study, we introduced the DeepCovid system. Relying on
2 deep learning–powered components, DeepCovid automatically
finds topic-focused relevant news articles among millions of
candidates before writing succinct extractive summaries from
them. We validated the performance of each component through
both human evaluation and automatic metrics, confirming the
high performance of the system: Information targeting can reach
an AUC in the 98-99 range, and information extraction has an
average ROUGE score of 47-48. Core elements of DeepCovid
were successfully used to power the Workforce Intelligence
from Open Sources project commissioned by the WHO. The
findings are to be published in a separate paper. DeepCovid
methodology also makes it suitable for use cases other than
COVID-19, for instance global events with large news coverage
from open sources.
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ReLU: rectified linear unit
RoBERTa: Robustly Optimized BERT Pretraining Approach
ROC: receiver operating characteristic
ROUGE: Recall-Oriented Understudy for Gisting Evaluation
WHO: World Health Organization
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