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Abstract

Background: Opioid use disorder (OUD) is a critical public health crisis in the United States, affecting >5.5 million Americans
in 2021. Machine learning has been used to predict patient risk of incident OUD. However, little is known about the fairness and
bias of these predictive models.

Objective: The aims of this study are two-fold: (1) to develop a machine learning bias mitigation algorithm for sociodemographic
features and (2) to develop a fairness-aware weighted majority voting (WMV) classifier for OUD prediction.

Methods: We used the 2020 National Survey on Drug and Health data to develop a neural network (NN) model using stochastic
gradient descent (SGD; NN-SGD) and an NN model using Adam (NN-Adam) optimizers and evaluated sociodemographic bias
by comparing the area under the curve values. A bias mitigation algorithm, based on equality of odds, was implemented to
minimize disparities in specificity and recall. Finally, a WMV classifier was developed for fairness-aware prediction of OUD.
To further analyze bias detection and mitigation, we did a 1-N matching of OUD to non-OUD cases, controlling for socioeconomic
variables, and evaluated the performance of the proposed bias mitigation algorithm and WMV classifier.

Results: Our bias mitigation algorithm substantially reduced bias with NN-SGD, by 21.66% for sex, 1.48% for race, and 21.04%
for income, and with NN-Adam by 16.96% for sex, 8.87% for marital status, 8.45% for working condition, and 41.62% for race.
The fairness-aware WMV classifier achieved a recall of 85.37% and 92.68% and an accuracy of 58.85% and 90.21% using
NN-SGD and NN-Adam, respectively. The results after matching also indicated remarkable bias reduction with NN-SGD and
NN-Adam, respectively, as follows: sex (0.14% vs 0.97%), marital status (12.95% vs 10.33%), working condition (14.79% vs
15.33%), race (60.13% vs 41.71%), and income (0.35% vs 2.21%). Moreover, the fairness-aware WMV classifier achieved high
performance with a recall of 100% and 85.37% and an accuracy of 73.20% and 89.38% using NN-SGD and NN-Adam, respectively.

Conclusions: The application of the proposed bias mitigation algorithm shows promise in reducing sociodemographic bias,
with the WMV classifier confirming bias reduction and high performance in OUD prediction.

(JMIR AI 2024;3:e55820) doi: 10.2196/55820
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Introduction

Background
Opioid use disorder (OUD) and opioid overdose (OD) continue
to remain a major public health crisis in the United States. OUD
significantly contributes to overdoses, and >81,000 individuals
lost their lives because of OD from April 2021 to April 2022
[1-3]. Meanwhile, the COVID-19 pandemic has worsened the
ongoing OUD and OD epidemic [4]. In addition, the economic
burden of OUD in the United States is overwhelming, with an
estimated annual cost exceeding US $786 billion in 2018 [1].
Therefore, it is critical to design interventions to facilitate an
informed prescribing practice and monitoring of opioids to
reduce the prevalence of OUD and subsequent drug overdose
deaths.

Previous studies have used conventional regression-based
methods to identify the significant predictors of OUD and OD
[5-16]. More recently, machine learning (ML) methods have
shown great potential in developing reliable predictive tools for
identifying individuals at higher risk of OUD and OD [17]. ML
methods can handle the complex nonlinear relationship among
predictors and outcomes and perform well on imbalanced data
[18]. Using different features as inputs, ML can predict the risk
of developing OUD and OD with higher predictive accuracy
[19,20]. Previous studies have developed random forests
[16,21-24], decision trees [22,24], gradient boosting
[16,23,25,26], neural networks (NNs) [5,16,27,28], and long
short-term memory networks [24,28,29] to predict OUD and
OD with impressive predictive performance.

Prior studies also reported that the risk of OUD or OD varies
based on several individual-level protected sociodemographic
features [30-32], potentially causing user-related bias. For
instance, economically disadvantaged areas present higher levels
of opioid use compared to other areas. Studies have highlighted
significant sex differences in OUD in the United States, with
women experiencing higher rates of prescription opioid use and
faster progression to dependency compared to men [33,34]. In
addition, opioid prescribing is 2 times more likely for White
individuals than Black individuals in the United States [35,36],
attributed to physicians’ practice biases [37]. Therefore, the
real-world data describing OUD patterns often include biases
caused by users. These biases, alongside potential sampling or
algorithmic biases, could cause unfair and biased outcomes,
leading to suboptimal model performance and inequalities in
patient care [38].

Objectives
In this study, we aim to address the limitations of prior studies,
including the lack of attention to (1) detecting and analyzing
the fairness and bias in the ML or deep learning (DL) models
for predicting OUD and (2) proposing methods to mitigate bias
for different protected attributes. Using the data provided by
the National Survey on Drug Use and Health (NSDUH) for
2020, we developed an NN model to detect the bias for different
sociodemographic features [39,40]. We then propose an
algorithm based on equality of odds (EO) to mitigate the bias
while ensuring reasonable predictive performance (ie, accuracy
and recall). Finally, we create a fairness-aware weighted

majority voting (WMV) classifier that considers the predicted
classes using the optimal thresholds for different
sociodemographic features and outputs the most frequent class.
To show the effectiveness of the proposed methods, we also
evaluate their performance by developing several ML
algorithms, including logistic regression (LR), linear support
vector machine (SVM), and SVM–radial basis function
(SVM-RBF).

Methods

Data and Sample
We used the 2020 NSDUH survey data that was conducted
using an independent multistage area probability design [41].
The study sample included a community-based
noninstitutionalized population aged ≥12 years, with information
on clinical characteristics, sociodemographic factors, and
substance use. The final data included 32,893 individuals with
2892 variables for public use.

Features and Outcome Variable
We selected the features based on the prior research identifying
predictors of OUD [42-52]. The sociodemographic features
included sex, marital status, working condition (whether
someone works ≥35 h/wk), race (Black, White, and other racial
groups), and income (<US $20,000 per year and other groups).
We also included a history of using different types of
prescription opioids [42] (eg, oxycodone, oxymorphone,
hydrocodone, hydromorphone, fentanyl, morphine, codeine,
methadone, tramadol, and buprenorphine), use of heroin, history
of receiving alcohol or drug treatment, diabetes [43], chronic
bronchitis [44], cirrhosis of the liver [45], hepatitis B or C
[46,47], kidney disease [48], asthma [49], AIDS [50], cancer
[51], depression [52], and BMI [53,54]. A total number of 26
features were included in the proposed ML and DL models.
After one-hot encoding, there were a total of 44 features,
including BMI. These features are presented in Multimedia
Appendix 1.

As an outcome variable, we used whether an individual has
developed OUD, which is defined as the dependence, misuse,
and abuse of opioids [55]. To train the classifiers, we used
stratified 80:20 train-test splitting. Of the 26,314 individuals,
the training set included 26,148 (99.37%) and 166 (0.63%)
individuals belonging to non-OUD and OUD classes,
respectively. Moreover, of the 6579 individuals, there were
6538 (99.38%) non-OUD and 41 (0.62%) OUD individuals in
the test set.

Classifiers
To perform this prediction task, we primarily developed and
evaluated 3 well-known ML or DL models: LR [56], SVM [57],
and NN [58]. We first designed an NN model consisting of 4
layers, in which the first layer takes 44 features as inputs, the
2 hidden layers include 1000 neurons, and the last layer consists
of 1 neuron for making predictions. We implemented this NN
model using the TensorFlow library in Python created by Abadi
et al [59] using minibatch stochastic gradient descent (SGD)
and the Adam optimizer, using the default learning rate of 0.001.
Minibatch SGD was chosen to optimize the convergence speed
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and computational efficiency, as it balances the stability of
full-batch gradient descent and the high variance of SGD,
enabling more robust learning [60]. The Adam optimizer was
used for its adaptive learning rate properties, which adjust the
learning rate for each parameter individually. This optimizer
combines the benefits of AdaGrad and RMSProp, making it
effective for handling sparse gradients and nonstationary
objectives [61]. A batch size of 64 was used to leverage
parallelism on modern hardware, thus reducing computational
time and improving scalability. The NNs were trained for 20
epochs using the binary cross-entropy loss function with
balanced class weighting to address any class imbalance in the
data set, ensuring that the model is not biased toward the
majority class and performs well on minority class instances.

As noted before, we also trained ML classifiers to test the
performance of the proposed methods. To train the LR classifier,
we fitted intercept and used the balanced class weighting to
prevent overfitting or underfitting. To train the SVM classifiers,
we used a C value of 1 with balanced class weighting. The
default γ value for the RBF kernel in the SVM-RBF classifier
was calculated according to equation 1:

(1)

Notably, we used recall, specificity, and accuracy to assess the
performance of all these models.

Bias Detection Based on the Area Under the Curve
Values
We largely followed the study by Fletcher et al [39] to detect
both the algorithmic and sampling bias for each of the
sociodemographic features (ie, sex, marital status, working
condition, race, and income) based on the area under the curve
(AUC) value. We computed the AUC values for each category
of a sociodemographic feature, where any difference in the AUC
values identified the presence of algorithmic bias. This type of
bias is the result of internal model specifications and features
[39].

Sampling bias detection and mitigation are critical in ensuring
the fairness and effectiveness of ML models, especially in the
context of global health. As discussed in the study by Fletcher
et al [39], sampling bias arises when the data used to train an
ML model does not adequately represent the actual proportions
found in the real world. This can lead to models that perform
poorly on minority groups and introduce unfairness into the
decision-making process. The methodology for detecting
sampling bias involves creating homogenous test groups for
each demographic category and comparing the model’s
performance. By examining the AUC and the variability of
model performance across these groups, the biases caused by
sampling can be identified. For instance, if a model trained
predominantly on data from one demographic group consistently
underperforms when applied to another group, this indicates
the presence of sampling bias. Such disparities highlight the

model’s inability to generalize well across diverse populations,
which is a fundamental flaw in its design. In our study, we
systematically tested for sampling bias by examining the
model’s performance across different demographic groups.

To detect the sampling bias, we first created training sets
consisting of different compositions of individuals belonging
to each sociodemographic group. We then computed and plotted
the models’ AUC value for each category based on a fixed-size
test set. A significant fluctuation in the models’ AUC values
with respect to the change in the structure of the training sets
indicated the presence of the sampling bias for a
sociodemographic feature [39].

In this study, we analyzed 5 sociodemographic features,
including sex, marital status, working condition, race, and
income, to detect the algorithmic bias. The categories included
male individuals and female individuals, those who have never
been married and other groups related to marital status, those
who work ≥35 hours per week and other groups associated with
working condition, Black and White race, and those who have
an income of <US $20,000 per year and others. To detect the
sampling bias, we created a test set of fixed size for each
sociodemographic feature: sex: 5984 (2992 male individuals
and 2992 female individuals), marital status: 5648 (2824 from
never been married and 2824 from other groups), working
condition: 5296 (2648 from working ≥35 hours and 2648 from
other groups), race: 1280 (640 Black race and 640 from White
race), and income: 2000 (1000 from income <US $20,000 and
1000 from other groups). These test sets were created based on
the main test set used during model development (6579/32,893,
20% of the whole data).

To further enhance the validity of the proposed predictive model,
we implemented a detailed 1-N matching process, in which we
controlled for a variety of socioeconomic variables, including
BMI, sex, marital status, working condition, race, and income,
to achieve a balanced comparison between OUD and non-OUD
cases. To ensure robust matching, we used a 1-N matching
strategy with n=158, meaning each OUD case was matched
with 158 non-OUD cases. This number was calculated based
on the proportion of OUD-negative to OUD-positive cases in
the 2020 NSDUH data used in this study. Following 1-N
matching, the training set included 26,164 non-OUD and 166
OUD individuals. Similarly, 6542 individuals belonged to the
non-OUD class in the test set and 41 were in the OUD class.
Accordingly, we implemented the same sampling and
algorithmic bias detection approaches on the matched data to
comprehensively analyze the existence of bias in the predictive
models. This extensive matching allowed us to control potential
confounders and provide a more accurate data set for our
analysis.

The Proposed Method for Bias Mitigation
To propose a method for bias mitigation, we considered a
fairness definition called EO [62], which is measured based on
the difference between the specificity and recall or sensitivity
values. This approach is grounded in the study by Hardt et al
[62], in which their framework introduces a robust criterion for
measuring and removing discrimination based on protected
attributes, emphasizing that fairness can be optimized post hoc
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through threshold adjustments. They proposed that any learned
predictor can be adjusted to achieve nondiscrimination by
modifying its thresholds, ensuring that the predictor’s true
positive rates (recall) and false positive rates (1–specificity) are
independent of the protected attribute, thereby satisfying the
EO criterion. This framework suggests that EO can be achieved
without altering the underlying complex training pipeline of the
predictor. Instead, a simple postprocessing step is sufficient,
which is both practical and efficient. This method is robust to
changes in class distribution and ensures that the model remains
fair by balancing the sensitivity and specificity across different
groups. By focusing on minimizing the difference between
recall and specificity, we ensure that our model does not favor
one group over another, thereby maintaining fairness and
robustness in our predictions. The postprocessing adjustment
of thresholds allows us to achieve these fairness criteria without
compromising the utility of the model, providing a balanced
approach to bias mitigation. Equation 2 demonstrates the
formula of EO,

(2)

where G denotes the group being analyzed and y represents the
output class. This is equivalent to balancing the recall and
specificity values of both groups and considering them equal.

To achieve the EO, we change the classification threshold [62]
so that the difference between the recall and specificity is
minimized. To address the decreased performance measures
(ie, recall and accuracy) because of the threshold moving, we
define minimum values for recall and accuracy to ensure that
they are above a certain value while changing the classification
threshold (70% for recall and 50% for accuracy). We tested the
threshold values in the range (0, 100) and identified the optimal
one where the recall and accuracy constraints are satisfied and
the difference between specificity and recall is minimum.
Algorithm 1 (Textbox 1) presents the details of the proposed
bias mitigation method. The input is a trained ML or DL model
for OUD prediction, and the output is an optimal threshold value
based on which the classifications are performed.

Textbox 1. Algorithm 1.

Input: A trained machine learning (or deep learning)–based model for the prediction of opioid use disorder.

Output: An optimal threshold value.

Begin

1 Z_Values = []

2 th_Values = []

3 th ← 0

4 i ← 0

5 While th ≤ 100 do

6 Calculate the overall recall and accuracy of the model.

7 If recall ≥0.7 and accuracy ≥ 0.5 then

8 Calculate x1 and x2 (specificity values), and y1 and y2 (recall values)

9 Calculate 

10 Append (Z_Values, Z)

11 Append (th_Values, th)

12. th ← th + 0.1

13 For i = 1 to 1001 do

14 if Z_Values[i] = Min(Z_Values) then

15 Best_Threshold th_Values[i]

End

The Proposed WMV Classifier
Algorithm 1 (Textbox 1) will output different classification
thresholds for each sociodemographic feature. Therefore, we
may achieve different outputs or classes for a given individual
using those thresholds. However, in most cases, we need to
have a predictive model that takes into account the bias-related
issues for multiple sociodemographic features and predicts OUD
for a given individual such that the bias is mitigated to the

greatest extent. In this regard, we propose a WMV classifier,
which yields a class based on the classifications by each
threshold according to equation 3,

P = w1 × pc1 + w2 × pc2 + ... + wn × pcn (3)

where P is representative of the final probability, pci shows the
class predicted (ie, 0 and 1) using the threshold for a
sociodemographic feature I, and wi shows the weight assigned
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to feature i. To assign a weight to each feature, we calculate the
proportion of differences between recall and specificity to gain
a value in the range [0,1] and acquire the final probability using
equation 3.

Ethical Considerations
This study did not require approval from an institutional ethics
board or review committee as it did not involve any human
participants or identifiable personal data. The study used
publicly available, anonymized data sets that are confidential
and only used for statistical purposes per federal law.

Results

Overview
We considered the NN models trained with SGD and Adam
optimizers (NN) model using SGD [NN-SGD] and NN model
using Adam [NN-Adam]) as the main classifiers and reported
results that we obtained for bias detection and mitigation for
predicting OUD. We also described the results for 3 ML
classifiers (ie, LR, linear SVM, and SVM-RBF) in Multimedia
Appendix 2.

Individual Characteristics
The individuals in the training (26,314/32,893, 80%) and test
(6579/32,893, 20%) samples had similar sociodemographic and
clinical features (Multimedia Appendix 1). The mean BMI of
individuals was 25.58 (95% CI 25.49-25.68; SD 6.68), 54%
(17,763/32,893) of individuals were female, and 46%
(15,130/32,893) had developed OUD. While the least used
opioid was oxymorphone (95/32,893, 0.29%), the most
commonly used opioids were hydrocodone (3495/32,893,
10.63%), followed by oxycodone (2147/32,893, 6.53%) and
codeine (2014/32,893, 6.12%). In addition, approximately 4.87%
(1602/32,893) of individuals had the experience of receiving
drug treatments. In total, 28.82% (9482/32,893) of individuals
had a history of depression, followed by asthma (3934/32,893,
approximately 11.96%) and diabetes (1848/32,893, 5.62%). In
addition, >36.93% (12,146/32,893) of individuals were married,
and approximately 40.77% (13,409/32,893) of individuals
worked for ≥35 hours per week. In addition, approximately
9.19% (3025/32,893) of individuals were Black, 64.94%
(21,362/32,893) were White, and the rest belonged to other
races (8506/32,893, 25.86%). Furthermore, while approximately
14.95% (4917/32,893) of individuals had an income of <US
$20,000 per year, almost 85.05% (27,976/32,893) earned >US
$20,000 yearly. Table 1 summarizes the sociodemographic
features used in the study.
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Table 1. The details of sociodemographic variables in the study (N=32,893)a.

OUD (n=207, 0.63%)Non-OUDb (n=32,686,
99.37%)

TotalSociodemographic variables

Sex, n (%)

106 (51.21)15,024 (45.96)15,130 (46)Male

101 (48.79)17,662 (54.04)17,763 (54)Female

Marital status, n (%)

45 (21.74)12,101 (37.02)12,146 (36.93)Married

2 (1)659 (2.02)661 (2.01)Widowed

44 (21.26)2569 (7.86)2613 (7.94)Divorced or separated

106 (51.21)14,346 (43.89)14,452 (43.94)Never been married

Working condition, n (%)

53 (25.6)13,356 (40.86)13,409 (40.77)>35 hours per week

25 (12.08)4619 (14.13)4644 (14.12)<35 hours per week

Race, n (%)

149 (71.98)21,213 (64.9)21,362 (64.94)White

17 (8.21)3008 (9.2)3025 (9.2)Black

41 (19.81)8465 (25.9)8506 (25.86)Other racial groups

Income (US $), n (%)

66 (31.88)4851 (14.84)4917 (14.95)<$20,000

141 (68.12)27,835 (85.16)27,976 (85.05)Other income groups

25.16 (9.83)25.59 (8.82)25.59 (8.82)BMI (kg/m2), mean (SD)

aFor marital status and working conditions, we excluded those not answering the questionnaire or those who legitimately skipped the question, as
described in the National Survey on Drug Use and Health data dictionary.
bOUD: opioid use disorder.

Performance of the Classifiers
Figure 1 shows the receiver operating characteristic (ROC) and
precision-recall (PR) curves of the trained ML or DL classifiers
for OUD prediction. As shown in Figure 1, while the SVM-RBF
classifier has the highest ROC/AUC (AUC 97.13%, 95% CI
93.53%-100%), NN-Adam performs best in terms of PR/AUC
(AUC 38.29%, 95% CI 37.11%-39.46%). Moreover, the
NN-Adam outperforms the NN-SGD (ROC/AUC 85.66%, 95%
CI 78.36%-92.95%; ROC/PR 7.10%, 95% CI 6.48%-7.72%)
and NN-Adam (ROC/AUC 96.57%, 95% CI 92.67%-100.00%;
ROC/PR 38.29%, 95% CI 37.11%-39.46%).

Figure 2 shows the ROC and PR curves of the ML or DL
classifiers for OUD prediction after matching. As shown in
Figure 2, the SVM-RBF classifier has the highest ROC/AUC
(AUC 97.13%, 95% CI 93.53%-100%), while LR has the highest
PR/AUC (AUC 28.70%, 95% CI 27.60%-29.79%). Moreover,
while NN-SGD outperforms NN-Adam in terms of ROC/AUC,
NN-Adam has a higher PR/AUC (NN-SGD: ROC/AUC 94.95%,
95% CI 90.27%-99.63%; ROC/PR 18.13%, 95% CI:

17.20%-19.06%; NN-Adam: ROC/AUC 92.47%, 95% CI
86.86%-98.07%; ROC/PR 23.25%, 95% CI 22.23%-24.27%).

Figure S1 in Multimedia Appendix 2 reports the confusion
matrices of NN models. While the NN-SGD correctly classifies
only 22% (9/41) of the individuals who have developed OUD,
the NN-Adam correctly classifies 71% (29/41) of individuals.
Moreover, the NN-SGD misclassifies 0.54% (35/6538) of the
individuals who have not developed OUD, whereas the
NN-Adam misclassifies 2.68% (175/6538) of individuals.
Overall, the NN-SGD and NN-Adam achieve a recall of 21.95%
and 70.73%, a specificity of 99.46% and 97.32%, and an
accuracy of 98.98% and 97.16%, respectively.

The confusion matrices of the ML classifiers, including LR,
linear SVM, and SVM-RBF, are presented in Figure S2 in
Multimedia Appendix 2. All these classifiers have an
accuracy/specificity of >92% and an AUC of >96%. Moreover,
the linear SVM classifier has the highest recall of 82.93%,
followed by LR and SVM-RBF with 80.49% and 26.83%,
respectively.
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Figure 1. The receiver operating characteristic and precision-recall curves of the classifiers. (A) The receiver operating characteristics curve of the
classifiers, (B) precision-recall curve of the classifiers. AUC: area under the curve; LR: logistic regression; NN: neural network; RBF: radial basis
function; SGD: stochastic gradient descent; SVM: support vector machine.

Figure 2. The receiver operating characteristic and precision-recall curves of the classifiers after matching. (A) The receiver operating characteristics
curve of the classifiers, (B) precision-recall curve of the classifiers. AUC: area under the curve; LR: logistic regression; NN: neural network; RBF:
radial basis function; SGD: stochastic gradient descent; SVM: support vector machine.

1-N Matching
The standardized mean difference and variance ratio before and
after matching for different sociodemographic groups are
presented in Table 2.
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Table 2. The details of 1-N matching (N=158).

Variance ratioSMDaStatus

Race

White

0.88960.1526Before matching

0.98690.0188After matching

Black

0.9065–0.0351Before matching

0.8979–0.0385After matching

Other

0.8317–0.1453Before matching

1.01410.0060After matching

Income

<US $20,000 per year

1.72670.4106Before matching

0.9913–0.0178After matching

Sex

Male

1.01080.1049Before matching

1.00450.0069After matching

Marital status

Married

0.7332–0.3400Before matching

1.01800.0094After matching

Widowed

0.4867–0.0866Before matching

0.9863-0.0019After matching

Divorced or separated

2.32240.3862Before matching

1.05340.0324After matching

Never married

1.01950.1467Before matching

1.0053–0.0077After matching

Working condition

Working ≥35 hours per week

0.7921–0.3279Before matching

1.05200.0391After matching

Other groups of working condition

0.8793–0.0608Before matching

1.02120.0069After matching

BMI

1.2435–0.0464Before matching

1.02440.0169After matching
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aSMD: standardized mean difference.

Bias Detection (Algorithmic Bias)
Figures 3 and 4 demonstrate the ROC curves for these
abovementioned sociodemographic groups after training the
NN-SGD and NN-Adam, respectively. Tables 3 and 4 show the
performance metrics using the default threshold (50%) with P
values for the difference between the specificity and recall.

According to Table 3, there is a high difference between the
AUC values for both groups related to each of the 5
sociodemographic features, and the algorithmic bias was present
in the NN-SGD [39]. Furthermore, the P values with 95% CI
indicate that there is a statistically significant difference between
specificity and recall values using various thresholds in the
range (0, 100).

According to Table 4, the difference between AUC values for
sociodemographic groups is high for all 5 sociodemographic
features. Moreover, the accuracy and specificity values are
notably high for all groups, and recall values are >57% (except
for the Black race, which is 33.33%), which shows the high
performance of the model in correctly identifying those with
OUD. Similar to the NN-SGD, the P values are quite significant,
and algorithmic bias is present in the NN-Adam.

The results of detecting algorithmic bias using LR, linear SVM,
and SVM-RBF classifiers are presented in Figures S3-S5 in

Multimedia Appendix 2, respectively. Tables S1-S3 in
Multimedia Appendix 2 also show the performance of these
classifiers for sociodemographic features. All the classifiers
indicate algorithmic bias. Moreover, while the SVM-RBF
classifier indicates the highest bias for race, LR and linear SVM
classifiers show a higher bias for sex and marital status.

Figures 5 and 6 demonstrate the ROC curves for
sociodemographic groups after doing 1-N matching for the
NN-SGD and NN-Adam, respectively. Tables 5 and 6 show the
performance metrics using the default threshold (50%) with P
values for the difference between the specificity and recall.

According to Table 5, there is a high difference between the
AUC values for each sociodemographic feature, highlighting
the existence of algorithmic bias in the NN-SGD [39].
Furthermore, there is a statistically significant difference
between specificity and recall values according to P values.

According to Table 6, the difference between AUC values for
sociodemographic groups is high for all 5 sociodemographic
features. Moreover, the accuracy and specificity values are
>53% for all groups, except for the Black race, demonstrating
the high performance of the model in correctly identifying those
with OUD. Furthermore, the P values are statistically significant,
indicating the existence of algorithmic bias in the NN-Adam.

Figure 3. The receiver operating characteristic (ROC) curves for various groups related to sociodemographic features using the neural network model
using stochastic gradient descent (with area under the curve [AUC] and 95% CI values). Values were calculated based on the test sample (6579 individuals:
41 developed opioid use disorder [OUD] and 6538 did not develop OUD). (A) ROC curve for sex, (B) ROC curve for marital status, (C) ROC curve
for working conditions, (D) ROC curve for race, and (E) ROC curve for income.
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Figure 4. The receiver operating characteristic (ROC) curves for various groups related to sociodemographic features using the neural network model
using Adam (with area under the curve [AUC] and 95% CI values). Values were calculated based on the test sample (6579 individuals: 41 developed
opioid use disorder [OUD] and 6538 did not develop OUD). (A) ROC curve for sex, (B) ROC curve for marital status, (C) ROC curve for working
condition, (D) ROC curve for race, and (E) ROC curve for income.

Table 3. The performance metrics of the neural network model using stochastic gradient descent using the default threshold (50%).

P valueDifferencebAUCaAccuracySpecificityRecallSociodemographic groups

<.00122.74Sex

82.4299.1799.607.14Male

87.3098.8399.3529.63Female

<.0013.07Marital status

82.8398.8099.2523.53Never been married

87.6199.1299.6220.83Other groups of marital status

<.00114.40Working condition

92.9799.4799.7711.11Working ≥35 hours

81.9398.6599.2625.00Other groups of working condition

<.00128.08Race

99.0799.0799.5527.59White

98.6098.6099.060.00Black

<.00129.93Income

84.9097.7298.700.00An income of <US $20,000

85.2299.2199.6029.03Other groups of income

aAUC: area under the curve.
bDifference between recall and specificity values.
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Table 4. The performance metrics of the neural network model using Adam using the default threshold (50%).

P valueDifferencebAUCaAccuracySpecificityRecallSociodemographic groups

<.00121.31Sex

97.4997.5097.6957.14Male

95.8396.8797.0277.78Female

<.00110.40Marital status

97.8196.8596.9876.47Never been married

95.7197.3997.5866.67Other groups of marital status

<.0019.71Working condition

97.6997.6797.7377.78Working ≥35 hours

95.8296.8297.0568.75Other groups of working con-
dition

<.00146.57Race

97.6696.9597.0779.31White

94.3397.3697.6633.33Black

<.00115.38Income

97.4394.5494.6880.00An income of <US $20,000

96.4297.6397.8067.74Other groups of income

aAUC: area under the curve.
bDifference between recall and specificity values.

Figure 5. The receiver operating characteristic (ROC) curves for various groups related to sociodemographic features were used using the neural
network model using stochastic gradient descent after matching (with area under the curve [AUC] and 95% CI values). Values were calculated based
on the test sample (6583 individuals: 41 developed opioid use disorder [OUD] and 6542 did not develop OUD). (A) ROC curve for sex, (B) ROC curve
for marital status, (C) ROC curve for working conditions, (D) ROC curve for race, and (E) ROC curve for income.
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Figure 6. The receiver operating characteristic (ROC) curves for various groups related to sociodemographic features were used using the neural
network model using Adam after matching (with area under the curve [AUC] and 95% CI values). Values were calculated based on the test sample
(6583 individuals: 41 developed opioid use disorder [OUD] and 6542 did not develop OUD). (A) ROC curve for sex, (B) ROC curve for marital status,
(C) ROC curve for working condition, (D) ROC curve for race, and (E) ROC curve for income.

Table 5. The performance metrics of the neural network model using stochastic gradient descent using the default threshold (50%) after matching.

P valueDifferencebAUC aAccuracySpecificityRecallSociodemographic groups

<.0012.02Sex

92.9497.4797.6750.00Male

96.1097.4697.8451.85Female

<.00113.02Marital status

95.0697.5497.7458.82Never been married

94.8397.3897.7745.83Other groups of marital status

<.00119.91Working condition

96.6197.6697.8466.67Working ≥35 hours

94.4397.4097.7246.88Other groups of working condition

<.00160.16Race

95.3197.2197.4658.62White

84.3398.5199.000.00Black

<.0013.42Income

94.5496.3396.5450.00An income of <US $20,000

95.4898.0298.3551.61Other groups of income

aAUC: area under the curve.
bDifference between recall and specificity values.
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Table 6. The performance metrics of the neural network model using Adam using the default threshold (50%) after matching.

P valueDifferencebAUCaAccuracySpecificityRecallSociodemographic groups

<.0012.82Sex

92.6596.6396.8057.14Male

92.3495.7996.1059.26Female

<.00111.12Marital status

95.7596.5896.7464.71Never been married

90.3395.8496.1654.17Other groups of marital status

<.00125.25Working condition

97.7295.9096.0077.78Working ≥35 hours

90.7496.3296.6053.13Other groups of working condi-
tion

<.00167.63Race

95.7295.7195.9065.52White

76.7497.5298.010.00Black

<.0015.40Income

93.3693.9994.1460.00An income of <US $20,000

92.5497.3297.6058.06Other groups of income

aAUC: area under the curve.
bDifference between recall and specificity values.

Bias Detection (Sampling Bias)
Figures 7 and 8 demonstrate the trend of AUC values based on
the structure of the training set using the NN-SGD and
NN-Adam, respectively.

We observed significant fluctuations in AUC values for all the
demographic groups, especially using the NN-SGD, indicating
the presence of sampling bias for all sociodemographic features.

The detection of sampling bias for ML classifiers (ie, LR and
SVM) is presented in Figures S6-S8 in Multimedia Appendix
2. The LR and linear SVM classifiers demonstrate a significant

sampling bias for all sociodemographic features. In addition,
while the SVM-RBF classifier did not show any significant
sampling bias for sex, marital status, and working condition, it
indicated a notable bias for race and income.

Figures 9 and 10 demonstrate the trend of AUC values based
on the structure of the training set using the NN-SGD and
NN-Adam after matching, respectively.

We observed significant variations in AUC values, especially
using the NN-SGD after matching, highlighting the existence
of sampling bias for all sociodemographic features.
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Figure 7. The trend of area under the curve (AUC) values for sociodemographic features using the neural network model using stochastic gradient
descent: (A) the trend for sex, (B) the trend for marital status, (C) the trend for working conditions, (D) the trend for race, and (E) the trend for income.

Figure 8. The trend of area under the curve (AUC) values for sociodemographic features using the neural network model using Adam: (A) the trend
for sex, (B) the trend for marital status, (C) the trend for working conditions, (D) the trend for race, and (E) the trend for income.
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Figure 9. The trend of area under the curve (AUC) values for sociodemographic features using the neural network model using stochastic gradient
descent after matching: (A) the trend for sex, (B) the trend for marital status, (C) the trend for working conditions, (D) the trend for race, and (E) the
trend for income.

Figure 10. The trend of area under the curve (AUC) values for sociodemographic features using the neural network model using Adam after matching:
(A) the trend for sex, (B) the trend for marital status, (C) the trend for working conditions, (D) the trend for race, and (E) the trend for income.
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Bias Mitigation
The details of implementing the bias mitigation algorithm,
including the optimal threshold and performance metrics, are
presented in Tables 7 and 8.

We observed that the recall values for all 5 sociodemographic
groups have increased compared to the original NN-SGD using
the default threshold of 50%. A similar increase in recall was
observed compared to the original NN-Adam, except for
working ≥35 hours and income groups. However, the specificity
and accuracy values have decreased for all these groups. Most
importantly, the difference between specificity and recall values
has decreased for all groups, except the marital status and
working condition using the NN-SGD. The reason why the
difference has not decreased for the marital status and working
condition is that the algorithm enforces the model to have a
recall of ≥70% and an accuracy of ≥50%, and thus, it could not
find such a threshold after searching all the available options
in the range [0,100]. These bias improvements using NN-SGD
and NN-Adam for different sociodemographic features are as
follows, respectively: sex (21.66% vs 16.96%), marital status
(0.00 vs 8.87%), working condition (0.00 vs 8.45%), race
(1.48% vs 41.62%), and income (21.04% vs 0.20%).

The improvement in performance of other ML classifiers after
implementing our proposed bias mitigation algorithm is
presented in Tables S4-S6 in Multimedia Appendix 2. The

results indicate that the algorithm is able to mitigate the bias
for all sociodemographic features and improve the recall of the
model at the same time. It is notable that using LR and linear
SVM classifiers, the recall values did not improve for working
condition and income, whereas using the SVM-RBF classifier,
the recall values improved for all features. The details regarding
the improvements gained by this algorithm are presented in
Table S7 in Multimedia Appendix 2.

The details of implementing the bias mitigation algorithm after
matching, including the optimal threshold and performance
metrics, are presented in Tables 9 and 10.

We observed that the recall values for marital status, working
condition, and race have increased compared to the original
NN-SGD after matching using the default threshold of 50%. A
similar increase in recall was observed compared to the original
NN-Adam, except for working >35 hours as one of the working
condition groups. By contrast, sex and income groups achieved
higher specificity and accuracy after matching compared to the
original NN-SGD and NN-Adam with a 50% threshold. Notably,
the difference between specificity and recall values has
decreased for all groups. These bias improvements using
NN-SGD and NN-Adam after matching for different
sociodemographic features are as follows, respectively: sex
(0.14% vs 0.97%), marital status (12.95% vs 10.33%), working
condition (14.79% vs 15.33%), race (60.13% vs 41.71%), and
income (0.35% vs 2.21%).

Table 7. The details of implementing bias mitigation for the neural network model using stochastic gradient descent.

DifferenceaAccuracySpecificityRecallOptimal thresholdSociodemographic conditions

1.08 b18.40Sex

59.1258.9985.71 cMale

58.6358.4385.19Female

3.6924.10Marital status

87.0787.1376.47Never been married

89.2589.3575.00Other groups of marital status

15.2224.50Working condition

94.9195.0166.67Working >35 hours

84.9085.0071.88Other groups of working condition

26.6018.40Race

58.8558.6489.66White

62.2762.2566.67Black

8.8917.30Income

45.2844.8390.00An income of <US $20,000

51.0250.8287.10Other groups of income

aDifference between recall and specificity after bias mitigation.
bItalicized values indicate an improvement compared to the initial values (50% threshold).
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Table 8. The details of implementing bias mitigation for the neural network model using Adam.

DifferenceaAccuracySpecificityRecallOptimal thresholdSociodemographic conditions

4.35 b22.70Sex

95.7395.8178.5Male

94.2794.3781.48Female

1.530.60Marital status

65.6465.43100Never been married

67.1766.96100Other groups of marital status

1.2635.40Working condition

96.6896.7577.78Working >35 hours

95.7095.8478.13Other groups of working condition

4.955.90Race

90.1590.1196.55White

88.6688.61100Black

15.1845.60Income

94.3494.4880An income of <US $20,000

97.2497.4067.74Other groups of income

aDifference between recall and specificity after bias mitigation.
bItalicized values indicate an improvement compared to the initial values (50% threshold).

Table 9. The details of implementing bias mitigation for the neural network model using stochastic gradient descent after matching.

DifferenceaAccuracySpecificityRecallOptimal thresholdSociodemographic conditions

1.88 b52.10Sex

97.6597.8550.00Male

97.4997.8851.85Female

0.075.80Marital status

50.5150.26100.00Never been married

50.6950.33100.00Other groups of marital status

5.1212.50Working condition

89.2789.2788.89Working ≥35 hours

85.5685.5487.50Other groups of working condition

0.038.10Race

73.5673.39100.00White

73.5573.42100.00Black

3.0752.60Income

96.7496.9650.00An income of <US $20,000

98.0998.4251.61Other groups of income

aDifference between recall and specificity after bias mitigation.
bItalicized values indicate an improvement compared with the initial values (50% threshold).
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Table 10. The details of implementing bias mitigation for the neural network model using Adam after matching.

DifferenceaAccuracySpecificityRecallOptimal thresholdSociodemographic conditions

1.85 b66.60Sex

97.6897.8850.00Male

97.4997.8851.85Female

0.7918.60Marital status

88.3688.3688.24Never been married

88.3088.3187.50Other groups of marital status

9.9233.80Working condition

93.2493.3377.78Working ≥35 hours

94.0694.2268.75Other groups of working condition

25.9219.90Race

88.2888.2789.66White

91.0791.2066.67Black

3.1968.00Income

96.7997.0050.00An income of <US $20,000

98.2598.5851.61Other groups of income

aDifference between recall and specificity after bias mitigation.
bItalicized values indicate an improvement compared with the initial values (50% threshold).

The Proposed WMV Classifier
As mentioned before, we created a WMV classifier and
presented its confusion matrices using the NN-SGD and
NN-Adam in Figure 11. The feature weights were calculated
based on the difference between recall and specificity values
using equation 3 based on the default threshold of 50% (Tables
1 and 2). These weights assigned to NN-SGD and NN-Adam
for different features are as follows, respectively: sex (0.23 vs
0.21), marital status (0.03 vs 0.10), working condition (0.15 vs
0.09), race (0.29 vs 0.45), and income (0.30 vs 0.15).

The recall of the WMV classifier is >85% using the NNs trained
with both optimizers. In addition, while the specificity and
accuracy of this classifier using the NN- SGD are approximately
59%, these values are >90% using the NN-Adam. Compared
with the NN-SGD and NN-Adam, the WMV classifier has a
significantly higher recall; however, the NNs perform better
regarding specificity and accuracy because the WMV classifier
uses modified thresholds to mitigate the prediction bias. Overall,
this WMV classifier that considers the bias issues for all the
sociodemographic features has demonstrated satisfactory
performance using the NNs trained with SGD and Adam
optimizers and can be used for sufficiently accurate and
fairness-aware prediction of OUD in individuals.

The weights assigned to each feature and the confusion matrices
of the WMV classifier using the ML classifiers are presented
in Table S8 and Figure S9 in Multimedia Appendix 2,
respectively. According to the results, the recall values of the

WMV classifier are higher compared to all the original ML
classifiers (>92%). Besides, the specificity and accuracy values
are sufficiently high for the WMV classifier using all the ML
classifiers (>75%).

Figure 12 shows the confusion matrices of the WMV classifier
using the NN-SGD and NN-Adam after matching. The feature
weights were calculated based on the difference between recall
and specificity values using equation 3 based on the default
threshold of 50% (Tables 3 and 4). These weights assigned to
NN-SGD and NN-Adam for different features are as follows,
respectively: sex (0.02 vs 0.03), marital status (0.13 vs 0.10),
working condition (0.20 vs 0.23), race (0.61 vs 0.60), and
income (0.03 vs 0.05).

The recall of the WMV classifier is >85% using the NNs trained
with both optimizers. In addition, while the specificity and
accuracy of this classifier using the NN-SGD are approximately
73%, these values are >89% using the NN-Adam. Compared
to the NN-SGD and NN-Adam, the WMV classifier has a
significantly higher recall; however, the NNs have higher
specificity and accuracy because the WMV classifier uses
thresholds for bias mitigation. Overall, this WMV classifier can
be used as a fairness-aware predictor of OUD in real-world
applications, guiding clinicians in fair and accurate
decision-making.

Table 11 demonstrates the performance of different models,
including NN-SGD, NN-Adam, and WMV classifiers before
and after 1-N matching.
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Figure 11. The confusion matrix of the weighted majority voting classifier using neural networks (NNs): (A) NN model using stochastic gradient
descent and (B) NN model using Adam.

Figure 12. The confusion matrix of the weighted majority voting classifier using neural networks (NNs) after matching: (A) NN model using stochastic
gradient descent and (B) NN model using Adam.
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Table 11. The performance of different classifiers before and after matching.

PrecisionAccuracySpecificityRecallStatus

NN-SGDa

20.4598.9899.4621.95Before matching

12.5097.4697.7551.22After matching

NN-Adamb

14.2297.1697.3270.73Before matching

9.3896.2296.4558.54After matching

WMVc (NN-SGD)

1.2858.8541.3185.37Before matching

2.2773.2073.04100.00After matching

WMV (NN-Adam)

5.6090.2190.2092.68Before matching

4.8189.3889.4185.37After matching

aNN-SGD: neural network model using stochastic gradient descent.
bNN-Adam: neural network model using Adam.
cWMV: weighted majority voting.

Discussion

Principal Findings
According to the results, the proposed bias mitigation algorithm
performs well in reducing the bias and producing fairer results
for individuals in different sociodemographic groups. However,
there is always a trade-off between the bias and the accuracy
and specificity of the model. Although the recall values have
improved for all sociodemographic groups and the bias has been
remarkably mitigated, the accuracy and specificity values have
dropped for all these features. Notably, although we could
mitigate the bias to a larger extent by solely changing the
threshold to minimize the difference, we applied threshold
values for accuracy (50%) and recall (70%) so that the overall
performance of the model would remain satisfactory. This
depends on the user preferences and the importance of bias
compared to the model performance in a real-world setting.

The achievements of the proposed bias mitigation algorithm
and WMV classifier represent a significant advancement in the
field of ML for health care, particularly in addressing fairness
and equity in predicting OUD. In the context of health
applications, where demographic disparities can lead to unequal
treatment outcomes, the ability of this algorithm to substantially
reduce bias while enhancing recall is crucial. By trying to
equalize recall and specificity across all sociodemographic
groups, the algorithm ensures that individuals at risk are equally
identified across the groups, which is vital for early and fair
intervention and treatment. Compared to existing methods
[39,63,64], this approach offers a more rigorous solution
considering the performance threshold for both accuracy and
recall at the same time. Thus, the classifier maintains an overall
satisfactory performance, which is essential in real-world clinical
settings where both fairness and accuracy are critical for patient
outcomes and sacrificing the performance for achieving fairness

is not desirable. These improvements provide a clearer
understanding of the impact of the work in real-world health
care applications. In addition, unlike many methods that might
only mitigate bias for a single feature at a time [39,63,64], our
proposed approach mitigates bias for all sociodemographic
features, and then, all the results are incorporated into a WMV
classifier, making it more viable for deployment in diverse
health care environments. Overall, the proposed algorithm and
classifier represent a meaningful step forward in creating fairer
and more effective ML models for predicting outcomes, such
as OUD, thereby potentially improving health equity and
treatment efficacy in clinical practice.

The application of the proposed bias mitigation algorithm could
be extended far beyond the OUD prediction presented in this
study. For example, in the realm of racial bias, the algorithm
can be applied to predictive models for cardiovascular disease,
ensuring that both Black and White patients receive both equal
and accurate risk assessments, thereby improving early detection
and treatment for Black patients who might otherwise be
overlooked [64]. Similarly, Black women experience a 3 times
higher likelihood of mortality from pregnancy-related causes
compared to their White counterparts [65], where a biased model
could underdiagnose or misdiagnose African Americans, leading
to inadequate treatment and poorer health outcomes. In
addressing sex bias in heart disease prediction, the algorithm
can adjust thresholds to enhance both equality and accuracy for
women, ensuring their symptoms are not dismissed and they
receive timely care [64]. Moreover, in tackling socioeconomic
bias, the algorithm can be used in models predicting the risk of
chronic disease, ensuring that individuals from lower-income
backgrounds are equally and accurately assessed, leading to
equitable health care interventions [66]. In the case of diabetes,
where African American populations have higher rates of
diabetes compared to non-Hispanic White individuals [67], a
biased predictive model might fail to identify at-risk individuals
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in these minority groups, resulting in delayed diagnosis and
treatment. Furthermore, women are more likely to be diagnosed
with depression because of societal and sex norms [68],
necessitating bias mitigation in predictive models. By addressing
these biases while preserving a high performance, the proposed
algorithm promotes fairness and improves the reliability of
health outcomes predictions across diverse patient populations,
making it a valuable tool for enhancing health equity and
preventing complications such as cardiovascular issues and
eventually death.

After implementing the bias mitigation algorithm, we proposed
the WMV classifier to classify the inputs based on the proposed
thresholds for sex, marital status, working condition, race, and
income. Although this classifier works based on the
classification performed for each feature, one may prefer to use
the threshold for sex if it is more important than other
sociodemographic features in a particular study. This could be
the case for other features as well, depending on the user
preferences and the type and nature of the study being
performed.

In this study, we used SGD and Adam to train the NN models.
The reason why we used these 2 optimizers is that we could
obtain different bias mitigation results. For example, although
the NN-SGD could perform better in mitigating the sex bias
compared to NN-Adam (21.66% vs 19.96%), the NN-Adam
better mitigated the race bias (41.62% vs 1.48%). Accordingly,
one could prefer to use a specific hyperparameter based on the
nature of the study and user preferences. For instance, if sex is
a more important feature than race in a certain case, Adam
optimizer would be a better choice compared to SGD. Overall,
we chose the NN-Adam as the final best classifier as it could
mitigate the bias for all 5 sociodemographic features and have
a higher predictive performance after developing the WMV
classifier.

In this study, we observed that the precision is lower than the
recall in the WMV classifier. While precision is an important
metric that indicates the proportion of true positive predictions
among all positive predictions, recall holds higher importance
and utility in clinical decision-making [69]. Recall measures
the ability of the model to correctly identify all relevant cases,
in this instance, true positives among those who actually have
OUD. Missing a true positive (ie, a false negative) can have
severe consequences, potentially delaying critical treatments or
interventions. Therefore, a higher recall ensures that most
patients with the condition are identified, even in the presence
of high false positives. This trade-off is critical in clinical
practice, where the cost of misclassifying a patient at high risk
of OUD outweighs the cost of additional testing or follow-up
for misclassifying an actual non-OUD patient. Hence, despite
the lower precision, the higher recall of our model provides
greater overall utility in ensuring patient safety and effective
clinical outcomes.

We analyzed the effectiveness of the proposed algorithm using
several ML models, including LR, linear SVM, and SVM-RBF.
Other ML models exist, such as random forests and decision
trees, which could potentially classify OUD with high predictive
performance. However, these models do not assign probability

values to the output classes, and the proposed algorithm cannot
be used to mitigate their potential bias.

Limitations
This study used the 2020 NSDUH data, with most cases
belonging to the non-OUD class and <1% to the OUD class.
While it is important to acknowledge this data limitation and
contextualize it within the body of research, we used 2
techniques, including class weighting and 1-N matching, to
address the class imbalance problem. The experiments following
the 1-N matching demonstrated the existence of bias, which
was mitigated using the proposed bias mitigation algorithm.
Moreover, it is notable that several previous studies have
successfully applied ML to predict OUD [5,16,18,19]. Despite
being highly imbalanced and including much less positive OUD
cases than negative ones, many studies have demonstrated the
remarkable potential of ML models for OUD prediction [19].
For example, Hasan et al [18] and Lo-Ciganic et al [16] used
credible, real-world claims data to predict OUD with high
performance despite their notably high imbalance. Similarly,
Han et al [5] used NSDUH data to predict OUD among the US
population. These studies demonstrate that, although the data
are significantly imbalanced, ML can be effectively used to
predict OUD, providing valuable insights and aiding in early
intervention strategies.

Although the proposed algorithm works well in removing the
bias, some limitations exist in this study. The algorithm can
noticeably reduce the bias for a single variable (such as sex)
and propose an optimal threshold. However, it cannot suggest
a single threshold that best mitigates the bias for a group of
variables. Moreover, although we demonstrated the existence
of bias for demographic features with multiple groups, our
algorithm can consider only 2 different groups at the same time.
Furthermore, although we included race as a sociodemographic
feature, the number of individuals belonging to the Black race
who had developed OUD was very low compared to the White
race (3 vs 29), which could degrade the generalization of the
classifiers. Therefore, including more individuals from the Black
race could improve the reliability of the classifiers in real-world
applications.

The proposed bias mitigation algorithm, although effective in
reducing bias for OUD prediction, can introduce new forms of
bias or overlook specific subpopulations. For instance, within
racial categories, specific ethnic subgroups, such as Native
Americans or recent immigrants, could be overlooked. These
groups might have unique cultural or socioeconomic factors
affecting their risk of OUD, leading to biased outcomes if these
variations are not captured [70]. Similarly, young adults and
older adults might experience OUD differently because of
distinct life stages and associated risk factors. Young adults
might be more susceptible to peer pressure and experimental
substance use, while older adults may have chronic pain issues,
leading to prolonged opioid prescriptions [71]. If the model
does not adequately capture these age-specific differences,
predictions could be less accurate for these groups. In addition,
certain groups considered vulnerable such as individuals who
have been incarcerated or those experiencing homelessness
might not be adequately represented in the survey data. These
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populations often have higher rates of substance use disorders
and face different risk factors compared to the general
population. Their exclusion or underrepresentation can result
in a model that does not generalize well to these groups, leading
to biased predictions. Despite these potential drawbacks, the
model offers significant advantages. Systematic adjustment of
classification thresholds for existing sociodemographic features
ensures balanced predictive performance across different
demographic groups, reducing discrimination and improving
fairness.

The development and implementation of the WMV classifier
enhances the applicability of the proposed bias mitigation
algorithm, allowing for tailored threshold adjustments based on
the importance of specific sociodemographic features in different
studies. This flexibility ensures that the algorithm can be adapted
to various contexts, addressing specific fairness concerns as
needed. While the WMV classifier performed well in the
accurate prediction of OUD, its reliance on proportional
importance might not fully capture real-world complexities,
such as the interplay between various sociodemographic and
health factors. For example, the importance of income might
be overestimated, ignoring how low socioeconomic status
intersects with other factors such as access to health care and
social support networks, thus affecting the model’s accuracy
for people from different socioeconomic backgrounds.
Educational attainment, geographic location, employment status,
occupation types, and housing stability also influence OUD risk
and may not be fully accounted for, potentially skewing results
and introducing new biases. Continuous evaluation and
refinement are necessary to ensure that the model addresses
these complexities, minimizing new biases and ensuring
equitable outcomes across all populations.

Conclusions
The OUD is the result of irregular opioid use, which is a
significant cause of deaths worldwide. The ML models have
great potential in OUD prediction; however, these models are
prone to bias because of the existence of sociodemographic
features. In this study, we proposed a bias mitigation algorithm
based on EO. This algorithm works based on the threshold
moving to achieve an optimal threshold, minimizing the

difference between the specificity and recall values for
sociodemographic groups. In addition, this algorithm considers
the threshold for the overall recall and accuracy to ensure that
the model performs well in OUD prediction. Finally, we
proposed a WMV classifier that makes predictions based on
the optimal thresholds for all sociodemographic features. The
results suggest that the proposed algorithm achieves 21.66%,
1.48%, and 21.04% bias improvement for sex, race, and income
using the NN-SGD. The algorithm using the NN-Adam shows
an improvement of 16.96%, 8.87%, 8.45%, 41.62%, and 0.20%
for sex, marital status, working condition, race, and income,
respectively. This algorithm was also able to increase the recall
of these classifiers at the same time. In addition, the WMV
classifier achieved recall values of 85.37% and 92.68%,
specificity values of 58.69% and 90.20%, and accuracy values
of 58.85% and 90.21% using NN-SGD and NN-Adam,
respectively. This WMV classifier has the potential to be used
as a fairness-aware OUD predictor in a real-world setting. The
results of the proposed bias mitigation algorithm and WMV
classifier for 3 ML classifiers, including LR, linear SVM, and
SVM-RBF, also prove the effectiveness of these methods in
bias mitigation and fairness-aware prediction of OUD.

Although this study has achieved its research goals, the
recommendations for future research work are as follows. First,
the bias mitigation algorithm can be extended by developing a
method that considers groups of sociodemographic variables
and suggests an optimal global threshold. Second, the algorithm
can be extended by developing an approach for mitigating the
bias and selecting a threshold value for multigroup
sociodemographic features instead of focusing on 2 groups
simultaneously. Third, the performance of the bias mitigation
algorithm may improve by training the NNs with different
hyperparameters, such as the learning rate and optimizer. Fourth,
more balanced data containing a higher proportion of samples
belonging to the minority class and other sociodemographic
features can be used to develop fairness-aware predictive models
for real-world applications. Fifth, the proposed methods can be
used in other medical applications, including but not limited to
disease detection, disease classification, and treatment response
prediction.
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