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Abstract

Artificial intelligence (AI) has become commonplace in solving routine everyday tasks. Because of the exponential growth in
medical imaging data volume and complexity, the workload on radiologists is steadily increasing. AI has been shown to improve
efficiency in medical image generation, processing, and interpretation, and various such AI models have been developed across
research laboratories worldwide. However, very few of these, if any, find their way into routine clinical use, a discrepancy that
reflects the divide between AI research and successful AI translation. The goal of this paper is to give an overview of the intersection
of AI and medical imaging landscapes. We also want to inform the readers about the importance of using standards in their
radiology workflow and the challenges associated with deploying AI models in the clinical workflow. The main focus of this
paper is to examine the existing condition of radiology workflow and identify the challenges hindering the implementation of AI
in hospital settings. This report reflects extensive weekly discussions and practical problem-solving expertise accumulated over
multiple years by industry experts, imaging informatics professionals, research scientists, and clinicians. To gain a deeper
understanding of the requirements for deploying AI models, we introduce a taxonomy of AI use cases, supplemented by real-world
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instances of AI model integration within hospitals. We will also explain how the need for AI integration in radiology can be
addressed using the Medical Open Network for AI (MONAI). MONAI is an open-source consortium for providing reproducible
deep learning solutions and integration tools for radiology practice in hospitals.

(JMIR AI 2024;3:e55833) doi: 10.2196/55833
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Introduction

There are multiple well-recognized applications of artificial
intelligence (AI) in health care. Radiology has become the
leading focus of health care–AI research, and there has been an
exponential rise in the number of related publications and
AI-enabled devices approved by the US Food and Drug
Administration (FDA) [1]. However, the use of AI in a clinical
workflow has received little attention from the industry and
research communities. Ebrahimian et al [2] found that 59 out
of 118 FDA-approved AI/machine learning models are solely
image-processing focused.

Multiple commercial entities offer a range of AI solutions
specifically targeted toward hospitals. These entities typically
collaborate with the hospital’s imaging informatics team to
facilitate the implementation of their solutions within the
organization. This collaboration involves working closely with
the hospital’s experts to integrate and deploy the AI solutions
effectively. By partnering with the hospital’s imaging
informatics team, these commercial entities ensure seamless
integration of their AI solutions into the existing infrastructure
and workflows of the hospital, thereby optimizing the impact
and usability of their offerings within the health care setting.

In an ideal scenario, when a radiologist identifies a specific need
for an AI model that can enhance their daily workflow, they
should have the ability to label their own data and train a
customized model accordingly. This approach is often reflected
in research papers published within academic and research
communities [3-8]. However, the intention of this paper is to
accelerate the progress of AI research and bring it to the
forefront of practical implementation as quickly as possible. By
focusing on key aspects of AI research and deployment in the
health care domain [9], this paper aims to facilitate the adoption
of AI technologies in real-world scenarios, empowering
radiologists and health care professionals to leverage AI’s
potential for improved efficiency and patient care.

By highlighting the barriers [10,11] associated with deploying
AI models and providing practical ways to overcome them, we
aim to offer a comprehensive understanding of the imaging
informatics landscape. Through our examples and analysis, we
hope to equip AI researchers and hospitals with the necessary
knowledge and tools to build and deploy their own AI models
using their own data. Our emphasis is on using open-source,
community-driven tools for AI model deployment, which
enables researchers to leverage the collective expertise of the
wider scientific community and ultimately drive innovation in
health care.

The radiology and imaging informatics landscape [12] is so
diverse because of differences in implementations across
different institutions. One of the ways to ease the
implementation is by building our tools compatible with existing
imaging informatics standards like Digital Imaging and
Communication in Medicine (DICOM) [13], Health Level 7
(HL7), and Fast Health Care Interoperability Resources [14].
By aligning our tools with these established standards, we can
ensure seamless integration with existing health care systems
and infrastructure. This compatibility enables interoperability
and data exchange between different systems, making it easier
for hospitals and health care facilities to adopt and use AI
solutions without disrupting their current workflows. We explain
the changes in the radiology workflow introduced by the usage
of AI and deep learning. In that context, we also provide the
solutions available through the Medical Open Network for AI
(MONAI) working group. MONAI is an open-source consortium
comprised of health care and informatics professionals as well
as clinicians and researchers. This paper and the methodologies
discussed in this paper are a result of weekly discussions in the
different MONAI working groups.

We also present a taxonomy of AI-based solution scenarios.
Categorizing the AI use case in such a manner helps to have a
broad categorization of AI tools and deployment scenarios. This
taxonomy serves as a valuable resource for health care
professionals, AI researchers, and hospitals, as it facilitates a
systematic understanding of different AI use cases and their
potential benefits. It enables stakeholders to explore and evaluate
various AI solutions within specific domains or applications,
ultimately aiding in the selection and implementation of the
most suitable AI tools for their unique requirements. Our goal
in this paper is that the reader will be able to see how AI tools
can be deployed using open-source tools developed in MONAI
Deploy.

Barriers to Incorporating Imaging AI into
Clinical Practice

Generic AI applications (eg, news feeds and shopping
recommendations) have become ubiquitous in our lives; using
a centralized infrastructure, the associated user experience adapts
to include such AI applications [15]. Related novel support tools
and vocabulary (eg, tap and drag) have entered our common
vernacular only in the last decade [16]. This behavior
modification was driven largely by smartphone and computer
manufacturers.

JMIR AI 2024 | vol. 3 | e55833 | p. 2https://ai.jmir.org/2024/1/e55833
(page number not for citation purposes)

Gupta et alJMIR AI

XSL•FO
RenderX

http://dx.doi.org/10.2196/55833
http://www.w3.org/Style/XSL
http://www.renderx.com/


On the other hand, such centralized operations are ineffective
in medical facilities and health care systems, primarily due to
the nonuniform nature of deployment infrastructures. This
inhomogeneity is related to differences in acquisition protocols,
radiologist workflows, data management procedures, and IT
architectures [17]. The evolution of imaging AI workflows is
complicated, as different components of this system progress
at different paces and in different directions yet are required to
be always interconnected.

AI processing must seamlessly integrate with existing clinical
workflows, where imaging impacts downstream decisions, such
as surgery, interventions, and therapies [18]. New AI-based
workflows should either not interfere with established routine
practices or significantly improve their efficiency such that
learning a new workflow becomes desirable rather than
burdensome. Radiologists must be trained in the use of
AI-augmented processes to further maximize the likelihood that
they will use the AI and realize its benefits. AI tools should
have configurable end points that can be integrated into diverse
health care system infrastructures across multiple vendors and
protocols. An optimally deployed AI should ideally be
indistinguishable from the existing IT infrastructure.
Nevertheless, the introduction of such tools requires the fostering
of trust among the users (eg, radiologists, technologists, and
other members of the care team) and beneficiaries (eg, patients
and referring clinicians). In addition, AI workflows should
support data and workflow standards to increase the likelihood
of systems interoperability and seamless integration [19,20].

Intersystem Communication and
Interoperability

Overview
Medical facilities and health care systems rely on many software
applications to meet diverse clinical, research, educational, and
business needs. Such applications track patient care across
disciplines; support inpatient monitoring; and facilitate
procedure scheduling, billing, and much more. These
applications must be interoperable so that information is not
repeatedly entered, managed, or siloed in a single system or
department. DICOM and HL7 have existed for more than 3
decades to facilitate the exchange of imaging and health data,
respectively.

Integrating into the Healthcare Enterprise (IHE) has defined
profiles that organize and leverage the aforementioned
integration capabilities, containing specific information about
diverse clinical needs. IHE profiles should guide the
development of AI applications and the definition of integration
points and workflows. More recently, Fast Health Care
Interoperability Resources–based profiles have enabled

semantically interoperable exchange of machine-readable data
[21]. IHE profiles were consulted while creating the MONAI
Deploy tools.

MONAI Deploy
MONAI is an open-source community of researchers, clinicians,
and imaging informatics professionals. Within MONAI, there
are several working groups; one of them being MONAI Deploy.
It aims to become the de facto standard for developing
packaging, testing, and deploying and running medical AI
applications in clinical production. The goal of MONAI Deploy
is to accelerate the development of medical imaging AI inference
applications with DICOM imaging network integration.

AI Integration Points in Health Care Infrastructure
Understanding the systems that make up a given workflow is
the first step when considering AI integration touchpoints. The
interoperability of health care systems is critical in the delivery
of good patient care, but adding new applications into a complex
workflow can be challenging if the interfaces between systems
are not well understood.

AI integration into the workflow must leverage interoperability
with existing systems to be effective. The IHE AI in imaging
white paper [22], which references AI workflow for imaging
[23] and AI results [24], describes the steps and boundaries that
should be considered. Some examples of using AI in clinical
workflows can be seen in Figure 1 [16], and their relation to AI
workflow for imaging and AI results can be found in Table 1.
The table also shows how these capabilities were achieved using
MONAI Deploy tools.

While there are early stages of cloud-based Picture Archiving
and Communication Systems solutions, for most health care
institutions today, the emphasis remains on-premises
deployments. An on-premise deployment refers to the computing
model when the organization’s IT infrastructure is located in
its own physical space. In the AI space, there are many vendor
examples that use cloud-based implementations; however, since
most Picture Archiving and Communication Systems are
maintained by the corresponding hospitals, this brings hybrid
implementations into the picture. In these scenarios, vendors
deliver solutions through either client systems (which connect
to their cloud servers) or by delivering their results to destination
workstations through proxy servers operating across firewalls.
MONAI Deploy [25] enables the production of containers
(“Docker containers”), which can be executed either on premises
or on the cloud as needed based on the given site’s architecture.
For efficient task and resource management, MONAI Deploy
offers a task management system that can be used, if required,
to manage containers. For facilitating standards-based (eg,
DICOM and HL7) communication, MONAI Deploy also offers
an informatics gateway solution.
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Figure 1. The figure shows a basic AI-enabled radiology workflow, modeled after integrating the health care enterprise scheduled workflow that shows
an order being generated, a patient being imaged, images being evaluated by a radiologist, and a report being generated and sent back to the ordering
clinician for review. AI: artificial intelligence; DICOM: digital imaging and communications in medicine; EHR: electronic health record; EMR: electronic
medical record; HIS: hospital information system; PACS: picture archiving and communication systems; RIS: radiology information system; VNA:
vendor neutral archive.
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Table 1. Common workflow steps as highlighted by participating institutions versus AI workflow– and AI results–described boundaries.

MONAIc capabilitiesAIW-Ia and AIRb described boundariesCommon workflow themeSteps

—gMake recommendations as to the types
of procedures that should be ordered,
based on the patient’s condition and
record

When a clinician orders an imaging examination in the HISd

or RISe, they may be guided by a CDSSf to ensure its appropri-
ateness. Depending on the clinical setting, the order may contain
a clinical-status priority code (eg, “stat”).

1

—Make recommendations on the type of
protocol to be used on the scanner

Once the patient examination is scheduled for a date and loca-
tion, an entry is created on the “study worklist” of the scanner
(or another imaging device). In some instances, an entry is also
created on a “protocoling worklist,” where a radiologist deter-
mines the specific imaging techniques to be used (eg, scanning
details, contrast-agent type, amount, or administration route)
during the diagnostic imaging study or image-directed proce-
dure.

2

Has workflow management function-

alities to handle imaging studies, AIl

algorithm execution, and AIR for-
warding functionalities compatible
with standards such as DICOM,

HL7m, etc.

Postprocess the image, identify QAk is-
sues before the patient leaves the depart-
ment, and prepare classifications and
segmentations in advance of the radiolo-
gist’s evaluation

Once the examination is completed, images are reconstructed

into a human-interpretable format and sent to a DICOMh-router
to be forwarded to the appropriate destinations, including a

PACSi or VNAj for management or storage. Once the organized
images (original or postprocessed) are ready to be evaluated by
the radiologist, the examination description appears on the radi-
ologist’s “reading worklist.”

3

Can produce AI inference results
compatible with current transmis-
sion and display standards.

Include insights alongside the images in
the radiologist’s display

Radiologists assess the examination images on their diagnostic
viewer and dictate their interpretation (typically into a voice
recognition system).

4

It can be used to repackage the infer-

ence in a DICOM-SEGn, SRo, or
HL7, etc, to be sent to desired desti-
nations through reports or alerts.

Include emergent insights for considera-
tion by the ordering physician

The dictated report is sent to the HIS/RIS. If actionable critical
or noncritical findings are identified, radiologists may invoke
additional workflows to alert the ordering clinician, along with
issuing the final examination report.

5

It can be used to produce and send
structured reports to desired destina-
tions.

Prepopulate the radiologist’s report with
draft insights to be considered by the ra-
diologist

Final examination reports become available in the HIS or EHRp,
along with the images in the PACS or clinical viewers.

6

aAIW-I: artificial intelligence workflow for imaging.
bAIR: artificial intelligence results.
cMONAI: Medical Open Network for Artificial Intelligence.
dHIS: Hospital Information System.
eRIS: Radiology Information System.
fCDSS: Clinical Decision Support System.
gNot available.
hDICOM: Digital Imaging and Communication in Medicine.
iPACS: Picture Archiving and Communication Systems.
jVNA: Vendor Neutral Archive.
kQA: quality assurance.
lAI: artificial intelligence.
mHL7: Health Level 7.
nDICOM-SEG: Digital Imaging and Communication in Medicine Segments.
oSR: structured report.
pEHR: electronic health record.

A Taxonomy of Imaging AI Use Cases

Overview
AI deployment in radiology encompasses a wide spectrum,
considering both the implementation process and the user
experience. The outputs generated by AI models can vary
significantly, including plain text outputs such as probability
values for classification, segmentation masks, signals to prompt

action (eg, patient prioritization), or coordinates indicating the
location of detected abnormalities or malignancies. In addition,
radiological images themselves can be either 2D or 3D,
following different DICOM protocols.

Given the diverse nature of AI use cases in radiology, it is
logical and helpful to categorize them for ease of discussion
and analysis. These categories, however, should not be
considered rigid or fixed, as the field of AI in radiology
continues to evolve rapidly. This categorization approach allows
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for a more systematic exploration of AI deployment scenarios
in radiology, facilitating knowledge sharing, collaboration, and
the identification of common patterns or trends across different
use cases. It also enables researchers and clinicians to discuss
specific categories in more depth, share insights, and learn from
experiences in similar contexts.

Emergency Diagnostics
Time is of the essence in some emergency situations (eg, stroke,
cardiac arrest, and trauma), when the emergency department
must await imaging results to determine the most suitable next
steps in patient care. For example, when a patient shows signs
of head trauma, the emergency department often orders
emergency computed tomography (CT) imaging to detect
possible skull fractures and brain hemorrhage [26]; this could
be expedited with imaging AI. The alternative would be to wait
for radiologists to go through a reading worklist in a
nonprioritized sequential order before realizing which are the
most emergent cases.

Integrated Diagnostic Radiology Examination Planning
Currently, the scheduling of a new imaging examination and
the review of previous imaging data for the protocol of that
examination are typically performed separately and
asynchronously by different participants (schedulers,
technologists vs physicians, respectively). With the help of
imaging AI, both scheduling and review of diagnostic radiology
examination planning could be made to be both concurrent and
complementary, leading to optimized prospective examination
planning, including enhanced scanner and protocol selection.
Hence, any guidance on safety measures (eg, handling of
magnetic resonance imaging–unsafe devices and proper use of
contrast agents), guidance on needed imaging sequences or
appropriate scanning hardware (eg, a 3 Tesla vs a 1.5 Tesla
Magnet), as well as scheduling for appropriate time slots can
be recommended.

Opportunistic Screening
The term “opportunistic screening” refers to the application of
imaging AI technology to pixel data to improve wellness,
prevent disease, assess risk, or detect asymptomatic disease.
The opportunistic concept focuses on enhanced screening for
silent conditions or risk factors that are incidental to the primary
indication for the imaging examination. Among the most
promising opportunistic screening use cases is the training of
a model to detect and quantify coronary artery calcium for
cardiovascular risk stratification on routine chest CTs performed
with high frequency for noncardiovascular reasons (eg,
interstitial lung disease, trauma, and low-dose lung nodule
screening) [27]. Quantification of coronary artery calcium on
non–cardiac-gated chest CTs is complicated by motion-related
artifacts and protocol heterogeneity.

Another relevant use case for opportunistic screening is
CT-based body composition analysis, which quantifies liver
fat, organ volumes, and muscle loss, among other characteristics
[28-30].

Interactive Diagnostics During Image Interpretation
Radiologists often consult their radiology colleagues for
diagnostic mediation when interpreting challenging or
ambiguous cases (eg, possible cancers [31,32], subtle fractures
[33-35], coronary stenosis [4,36], and cancer detection in dense
breasts [37,38]). In the process, the work of both radiologists
is interrupted, and department workflow is slowed. The
alternative of not seeking such peer consultation, but rather
ordering additional diagnostic evaluations, can prolong patient
assessment, delay treatment initiation, and lead to additional
risks and expenses. Hence, an AI-based “second-opinion”
support system could be highly beneficial to both radiologists
and patients.

Large-Scale AI Model Validation
Radiologists increasingly collaborate with AI researchers to
identify new areas of research and model development. Such
collaborations yield large-scale statistical analyses to identify
trends and gather insights about disease progression and risk
factors; this can stimulate novel radiomic or radiogenomic-based
diagnostics. For example, there are ongoing efforts in the
neuroimaging community to identify imaging biomarkers for
Alzheimer disease [39,40] and Parkinson disease [41].
Consortiums such as the Alzheimer’s Disease Neuroimaging
Initiative, Parkinson’s Progression Markers Initiative, UK
Biobank, and The Cancer Imaging Archive are facilitating the
development of AI for imaging-driven precision medicine.

Large-scale AI-model validation by rigorous evaluation and
standardized reporting on AI applications in health care is
essential. As stated by Panch et al [42], there has long been a
gap between the expectation created from impressive small-scale
research evaluations on medical-AI applications and a relative
sparsity of distribution of similar applications in the real-world
clinical pathways. There are numerous reasons to explain this
gap, but a very important point is the lack of well-established
common infrastructures to assist in the training, evaluation, and
distribution of AI models between health care institutions. These
kinds of infrastructures can only be derived from large-scale
collaborations between the different components as discussed
in the following sections.

Real-World Use Cases

Overview
The authors of this paper have presented several use cases that
originated within their respective institutions. These institutions
include renowned organizations such as the Mayo Clinic,
University of California San Francisco, University of
Pennsylvania, Massachusetts General Brigham Hospital, Guy’s
and St Thomas Hospital, National Health System, and German
Cancer Research Center. The AI tools developed by these
institutions were initially part of original research projects and
subsequently integrated into clinical practice. For detailed
information regarding the implementation of these tools, readers
are directed to the corresponding references provided in the
paper. These references offer specific insights into the
deployment process, including the methodologies and techniques
used by each institution.
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It is noteworthy that the tools used for deployment in these
examples are publicly available on GitHub, a platform for
sharing and collaborating on open-source projects. By adopting
open-source practices, the institutions promote transparency
and encourage knowledge exchange within the scientific and
medical communities. The availability of these tools to the
public enables researchers and clinicians from various
institutions to leverage and build upon the existing work,
facilitating further advancements in the field of AI in health
care.

Through these examples, we want to show the readers that even
if some AI tools are not commercially available, creating an AI
deployment using open-source tools like MONAI Deploy and
following the imaging standards is possible.

Pediatric Bone-Age Determination
Bone age is a valuable metric of skeletal maturity in pediatric
and adolescent patients. It is normally performed by an
experienced radiologist who manually compares the bones on
a frontal x-ray of the hand and wrist against a decades-old atlas.
This is a time-consuming process that must be performed by a

radiologist with related expertise yet remains prone to interpreter
variability.

To address this variability, Guy’s and St Thomas Hospital
investigators integrated a commercial AI bone-age application
into its clinical workflow (Figure 2). The bone-age application
[37] was deployed according to the vendor specification with
dedicated hardware running the service, and users were required
to manually send imaging studies to the DICOM node when
calculating bone age.

Approximately 3 months after deployment, a study was
performed to quantify radiologists’ time saved by the
application. In fact, no significant time savings were found when
using the AI bone-age application versus manual measurement
by radiologists. The most likely explanation was that the
radiologists had to forward the examination data to the AI
system when reporting, thereby nullifying any potential
efficiency that the AI system itself introduced. This experience
illustrates that the management of clinical workflows and the
enablement of imaging AI applications are closely coupled and
cannot be considered in isolation.

Figure 2. Output from the artificial intelligence bone-age application showing identified features and quantitative results. BA: bone age, averaged over
the 21 tubular bones; BHI: Bone Health Index; CauEuN: European Caucasian North population; GP: Greulich-Pyle; SDS: standard deviation score;
TW3: Tanner-Whitehouse Version 3.
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Brain Tumor Segmentation and Progression Detection
From Longitudinal Magnetic Resonance Imaging Data
The current standard for assessing treatment response for
gliomas is based on changes in 2D cross-sectional tumor
measurements of anatomical brain magnetic resonance imaging
(MRI) [43-45]. However, studies show that 3D volumetric
assessments outperform 2D measurements for reliable tumor
progression detection [46].

University of California San Francisco investigators deployed
a machine learning–based, human-in-the-loop workflow to
automatically segment longitudinal low-grade glioma tumors

within brain MRI data, compute volumetrics, and generate
reports showing tumor volume changes along several time
points. This clinical workflow was intended to assist physicians
during tumor board meetings in assessing treatment options for
patients with low-grade glioma.

These online interactive and interpretable progression
assessments can be presented to radiologists within 10 minutes
of DICOM transmission (Figure 3). Automated segmentation
has lower variability in volumetric measurement compared with
manual segmentation, and performance matches the gold
standard under the same acquisition sequence (GE 3D CUBE)
[47].

Figure 3. Glioma segmentation (left) and clinical validation of segmentation-based detection of glioma progression (right).

Radiology Cooperative Network
The Radiology Cooperative Network (RACOON) unites all
university hospitals in Germany in a nationwide infrastructure
[48] that enables federated training and application of AI for
medical imaging. As part of the Network of University Medicine
[47], the project represents a consortium consisting of the
German Cancer Research Center, all 38 German University of
Radiology departments, public research institutes, Fraunhofer
MEVIS, Technical University Darmstadt, and commercial
partners (Mint Medical and ImFusion). RACOON’s hybrid
network architecture enables federated analysis through common
nodes at all partner sites (RACOON-NODE) complemented by
a secure cloud environment that allows the pooling of datasets
and hosts central services (RACOON-CENTRAL). Each node
provides a toolset for structured reporting [49], image
annotation, and segmentation, as well as an open-source
platform for AI training and automated image analysis (Joint
Imaging Platform) [50].

Detecting MRI-Hazardous Implanted Leadless
Electronic Devices on Radiographs
Particular implanted leadless electronic devices are considered
either stringently MRI conditional or MRI unsafe, necessitating

restriction to basic MRI or patient exclusion from an MRI
examination, respectively. Ideally, the implanted device type
is documented in a patient’s electronic health record and
available to MRI examination supervisors. Otherwise,
radiographs are often used to prescreen patients for such devices
and, accordingly, for their eligibility to undergo standard MRI.
Unfortunately, such devices can be easily overlooked or
misrecognized on x-rays due to their small sizes, similar
appearances, or suboptimal image acquisition (eg, insufficient
contrast between the device and surrounding tissues). This can
lead to serious consequences or injury to the patient during MRI,
especially at newer high-field strengths (eg, 7 Tesla).

To address these issues, Mayo Clinic investigators developed,
upgraded by continuous learning, and deployed a frontal chest
x-ray–based device detection algorithm [51]. MONAI Deploy
was used for creating an application package that can perform
inference on the incoming DICOM images and produce results
compatible with the DICOM structured reporting format. Such
capability enables the results to be viewed by a clinical viewer
(Figure 4).
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Figure 4. Magnetic resonance imaging–unsafe device (bravo esophageal reflux pH capsule) correctly detected and identified (with 10/10 certainty) on
chest X-ray by model inference (shown as a solid bounding box), displayed and adjudicated by a radiologist on the viewer. Two cascading AI models
were used, with the results of the first model (for detection based on a faster region-based convolutional neural network) fed into the second model (for
identification based on a multiclass convolutional neural network). AI: artificial intelligence.

Discussion

AI in health care and medical imaging is still in its infancy,
despite extensive publishing on state-of-the-art AI models. In
addition, to our knowledge, there are few AI applications that
can yet prove time savings to radiologist workflows. Measuring
efficiency would only be possible by implementing standards,
such as the IHE standard log of events [52], in addition to careful
user-interface designs to enable users to provide feedback and
use the results with minimal workflow impact. Hence, the
system and the algorithm performances can be captured, logged,
and measured objectively. Such efforts by MONAI Deploy are
underway, and demonstrations were made at the IHE
Connectathon, 2022, and Radiology Society of North America
Imaging AI in Practice, 2022

This report represents an effort specifically by the
MONAI-Deploy group of the MONAI Consortium to elucidate
the challenges of imaging AI clinical deployment and to guide
deployment architectures and solutions to common deployment
issues. We delineated the current state of imaging AI
implementation within clinical workflows in radiology,
discussing the potential barriers and suggesting responses. We
believe it is reasonable to expect imaging AI with adequately
trained models to aid radiologists in their routine clinical
practices; AI is likely to reduce radiologist workloads. However,
to incorporate imaging AI into radiology workflows, an
infrastructure that efficiently and effectively interfaces with
existing operations and infrastructures is essential. If the promise
of AI is in making health care, including radiology, more
affordable and impactful, such seamless integration is required
to deliver on this potential.

This report discussed various integration and workflow
requirements for integrating open-source tools for AI algorithm
development and deployment for medical imaging. While some
of these examples fully use MONAI Deploy build capabilities,
others have contributed their requirements and the build
capabilities along with software packages to the MONAI
software libraries and the Model Zoo [53]. Some of these
capabilities were demonstrated through real-world examples
discussed in this paper. Most of the capabilities discussed in
the real-world examples are contributed to the open-source
community through MONAI Deploy. We have showcased these
capabilities through real-world use cases. We believe such
examples will instill empowerment in hospitals so that they can
grow and deploy their in-house tools with community support.

Conclusions

This paper has examined the current state of community-driven
AI deployment in radiological imaging, exploring challenges,
integration points, and AI applications through case studies
from leading institutions. Our analysis highlights the critical
importance of seamless integration with existing clinical
workflows, interoperability with health care systems, and
adherence to industry standards for successful AI adoption in
radiology. Open-source initiatives like MONAI Deploy are
empowering institutions to develop and implement their own
AI tools, fostering innovation and knowledge exchange.
However, rigorous validation of AI models in clinical settings
remains a significant challenge requiring collaborative efforts
and standardized frameworks. While AI in radiology has made
considerable progress, it is still in its early stages. Future work
should focus on quantifying efficiency improvements, enhancing
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user interfaces, and developing robust feedback mechanisms.
Ongoing collaboration among researchers, clinicians, and
informatics specialists will be crucial to realizing AI’s full
potential in enhancing radiological practice and patient care.
As these efforts continue, we anticipate more widespread

adoption of AI tools in radiology workflows, leading to more
efficient, accurate, and patient-centered care. The future of
radiology lies in the successful integration of human expertise
and AI, promising to revolutionize medical imaging and improve
patient outcomes.
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