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Abstract

Background: Work characteristics, such as teleworking rate, have been studied in relation to stress. However, the use of
work-related data to improve a high-performance stress prediction model that suits an individual’s lifestyle has not been evaluated.

Objective: This study aims to develop a novel, high-performance algorithm to predict an employee’s stress among a group of
employees with similar working characteristics.

Methods: This prospective observational study evaluated participants’ responses to web-based questionnaires, including
attendance records and data collected using a wearable device. Data spanning 12 weeks (between January 17, 2022, and April
10, 2022) were collected from 194 Shionogi Group employees. Participants wore the Fitbit Charge 4 wearable device, which
collected data on daily sleep, activity, and heart rate. Daily work shift data included details of working hours. Weekly questionnaire
responses included the K6 questionnaire for depression/anxiety, a behavioral questionnaire, and the number of days lunch was
missed. The proposed prediction model used a neighborhood cluster (N=20) with working-style characteristics similar to those
of the prediction target person. Data from the previous week predicted stress levels the following week. Three models were
compared by selecting appropriate training data: (1) single model, (2) proposed method 1, and (3) proposed method 2. Shapley
Additive Explanations (SHAP) were calculated for the top 10 extracted features from the Extreme Gradient Boosting (XGBoost)
model to evaluate the amount and contribution direction categorized by teleworking rates (mean): low: <0.2 (more than 4 days/week
in office), middle: 0.2 to <0.6 (2 to 4 days/week in office), and high: ≥0.6 (less than 2 days/week in office).

Results: Data from 190 participants were used, with a teleworking rate ranging from 0% to 79%. The area under the curve
(AUC) of the proposed method 2 was 0.84 (true positive vs false positive: 0.77 vs 0.26). Among participants with low teleworking
rates, most features extracted were related to sleep, followed by activity and work. Among participants with high teleworking
rates, most features were related to activity, followed by sleep and work. SHAP analysis showed that for participants with high
teleworking rates, skipping lunch, working more/less than scheduled, higher fluctuations in heart rate, and lower mean sleep
duration contributed to stress. In participants with low teleworking rates, coming too early or late to work (before/after 9 AM),
a higher/lower than mean heart rate, lower fluctuations in heart rate, and burning more/fewer calories than normal contributed to
stress.

Conclusions: Forming a neighborhood cluster with similar working styles based on teleworking rates and using it as training
data improved the prediction performance. The validity of the neighborhood cluster approach is indicated by differences in the
contributing features and their contribution directions among teleworking levels.

Trial Registration: UMIN UMIN000046394; https://www.umin.ac.jp/ctr/index.htm
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Introduction

Stress is an external or internal stimulus that produces a
compensatory biological response that can trigger or aggravate
many diseases or pathological conditions [1]. Notably, the
stress-depression association requires recognizing the effects
of context and personal characteristics on the existence of
stressors and understanding the progressive and dynamic
relationship between stress and depression over time [2]. This
is important because depression remains a major social issue
[3] with a high relapse rate, prolonged duration of illness [4],
and high socioeconomic impact [5]. The duration of untreated
depression is associated with worse outcomes [6]. The annual
national cost of major depressive disorder among adults aged
≥20 years in Japan in 2008 was approximately US $11 billion,
including US $6.9 billion in workplace-associated expenses [5].

Detecting and targeting depression before a formal diagnosis
can serve as an early countermeasure to depression. Therefore,
detecting stress in advance is vital because stress is a factor that
triggers depression and increases the risk of relapse [2].
Companies are placing an ever-increasing emphasis on their
employees’ mental health, including their experience of stress,
as an important topic to address. According to the Japanese
Ministry of Health, Labour and Welfare (2021), the proportion
of companies with workers taking temporary leave or retiring
due to mental health conditions has increased from 9.2% in
2020 to 10.1% in 2021 [7]. Furthermore, about 40% of
companies in Japan reported worsening employee mental health
due to the COVID-19 pandemic [8]. Therefore, in response to
this growing need, the proportion of companies conducting
stress checks on their employees has increased from 62.7% in
2020 to 65.2% in 2021 in Japan [7].

One approach is to develop stress prediction models using data
related to stress collected by wearable devices that measure
parameters such as heart rate variability [9], physical activity
[10], and sleep [11], as well as through questionnaire responses
that provide insights into physical activity [12] (eg, outings),
absenteeism (failure to report for scheduled work), and the
number of times lunch is missed [13]. However, these data are
affected by working style such as teleworking habits (eg, remote
working).

To the best of our knowledge, there is no study taking
teleworking habits into account for stress prediction even though
the relationship between teleworking and stress has been studied.
Teleworking/telecommuting can have an impact on mental
health [14,15]. However, stress is dependent not only on the
environment but also on an individual’s attributes [16,17].
Moreover, stress parameters [9,18,19] can be influenced by
various other factors. Consequently, a few studies on stress
detection have used a personalized model-based approach
[20-22].

The objective of this study was to develop a novel,
high-performance stress prediction algorithm using working
data focusing on employees’ teleworking habits.

Methods

Study Design
This prospective observational study (UMIN000046394)
evaluated participants’ responses to web-based questionnaires,
including attendance records and data collected via a wearable
device. The data were used to develop a high-performance stress
prediction algorithm based on working-style characteristics
similar to those of the prediction target person among the
participants. Data spanning 12 weeks were collected for each
employee from January 17, 2022, to April 10, 2022.

Ethical Considerations
Informed consent was obtained from employees using a
web-based consent form. This study was approved by the
Research and Ethics Committee of Shionogi & Co., Ltd
(EP21-13) and the MINS Institutional Review Board (210238),
a specified nonprofit organization. The study was conducted in
compliance with the ethical guidelines for medical and health
research involving human participants and in accordance with
the ethical principles of the Declaration of Helsinki. To
deidentify the participants, age and sex data were not collected.

Recruitment
This study enrolled 194 employees of the Shionogi Group
working in Osaka, Japan. Participants who rarely teleworked
included sales or research employees, and those who frequently
teleworked included clerical employees. Notably, neither 100%
teleworking nor teleworking other than working from home
was permitted for Shionogi Group employees. The teleworking
rate was calculated as the number of days an employee worked
from home during the 12 weeks divided by the number of days
an employee worked during the 12 weeks.

The participants, who were from different departments, worked
during standard working hours (9 AM to 5 AM Monday to
Friday); however, given the anticipated flexible time system
for data collection, participants could decide their working hours
each day and enter work start and end times into the attendance
management system in advance. Night shift workers were not
included in this study, and while there was a certain degree of
flexibility in work hours, daytime workers were encouraged not
to shift their work hours too far from the standard workday
except when necessary. There were no exclusion criteria other
than working time and region (daytime employee, working in
Osaka), thereby reducing enrollment bias.

Data Collection
Daily data collected from the Fitbit Charge4 wearable device
worn for 12 weeks (Fitbit LLC) included sleep data recorded
daily (sleep duration, sleep efficiency, sleep initiation, and end
time), activity data recorded every 15 min (number of steps
taken, distance moved, number of floors climbed or descended,
and calories burned), and heart rate per minute. Daily work shift
data collected included working hours, scheduled work start
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and end times, scheduled hours of work, work from home
(yes/no), and absence from work/leave taken (yes/no).

Weekly web-based questionnaire responses included the K6
questionnaire [23,24], which measures 6 common symptoms
of depression and anxiety, each rated on a scale between 0 and
4 (0=never, 1=a little, 2=sometimes, 3=most often, and 4=at all
times). The total score was the sum of the responses to each
question (ranging from 0 to 24), the behavioral questionnaire
(number of outings, such as commuting and social outings),
and the number of days lunch was missed. We selected the latter
2 parameters based on the premise that the number of outings
is an alternative index for exercise habits [12]. Outings could
also be used as an alternative index for UV exposure, which is
reported to be related to mental health [25,26], and skipping
lunch is reported to be related to stress [13].

Proposed Prediction Model

Step 1: Extract the Neighborhood Cluster
The participants were arranged in ascending order based on
their teleworking rate, with each participant serving as a
prediction target person. To homogenize the training data
background, a group of participants whose working style/work
characteristics were similar to those of the prediction target
person were extracted and labeled as the neighborhood cluster.

This neighborhood cluster included participants with the top 20
nearest teleworking rates (for the training data) from the
prediction target person. In some instances, when the size of
the neighborhood cluster was greater than 20 because of the
same ranking on the boundary, participants on the boundary
were randomly sampled to include only 20 participants.

Step 2: Create an Individual Model to Predict Stress
The selected neighborhood cluster was subsequently used to
train a prediction model for each prediction target person,
meaning that an “n” number of different prediction models was
created for the “n” number of targets to be included in this
analysis. Using the neighborhood cluster data extracted in Step
1, a model was created that was individually optimized for the
prediction target person. Data from the previous week were
used to predict the stress level in the following week using this
individual model. Although data for 12 weeks were collected,
only the data for 11 weeks were used in the model because the
data before week 1 (–1 week) were not collected to use the
first-week data in the model (Figure 1).

The 12-week data were split into training and test data for the
3 models. The training data comprised all 12-week data of the
neighborhood cluster plus data from the first 7 weeks for the
prediction target person. The test data comprised the last 5 weeks
of data from the prediction target person (Figure 2).

Figure 1. Prediction model. Data collected within a term shown by a blue dashed-line box are input to the prediction model, and the stress state
(negative/positive) at the timepoint shown by a red star is predicted.
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Figure 2. Twelve-week data split for comparison of the three methods.

Analysis Method

Sample Size
Considering the feasibility of an exploratory evaluation, the
number of study participants was set to 150. However, the
proportion of people with mental illness at the Shionogi Group
was estimated to be between 7% and 10%, and the expected
participation of approximately 10 patients with mental illness
was based on this value. In general, too few mental illness cases
lead to failure of analysis, whereas too many mental illness
cases (>10%) do not appropriately reflect the population. As a
screening method, we collected a stress check questionnaire
when obtaining informed consent. However, as the number of
mental illness cases was within the expected range of 7% to
10%, a formal screening was not performed. A total of 2037
weeks of data were evaluated. Data were evaluated weekly, and
the mean (SD) was calculated from each participant’s weekly
data. The mean was omitted only when data were missing for
the entire 7 days of the week, and the SD was omitted only
when data were missing for ≥6 days of the week (unbiased SD

required 2 or more data points). The K6 questionnaire scores
representing the stress index [23] were converted into binary
objective variables (negative=K6: 0-4 [class 1]; positive=K6:
5-8 [class 2], K6: 9-12 [class 3], and K6: ≥13 [class 4]).

Model Training Details
The analysis was performed using Python (version 3.8.0; Python
Software Foundation) and PyCaret (version 2.3.10). The
Extreme Gradient Boosting (XGBoost) hyperparameters were
set as follows (common in all cases): max_depth=6,
learning_rate=0.3, and n_estimators=100. These hyperparameter
values are the default configuration of PyCaret, and a
hyperparameter search was not performed. The 3 models were
compared, which included threshold adaptation. The single
model used the first 7 weeks as training data and the latter 5
weeks as test data for all participants. Proposed method 1 used
12-week data of the neighborhood cluster plus the first 7-week
data of the prediction target person as training data and the latter
5-week data of the prediction target person as test data. Both
methods used a fixed threshold of 0.5 (the default threshold of
XGBoost); an output of the stress prediction model above this
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threshold indicated high levels of stress. Proposed method 2
used 7-week data of the neighborhood cluster and the prediction
target person as training data, the latter 5-week data of the
prediction target person as test data, and the latter 5-week of
the neighborhood cluster for threshold adaptation. The
explanatory variables are the 50 features shown in Multimedia
Appendix 1, and the object variable is the binarized stress score.

The threshold was adjusted such that the true positive (TP) rate
was >0.8 using the threshold adaptation data. A value of 0.8
was the practically required TP rate. Of note, there was no
guarantee that the TP rate would be >0.8 in the test data because
the threshold was not adjusted for test data. The prediction
threshold was adjusted such that the TP rate increased to >0.8,
with the lowest false positive (FP) rate. Notably, determining
the TP rate is more important than determining the FP rate to
ensure early depression countermeasures. Thus, by setting the
value to 0.8, we could predict as many positives as possible.
The area under the receiver operating characteristic curve
(AUROC) was used to measure the performance of the models.

Data Exclusion
A total of 190 individual models were created, as 2 participants
discontinued the study, and data from 2 other participants were
missing in the latter 5 weeks and were not included in the test
data. However, the data of the latter 2 participants were available
for the first 7 weeks and were thus included in the training data
(Figure 2).

Procedure for Checking Feature Contribution
We selected figures to report the absolute amount of feature
contribution and feature contribution variability between
teleworking rates. Feature importance for the prediction was
evaluated for each individual model using XGBoost [27,28],
and the top 10 features were identified. High feature importance
was defined as the factor (50 variables shown in Multimedia
Appendix 1) with a high contribution (influence) to the
prediction. Feature importance was defined as a score calculated
based on the reduction in the objective function related to
heterogeneity (sum of squared residuals for continuous variables
and the Gini index for categorical variables) achieved by

splitting the feature value when creating decision trees
(Multimedia Appendix 2) [28].

Thereafter, the individual model was divided into 3 levels
stratified by the teleworking rate, and the top 10 feature values
for each level were extracted. Finally, Shapley Additive
Explanations (SHAP) [29] were calculated for the top 10
extracted features to evaluate their impact and contribution
direction, stratified by 3 levels of teleworking rates, as follows:
(1) low: <0.2 (mean of >4 days per week in office), (2) middle:
0.2 to <0.6 (mean of 2-4 days per week in office), and (3) high:
≥0.6 (mean of <2 days per week in office). The absolute value
of SHAP represents the contribution amount, while its positive
or negative direction on the y-axis represents the contribution
direction.

The contribution direction and impact of features were based
on “covariance of features and SHAP” divided by “SD of
features.” Any positive deviation from 0 on the y-axis was
considered to positively impact stress, and any negative
deviation was considered to negatively impact stress.

Results

Overall Findings
Data from 190/194 (97.9%) participants were included to
develop high-performance stress prediction algorithms; 2
participants discontinued the study, and data from 2 other
participants were included only in the training set. The
teleworking rate of the employees ranged between 0% and 79%.
The prediction results of the individual models were integrated
for all participants using proposed methods 1 and 2 and
compared with the results of the single model. Although the
proposed methods improved the prediction performance, the
AUC was similar for proposed methods 1 and 2. The AUC was
the highest for proposed method 1, at 0.85 (TP vs FP: 0.59 vs
0.12), followed by proposed method 2, at 0.84 (TP vs FP: 0.77
vs 0.26) and the single model method, at 0.76 (TP vs FP: 0.42
vs 0.12) (Table 1). The confusion matrix for methods 1 and 2
is presented in Figure 3.

Table 1. Comparison of prediction results of the single model method and proposed methods 1 and 2.

Proposed method 2Proposed method 1Single modelPerformance metric

0.770.590.42True positive rate

0.260.120.12False positive rate

0.840.850.76AUROCa

aAUROC: area under the receiver operating characteristic curve.
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Figure 3. Confusion matrix for methods 1 and 2. “N” represents the total number of target classes. FN: false negative; FP: false positive; TN: true
negative; TP: true positive.

Feature Importance Analysis
The top 10 features with the highest mean feature importance
ranking for each of the 3 teleworking levels are presented in
Multimedia Appendix 2. These 10 features were divided into
3 categories: activity (red), work (green), and sleep (blue). They
were then tabulated by teleworking levels, with 43.2% (n=82)
at the low level, 36.3% (n=69) at the middle level, and 20.5%
(n=39) at the high level. Among the participants with a low
teleworking rate, most features were related to sleep, followed
by activity and work. Among the participants with high
teleworking rates, most features were related to activity,
followed by sleep and work.

Analysis of Feature Contribution Direction Based on
SHAP
The contribution direction of each individual model for the top
10 extracted features was examined at each level. Although

many features were evaluated, only those with interesting
suggestions have been reported. Middle and low teleworking
rates and longer working hours contributed to higher stress
levels (Figure 4A). Irrespective of the teleworking rate, lower
activity contributed to higher stress levels (Figure 4B).

Participants with a high teleworking rate who skipped lunch
more often had higher stress levels than those with low or middle
teleworking rates. Interestingly, skipping lunch did not
contribute to stress prediction in participants with middle and
low teleworking rates (Figure 5A). Working more or less than
scheduled hours (high variation in the working hour gap)
contributed to stress, especially for those with high teleworking
rates (Figure 5B). Low fluctuations in heart rate (SD of the heart
rate) contributed to stress, particularly for those with middle or
low teleworking rates. However, high fluctuations in heart rate
were a noticeable contributor to stress in those with a high
teleworking rate (Figure 5C).

Figure 4. Analysis of the contribution direction of (A) working hours and (B) activity categorized by teleworking/telecommuting rates based on Shapley
Additive Explanations (SHAP).
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Figure 5. Analysis of the contribution direction of (A) skipping lunch, (B) working hour gap (working more or less than scheduled hours), and (C)
heart rate categorized by teleworking/telecommuting rates based on Shapley Additive Explanations (SHAP).

In participants with low teleworking rates, being late for work
or coming to work too early contributed to stress. Although the
variation was lower, a similar trend was observed for
participants with high and middle teleworking rates (Figure
6A). Having a heart rate higher or lower than the mean heart
rate contributed to stress in participants with low teleworking
rates. Although the variation was lower, a similar trend was
observed for participants with high and middle teleworking
rates (Figure 6B). Burning more or fewer calories than the mean

calorie burned contributed to stress in participants with middle
and low teleworking rates. Moreover, burning less than normal
calories was a noticeable contributor to stress in participants
with high teleworking rates (Figure 6C). In participants with a
low teleworking rate, a longer mean sleep duration contributed
to stress, whereas in those with a high teleworking rate, a lower
mean sleep duration was a noticeable contributor to stress
(Figure 6D).

Figure 6. Analysis of the contribution direction of (A) mean work start time, (B) mean heart rate, (C) daily calories burned, and (D) sleep duration
categorized by teleworking/telecommuting rates based on Shapley Additive Explanations (SHAP).

Discussion

Principal Findings
This study evaluated a novel, high-performance stress prediction
algorithm that uses data from employees to extract neighborhood

data on working styles or work characteristics similar to those
of the target person. The prediction performance of both
proposed methods was markedly improved compared with that
of the single model (baseline). A good stress prediction
performance was achieved—the AUC was the highest for
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proposed method 1 (0.85), followed by proposed method 2
(0.84) and the single model method (0.76). The level of
predictive performance achieved by the proposed models
suggested the benefits of narrowing the training data (by using
neighborhood data) based on the teleworking rate.

In a stress detection study performed by Tazarv et al [30],
per-individual models were reported to outperform single
models; however, the approach required many data points
(approximately 300 times/month) from participants. Therefore,
by selecting a neighborhood cluster, the burden on participants
was reduced. This approach alleviated user burden by reducing
the number of label requests to 7 data points for the prediction
target person. Because previous studies [20-22] did not narrow
the training data based on work style/characteristics, it is
possible to improve their prediction performance by
incorporating this approach.

The results showed that personal data from the prediction target
person are important (particularly in terms of measuring the
change from baseline) because proposed method 2 showed
prediction performance similar to that of proposed method 1.
There was almost no difference in the AUC between proposed
methods 1 and 2, suggesting that intraindividual fluctuation is
a major stressor as the participants’own data contributed greatly
to the performance prediction rather than the neighborhood
cluster data. Thus, personal data from the prediction target
person are important because a reduction in the neighborhood
cluster’s training data to 5 weeks caused no noticeable
performance deterioration. Furthermore, the validity of using
individual models is supported by the fact that there are
differences in the feature contribution depending on the
teleworking level, and the direction of the contribution changes
within each level.

For participants with low teleworking rates, most features were
related to sleep, followed by activity and work. This indicates
that the contribution of activity may be lower when working
from the office (low teleworking rates) than at other teleworking
levels because it is difficult to discriminate between regular
activity and activity due to commuting. For participants with
high teleworking rates, most features were related to activity,
followed by sleep and work. This implies that in a teleworking
environment (such as at home), baseline activity levels are
consciously assumed to be low and easier to discern than sleep
and work.

The results of SHAP suggest that some features are consistent
with intuition and common sense, contributing to its validity.
Longer working hours among participants with middle and low
teleworking rates were a marker of high stress. Low activity,
irrespective of the number of days worked from the office per
week, was a marker of high stress. Additionally, some features
showed changes in the contribution direction within teleworking
levels, suggesting the validity of the proposed method for
modeling a small group of participants.

Several features characteristic of the high teleworking group,
which tended to have the same working style among individuals
but in a completely different working environment, were
identified. Skipping lunch while working from home was likely
to be a marker of stress. This could also be attributed to the fact

that with a high degree of freedom, a person is more likely to
skip meals. In addition, biological information, such as skipping
meals/hunger, is not as easily discernible by employees as
activity, which is presumed to be low while teleworking.
Additionally, working more or less than the scheduled hours
contributed to stress, especially among those with a high
teleworking rate. This observation suggested that arriving late
or leaving early for appointments may be detected as a sign of
stress, likely due to the high psychological hurdles for arriving
late or leaving early, especially among those working from the
office. We believe that psychological hurdles are fewer when
working from home, possibly due to the higher degree of
flexibility in using the provided working hours.

Additionally, lower fluctuations in heart rate were found to
contribute to stress, especially in participants with middle and
low teleworking rates. However, a higher fluctuation in heart
rate was a noticeable contributor to stress in those with a high
teleworking rate. Although it is known that the lower the
fluctuations in heart rate, the greater the stress [9], contradictory
results were noted in the high teleworking group. The autonomic
nervous system, which consists of sympathetic and
parasympathetic nerves, regulates heart rate. During a fight or
flight response (work stress or activity in the contemporary
sense), sympathetic nerves increase the heart rate. On the other
hand, during the rest and digest state (relaxing or inactivity),
the parasympathetic nerves dominate and decrease heart rate.
It is assumed that sympathetic activation is dominant while
working from the office and parasympathetic activation is
dominant while teleworking [18]. The low fluctuations in heart
rate associated with high stress levels in the low and middle
teleworking groups could be attributed to sustained sympathetic
dominance with less time to relax while working from the office.
Similarly, high fluctuations in heart rate associated with high
stress levels in the high teleworking group could be attributed
to temporal activation of sympathetic nerves while performing
a difficult task, despite the parasympathetic predominance of
the baseline state. Additionally, a lower mean sleep duration
among participants with a high teleworking rate was a marker
of stress in this study. This result is important because we expect
that a person should get sufficient sleep when working from
home.

Similarly, several features characteristic of the low teleworking
group were identified. Coming late or too early to work was
identified as a marker of stress among those with a low
teleworking rate. These observations suggested that coming too
early may correlate with long working hours and coming late
may correlate with decreased engagement. Moreover, having a
higher or lower than mean heart rate was found to be a marker
of stress in those with a low teleworking rate. This suggests that
in terms of heart rate, an individual may respond differently to
stress while working from the office, according to the baseline
state of the autonomic nervous system with sympathetic or
parasympathetic dominance. Moreover, the variability in the
contribution of calories burned was high among those with
middle and low teleworking rates. Burning more or fewer
calories than normal among participants with middle and low
teleworking rates was a marker of stress and could be attributed
to the individual’s unique response.
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Limitations
The data used in this study (ie, wearable device, questionnaire,
and attendance data) were affected by working style and various
other factors. If the target population were to change, the results
may be different from those obtained in this study. Moreover,
age-related comorbidities and lifestyle changes were not
considered in the modeling, which can impact the outcome. In
this study, we created a neighborhood cluster based on the
teleworking rate. Therefore, it can only be applied to people
who are allowed to telework. The “neighborhood cluster” in
this study was assumed to be a “cluster with similar working
style.” For practical purposes, it is conceivable that working
styles differ greatly, even if the teleworking rate is similar (eg,
when data are obtained from multiple companies). Moreover,
responses to the questionnaires, including the K6 questionnaire,
were subjective for the participants and not necessarily accurate.
Furthermore, feature importance and SHAP only quantify the
degree to which the machine learning model uses the features
for prediction but do not consider whether the model makes
predictions with high accuracy. Thus, although the tendency to
judge that stress is high when the value of a feature is large is
correct, it cannot be confirmed that “stress increases when the

value of a feature is large.” Finally, because teleworking outside
of working from home was not allowed in the Shionogi Group,
a certain degree of participant bias may exist because certain
job functions were not permitted to telework. Therefore, the
results of this study might not be reproducible when targeting
other forms of teleworking.

Conclusion
Prediction performance was improved by forming a cluster
(neighborhood cluster) with similar working styles based on
the teleworking rate and using it as the training data. The validity
of the neighborhood cluster approach is indicated by differences
in the contributing features and their contribution directions
among teleworking levels. Further studies are required to
evaluate and improve the proposed method using data obtained
from employees of different companies. This methodology can
improve existing stress detection methods by incorporating the
idea of this research and narrowing the training data (ie,
neighborhood cluster extraction based on the teleworking rate).
This study paves the way for employers to consider and support
timely and appropriate interventions for people predicted to
experience high stress levels.
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